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Abstract 

Type 2 diabetes (T2D) is among the most widespread diseases in almost every country, and 

a particularly high prevalence is observed in Germany.  The pathogenesis of T2D involves the 

interaction of both genetic and environmental factors, where diet and lifestyle are long 

acknowledged as the most critical environmental risk factors. Evidence from twin studies 

suggested a strong genetic component with an estimated heritability of 54-83%. Recent genome-

wide association studies (GWAS) have provided evidence for a polygenic contribution to T2D. To 

date, GWAS has revealed more than 700 genetic risk loci for T2D. Genetic variants associated 

with metabolic changes are expected to display more significant effect sizes because of their 

direct involvement in metabolite conversion underlying molecular disease-causing mechanisms. 

Thus, to deeply understand the pathogenesis of T2D and translate GWAS findings into functions, 

we combined GWAS information with metabolomics data. Ultra-high resolution mass-

spectrometry was used to unveil biochemical patterns and potential mechanisms. The overall 

goal of modern genetics is to translate genetic information into daily clinical practice and 

elucidate the molecular mechanism of a disease. In the present work, we studied the effects of 

the COBLL1 locus, at the SNP rs6712203, on metabolic phenotypes using mass-spectrometry 

based on untargeted metabolomics. We investigated the metabotype profile of human blood 

plasma from 127 female subjects (91 COBLL1 rs6712203 allele carriers/36 non-allele carriers), 

recruited from the pre-diabetes Lifestyle Intervention Study (PLIS), following a nutritional 

challenge (OGTT). We performed direct-infusion ion-cyclotron-resonance Fourier-transform 

mass-spectrometry (DI-ICR-FT MS), in virtue of its ultra-high resolution and mass-accuracy, to link 

the genome and metabolome levels. Untargeted metabolomics allows for comprehensive 

screening of numerous known and unknown plasma metabolites. Our results may help to 

understand which biochemical pathways are altered when a disruption of glucose uptake, 

adipogenesis, lipolysis, and fat storage occurs due to a disturbance of actin filament formation. 

We generated two different hypotheses, which involve alternative energy pathways. The study 

results provide a solid base for future investigations in understanding the biochemical pathways 

involved in the scenario of T2D. 
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Zusammenfassung 

Der Typ 2 Diabetes (T2D) zählt zu den am weitesten verbreiteten chronischen Krankheiten 

weltweit. Deutschland ist eines der Länder mit der höchsten T2D-Prävalenz in Europa. Die 

Krankheitsentstehung von T2D beruht auf einer Wechselwirkung von genetischen und 

umweltbezogenen Faktoren, wobei die Ernährungsweise und der Lebensstil die kritischsten 

Risikofaktoren darstellen. Es gibt wachsende Evidenz, z.B. aus Zwillingsstudien, dass genetische 

Komponenten eine geschätzte Erblichkeit von 54-83 % aufweisen. Besonders aufschlußreich sind 

genomweite Assoziationsstudien (GWAS), um die Erblichkeit des T2D abzuschätzen. Bis heute 

haben GWAS mehr als 700 genetische Risiko-Loci für T2D identifiziert. Es ist zu erwarten, dass 

genetische Varianten, die mit Veränderungen des Stoffwechsels assoziiert sind, deutlich höhere 

Effektstärken aufweisen, da sie direkt an metabolischen Prozessen beteiligt sind, die den 

molekularen Mechanismen der Krankheitsentstehung zugrunde liegt. Um die Pathogenese der 

Krankheit mit Hilfe von GWAS besser zu verstehen, ist es eine neue Strategie, GWAS-Daten mit 

Metabolomics zu kombinieren. Massenspektrometrie mit ultra-hoher Auflösung wurde zur 

Erfassung biochemischer Muster und deren Mechanismen angewandt. Die globalen Ziele der 

heutigen genetischen Forschung sind die Übersetzung genetischer Informationen in die klinische 

Praxis sowie die Aufklärung der molekularen Krankheitsmechanismen. In der vorliegenden Arbeit 

haben wir die Effekte des COBLL1-Lokus am SNP rs6712203 auf metabolische Phänotypen 

mithilfe von Massenspektrometrie-basierter ungezielter Metabolomik (untargeted 

Metabolomics) untersucht. Dafür haben wir das Metaboliten-Profil im Blutplasma von 127 

weiblichen Probanden (91 COBLL1 rs6712203 Risiko Allel-Träger/ 36 Nichtrisiko-Allel Träger) 

analysiert, welche aus der Prädiabetes Lebensstil Interventionsstudie (PLIS) rekrutiert wurden 

und die sich einem oralen Glukosetoleranztest (OGTT) unterzogen hatten. Wir haben 

Direktinfusions-Fourier-Transform Ionenzyklotronresonanz Massenspektrometrie (DI-ICR-FT 

MS)-Messungen durchgeführt, die eine ultrahohe Auflösung und Massengenauigkeit ermöglicht. 

Ungezielte Metabolomik erlaubt ein breites Screening von vielen bekannten und unbekannten 

Metaboliten. Unsere Ergebnisse erlauben es, nachzuvollziehen, welche biochemischen 

Signalwege verändert sind, wenn eine Störung der Glukoseaufnahme, Adipogenese, Lipolyse 

oder Fettspeicherung vorliegt. Darauf basierend haben wir zwei unterschiedliche Hypothesen 

aufgestellt, die alternative Energiesignalwege betreffen. Die Studienergebnisse bieten eine solide 

Grundlage für zukünftige Untersuchungen zum Verständnis biochemischer Signalwege im 

Zusammenhang mit T2D.  
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1. Introduction 

 

1.1. Diabetes - a challenge for health care and society  

Metabolic disorders such as diabetes have reached epidemic levels, particularly type 2 

diabetes (T2D), the most common and widespread type in almost every country (Shaw et al., 

2010). The term "diabetes mellitus" is defined by the World Health Organization as "a chronic, 

metabolic disease characterized by elevated levels of blood glucose, which leads over time to 

severe damage to the heart, blood vessels, eyes, kidneys, and nerves" (Roglic, 2016). Diabetes 

mellitus is a disease that is difficult to treat and expensive to manage (Guariguata et al., 2014). 

Without effective prevention and management programs, this disease is set to increase globally 

and continuously. Furthermore, diabetes mellitus may lead to several long-term complications, 

thus playing a significant role in increasing morbidity and mortality in affected patients 

(Guariguata et al., 2014). 

 In the past three decades, the prevalence of T2D has risen dramatically in countries of all 

income levels (Roglic, 2016). Differences in T2D prevalence worldwide are based on many 

reasons such as cultural and social changes, aging, urbanization, increased prevalence of obesity, 

physical inactivity, and other unhealthy behaviors (Cecchini et al., 2010). In recent years, diabetes 

has become one of the leading causes of worldwide death. According to the World Health 

Organization, around 1.5 million people worldwide died due to diabetes in 2019 (WHO, 2021). In 

addition, it is estimated that 463 million people are living with diabetes all over the world. By 

2045, projections show this number will rise to around 700 million people globally (WHO, 2021). 
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Figure 1: Estimated Age-adjusted prevalence of Diabetes in adults (20-79 years), in 

2019. Reprinted with permission from the International Diabetes Federation. IDF 

Diabetes Atlas, 9th Ed.    Brussels, Belgium: International Diabetes Federation, 2019. 

                                                                                           

One of the countries in Europe with the highest prevalence of T2D is Germany; according 

to International Diabetes Federation (IDF) estimates, about 7 million people suffer from diabetes 

without undiagnosed cases (IDF, 2017). 

Diagnosis of diabetes is frequently delayed because symptoms at the early stages of 

diabetes (pre-diabetes) are usually missing or only mild. Diabetes can be diagnosed through 

simple blood tests, for example, via oral glucose tolerance test (OGTT) (IDF, 2017). The 

classification criteria for diabetes and the two high-risk states of abnormal glucose metabolism 

are IFG and IGT; IFG means impaired fasting glucose (fasting plasma glucose level 100-125 

mg/dL), IGT is defined as impaired glucose tolerance (plasma glucose level 140-199mg/dL) (WHO, 

2006; ADA, 2017). Diabetes can also be diagnosed by measuring glycated hemoglobin (HbA1c), 
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raised levels which reflect the concentration of the blood glucose average over the past few 

weeks to start at 5.8% (39 mmol/mol) (WHO, 2006; ADA, 2017). 

It is better to be diagnosed as early as possible as long as the chances of preventing harmful 

and costly complications will be higher (Dall et al., 2014). Therefore, there is an urgent demand 

to screen, diagnose, and supply appropriate health care to people with pre-diabetes.  

1.1.1. Risk factors of type 2 diabetes 

Some risk factors for T2D, such as genetics, ethnicity, and age, are not modifiable. Others, 

such as being overweight or obese, insufficient physical activity, unhealthy diet, and smoking, 

are modifiable through behavioral and environmental changes (ADA, 2017). 

T2D development results from the interaction between environmental factors and a strong 

heredity component (Ali et al., 2013). Evidence from twin studies suggests that the concordance 

rate is higher in monozygotic twins, about 70%. In contrast, in dizygotic twins the rate observed 

is 20%-30%—estimates of the heritability of T2D range from 20% to 80%. The incidence rate is 

40% for individuals with one relative with T2D and 70% if both parents are affected. The disease-

prone to run in families and occurs more in ethnic groups (Asian and Hispanic), and the disease 

increases risk in populations that rapidly adopted a western lifestyle (i.e., Pima Indians) (Ali et al., 

2013). Environmental risk factors that are known to increase the development of T2D include 

obesity, especially abdominal obesity, sedentary lifestyle, pre-diabetes or IGT, smoking, diabetes 

during a previous pregnancy, other nutritional factors such as unhealthy dietary habits (IDF, 

2017). The presence of overweight or obesity increases the risk progressively, proportional to 

Body Mass Index (BMI) and waist circumference (WC) (Poretsky, 2010). Therefore, people with 

increased risk factors of T2D should be screened for T2D regularly and supported by suitable 

strategies to prevent or delay the development of T2D. 
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1.1.2. Pathogenesis of T2D  

The pathogenesis of T2D involves the interaction of both genetic and environmental factors 

(Gerich et al., 2007). These factors influence glucose homeostasis, which is tightly regulated with 

dynamic interactions between insulin secretion and tissue sensitivity to insulin. The development 

of diabetes includes several pathogenic processes (Gerich et al., 2007). This may encompass from 

autoimmune destruction of the pancreas ß-cells with subsequent insulin deficiency to 

abnormalities that end in resistance to insulin action (ADA, 2011). In T2D, these mechanisms are 

impaired, with the consequence that the two primary pathophysiological defects are reduced 

insulin secretion through a dysfunction of the pancreatic ß-cell, and impaired insulin action 

through insulin resistance (Leahy, 2005). 

Figure 2: Pathogenesis of T2D. The main pathogenic factors for developing T2D, are a 
combination of genetic predisposition (insulin resistance and ß-cell dysfunction) and 
environmental factors leading to pre-diabetes and, eventually, T2D. 
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Prospective studies indicate that individuals prone to develop T2D pass through five stages 

(Gerich et al., 2007). The first stage starts at birth, when glucose homeostasis is normal. 

Individuals may be at risk of T2D for the reason of genetic variants that may predispose them to 

become obese and/or may limit the ability of their pancreatic ß-cells to compensate for insulin 

resistance. During stage 2, insulin sensitivity decreases due to this genetic predisposition and an 

unhealthy lifestyle, which is at first compensated by increased ß-cell insulin secretion so that 

glucose tolerance remains normal. During stage 3, both ß-cell function and insulin sensitivity are 

deteriorating. At this point, the ß-cell function is abnormal but sufficient to maintain average 

fasting plasma glucose concentration. In Stage 4, plasma glucose concentration increases 

because of a progressing deterioration of ß-cell function and worsening of insulin sensitivity. 

Finally, in stage 5, both fasting and postprandial glucose levels reach diabetic levels as a result of 

an advanced deterioration in ß-cell function (Gerich et al., 2007). 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Insulin Secretion and insulin action in T2D pathogenesis. Reprinted from 

The Lancet, 365, Stumvoll M., Goldstein B. J., van Haeften T. W., Type 2   diabetes: 

principles of pathogenesis and therapy, 1333-1346, Copyright (2012), with permission 

from Elsevier. 
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1.1.3. Symptoms and complications of T2D 

The symptoms of T2D due to high blood glucose include in particular: excessive thirst and 

dry mouth, frequent and abundant urination, lack of energy, extreme tiredness (fatigue), tingling 

or numbness in hands and feet, slow wound healing, and blurred vision (IDF, 2017).  

When T2D is not well managed, it can lead to severe complications in many organs. 

Continuous high blood glucose levels can cause vascular damage affecting the heart, eyes, 

kidneys, and nerves. T2D is one of the leading causes of; cardiovascular disease (CVD), blindness, 

kidney failure, and lower-limb amputation as a consequence of the diabetic foot syndrome. 

Cardiovascular and renal complications are the leading cause of death in people with T2D around 

the world, and this can be avoided with appropriate treatment (Sargsyan et al., 2019). Besides, 

diabetes is associated with increased cancer rates, physical and cognitive disability, tuberculosis, 

and depression. Moreover, in pregnancy, poorly controlled T2D increases the occurrence of 

maternal and fetal complications (Glümer et al., 2004) 

Patient self-management is critical to prevent or delay diabetes complications. Some 

people who have T2D can achieve near-normal blood glucose levels with diet and exercise alone; 

on the other hand, many need diabetes medication (metformin, etc.) or insulin therapy. The 

decision is made depending on the level of blood glucose and the risk of complications. 

1.1.4. Prevention and Treatment of T2D 

Modification of lifestyle provides an opportunity to reverse the diabetes trend. Saying 

differently, we cannot change our genetic makeup, but we can modify environmental factors and 

lifestyles (Darnton-Hill et al., 2004). Risk factors such as diet, adiposity, physical activity, and 

environmental expositions are modifiable by applying a combination of approaches at both the 

population and individual level (Darnton-Hill et al., 2004). Many of the prevention programs 

developed so far have focused on lifestyle modification addressing the previously mentioned 

modifiable risk factors; meanwhile, other strategies also included the use of pharmacological 

agents, which improve ß-cell function or insulin resistance (Hussain et al., 2007). 
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At the individual level, intensive interventions that improve nutrition and physical activity 

can prevent or delay the outset of T2D in people at high-risk. The importance and effectiveness 

of prevention of T2D were shown in many clinical trials, such as the Finnish Diabetes Prevention 

Study (Tuomilehto et al., 2001), the Diabetes Prevention Program Trail in the US (Knowler et al., 

2002), and smaller trials such as the Tübingen Lifestyle Intervention Program (TULIP) and the 

Danish study (Schäfer et al., 2007; Glümer et al., 2004). 

 

 

Study 

 

Intervention 

 

Relative 

risk 

reduction  

 

The number 

needed  

to prevent 

 

Time  

(years) 

 

Reference  

DPS Lifestyle 58 7 3 Tuomilehto J et al., 

2001  

DPP Lifestyle 58 7 3 Knowler WC et al., 

2002  

IDPP Lifestyle 29 6 3 Ramachandran A et 

al., 2006  

Da Qing 

 

Lifestyle 42 4,5 6 Pan XR et al., 1997  

TRIPOD Troglitazone 49 6 2,5 Buchanan TA et al., 

2002  

DREAM 

 

Rosiglitazone 60 7 3 Gerstein HC et al., 

2006  

STOP-
NIDDM 

 

Acarbose 25 11 3 Chiasson JL et al., 2002  

DPP Metformin 31 14 3 Knowler WC et al., 

2002  

XENDOS Orlistat 37 10 4 Torgerson JS et al., 

2004  

Table 1: Prevention Studies of T2D. Including randomized controlled trials and pharmacological trials. 
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The main aim of most intervention programs to prevent T2D is achieving and maintaining a 

healthy body weight by combining a healthy diet and physical activity in individuals with impaired 

glucose tolerance as a high-risk group, particularly in those with a family history of diabetes 

(Hussain et al., 2007). Dietary recommendations in most studies are the following; reduction of 

fat intake, limiting saturated fatty acid intake to less than 10% of total energy intake, high intake 

of dietary fiber through consumption of wholegrain cereals, legumes, fruits, and vegetables, and 

moderate calorie restriction in overweight/obese subjects (Roglic, 2016). Regarding physical 

activity, it is recommended to spend 30-40 min of moderate physical activity mostly daily or some 

days a week.  

Research groups in different parts of the world, including the USA, Finland, China, India, 

and other countries, have conducted proof-of-principle studies showing that lifestyle 

modification with physical activity and a healthy diet can delay or prevent the onset of type 2 

diabetes (Roglic, 2016). 

The first landmark study to examine the effects of dietary modification, weight loss, and 

increased physical activity was the Da Qing trial in China, which investigated the effect of a 6-year 

diet and exercise intervention in Chinese subjects with IGT (Pan et al., 1997). After 6 years of 

follow-up, the authors concluded that the incidence of conversion to diabetes was 68% in the 

control subjects and significantly lower in the intervention groups (Pan et al., 1997). 

Another landmark study, The Finnish Diabetes Prevention Study (DPS), examined the effect 

of an intensive lifestyle program in middle-aged and overweight men and women with IGT 

(Tuomilehto et al., 2001). This combined lifestyle intervention produced long-term beneficial 

changes in diet, physical activity, consecutive improvement of clinical and biochemical 

parameters, and reduction of the incidence of T2D. Such a program should be implemented in 

the primary health care system (Tuomilehto et al., 2001). 

The Diabetes Prevention Program (DPP) is the most extensive study to date to examine the 

efficacy of a lifestyle modification program and metformin in preventing the development of T2D, 

especially in people at high-risk (Knowler et al., 2002). This study was conducted in 27 centers in 
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the USA and randomized more than 3000 middle-aged, overweight men and women. After three 

years, the DPP showed a 58% (lifestyle) and 31% (metformin) reduction in the development of 

T2D compared with participants in the control group (Knowler et al., 2002). 

Likewise, the Indian Diabetes Prevention Program (IDDP) was conducted to examine the 

combination of a lifestyle program and treatment with metformin on the development of T2D 

(Ramachandran et al., 2006). The reduction of T2D incidence was 28.5% with lifestyle 

modification, 26.4% with metformin, and 28.2% with a combination of both over 3 years 

(Ramachandran et al., 2006). 

These studies uniformly demonstrated the importance of the two angles of lifestyle risk 

factors, dietary factors and physical activity, which are closely related to the risk of T2D. 

Therefore, both should be combined in order to prevent, manage and control T2D. 

For example, several pharmacological intervention studies, TRIPOD, DREAM, EXENDOS, and 

STOP-NIDDM, have convincingly shown that T2D can be prevented or delayed with different 

drugs such as Rosiglitazone, Acarbose, Metformin, or Orlistat (Poretsky, 2010). Nevertheless, in 

the majority of studies, this intervention was not as effective as changes in diet and physical 

activity (Roglic, 2016). 

1.2. Genetic architecture of type 2 diabetes  

The development of T2D results from the interaction between environmental factors and 

the genetic background (Hara et al., 2014). Even with the same environmental exposures, some 

people are more prone to developing diabetes than others. This means the significant risk 

appears to be partly inherited. During the last decades, many studies have provided insight into 

the genetic architecture underlying complex diseases. T2D has been at the frontline of human 

diseases and phenotypic traits studied by new genetic methodologies (Hara et al., 2014).   

The genetic architecture of T2D, defined by the number, frequencies, and effect sizes of 

causal alleles (Prasad et al., 2015), is still incompletely understood. To understand it is challenging 
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due to several confounding factors: one is the incoherent and complicated sum of heterogeneous 

phenotypes summarized by the term T2D. To sustainably improve our understanding of the 

genetic architecture of T2D, decoding and understanding the genome-wide association studies 

GWAS signals is essential.  

Since (GWAS) was launched, they have changed the landscape of diabetes genetics. Before 

the availability of GWAS, the primary methods used to determine a link between genotype and 

phenotype were candidate gene approaches and linkage analyses (Poretsky, 2010). 

In the last years, GWAS have increased sample sizes and associated more than 600 genetic 

variants to T2D (Billings et al., 2010). This number is even markedly higher when glycemic and 

lipid traits, like insulin secretion, insulin action, obesity, adverse lipid profiles, high blood 

pressure, and inflammation, are separately considered (Billings et al., 2010). 

T2D genes identified by linkage analysis were Transcription factor 7-Like 2 (TCF7L2) and 

Calpain 10 (CAPN 10) (Wijmenga et al., 2018). Additionally, peroxisome proliferator-activated 

receptor gamma (PPAR-γ), and insulin receptor substrate 1 (IRS1) are involved in tissue-specific 

body fat storage, and subsequent effects on cardio-metabolic diseases such as T2D. IRS-2, 

potassium inwardly-rectifying channel subfamily J member 11 (KCNJ11), Wolfram syndrome 1 

(WFS1), HNF1 homeobox A (HNF1A), HNF1 homeobox B (HNF1B), and Hepatocyte Nuclear Factor 

4 Alpha (HNF4A) were identified through the candidate gene method. The necessity to have other 

more powerful techniques was obvious to look for variants that were not easily identified by 

these methods (Wijmenga et al., 2010). 

1.2.1. Genome-Wide Association Studies (GWAS) 

GWAS is a genetics research tool to look for an association between many specific genetic 

variations (common SNPs) and particular diseases or traits (Billings et al., 2010). These studies 

have been powered to consider a massive number of polymorphisms in the human genome. 

However, the identification of disease-causing variants within association loci remains a 

significant challenge. Yet, GWAS has some limitations: first, associated genetic variants are not 
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necessarily causative due to the haplotype structure of the human genome. On the other hand, 

the requirement of a minimum allele frequency is often set at 5% in the study population. This 

means that the associated mutation should be ancient enough to be widespread in the study 

population, and rare variants cannot be easily linked to phenotypes if not sequenced (Billings et 

al., 2010). 

Nevertheless, since the first identification of SNPs analyzed for associations with macular 

degeneration and myocardial infarction by GWAS, the GWAS catalog has now grown to contain 

tens of thousands of SNPs associated with hundreds of common diseases and phenotypes (Ali, 

2013).  

Additionally, over the last decade, GWAS has identified 686 genetic variants at 403 loci 

associated with T2D (Vujkovic et al., 2020; Cai et al., 2020). The first GWAS for T2D was performed 

in a French discovery cohort, where the authors identified novel, reproducible association signals 

at the Zinc transporter 8 (SLC30A8), and they were able to validate the well-known association 

at Transcription factor 7-Like 2 (TCF7L2) (Sladek et al., 2007). SLC30A8 is a gene encoded for a 

protein involved in the storage and secretion of insulin granules, and is expressed at a high level, 

specifically in the pancreas (Lefebvre et al., 2012). On the other hand, TCF7L2 is the most reliable 

and most replicated variant in the context of T2D studied to date (Damcott et al., 2006; Tong et 

al., 2009). Moreover, the glucokinase regulatory protein (GCKR) gene was identified in GWAS of 

T2D to be associated with fasting serum triglyceride levels (Saxena et al., 2007). The GCKR 

encodes a regulatory protein in the liver that inhibits glucokinase activity, the enzyme responsible 

for regulating metabolism, uptake, and storage of circulating glucose. Furthermore, Transducin-

like enhancer protein 1 (TLE1), Melatonin receptor type 1B (MTNR1B), Growth factor receptor-

bound protein 14- Cordon-bleu protein-like 1 (GRB14-COBLL1) are other relevant T2D loci 

recently identified by GWAS (Zeggini et al., 2008; Prokopenko et al., 2010; Manning et al., 2012). 

A meta-analysis containing eight metabolic traits and six inflammatory markers using 

existing GWAS published genetic summary results, with about 2.5 million SNPs from the twelve 

largest GWAS consortia. The analyses yielded 130 unique genomic regions with pleiotropic 
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associations. One of the genomic regions involved the two genes GRB14 and COBLL1 (Kraja et al., 

2014). 

Manning and colleagues have developed a joint meta-analysis (JMA) approach to identify 

SNPs significantly associated with either fasting glucose and/or fasting insulin with both adjusting 

for BMI (Manning et al., 2012). Through this approach, six loci were identified (IRS1, GRB14-

COBLL1, protein Phosphatase 1 Regulatory Subunit 3B (PPP1R3B), platelet Derived Growth Factor 

C (PDGFC), UHRF1 Binding Protein 1 (UHRF1BP1), and lysophospholipase-like 1 (LYPLAL1)). The 

GRB14-COBLL1 locus was associated with increased triglycerides (TGs), decreased high-density 

lipoprotein (HDL), increased fasting insulin, T2D, and increased low-density lipoprotein (LDL), and 

is known to interact with receptor tyrosine kinases such as insulin and insulin-like growth factor 

receptor. It is also associated with triglyceride and insulin levels, consistent with the previous 

association of this locus with HDL cholesterol (Brown et al., 2016; Abou Ziki et al., 2016). 

As long as overweight and obesity are major risk factors and contributors to the 

development of T2D, the GWAS investigated whether the relationship of the sentry SNPs with 

T2D might be mediated through adiposity (Wijmenga et al., 2018; Travers et al., 2011). Because 

of the strong link between obesity and T2D, genes that increase the risk of obesity also show up 

in GWAS for T2D, including frequently replicated genes Alpha-ketoglutarate dependent 

dioxygenase (FTO), melanocortin receptor 3 (MC3R), and melanocortin receptor 4 (MC4R) 

(Wijmenga et al., 2018; Travers et al., 2011). One of the strong reproducible GWAS BMI-

associated signals is the FTO gene (fat mass and obesity-associated gene) (McCarthy, 2010). The 

latest follow-up of mechanistic studies showed pervasive pleiotropy at the locus implicating 

repression of mitochondrial thermogenesis in adipocyte precursor cells and shift of their 

differentiation from beige (energy-dissipating) cells to white (energy-storing) adipocytes 

(Claussnitzer et al., 2015), as well as effects on hypothalamic neurons and sweet preference 

(Joslin et al., 2021). 

Interestingly, Laber and Forcisi et al. have discovered an rs1421085 related decrease of 

steroids and their derivatives in rs1420185-DEL82 mice under high-fat-diet (HFD) conditions 
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compared to controls using untargeted, ultra-high-resolution metabolome analysis. Besides, two 

independent human cohorts following an oral glucose challenge have shown a significant 

increase of the steroids compound class in male risk carriers compared to non-risk carriers in the 

immediate response (0h-1h) and a subsequent decrease in the short-term (1h-2h). The 

mitochondrial characteristics (number of mitochondria, marker genes for thermogenesis and 

browning) in murine adipose tissue of rs1421085-DEL82 have been in line with findings by 

Claussnitzer et al., 2015 (Laber et al., 2021).  

1.2.2. COBLL1 as a gene of interest 

Since the COBLL1 gene is among the strongest signals from GWAS that looked at 

associations with T2D and related traits (McCarthy et al., 2009), our group has been working on 

elucidating the molecular mechanisms underlying such associations; this gene was also selected 

as a gene of interest in our ongoing metabolomics project.  

The COBLL1 (COBL-like 1) gene was cloned in 1999 and initially specified as KIAA0977 

(Gordon et al., 2011). The deduced protein contained 1,166 amino acids and was found to be 

expressed at high levels in the lung, liver, kidney, pancreas, ovary, spinal cord, brain, fetal liver, 

and all specific adult brain regions.  In 2003, Carroll et al. renamed the gene COBLL1 based on 

the homology to the newly discovered COBL (i.e., cordon-bleu homolog, mouse) gene. The 

specific roles of the gene is not known, but each is assumed to play a role in embryogenesis 

based on temporal expression patterns during development (Gordon et al., 2011). 

COBLL1 is a gene with close to 9500 SNPs and has two isoforms, COBLL1a and COBLL1b 

(Park et al., 2015). In Mancina et al., the association between the SNP COBLL1 rs7607980 C allele 

and lower insulin levels as lower insulin resistance in overweight and obese children was 

described for the first time (Mancina et al., 2013). These findings were also confirmed in another 

study where Manning et al. proved the association of the rs7607980 C allele with lower insulin 

resistance in adult Europeans (Manning et al., 2012). Finally, in an interesting study by 

Desmarchelier et al. on a healthy male population, COBLL1 SNPs were found to be significantly 
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associated with the postprandial chylomicron and triacylglycerol response, which was positively 

associated with atherosclerosis and cardiovascular disease risk (Desmarchelier et al., 2014) 

In a large GWAS meta-analysis, the GRB14/COBLL1 locus was significantly identified out of 

13 novel loci for WHR, which was adjusted for BMI (Heid et al., 2010; Morris et al., 2012).       

Furthermore, the GRB14/COBLL1 locus was determined to be associated with body fat 

distribution assessed by WHR adj BMI. In another study, loci near the GRB14/COBLL1 locus 

identified body fat percentage (BF %) rather than BMI. This is possible, as fat mass/adiposity is 

not fully captured by BMI (which represents both lean and fat mass) (Heid et al., 2010; Morris et 

al., 2012). The association signature of the GRB14/COBLL1 locus is consistent with the 

observation that its BF% increasing allele is associated with lower WHR adj BMI, suggestive of a 

preferential gluteal rather than abdominal fat storage and nominal significance with 

subcutaneous fat (SAT), but not with the metabolically more harmful visceral fat (VAT) (Lu et al., 

2016). GWAS reported a sexual dimorphism at the GRB14/COBLL1 locus, with a stronger 

association with women's waist-to-hip ratio (WHR) (Heid et al., 2010; Morris et al., 2012). 

Interestingly, a study focusing on body fat distribution found 49 loci whose putative 

regulatory elements were enriched in adipose tissue, linking adipogenesis and insulin resistance 

to regulating body fat distribution (Shungin et al., 2015). The association with body fat 

distribution at the GRB14/COBLL1 locus may also be mediated by adipose insulin response (Kan 

et al., 2016). Claussnitzer et al. identified a sexual dimorphism in their experiments, indicating 

an effect of rs6712203 on stimulated lipolysis and potentially fat distribution in women only. It 

is interesting to consider that a decreased adipogenic capacity due to COBLL1 locus perturbation 

may reduce the adipocyte insulin response in subcutaneous adipocytes, together with the ability 

to store an excess of energy in women (Glunk et al., under Revision). 

The cross-phenotype associations and the phenotypic correlation between BF% and 

cardio-metabolic traits are inconsistent (Lu et al., 2016). The GRB14/COBLL1 locus is an example: 

it was previously identified for associations with fasting insulin, TG, HDL-C, and T2D risk.  

However, it was shown for the first time that the BF% increasing allele is related to a protective 
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effect on cardiometabolic health, significantly lowering TG levels, increasing HDL-C levels, 

leading to a reduced T2D risk.  This association signature of the GRB14/COBLL1 locus is 

consistent with the observation that its BF% increasing allele was associated with lower WHR 

and BMI (Lu et al., 2016). 

In contrast to the GRB14 gene, the functional role of the COBLL1 gene in metabolic 

diseases is poorly understood in humans and other mammals (Lumish et al., 2020). 

The Cobl-like gene is linked to diabetes and obesity (Mancina et al., 2013; Sharma et al., 

2017). Therefore, Claussnitzer et al. studied different SNPs that are around the COBLL1 gene 

(Table 2) and used the bioinformatics phylogenetic module complexity analysis (PMCA) method 

to prioritize functional genetic variants at the GRB14/COBLL1 locus. This method was developed 

to identify potentially relevant SNPs by searching for conserved co-occurring transcription factor 

binding sites (TFBS) patterns, organized within cis-regulatory modules (CRMs), to predict cis-

regulatory variants ( i.e., variants affecting gene expression) (Claussnitzer et al., 2014). 

Based on this technology, the SNPs presented in (Table 2) were assumed to be functional 

for the T2D association signal at the GRB14/COBLL1 locus and had the top scores of T2D and 

insulin sensitivity (Claussnitzer et al., 2014). Based on this analysis, we intended to investigate 

subjects genotyped for the SNP rs6712203, an intronic SNP located on the 2nd chromosome. We 

recruited allele carriers vs. non-risk allele carriers for this investigation who underwent a 

nutritional challenge (OGTT) in a female sub-population to unveil conditions that cannot be 

observed in a basal status.  Yet, the cellular functions of COBLL1 and the underlying molecular 

mechanisms are entirely unknown.  
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Tag SNP Reported 

gene locus 

proxy SNP PMCA result Chr Position 

[GRCh37/hg19][bp] 

rs3923113 GRB14 rs10184004 

 

complex SNP 

region 

chr2 165508389 

rs3923113 GRB14 rs10179126 

 

complex SNP 

region 

chr2 165511794 

rs3923113 GRB14 rs10195252 

 

complex SNP 

region 

chr2 165513091 

rs3923113 GRB14 rs10187501 

 

complex SNP 

region 

chr2 165532454 

rs3923113 GRB14 rs6753142 

 

complex SNP 

region 

chr2 165544071 

rs3923113 GRB14 rs6712203 

 

complex SNP 

region 

chr2 165557318 

rs3923113 GRB14 rs3923113 non-complex 

SNP region 

chr2 165501849 

rs3923113 GRB14 rs13389219 non-complex 

SNP region 

chr2 165528876 

Table 2: Overlap of complex regions and non-complex regions with evolutionary constraint elements 

and localization to next Transcriptional Start Sites (TSSs). The tag SNPs, the reported gene locus, and 

the proxy SNPs are listed. Proxy SNPs are derived from SNAP viewer data (Johnson, et al., 2008), and 

SNP regions of the 1,465 candidate SNPs located at the 47 GWAS T2D risk loci were analyzed by PMCA 

and sorted into SNPs surrounded by complex regions and non-complex regions. SNP positions of the 

1,465 SNPs were used as anchors in a Genome Inspector (Genomatix) correlation with evolutionary 

constraint elements (Lindblad-Toh et al., 2011). 
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Our research group was interested in further investigating the GRB14/COBLL1 risk locus 

and the COBLL1 gene and the risk for T2D. Claussnitzer and colleagues performed a broad series 

of experiments to elucidate the function of COBLL1 as a gene of interest. As a result, they 

demonstrated that COBLL1 mRNA expression could be linked to actin filamentation, cell 

differentiation, insulin-stimulated glucose uptake, lipid accumulation, and regulation of lipolysis 

in subcutaneous human adipocytes (unpublished data). Additionally, since the group found that 

the COBLL1 locus is involved in the regulation of F-actin, a dynamic regulation is essential to 

adapt to changes in the cell's microenvironment. They proposed that a disrupted regulation of 

the COBLL1 gene in rs6712203 risk allele carriers may lead to decreased actin stress fiber 

production, which subsequently does not allow the production of cortical actin and may lead to 

consecutively disturbed glucose uptake, adipogenesis, lipolysis, and TG storage. This molecular 

mechanism could partially explain the observed decreased hip circumference and unfavorable 

body fat distribution in rs6712203-C risk allele carriers, particularly in obese women. A 

disturbance in the energy metabolism of adipocytes and resulting challenges in energy storage 

are known risk factors for T2D, and this could be the missing link in the GWAS risk signal for T2D 

at the GRB14/COBLL1 locus (Figure 4). 

The Claussnitzer team identified at least two tagging variants within the GRB14/COBLL1 

locus and associated with T2D, highlighting the complex haplotype structure and the great 

challenge to identify the disease-causing variants. This computational and experimental model 

elucidated a POU2F2-dependent up-regulation of COBLL1 mRNA in rs6712203-T non-risk 

adipocytes, possibly contributing to the GRB14/COBLL1 GWAS risk associated with insulin 

resistance and T2D (Morris et al., 2012; Konner et al., 2011; Mahajan et al., 2014). The next aim 

was to determine the likely regulatory variant(s) responsible for the T2D association. Using the 

cross-species conservation analysis PMCA, a computational approach calculating regulatory 

probability scores (range 1-9) using conserved transcription factor binding site (TFBS) patterns 

within cis-regulatory modules (CRMs) (Claussnitzer et al., 2014), rs6712203 was identified as the 

highest-scoring variant with a striking clustering of 312 TFBS (p<0.0001), 32402 TFBS modules 

(p<0.0001), 763 TFBS in these modules (p<0.0001), resulting in the combined overall score of 9 
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(Claussnitzer et al., 2014).  Notably, the rs6712203 SNP is localized within an adipose-specific 

enhancer region (Glunk et al., under Revision).  

This work provides evidence that COBLL1 is involved in adipocyte actin remodeling, 

maturation, and metabolism, which has not been reported before. Although the GRB14 locus 

encodes an adaptor protein for the insulin receptor (Scharf et al., 2004), which has been 

suggested as being potentially causal for the T2D risk association at the GRB14/COBLL1 locus 

(Schleinitz et al., 2004), the regulatory circuitry underlying the genome-wide disease association 

has not previously been identified. To unravel the regulatory variant, its regulator, and the 

affected gene at the GRB14/COBLL1 locus, they integrated publicly available data with specifically 

designed targeted perturbations in human adipocytes.  

Glunk et al. identified an adipocyte-specific enhancer region surrounding the intronic 

COBLL1 variant rs6712203, its upstream regulator POU2F2, and the up-regulation of the target 

gene COBLL1 in rs6712203-T non-risk allele carriers. Until now, the function of the COBLL1 

protein in adipocytes has not been described. Following COBLL1 locus perturbation, they found 

a lower ability to remodel F-actin stress fibers into cortical actin, decreased adipogenesis, 

decreased insulin-stimulated glucose uptake, triglyceride storage, and decreased stimulated 

lipolysis. The observed cellular phenotypes are relevant to T2D and consistent with the 

association of the GRB14/COBLL1 locus with T2D across populations resulting from peripheral 

insulin resistance with a dysfunctional energy regulation in adipose tissue. 
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Figure 4: Mechanistic model detailing the POU2F2-dependent up-regulation of COBLL1  

expression in rs6712203-T non-risk allele carriers. In rs6712203-T non-risk human 
adipocytes, the expression of COBLL1 is POU2F2 dependent upregulated. In rs6712203-C 
risk adipocytes, the POU2F2 motif is partially disrupted, which prevents the up-regulation 
of COBLL1. COBLL1 perturbation in human adipocytes leads to a disturbed remodeling of 
F-actin fibers from stress fibers to cortical actin, which is essential for adipogenesis and 
the adaptation to changes in the cell's microenvironment. We propose that a disrupted 
regulation of COBLL1 in rs6712203-risk adipocytes may lead to lower cortical actin 
structures, which can cause disturbances during adipogenesis and result in a decreased 
insulin-stimulated glucose uptake lipolysis and TG storage. Disturbed energy regulation in 
adipocytes and resulting challenges in energy storage in the human body are known risk 
factors for T2D. Therefore, they could contribute to the GWAS risk signal for T2D at the 
GRB14/COBLL1 locus. Provided by M. Claussnitzer et al. (Glunk et al., under review) 

 

 

The mentioned mechanisms and pathways may significantly control essential metabolic 

pathways in the human body, starting with adipogenesis, which is the cell differentiation process 
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by which pre-adipocytes become adipocytes (fat cells) (Ghaben et al., 2019). This process is 

highly regulated by counter-regulatory hormones, which these cells are susceptible to. For 

example, insulin contributes to triglyceride storage in fat cells, whereas the catabolic hormones 

epinephrine, glucagon, and ACTH promote lipid mobilization (Ghaben et al., 2019). 

 

Mutations of genetic alleles that regulate the production of actin or its associated protein 

can cause an enormous number of diseases (Laing et al., 2009). The generation of actin is also 

vital for the infection process by some pathogenic microorganisms (Laing et al., 2009). Mammals 

have six actin genes; four are expressed in muscle cells, and two in non-muscle cells (Perrin et 

al., 2010). Any mutations in the different genes that regulate actin production in humans can 

cause a muscular disease (Laing et al., 2009). In addition, the composition of the cytoskeleton is 

related to the pathogenicity of intracellular bacteria and viruses, particularly in the processes 

associated with avoiding the actions of the immune system (Laing et al., 2009). 

 

The cortical actin filament is found in mature adipocytes, while pre-adipocytes have stress 

fibers, which are remodeled into cortical actin during adipogenesis (Yang et al., 2014). A whole 

and dynamic actin remodeling is also crucial for insulin-stimulated glucose uptake into the cells, 

since cortical actin disruption and stabilization inhibits GLUT4 translocation (Kanzaki et al., 

2001). In adipocytes, insulin is essential for the breakdown of F-actin stress fibers (Martina et 

al., 1996). Insulin stimulation of adipocytes initially results in cortical actin remodeling, followed 

by increased polymerized actin to enable GLUT4 translocation to the plasma membrane (Kanzaki 

et al., 2001). 

 

In summary, the actin cytoskeleton is involved in many cellular processes and provides 

structural support and vesicle trafficking. Coordinated regulation of the cytoskeleton is essential 

during adipogenesis (Kawaguchi et al., 2003; Yang et al., 2014; Kanzaki et al., 2001), GLUT4 

translocation to the plasma membrane (Kanzaki et al., 2001), the maintenance of lipid droplets, 

and lipid droplet dynamics during lipolysis (Husson et al., 2011). Taking into account that the 

COBLL1 homolog COBL is a known F-actin dynamizer (Orlicky et al., 2013), and GO-term pathways 
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list COBLL1 as actin interacting protein (Ashburner et al., 2000), we investigated whether COBLL1 

may play a role in the regulation of the actin cytoskeleton in adipocytes, thereby affecting GLUT4 

vesicle trafficking, lipid metabolism, and adipocyte differentiation (Ashburner et al., 2000). 

 

1.3. Metabolomics and system biology  

Metabolomics is an emerging field in systems biology, providing a direct readout of 

physiological status, biochemical mechanisms, and enzymatic activities within an individual at a 

specific point in time (Ramautar et al., 2013). Additionally, it is an essential technique for systems 

biology and translational medicine, particularly in combination with other -omics technologies 

such as genomics, transcriptomics, or proteomics (Villas-Boas et al., 2007; Nicholson et al., 2006). 

It has the potential to deliver novel diagnostic biomarkers for the detection and prognosis of 

diseases (Villas-Boas et al., 2007; Nicholson, 2006). Metabolomics refers to the systemic 

identification and quantification of the small molecules and products (the metabolome) of a 

biological system (cell, tissue, organ, biological fluid, or organism) at a specific time point (Klassen 

et al., 2017). 
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Figure 5: The omics cascade.  A typically integrated omics cascade starts 
with datasets inputs, datasets outputs, and results. Using individual omics 
datasets that are closer to genotype (genomics and transcriptomics), and 
those closer to phenotype (proteomics and metabolomics), plus a host of 
other omics platforms, and datasets that are integrated using statistical or 
advanced machine learning approaches. Results may be simple pathways or 
complex networks and include both known and novel molecules. In addition, 
results may predict health or disease states, provide insights for effective 
therapeutic interventions, or reveal space-time regulation of systems such as 
cell, tissue, or organ type specificity. 

 

Metabolites are small molecules and products of cellular regulatory processes; many 

factors influence their levels, including disease status, environment, medications, diet, and 

genetic factors (Nicholson, 2008). Thus, metabolites are helpful for diagnosis and prognosis as 

well as predicting and monitoring the efficacy of treatment (Likić et al., 2010). 

 According to the human metabolome database (http://www.hmdb.ca), human 

metabolites can range from 1000 until 108766 (Wishart et al., 2009). 

http://www.hmdb.ca/


33 
 

 Consequently, the strong links between an individual genetic profile and metabolomics 

allow the investigation of the pathways behind changes at the level of the metabolites (Suhre et 

al., 2012). Therefore, in the field of metabolomics, researchers need to take into account the 

genetic factors underlying the production of metabolites and their possible role in disease 

processes (Suhre et al., 2012; Johnson et al., 2016). 

Metabolomics is defined as the (semi-)quantitative measurement of a complex system's 

multi-parametric time-related metabolic response to an intervention or genetic modification 

(Nicholson et al., 1999). The metabotype is defined as a metabolic profile, which relates genetic 

variations of an organism (Gavaghan et al., 2000) to environmental factors such as age, gender, 

lifestyle, diet, stress level, and gut microbiota (Nicholson et al., 2002; Daviglus et al., 2004; Li et 

al., 2008). Now, GWAS can be carried out with large panels of metabolite concentrations (Suhre 

et al., 2012). While using this largely hypothesis-free approach, common genetic variants in genes 

encoding enzymes transporter proteins have been identified with substantial influences on 

human metabolic traits. These so-called genetically influenced metabotypes (GIMs) are starting 

to be combined with increasing knowledge of disease-associated genetic loci to uncover new 

complex risk factors of common diseases and to provide functional insights into the 

pathophysiology of related disorders (Suhre et al., 2012). 

Metabolomics strategies have been divided into two different approaches: untargeted and 

targeted metabolomics (Johnson et al., 2016). The targeted metabolomics approach refers to a 

method, which characterizes specific classes of known compounds, and biochemically annotated 

metabolites, focusing on one or more known related pathways of interest.  This strategy provides 

measurements that are more precise and is easy to replicate but are limited to a subset of pre-

selected compounds (Patti et al., 2012). This approach is widely applied in the pharmaceutical 

field and provides quantifications using isotope-labeled external standards.   

The other kind of metabolic profiling is the untargeted metabolomics approach, by means 

of which a comprehensive and extensive range of compounds are measured, without bias and 

including unknown metabolites (Naz et al., 2014). This approach increases the need to follow 

multiple screenings during analysis (Roberts et al., 2014). However, it detects the maximum 
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possible amount of metabolites without prior knowledge of the extracted compounds, making 

this a valuable approach for identifying novel or unveiling new mechanisms (Roberts et al., 2014). 

 

1.3.1. System biology in the "omics" era  

Nowadays, expansive amounts of biological data can be produced by advanced high 

throughput technologies allowing not only the identification and the quantification of individual 

components of a system (e.g., genes, proteins, or metabolites), but the generation of extensive 

networks describing the potential interactions between their components (Wang et al., 2015).  

Due to such massive availability of "omics" datasets, the system's way of thinking has become an 

accomplishable goal (Likić et al., 2010). However, any single type of such high throughput data, 

representing only one dimension of complex biological systems, is unable to uncover new 

functions. Different "omics" levels provide alternately complementary information on 

corresponding mechanisms. The complete picture can only be constructed by studying the 

relationships between genes, transcripts, proteins, and metabolites, enhancing the importance 

of the integration of heterogeneous and large "omics" data.  The "omics" era meets the challenge 

of mining biological knowledge and generates novel insights and reliable hypotheses from the 

excess of available data.  

1.3.2. Analytical tools in metabolomics 

Advances in analytical technologies certainly drive scientific knowledge (Zhang et al., 2012). 

The development in the detection and identification of small molecules, including amino acids, 

peptides, lipids, carbohydrates, etc., dramatically depends on the corresponding methods and 

tools. Finding the most comprehensive platform is not always feasible; since every analytical 

technique has its advantages and disadvantages. Thus, combining analytical approaches is an 

essential step towards studying the global metabolome (Zhang et al., 2012; Forcisi et al., 2015). 

Metabolomics experiments can be performed on many biofluids and tissue types via the 

application of different analytical platforms: mass-spectrometry (MS) and Nuclear magnetic 
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resonance (NMR) spectroscopy, allowing metabolite identification and quantification (Zhang et 

al., 2012; Forcisi et al., 2015). 

 To examine such a broad chemical diversity, global untargeted metabolomics requires 

various and complementary analytical tools to achieve a coverage of all metabolites, endogenous 

and exogenous, present in a biological sample (Zhang et al., 2012; Forcisi et al., 2015). 

Over the last decades, the application of metabolomics has gained increasing interest. 

Several analytical platforms are commonly used in untargeted metabolomics research applying 

NMR spectroscopy, Liquid chromatography (LC-MS), Gas chromatography (GC-MS), and Direct 

Infusion-Ion-Cyclotron-resonance Fourier-Transform Mass-Spectrometry (DI-ICR-FT MS) 

  (Villas‐Bôas et al., 2005; Wilson et al., 2005; Lenz et al., 2007; Lu et al., 2008; Theodoridis 

et al., 2008; Wu et al., 2009; Wishart et al., 2011; Dunn et al., 2008; Dunn et al., 2005; Nicholson 

et al., 2007). 

NMR spectroscopy is particularly appropriate for analysis of bulk metabolites, GC-MS to the 

analysis of volatile organic compounds and primary derivative metabolites, LC-MS is highly 

appropriate to analyze a wide range of semi-polar compounds, and (DI-ICR-FT MS) provides an 

extraordinarily high mass-resolution and mass-accuracy, together with a high-order-of-

magnitude intensities range. Since LC-MS can avoid chemical derivatization, it is a vastly used 

instrument in combination with high-resolution mass-spectrometry (Villas‐Bôas et al., 2005; 

Wilson et al., 2005; Lenz et al., 2007; Lu et al., 2008; Theodoridis et al., 2008; Wu et al., 2009; 

Wishart et al., 2011; Dunn et al., 2008; Dunn et al., 2005; Nicholson et al., 2007). High selectivity 

and sensitivity for the identification and quantification of metabolites are offered by MS-based 

metabolomics, combined with advanced high throughput separation techniques that can reduce 

the complexity of metabolite separation (Zhang et al., 2012; Forcisi et al., 2015; Villas‐Bôas et al., 

2005; Wilson et al., 2005; Lenz et al., 2007; Lu et al., 2008; Theodoridis et al., 2008; Wu et al., 

2009; Wishart et al., 2011; Dunn et al., 2008; Dunn et al., 2005; Nicholson et al., 2007; Shulaev et 

al., 2006). 

The following (Table 3) shows a comparison of the principal technologies applied in 

metabolomics research 
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Technique 

 

NMR GC-MS UPLC-MS DI-ICR-FT MS 

Sample 

preparation 

 

Dilution  

1. Minimization of 
matrix suppression 
effect 

2. minimizing the 
content of salt, 
proteins, and 
artifacts  

1. Minimization of 
matrix 

suppression effect 

2. minimizing the 
content of salt, 
proteins, and 

artifacts  

 

 

1. Minimization 
of matrix 

suppression 
effect 

2. minimizing 
the content of 
salt, proteins, 
and artifacts  

 

 

Range of 

metabolites 

All the range of 
metabolites in 
high 
concentration 

Volatile 
compounds, non-
polar volatile 
compounds with 
masses < 600 amu 

Polar and polar 
non-volatile 
compounds 

Polar and polar 
non-volatile 
compounds with 
m/z > 120 Da. 

Advantages  1. Information 
on the 
molecular 
structure 

3. Robust 
quantification 
without 
standards 

 

1. High 
reproducibility 

2. Separation and 
concentration of 
different classes of 
compounds 
according to 
Physio-chemical 
properties 

1. Detection of 
isomers and 
isobars 

2. Separation and 
concentration of 
different classes 
of compounds 
Physio-chemical 
properties 

1. High 
resolution 

2. High mass 
precision 
formula 
calculation and 
compounds 
identification 

3. High 
throughput 

4. Long term ion 
storage for 
MS/MS/MS 
experiments 

Table 3: Comparison of the principal technologies applied in metabolomics research. Advantages are 

highlighted (Forcisi, S. et al., 2015; González-Dominguez et al., 2017). 
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2. Study aim  

This work aims to connect variants at the GRB14/COBLL1 metabolic risk locus and the 

effector gene COBLL1 with metabolic changes in the plasma, applying metabolic profiling to 

understand better the underlying mechanisms of the risk locus on disease-relevant traits and to 

pave the way for better disease prediction through biomarkers. An individual predisposition 

towards diseases can be determined by studying the effects of genetic variants on metabolic 

phenotypes (metabotypes) (Gienger et al., 2008; Suhre et al., 2011; Long et al., 2017). In my 

thesis, I sought to investigate the metabolic profiles of the subjects genotyped for the 

GRB14/COBLL1 risk haplotype by the rs6712203 variant, which the Claussnitzer team has 

previously shown to mediate part of the metabolic risk by affecting actin cytoskeleton 

remodeling in adipocytes. In my work, I included subjects from the PLIS cohort genotyped for the 

SNP rs6712203 (91 risk allele carriers vs. 36 non-risk allele carriers) who underwent nutritional 

challenges to unveil their metabolic profile under specific stimuli.  

I studied the effect of SNP rs6712203 on metabolic phenotypes by utilization of an untargeted 

metabolome analysis that allows us to have a comprehensive picture by screening all metabolites 

as well as the ones with unknown biotransformation mechanisms within an unknown chemical 

space, especially after we observed no significant differences values in all glucose and NEFA 

parameters between the measured clinical parameters such as TG, HBA1C, CHO, HDL, LDL, CRP. 

Furthermore, we used the direct platform infusion, Fourier transforms ion cyclotron resonance 

mass-spectrometry (DI-ICR-FT MS) because of its ultra-high-resolution and mass-accuracy to link 

the rs6712203 genotype and metabolome. 
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Figure 6: Workflow description of the project. Starting with the PLIS Cohort, we wanted to study the 
metabolites of subjects recruited using untargeted metabolomics and measure them with the high 
resolution and mass-accuracy platform DI-ICR-FT MS. Starting with phenotyping and genotyping of the 
PLIS cohort subjects (A), subjects blood samples were collected (B) and prepared (C). Afterward, 
measurements of samples via DI-ICR-FT MS were performed (D), followed by data analysis (E) and mining 
of metabolic patterns (F). After data interpretation (G), results are ready to be presented (H) 

 

My main study objective is to identify metabolite patterns in circulating plasma that reflects 

the metabolic dysregulation caused by genetic variation, specifically the COBLL1 gene, leading to 

an increased risk of T2D. This took place in a cohort of subjects participating in the pre-diabetes 

intervention study (PLIS). In order to accomplish this goal, the untargeted human blood 

metabolites were investigated using Direct Infusion-Ion-Cyclotron-resonance Fourier-Transform 

Mass-Spectrometry DI-ICR-FT MS. This high-resolution and high accuracy approach focused on 

screening a maximum number of metabolites, enabling top confidence feature assignment to 

molecular formulas.  
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             Figure 7: Study objective 

 

In this experimental work, we applied the pipeline established by the Analytical 

BioGeoChemistry (BGC) research unit at Helmholtz Zentrum München, using the SOPs 

established by them in the framework of a collaborative project. I was doing the workflow 

encompassing sample collection, sample preparation (metabolites extraction), sample analysis 

via DI-ICR-FT MS, and the rest of the steps; data post-processing, statistical evaluation, features 

assignment to chemical molecular formulas, and annotation via DBs was done by Dr. Forcisi. The 

last step included the use of mass-difference network analysis (MDiN) for biochemical data 

interpretation. After the sample collection step, all the steps were conducted at the BGC research 

unit.  
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3. Methods 

 

3.1. The Study Cohort (Pre-diabetes Lifestyle intervention Study- PLIS) 

Over the past years, several studies have consistently shown that prevention of T2D is 

possible. These studies used a combination approach of increased physical activity (e.g., at least 

30 minutes daily) and a healthy diet. Further goals are a body weight reduction of more than 5%. 

Details of such prevention programs were already described in the introduction (Tuomilehto et 

al., 2001; Knowler et al., 2002; Pan et al., 1997; Ramachandran et al., 2006). 

As resources for healthcare are limited, the cost-effectiveness of lifestyle intervention must 

be increased. It has also been shown that some of the individuals at risk benefit from the 

intervention, while others respond less or not at all to a lifestyle program ("responders" and 

"non-responders"). The distinction between the two groups should be made in advance. The 

conventional lifestyle intervention may be sufficient for a subgroup. In contrast, others may need 

and get an intensified lifestyle intervention and, thus, may benefit to the same extent. For this 

purpose, factors must be identified that can predict the success of lifestyle interventions. 

Pre-diabetic people with relatively high insulin sensitivity and increased insulin secretion at 

the beginning of the intervention respond better. In contrast, high circulating levels of 

inflammatory and immune parameters were predictive factors for a relatively weak response to 

the intervention. In addition, various genetic factors that primarily affect insulin action had a 

predictive effect on the success of the intervention.  

The Tübingen Lifestyle Intervention Program (TULIP) was dealing with the identification of 

predictive factors for the success of lifestyle intervention with the goal to facilitate individualized 

prevention of T2D (Uusitupa et al., 2009). The TULIP study involved over 400 people at risk for 

T2D and cardiovascular disease (obese or obese and/or first-degree relatives of patients with T2D 

and/or previous gestational diabetes and/or known IGT). The objectives of the intervention were 

similar to those of the DPS study (Tuomilehto et al., 2001). In addition, subjects were also 

examined for the genetic background for the risk of diabetes (Schäfer et al., 2007). 
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At the first follow-up of the TULIP study, the subjects had lost an average of 2.7 kg (approx. 

3%) in body weight, 8.7% in total body fat, 14.4% in visceral (abdominal) fat content, and even 

30% in liver fat content, and their insulin sensitivity and fitness improved by approximately 15% 

and 5%, respectively. However, as with other extended lifestyle interventions, the results were 

slightly less pronounced after two years. At the same time, it was confirmed that subjects 

responded differently to the intervention and that subjects even deteriorated despite following 

the recommendations. On this basis, the TULIP study identified valuable, both genetic and 

environmental factors that predict the success of lifestyle intervention (Schäfer et al., 2007). 

Among the factors listed in (Figure 8), insulin secretory dysfunction, decreased insulin 

sensitivity, and increased liver fat was identified to be general risk factors for the development 

of T2D. Therefore, these factors should define a high-risk group for diabetes not responding to 

conventional lifestyle interventions. 

Figure 8: Selection of results from the TULIP studies: factors associated with a reduced response to 
lifestyle intervention (non-response). 
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3.1.1. Aims of the PLIS study 

The following hypotheses were tested in the PLIS trial: 

1. In people with pre-diabetes and at high-risk, intensive lifestyle intervention improves 

postprandial blood glucose more than conventional lifestyle intervention. 

2. With conventional lifestyle intervention, high-risk people with conventional lifestyle 

interventions show worse postprandial blood glucose over time than those with pre-diabetes and 

at lower risk. 

3. In low-risk people, conventional lifestyle intervention over control (without lifestyle 

intervention) improves postprandial blood glucose. 

4. People with pre-diabetes and at high-risk who are characterized by an insulin secretion 

disorder show a higher postprandial blood sugar after lifestyle intervention than people with pre-

diabetes and high-risk who are characterized by insulin resistance with elevated liver fat content. 

The difference is independent of intensive or traditional lifestyle intervention. 

3.1.2. Study design 

The PLIS study is a prospective, randomized, multicenter intervention trial designed to 

investigate whether intensive lifestyle intervention is superior to a conventional lifestyle 

intervention in high-risk groups for non-response to diabetes prevention. Besides, intensive 

phenotyping defines subgroups with an increased risk of T2D (Fritsche et al., 2021). 

The study consists of intensive phenotyping at baseline, identifying people with pre-

diabetes. These high-risk individuals are randomized into two arms: conventional lifestyle 

intervention and intensive lifestyle intervention, each with equal numbers of subjects (n=250), 

whose results are compared at the end of the study. The low-risk population was randomized 

into two arms: conventional lifestyle intervention and control without lifestyle intervention, each 

with the same number of subjects (n=250) (Figure 9). 
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After a screening examination, the intervention arms were followed by a 12-months 

intervention study. The different therapy groups described above were formed. The subjects in 

the intensive intervention group received 16 consultation sessions. The subjects in the traditional 

lifestyle intervention received 8 consultation sessions. The control group got a single education 

session about a healthy lifestyle. Throughout the study, continuous care by doctors and 

nutritionists occurred, and the participants had to additionally document nutrition and 

movement protocols and unbiased measurements. 

At the beginning and the end of the study, the examined subjects were extensively 

metabolically characterized. This also applied to subjects with pre-diabetes who were not in the 

high-risk group and who did not receive any intervention. Follow-up examinations were carried 

out 1, 2, and 3 years after inclusion in the study and randomization process. To investigate the 

long-term effect of the lifestyle intervention and further examinations, follow-up visits after 6, 9, 

and 12 years will take place. 

 

Figure 9: PLIS Study design 
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A steering group of the German Center of Diabetes Research initiated and designed this 

prospective, randomized, multicenter trial with 8 study centers (Tübingen, 2 x Munich, 

Heidelberg, Berlin/Potsdam, Dresden, Düsseldorf, and Leipzig). 

 

3.1.3. Duration and procedures of the study 

The study started in May 2012, and the recruitment duration was until June 2017. The 

design of the study is shown in (Figure 9). The information of participants and informed consent 

took place before any data were collected or measurements were done (Appendix 1). During the 

screening visit (V1), a diabetes risk screening test was carried out (DRS, Appendix 1). Recruitment 

into the study was only possible if the DRS score was 50 or more (Appendix 1).  After consent and 

signature of the screened subject, a dietary protocol (documentation over three days) was 

requested. 

After meeting the inclusion criteria, the baseline examination V0 included; history, 

complete physical examination, an OGTT, a physical activity test, and a whole-body MRI. The MRI 

scan was performed up to 3 weeks after the OGTT. Furthermore, blood was collected for DNA 

analysis. Based on the OGTT values, it was decided whether the subject was eligible for inclusion 

in the study. This was the case when pre-diabetes was present (impaired glucose tolerance (IGT), 

impaired fasting glucose (IFG), or both). 

Allocation to the high-risk group depended on the insulin values for the calculation of 

insulin sensitivity and insulin secretion as well as on MRI results regarding liver fat content. The 

laboratory values were determined centrally in Tübingen and measurement of liver fat locally by 

the involved MR radiologists.  

• High-risk group  

If a participant was eligible for the high-risk group, randomization was made for one of 

the following intervention groups:  

- The subgroup with intensive lifestyle intervention 
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- The subgroup with conventional lifestyle intervention 

- Control group without lifestyle intervention 

• Criteria for the high-risk group: A + B or A + C or A + B + C or B + C 

 

A. Decreased Insulin Secretion: Disposition Index (Insulinogenic Index) * ISI <760 

B. Insulin resistance: Insulin sensitivity index (ISI) according to Matsuda / deFronzo <9.2 

C. Increased Liver Fat: Magnetic Resonance Spectroscopy: fat content > 5.56% 

 

• Low-risk group 

The following criteria defined the low-risk group: Participants meeting these criteria were 

randomized to one of the following intervention groups: 

- Conventional lifestyle intervention 

- Control group without lifestyle intervention 

 

• Criteria for the low-risk group: No A, or B and C alone. 

A. Decreased Insulin Secretion: Disposition Index (Insulinogenic Index) * ISI <760 

B. Insulin resistance: Insulin sensitivity index (ISI) according to Matsuda / deFronzo <9.2 

C. Increased Liver Fat: Magnetic Resonance Spectroscopy> 5.56% 

 

After allocating participants to either the high-risk or low-risk group, they were randomized 

to the treatment arms. At V1, subjects in the intervention groups also received an accelerometer 

to document exercise and calories consumption. 

 

3.1.4. Recruitment  

Participation in the study was voluntary, and the volunteers were invited to the study 

center. Many efforts were made to address volunteers:  advertising, such as local newspapers, 

flyers, or other channels. 
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3.1.5. Participant selection 

Inclusion criteria were: 

• Ability to consent and a signed consent form. 

• Age between 18 - 75 years. 

• A  DRS value is greater than 50. 

 

Table 4: Inclusion and Exclusion Intervention Study Criteria  

Inclusion Criteria Exclusion Criteria 

 

• Increased fasting glucose 

(IFG), fasting blood glucose 

between 99 and 126 mg/dl 

and /  

Or  

• Impaired glucose tolerance 

(IGT), 120 minutes of blood 

glucose in the oral glucose 

tolerance test with 75 g of 

glucose between 139 and 

200 mg/dl.  

Or 

• Increased fasting glucose 

(IFG), fasting blood glucose 

between 99 and 126 mg/dl 

and / 

 Or  

• Impaired glucose tolerance 

(IGT), 120 minutes of blood 

glucose in the oral glucose 

tolerance test with 75 g of 

glucose between 139 and 

200 mg/dl 

 

• Diabetes mellitus type 1 or 2 

• Existing pregnancy or breastfeeding mother  

• BMI > 45 kg/m² 

• Severe symptomatic malignancy weight loss > 10% 

within the past 6 months 

• Severe liver or kidney disease (Transaminase elevation 

> 3 times the upper limit, GFR <50 ml / min/ 1.73 m2) 

• Systemic infection (CRP > 1 mg/dl) 

• Therapy with steroids 

• Drug abuse 

• Non-compliance during study 

• Severe mental illness 

• Serious illnesses such as cancer 

• symptomatic coronary heart disease 

• Potentially unreliable subjects 

• Contraindications for MRI such as any kind of metal in 

the body [pacemaker, artificial heart valves, metal 

prostheses, implanted magnetic metal parts[screws, 

plates of operations] Spiral, metal fragments/ shrapnel, 

fixed braces, acupuncture needle, insulin pump, 

tattoos, permanent lid shadow. 

• Persons with limited thermal sensors or increased 

sensitivity to heat 

• Persons who report hearing impairment 
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Criteria for additional spiroergometry were: 
 

• Acute coronary syndrome 

• High-grade cardiac arrhythmias  

• Heart failure 

• Acute carditis  

• Pulmonary embolism 

• Acute phlebothrombosis of the lower extremities 

• Hypokalemia 

 

 

3.1.6. Number of study participants 
 

1000 subjects were planned to be included for the PLIS trial in all study centers together 

(according to the power calculation). However, more than 3000 subjects at risk were screened 

in all centers. The duration of the study, from the time of written consent of the first subject at 

V0 to the final examination V17 of the last subject, was expected to be 45 months (May 2012- 

December 2017). The final total number of subjects screened in our study center was 338. 

 

3.1.7. Randomization  

If a screened subject met all inclusion criteria for the PLIS study and none of the exclusion 

criteria were met, they were invited to participate and sign the consent form. 

 

Randomization was performed on a pre-determined randomization list after (V0) by 

assigning each included subject the following free number on the randomization list. The 

randomization was done independently at each study center using randomization lists, which 

were centrally produced at the University Hospital of Tübingen. Therefore, V0 and the start of 

intervention V1 should not be more than 2 weeks apart. 
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Randomization to conventional lifestyle intervention or intensive lifestyle intervention 

occurred when additional criteria for high-risk (pre-diabetes) were fulfilled: 

A+ b or A+ C or A+ B + C or B + C 

 

A) Decreased insulin secretion 

B)  Insulin resistance 

C)  Increased liver fat 

 

Randomization to conventional lifestyle intervention and the control group occurred when 

criteria for high-risk (pre-diabetes) were fulfilled. 

 

3.1.8. Intervention 

Overview of the differences between the intervention arms, both concerning the intensive 

lifestyle intervention as well as the conventional lifestyle intervention. The following goals were 

defined: 

 

• Reduction of body weight by ≥ 5% in overweight subjects (BMI ≥ 25kg/m2) 

• Less than 30% of calorie intake through total fat 

• Less than 10% of calorie intake due to saturated fat 

• More than 15g of fiber per 1000 kcal of energy intake 

 The intensive lifestyle intervention consisted of 6 hours of physical activity per week. In addition, 

the intervention involved 16 sessions a year with a lifestyle counselor. 

 The conventional lifestyle intervention consisted of 3 hours of physical activity per week. The 

intervention involved 8 sessions a year with a lifestyle counselor. 
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 The control group received one lifestyle counseling of 30 mins duration, where the OGTT results 

and the other laboratory values were presented and discussed. A target weight was 

recommended (-5%, if BMI ≥ 25kg/m2).  

A dietitian supervised the participants, and the visits took between 30 and 60 minutes. The 

sessions consisted of nutritional advice based on the 4 days of dietary protocols, and the guidance 

indicated how nutritional goals could be achieved. The dietary protocols were evaluated per 

study center with the "Optidiet' program (version 5). 

Furthermore, physical activity was assessed using protocols and pedometers. The protocol 

included every kind of sports and physical activity besides walking, such as swimming, biking, etc. 

In addition, to encourage participants, they received a pedometer (Beurer AS 50, activity sensor) 

to monitor their walking activities. The device documents steps, active time, and distance. 

Afterward, data were evaluated (Beurer EsyFit version 2.2) on request by the examined person 

himself during the visit. 

 

3.1.9. Clinical examinations  

 History and physical examination  

 

During the screening visit (V0), the subject underwent a comprehensive baseline 

examination, anamnesis, and detailed medical history, performance of medical examinations, 

anthropometric measurements, and clinical parameters.   
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Anthropometric measurements  Height 

 Weight 

 BMI 

 Waist circumference 

 Waist-to-hip ratio 
Clinical parameters Basal blood sampling 

 Electrolytes 

 Serum creatinine 

 Urea 

 Uric acid 

 Glutamat-Oxalacetate-Transaminase (GOT) 

 Alanine-Aminotransferase (ALT) 
 Gamma-Glutamyl Transferase (GGT) 

 Bilirubin 

 C reactive protein (CRP) 

 Iron 

 Ferritin 

 TSH 

 Glucose 

 HbA1c 

 Insulin 

 C-peptide 

 Cholesterol 

 Triglycerides 

 Blood counts 

 Plasmatic coagulation 

 Free fatty acids 

 GAD-II antibodies 
          Table 5: Anthropometric and clinical parameters/measurements of PLIS participants 

 

 

 Oral glucose tolerance test (OGTT) 

The examination was started at 8:00 or 8:30 a.m. after an overnight fasting period of the 

subject after venous access (Abbocath 20G) has been placed in an elbow vein. After taking a basal 

blood sample, the subject drank 75g of a standardized glucose solution (OGTT Roche Acuu-Check 

Dextrose O.G.-T.). The sampling schedule was 0, 30, 60, 90, 120 min (collection volume: 5X20 ml 
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whole blood). Plasma glucose, insulin, proinsulin, and C peptide were determined. These values 

were used to calculate pre-specified parameters of insulin secretion and sensitivity. 

 

 Calculation of insulin sensitivity index (ISI) (Matsuda et al., 1999) 

 

𝐼𝑆𝐼 = 10000
√ 𝐵𝑍𝑁0 × 𝐼𝑁𝑆0 ×((𝐵𝑆𝑁0 + 𝐵𝑆30 + 𝐵𝑆60 + 𝐵𝑆90 + 𝐵𝑆120)5 ) ×([𝐼𝑁𝑆0 + 𝐼𝑁𝑆30 + 𝐼𝑁𝑆60 + 𝐼𝑁𝑆90 + 𝐼𝑁𝑆120]5 )

 

 BS = blood Sugar; 0, 30, 60, 90, 120 = Minutes in OGTT 

 INS = Insulin 

 

 Calculation of insulinogenic index (Herzberg-Schäfer et al., 2010) 

𝐼𝐺𝐼 = 𝐼𝑁𝑆30 − 𝐼𝑁𝑆0𝐵𝑆30 − 𝐵𝑆0  

 

 DNA isolation and Genotyping 

After the study cohort was completed, we ran DNA isolation from EDTA plasma samples 

using the Qiagen DNeasy Blood& Tissue Kit (cat. nos. 69504 and 69506) in our laboratory in 

Freising (Appendix 2). Afterward, the samples were genotyped for SNP rs6712203 in the COBLL1 

gene using 15 SNPs (RQ-008136). Double strand DNA was isolated from EDTA full blood or buffy 

coat using the DNeasy® Blood& Tissue Kit with DNeasy Mini spin-columns (QIAGEN, Hilden, 

Germany) following manufacturers' protocol. The genotyping was partially performed by 

GENEWIZ® UK (Takeley, Essex, United Kingdom) and at the Broad Institute of MIT and Harvard 
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(Cambridge, MA, USA). Following are the primer sequences for genotyping rs6712203 (COBLL1). 

The annealing temperature is 58°C. 

 

 

 

 

3.1.10. Standardized health questionnaires  

The subject was asked to complete standardized health questionnaires to the fullest on 

the following items: 

- Diabetes Risk Test (DRT) (Appendix 1) 

- Physical activity, calculation of work, sport and leisure-time physical activity index  

- PHQ-D health questionnaire for patients (Appendix 1) 

- SCL-90-R  

- Visual analog scale (VAS) 

- Medical history 

 

3.1.11.  Blood volume and storage of blood samples 

The quantity of blood taken during the initial phase of the study (1 year) was 

approximately 310 ml. Then, in the second and third year, respectively, once again 100 ml, 

divided into 5 blood sampling times per OGTT. The blood and DNA samples were given an ID 

number and stored locally at - 80C. The procedures followed SOPs provided by the Tübingen 

group. 

 

 

GAA CTC TCC ACT ACC ATT GC for_seq_COBLL1 

CAA AAT TCC TTC CTT GCC AG rev_seq_COBLL1 
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3.1.12. Magnetic resonance imaging and Spectroscopy 

Accurate quantification of body fat compartments and determination of ectopic fat 

deposits, such as liver fat, was a part of the assessments within the study. The examination was 

done in the morning in a fasting state at the University Hospital (München Rechts der Isar) and 

took about 45-60 minutes. The person evaluating the results of the MRI scans was blinded, which 

means they did not know to which study arm the subject was assigned. 

Before the spectroscopic measurements, images were taken utilizing MR imaging (MRI) to 

assess body fat. First, total body fat (TAT), visceral adipose tissue (VAT), and abdominal 

subcutaneous adipose tissue (SCAT) volumes were cautiously recorded using axial umbilical T1-

weighted MRI scanning (Schulze et al., 2012; Schwenzer et al., 2010). Next, proton magnetic 

resonance spectroscopy was applied to determine the liver fat content using a 3.0 T whole-body 

imager (Magnetom Sonata, Siemens Medical Solutions, Erlangen, Germany) (Machann et al., 

2006) 

The volumes of the adipose tissue compartments were determined as described by 

Machann et al. (Machann et al., 2005). In addition, the MRI examination program of the local 

study center of the Technical University of Munich included an additional measurement of the 

fat content in the bone marrow and assessment of the saturated and unsaturated fatty acids in 

the subcutaneous, visceral fat. 

In addition, the MRI examination was also optionally provided for participants who did not 

meet the inclusion criteria for the intervention, and the examination program was identical. All 

MRI examinations were carried out in cooperation with the Department of Diagnostic and 

Interventional Radiology at the Klinikum Rechts der Isar of TUM (Head: Prof. Dimitrios 

Karampinos) 
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3.1.13. Bioelectrical impedance measurement (BIA) 

Bioelectrical Impedance Analysis (BIA) was used to determine body fat percentage and lean 

body mass. The measurement is based on a weak alternating current via two electrodes; via two 

further electrodes inside this field, the voltage drop and the phase shift of the signal voltage are 

measured (four-wire measurements). BIA measurement was usually taking place at every visit. 

 

3.1.14. Spiroergometry for determination of physical fitness 

Spiroergometry is a method for determining cardiovascular/pulmonary capacity. The 

examination takes around 20 min. It consists of measuring oxygen consumption and carbon 

dioxide production during exercise on a cycle ergometer, where the wattage is continuously 

increased (steep ramp). In addition, blood pressure and heart rate are automatically measured 

throughout the test. The following instrument was used: ergometrics 800 S (bicycle ergometer); 

Ergoline GmBH& Co. KG, with electromagnetic barking cycle. Analysis software: MetaSoft CPX 

software (lead display 3); CORTEX Biophysics GmBH, Bitz, Germany. 

Study participants were instructed to hold a speed of 60 U/ min throughout the test. After 

a warm-up period of about 2 minutes at 0 W, the test started with a force of 20 W, and each 

minute was followed by a gradual increase in resistance by 40 W to exhaustion. Lean body mass 

was given as (ml/min) per kilogram of lean body mass. 

Spiroergometry was performed in cooperation with Prof. Renate Oberhoffer-Fritz of the 

Chair of Preventive Pediatrics. 

 Spiroergometry Termination criteria 

Subject's exhaustion, RR over 200 mmHg systolic and 120 mmHg diastolic, heartbeat over 

200/ minute were defined criteria for termination, at the discretion of the attending physician. 
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3.1.15. Privacy policy 

The study was conducted following the Helsinki Declaration and GCP guidelines and the 

German Data Protection Act principles.  

The data were initially recorded on paper and electronic data carriers. The transfer of the 

collected data to third parties (i.e., persons entrusted with the further processing of the data), 

the evaluation as well as the publication of the data took place exclusively in a pseudonymized 

form (a number replaced, i.e., the name of the test person and other identification features to 

the purpose to rule out the identification of the person). The name list corresponds to which 

number is kept locked in each study center and only possible for the principal investigator and 

the study's data monitoring and safety board. Medical confidentiality is required for all data 

collected. A central database was established at the University Hospital Tübingen for all 

participating centers. 

In the case of incidental MRI findings, the morphological changes were communicated to 

the patient, and they were asked to have them clarified further.  

If study participants withdrew, they had the right to decide whether their data may be 

deleted or the existing data or sample may continue to be used anonymously. 

 

3.1.16. Database 

The data were recorded in an access database. This database is located in a central server 

at the German Center for Diabetes Research (DZD). For this purpose, a "partner network" 

(Microsoft Share-Point system) was set up, which allows common information and documents, 

for example, standard operating procedures (SOPs), to be managed. Therefore, access to this 

common database was warranted. 

The data were initially collected via hard copy Case Record Forms (CRFs) and entered into 

the database by hand. The construction of the Electronic Case Record Form (eCRF) for all studies 

and its implementation in the partner network was performed by the DZD study-coordinating 
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center. The “Koordinierungszentrum für Klinische Studien” (KKS) of the University Hospital 

Düsseldorf was responsible for data monitoring. The software was set up to directly transfer 

laboratory data from central laboratories to the main database in the partner network. 

The collected samples from the study subjects were stored in different locations: Blood 

samples (the measurement of insulin and NEFA) were collected from each center and shipped 

for central storage in Tübingen. The rest of the samples (blood and urine) were stored at the 

Institute of Nutritional Medicine in Freising. The shipping and storage of samples followed the 

respective SOPs of the study.  

 

3.1.17.  Data storage and safekeeping  

According to the valid data protection law, the PLIS trial data is stored for 20 years. The 

biosamples have an unlimited period of storage in Tübingen, where the central biobank is 

located. This is true for the subject who signed the separate biobank informed consent form. 

 

3.1.18. Encryption 

All personal data is stored in a pseudonymized form. An assignment of the data to the 

respective study subjects will only be possible for the participating investigators (principle 

investigator of the respective study center, one additional person to be named per study 

center). All those involved were subjects to medical confidentiality and were allowed to use this 

right only in case of emergency. 

 

3.1.19. SOPs 

In the PLIS study, all procedures followed commonly established SOPs by the study center 

under the lead of the University Hospital Tübingen and the DZD to achieve a high level of 

conformity among the national study centers.  



57 
 

 The day before the examination, we label the tubes: Patient ID, time point, and sample 

type, especially For E + HCL and E+ A. 

 

 On the morning of the examination:  

 Take the glucose cuvettes out of the refrigerator (if the cuvettes are taken out of 

the freezer, they need about 30 minutes to come to room temperature)  

 Cool the centrifuge down to 4°C once while it is idling  

 When the participants are there, pipette 80 µl of aprotinin into the EDTA tubes E 

+ A 

 

 blood collection:  

  Fill out the lab sheet with the patient information: date of birth, ID, and Initials 

   One 2.7 ml EDTA tube per participant is frozen at -80°C without centrifugation 

(label: DNA patient pseudonym 3 digits) 

 

 Aliquoting for study participants:  

 Cyrus are labeled with particular Etiquette (PLIS, ID, Date of the visit). 

  According to the blood sugar measurement V0, at V10 or V17, aliquots are made in a 

complete set if the inclusion criteria are met. 

  At V0, 2 centrifuged EDTA tubes (9 ml, use supernatant for aliquoting) and the RNA 

tube are stored in the refrigerator, while for V10 and V17, the centrifuged EDTA tubes 

are frozen at - 80°C. 

 A box is created for each participant and labeled with PLIS TUM V0, 10 or 17, and 

patient ID  

 The Cyrus for insulin and NEFAs are frozen in an extra box at -80°C until dispatch. 

 

The following (Table 6) and (table 7) showed the blood withdrawal checklist and 

aliquoting for each PLIS participant. 
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Tubes 

 
0 30 60 90 120 

PAXGene (2,5 ml) 
      

EDTA (4 x 9 ml) 
      

EDTA + HCl (2,7 ml) 
     

EDTA + A (2,7 ml) 
      

Citrate (9 ml) 
      

Li-Heparin (5,5 ml) 
      

Serum (7,5 ml) 
      

Serum (5,5 ml) 
      

NaF (2,7 ml) 
      

Table 6: PLIS blood withdrawal checklist 

 

Tubes 
0 30 60 90 120 

PAX Gene(2,5 ml) 
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Table 7: PLIS Aliquoting for each participant 

 

I was involved in the PLIS team from the beginning and had specific responsibilities for the 

study until the present time. First, I was involved with the recruitment procedure, starting with 

advertising, screening, and obtaining consent. Moreover, I was a member of the study team with 

many duties such as handling the whole sample set after blood withdrawal in the lab, including 

centrifuging, pipetting, storing, and sending samples packages to our head study center in 

Tübingen. In addition, I was assisting the Spiroergometry challenge and was running all the 

physical examinations for the patient, starting with the height, weight, and BIA measurements. 

EDTA (4 x 9 ml) 24 x 300 µl 
    

EDTA + HCl (2,7 

ml) 

1 x 500 µl 1 x 500 µl 1 x 500 µl 1 x 500 µl 1 x 500 µl 

EDTA + A (2,7 ml) 2 x 300 µl 

1 x 500 µl 

1 x 500 µl 
  

1 x 500 µl 

Citrat (9 ml) 10 x 300 µl 
    

Li-Heparin (5,5 ml) 5 x 300 µl 
    

Serum (7,5 ml) 20 x 300 µl 
    

Serum (5,5 ml) 1 x 1000 µl 1 x 1000 µl 1 x 1000µl 1 x 1000µl 1 x 1000µl 

NaF (2,7 ml) 3 x 250 µl 3 x 250 µl 
  

3 x 250 µl 

Urin (10 ml) 3 x 1000 µl 
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Moreover, I analyzed the dietary protocols of the subjects. Finally, I was responsible for 

completing and correcting CRFs and eCRFs entries. 

 

3.2. Metabolomics: pre-analytical sample preparation  

The increasing number of metabolomics applications in clinical research has led to a 

significant demand for the pre-analytical processes to be standardized during blood collection, 

blood preparation, storage, and transport (Leichtle et al., 2013). This necessity is specifically high 

in clinical studies, where poor sample quality may heavily bias the final results. Therefore, the 

pre-analytical phase needs to be tightly controlled to avoid adverse effects on the metabolite 

measurements. This process is usually rigorously regulated by standard operation procedures 

(SOP) (Yin et al., 2013). Such SOPs are commonly used during clinical trials, and they are of great 

importance for targeted and untargeted clinical metabolomics studies (Yin et al., 2015). The 

following section describes the pre-analytical steps referring to untargeted metabolomics 

studies, from the experimental design to the final interpretation of the data as practiced in this 

study. 

 

3.2.1. SOPs establishment and experimental design 

The blood metabolite pattern is a compactly controlled balanced system. Still, a diversity 

of exogenous factors and physiological conditions may lead to dynamic changes in blood 

metabolites with possible substantial effects on the pre-analytical phase (Yin et al., 2013). 

Furthermore, the blood metabolome composition is also affected by multiple intrinsic and 

extrinsic factors, including physiological rhythm, circadian, sex, age, diet, exercise, drugs, and 

nutritional supplements such as vitamins (Gibney et al., 2015; Minami et al., 2009; Narayanan et 

al., 2000). Therefore, planning of the conditions is needed before sample collection for any 

metabolomics studies (Yin et al., 2015). 
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3.2.2. Sample collection 

Standardized collection methods are essential to compare different samples, preserving 

long-term quality, reproducibility, and stability. The principal variability points involve; the kinds 

of additives used for blood collection to avoid blood clotting, the types of collection tubes, the 

handling temperature, and the degree of hemolysis, sample storage, and freeze-thawing cycles. 

In addition, these checklists are critical in the context of untargeted metabolic technologies 

where the interest is to detect the maximum extent of metabolites in terms of mass range (50-

1200 m/z) and chemical properties. 

 Tubes: In the PLIS study, we used Plastic Tubes for sample collection with different 

anticoagulants (EDTA, NaF, Serum, Li-heparin, and citrate), and to avoid Plastic polymers 

effect on the metabolites, a tube pre-test was done. We preferred EDTA, NaF, and citrate 

blood-collection tubes for metabolomics investigations because of their stability. 

 

 

3.2.3. Sample preparation 

Sample preparation is a crucial step, especially in untargeted metabolomics studies. Plasma 

is a very complex matrix. Therefore, an incisive sample pre-treatment is fundamental. 

We used solid-phase extraction (SPE) to  

To avoid hemolysis, we placed whole blood immediately in ice water. Next, it was centrifuged at 

4 °C, in order to the obtained plasma was then aliquoted in small volumes of 150 - 200 μl to avoid 

freeze-thawing. 

 

In our study, the preparation of blood plasma for the DI-ICR-FT MS analysis was conducted 

according to the protocol of Forcisi et al. Before the procedure; the initially frozen plasma 

samples were thawed on ice and vortex mixed for 30 s. to avoid degradation and protein kinase 

activation that can occur at room temperature. Afterward, 50μL of plasma was transferred into 

a tube containing 50 μL of 2% phosphoric acid. The resulting 100 μL solution was vortex mixed 
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for 30 s. The extraction of metabolites was performed by solid-phase extraction (SPE) technology 

to extract the most substantial number of metabolites and remove compounds that could 

interfere with a mass-spectrometer (e.g., salts) or with the chromatographic system. We used 

Omix C18 100 μL tips (Varian, Palo Alto, California, USA) and followed the manufacturer's 

instructions.  

 

 The conditioning and equilibration steps (before loading the sample onto the SPE tip) 

included flushing the tips with methanol and 2% formic acid, respectively. After loading the 

sample, the tips were washed with 2% formic acid three times, followed by methanol's elution 

step. Finally, the eluate was stored in a new tube at - 80C until further processing. 

After we prepared the samples and handled them following the aforementioned SOPs, they 

are now ready to be measured through the Platform Direct Infusion-Ion-Cyclotron-resonance 

Fourier-Transform Mass-Spectrometry (DI-ICR-FT MS). 

 

 

3.2.4. Direct Infusion-Ion-Cyclotron-resonance Fourier-Transform Mass- 

Spectrometry (DI-ICR-FT MS) 

Our study used a platform based on direct infusion-Fourier transform-mass-spectrometry 

(DI-ICR-FT MS). This technology provides an extraordinarily high mass-resolution, and mass- 

accuracy, together with a high-order-of-magnitude intensities range for metabolite detection. 

Asaph Aharoni first applied it to metabolomics in 2002 (Ghaste et al., 2016). Since then, several 

studies have been published in different fields, including plant sciences, wine analysis, and 

nutritional studies (Pinu et al., 2019). As a result, it is considered the mass-spectrometric 

technology with the highest mass-accuracy and resolution (Pinu et al., 2019). 
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Its principle of mass-detection is based on the circular oscillation that charged ions exhibit 

once they are introduced into the homogenous magnetic field (Forcisi et al., 2013). Thus, DI-ICR-

FT MS is a type of mass-spectrometry, which determines the mass-to-charge ratio (m/z) of ions, 

in a fixed magnetic field, based on the cyclotron frequency of the ions (Forcisi et al., 2013). 

Figure 10: Schematic representation of DI-ICR-FT MS. Reprinted with permission from Elsevier (Forcisi 
et al., 2013) 

 

The DI-ICR-FT MS technology consists of three essential modules: an ion source, which 

transforms the molecules in a sample into ionized fragments; a mass-analyzer, which sorts the 

ions by their masses by applying electric and magnetic fields; and a detector, which measures the 

value of some quantity indicator and thus provides data for calculating the abundances of each 

ion fragment present (Forcisi et al., 2013). 

The following steps explain how the instrument works. After the injection, the molecules of 

interest are first introduced into the ionization source of the mass-spectrometer, where they are 

first ionized to acquire positive or negative charges. In our case, we set a positive ionization 

mode. The ions then travel through linear ion beam guides to reach the mass-analyzer and 

oscillate at different cyclotron frequencies, inversely proportional to their m/z ratios. A time-

domain transient is generated during ion detection and recorded by a computer system. The 

computer subsequently performs a Fourier Transform (FT) to the time-domain transient and 

converts it to the frequency spectrum, which can be converted afterward to a mass-spectrum. 
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Finally, a mass-spectrum displays the signals graphically as a histogram showing the relative 

abundance of the signals (intensity) according to their m/z ratio (Forcisi et al., 2013). 

 

3.2.5. Electrospray Ionization ESI  

In most metabolomics MS applications, the method of choice is electrospray ionization (ESI) 

because of its relative soft ionization nature and no requirements on prior chemical modification 

(Gibson et al., 2010).  Most scientists favor it since it has a well-balanced ionization efficacy in 

terms of chemical compound classes and is a soft ionization method since there is very little 

fragmentation (Gibson et al., 2010). In addition, this ionization method does not rely on rapid but 

on the gentle vaporization of the solvent since ions can be generated in solution (Cech et al., 

2001). The ESI capillary, which introduces the sample spray into the system, is placed at a close 

distance to a counter electrode. The potential difference between the ESI capillary and the center 

electrode ranges between 3000V and 4500V. This electric potential difference depends on the 

distance between the ESI capillary and the counter electrode. An electric field of 1000V/cm is 

maintained (Cech et al., 2001).  

 The process involves transmitting sample ions from the solution to the gas phase by 

subjecting a strong electric field at atmospheric pressure. Vaporization of the solvents containing 

charged analytes leads to colombic explosions of the spray droplets, releasing ions having 

multiple charge states z to the gas phase (Forcisi et al., 2013; Banerjee et al., 2012). The generated 

ions are collected by a skimmer and guided through ion funnels, Quadrupole 1, 2, and hexapole 

to the analytical part (Forcisi et al., 2013; Cech et al., 2001). They arrive afterward at the ion 

cyclotron resonance (ICR) cell, where the ions are confined and detected. The cell is located in 

the center of a super conducting magnet that provides a magnetic field with the highest possible 

homogeneity (Forcisi et al., 2013; Cech et al., 2001). 
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Ions are cohesively excited to a larger radius orbit by using a pulse of the radio frequency 

electric field, and the detection of their image charge is on receiver plates as a time-domain 

signal. The time-domain signal Fourier transformation results in a frequency domain signal 

converted to a mass-spectrum, based on the inverse relationship between cyclotron frequency 

and m/z (Forcisi et al., 2013; Nikolaev et al., 2013). The whole process of electrospray ionization 

is summarized in (figure 11). 

Figure 11: Schematic representation of the electrospray ionization (Gibson et al., 

2010). Reprinted from Journal of Chromatography A, 1292, 2013 with permission from 
Elsevier.  

 

3.2.6. The instrumental analysis 

Mass-spectrometry (MS) and nuclear magnetic resonance (NMR) are the most commonly 

used detection methods (Villas-Bôas et al., 2005). Therefore, in our study, the first question 

necessary to be answered was the suitable kind of anticoagulant in DI-ICR-FT MS applications in 

terms of information, ion suppression due to the specific matrix effects, and artifacts possibly 

derived from the different collection tubes.  Often there is a difference, especially in how the 
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samples need to be analyzed; therefore, we considered automation, batch analysis, and the use 

of quality control (QC) or comparison of the different batches ((Villas-Bôas et al., 2005). 

 

A total of 381 plasma samples were analyzed via DI-ICR-FT MS. Prior analyses, the 

metabolites (from 50µl of blood plasma) were extracted by C18 solid-phase extraction (SPE) 

technology, using Omix C18 100µl tips (Varian) and following the protocol described in Forcisi et al. The 

extracts, diluted in methanol by a factor of 50, were analyzed in positive electrospray ionization 

mode (ESI) via DI-ICR-FT MS, using a Bruker SolariX instrument equipped with a 12 T magnet (Bruker 

Daltonic GmbH, Bremen, Germany). The instrument was externally calibrated by injecting a 10 μg/ml 

solution of arginine and observing corresponding peaks with m/z values equal to 175.11895 (M+H)+, 

349.23062 (2M+H)+, 523.34230 (3M+H)+, 697.45397 (4M+H)+. In the experiment, the infusion flow 

rate was set to 120 μL/h. 400 scans, each corresponding to 4 mega words in the interval from 147.4 

to 1000.0 m/z, were acquired and averaged. The time of accumulation ion t was set to 0.7 s, and the 

time of flight to the detector was set to 1 ms. The voltages of capillary and spray shields were set to 

3800 V and -500 V, respectively. The flow rate of nebulizer gas was kept at 2.2 bar, and the drying gas 

flow rate was set to 4 L/min [at a temperature of 180o C]. 

 

3.2.7. Data processing 

The collected data from the instrument are usually multi-dimensional, including 

interference from chemical noise. The data post-processing commonly includes data reduction, 

de-noising, metabolite extraction, alignment, and matrix generation (Bijlsma et al., 2006). The 

detected metabolites are small molecules with molecular weights below 1 kDa. Features peaks 

with specific retention time and mass to charge ratio m/z); peak area, which is usually the 

preferred parameter to represent the relative abundance of each metabolite in different samples 

(Liu et al., 2017). 
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3.2.8. The result interpretation 

 In this step, the chemical structure of the potential biomarkers and biochemical 

mechanisms pathways should be examined (Eichner et al., 2014). The increased availability of 

high-resolution mass-spectrometry (HR-MS) in chemical analysis has dramatically improved the 

detection and identification of compounds (using MS/MS techniques) in different matrices. 

However, confidence in this HR-MS-based determination varies among studies and substances 

since it is not always possible or even meaningful to synthesize each element or confirm them 

via complementary methods. 

 

3.3. Analysis of the metabolomics data 

 

3.3.1. ORA: Over-Representation Analysis 

The over-representation analysis represents a knowledge-driven method commonly used 

for estimating the significance of specific pathways involved in the investigated phenomenon 

(Eichner et al., 2014).  In our study, the metabolic features are first scored (based on a statistical 

model) and projected, if possible, on the corresponding biochemical pathways. Second, a 

statistically interesting subset is taken from the entire set of features according to the calculated 

score. Then, the probability of finding labels of pathways or compound classes within the chosen 

subset is computed, indicating their over-representation in the subset (Eichner et al., 2014). 

 

3.3.2. Over-representation analysis of compound classes (database driven) 

Frequently, little or inscrutable information can be obtained based merely on individual 

metabolites shown to be significant in a study (Eichner et al., 2014; Schymanski et al., 2014; 

González-Domínguez et al., 2017). Thus, special attention is paid to investigating the metabolite 

patterns' mutual behavior or their cooperative dynamics. The study applied broad patterns 

untargeted metabolites methodology to reveal hidden 1000 compound classes via different ORA 
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tools.  Metabolites are involved in different biochemical pathways affected by a particular 

biological phenomenon of interest (González-Domínguez et al., 2017). To assess these effects 

mathematically, several methods have been extensively utilized (González-Domínguez et al., 

2017). First, we resorted to over-representation analysis (ORA), representing a knowledge-driven 

method that estimates the significance of specific pathways involved in the investigated 

phenomenon (Ghaste et al., 2016). Next, the metabolic features are scored based on a statistical 

model and projected, if possible, on the corresponding has known biochemical pathways by 

mapping them onto a database such as HMDB. Secondarily, a small subset is taken from an entire 

set of features according to their significance. Afterward, the probability is computed, indicating 

whether a specific pathway is significantly enriched by assessing whether corresponding 

metabolites are over-represented in the considered subset (Ghaste et al., 2016). 

 

3.3.3. Mass-difference enrichment analysis (over-representation analysis of 

mass-differences)  

 

A way to monitor (bio) chemical reactions and consequently the activity of genes with 

enzyme-encoding exons is to investigate the mass-differences (MDs) between detected m/z-

signals (Ghaste et al., 2016). The MDs between each substrate and product of a biochemical 

reaction is specific for each reaction type, where two metabolites/substrates react to give a 

product. Untargeted metabolomics enables the investigation of wide chemical space, including 

known and unknown metabolites. We annotate thousands of possible metabolites belonging to 

different compound classes at the hand of databases. Using mass-difference analysis (MDA), we 

could assign molecular formulas with high accuracy and explore the nature even of signals 

unknown to databases (Ghaste et al., 2016). In this work, we used MDA, and a graph-based 

approach, to examine the mass-differences between each feature and map them against a 

theoretical library of mass-differences that describe possible occurring biotransformation. 
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3.3.4. Mining of the DI-ICR-FT MS data 

     The acquired spectra were exported using the vendor software (Data Analysis) 

provided by Bruker Daltonics M/z peaks were picked at S/N ≥ 4, and a minimum intensity of 

1.5* 106 counts was set. Gibbs peaks were removed by Data Analysis automatically. All spectra were 

exported as tab-separated as-files and calibrated, according to Smirnov et al., 2019. Using an in-

house peak alignment algorithm, these spectra were aligned with the mass tolerance window 

set to 0.5 ppm. M/z features that occurred in less than 10% of all samples were discarded in the 

generated matrix. Molecular formula assignment was performed following the mass-difference 

network approach, described in Tziotis et al., 2011 and Moritz et al., 2017. Finally, compound class 

enrichment analysis was applied for the whole population (female, heterozygous). 

Since mass-difference enrichment analysis (MDEA) was implemented to infer molecular 

pathways based on statistics, one of the essential steps in MDEA is selecting the theoretical 

mass-differences that allow for a targeted investigation of the imbalance caused by COBLL1 in 

circulating blood (Moritz  et al., 2012). Therefore, we created a list of co-regulated genes of 

COBLL1 in order to map the mass-differences related to the considered mechanism. 

 

I used the list of the co-regulated genes from Claussnitzer et al. (figure 12). The Claussnitzer 

group created a list of COBLL1 co-regulated genes, where they investigated co-expression 

analyses from human adipocyte microarray gene expression data and found enrichment for 

genes from the integrin and inflammation signaling pathways for positive correlation with 

COBLL1 mRNA expression (Figure 12) and genes from the gonadotropin-releasing hormone 

receptor and p38 MAPK pathways enriched for the negative correlation. Interestingly, in data 

from the gene enrichment profiler (Benita et al., 2010), a database that uses publicly available 

microarray data from 142 (16 cancer, 126 average) different tissues and Cells for gene 

expression analysis – the group also found ADAM12 co-regulated with COBLL1. ADAM12 was 

previously reported to induce actin remodeling during adipogenesis by regulating β1 integrin 

function (Kawaguchi et al., 2003). Integrins enable outside-in signaling from the extracellular 
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matrix (ECM) into the cell (Morandi et al., 2016). As such, integrins are involved in cellular 

processes like adipocyte proliferation and differentiation. It is not yet completely understood 

how integrins transmit ECM signals into the cells, but F-actin has been shown to play a role in 

this process (Morandi et al., 2016). In prostate cancer cells, COBLL1 has been demonstrated to 

enable actin filamentation, suggesting a comparable function in adipocytes (Mishra et al., 2019). 

Furthermore, Claussnitzer et al. found actinin alpha 4 (ACTN4) and Actin-related protein 2/3 

complex subunit 2 (ARPC2) co-expressed with COBLL1. ACTN4 links filamentous actin to 

membrane proteins and is involved in insulin-stimulated GLUT4 trafficking in muscle cells (Talior-

Volodarsky et al., 2008). ARPC2 is one subunit of the actin-related protein 2/3 complex subunit 

2 (Arp2/3), which is responsible for the nucleation of branched actin filaments (Weaver et al., 

2003). Large-scale Affinity Capture-MS experiments found an interaction of COBLL1 with protein 

kinase C and casein kinase substrate in neurons protein 1 (PACSIN1), PACSIN2, and PACSIN3 

(Stark et al., 2006). PACSINs are highly conserved Src-homology 3 (SH3)-domain-containing 

proteins involved in cytoskeletal mediated membrane  

They are trafficking through interaction with WH2 containing proteins like the Arp2/3 complex 

activator N-WASP (Kessels et al., 2004).  
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Figure 12: Positive correlation of COBLL1 mRNA expression (COBLL1 probe ILMN_1761260) 

with the expression of integrin pathway genes. Pearson’s correlation coefficient between 
COBLL1 and each gene was calculated using microarray data from primary hAC. In addition, 
Gene enrichment was tested using the PANTHER pathway analysis. The top-scoring pathway 
was the positively correlated integrin pathway (p-value = 6.32x10-8). All genes listed in this 
pathway and significantly correlated with the expression of COBLL1 are shown in the heat 
map, where red indicates a positive correlation and black no correlation. (Data under 
revision). 

 

In my thesis work, I extended the list by searching for more involved co-regulated genes of 

COBLL1 with respect of mechanisms of interest, using several databases, including Uniprot 

(Consortium, 2019),  Reactome (Jassal et al., 2020), and HMDB (Wishart et al., 2009). As a result, 

after modifications on the list, we identified in total 44 co-regulated genes of COBLL1 (Appendix 

3).  

 

 

(Table 8) summarizes the final 11 genes extracted from the original modified list of co-regulated 

genes (Appendix 3) that we included in our dataset. 
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Table 8: Selection of co-regulated genes of COBLL1. The table shows a selection of 11 genes involved 
in our analysis dataset. We have excluded the genes encoding proteins involved in the phosphorylation 
of proteins since we cannot detect and follow any of these MDs. 

 

We created a list of candidate mass-differences based on the selected genes and merged 

them to a manually curated list of theoretical MDs. Finally, the comprehensive list of MDs was 

searched in our experimental mass-difference space.  

Gene Protein  

PIK3C2B Phosphatidylinositol 4-phosphate 3-kinase  C2 domain-containing 
subunit beta 

ADAM12 Disintegrin and metalloproteinase domain-containing protein 12 

 

ITGB1 Integrin beta-1 

 

 ITGA5 Integrin alpha-5 

 

SRC 

 

Proto-oncogene tyrosine-protein kinase Src 

 ITGB5 

 

Integrin beta-5 

MAPK3 

 

Mitogen-activated protein kinase 3 

PPAR-γ 

  

Peroxisome proliferator-activated receptor gamma 

PLIN5 

 

Perilipin-5 

ILK 

 

Integrin-linked protein kinase 

 DGAT2 

 

Diacylglycerol O-acyltransferase 2 
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4. Results 

 

4.1. The PLIS Study Cohort  

The duration of the study, from the time of written consent of the first subject at V0 to 

the final examination V17 of the last subject, was expected to be 45 months (May 2012- 

December 2017).  

 

The final total number of subjects screened in our study center was 338 (table 9). Further 

description of the subject characteristics is presented in (Appendix 4). 

 

Variable  

 

 

 

  

 

Male 

Mean±S.D. 

Female 

Mean±S.D. 

P-value 

Total 

 

102 236  

Age V0 50±11.0 49±11.1 0 .441 

 

Height (cm) 180±6.7 166±6.9 1.128 

 

Weight (kg) 104±21.0 87±19.9 1.103 

 

BMI (kg/m²) 32±6.0 32±6.9 0.705 

 

Waist (cm) 110±14.6 115±15.0 5.487 

 

Hip (cm) 111±13.0 1.0±15.7 0.022 

 



74 
 

WHR (cm) 1.0±0.0 1.0±0.1 6.447 

 

WHtR (cm) 1.0±0.0 41±0.1 0.241 

 

Fat (%) 28±6.7 36±7.8 9.685 

 

Fat mass (kg) 30±12.3 50±14.2 9.311 

 

Table 9: Anthropometric and clinical parameters of the PLIS subjects at the TUM study center. P-value 
was calculated using a t-test. 
 

 
The rest of the PLIS cohort subjects, not included in the study, were defined as screen 

failures. Those either met the exclusion criteria, were healthy, or couldn't complete their OGTT 

for any health reason. Eventually, their samples were frozen at - 80 C and considered for any 

future planned projects. 

 

4.2. Experimental design and metabotyping via DI-ICR-FT MS 

After accomplishing the PLIS cohort recruitment, which contains males and females with 

different heterozygous carriers and homozygous allele carriers. In my thesis, we investigated if 

the intronic COBLL1 variant rs6712203 reveals a nutritionally induced impact on the metabolic 

phenotype (metabotype). We included from the whole PLIS cohort only female and homozygous 

as depicted in (figure 10), we performed the metabotype profiling of 127 female subjects (91 

COBLL1 rs 6712203 homozygous risk allele carriers/36 homozygous non-risk allele carriers) (Table 

10) ( Appendix 5 for the extended table 10), recruited from a pre-diabetes clinical cohort, 

employing ultra-high resolution mass-spectrometry. In addition, all the participants underwent 

an OGTT, and sodium fluoride blood plasma (NaF) was collected at different time points (0, 30, 

60, 120 minutes). 
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Table 10: Study cohort. Total of 127 females (91 COBLL1 rs 6712203 risk allele carriers/36 non-risk 
allele carriers) 

 

After the plasma samples were analyzed via DI-ICR-FT Ms, the data went through a pipeline 

of analysis, including mining of the DI-ICR-FT MS data, molecular formulas assignment by means 

of mass-difference-network (MDiN) analysis, and database annotation for the visualization of 

metabolic patterns. All these steps enabled the data interpretation, and the generation of 

hypotheses for future investigations. 

 

 

Variable  Females 

 

Non-risk 

Mean± 

Risk 

Mean± 

p-value 

Total 

 

36 91  

Genotype 

 

rs6712203 rs6712203  

Age (years) 

 

48±11.2 48 ±10.8 0,259 

 
BMI (kg/m²) 

 

32±7.8 32±7.2 0,828 

 
Waist circumference (cm) 

 

97±15.3 99±14.6 0,718 

 
WHR (cm) 

 

1.0±0.0 1.0±0.0 0,452 

 
WHtR (cm) 

 

1.0±0.0 1.0±0.0 0,911 

 
Fat (%) 

 

39±10.1 41±7.3 0,499 

 
Fat mass (kg) 

 

36±16.1 36±14.6 0,882 
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4.3. Analysis of metadata and quantitative metabotypes 

We investigated the differences of several clinical blood parameters between the two-

genotype groups. (Figure 13 and 14) depict the levels of glucose and non-esterified fatty acids 

(NEFA), respectively, across the different time points of the OGTT.  In both cases, we observed 

no significant differences. Further analyses of clinical blood parameters such as TG, HBA1C, CHO, 

HDL, LDL, CRP, and anthropometric parameters (i.e., BMI, waist, hip, WHR, fat %, fat mass, lean 

mass) did not reveal a significant difference. 

Table 11: Investigated Anthropometric and Clinical parameters for the metabolomics metadata 

and quantitative metabotype 

 

 

Anthropometric parameters Clinical Blood Parameters 

BMI TG 

Waist circumference  HBA1C 

HIP CHO 

WHR HDL 

Fat % LDL 

Fat mass CRP 

Lean mass  
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Figure 13: Quantitative data of glucose (mg/dl) across the different time points of the OGTT 
(0, 30, 60, 120mins). We analyzed glucose across different time points of the OGTT between 

homozygous carriers and non-carriers of rs 6712203. 127 female subjects (91 COBLL1 rs 

6712203 homozygous risk allele carriers/36 homozygous non-risk allele carriers. The 
measurements were performed fully automatically using a clinical-chemical enzyme 
immunoassay analyzer.       

 

 

 

Figure 14: Quantitative data of NEFA (mg/dl) across different time points of OGTT (0, 30, 60, 

120mins). We analyzed NEFA across different time points of the OGTT between homozygous 

carriers and non-carriers of rs 6712203. 127 female subjects (91 COBLL1 rs 6712203 

homozygous risk allele carriers/36 homozygous non-risk allele carriers NEFA determination 
has been standardized according to the WHO international reference material (WHO standard 
66/304). 
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4.4. Over-representation analysis of compound classes (database driven) 

The metabolic features are scored based on a statistical model and projected, if possible, 

on the corresponding which has known biochemical pathways by mapping them onto a database 

such as HMDB (Moritz et al., 2019). Secondarily, a small subset is taken from an entire set of 

features according to their significance. Afterward, the probability is computed, indicating 

whether a specific pathway is significantly enriched by assessing whether corresponding 

metabolites are over-represented in the considered subset (Moritz et al., 2019). 

     In our work, we describe Effect 1, which we consider as the effect between time point 

0 (basal) and time point 60min, while Effect 2 is considered as the impact between time point 

60min and time point 120min. 

 

Figure 15: Results of over-representation analysis of HMDB compound classes annotated against HMBD. 

The figure depicts the chemical compound classes over-represented in a specific subset in Effect 1 via DI-
ICR-FT MS in risk allele female carriers (homozygous). 127 female subjects (91 COBLL1 rs 6712203 

homozygous risk allele carriers/36 homozygous non-risk allele carriers. The experimental masses 
were assigned to the known metabolites from the HMDB database. The enrichment analysis was 
applied in order to see which classes of compounds are prevalent in the subset of features chosen 
from a PLS model. A high score means that the corresponding metabolic class is over-represented 
in a subset. No significant scores were observed for the up and down-regulation.  

 



79 
 

(Figure 15) depicts the compound classes over-represented in risk allele carriers at Effect 

1, which is conceived as the difference between time 1h and baseline of the OGTT. Fatty acids 

and conjugates (log p-value 5.29), phenols and derivatives (log p-value 3.76), steroids and 

steroid derivatives (log p-value 3.65), and eicosanoids (log p-value 3.51) are the most over-

represented classes, showing significant p-values. Three additional classes of interest are 

glycosyl compounds (log p-value 2.01), disaccharides (log p-value 1.71), and 

glycerophospholipids (log p-value 1.60), which could also be involved in the mechanisms of 

glucose uptake and GLUT4.  

 

 
Figure 16: Results of over-representation analysis of HMDB Compound classes annotated against 

HMBD. The figure depicts the over-represented chemical compound classes in a specific subset in Effect 

2 via DI-ICR-FT MS in risk allele female carriers (heterozygous). 127 female subjects (91 COBLL1 rs 6712203 

homozygous risk allele carriers/36 homozygous non-risk allele carriers. The experimental masses were 
assigned to the known metabolites from the HMDB database. The enrichment analysis was applied in 
order to see which classes of compounds are prevalent in the subset of features chosen from a PLS model. 
A high score means that the corresponding metabolic class is over-represented in a subset. No significant 
scores were observed for the up and down-regulation.  

      

In (figure 16), there is a description of the compounds regulated risk allele carrier subjects 

in effect2: the difference between time 2h - 1h that means OGTT at time point 120 to time point 

60. As shown, fatty acids and conjugates, eicosanoids, steroids, and steroid derivatives occupy 
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the first place. Again, similar to Effect 1, in Effect 2, the prominent class is fatty acids and 

conjugates with a significant value (log p-value 4.75). Besides that, there are some classes of 

interest, such as carbohydrates and carbohydrate conjugates (log p-value 3.11) and 

disaccharides (log p-value 1.25), which could be related to the mechanisms of our attention. 

 

The following tables (table 12 and table 13) translate the figures 15 and 16 precisely to the 

compound classes with their p-value. 

 

Effect1 

 

  

Compound classes 

 

 

Log(p-val) 

Glycerophospholipids 
 
 

1,601855 

Disaccharides 
 
 

1,715716 

Fatty Amides 
 
 

1,79213 

Carbonyl Compounds 
 
 

2,015617 

Glycosyl Compounds 
 
 

2,015617 

Carboxylic Acids and Derivatives 
 
 

2,022025 

Hydroxy Acids and Derivatives 
 
 

2,446832 

Fatty Alcohols 
 
 

2,676833 
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Table 12: Results of over-representation analysis of HMDB Compound classes 

annotated against HMBD. The figure depicts the chemical compound classes 

that are over-represented in a specific subset in Effect 1 via DI-FT-ICR-MS in risk 

allele female carriers (Homozaygos). The experimental masses were assigned to 

the known metabolites from the HMDB database. The enrichment analysis was 

applied in order to see which classes of compounds are prevalent in the subset 

of features chosen from a PLS model 

 

Phenylacetic Acid Derivatives 
 
 

2,778556 

Eicosanoids 
 
 

3,51683 

Steroids and Steroid Derivatives 
 
 

3,653774 

Phenols and Derivatives 
 
 

3,761765 

Fatty Acids and Conjugates 
 
 

5,299266 

Effect 2  

 

 

Compound classes 

 

Log(p-val) 

Fatty Acids and Conjugates 

 

4,750694583 

Eicosanoids 

 

4,323942728 

Steroids and Steroid Derivatives 

 

4,160064341 

Carbohydrates and Carbohydrate  

Conjugates 

3,111890001 
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Table 13: Result of over-representation analysis of HMDB Compound classes 

annotated against HMBD. The figure depicts the chemical compound classes that 

are over-represented in a specific subset in Effect 2 via DI-FT-ICR-MS in risk allele 

female carrier (heterozygous). The experimental masses were assigned to the 

known metabolites from HMDB database. The experimental masses were 

assigned to the known metabolites from HMDB database. The enrichment 

analysis was applied in order to see which classes of compounds are prevalent in 

the subset of features chosen from a PLS model.  

 

 

4.5. MDEA Result: 

 

Mass-difference enrichment analysis (MDEA) was implemented to infer molecular 

pathways based on statistics (Moritz et al., 2017). One of the essential steps in MDEA is selecting 

the theoretical mass-differences that allow for a targeted investigation of the imbalance caused 

by COBLL1 in circulating blood. Therefore, we created a list of co-regulated genes of COBLL1 in 

order to map the mass-differences related to the considered mechanism (Moritz et al., 2017). 

 

Carbonyl Compounds 

 

2,270893919 

Fatty Alcohol Esters 

 

1,997124126 

Amino Acids and Derivatives 

 

1,876066987 

Fatty Alcohols 

 

1,586136293 

Pyrans 

 

1,412965168 

Phenols and Derivatives 

 

1,383591659 

Disaccharides 

 

1,252576136 
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From the final co-regulated genes list of COBLL1 (table 8), we could detect the MDs related 

to three genes: PPARG, PLIN5, and ILK. Following is a description of their function. Next, we 

created a list of candidate MDs based on the selected genes and merged them to a manually 

created list of theoretical MDs. Finally, the comprehensive list of MDs was searched in our 

experimental mass-difference space.  

 

 

The PPARG gene (Peroxisome proliferator-activated receptor gamma) encodes for a 

nuclear receptor with molecular functions such as activating transcription factor binding, DNA, 

fatty acid, and lipid-binding (Tyagi et al., 2011). Moreover, it played an essential role in cell 

differentiation. It was characterized as the master regulator of adipogenesis, fatty acid 

metabolism, fatty acid oxidation, glucose homeostasis, lipid metabolism in a broader sense, and 

white fat cell differentiation (Tyagi et al., 2011). 

 

 The PLIN5 gene (Perilipin-5) is a lipid droplet-associated protein, maintaining the balance 

between lipogenesis and lipolysis and regulating fatty acid oxidation in oxidative tissue (fatty 

acids released from mitochondrial fatty acids) (Kimmel et al., 2014). Moreover, this gene induces 

mitochondria translocation to the lipid droplets surface and is involved in lipid droplet 

homeostasis by fatty acid regulation in the form of triglycerides (Kimmel et al., 2014). 

 

 The ILK gene (Integrin-linked protein kinase) is an enzyme that regulates integrin-

mediated signal transduction (Sakai et al., 2003). Thus, it plays a role in cell-matrix adhesion, cell 

population proliferation, integrin-mediated signaling pathway, and regulation of actin 

cytoskeleton organization (Sakai et al., 2003) 

 

The main results of MDEA are represented in (figures 17-20). (Figures 17 and 18) describe 

the over-represented mass-differences (reaction products, up and down-regulated) in Effect 1. 
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In contrast, (figures 19 and 20) depict the over-represented mass-differences (reaction products, 

up and down-regulated) in Effect 2.  

In Effect 1, the over-represented mass-differences associated with the up-regulation of 

reaction products in the risk allele carriers encompass tricarboxylic acid cycle (TCA)-metabolites 

and carboxylic acids (Figure 17). (Figure 18) describes the over-represented mass-differences 

associated with the down-regulation of reaction products in risk allele carriers, including 

carboxylic acid and sugars  

 

In Effect 2, amino acids (AA) were among the over-represented mass-differences 

associated with the up-regulation of reaction products in the risk allele carriers (Figure 19). 

(Figure 20) describes the over-represented mass-differences related to the down-regulation of 

reaction products in risk allele carriers, including carboxylic acids and tryptophan. 

 

 

Figure 17: Description of the over-represented mass-differences associated with the UP- regulation of 

reaction products in the risk allele carriers during Effect 1 [T1h-T0]. TCA-metabolites and carboxylic acid 
are among the prominent mass-differences. The gene involved in the detected MDs is ILK, which encodes 
an integrin-linked protein kinase (EC.2.7.11.1) (59 kDa serine/threonine-protein kinase). 
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Figure 18: Description of the over-represented mass-differences associated with the DOWN- regulation of reaction 

products in the risk allele carriers during Effect 1 [T1h-T0]. Carboxylic acids and sugar are included in the prominent 
mass-differences. The genes involved in the detected MDs are PPARY, which encodes peroxisome proliferator-
activated receptor gamma, and PLIN5, which encodes Perilipin-5 (Lipid storage droplet protein 5). 

Figure 19: Description of the over-represented mass-differences associated with the UP- regulation of reaction 

products in the risk allele carriers during Effect 2 [T2h-T1h]. Amino acids (AA) are among the prominent mass-
differences. The genes involved in the detected MDs are PPAR-y, which encodes peroxisome proliferator-activated 
receptor gamma, and PLIN5, which encodes Perilipin-5 (Lipid storage droplet protein 5). 
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Figure 20: Description of the over-represented mass-differences associated with the DOWN- regulation of 

reaction products in the risk allele carriers during Effect 2 [T2h-T1h]. Carboxylic acids and tryptophan are included 
in the prominent mass-differences. The gene involved in the detected MDs is PPARY, which encodes peroxisome 
proliferator-activated receptor gamma 

 

 

  The following tables are the Description of the over-represented mass-differences 

associated with the UP and DOWN regulation of products in the risk allele carrier. Effect 1 (T1h-

T0) and Effect 2 (T2h-T1h) shown in figure (17-20) 

  

Effect 1_target uP 
    

Mass difference Z-scores MD_Ids Mass Counts 

Di-prenylation/geranylation 4,606989 236 136,1252 2701 
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Pimelate  4,544503 246 142,063 3073 

3,6,8-Trimethylallantoin(1,3,7-Trimethyluric acid) 4,322368 10 9,98435 5462 

4-Hydroxyphenylpyruvic acid  4,11564 199 118,0419 2404 

Dodecanoic acid 4,104119 241 138,1772 2311 

Phenylpyruvic acid  4,096139 159 102,047 2480 

Suberate  3,916314 267 156,0786 2909 

prenylation 3,72961 84 68,0626 4972 

2-Ketoisovaleric acid  3,706212 149 98,03678 4062 

Adipate  3,704718 119 84,05752 4852 

Glutarate  3,59929 184 114,0317 3411 

Chorismate(Pyruvate) 3,583745 239 138,0317 2422 

2-Ketohexanoic acid  3,578353 176 112,0524 3871 

3-Hydroxy-2-oxobutanoic acid  3,554974 69 56,02622 5521 

Decanoic acid 3,459387 174 110,1459 3096 

Squalene(trans,trans-Farnesyl diphosphate) 3,456385 37 28,26022 48 
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Glyoxylic acid  3,444691 11 12 6396 

Azelaic acid  3,382911 291 170,0943 2640 

Deamination/Transamination 3,380043 1 0,984016 3091 

9-Oxononanoic acid 3,345443 240 138,1045 3125 

Hydroxypyruvic acid  3,30012 124 86,0004 3568 

(1R)-Glutathionyl-(2R)-hydroxy-1,2-

dihydronaphthalene(Glutathione) 

3,265144 251 144,0575 1635 

2-Ketosuccinate  3,262093 88 70,00548 4349 

Carlactone(9-cis-10'-Apo-beta-carotenal) 3,237184 102 74,08842 2549 

2-Ketoglutarate  3,225248 117 84,02113 4257 

Table 14: Description of the over-represented mass-differences associated with the UP- regulation of 

products in the risk allele carrier. Effect 1 (T1h-T0). 

 

Effect 1_target DOWN 
    

Mass differences Z-scores MD_Ids Mass Counts 

Vitamin C (Ascorbic acid) 4,417027871 270 158,0215 1806 

Shikimic acid 3,846658933 266 156,0423 2220 
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3-Ketolactose(beta-D-Glucose) 3,803452786 275 160,0372 2108 

Deamination/Transamination 3,668391347 2 1,031634 2907 

2-Ketoglutarate  3,35944526 212 128,011 2355 

L-Cysteine(Pyruvate) 3,121839503 45 33,00371 261 

2,3,4,5-Tetrahydrodipicolinate(LL-2,6-

Diaminoheptanedioate) 

2,911571781 27 19,0422 2488 

Glycine 2,855875388 13 13,03163 3008 

Vitamin K (Phylloquinol) 2,764929372 1625 434,3549 76 

L-Serine(Pyruvate) 2,70488178 24 17,02655 3022 

Glucose 2,537078622 280 162,0528 2397 

Rhamnose 2,433097217 253 146,0579 3000 

Quinate 2,383753188 296 174,0528 1981 

Coproporphyrinogen I(Uroporphyrinogen I) 2,22785557 299 175,9593 522 

Valine 2,158749118 67 55,07858 2564 

Pentose 2,14464514 229 132,0423 3091 

Leucine/Isoleucine 2,129811559 87 69,09423 2310 
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(S)-3-Hydroxy-3-methylglutaryl-CoA(CoA) 2,03795528 250 144,0423 2700 

2-Succinylbenzoyl-CoA(CoA) 2,017015637 331 204,0423 661 

Table (15): Represents the description of the over-represented mass-differences associated with the 

down-regulation of products in risk allele carriers.  Effect 1 (T1h-T0). 

 

Effect 1_target uP 
    

Mass differences Z-scores MD_Ids Mass Counts 

Leucine/Isoleucine 4,187767713 87 69,094234 2310 

Deamination/Transamination 3,898155298 2 1,031634 2907 

Proline 3,621674329 62 53,062934 2664 

L-Serine(Pyruvate) 3,5178133 24 17,026549 3022 

Valine 3,326987255 67 55,078584 2564 

Amination 3,279898167 16 15,010899 3105 

Nitration (+NO2 -H) 3,161642912 57 44,985079 2123 

Glycine 3,124466142 75 59,037114 2634 

Carbamoyl or Isocyainde transfer 3,102728974 53 43,005814 2639 
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Formimino transfer 2,99515503 33 27,010899 2981 

6-Amino-2-oxohecanoic acid 2,9267196 116 83,073499 2461 

Nitrosylation 2,851746985 38 28,990164 2673 

2,3,4,5-Tetrahydrodipicolinate(LL-2,6-
Diaminoheptanedioate) 2,806380076 27 19,042199 2488 

1,3-Diaminopropane(Spermidine) 2,73598746 93 71,073499 2602 

Serine 2,735738315 54 43,042199 2947 

Nitrobenzene(Catechol) 2,670152378 12 12,995249 3013 

Presqualene diphosphate(Squalene) 2,641291518 298 175,927579 21 

Alanine 2,613606345 34 27,047284 2903 

5-Amino-2-oxopentanoic acid  2,596671984 130 87,068414 2339 

sn-Glycero-3-phosphocholine(sn-Glycerol 3-
phosphate) 2,522627312 123 85,089149 2380 

Glycine 2,493234613 13 13,031634 3008 

Estradiol|Condensation 2,371921125 409 254,167065 272 

Exchange of O with S 2,269579702 18 15,977156 449 

Indole, Pyruvate, Ammonia 2,080391984 98 73,016379 2079 
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5-Hydroxyferuloyl-CoA(CoA) 2,009296226 319 192,04226 986 

Table 16: Represents the description of the over-represented mass-differences associated with 

the UP- regulation of products in the Risk allele carrier. Effect 2 (T2h-T1h). 

 

Effect 2_target DOWN 
    

Mass differences Z-scores MD_Ids Mass Counts 

UMP(UDP-N-acetyl-alpha-D-glucosamine) 7,040271 502 283,0457 33 

2-Ketoisovaleric acid  5,44312 149 98,03678 4062 

Phenylpyruvic acid  5,440976 205 120,0575 2869 

(1R)-Glutathionyl-(2R)-hydroxy-1,2-

dihydronaphthalene(Glutathione) 

5,005099 251 144,0575 1635 

Pimelate  4,996164 246 142,063 3073 

4-Hydroxyphenylpyruvic acid  4,844738 199 118,0419 2404 

Imidazole pyruvic acid 4,82868 139 92,03745 994 

2-Ketoglutarate  4,772561 212 128,011 2355 

Uracil 4,752991 142 94,01671 908 

Vitamin B6 (Pyridoxamine) 4,638872 259 150,0793 607 
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(S)-3-Hydroxy-3-methylglutaryl-CoA(CoA) 4,544363 250 144,0423 2700 

Suberate  4,479299 267 156,0786 2909 

Vitamin B3 (Niacinamide) 4,468829 165 104,0374 882 

Shikimic acid 4,375866 266 156,0423 2220 

Tryptophan 4,338377 309 186,0793 303 

Thymine 4,272168 171 108,0324 865 

Adipate  4,248299 213 128,0473 3270 

Glutarate  4,216233 184 114,0317 3411 

2-Ketosuccinate  4,154295 88 70,00548 4349 

Chorismate(Pyruvate) 4,009598 239 138,0317 2422 

gamma-Glutamyl-beta-cyanoalanine(L-Glutamate) 3,984995 145 96,03236 956 

9-Oxononanoic acid(9(S)-HPOT) 3,926221 240 138,1045 3125 

Azelaic acid  3,911704 291 170,0943 2640 

3-Hydroxy-2-oxobutanoic acid  3,828011 154 100,016 3554 

N6-(L-1,3-Dicarboxypropyl)-L-lysine(L-Lysine) 3,81484 221 130,0266 2772 
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Hydroxypyruvic acid  3,773764 124 86,0004 3568 

gamma-Glutamyl-beta-aminopropiononitrile(L-Glutamate) 3,569511 61 52,04253 1213 

3-Oxo-OPC4-CoA(Acetyl-CoA) 3,466655 320 192,115 1676 

4-Fumarylacetoacetate(Acetoacetate) 3,280408 148 98,0004 3054 

3,6-Nonadienal(9(S)-HPOT) 3,083496 294 172,1099 2826 

Table 17: Represents the description of the over-represented mass-differences associated with the 

down-regulation of products in risk allele carriers. Effect 2 (T2h-T1h). 
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5. Discussion: 

Modifying lifestyle provides an opportunity to reverse the diabetes trend, and it's the 

concept procedure for type 2 diabetes. Risk factors such as diet, adiposity, physical activity, and 

environmental expositions are modifiable by applying a combination of approaches at the 

population and individual level (Darnton-Hill et al., 2004). Many prevention programs have 

focused on lifestyle modification, addressing modifiable risk factors. Those studies have shown 

that lifestyle intervention is effective in preventing Diabetes. Different prospective randomized 

studies (Tuomilehto J et al., 2001, Knowler WC et al., 2002, Ramachandran A et al., 2006, Li G et 

al., 2008) have indicated that diabetes risk can be reduced by modifying diet and physical activity.  

 

Despite that, there is an imperative need for making the lifestyle intervention more 

effective for diabetes prevention; the reason is that a significant proportion of participants do 

not benefit from the intervention in lifestyle intervention trials. These participants are usually 

referred to as non-responders (Perreault L et al., 2009, Schmid V et al., 2017). For instance, in the 

Diabetes Prevention Program (DPP), every fifth patient of the Lifestyle intervention developed 

type 2 diabetes within 4 years (Knowler WC et al., 2002). On the other hand, individuals with pre-

diabetes do not progress to diabetes during 11 years follow up even without intervention. 

Therefore there's an important question whether Lifestyle intervention is essential in all 

individuals with pre-diabetes. 

 

These observations of non-response to lifestyle intervention and non-progression to 

diabetes focus attention on the need for risk classify intervention strategies in individuals with 

pre-diabetes. Next, an essential question is which phenotype determines the risk for diabetes, 

especially the response and non-response to lifestyle intervention. A recent analysis of the DPP 

showed that response varies based on diabetes risk, suggesting that the lifestyle intervention 

should be adapted based on individual risk. 
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The Tübingen Lifestyle Intervention Program (TULIP) (PLIS pilot study) identified a 

phenotype of high risk (HR) associated with a higher probability of short-term and long-term non-

response to Lifestyle intervention. Furthermore, TULIP showed that risk stratification can identify 

severe disease courses and increased risk for diabetes-related complications in populations 

before diabetes onset and with diabetes. Accordingly, it’s definitive to improve the efficiency and 

effectiveness of lifestyle intervention programs in high-risk subjects to conquer no response to 

preventive interventions.   

 

Therefore, the PLIS study was designed to answer 2 important questions: can intensive 

lifestyle intervention overcome non-response in high risk individuals with pre-diabetes? And is 

lifestyle intervention effective in low-risk individuals with pre-diabetes? The details of the PLIS 

study participants, randomization, intervention, etc., is mentioned in the methods part of the 

thesis. 

 

There was no significant difference in the low-risk group after lifestyle intervention after 2 

years concerning the following parameters: glucose, insulin sensitivity, hepatic fat, cardiovascular 

risk. Meanwhile, there were significant differences between high-risk conventional and high-risk 

intervention for the same mentioned parameters for the high-risk group. 

 

The result after 3 years of observation (1 year of lifestyle intervention and additional 2 years 

follow up), there were significant differences for the lower risk group (control to conventional) 

and high-risk group (Conventional to intensive). 

 

The data from the PLIS study indicate that conventional lifestyle intervention as were 

applied DPP and DPS can be successfully intensified. However, the implementation of intensified 

lifestyle intervention was effective on BMI, insulin sensitivity, and liver fat content were more 

pronounced. In contrast, intensified lifestyle intervention did not improve insulin secretion 

capacity compared to conventional lifestyle intervention. For that reason, the effect of intensive 

lifestyle intervention on post-challenge glucose was most probably due to reduced fat liver 
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content and improved insulin sensitivity. The improvement of insulin sensitivity in successful 

lifestyle intervention is consistent with the DPP and DPS trials' findings.  

 

Interestingly, the exercise volume and the number of counseling sessions differed between 

the intensified and conventional interventions in PLIS. However, the weight reduction goal's 

accomplishment was significantly associated with reducing 2 hours post glucose challenge during 

1 year of intervention in all treatment groups. This suggests that the number of counseling 

sessions was either motivational or guidance from the lifestyle advisor is underlying the higher 

efficacy of the intensive intervention group. Therefore, qualified lifestyle counselors and 

sufficient counseling frequency should be the central factors in lifestyle intervention planning. 

 

In the PLIS cohort, the beneficial effect of intensive lifestyle intervention goes beyond 

glucose control and affects liver fat content. After the intensive intervention, the liver fat content 

was close to the normal threshold of 5.6%, suggesting a clinically relevant effect as a target for 

future approaches in diabetes prevention. 

 

Furthermore, the cardiovascular risk is decreased in the participants for the high-risk group 

with nearly doubling of the risk reduction for the high-risk intervention group compared with the 

conventional group. 

 

The limitation of the study includes a short Lifestyle intervention duration (12 months). One 

more possible limitation is the heterogeneity of lifestyle counseling throughout different study 

centers. Moreover, the study did not include an intensified intervention in the Low-risk group, 

and there was no control group without intervention for high-risk. The last limitation is that the 

high-risk and low-risk groups were unbalanced.  

 

Future studies are needed to investigate the question in Lifestyle individuals; nevertheless, 

screening and treatment approaches in preventing type 2 diabetes should include risk 

stratification and individualized interventions.  
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Our sub study identified metabolite patterns in plasma that reflect the metabolic 

dysregulation caused by genetic variation, specifically the COBLL1 gene, leading to an increased 

risk of T2D. This work aimed to connect variants at the GRB14/COBLL1 metabolic risk locus and 

the effectors' gene COBLL1 with metabolic changes in plasma, applying metabolic profiling to 

further the mechanistic understanding of the risk locus on disease-relevant traits and to pave the 

way for better disease prediction through biomarkers. I sought to investigate the metabolic 

profiles of the subjects genotyped for the GRB14/COBLL1 risk haplotype by the rs6712203 

variant, which our group has previously shown to mediate part of the metabolic risk by affecting 

the actin cytoskeleton remodeling in (pre-)adipocytes. In my work, I included subjects from the 

PLIS cohort genotyped for the SNP rs6712203 (91 risk allele carriers vs. 36 non-risk allele carriers) 

who underwent nutritional challenges to unveil their metabolic profile under specific stimuli.  In 

order to accomplish this goal, the untargeted human blood metabolites were investigated using 

direct infusion ultrahigh-resolution mass-spectrometry DI-ICR-FT-MS. This high-resolution and 

high accuracy approach focused on screening a maximum number of metabolites, enabling top 

confidence feature assignment to molecular formulas. This will provide promising targets for 

future disease prediction and prevention strategies. 

For the over-representation analysis of compound classes (database driven), the 

compound classes over-represented in risk allele carriers at Effect 1, which is conceived as the 

difference between time 1h and baseline of the OGTT. Fatty acids and conjugates (log p-value 

5.29), phenols and derivatives (log p-value 3.76), steroids and steroid derivatives (log p-value 

3.65), and eicosanoids (log p-value 3.51) were the most over-represented classes, showing 

significant p-values. Three additional classes of interest were glycosyl compounds (log p-value 

2.01), disaccharides (log p-value 1.71), and glycerophospholipids (log p-value 1.60), which could 

also be involved in the mechanisms of glucose uptake and GLUT (Figure 4). 

 

In Effect 2, the difference between time 2h - 1h means OGTT at time point 120 to time 

point 60. Fatty acids and conjugates, eicosanoids, steroids, and steroid derivatives occupied 

the first place. Again, similar to Effect 1, in Effect 2, the prominent class is fatty acids and 

conjugates with a significant value (log p-value 4.75). Besides that, there were some classes of 
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interest, such as carbohydrates and carbohydrate conjugates (log p-value 3.11) and 

disaccharides (log p-value 1.25), which could be related to the mechanisms of interest (Figure 

16). 

 

One of the interesting compound classes is Steroids and steroids derivatives. The 

transportation of the steroids happens through the bloodstream to the cells of different organs. 

There they act as regulators of an extensive range of physiological functions. When steroid 

hormones pass across the target cell membrane, they may cause fundamental physiological 

changes. After they go through the membrane, they bind to particular receptors in the cytoplasm; 

afterward, this complex receptor demands the production of mRNA molecules, which code 

numerous proteins (Pandey et al., 2009). 

As mentioned previously, actin is involved in the intracellular transport of organelles, 

vesicles, and muscular contractions (Bugyi et al., 2020). Thus, people, who carry a mutation in 

the COBLL1 gene, show disturbances in actin morphology that lead to an essential change in 

embryogenesis, as reported in the work of  Claussnitzer group. That could explain why steroid 

hormones compound classes are significantly shown in our results (figure 16 and 17). Moreover, 

the association between COBLL1 with WHR adj BMI is five times clearer in women than in men, 

showing a significant sexual dimorphism effect (Heid et al., 2010). These differences become 

apparent during puberty and are generally attributed to the influence of sex hormones (Heid et 

al., 2010).  

Glunk et al. identified a sexual dimorphism in their experiments, indicating an effect of 

rs6712203 on stimulated lipolysis and potentially fat distribution only in women. It is intriguing 

to speculate that a decreased adipogenic capacity due to COBLL1 perturbation in subcutaneous 

adipocytes may decrease the adipocyte insulin response and safely store excess energy in 

women. Still, more work will be required to investigate the effects of COBLL1 on female fat 

distribution. In addition, insight may be gained from comparing visceral and subcutaneous fat 

depots. Taken together, we here provide some evidence for a female-specific effect of COBLL1 

on fat distribution, which may contribute to the risk for insulin resistance and T2D. 
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Another compound class is interested, fatty acids and conjugates. It is known that the 

variants at the GRB14/COBLL1 locus have also been associated with HDL cholesterol42,175 and 

triglyceride levels42,176. The variant rs6712203 has been associated with GC/MS metabolite 

measurement using the KORA and Twins UK cohorts with glycerol and n-Butyl Oleate release177. 

The results by our team substantiate the association with HDL cholesterol, but it remains to be 

investigated how the role of COBLL1 in adipocytes is involved in these associations. 

 

The actin cytoskeleton is involved in many cellular processes, besides providing structural 

support and vesicle trafficking. Coordinated regulation of the cytoskeleton is essential during 

adipogenesis (Kawaguchi et al., 2003, Yang et al., 2014; Kanzaki et al., 2001). GLUT4 translocation 

to the plasma membrane (Kanzaki et al., 2001), the maintenance of lipid droplets, and lipid 

droplet dynamics during lipolysis (Orlicky et al., 2013). Considering that the COBLL1 homolog 

COBL is a known F-actin dynamizer (Husson et al., 2011), and GO-term pathways list COBLL1 as 

an actin interacting protein (Ashburner et al., 2000), we investigated whether COBLL1 may play 

a role in the regulation of the actin cytoskeleton in adipocytes, thereby affecting GLUT4 vesicle 

trafficking, lipid metabolism, and adipocyte differentiation. 

In the studies of Glunk et al., a disrupted regulation of COBLL1 was found in risk allele 

carriers in rs6712203-C, leading to disturbed glucose uptake, lipolysis, adipogenesis, and 

increased TG storage. Moreover, they demonstrated that all cell functions and oxidation 

processes happening in the cell are entirely disrupted (Glunk et al., submitted). 

As shown in (Figure 4), Glunk et al. reported that all the oxidation processes are disrupted 

by the COBLL1 mutation, provoking an accumulation of citrate and pyruvate. Consequently, less 

glucose is transported and taken up, and several other pathways such as lipolysis, adipogenesis, 

and fat storage are also impaired.  

 

 

 

https://paperpile.com/c/FJQiYp/Q5CjZ+i2sYL
https://paperpile.com/c/FJQiYp/g1SF4+i2sYL
https://paperpile.com/c/FJQiYp/vB1Ck
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5.1. COBLL1 and Glucose uptake 

Insulin-stimulated GLUT4 translocation in adipocytes is dependent on cortical actin 

remodeling (Kanzaki et al., 2001). Insulin receptor activation triggers a massive increase in the 

rate of GLUT4 vesicle exocytosis, with a slight decrease in the frequency of internalization by 

endocytosis. Several studies demonstrated that: 

1. Cell cytoskeleton has a notable influence over vesicle trafficking events. 

2. Actin cytoskeleton influence regulated exocytosis. 

3. A thick sheet of F-actin beneath and juxtaposed to the plasma membrane in most secretory 

cells, so-called cortical actin. 

4. Actin function as a physical barrier to vesicle docking is based on its transient polymerization 

during exocytosis, and the secretion happens at the site where the actin cortex is thin (Kanzaki 

et al., 2001). 

Both stabilization and disruption of adipocyte cortical actin inhibit insulin-stimulated GLUT4 

translocation and cortical actin remodeling. Insulin's dynamic actin rearrangement process is 

induced, which is necessary for insulin-stimulated GLUT4 translocation. Insulin-stimulated 

membrane ruffling is not displayed by cortical actin but appears to undergo dynamic remodeling 

(polymerization/depolymerization). These results are consistent with F-actin analysis in primary 

rat adipocytes, displaying a predominantly cortical actin network (Norris et al., 2018). 

 

In summary: differentiated adipocytes firstly express cortical actin, which must go through 

active insulin-stimulated remodeling, essential for translocation of insulin-stimulated GLUT4 

(Norris et al., 2018; Lowe et al., 2011). The cortical actin network is regulated by TC10, a member 

of the Rho family of small GTP-binding protein (Lowe et al., 2011).  Besides, cortical actin plays 

an essential positive role in trafficking GLUT4 vesicles (Lowe et al., 2011).  Glunk et al. identified 

a decreased sensitivity of COBLL1 perturbed cells to insulin, which leads to reduced glucose 

uptake, potentially caused by the effect of COBLL1 on actin fermentation (Glunk et al., 

submitted). 
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5.2. COBLL1 and adipogenesis 

Adipogenesis is a physiological process that promotes the tissue's ability to isolate lipids 

and prevent lipotoxicity in peripheral organs safely (Karpe et al., 2011). Furthermore, the 

hormone insulin supports expansion, whereas glucagon, epinephrine, and ACTH promote 

mobilization (Karpe et al., 2011). Therefore, individuals at high-risk of developing diabetes, 

characterized by inappropriately enlarged adipose cells relative to their BMI (hypertrophic 

obesity), is due to reduced adipogenesis, insulin resistance, and adipose tissue inflammation. 

Besides, adipose GLUT4 levels are reduced in adipocytes from individuals with T2D (Ghaban et 

al., 2019).  

The results from Glunk et al. link COBLL1 expression and adipogenesis with an effect on lipid 

accumulation. In rs6712203-C, risk allele carriers could translate into lower adipogenesis due to 

a lower ability to up-regulate COBLL1 mRNA expression as long as mature adipocytes have an 

increased insulin-stimulated glucose uptake when compared to undifferentiated cells (Salans et 

al., 1968). Since the maturation of adipocytes and their size is essential for the response of the 

cells to insulin, they evaluated the relationship between COBLL1 mRNA expression and adipocyte 

size by using fractions of isolated mature primary human adipocytes (Newsholme et al., 2010). In 

the large portion, they found some evidence for a positive correlation between cell size and 

COBLL1 mRNA expression (p-value = 0.01). This finding may be explained by the increased 

capability of the cells to store lipids when COBLL1 is not perturbed (Newsholme et al., 2010). 

 

5.3. COBLL1 lipolysis and TGs storage 

Triglycerides are formed primarily from dietary fats: They are hydrolyzed to monoglycerides 

and FAs by lipases (Newsholme et al., 2010). The liver and adipose tissue are the primary organs 

for endogenous TGs synthesis. Under normal conditions, hepatic TGs are secreted as very-low-

density lipoprotein (VLDL). Under specific pathological states, TGs accumulate in hepatocytes, 

leading to hepatic steatosis (Newsholme et al., 2010). When the hormone-sensitive lipase (HSL) 
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is activated by glucagon and adrenaline, fatty acids are mobilized from adipose tissue TGs (Harris 

et al., 2014). 

Glunk et al. found evidence for higher COBLL1 levels in mature and large adipocytes, 

confirming the previous observation of a diminished maturation capacity and lipid storage when 

COBLL1 is reduced. In addition, the finding that leptin mRNA expression levels, an adipokine 

produced in proportion to the size of fat depots (Smas et al., 1995), correlate with COBLL1 mRNA 

expression further supports the role of COBLL1 in fat storage (Smas et al., 1995). 

In summary, the actin cytoskeleton and the ability of cells to remodel actin filaments have 

been implicated in the storage of lipids (Orlicky et al., 2013; Greenberg et al., 2011), which 

suggests the role of COBLL1 in actin remodeling could also be necessary for lipid storage in 

differentiated adipocytes (Luo et al., 2011; Greenberg et al., 2011), 

 In mature unilocular white adipocytes, energy is mainly stored in one lipid droplet (Karpe 

et al., 2011). Which occupies most of the adipocyte, controls the volume (Prasad et al., 2015), 

and leads to a rounded cell shape (Orlicky et al., 2013; Greenberg et al., 2011). Actin dynamics 

control the number and size of adipocytes (Prasad et al., 2015) and accommodate the 

appearance and growth of lipid droplets (Prasad et al., 2015). Body mass index (BMI), a measure 

for obesity, is a significant predictor for T2D. Still, some genetically predisposed individuals 

develop T2D with a lower BMI than others, highlighting the importance of genetic factors (Perry 

et al., 2012), influencing the ability to safely store excess energy (Henninger et al., 2014). A 

combined defective and overloaded “healthy” subcutaneous adipose tissue (Asterholm et al., 

2014) expansion may lead to unfavorable lipid storage in visceral adipose tissue or non-adipocyte 

cells and may - accompanied by fibrosis - lead to insulin resistance (Ahmadian et al., 2007).  Glunk 

et al. provide evidence for an increased expression of COBLL1 in “healthy” mature adipocytes. 

Moreover, a disturbing COBLL1 expression or a lower ability to regulate COBLL1 expression 

was associated with disturbances in adipocyte hypertrophy and potentially hyperplasia (Smas et 

al., 1995). The correlations between leptin and COBLL1 supported these observations. Leptin is 

produced in proportion to the size of fat depots in the human body. Therefore, when COBLL1 is 

perturbed or decreased, we found a lower amount of leptin, substantiating the observation that 
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COBLL1 might be necessary during adipogenesis and lipid storage, enabling a “healthy” expansion 

of human adipose tissue. Furthermore, the results of Glunk et al. show that the up-regulation of 

COBLL1 during adipogenesis could be essential to remodel actin from stress fibers to cortical 

actin, influencing the adipogenic capacity (Smas et al., 1995). 

Lipolysis is defined as a catabolic process leading to the breakdown of TAGs, stored in 

cellular lipid droplets, into FFAs and glycerol (Tansey et al., 2001).  After the FFAs are released 

into the blood, they are transported and taken by other tissues for ß-oxidation and ATP 

generation. Not all FFAs leave the cell; some are re-esterified into TAGs intracellularly. Lipolysis 

usually takes place in the cytoplasm. After lipolysis, the released glycerol from TGs directly enters 

the glycolysis pathways as DHAP (Tansey et al., 2001).   

In cells with COBLL1 perturbation, lipids' storage and release may be disturbed. Glunk et al. 

found a decreased lipolysis rate and reduced perilipin levels when COBLL1 was reduced. 

Interestingly, similar phenotypes were observed (Grant et al., 2009) in COBLL1 perturbed human 

adipocytes. In conclusion, they found a decreased β-adrenergic lipolytic response in COBLL1 

perturbed adipocytes. In combination with a decreased adipogenic capacity, this may lead to the 

inability to safely store excess energy (Almadian et al., 2007). 

The actin cytoskeleton and the ability of cells to remodel actin filaments have been 

implicated in the storage of lipids (Orlicky et al., 2013; Greenberg et al., 2011). Therefore, the 

role of COBLL1 in actin remodeling could also be necessary for lipid storage in differentiated 

adipocytes. In mature white adipocytes, energy is mainly stored in one lipid droplet (Karpe et al., 

2011), which occupies most of the adipocyte, controls the volume (Prasad et al., 2015), and leads 

to a rounded cell shape (Orlicky et al., 2013; Greenberg et al., 2011).  

Based on the work of Glunk et al. and understanding the actin dynamics and distribution of 

pathways in a COBLL1 mutation discussed above, we could, in our study cohort, focus on the 

most significant compound classes circulating in blood plasma which reflect the pathways 

perturbation.  
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Table 18 depicts the most significant classes in my over-represented analysis (ORA) work. 

The table compares compound classes from ORA and MDs. In Effect 1 (T1h-T0), glucose and FAs 

are the most significant compound classes, while in Effect 2 (T2h-T1h), glucose and AAs are the 

most significant compounds.  We compared the over-represented mass-differences associated 

with the up and down-regulation of products in risk allele carriers. We found up-regulated MDs 

in Effect 1 (T1h-T0) carboxylic acid and TCA products, mainly pyruvate and ketoglutarate. In 

contrast, in Effect 2(T2h-T1h), amino acids and pyruvate were prominently up-regulated MDs. 

This is because pyruvate and ketoglutarate in Effect 1 and pyruvate in Effect 2 are intermediate 

products in the process of the TCA cycle.  

 

For the down-regulated MDs In Effect 1 (T1h-T0h), glucose and the TCA product 2-

ketoglutarate were down-regulated, while in Effect 2 (T2h-T1h), tryptophan and TCA products, 

pyruvate, glutamate, 2-keto-succinate, hydroxyl pyruvate acid, were the most prominently 

down-regulated mass-differences. 2-ketoglutarate in Effect 1 and pyruvate, glutarate, 2-keto-

succinate, and hydroxyl pyruvate acid in Effect 2 were the most prominent MDs considered 

intermediate products in the process of the TCA cycle. 

 Table 18: Comparison of compounds classes enrichment analysis outcomes and Mass- differences 

in Effect 1 and Effect 2. In Effect 1, Glucose and FA's, while in Effect 2, Glucose and AA's are the most 
prominent compound classes, respectively. In Effect 1, Up-regulated mass- differences were TCA 
(pyruvate, Ketoglutarate) and Carboxylic acid, while glucose and TCA (2-Ketoglutarate) were down-
regulated mass-differences. In Effect 2, AA and TCA (pyruvate) were Up-regulated mass-differences, 

while Tryptophan and TCA (pyruvate, glutarate, 2-keto-succinate, and hydroxyl pyruvate acid) 
were down-regulated mass-differences. 
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Eventually, I was able to conclude my hypothesis based on the results and interpretation 
of the data as follows: 
 
 

5.4. Glucose uptake hypothesis 

 
The following figure represents the Scenarios of glucose uptake. 

Figure 21:  Hypothesis for glucose uptake and transport. Scenario 1: Normal pathway of glucose 
uptake. Scenario 2: Disrupted glucose uptake in COBLL1 risk allele carriers. Scenario 3: Our 
hypothesis pathway in COBLL1 risk allele- carriers     

 

In (figure 21), we describe the glucose uptake Scenarios. In Scenario 1, where the normal 

pathway of glucose uptake is described, i.e., COBLL1 non-risk allele carrier. Glucose uptake is fully 

functioning, and glucose after uptake is converted to pyruvate during glycolysis (Berg et al., 2002; 

Lehninger et al., 2008). Afterward, pyruvate is converted to acetyl-CoA and enters the TCA cycle 

to continue its normal pathway (Berg et al., 2002; Lehninger et al., 2008). Thus, scenario 1 

explains the up-regulation of TCA products in Effect 1, where the products are consumed rapidly 

and immediately to complete the cycle. Additionally, the two processes, namely glycolysis, and 

glycogenesis, are balanced in the usual case.  
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Coming to Scenario 2 may explain the disruption of the glucose uptake pathway in COBLL1 

risk allele carriers. When the disturbance is happening, glucose uptake cannot be increased in 

the cells following insulin stimulation, as the dynamic regulations of the actin cytoskeleton is a 

prerequisite for the cellular translocation of GLUT4 (Kanzaki et al., 2001). Therefore, a decreased 

regulation of COBLL1 expression in rs6712203-C risk allele carriers may result in an impaired 

actin-mediated GLUT4 vesicle trafficking to the plasma membrane. As a result, pyruvate is 

alternatively generated from lipolysis, which results in the accumulation of pyruvate, and acetyl 

CoA cannot be generated to enter the TCA cycle, which leads to citrate accumulation.  

The body recognizes the lack of energy needed for metabolic processes and starts to 

generate the essential energy. Therefore, in Scenario 3, we hypothesized that the alternative 

energy source is AAs. 

Amino acids were found to be up-regulated in Effect 2 (Table 18). Thus, AAs are used 

alternatively to glucose, which allows the generation of pyruvate, which may be converted to 

acetyl- CoA and able to enter the TCA cycle, which could complete its normal pathway to 

generate energy. 
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5.5.  Lipolysis, fat storage, and adipogenesis hypothesis  

The following figure represents the Scenarios of lipolysis, fat storage, and adipogenesis. 

 

Figure 22: Hypothesis in lipolysis, fat storage, and adipogenesis. Scenario 1: pathway in COBLL1 risk allele 
carriers and disruption of ß-oxidation in COBLL1 risk allele carriers. Scenario 3: Our hypothesized pathway 
in COBLL1 risk allele carriers. 

 

In female risk allele carriers, the protein forskolin is regulated—this protein regulates HSL 

activation (Grant et al., 2009). When HSL is activated, the lipolysis process increases, leading to 

increased FFAs, which explains why FAs are up-regulated in Effect 1, Scenario 1 (Figure22). Then 

the pathway continues normally, where ß-oxidation is converting FFAs to acetyl-CoA, and this is 

entering the TCA cycle, Scenario 1 (Figure 22).  However, in COBLL1 risk allele carriers, ß-oxidation 

is impaired, leading to a degeneration of acetyl-CoA followed by a decrease of the TCA cycle. In 

addition, the disruption in lipolysis is also leading to excessive degradation of FFAs storage in lipid 

droplets (Figure 22, Scenario 1).  Interestingly, it was shown that lipolysis in risk allele carriers is 

increased, which means we have excess FFAs, which leads to impairment of ß-oxidation, and 

leads to a deranged cell function. Moreover, when ß-oxidation is impaired, changes in lipolysis 
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and lipogenesis are taking place; however, with impairment of lipolysis, leading to down-

regulation of BCAA, which may yield less acetyl-CoA available for the TCA cycle (Heinonen et al., 

2020). 

 

In Scenario 2, we hypothesized that due to the disruption of ß-oxidation, AAs could not get 

oxidized. Therefore, they will not be available to be converted into acetyl-CoA and enter the TCA 

cycle. This hypothesis may explain the up-regulation of AAs in Effect 2 (Table 18). 

 

The failure of fatty acid oxidation can lead to the accumulation of FAs derivatives in muscle 

or liver (e.g., fatty acyl-CoA, diacylglycerol) that can impair the ability of insulin to stimulate 

glucose uptake and disposal muscle as well as glucose conversion to glycogen in the liver (Sears 

et al., 2015). These changes could promote a chronic elevation of blood glucose levels. This, 

together with the reduced ability to dislocate glucose from the blood, resulting in glucose 

intolerance, can lead to insulin resistance and, ultimately, T2D. As well-known FAs occur within 

mitochondria, any disorder in the electron transfer chain will limit the oxidation of FAs, which 

can eventually result in several clinical issues. The low rate of fat oxidation leads to obesity since 

any un-oxidized fat will be stored as triacylglycerol in adipose tissue (Sears et al., 2015).  

Moreover, mitochondrial dysfunction in adipose tissue results in the down-regulation of 

mitochondrial adipogenesis (Heinonen et al., 2020). This leads to a reduction in the GLUT4 

translocation to the adipocyte cell membrane, which reduces glucose uptake into adipose tissue 

(Kanzaki et al., 2001), and thus the level of pyruvate available to the TCA cycle. 
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6. Summary and outlook  

During the last 10 years, GWAS has paved the way towards an exciting journey to better 

understand the genetic architecture of T2D and its related traits (Visscher et al., 2017). The 

experimental design of GWAS has contributed to a remarkable range of discoveries in human 

genetics, detecting associations between standard DNA variants and several human diseases and 

disorders (Schwintzer et al., 2011). Moreover, GWAS led to new developments in disease 

epidemiology and the discovery of therapeutic drugs (Schwintzer et al., 2011). Those discoveries 

will detect or unravel new biochemical mechanisms, specifically for T2D prevention and early 

intervention (Claussnitzer et al., 2014). The overall goal of modern genetics is to translate genetic 

information into daily clinical practice and elucidate the molecular mechanism of disease 

(Claussnitzer et al., 2014). We investigated the COBLL1 locus by studying risk allele carriers of the 

target SNP rs6712203. We applied untargeted metabolome analysis using ultra-high-resolution 

mass-spectrometry. Our results revealed possible biotransformations and biochemical pathways 

involved in glucose uptake, adipogenesis, lipolysis, and TGs storage. Our results agree with the 

hypotheses published from the in vitro findings from Glunk et al. (unpublished, manuscript 

submitted). Our findings allow us to understand the link between the effect of COBLL1 on the 

metabolic phenotypes, linking the impact of COBLL1 locus and T2D risk. We studied the effect of 

SNP rs6712203 on metabolic phenotypes by utilizing an untargeted metabolomics approach that 

allows us to have a comprehensive picture by screening all detectable metabolites and the ones 

with unknown biotransformation mechanisms from unknown chemical space. 

We were able to support the hypothesis that a cell actin dynamic imbalance may lead to 

perturbations in metabolic pathways. We achieved that by using the platform DI-ICR-FT MS 

because of its ultra-high-resolution and mass-accuracy (Ramautar et al., 2013) to link genome 

and metabolome. Our results are promising, and further experiments are required to 

substantiate our proposed hypotheses and confirm the biochemical mechanisms using adipocyte 

cells. This cell type was chosen since Glunk et al. identified the function of COBLL1 in adipose 

tissue, where they established COBLL1 gene expression in the adipocyte. Adipose tissue is the 

primary storage organ of the human body (Newsholme et al., 2010). When surplus energy needs 
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to be stored, adipocytes can massively expand in number (hyperplasia) or size (hypertrophy) to 

prevent ectopic fat accumulation (Newsholme et al., 2010). Hypertrophy and hyperplasia are 

dependent on structural changes, which are mainly controlled by actin dynamics and 

accommodate the emergence and growth of lipid droplets: actin remodeling and the regulation 

of adipogenesis ((Newsholme et al., 2010; Langin et al., 2006). Additionally, an essential part of 

the human body's energy homeostasis is maintained by adipocytes and tightly regulated by 

chemical, enzymatic, and mechanical influences (Hauner et al., 1998). This explains our interest 

in investigating the effect of COBLL1 in adipose tissue energy uptake. 

We proposed some possible new mechanisms that would reveal new pathways in the 

energy metabolism of COBLL1 carriers. Future studies are required to elucidate these 

mechanisms further and better understand the link to T2D as an essential step towards the more 

global aim of personalized prevention, treatment, and medicine. 
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von besonderer Bedeutung sind. Ich erkläre, dass ich frühere Erkrankungen und ein-
genommene Medikamente nicht absichtlich verschweige. 
Ich bin darüber informiert, dass meine Studienteilnahme vollkommen freiwillig ist und 
dass ich die Einwilligung zur Teilnahme jederzeit ohne Angabe von Gründen widerru-
fen kann, ohne dass dies für mich nachteilige Folgen hat oder meine weitere Be-
handlung beeinträchtigt. 
Die schriftliche Patienteninformation zu dieser klinischen Studie und die Einwilli-
gungserklärung mit Datenschutzerklärung habe ich erhalten und genau gelesen. Ich 
hatte genügend Zeit, meine Teilnahme an der klinischen Prüfung zu überdenken. 
 
 
Ich bin mit der Teilnahme an dieser klinischen Studie einverstanden. 

 
 

 ja   nein 
 

 
 
Ich bin damit einverstanden, dass mir im Rahmen der klinischen Studie Blutproben 
entnommen und für 10 Jahre im Rahmen der DZD Biobank zugangskontrolliert im 
Labor des Prüfzentrums Institut/Lehrstuhl für Ernährungsmedizin der TU München, 
Standorte Uptown München Campus D und Freising/Weihenstephan () in pseudo-
nymisierter (verschlüsselter) Form, d.h. ohne Nennung von Name oder Geburtsda-
tum aufbewahrt und zur Analyse studienspezifischer Fragestellungen verwendet 
werden. 
 
 

 ja   nein 
 
München, 

 
 
....................................................................................................................................... 
Datum, Vor-/Zuname in Druckschrift Unterschrift Patient/in 
 
 
München, 
 
 
 
...................................................................................................................................... 
Datum, Vor-/Zuname in Druckschrift Unterschrift Prüfarzt/ärztin
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Klinikum rechts der Isar  

Technische Universität München 

Direktor: Univ.-Prof. Dr. med. Hans Hauner 
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Datenschutzerklärung zur Studie 

„Individualisierte Lebensstilintervention bei Prädiabetes“ 

 
Mir ist bekannt, dass bei dieser klinischen Prüfung personenbezogene Daten, insbe-
sondere medizinische Befunde, über mich erhoben, gespeichert und ausgewertet 
werden sollen. Die Verwendung der Angaben über meine Gesundheit erfolgt nach 
gesetzlichen Bestimmungen und setzt vor der Teilnahme an der klinischen Prüfung 
folgende freiwillig abgegebene Einwilligungserklärung voraus, d.h. ohne die nachfol-
gende Einwilligung kann ich nicht an der klinischen Prüfung teilnehmen. 
 
Einwilligungserklärung zum Datenschutz  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) Ich erkläre mich damit einverstanden, dass im Rahmen dieser Studie erhobene 
Daten, insbesondere Angaben über meine Gesundheit, in Papierform und auf 
elektronischen Datenträgern im Prüfzentrum (Institut für Ernährungsmedizin, 
Klinikum rechts der Isar der TU München, München Uptown Campus D, Georg-
Brauchle-Ring 62, 80992 München) und im Koordinierungszentrum für klini-
sche Studien Düsseldorf (KKS, Medizinische Fakultät, Universitätsklinikum 
Heinrich-Heine-Universität, Moorenstr. 5, 40225 Düsseldorf) aufgezeichnet 
werden. Soweit erforderlich, dürfen die erhobenen Daten pseudonymisiert (ver-
schlüsselt) weitergegeben werden: 

 
a) an den Sponsor (Universitätsklinikum Tübingen, Verantwortlicher für die 

Sponsorpflichten Prof. Dr. Häring) oder eine von diesem beauftragte Stel-
le zum Zwecke der wissenschaftlichen Auswertung 

�_________ ___________________________ ______________ _____ _______________________ _!__" ___#______ ____%$_&___'_(__ )+*,( __________________-_._/_-_/_0 

 
b) im Falle unerwünschter Ereignisse: an den Sponsor (Universitätsklinikum 

Tübingen, Verantwortlicher für die Sponsorpflichten Prof. Dr. Häring), an 
die zuständige Ethik-Kommission 

 
2) Außerdem erkläre ich mich damit einverstanden, dass autorisierte und zur Ver-

schwiegenheit verpflichtete Beauftragte des Sponsors (Universitätsklinikum 
Tübingen, Verantwortlicher für die Sponsorpflichten Prof. Dr. Häring) sowie die 
zuständigen Überwachungsbehörden und zuständige Ethik-Kommission in 
meine beim Prüfarzt vorhandenen personenbezogenen Daten, insbesondere 
meine Gesundheitsdaten, Einsicht nehmen, soweit dies für die Überprüfung der 
ordnungsgemäßen Durchführung der Studie notwendig ist. Für diese Maßnah-
me entbinde ich das Studienteam von der Verpflichtung auf das Daten- und 
Gesundheitsgeheimnis. 
 

3) Die Einwilligung zur Erhebung und Verarbeitung meiner personenbezogenen 
Daten, insbesondere der Angaben über meine Gesundheit, ist unwiderruflich. 
Ich bin bereits darüber aufgeklärt worden, dass ich jederzeit die Teilnahme an 
der Studie beenden kann. Im Fall eines solchen Widerrufs meiner Einwilligung, 
an der Studie teilzunehmen, erkläre ich mich damit einverstanden, dass die bis 
zu diesem Zeitpunkt gespeicherten Daten ohne Namensnennung weiterhin 
verwendet werden dürfen, soweit dies erforderlich ist, um sicherzustellen, dass 
meine schutzwürdigen Interessen nicht beeinträchtigt werden. 
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Eine Kopie des Informationsblattes und der Einverständniserklärung habe ich erhal-
ten. 
 
 
München, 
 
 
 
....................................................................................................................................... 
Datum, Vor-/Zuname in Druckschrift Unterschrift Patient/in 
 
 
 
München, 
 
 
 
...................................................................................................................................... 
Datum, Vor-/Zuname in Druckschrift Unterschrift Prüfarzt/ärztin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4) Ich erkläre mich damit einverstanden, dass meine Daten nach Beendigung o-
der Abbruch der Prüfung mindestens 15 Jahre aufbewahrt werden. Danach 
werden meine personenbezogenen Daten gelöscht, soweit nicht gesetzliche, 
satzungsmäßige oder vertragliche Aufbewahrungsfristen entgegenstehen. 
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Else Kröner-Fresenius-Zentrum für Ernährungsmedizin 

Klinikum rechts der Isar  

Technische Universität München 

 

 
Einwilligungserklärung zum DNA-Screening 

 

Ich bin bereit, an dem Projekt „Individualisierte Lebensstilintervention bei 

Prädiabetes – Diabetes-Screening“ teilzunehmen. 

Ich bin mit der genetischen Analyse meiner Erbinformation zu wissenschaftlichen 

Zwecken einverstanden. Die Analyse der Erbinformation beschränkt sich auf die Gene, 

die möglicherweise für den Diabetes mellitus und mit ihm zusammenhängende 

Stoffwechselerkrankungen verantwortlich gemacht werden können. Die Ergebnisse 

der genetischen Analyse dienen nur zu Forschungszwecken. Deshalb werden 

Ergebnisse der Forschung insgesamt und individuelle Befunde weder Ihnen noch 

Ihrem Arzt zugänglich gemacht. 

Das Arztgeheimnis wird gewahrt. Daten werden nicht an Dritte weitergegeben. Mit der 

Veröffentlichung der Ergebnisse der Studie in anonymisierter Form bin ich 

einverstanden. 

 Ich bin mit der einmaligen Entnahme von 12,5 Millilitern Blut und der 

zugangskontrollierten Lagerung des genetischen Materials im Hauptprüfzentrum in 

Tübingen (Universitätsklinikum Tübingen, Medizinische Klinik IV) für 10 Jahre 

einverstanden. 

 

 Ich möchte NICHT am Diabetesgen-Screening teilnehmen und möchte KEINE 

zusätzliche Blutentnahme. 

Ich erkläre, dass meine Teilnahme an diesem Teil der Untersuchungen ebenfalls 

freiwillig ist. Ich weiß, dass ich keine Nachteile habe, wenn ich nicht am Diabetesgen-

Screening teilnehme. Die Teilnahme an der aktuellen Untersuchung wird dadurch nicht 

berührt, insbesondere entstehen mir keine Nachteile für eine weitere Betreuung in der 

Klinik. 

Ich kann meine Zustimmung zur Teilnahme am Diabetesgen-Screening jederzeit auch 

nachträglich ohne Angabe von Gründen wieder zurückziehen. 

Eine Kopie des Informationsblattes und der Einverständniserklärung habe ich erhalten. 

München, 
 
....................................................................................................................................... 
Datum, Vor-/Zuname in Druckschrift Unterschrift Patient/in 
 
München, 
 
...................................................................................................................................... 
Datum, Vor-/Zuname in Druckschrift Unterschrift Prüfarzt/ärztin 
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PLIS 

Datum 
 

 

Visite 
 

 

Screennr. 
 

 

Randomnr. 
 

 

 
 
Diabetes Prevention Programme (DPP) Resource Utilization and 
Costs of Intervention Questionnaire - Übersetzte Fragen 
 
 
 
1.  Wie viel Zeit in Stunden verbringen Sie in einer typischen Woche durchschnittlich damit, 
Lebensmittel einzukaufen und Essen für sich zuzubereiten? 
 
                     Stunden 
 
 
 
 
2.  Denken Sie an alle Übungen oder körperlichen Aktivitäten abgesehen von Ihrer Arbeit, die Sie 
aktuell für Ihre Gesundheit ausüben und bewerten Sie, wie viel Freude oder Zufriedenheit Sie 
insgesamt daraus schöpfen. Kreuzen Sie bitte nur ein Kästchen an. 
 

1.          Ich mag/genieße diese Aktivitäten, sie verschaffen mir Zufriedenheit. 
 

2.          Neutral. 
 

3.          Ich mag/genieße diese Aktivitäten nicht, sie verschaffen mir keine Zufriedenheit. 
 
 
 
Die folgenden Fragen sind erst für die Nachbefragungen der Studien relevant. Bei 
Erstbefragung bitte überspringen. 
 
 
 
3.  Haben Sie in den letzten 6 Monaten dafür bezahlt, an kommerziellen Programmen zum 
Gewichtsverlust, etwa Weight Watchers, Optifast, etc. teilzunehmen? 
 
          JA, (was?                                                  )                NEIN 
 
 
    Wenn ja: Wie hoch sind die gesamten Kosten in den letzten 6 Monaten? 
 
                        EUR (wenn Sie den genauen Betrag nicht kennen, schätzen Sie ihn bitte) 
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PLIS 

Datum 
 

 

Visite 
 

 

Screennr. 
 

 

Randomnr. 
 

 

 
4.  Haben Sie in den letzten 6 Monaten einen oder mehrere der 
nachfolgenden Artikel gekauft, um Ihre Fitness, Gesundheit und Ihr 
Wohlbefinden zu fördern? Wenn ja, geben Sie bitte den entsprechenden 
Betrag in EUR an (wenn Sie den genauen Betrag nicht kennen, schätzen 
Sie ihn bitte). 
 
                                                                                         
                                                                           NEIN   JA           Betrag in EUR 
      

1. Fahrrad                                                                         
   

2. Langlaufski                                                                   
      

3. Abfahrtski oder Snowboard                                          
      

4. Trainingsvideos                                                             
      

5. Gewichte (Hanteln)   
      

6. Golfschläger   
      

7. Fitnessgerät für zu Hause   
      

8. Schlittschuhe   
      

9. Rollschuhe oder Inline Skates   
      

10. Rudergerät   
      

11. Crosstrainer/Skigerät   
      

12. Schneeschuhe   
      

13. Stepper   
      

14. Hometrainer (Fahrrad)   
      

15. Step (für Aerobic)   
      

16. Tennisschläger   
      

17. Laufband   
      

18. Sonstiges (was? 
___________________ ) 
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PLIS 

Datum 
 

 

Visite 
 

 

Screennr. 
 

 

Randomnr. 
 

 

 
 
 
 
 
 
 
5.  Haben Sie in den letzten 6 Monaten eine oder mehrere dieser kostenpflichtigen Dienstleistungen 
in Anspruch genommen, um Ihre Fitness, Gesundheit und Ihr Wohlbefinden zu fördern? Wenn ja, 
geben Sie bitte die monatlichen Kosten für die jeweilige Dienstleistung an (wenn Sie den Betrag 
nicht kennen, schätzen Sie ihn bitte). 
 
 
                                                                                                                    NEIN   JA    Betrag in 
EUR 
 

1. Sport- oder Aerobic-Kurse   
          

2. Kochkurse  
     

3. Mitgliedschaft in einem Gesundheitsverein oder Fitnessstudio  
     

4. Wellness-Center oder Kur zum Gewichtsverlust  
     

5. Persönlicher Trainer  
     

6. Sonstiges (was? ___________________ )  
 



 

Germany (German) v.2 © 2010 EuroQol Group. EQ-5D™ is a trade mark of the EuroQol Group 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Gesundheitsfragebogen 

 
 

Deutsche Version für Deutschland 
 

 (German version for Germany) 
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Bitte kreuzen Sie unter jeder Überschrift DAS Kästchen an, das Ihre Gesundheit HEUTE am 
besten beschreibt. 
 

BEWEGLICHKEIT / MOBILITÄT  

Ich habe keine Probleme herumzugehen     

Ich habe leichte Probleme herumzugehen     

Ich habe mäßige Probleme herumzugehen     

Ich habe große Probleme herumzugehen     

Ich bin nicht in der Lage herumzugehen     

 

FÜR SICH SELBST SORGEN 

Ich habe keine Probleme, mich selbst zu waschen oder anzuziehen     

Ich habe leichte Probleme, mich selbst zu waschen oder anzuziehen     

Ich habe mäßige Probleme, mich selbst zu waschen oder anzuziehen     

Ich habe große Probleme, mich selbst zu waschen oder anzuziehen     

Ich bin nicht in der Lage, mich selbst zu waschen oder anzuziehen     
 

ALLTÄGLICHE TÄTIGKEITEN (z. B. Arbeit, Studium, Hausarbeit,  
Familien- oder Freizeitaktivitäten) 

Ich habe keine Probleme, meinen alltäglichen Tätigkeiten nachzugehen    

Ich habe leichte Probleme, meinen alltäglichen Tätigkeiten nachzugehen    

Ich habe mäßige Probleme, meinen alltäglichen Tätigkeiten nachzugehen   

Ich habe große Probleme, meinen alltäglichen Tätigkeiten nachzugehen    

Ich bin nicht in der Lage, meinen alltäglichen Tätigkeiten nachzugehen    
 

SCHMERZEN / KÖRPERLICHE BESCHWERDEN 

Ich habe keine Schmerzen oder Beschwerden    

Ich habe leichte Schmerzen oder Beschwerden    

Ich habe mäßige Schmerzen oder Beschwerden    

Ich habe starke Schmerzen oder Beschwerden    

Ich habe extreme Schmerzen oder Beschwerden    
 

ANGST / NIEDERGESCHLAGENHEIT  

Ich bin nicht ängstlich oder deprimiert    

Ich bin ein wenig ängstlich oder deprimiert    

Ich bin mäßig ängstlich oder deprimiert    

Ich bin sehr ängstlich oder deprimiert    

Ich bin extrem ängstlich oder deprimiert    
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 Wir wollen herausfinden, wie gut oder schlecht Ihre Gesundheit 

HEUTE ist. 

 Diese Skala ist mit Zahlen von 0 bis 100 versehen. 

 100 ist die beste Gesundheit, die Sie sich  

vorstellen können. 

0 (Null) ist die schlechteste Gesundheit, die Sie sich  

vorstellen können.  

 Bitte kreuzen Sie den Punkt auf der Skala an, der  

Ihre Gesundheit HEUTE am besten beschreibt. 

 Jetzt tragen Sie bitte die Zahl, die Sie auf der Skala angekreuzt 

haben, in das Kästchen unten ein. 

 

 
 

 

 

IHRE GESUNDHEIT HEUTE = 
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SOP No. 16 

Title: DNA isolation from blood/ tissue/ cell lysates 

 

Version: 4 Date:.16.04.18 

Author: CS 

Reviewer: JH,MH 
 

Principle 

The DNeasy Blood&Tissue Kit by Qiagen provides a silica-based DNA purification. After 

isolation approximately 500ng DNA are expected. For genotyping, usually 1500 ng qPCR 

product in 15 µl are required.  

Materials 
     company    order no. 

1.5ml DNA Low Bind tubes   Eppendorf     0030 108.051 

2 ml DNA Low Bind tubes  Eppendorf    0030.108.078 

Beads silica-zirconia   Roth     11079105 
DNeasy Blood&Tissue Kit  Qiagen    69504 

Ethanol 100% p.A.   VWR     20821.330 

FastPrep 24 homogenizer  MP Biomedicals 
Microtubes    Sarstedt    72.693.465 
PBS     Merck     L 182-50 

PCR-Filter Tips    Sarstedt  

Proteinase K    Qiagen    19131 

RNase A (17.500U)   Qiagen    19101 

Trypan Blue solution 0.4%  Sigma RT    T8154 

Trypsin/EDTA (TRY)   Sigma Freezer 2    T3924 
 

Solutions 

1. PBS solution        Cfinal 
47.75 g PBS         0.995 % 

dissolve in 5 l pure dest. H2O, autoclave, MHD 2-3 month 
 

2. AW1 (component of the DNeasy kit) 
Add EtOH p.A. according to the volume stated on the flask 
 

3. AW2 (component of the DNeasy kit) 
Add EtOH p.A. according to the volume stated on the flask 
 

4. ATL & AL buffer ready to use (precipitates? > 56°C until disintegration)  
 

5. Ethanol/AL mixture (only for tissue) per sample mix 200μl EtOH abs.  
+ 200μl AL buffer  
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Sampling: 
 
Wear your S2 lab coat and gloves. Clean work surface with RNase Zap.  
Preheat the thermo shaker with the according insert (1.5 ml or 2 ml) to 56° 
 
Whole blood fresh: 

1. Centrifuge 2.500g/rcf, 10min, RT 

2. Remove plasma  

3. Use 100µl of the buffy coat for isolation 

 

Whole blood frozen after centrifugation: 

1. Defrost on ice (Attention: 9ml tubes need 2h) 

2. Don’t shake or vortex 

3. Remove plasma  

4. Slowly collect buffy coat (grey slurry) in a swirling motion 

5. Use 100µl of the buffy coat for isolation 

 

Whole blood frozen without centrifugation: 

1. Defrost on ice (Attention: 9ml tubes need 2h) 

2. Do not centrifuge!  

3. Use 200µl whole blood from the upper third for isolation 

Fat tissue: 

1. Weight approximately 200 mg Beads in a microtube 

2. Fill tubes in a bag, autoclave & put bag under the UV cleaner for 5 h 

3. Transfer fat tissue (max. 100 mg > 50ng/µl, more overload the column) in a 

microtube  

4. Label tubes on top & side 

5. Add 180μl ATL Puffer & close tubes and seal with parafilm 

6. Fast prep samples (MP2x24, Speed 6, 30s) > store samples 30 seconds on ice  

7. Repeat fast prep for 2 more times (between samples on ice) 

8. Centrifuge 12.000g/rcf, 10 min, 4°C 

9. Transfer lower phase with an insulin syringe in a new 2ml DNA LoBind tube 

(don´t transfer fat!) alternative use long 200 µl Sorenson tips 
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Cells (PACs 1x T75er flask = 2x106 / maximum 5x106 cells): 

1. Aspirate culture medium & wash cells once with PBS 

2. Add 1 ml TRY/T75 flask directly on to the surface 

3. Incubate for 5-7 min (max. 10 min) at 37°C 

4. Further detach cells by agitating the culture flask 

5. Check detachment of cells (by microscope) 

6. Add 9 ml pre-warmed proliferation medium (PM see SOP 5) 

7. Transfer everything to a 50 ml tube  

8. Centrifuge 300 g/rcf / RT/ 10 min 

9. Gently resuspend cells in 200µl PBS in a new 1.5 ml DNA LoBind tube 

10. Freeze at -80°C until further procedure 

 

Lysis: 

1. Heat up Eppendorf thermos block 1.5 ml tubes, 56°C 

2. Pipette components into a 1.5 ml DNA LoBind tube:  

 Buffy coat Whole blood Cell lysate Tissue 

Sample 100 µl 200 µl 200µl in PBS lower phases 

Proteinase K 20 µl 40 µl 20 µl 20 µl 

RNase A 4 µl 8 µl 4 µl  

PBS 100 µl 200 µl / 

 Vortex & incubate 2 min RT 

AL-buffer 200 µl 400 µl 200 µl 

Vortex & incubate 10 min 56°C 

RNase A  4 µl 

AL-buffer 200 µl vortex 

EtOH 200 µl 400 µ 200 µl 200 µl 

Vortex & transfer everything onto the spin columns 

Spin columns one two one one 

Spin through ≥ 6.000g/rcf (8.000 rpm), 1min, RT 
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After lysis, cool down the thermo shaker to 37°C and pre heat AE buffer  

Washing 

1. Discard flow through  

2. Transfer spin column on a new collection tube (liquids transfer in waste bottle) 

3. Add 500µL AW1 buffer / column  

4. Centrifuge :≥ 6.000g/rcf (8.000rpm), 1min, RT 

5. Transfer spin column on a new collection tube (liquids transfer in waste bottle) 

6. Wash column with 500µL AW2 buffer  

7. Centrifuge: 14.000g/rcf, 3min, RT 

8. Transfer spin column on a new DNA LoBind tube  

 

Elution for 100µl buffy coat & tissue; one spin column 

1. Add 60µL AE-buffer (37°C for BC / 50°C for tissue) directly (!) on the membrane 

2. Centrifuge: 8.000g, 1min, RT (place the lid of the tube on the rotor) 

3. Add 40µL AE-buffer directly (!) on the membrane 

4. Centrifuge: 8.000g/rcf, 1min, RT (place the lid of the tube on the rotor) 

Elution for 200µl whole blood; two spin columns 

1. Transfer the first and second spin column onto two separate DNA LoBind tubes 

2. Add 60µL AE-buffer (37 °C) directly (!) on the membrane of column 1 

3. Centrifuge: 8.000g/rcf, 1min, RT (place the lid of the tube on the rotor) 

4. Add 40µL AE-buffer (37 °C) directly (!) on the membrane of column 1 

5. Centrifuge: 8.000g/rcf, 1min, RT (place the lid of the tube on the rotor) 

6. Use the eluate from column 1 to eluate column 2 in the same manner, this 

approximately doubles your yield 
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Quality Control (Tecan or Nano Drop) 

1. Use the Tecan photometer with the NanoQuant Plate (260/280 & (260/230))  

2. In the software select the applications tab & choose dsDNA as sample type 

3. Blank with AE-buffer 

4. Use a sample volume of 1.5 µl and measure in duplicates  

5. When highly accurate concentrations are required (e.g. array based analysis) a 

fluorescent dye should be used (e.g. PicoGreen or Qubit) 

6. For the rs1421085, Simple Probe (SOP No.21) assay ~50 ng are required! 

7. Samples can be stored at -4°C for 2 month / long time -20°C 

 

References 

[1] Qiagen DNeasy handbook 
[2] Thermo fisher nucleic acid quantitation and quality control  
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Entry Co-regulation Genes Proteins Definition Molecular function Bilogical Process Ligand Links

1 ITGB1 Integrin beta-1 Receptor
*Actin binding
*integrin binding

*Cell adhesion
*Host-virus interaction

*Calcium, Magnesium and Metal-binding
https://www.uniprot.org/uniprot/P05556

2 LAMA4 Laminin subunit alpha-4

*extracellular matrix structural constituent
*signaling receptor binding

*Cell adhesion
*Extracellular matrix organization
*Regulation of cell adhesion
*Regulation of cell migration 

_____ https://www.uniprot.org/uniprot/Q16363

3 MAPK3 Mitogen-activated protein kinase 3 Enzyme 
EC:2.7.11.24

*ATP binding
*Identical protein binding
*Kinase activity
*MAP kinase activity
*Phosphatase binding
*Protein serine/threonine kinase activity
*Scaffold protein binding

*Activation of MAPK activity
*Arachidonic acid metabolic process
*Caveolin-mediated endocytosis
*Cell cycle
*Cellular response to amino acid starvation
*lipopolysaccharide-mediated signaling pathway

*ATP-binding
*Nucleotide-binding

https://www.uniprot.org/uniprot/P27361

https://reactome.org/content/detail/R-HSA-73724

4 ITGB5 Integrin beta-5 Receptor

*Integrin binding 
*Signaling receptor activity

*Cell adhesion mediated by integrin 
*Cell-matrix adhesion 
*Cell migration 
*Endodermal cell differentiation 
*Extracellular matrix organization
*Integrin-mediated signaling pathway 
*Muscle contraction
 *Stress fiber assembly 
*Transforming growth factor beta receptor signaling pathway 

_____ https://www.uniprot.org/uniprot/P18084

5 CAV1 Caveolin-1

*Cholesterol binding 
*Enzyme binding  
*Identical protein binding  
*Protein binding, bridging 
*Protein kinase binding
*Signaling receptor binding 
*Structural molecule activity 

*Cell differentiation
*Cholesterol homeostasis  
*Cholesterol transport
*Lipid storage
*Regulation of fatty acid metabolic process
*Response to progesterone

_____ https://www.uniprot.org/uniprot/Q03135

6 LAMA5 Laminin subunit alpha-5

*Extracellular matrix structural constituent 
*Integrin binding 

*Cell differentiation 
*Cell migration 
*Cell population proliferation 
*Cell recognition _____

https://reactome.org/content/detail/R-HSA-215956

https://www.uniprot.org/uniprot/Q03135

7 LAMB2 Laminin subunit beta-2

*Extracellular matrix structural constituent 
*Integrin binding 

*Cell adhesion
*Cellular protein metabolic process

_____ https://www.uniprot.org/uniprot/P55268

8 ARPC2 Actin-related protein 2/3 complex subunit 2

*Actin filament binding  
*Structural constituent of cytoskeleton

*Actin filament polymerization 
*Actin polymerization-dependent cell motility
*Arp2/3 complex-mediated actin nucleation 
*Membrane organization

_____ https://www.uniprot.org/uniprot/O15144

9 ACTN4 Alpha-actinin-4

*Actin binding
*Actin filament binding 
*Integrin binding
*Nuclear hormone receptor binding

*Actin filament bundle assembly
*Protein transport

*Calcium and Metal-binding

https://www.uniprot.org/uniprot/O43707

10 ILK Integrin-linked protein kinase Enzyme 
EC:2.7.11.1P

*ATP binding
*Integrin binding
*Protein kinase binding

*Cell-matrix adhesion 
*Cell population proliferation 
*Integrin-mediated signaling pathway
*Regulation of actin cytoskeleton organization 

*ATP-binding
*Nucleotide-binding

https://www.uniprot.org/uniprot/Q13418

11 TLN1 Talin-1

*Actin filament binding 
*Integrin binding
*Structural constituent of cytoskeleton
*Vinculin binding

*Cortical actin cytoskeleton organization
*Cytoskeletal anchoring at plasma membrane 
*Integrin activation 
*Integrin-mediated signaling pathway 

_____

https://reactome.org/content/detail/R-HSA-350713

https://www.uniprot.org/uniprot/Q9Y490

12 LAMC1 Laminin subunit gamma-1

*Extracellular matrix constituent conferring elasticity 
*Extracellular matrix structural constituent

*Cell adhesion 
*Cell migration 
*Cellular protein metabolic process 
 *Extracellular matrix disassembly
 *Extracellular matrix organization 
*Positive regulation of epithelial cell proliferation 

_____ https://www.uniprot.org/uniprot/P11047

13 COL15A1 Collagen alpha-1(XV) chain

*Developmental protein
*Cell adhesion
*Cell differentiation
*Extracellular matrix organization 

_____ https://www.uniprot.org/uniprot/P39059

14 COL5A2 Collagen Type V Alpha 2 Chain
*Extracellular matrix structural constituent *Cellular response to amino acid stimulus 

*Extracellular matrix organization
*Calcium and Metal-binding

https://www.uniprot.org/uniprot/P05997

15 ACTN1 Alpha-actinin-1

*Actin filament binding 
*Integrin binding
*Vinculin binding

*Actin crosslink formation
*Actin filament bundle assembly 
*Actin filament network formation 
*Actin filament organization

*Calcium and Metal-binding

https://www.uniprot.org/uniprot/P12814



16 ITGA5 Integrin alpha-5 Receptor

*Integrin binding
*Epidermal growth factor receptor binding

*Cell adhesion
*Extracellular matrix organization
*Endodermal cell differentiation
*Cell adhesion mediated by integrin

*Calcium and Metal-binding

https://www.uniprot.org/uniprot/P08648

17 COL8A1 Collagen alpha-1(VIII) chain

*Extracellular matrix structural constituent *Extracellular matrix organization
*Cell adhesion
*Endodermal cell differentiation

____ https://www.uniprot.org/uniprot/P27658

18 ITGA1 Integrin alpha-1 Receptor

*Collagen binding 
*Protein phosphatase binding 
*Signaling receptor binding 

*Cell-matrix adhesion
*Extracellular matrix organization
*Integrin-mediated signaling pathway

*Calcium, magnisum and
 Metal-binding https://www.uniprot.org/uniprot/P56199

19 COL6A2 Collagen alpha-2(VI) chain
*Extracellular matrix structural constituent conferring tensile strength *Response to glucose

*Extracellular matrix organization
*Cell adhesion

_____ https://www.uniprot.org/uniprot/P12110

20 COL3A1 Collagen alpha-2(VI) chain
*Extracellular matrix structural constituent conferring tensile strength *Response to glucose

*Extracellular matrix organization
*Cell adhesion

_____ https://www.uniprot.org/uniprot/P02461

21 COL6A1 Collagen alpha-1(VI) chain *Extracellular matrix structural constituent conferring tensile strength

*Cell adhesion
*Extracellular matrix organization
*Cellular response to amino acid stimulus
*Endodermal cell differentiation

_____ https://www.uniprot.org/uniprot/P12109

22 ITGA11 Integrin alpha-11 Receptor

*Collagen binding
*Collagen binding involved in cell-matrix adhesion
*Collagen receptor activity

*Cell adhesion
*Extracellular matrix organization
*Cell-matrix adhesion
*Cell adhesion mediated by integrin

*Calcium, magnisum and
 Metal-binding

https://www.uniprot.org/uniprot/Q9UKX5

23 GRAP GRB2-related adapter protein

*SH3/SH2 adaptor activity *Cell-cell signaling  
*Ras protein signal transduction ______ https://www.uniprot.org/uniprot/Q13588

24 ARPC5L Actin-related protein 2/3 complex subunit 5-like protein
*Actin filament binding *Arp2/3 complex-mediated actin nucleation

(which is involved in regulation of actin polymerization)
*Cell migration 

______ https://www.uniprot.org/uniprot/Q9BPX5

25
COL18A1 Collagen alpha-1(XVIII) chain

*Extracellular matrix structural constituent
*Extracellular matrix structural constituent conferring tensile strength

*Cell adhesion
*Extracellular matrix organization
*Endothelial cell morphogenesis 

*Metal-binding and Zinc
https://www.uniprot.org/uniprot/P39060

26 FLNA Filamin-A

*Actin filament binding *Actin crosslink formation
*Actin cytoskeleton reorganization
*Positive regulation of actin filament bundle assembly
*Positive regulation of integrin-mediated signaling pathway
*Protein localization to cell surface

_____
https://www.uniprot.org/uniprot/P21333

https://reactome.org/content/detail/R-HSA-210019

27 COL16A1 Collagen alpha-1(XVI) chain

*Extracellular matrix structural constituent
*Extracellular matrix structural constituent conferring tensile strength
*Integrin binding

*Cell adhesion
*Extracellular matrix organization
*Cell adhesion mediated by integrin
*Cellular response to amino acid stimulus
*Integrin-mediated signaling pathway
*Integrin activation 

_____ https://www.uniprot.org/uniprot/Q07092

28 PIK3C2B Phosphatidylinositol 4-phosphate 3-kinase
 C2 domain-containing subunit beta

Enzyme 
EC:2.7.1.154

*ATP binding 
*Lipid kinase activity 
*Phosphatidylinositol binding

*Cell migration 
*Protein kinase B signaling

*ATP-binding
*Nucleotide-binding

https://www.uniprot.org/uniprot/O00750

29 SRC Proto-oncogene tyrosine-protein kinase Src Non- Receptor

*ATP binding
*Enzyme binding
*Insulin receptor binding
*Integrin binding

*Cell differentiation
*Cellular response to fatty acid
*Cellular response to insulin stimulus
*Integrin-mediated signaling pathway
*Cellular response to lipopolysaccharide

*ATP-binding
*Nucleotide-binding

https://www.uniprot.org/uniprot/P12931

30 RAP2A Ras-related protein Rap-2a
*GDP binding
*GTPase binding 
*GTP binding

*Actin cytoskeleton reorganization
*Cellular protein localization 
*Positive regulation of protein phosphorylation

*ATP-binding
*Nucleotide-binding https://www.uniprot.org/uniprot/P10114

31 LIMS2 LIM and senescent cell antigen-like-containing 
domain protein 2

*Metal ion binding *Positive regulation of integrin-mediated signaling pathway *Metal-binding and Zinc
https://www.uniprot.org/uniprot/Q7Z4I7

32 FKBP11 Peptidyl-prolyl cis-trans isomerase FKBP11 Enzyme 
EC:5.2.1.8

*Isomerase, Rotamase *PPIases accelerate the folding of proteins during protein synthesis.

_____ https://www.uniprot.org/uniprot/Q9NYL4

33 SLC2A4
GLUT4
 Solute carrier family 2, facilitated glucose 
transporter member 4

Transporter protein

*Glucose transmembrane transporter activity *Brown fat cell differentiation
*Carbohydrate metabolic process  
*Cellular response to insulin stimulus 
*Glucose homeostasis  
*Glucose import e 
*Glucose import in response to insulin stimulus
*Glucose transmembrane transport 
*Sugar transport

_____ https://www.uniprot.org/uniprot/Q9NR83



34 LEPR Leptin receptor Receptor

*Cytokine binding  
*Cytokine receptor activity 
*Identical protein binding 
*Leptin receptor activity 
*Peptide hormone binding 
*Transmembrane signaling receptor activity

*Cell surface receptor signaling pathway 
*Cholesterol metabolic process
*Energy homeostasis 
*Energy reserve metabolic process 
*Glucose homeostasis 
*Leptin-mediated signaling pathway 
*Response to leptin 

_____ https://www.uniprot.org/uniprot/P48357

35 PPAR-γ Peroxisome proliferator-activated receptor gamma Nuclear receptor 

*Activating transcription factor binding 
*Alpha-actinin binding 
*Arachidonic acid binding
*DNA binding
*Estrogen receptor binding
 *Fatty acid binding
*Lipid biding 
*Peptide biding 

*Cell differentiation 
*Cellular response to insulin stimulus 
*Cellular response to retinoic acid
*Cellular response to vitamin E 
*Fatty acid metabolic process 
*Fatty acid oxidation 
*Glucose homeostasis 
*Lipid metabolic process 
*Lipoprotein transport 
*Long-chain fatty acid transport
*White fat cell differentiation 

*Metal-binding and Zinc

https://www.uniprot.org/uniprot/P37231

36 C/EBPβ CCAAT/enhancer-binding protein beta transcription factor
*DNA binding
*Glucocorticoid receptor binding
*Kinase binding

*Brown fat cell differentiation 
*Cellular response to amino acid stimulus 
*Transcription regulation 

_____ https://www.uniprot.org/uniprot/P17676

37 C/EBPα CCAAT/enhancer-binding protein alpha transcription factor

*DNA binding
*Development protein
*Kinase binding

*Brown fat cell differentiation 
*Fat cell differentiation
*Transcription regulation
*Cholestrol metabolic process
*Glucose homeostasis
*White fat cell differentiation 

_____ https://www.uniprot.org/uniprot/P49715

38 APLN Apelin

*Hormone activity *Apelin receptor signaling pathway

_____ https://www.uniprot.org/uniprot/?query=APLN&sort=score

39 SLC7A1 GLUT1
Solute carrier family 2, facilitated glucose transporter member 1

Transporter protein

*Glucose transmembrane transporter activity
*Identical protein binding
*Kinase binding

*Glucose transmembrane transport
*Lactose biosynthetic process 
*Regulation of glucose transmembrane transport
*Regulation of insulin secretion 
*Response to insulin
 *Sugar transport

_____ https://www.uniprot.org/uniprot/P30825

40 IRS1 Insulin receptor substrate 1 Receptor

*Insulin receptor binding *Respnse to insulin
*Glucose homeostasis

_____ https://www.uniprot.org/uniprot/P35568

41 ADAM12 Disintegrin and metalloproteinase
 domain-containing protein 12

*Hydrolase, Metalloprotease, Protease *Cell adhesion
*Extracellular matrix organization

_____ https://www.uniprot.org/uniprot/O43184

42 CAV1 Caveolin-1

*Cholestrol binding
*Enzyme binding

*Cell differentiation 
*Cholestrol homeostasis
*Cholestrol transport
*Lipid storage
*Regulation of fatty acid metabolic process
*Triglyceride metabolic process

_____ https://www.uniprot.org/uniprot/Q03135

43 PLIN5 Perilipin-5

*Lipase binding *Lipid droplet organization
*Lipid storage 
*Positive regulation of fatty acid beta-oxidation 
*Positive regulation of lipase 
*Positive regulation of lipid storage 
*Positive regulation of triglyceride biosynthetic process

_____ https://www.uniprot.org/uniprot/Q00G26

44 DGAT2 Diacylglycerol O-acyltransferase 2 Enyzme
EC:2.3.1.20

*Acyltransferase, Transferase *Cellular triglyceride homeostasis 
*Cholesterol homeostasis 
*Fatty acid homeostasis
*Lipid storage 
*Positive regulation of triglyceride biosynthetic process
 *Regulation of cholesterol metabolic process 
*Regulation of lipoprotein metabolic process 
*Triglyceride biosynthetic process

_____ https://www.uniprot.org/uniprot/Q96PD7
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Variable   

  

Male 

Mean± 

Female 

Mean± 

P-value 

Total 

 

102 236  

Age V0 (years) 50±11.00 49±11.10 0 .441 

 

Height (cm) 180±6.73 166±6.98 2.481 

 

Weight (kg) 104±21.04 87±19.90 1.103 

 

BMI (kg/m²) 32±6.02 32±6.95 0.705 

 

Waist (cm) 110±14.69 115±15.03 5.487 

 

Hip (cm) 111±13.08 1.0±15.70 0.022 

 

WHR (cm) 1.0±0.06 1.0±0.06 6.447 

 

WHtR *cm) 1.0±0.08 41±0.09 0.241 

 

Fat  (%) 28±6.75 36±7.81 9.685 

 

Fat mass (kg) 30±12.33 50±14.21 9.311 

 

Lean mass (kg) 

 

73±10.44 127±6.72 9.408 

BP systol R (mm Hg) 

 

135±16.39 127±14.77 0.000 

BP diastol R (mm Hg) 

 

82±9.57 79±8.03 0.001 

BP systol L (mm Hg) 

 

132±15.86 135±103.62 0.688 

BP diastol L (mm Hg) 

 

83±10.10 78±7.42 0.001 

SU_ph  

 

6.0±0.79 6.0±0.95 0.026 

ERY (Mio/µl) 

 

5.0±0.35 5.0±0.30 1.407 

HB (g/dL) 

 

15±1.01 14±0.95 2.155 

HBE (pg) 

 

30±1.40 30±1.62 0.001 

MCV (fl) 

 

88±3.86 88±4.03 0.877 



HKT (%) 

 

45±2.63 41±2.45 7.739 

MCHC (g/dl) 

 

35±0.888 34±0.88 4.612 

THROMBOTSD (Tausend/µl) 

 

231±48.40 262±55.16 4.619 

LEUKO (1/µl) 

 

6±1.54 6±1.39 0.641 

GOT_IFCC (U/l) 

 

30±11.83 23±8.23 9.866 

GPT_IFCC (U/l) 

 

43±25.62 27±16.63 1.440 

GGT_IFCC (U/l) 

 

43±40.16 26±21.60 9.386 

SODIUM (mmol/l) 

 

140±2.65 139±2.74 0.286 

POTASSIUM (mmol/l) 

 

6.0±4.83 5.0±0.40 0.225 

CAM (mmol/l) 

 

2.0±0.10 2.0±0.11 0.585 

PHOS (mg/dl) 3.0±0.46 3.0±0.50 2.744 

Glc_0 (mg/dl) 

 

100±23.14 93±12.26 0.013 

Glc_30 (mg/dl) 

 

170±39.74 156±35.99 0.004 

Glc_60 (mg/dl) 

 

165±66.09 146±51.17 0.020 

Glc_90 (mg/dl) 

 

134±63.05 124±42.53 0.251 

Glc_120 (mg/dl) 

 

109±55.748 106±32.186 0.794 

Ins 0 (pmol/l) 

 

97±91.551 72±59.907 0.010 

Ins 30 (pmol/l) 

 

587±483.50 503±731.38 0.133 

Ins 60 (pmol/l) 

 

727±620.73 662±562.21 0.236 

Ins 90 (pmol/l) 

 

642±662.01 568±540.45 0.328 

Ins 120 (pmol/l)  

 

403±475.70 416±436.85 0.815 

ISI Matsuda (mg/dl,μU/ml) 

 

17±15.37 20±17.93 0.063 

Insulinogenic Index 

 

152±277.25 109±322.30 0.231 

 

Disposition Index 1753±2920.45 1173±9812.38 0.416 



  

NEFA 0 (µmol/l) 381±165.11 511±228.58 4.112 

 

NEFA 30 (µmol/l) 252±110.64 290±142.79 0.010 

 

NEFA 60 (µmol/l) 140±73.35 111±68.44 0.000 

 

NEFA 120 (µmol/l) 70±41.68 51±38.39 0.000 

 

HBA1C (mmol/mol) 6±0.78 6±0.44 0.112 

 

CHOMG  (mg/dl) 

 

207±37.99 210±36.33 0.506 

 

TGMG  (mg/dl) 

 

166±129.85 125±58.77 0.002 

 

HDLMG  (mg/dl) 

 

45±10.37 59±15.59 1.736 

 

LDLMG  (mg/dl) 

 

136±32.98 136±34.95 0.885 

 

Albumin_S  (mg/dl) 

 

4504±266.27 4391±223.87 0.000 

 

KREATININ  (mg/dl) 

 

1.0±0.13 1.0±0.11 1.079 

 

Urea_S (mmol/l) 35±8.20 30±6.98 1.129 

 

Uric acid (mg/dl) 7.0±1.18 5.0±1.28 1.138 

 

SU_Protein (g/l) 8.0±6.60 6.0±4.25 0.002 

 

SU_Albumin (mg/l) 2.0±3.90 2.0±3.24 0.837 

 

Iron (µg/dl) 109±31.45 101±35.47 0.035 

 

Ferritin (µg/dl) 218±159.24 84±81.86 5.731 

 

CRP (mg/dl) 0.0±0.44 0.0±0.45 0.037 

 

sum_Protein_S (g/l) 74±4.28 73±4.09 0.275 

 

SU_Kreatinin (mg/dl) 156±76.19 103±67.38 1.103 

 

TSH (mU/l) 19±175.77 42±281.15 0.360 

 

Table shows Anthropometric and clinical parameters of the PLIS subjects at the TUM study center. P-

value was calculated using a t-test. 
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Variable  Females 

 

Non risk 

Mean± 

Risk 

Mean± 

P-value 

Total 

 

36 91  

Genotype 

 

COBLL1 

rs6712203 

COBLL1 

rs6712203 

 

Age (years) 

 

48±11.22 48 ±10.85 0,259 

 

BMI (kg/m²) 

 

32±7.85 32±7.21 0,828 

 

Waist circumference (cm) 

 

97±15.36 99±14.63 0,718 

 

WHR (cm) 

 

1.0±0.06 1.0±0.06 0,452 

 

WHtR (cm) 

 

1.0±0.09 1.0±0.08 0,911 

 

Fat percentage (%) 

 

39±10.18 41±7.38 0,499 

 

Fat mass (kg) 

 

36±16.17 36±14.69 0,882 

 

Lean mass (kg) 51±6.76 

 

51±7.37 0.980 

BP systol R (mm Hg) 127±16.11 

 

126±14.40 0.716 

BP diastol R (mm Hg) 78±8.18 

 

78±8.27 0.876 

 

BP systol L (mm Hg) 130±10.75 

 

149±166.34 0.428 

 

BP diastol L (mm Hg) 79±7.33 

 

70±7.09 0.147 

 

SU_ph 6.0±1.11 

 

6.1±0.96 0.791 

 

ERY (Mio/µl) 

 

5.0±0.31 

 

4.7±0.29 0.962 

 

HB (g/dL) 

 

14±0.90 13.7±0.90 

 

0.559 

 

HBE (pg) 30±1.50 29.5±1.78 0.492 

 

MCV (fl) 89±3.50 

 

87.3±4.31 0.543 

 

HKT (%) 41±2.30 

 

40.5±2.26 0.638 

 

MCHC (g/dl) 34±0.90 

 

33.8±0.85 0.621 

 



THROMBOTSD (Tausend/µl) 

 

256±70.4 

 

264.4±53.01 0.529 

 

LEUKO (1/µl) 

 

6±1.30 

 

6.1±1.60 0.455 

 

GOT_IFCC (U/l) 

 

24±6.70 

 

22.6±7.64 0.506 

 

GPT_IFCC (U/l) 28±16 

 

26.8±15.99 0.582 

 

GGT_IFCC (U/l) 28±20.50 

 

25.8±21.75 0.538 

 

SODIUM (mmol/l) 

 

140±2.10 139.4±3.18 0.288 

 

POTASSIUM (mmol/l) 5.0±0.41 

 

5.0±0.43 0.128 

 

CAM (mmol/l) 2.0±0.10 

 

2.3±0.11 0.229 

 

PHOS (mg/dl) 3.0±0.41 

 

3.4±0.53 0.372 

 

Glc_0 (mg/dl) 

 

95±13.90 92.7±12.10 0.460 

 

Glc_30 (mg/dl) 

 

155±41.10 157.5±34.75 0.783 

 

Glc_60 (mg/dl) 

 

142±51.70 145.4±54.7 0.774 

 

Glc_90 (mg/dl) 

 

123±40 123.2±45.70 0.998 

 

Glc_120 (mg/dl) 

 

104±25 104.5±35.15 0.951 

 

Ins 0 (pmol/l) 

 

70.1±55.91 73.7±68.94 0.767 

 

Ins 30 (pmol/l) 

 

451.4±373.71 516.7±442.34 0.408 

 

Ins 60 (pmol/l) 

 

635.6±568.91 714.4±619.24 0.500 

 

Ins 90 (pmol/l) 

 

576.7±531.80 586.7±576.02 0.926 

 

Ins120 (pmol/l) 

 

436.9±392.50 423.0±463.63 0.866 

 

ISI Matsuda (mg/dl,μU/ml) 

 

23.6±23.71 20.2±17.15 0.440 

 

Insulinogenic Index  

 

116.9±155.10 126.5±137.53 0.750 

 

Disposition Index 

 

1181.6±2669.41 1818.7±3116.8

8 

0.258 

 

NEFA 0 (µmol/l) 

 

492.0±154.80 509.3±189.79 0.429 

 



 

NEFA 30 (µmol/l) 

 

293.6±155.51 289.0±145.98 0.885 

 

NEFA 60 (µmol/l) 

 

118.5±67.00 115.5±81.70 0.837 

 

NEFA 120 (µmol/l) 

 

55.4±66.40 49.4±32.93 0.660 

 

HBA1C (mmol/mol) 

 

5.6±0.50 5.5±0.44 0.451 

 

CHO (mg/dl) 

 

206.5±32.20 209.4±36.13 0.655 

 

TG  (mg/dl)  

 

121.4±71.40 127.0±65.93 0.191 

 

HDL (mg/dl) 

 

57.3±14.91 59.8±16.92 0.408 

 

LDL (mg/dl) 

 

132.1±37.50 133.2±34.22 0.878 

 

Albumin S (mg/dl) 

 

4372.6±236.60 4411.8±217.95 0.384 

 

KRATININ (mg/dl) 

 

0.7±0.11 0.7±0.11 0.169 

 

Urea S (mmol/l) 

 

29.3±7.00 30.3±6.73 0.441 

 

Uric acid (mg/dl) 5.5±1.20 

 

5.2±1.25 0.198 

 

SU_Protein (g/l) 

 

5.7±4.20 6.2±4.71 0.743 

 

SU_Albumin (mg/l) 

 

0.8±0.30 2.0±3.63 0.060 

 

Iron (µg/dl) 109.4±37.81 98.3±33.98 0.124 

 

Ferritin (µg/dl) 

 

76.2±64.50 80.8±101.48 0.755 

 

CRP (mg/dl) 

 

0.4±0.50 0.4±0.39 0.910 

 

Sum Protein S (g/l) 

 

72.5±3.90 73.6±4.36 0.148 

 

SU Kreatinin (mg/dl) 

 

103.4±80.40 96.4±61.63 0.642 

 

TSH (mU/l) 

 

2.0±1.10 29.5±263.76 0.321 

 

           Table of Study cohort. Total of 127 females (91 COBLL1 rs 6712203 risk allele carriers/36 

non-risk allele carriers) 

 


