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SUMMARY
Survival or apoptosis is a binary decision in individual cells. However, at the cell-population level, a graded
increase in survival of colony-forming unit-erythroid (CFU-E) cells is observed upon stimulation with erythro-
poietin (Epo). To identify components of Janus kinase 2/signal transducer and activator of transcription 5
(JAK2/STAT5) signal transduction that contribute to the graded population response, we extended a cell-
population-level model calibrated with experimental data to study the behavior in single cells. The single-
cell model shows that the high cell-to-cell variability in nuclear phosphorylated STAT5 is caused by variability
in the amount of Epo receptor (EpoR):JAK2 complexes and of SHP1, as well as the extent of nuclear import
because of the large variance in the cytoplasmic volume of CFU-E cells. 24–118 pSTAT5molecules in the nu-
cleus for 120 min are sufficient to ensure cell survival. Thus, variability in membrane-associated processes is
sufficient to convert a switch-like behavior at the single-cell level to a graded population-level response.
INTRODUCTION

Signal transduction has been intensively studied in the past de-

cades at the cell population level with immunoblotting and bulk

gene-expression analyses. However, information processing is

highly dynamic and occurs at the single-cell level with consider-

able cell-to-cell variability (Taniguchi et al., 2010), which can

either be beneficial or harmful (Raj and van Oudenaarden,

2008); e.g., cell-to-cell variability can improve the robustness

of signal transduction (Paszek et al., 2010) but lead to incomplete

growth inhibition of tumor cells (Niepel et al., 2009). It has been

reported that, although cell-to-cell variability is fundamental to

most molecular processes in cells, quantitative assessment of

how that influences intracellular information processing is almost

completely lacking (Pelkmans, 2012).

The Janus kinase 2/signal transducer and activator of tran-

scription 5 (JAK2/STAT5) signal transduction pathway serves
This is an open access article und
as a paradigm in mediating the survival of erythroid progenitor

cells (Socolovsky et al., 2001). At the stage of colony forming

unit erythroid (CFU-E), cells are highly sensitive to erythropoietin

(Epo) (Nijhof andWierenga, 1983) and respond in a graded input-

output relationship (Koulnis et al., 2014) to ensure robust physi-

ological production of erythrocytes. Rapid signal transduction is

facilitated by binding of Epo to its cell-surface receptor, the

EpoR, inducing gene expression (Swameye et al., 2003) and

CFU-E survival (Bachmann et al., 2011). The Epo-EpoR complex

activates the receptor-associated Janus kinase, JAK2, which

phosphorylates the cytoplasmic tail of the EpoR onmultiple tyro-

sine residues (Klingm€uller et al., 1996). STAT5 is recruited to the

phosphorylated receptor complex and is, in turn, phosphory-

lated by JAK2 (Gouilleux et al., 1995). Phosphorylated STAT5

(pSTAT5) molecules form dimers (Boehm et al., 2014), translo-

cate to the nucleus, and induce the expression of anti-apoptotic

genes, e.g., Bcl2l1 for immediate control of cell survival
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(Socolovsky et al., 1999). Other STAT5 target genes include Cish

(Yoshimura et al., 1995) and Socs3 (Sasaki et al., 2000), which

encode the negative-feedback regulators cytokine-inducible

SH2-domain-containing protein (CIS) and suppressor of cyto-

kine signaling 3 (SOCS3), which attenuate signal transduction.

The SH2-domain-containing protein tyrosine phosphatase 1

(SHP1) is a cytosolic protein that is recruited to the activated re-

ceptor via its SH2 domain (Neel et al., 2003), causing dephos-

phorylation of JAK2 leading to the termination of signal transduc-

tion (Klingm€uller et al., 1996). However, it remained elusive how

the gradual Epo-induced increase in STAT5 phosphorylation

and survival of CFU-E cells at the cell-population level relates

to the switch-like, all-or-none survival decision that occurs in

an individual cell.

Here, we report the development of a population-average

mathematical model of the Epo-induced JAK2/STAT5 signal

transduction pathway in primary murine CFU-E cells that cap-

tures cellular population-average data. This model, in combina-

tion with flow cytometric analyses of STAT5 and pSTAT5, is used

to create a mixed-effect mathematical model of pathway activa-

tion at the single-cell level. The analysis of the single-cell model

suggests that a high variability in the amounts of the EpoR:JAK2

complex and the phosphatase SHP1 and in the nuclear translo-

cation rates of STAT5 contributes to the detected high variability

in nuclear pSTAT5. With this approach, we identify a relative

threshold of nuclear pSTAT5 that decides survival in CFU-E cells,

andwe elucidate themechanisms converting the switch-like sur-

vival decision in individual CFU-E cells to a graded response at

the population level. These results are consistent with the

concept established by an information theoretic approach that

variability at the single-cell level increases the accuracy of infor-

mation transfer at the cell-population level (Suderman et al.,

2017).

RESULTS

Cell-to-cell variability of phosphorylated STAT5 in
primary erythroid progenitor cells
The key intracellular integrator of Epo-induced survival-signal

transduction in CFU-E cells is the latent transcription factor

STAT5, which is activated by tyrosine phosphorylation (pSTAT5).

To experimentally evaluate the expression of STAT5, we stimu-

lated CFU-E cells for 15 min with a broad range of Epo doses

that support cell survival (Bachmann et al., 2011) (Figure S1)

and monitored the expression of total STAT5 and of Epo-

induced phosphorylation of STAT5 by flow cytometry (Figures

1A–1E). In unstimulated CFU-E cells, total STAT5 was detected

with a mean fluorescence intensity of 0.49 and a standard devi-

ation (SD) of 0.10, with major contributions of non-specific bind-

ing of the secondary antibody (Figure 1A). Upon stimulation with

increasing doses of Epo, the mean fluorescence intensity of total

STAT5 varied between 0.45 and 0.48, showed an SD of 0.10–

0.11, and was, thus, rather unaffected by Epo. The flow cytomet-

ric detection of pSTAT5 yielded, in the unstimulated situation, a

mean fluorescence intensity of 0.23 and a SD of 0.10, again, with

major contributions of the secondary antibody alone (Figure 1B).

However, upon stimulation with 0.16 U/mL of Epo, the mean

fluorescence intensity measured for pSTAT5 shifted to a higher
2 Cell Reports 36, 109507, August 10, 2021
mean value (0.25) and was distributed more broadly (SD of

0.12) (Figure 1C). This effect was even more pronounced upon

stimulation with 4 U/mL Epo, with a mean fluorescence intensity

of 0.32 and an SD of 0.16 (Figure 1E), which remained the same

upon adding even higher Epo doses (Figure 1D). Although the

fraction of surviving CFU-E cells for the respective Epo concen-

tration, as interpolated from our previously reported data (Bach-

mann et al., 2011), increased in a graded fashion (Figure S1), the

mean fluorescence intensities and SDs of total STAT5 did not

change with increasing Epo doses. On the contrary, for pSTAT5,

we observed a gradual increase in the mean fluorescence inten-

sity that saturated similar to the CFU-E cell survival at a concen-

tration of 4 U/mL Epo. Interestingly, the SD observed for pSTAT5

was considerably larger than that for total STAT5 and showed an

increase in response to rising Epo doses that correlated with the

survival responses (Figure 1D).

Thus, we concluded that the cell-to-cell variability in the

expression of total STAT5 alone was not sufficient to explain

the Epo dose-dependent increase in the variance of the key inte-

grator of survival signaling pSTAT5.
Dynamical modeling of Epo-induced JAK2/STAT5 signal
transduction at the population level
To identify pathway components and reaction rates in the JAK2/

STAT5 signaling pathway that vary from cell to cell and could

cause the observed variability in pSTAT5, we developed a work-

flow for an in-depth analysis of cell-to-cell variability by mecha-

nistic mathematical modeling (Figure 1F).

To establish amechanisticmathematical model that describes

the system on a population-average level, we used our model of

the JAK2/STAT5 pathway (Bachmann et al., 2011) (Figure 2A).

So far, model calibration has been performed with quantitative

immunoblotting data, quantitative mass spectrometry, and

qRT-PCR data, which assess cell-population averages. Howev-

er, flow cytometry offers, in addition, information on the distribu-

tion of the fluorescence intensity across the cell population,

which links to the single-cell level. To calibrate the parameters

of our population-average model, we collected quantitative

data acquired in CFU-E cells with a wide variety of experimental

approaches and conditions:

(1) Quantitative immunoblotting analysis of total cell lysates

for pSTAT5 and total STAT5 (tSTAT5) and of cytoplasmic

lysates for pEpoR, pJAK2, CIS, SOCS3, and SHP1 served

as a readout to determine the average Epo-induced acti-

vation of the JAK2/STAT5 pathway (Figures 2B and S2:

B5, B7, C5-C6, D1–D4, D7–E4, E6–F2, F5–G4, G6, H7,

K1–K4, and K6 and K7).

(2) Targeted mass spectrometry using one-source peptide/

phosphopeptide ratio standards (Boehm et al., 2014) al-

lowed us to determine relative average amounts of

pSTAT5 in response to Epo stimulation (Figures 2C and

S2: L1 and L2).

(3) Cell fractionation experiments, separating the cytoplasm

and the nucleus, provided access to the average dy-

namics of pSTAT5 localization (Figures 2D, 2E, and S2:

B1–B4, B6, C1–C4, C7, D5, D6, E5, F3, F4, G5, G7, H6,

and K5).
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Figure 1. Cell-to-cell variability in total and phosphorylated STAT5
(A–E) Unstimulated growth-factor-depleted CFU-E cells were fixed, permeabilized, and intracellularly stained with goat anti-STAT5 primary antibody and anti-

goat fluorescein isothiocyanate (FITC) secondary antibody (brown) or only the secondary antibody (gray line) (A). Growth-factor-depleted CFU-E cells were (B)

unstimulated or were stimulated with (C) 0.16 U/mL Epo or (E) 4 U/mL Epo for 15min and were subjected to intracellular staining with rabbit anti-pSTAT5 antibody

and with anti-rabbit APC secondary antibody: dark gray (unstimulated), blue (0.16 U/mL Epo), purple (4 U/mL Epo), or secondary antibody only (gray line). Raw

fluorescence intensities are plotted in a bi-exponential manner, and in each panel, the corresponding logicle scale is indicated. (D) Growth-factor-depleted CFU-E

cells were stimulated for 20 h with the indicated Epo concentrations, and the corresponding fraction of surviving CFU-E cells was extrapolated (Figure S1) based

on previously published data (Bachmann et al., 2011). For each of these Epo concentrations, the extracted mean and standard deviation (SD) of the flow cy-

tometric measurements of total STAT5 and pSTAT5 transformed to the logicle scale are displayed.

(F) Schematic workflow figure for the experiments and mathematical models is shown. Dark green corresponds to population-average data and dark pink to

single-cell data. The population-average mathematical model is shown in light green, and mathematical approaches and models describing single-cell behavior

are shown in light pink. Lines with arrows denote information flow.
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(4) qRT-PCR experiments (Figure S2: I5–I7 and J1–J7) re-

vealed the induction dynamics of the transcriptional feed-

backs.

(5) The mean fluorescence intensities of the flow cytometry

data on pSTAT5 provided time and Epo-dose resolved in-

formation on the average pSTAT5 concentration in the cell

population (Figures 2F and S2: A1–A3 and B7).

Altogether, a curated dataset was assembled of 516 published

data points (Bachmann et al., 2011) and 469 newly acquired data

points, providing information on the average dynamic behavior of

the JAK2/STAT5 pathway in the cell population (Figure 2G).

The resulting population-average model (Figure 2A) differed

from the previously published model in three aspects: (1) SHP1

activation was simplified, (2) SOCS3 transcription and transla-

tion processes were summarized, and (3) the CIS transcriptional

delay was shortened. Calibrating the reduced model to the

experimental data showed a favorable convergence (Raue

et al., 2013b) during parameter optimization (Figure 2H), good

agreement (see Figure S2), and high correlation (r = 0.978; see

Figures S4A and S4B) between the experimental data and the

model output for the best fit. The profile-likelihood calculation re-

vealed that 19 of 21 of the estimated dynamic parameters of the

population-average model are practically identifiable at a confi-

dence level of 95%, and all 21 parameters are practically identifi-

able at a confidence level of 68% (Figure S3).

To conclude, we calibrated a population-average model for

the JAK2/STAT5 pathway in CFU-E cells that is capable of accu-

rately describing the dynamics of pathway activation in these

cells.

Mathematical modeling reveals that abundance of
pathway components and nucleocytoplasmic transport
rates determine cell-to-cell variability of pSTAT5
To describe Epo-induced JAK2/STAT5 signal transduction at the

single-cell level, we compared different approximation methods

to enable parameter estimation in single-cell models. To reduce

computational costs, we first approximated the mean and the

covariance by sigma points, which resulted in low accuracy

(Figure 3A). Next, we tried a Dirac-mixture distribution, which

allowed high accuracy in describing cell-to-cell variability

(Figure 3B) and was about 250 times faster than simulating the

corresponding Monte-Carlo-based trajectories (Figure 3C).

Nevertheless, parameter estimation using 400 multi-start local

optimizations required approximately 10,000 h of computation

time for the single-cell model, compared with approximately

85 h for the population-average model.
Figure 2. Modeling of population-average dynamics

(A) Process diagram of the population-average JAK2/STAT5 model according to

(B–F) Illustrative experimental data (filled circles) and model simulations (solid lin

doses, with all replicates and observed model outputs). Data shown were genera

mass spectrometry from cytoplasmic lysates, (D and E) quantitative immunoblot

and (F) population-average fluorescence intensities of pSTAT5 measured by flow

(G) Summary of experimental data used for calibration of the population-based ma

(Bachmann et al., 2011) are given in black, and new measurements from this stu

(H) Multi-start optimization results, shown as a likelihood waterfall plot (Raue e

plateaus indicate convergence to local or global optima. See Figure S3 for pro

correlation of data and model output.
To identify the relevant components and reactions and to

quantify their contribution to the variability of pSTAT5, we estab-

lished three nested, single-cell models (single-cell models 1–3;

Figure 4A). For single-cell model 1, we assumed cell-to-cell vari-

ability in the initial amounts of the EpoR:JAK2 complex, SHP1,

and total STAT5, as well as the offset parameter for the basal

STAT5 phosphorylation. To account for interdependencies

among these random effects (i.e., parameters varying across in-

dividual cells), the full covariance matrix was estimated (Fig-

ure 4B, blue). Single-cell model 2 was extended by estimating

the nucleocytoplasmic cycling rates of STAT5 to vary among in-

dividual cells. Interdependencies were only considered between

import and export rate constants but not with other random ef-

fects to limit the complexity of the covariance matrix (Figure 4B,

green). Single-cell model 3 was extended by estimating the input

Epo to vary among cells but independent of all other random ef-

fects (Figure 4B, orange). Models were calibrated to the means

and variances of total STAT5 and pSTAT5 as measured by

flow cytometry (Figures 4C–4E) and showed good convergence

(Figure 4F). Model selection revealed the best balance between

goodness-of-the-fit and model complexity for single-cell model

2, which considers cell-to-cell variability for the initial amount

of EpoR, SHP1, and total STAT5, as well a cell-specific offset

for pSTAT5, and cell-specific nucleocytoplasmic import and

export rate constants of STAT5, as most suitable to the compre-

hensive experimental data. Thus, we demonstrated that vari-

ability in the protein abundance of pathway components and in

nucleocytoplasmic translocation of STAT5 had amajor influence

on Epo-induced pSTAT5 in individual CFU-E cells and pro-

ceeded with that model structure.
Prediction and experimental validation of cell-to-cell
variability in protein abundance and cell geometry
To validate our parameter estimation method based on Dirac-

mixture distributions, we compared the single-cell JAK2/

STAT5 model output of the distributions of pSTAT5 and total

STAT5 to the flow cytometry data for the time-course at 4 U/

mL Epo and observed a good agreement of the mean (Figure 5A,

circles) and covariances (Figure 5A, crosses). We further

compared the measured population densities of total STAT5

versus pSTAT5 at each time point, which have not been consid-

ered for parameter estimation, but were comparable with the

simulations (Figure 5A, shades of purple).

To identify the pathway components and reactions rates

responsible for the cell-to-cell variability of pSTAT5, we plotted

the fitted variances and covariances of the random effects
Systems Biology Graphical Notation (SBGN) (Le Novère et al., 2009)

es) for pSTAT5 (see Figure S2 for complete dataset with the full range of Epo

ted by (B) quantitative immunoblotting from whole-cell lysates, (C) quantitative

ting from cytoplasmic and nuclear lysates upon cell fractionation experiments,

cytometry (see Figure S2: A1–3 for all Epo doses).

thematical model. The number of data measurements in the published dataset

dy are provided in green.

t al., 2013b). The best 2,000 of 5,000 local optimization runs are shown, and

file likelihood of estimated model parameters and Figures S4A and S4B for
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Figure 3. Modeling of population-average dynamics

(A–C) Exemplary model outputs of different approximation methods for the mean of the time-resolved flow cytometry experiment depicted in Figure 2F and the

corresponding variance: (A) Sigma points, (B) Dirac-mixture distributions for the 42Dirac points, and (C) amassiveMonte Carlo samplingwith 10,000 cells.Means

(top panels) and variances (bottom panels) of pSTAT5 for the flow cytometry experiment are shown in Figure 2 for 4 U/mL Epo.
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(Figure 5B). The mathematical model predicted higher variances

for the membrane-associated EpoR:JAK2 complex and for

SHP1 than for total STAT5. Additionally, the inferred covariance

matrix revealed correlations between individual cellular states.

To experimentally verify the predicted high variances for SHP1

in CFU-E cells, we measured SHP1 by flow cytometry. Upon

testing the staining procedure (Figure S6A), SHP1 and STAT5

were measured in unstimulated growth-factor-depleted CFU-E

cells isolated from fetal mouse livers in five biological replicates

(Figures S6B–S6F). In line with our model predictions, we

observed a large coefficient of variation of 0.130 ± 0.005 for

SHP1 and a significantly smaller coefficient of variation of 0.090

± 0.004 for STAT5. The model also predicted that the cell-to-cell

variability for the EpoR:JAK2 complex would be less than for

SHP1. In the absence of suitable flow cytometry antibodies

against the murine EpoR, CFU-E cells were isolated from fetal

livers of knockin mice that express a GFPcre fusion protein

controlled by the endogenous EpoR promoter (Heinrich et al.,

2004). The GFP signal, revealing the cell-to-cell variability of the

expression controlledby theendogenousEpoRpromoter showed

a rather small coefficient of variation of 0.039 ± 0.002 (n = 3).

The calibrated single-cell model of the JAK2/STAT5 pathway

predicted the nuclear import and export rates of STAT5 to vary

substantially between cells. Interestingly, the inferred variance

for the nuclear import of pSTAT5 was larger than the inferred

variance of the nuclear export of STAT5 (Figure 6A). We quanti-

fied this by the ratio of their coefficients of variation, whichwe as-

sessed by simulating 1,000 in-silico populations with 100,000

CFU-E cells each. This yielded the following value:
6 Cell Reports 36, 109507, August 10, 2021
CVðImport rate constantÞ
CVðExport rate constantÞ = 3:9± 1:6:

Assuming the transport processes to be driven by diffusion,

theoretical considerations (Bressloff, 2014) suggested that the

average translocation times of STAT5 (proportional to the in-

verses of the translocation rate constants) should scale with

the squared radius of the nucleic sphere and the squared thick-

ness of the cytoplasmic shell (Figure 6B), respectively. As

shown in Figure 6C, simulation of these diffusion processes

as random-walks in three-dimensional (3D) structures, and

computation of the dependence of expected translocation

times of these two quantities (Figure 6C) confirmed that

assumption.

To experimentally validate the prediction of this ratio of vari-

ability in the rate constants of STAT5 nuclear translocation, we

measured the cytoplasmic and nuclear volumes of CFU-E cells.

We stained the plasma membrane and the nucleus of CFU-E

cells and reconstructed their 3D structure from confocal fluores-

cencemicroscope z stack images (Figure 6D). In agreement with

the predictions of our single-cell JAK2/STAT5 model, the

measured nuclear volume of CFU-E cells, which we considered

as a proxy for the nuclear export rate constants, showed lower

variance than the measured cytoplasmic volume, which we

considered as a proxy for the thickness of the cytoplasmic shell

and hence for the nuclear import constants (Figure 6E). Further-

more, we quantified the ratio of the coefficients of variation of the

corresponding quantities to be as follows:
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Figure 4. Dynamic mathematical JAK2/STAT5 pathway model describing cell-to-cell variability of phosphorylated STAT5

(A) The structure of the single-cell model of the JAK2/STAT5 pathway with putative sources of cell-to-cell variability of pSTAT5 (colored corresponding to the

different models).

(B) Visualization of covariance matrix for the three candidate models.

(C–E) Experimental data (mean and variance of pSTAT5 from flow cytometry) and mixed-effect model outputs. See Figure S4 for correlation of data and model

output and Figure S5 for full flow cytometry dataset and model output.

(F) Multi-start optimization results for candidate single-cell models. Best 100 of 400 local optimization runs are shown, and plateaus indicate convergence.

(G) Bayesian information criterion (BIC) values of the three candidate models.
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Figure 5. Model simulations of distributions of individual cellular states

(A) Experimental data and output of the single-cell JAK2/STAT5model for a simulated population of 10,000 CFU-E cells of total STAT5 against pSTAT5. Themean

and the covariances of the experimental data shown in Figure S5 were used for calibration of the single-cell model. Means of the model parameters depicted as

circles and the covariances shown as crosses along the main axes of an ellipse are defined by the covariance structure at distances of one standard deviation.

The experimentally determined distributions in a population of 10,000 CFU-E cells are shown as densities.

(B) Distributions and corresponding cross-correlations of random-effect parameters of the single-cell model.
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CVðthickness of cytoplasmic shell 2Þ
CVðradius of nucleus core 2Þ = 3:1;

which was in line with our model prediction. In conclusion, we

identified that, in addition to variability in the abundance of total

STAT5, variability of the EpoR:JAK2 complex and SHP1 as well

as of the nuclear import rate, which is a consequence of the large

cell-to-cell variability of the cytoplasmic volumes, are respon-

sible for the variability of pSTAT5.

Given the large influence of the cytoplasmic volumes on the cell-

to-cell variability of pSTAT5, we hypothesized that, if the cellular

geometry is a critical determinant of this variability, a simulta-

neous effect on the extent of the phosphorylation of other STAT

family members that undergo nucleo-cytoplasmic cycling, such

as STAT1 and STAT3, is to be expected. To examine whether

pSTAT5 correlates with pSTAT1, we stained these molecules in

CFU-E cells and detected by flow cytometry their concentration

at the single-cell level. Although, in unstimulated CFU-E cells,

both pSTAT5 and pSTAT1 were low (Figure 6F), stimulation with

4 U/mL Epo for 15 min strongly increased pSTAT5, without a sig-

nificant induction of pSTAT1 (Figure 6G). Stimulation with 500 U/

mL interferon alpha (IFNa), an established activator of STAT1 (Kis-

seleva et al., 2002), strongly induced pSTAT1 but also led to a
8 Cell Reports 36, 109507, August 10, 2021
considerable increase in pSTAT5 (Figure 6H). Co-stimulation

with Epo and IFNa resulted in a strong increase in pSTAT5 and

pSTAT1 (Figure 6I). In these experiments, we observed a strong

positive correlation between pSTAT5 and pSTAT1 (r = 0.89 ±

0.02). We further examined the correlation between pSTAT5

and pSTAT3. Again, pSTAT5 and pSTAT3 were low in unstimu-

lated CFU-E cells (Figure 6J), whereas stimulation with 4 U/mL

Epo for 15 min strongly increased pSTAT5 without significantly

inducing pSTAT3 (Figure 6K). Although stimulation with 10 ng/

mL interleukin (IL)-6 lead to the induction of pSTAT3 in other cell

types (Schuringa et al., 2000), the effect on pSTAT3 inCFU-E cells

was marginal but detectable (Figure 6L). CFU-E cells co-stimu-

lated with Epo and IL-6 (Figure 6M) showed a positive correlation

between pSTAT5 and pSTAT3 (r = 0.75 ± 0.01). To conclude,

these experiments provide evidence that the cellular geometry

not only determines the activation of STAT5 but also determines

that of other STAT family members; therefore, we establish that

cell-to-cell variability of the cytoplasmic volumes of CFU-E cells

is a determinant of the noise in cellular information processing.

Threshold of nuclear phosphorylated STAT5 determines
cell survival
In each individual CFU-E cell, survival is ensured by the Epo-

induced production of phosphorylated STAT5 that enters the
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(legend on next page)
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nucleus and induces sufficient amounts of anti-apoptotic gene

products. However, it remained unresolved (1) whether the

model-predicted cell-to-cell variability of nuclear pSTAT5 was

sufficient to explain the experimentally observed survival data;

(2) whether the cells had to acquire a certain amount of nuclear

pSTAT5, corresponding to an absolute threshold; or (3) whether

a certain fraction of the total STAT5 was required to be phos-

phorylated and in the nucleus, corresponding to a relative

threshold. To address these questions, we established a link

with the single-cell model between the abundance of nuclear

pSTAT5 and the observed probability for CFU-E survival, de-

pending on the Epo dose. We simulated nuclear pSTAT5 in

each individual cell for different Epo concentrations and time

windows between 30 and 180 min. The integrated, time-aver-

aged abundance of nuclear pSTAT5 was compared with the

fraction of surviving cells at the corresponding Epo concentra-

tions. Based on model simulations (Figure S7A), we found that

a relative threshold of nuclear pSTAT5 was significantly more

informative than an absolute threshold to explain survival data

of individual CFU-E cells. Further, these simulations indicated

that the optimal time frame for integrating the abundance of nu-

clear pSTAT5 was the first 120 min after Epo stimulation, in line

with the experimentally observed data of the fraction of surviving

CFU-E upon stimulation with increasing Epo concentrations

(Figure 7A). Additionally, the model simulations predicted that

a surprisingly low fraction of about 0.29% of the total STAT5

had to be present as nuclear pSTAT5 to ensure the survival of

an individual CFU-E cell (Figures 7B and S7B). This means that

24 to 118 nuclear pSTAT5 molecules are sufficient (i.e., 12–59

pSTAT5 dimers).

To determine which of the components of the JAK2/STAT5

signal transduction pathway with considerable cell-to-cell vari-

ability primarily determines the Epo-dependent life-or-death de-

cision in individual CFU-E cells, the fraction of STAT5 in the nu-

cleus versus the parameter values of those components in single

cells was plotted, and surviving and apoptotic cells were indi-

cated. Although the amount of the EpoR:JAK2 complex (Fig-

ure 7C) and SHP1 (Figure 7D) vary substantially in individual

cells, only a weak, positive correlation of the EpoR:JAK2 com-

plex and a weak, negative correlation of SHP1 with the fraction

of STAT5 in the nucleus and, thus, survival were detected. The

amount of total STAT5, although not having a large coefficient
Figure 6. Model simulations of distributions of individual STAT5 import

nuclear-cytoplasmic translocation of STAT5 in CFU-E cells

(A) Estimated cell-to-cell variability of the import and export rate constants of ST

(B) Schematic cross section of a cell indicating the important quantities for nucle

(C) Results from simulated 10,000 random walks with fixed step size for differen

(D) The nucleus of unstimulated growth-factor-depleted CFU-E cells was stained

coupled antibodies against CD71. Z stack images were acquired by confocal micr

(E) Distributions of reconstructed cytoplasmic and nuclear volumes from CFU-E c

and cytoplasm in relation to the volume of the whole cell.

(F–I) Growth-factor-depleted CFU-E cells were fixed, permeabilized, intracellularly

antibodies coupled to Alexa Fluor 488 and analyzed by flow cytometry. Growth-fa

4 U/mL Epo, (H) 500 U/mL IFNa, or (I) co-stimulated with 4 U/mL Epo and 500 U

(J–M) Growth-factor-depleted CFU-E cells were fixed, permeabilized, and intrac

pSTAT3 antibodies coupled to Alexa Fluor 488. Growth-factor-depleted CFU-E c

mL IL-6, or (I) co-stimulated with 4 U/mL Epo and 10 ng/mL IL-6. Experiments

deviations are shown. Fluorescence intensities of a representative replicate are s
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of variation, positively correlated with the fraction of nuclear

STAT5 (Figure 7E), whereas the estimated offset of pSTAT5 in

the cytoplasm was not correlated. Interestingly, a positive corre-

lation with the fraction of nuclear STAT5 was predicted for the

STAT5 import rate (Figure 7G), whereas the STAT5 export rate

showed a weak, negative correlation with the fraction of STAT5

in the nucleus of individual CFU-E cells stimulated with Epo

(Figure 7H).

Taken together, we confirmed that cell-to-cell variability in

Epo-induced pSTAT5 was derived from several non-linear regu-

latory steps. A surprisingly low threshold amount of total STAT5

present as pSTAT5 in the nucleus of an individual CFU-E cell was

sufficient to prevent apoptosis and to ensure survival of CFU-E

cells upon stimulation with Epo. We demonstrated that the

STAT5 import rate, which depends on the cytoplasmic volume,

had the largest contribution to the fraction of STAT5 in the nu-

cleus and, thus, to survival of individual CFU-E cells.

DISCUSSION

In this study, by combining population-level and single-cell data,

we discovered multiple sources of cell-to-cell variability in Epo-

induced JAK2/STAT5 signal transduction in CFU-E cells. The

number of EpoR:JAK2 complexes, as well as the abundance of

the phosphatase SHP1 and the cytoplasmic volume are respon-

sible for the variability in pSTAT5 upon Epo stimulation. Of note,

these three components or processes are membrane linked. In

addition, we identified a relative threshold of 0.29% of total

STAT5 being present as nuclear pSTAT5, which corresponds

to as little as 24–118 molecules of nuclear pSTAT5 in a single

CFU-E cell, required for survival.

We found that variability in the number of EpoR:JAK2 com-

plexes contributed to the cell-to-cell variability in nuclear

pSTAT5 in CFU-E cells. In line with our findings, it was shown

that variability in the epidermal growth factor (EGF) receptor

(EGFR) accounts for cell-to-cell variability in the amount of

ERK in the nucleus of rat PC12 pheochromocytoma cells stimu-

lated with EGF (Iwamoto et al., 2016).

The analysis of our mathematical model identified the hemato-

poietic tyrosine phosphatase SHP1 as another key component

contributing to the observed variability in nuclear pSTAT5 in

CFU-E cells upon Epo stimulation. The mathematical model
and export rates and experimental validation of the distribution of the

AT5 from the single-cell JAK2/STAT5 model.

ar-cytoplasmic translocation rates.

t radii of the nucleic sphere core and thicknesses of cytoplasmic shells.

with Hoechst, cells were fixed, and the cell membrane was labeled with FITC-

oscopy and used for 3D reconstructions of the cell membrane and the nucleus.

ells are shown (n = 58 cells). See Figures S6H and S6I for the volume of nucleus

stained with anti-pSTAT5 antibodies coupled to Pacific Blue and anti-pSTAT1

ctor-depleted CFU-E cells were (F) left unstimulated or were stimulated with (G)

/mL IFNa for 15 min.

ellularly stained with anti-pSTAT5 antibodies coupled to Pacific Blue and anti-

ells were (J) left unstimulated or were stimulated with (K) 4 U/mL Epo, (L) 10 ng/

were performed in biological quadruplicates, and mean values with standard

hown as pseudocolor density plots with bi-exponential axes.
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Figure 7. Calibration of the selected JAK2/STAT5 model for cell survival and the influence of random effects on the survival signal

(A and B) Single-cell model calibrated to experimental data of cell survival of CFU-E cells in response to stimulation with the indicated Epo dose. Based on the

selected single-cell model, survival criteria based on an absolute or a relative amount of pSTAT5 in the nucleus were compared (see Figure S7). The fit of the

survival model based on a relative threshold of 0.29% of total STAT5 during 120 min is depicted as a blue line; the light blue band indicates model uncertainty. (B)

Simulated CFU-E cell populations of survival model based on a relative threshold of 0.29% of total STAT5 during 120 min, visualized for measured Epo doses.

(C–H) Single-cell parameter values for a simulated cell population (Epo at half-effective concentration EC50 = 0.032 U/mL) plotted against the fraction of STAT5 in

the nucleus. Dashed black line indicates threshold for cell survival.
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predicted that the abundance of SHP1 showed the highest cell-

to-cell variability among the analyzed cellular components. We

experimentally validated this model prediction by flow cytometry

experiments. To show that SHP1 levels dictate the levels of

pSTAT5 and subsequent CFU-E survival, experimentally, it

would be required to isolate cells prospectively with high versus

low amounts of SHP1. However, such experiments require the

analysis of living cells and thus are incompatible with intracellular

staining of primary cells. Rather, we here observed these

mechanisms by calibrating a mathematical model based on

experimental data that were experimentally validated using inde-

pendent datasets, including the detection of the cell-to-cell vari-

ability of SHP1 in erythroid progenitor cells by flow cytometry.

Thus, we employed mathematics to answer an experimentally

unobservable relationship, following the claim that ‘‘Mathe-

matics is biology’s next microscope, only better’’ (Cohen, 2004).

Furthermore, we found that the STAT5 import rate, which de-

pends on the cytoplasmic volume, had the largest contribution

to the heterogeneity in survival of individual CFU-E cells upon

Epo stimulation. In general, nuclear-cytoplasmic translocation

rates depend on compartment volumes as proposed by Chara

and Brusch (2015). Here, we showed a tight coupling of STAT5

transport parameters with cytoplasmic and nucleoplasmic vol-

umes. The large variability in the nuclear import rate of STAT5 in

CFU-E cells identified with the model is explained by the large

cell-to-cell variability of the cytoplasmic volume of CFU-E cells
observed experimentally. This variability in volumemight originate

from two major sources: it was reported that CFU-E cells can

ex vivo undergo up to four divisions within 27 h and, thus, exhibit

a rather short cell-cycle duration (Nijhof et al., 1984), which might

propagate volumetric fluctuations because of rapid successions

of cell division. Further, during the differentiation of CFU-E cells

to erythroblasts, the cell volume decreases gradually. The pro-

posed interdependency between CFU-E cell-cycle progression

and differentiation (Pop et al., 2010) could lead to a propagation

of the variability that occurs in the cytoplasmic volumes during

the G1 phase of the cell cycle, when CFU-E cells have to grow

rapidly to reach a critical size for division and differentiation.

The larger variability observed in nuclear import of pSTAT5

compared with nuclear export of STAT5 could be explained by

recently reported observations suggesting that binding of tran-

scription factors to DNA can act as a passive noise filter and

reduce the cell-to-cell variability in nuclear export processes

(Battich et al., 2015; Stoeger et al., 2016). The comparison of

Epo-induced JAK2/STAT5 signaling between mouse CFU-E

cells and the human lung cancer cell line H838 by employing

L1 regularization to infer cell-type-specific parameters in the

mathematical model predicted that one of the seven parameters

differentially regulated between the cell types was the import

rate of pSTAT5 to the nucleus (Merkle et al., 2016), underscoring

the potential importance of nuclear import of pSTAT5 for the

outcome of the response.
Cell Reports 36, 109507, August 10, 2021 11
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Here, we provided evidence that the cell-to-cell variability in

cytoplasmic volumes affect the nuclear import rate not only of

STAT5 but also of other STAT family members, such as STAT1

and STAT3, leading to a high correlation of pSTAT1 and pSTAT3

to pSTAT5. In erythroid cells prepared from the spleens of mice

infected with the anemia-inducing strain of Friend virus (Penta

and Sawyer, 1995) and in the Epo-hypersensitive acute mega-

karyoblastic leukemia cell line UT-7/Epo (Kirito et al., 1997), it

was previously reported that Epo can induce pSTAT1 and

pSTAT3. However, in CFU-E cells isolated from fetal mouse

livers, Epo failed to activate STAT1, whereas IFNa treatment re-

sulted in a strong increase in pSTAT1. Further, pSTAT3 in CFU-E

cells was not induced by Epo but was only induced in response

to treatment with IL-6. Although it is established that IL-3 and

IL-6 act synergistically to support proliferation of different Epo-

dependent murine progenitor cells (Ikebuchi et al., 1987), time-

resolved experiments in BFU-E cells—the predecessors of

CFU-E cells—revealed a more complicated pattern: addition of

IL-6 added on day 0 had a stimulatory effect on proliferation,

whereas IL-6 added on day 7 had an inhibitory effect on BFU-

E colony growth (Ferry et al., 1997). These and our results sup-

port the importance of ligand- and organ-specific differences

in STAT1 and STAT3 activation in the erythroid lineage.

The observed strong correlation between pSTAT5 and

pSTAT1 or pSTAT3, respectively, could potentially be explained

by three mechanisms: first, it could be that all three STAT family

members were activated by Epo, as reported previously for other

cell types. However, our results demonstrated that, in erythroid

progenitor cells at the CFU-E stage isolated from fetal mouse

livers, Epo only induces pSTAT5. Second, it was previously

shown that the levels of proteins in the same biological pathway

were far more correlated than those of proteins in different path-

ways (Sigal et al., 2006). This explanation can be ruled out

because the IFNa-induced STAT1 and the IL-6-induced STAT3

signal transduction pathways employ different molecules than

the Epo-induced JAK2/STAT5 pathway use: IFNa activates

STAT1 via IFNAR1/2 and TYK2/JAK1 and IL-6 leads to phos-

phorylation of STAT3 via IL6RA/GP130 and JAK1 (Kisseleva

et al., 2002). Third, the specific cell geometry in a given cell

may be causative for the observed correlations because it is a

factor shared by the STAT family members. As our model-based

studies established the importance of the variability in the cyto-

plasmic volume for the heterogeneity of STAT5 phosphorylation,

we propose the cytoplasmic volume as the determinant contrib-

uting to cell-to-cell variability in the activation of STAT family

members.

Analysis of the transfer of information in biochemical networks

by entropy-based methods pointed to the particular importance

of noise (Cheong et al., 2011; Shockley et al., 2019; Suderman

et al., 2017). In particular, Suderman et al. (2017) investigated in-

formation transfer at the single-cell and the cell-population level.

They observed that for phenotypic responses (cell fate deci-

sions), such as mating in yeast, which depend on accurate

execution in single cells, the underlying signal transduction

network operates highly reliably. In contrast, if the response in

a percentage of cells in a cell population matters, surprisingly,

variability at the single-cell level ensures a graded response of

the cell population and increases information transfer at the
12 Cell Reports 36, 109507, August 10, 2021
cell-population level. Our study of Epo-induced survival of

CFU-E cells supports that concept and is a practical example

of the latter condition.

In conclusion, we present a two-step mathematical modeling

strategy to integrate population-average data and single-cell

data to determine a threshold for binary cell-fate decisions.

This approach is scalable and can readily be applied to other

cell-fate decisions, such as proliferation, migration, and differen-

tiation, which are controlled by multiple transcription factors in

health and disease.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse Stat5 (polyclonal (C-17)-G) Santa Cruz sc-835-G; RRID:AB_632447

Anti-mouse Phospho-STAT5 (monoclonal C11C5) Cell Signaling Cat# 9359; RRID:AB_823649

Anti-SHP1 (SH-PTP1, polyclonal (C-19)) Santa Cruz sc-287; RRID:AB_2173829

Donkey anti-rabbit IgG (H+L)-APC (polyclonal) Jackson ImmunoResearch Cat# 711-136-152; RRID:AB_2340601

Donkey anti-goat IgG (H+L)-FITC (polyclonal) Jackson ImmunoResearch Cat# 705-095-147; RRID:AB_2340401

Rat anti-mouse CD71-FITC (monoclonal RI7217) BioLegend Cat# 113805; RRID:AB_313566

BD Phosflow Pacific Blue mouse

anti-STAT5 (pY694)

BD Biosciences Cat# 560311; RRID:AB_1645497

BD Phosflow Alexa Fluor 488

mouse anti-STAT1 (pY701)

BD Biosciences Cat# 612596; RRID:AB_399879

BD Phosflow Alexa Fluor 488

mouse anti-STAT3 (pY705)

BD Biosciences Cat# 557814; , RRID:AB_647098

Chemicals, peptides, and recombinant proteins

Erythropoietin (Erypo FS 10000) Janssen PZN: 6301292

IFNa (recombinant mouse interferon a) Milytenyi Biotec Cat# 130-093-131

IL-6 (recombinant murine Interleukin-6) PeproTech Cat# 216-16

Red Blood Cell Lysing Buffer Hybri-Max Sigma Cat# R7757

Hoechst Santa Cruz sc-396575

Polyvinyl alcohol mounting medium with DABCO Sigma Aldrich Cat# M1289

Critical commercial assays

EasySep Mouse Hematopoietic

Progenitor Cell Isolation Kit

StemCell Technologies Cat # 19856

Deposited data

Raw and analyzed data This paper https://zenodo.org/record/5091784

Experimental models: Cell lines

BaF3 DSMZ RRID:CVCL_0161

Experimental models: Organisms/strains

BALB/c Envigo BALB/cOlaHsd; Order code 162

Recombinant DNA

pMOWS-SHP1 (Bachmann et al., 2011) N/A

Software and algorithms

MATLAB (including the Optimization Toolbox, the

Statistics Toolbox and the Symbolic Toolbox),

version R2016a and R2017a

The Mathworks https://www.mathworks.com

Advanced Multilanguage Interface for

CVODES and IDAS (AMICI)

(Fröhlich et al., 2017) https://github.com/AMICI-dev/AMICI

Parameter Estimation Toolbox (PESTO) (Stapor et al., 2018) Parameter Estimation Toolbox (PESTO)

MATLAB toolbox for Mixed Effect

Model InfeRence (MEMOIR)

(Fröhlich et al., 2018) https://github.com/ICB-DCM/MEMOIR

Data2Dynamics (D2D) (Raue et al., 2015) https://github.com/Data2Dynamics/d2d

FlowJo V.10.0.8 FlowJo, LLC https://www.flowjo.com/

Imaris software, version 7.7.2 Bitplane https://imaris.oxinst.com/packages

MATLAB implementation of FlowCore (Ellis et al., 2018) https://github.com/nolanlab/

MatlabCytofUtilities/tree/master/logicle
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Marcel

Schilling (M.Schilling@dkfz.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The experimental data and the implementation of the models and parameter estimation tools used in this study are available on Zen-

odo: https://zenodo.org/record/5091784. The code for population-average and single-cell models is maintained on GitHub: https://

github.com/Data2Dynamics/d2d, https://github.com/ICB-DCM/MEMOIR.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Preparation and stimulation of erythroid progenitor cells
All mice of this work were housed at the DKFZ animal facility under constant light/dark cycles. Animals weremaintained on a standard

mouse diet and allowed ad libitum access to food andwater. All animal experiments were approved by the governmental review com-

mittee on animal care of the federal state of Baden-W€urttemberg, Germany (reference number DKFZ215).

Fetal mouse livers at embryonic day 13.5 (i.e., during massive erythroid expansion) were isolated from the uteri of sacrificed BALB/

c mice (Potter, 1985). Fetal liver cells (FLCs) were resuspended in 500 ml of 0.3% BSA/PBS, flushed through a 40 mm cell strainer (BD

Biosciences) and taken up in 10 mL Red Blood Cell Lysing Buffer (Sigma-Aldrich). The suspension of 40 fetal livers was subjected to

negative depletion by using magnetic beads (Miltenyi Biotech). Freshly purified CFU-E cells were cultivated for 14 h in Panserin 401

(PAN-Biotech) supplemented with 50 mM2-mercaptoethanol and 0.5 U/ml Epo. Subsequently, CFU-E cells were washed three times

with Panserin 401 supplemented with 50 mM 2-mercaptoethanol and deprived from growth factors in Panserin 401 supplemented

with 50 mM 2-mercaptoethanol and 1 mg/ml BSA at 37�C for 1 h. Stimulations with Epo, IFNa or IL-6 were performed with 2 3

106 cells in 250 ml Panserin 401 in a thermomixer at 37�C, shaking at 800 rpm.

Confocal microscopy and data analysis
Staining of the nucleus was performed with 2 mg/ml Hoechst (Santa Cruz, Catalog #sc-396575) at a cell density of 103 106 cells/ml

for 20min at 37�C, shaking at 800 rpm. The cells were fixated in 4% formaldehyde, followed by staining of the plasmamembranewith

15 mg/ml FITC-coupled rat anti-mouseCD71 (Biolegend, Cat# 113805) for 30min at room temperature. Formicroscopy the cells were

mixed 1:1 with Polyvinyl alcohol mounting medium with DABCO (Sigma Aldrich, Cat# M1289).

Confocal microscopy was performed with the ZEISS LSM 710 ConfoCor 3 using a 43x magnification oil objective. FITC and

Hoechst (Santa Cruz, Catalog #sc-396575) were excited by a 488 nm and 405 nm Argon Laser, respectively. Z stacks with an

interval of 0.5 mm were taken and subsequently three-dimensionally reconstructed with the ImageJ software (version

1.4.3.67). The nuclear and cytoplasmic volumes were calculated by artificially filling the volume enclosed by the stain using

the Fill Holes and 3D Objects Counter commands. For illustrative purposes, the cells were three-dimensionally reconstructed

with the Imaris software (version 7.7.2) and the shape of the plasma membrane and the nucleus were highlighted with the

Surface function.

Flow cytometry
Cultivation of parental BaF3 cells and retroviral transduction of BaF3 cells with pMOWS-SHP1 (Bachmann et al., 2011) was per-

formed as previously described (Becker et al., 2010).

Phosphorylated and total STAT5 was stained as follows: Stimulated CFU-E cells were fixed in Fixation Buffer (BD Biosciences) or

4% PFA in PBS. Cells were permeabilized in ice-cold Perm Buffer III (BD Biosciences) or 90% methanol. Prior to acquisition, cells

were washed with Stain Buffer (BD Biosciences) or 0.3% BSA/PBS. pSTAT5 was detected with rabbit anti-mouse phospho-

STAT5 antibodies, total STAT5 was detected with goat anti-mouse Stat5 antibodies and total SHP1 was detected with rabbit

anti-mouse SHP1 antibodies. The secondary antibodies were anti-rabbit coupled to APC for pSTAT5 and SHP1, and anti-goat

coupled to FITC for total STAT5.

Co-staining of phosphorylated STAT5 and phosphorylated STAT1 or phosphorylated STAT3 was performed as follows: CFU-E

cells were fixed in 4% PFA in PBS. Cells were permeabilized in ice-cold 90% methanol. Prior to acquisition, cells were washed

with 0.3% BSA/PBS. pSTAT5 was detected with anti-pSTAT5 antibodies coupled to Pacific Blue, pSTAT1 was detected with

anti-pSTAT1 antibodies coupled to Alexa Fluor 488 and pSTAT3 was detected with anti-pSTAT3 antibodies coupled to Alexa Fluor

488. Flow cytometry was performed on a BD FACSCanto II flow cytometer (BD Biosciences). Recorded files were exported and sub-

sequently analyzed with FlowJo V.10.0.8.
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Cell fractionation
For fractionation of cytoplasmic and nuclear lysates, CFU-E cells were treated with 23 Homogenization buffer 1 (13 buffer: 0.1mM

EDTA, 0.1mM EGTA, 10mM NaF, 10 mM HEPES pH 7.9, 10 mM KCl, 1 mM DDT, 1 mM NaV3VO4) supplemented with 2 mg/ml apro-

tinin and 200 mg/ml AEBSF. Upon addition of 13 Homogenization buffer 1 supplemented with 5% NP-40, samples were incubated

for 5 min on ice and then centrifuged for 3 min at 14,000 rpm and 4�C. Supernatant was taken as cytoplasmic fraction. Remaining

pellets were washed three times with 13 Homogenization buffer 1 and subsequently re-suspended in 13 Homogenization buffer 2

(400mMNaCl, 1mMEDTA, 1mMEGTA, 10mMNaF, 10mMHEPES pH 7.9, 1mMDDT, 1mMNaV3VO4) supplemented with 1 mg/ml

aprotinin and 100 mg/ml AEBSF. Samples were shaken at 1,400 rpm and 4�C for 1 h, sonicated for 30 s and then centrifuged for

20 min at 14,000 rpm and 4�C. The supernatant was taken as nuclear fraction.

Quantitative immunoblotting, qPCR and mass spectrometry
Quantitative immunoblotting, qPCR and mass spectrometry was performed as described earlier (Bachmann et al., 2011).

METHOD DETAILS

Mathematical modeling of population-average data
While computational frameworks for the quantitative dynamical modeling of population-level data are well established (Balsa-Canto

and Banga, 2011; Hoops et al., 2006; Raue et al., 2015), mechanistic modeling of single-cell data remains challenging. Available ap-

proaches for the mechanistic description of cell-to-cell variability include stochastic modeling for gene expression (Neuert et al.,

2013), mixed-effect modeling for signal transduction (Karlsson et al., 2015) and a variety of hybrid approaches (Fröhlich et al.,

2018; Loos et al., 2018; Toni and Tidor, 2013; Zechner et al., 2012). However, these mathematical modeling techniques are compu-

tationally very demanding, which renders model establishment and comparison challenging. Therefore, it was of importance to

establish a method that enables efficient and yet accurate parameter estimation in single-cell models. For the calibration of such

mathematical models, appropriate quantitative experimental data are required. Recently, single-cell RNA sequencing approaches

have been utilized (Buettner et al., 2015; Dalerba et al., 2011) to study gene expression in single cells. Clustering algorithms facilitated

the identification of distinct cell populations based on these datasets. While these data could also be employed to analyze cell-to-cell

variability in a specific cell population, usually only a few hundred unique transcripts are sequenced per cell, limiting the resolution of

these methods.

More importantly, since it has been shown that the correlation between mRNA expression levels and protein abundance is low

(Schwanhäusser et al., 2011) and intracellular information processing, which links e.g., changes in ligand concentration to cell

fate decisions, is executed by complex non-linear reaction networks, it is essential to assess alterations of proteins at the single-

cell level. While single-cell time-lapse microscopy allows to follow changes in proteins in individual cells over time, options for moni-

toring signal transduction components andmultiplexing are limited in this technique because only few fluorophores for simultaneous

quantification are available and the required tagging with fluorophores might change the properties of proteins (Weill et al., 2019). In

contrast, flow cytometry and mass cytometry enable snapshot measurements of dozens of markers in individual cells (Bodenmiller

et al., 2012; Perfetto et al., 2004).

Model topology and data integration
The published ordinary differential equations (ODEs) and the corresponding experimental data (Bachmann et al., 2011) were used as

a basis for the mathematical modeling. To ensure comparability on absolute scales with the mixed-effect models, parameter trans-

formations implemented in the published model were avoided. To focus the analysis, we neglected the nine data points for the CIS

overexpression condition and removed the mechanism of unspecific binding of CIS to EpoR in the absence of Epo. These adaptions

reduced the computational effort when simulating the model output without dropping any other key features of the original model.

Complementary, the error of relative pSTAT measured by mass spectrometry was kept constant to 5.55% as previously defined

(Boehm et al., 2014; Hahn et al., 2013).

The fluorescence intensities recorded in the flow cytometry experiments were transformed to logicle scale (Ellis et al., 2018), which

is a biexponential scale and allows to deal with negative values resulting from compensation (Herzenberg et al., 2006; Moore and

Parks, 2012; Parks et al., 2006):

logiclea;b;c;d;fðxÞ = a expðbxÞ � c expð�dxÞ+ f :

The coefficients a, b, c, d, and f are determined from the following quantities, which only depend on the dataset:

d T: Top of the data scale. We used T = 218.

d W: Width of the data range in approximately linear scale in decades. We used W = 0:74 as suggested in Moore and Parks

(2012).

d M: Width of data range in approximately logarithmic scale in decades. We used M = 4:5, as suggested in Moore and Parks

(2012).
e3 Cell Reports 36, 109507, August 10, 2021
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d A: Additional width of data range in negative scale. We used A = 0, which reproduces the standard logicle scale as introduced

in Parks et al. (2006).

We employed aMATLAB implementation which determines the coefficients a, b, c, d, and f directly from T,M,W, and A according

to Moore and Parks (2012).

Utilization of this scale is common practice for the visualization and statistical analysis of flow cytometry data and is specifically

useful for cases in which negative values appear after background correction of the raw data and when a more accurate represen-

tation of the distribution of intensities around zero is favorable. While the traditional logarithmic scaling of the fluorescence intensities

yields a clear data distribution for higher values, it cannot cope with negative values and it tends to ‘piling up’ of intensities on the

lower end of the scale. By construction, the logicle scale is able to combine the advantages of the logarithmic scale for higher values

with a linear-like scale for the lower end.

For each time point and Epo dose themean of the logicle scale-transformed fluorescence intensities was used as data point for the

fitting of the population-average model. For the quantitative immunoblotting, real-time PCR andmass spectrometry experiments the

measured intensities, which should correspond to the mean of the measured cell population, were considered as data points.

Parameter estimation and profile likelihood
All calculations and analyses of the ODE system describing the pathway model were done within the MATLAB-based modeling envi-

ronment D2D (https://data2dynamics.github.io/d2d/) (Raue et al., 2015). The ODEs were solved by a parallelized implementation of

the CVODES initial value problem solver (Hindmarsh et al., 2005). The ODE model was calibrated using maximum likelihood estima-

tion (Raue et al., 2015). We used the local deterministic Gauss-Newton gradient-based trust-region optimizer implemented in the

MATLAB function lsqnonlin which is part of the MATLAB optimization toolbox. Multi-start optimization runs with in each case at least

2500 initial guesses were performed using the afore-described model and dataset as well as for each reduced model (see section

Model reduction). To assess the uncertainty and identifiability of the estimated parameters the profile likelihood (Raue et al.,

2009, 2010) was calculated using D2D. We used profile likelihood analysis rather than Markov-chain Monte Carlo (MCMC)-based

uncertainty quantification, as the profile likelihood method tends to be more robust in the case of non-identifiable parameters

(Raue et al., 2012a). For models without non-identifiable parameters, it has been shown to provide similar results, while being faster

to compute than MCMC methods (Simpson et al., 2020).

Model reduction
Based on the comprehensive experimental dataset and the original population-average model topology, a systematic data-based

model reduction was performed by iteratively analyzing the profile likelihood (Hass et al., 2017; Maiwald et al., 2016; Tönsing

et al., 2018). By this, non-identifiabilities can be resolved without changing the dynamics of the observed model entities.

First, we observed the inverse coupling of the non-identifiable parameters for the activation rate of SHP1 by the active form of the

EpoRJAK2 (EpoRpJAK2 and pEpoRpJAK2) complex and the rate by which the pEpoRpJAK2 state is recycled to its deactivated form

by activated SHP1 (SHP1Act). This suggests a weak activation of SHP1. Analogously to scenario 3 in Maiwald et al. (2016), the SHP1

activation is so weak that it merely changes the level of the inactive SHP1 state, although the amount of active SHP1 is not negligible,

as it mediates the deactivation of the EpoRJAK2 receptor. As a result, the profile likelihood of the activation rate is open to minus

infinity on the log10 scale, i.e., to zero on the linear scale, while the SHP1Act mediated deactivation rate compensates for this and

its profile is open to infinity. We resolved this non-identifiability by reparametrizing the SHP1 mediated deactivation rate with the in-

verse of the SHP1 activation rate, which yields the new, practically identifiable parameter DeaEpoRJAKActSHP1 and structural non-

identifiability of the SHP1 activation rate. The latter is resolved by fixing it to an arbitrary value, which in the end is equivalent to a

constant SHP1 state with fixed functional relation between SHP1 and its active form.

Second, we observed the non-identifiability of the CISmRNA turnover parameter (CISRNATurn) with a profile likelihood open to

infinity. This parameter is related to themodeling of a transcriptional delay in the synthesis of CISmRNA via the linear chain trick (Mac-

Donald, 1976). We resolved this non-identifiability by iteratively reducing the chain length from five to two.

Thirdly, we observed that the SOCS3mRNA transcription process showed a similar behavior in the SOCS3mRNA turnover param-

eter (SOCS3TurnRNA) and the corresponding delay parameter (SOCS3RNADelay), as well as the SOCS3 translational process in the

parameter (SOCS3Turn). All three model parameters showed a practically non-identifiability with profile likelihoods open to infinity.

This implies that the measured data of SOCS3 mRNA and SOCS3 protein can be described by the model without delay but a single

step. This is consistent with the experimental data for SOCS3 mRNA and SOCS3 protein, which do not indicate a delay. As a conse-

quence, the transcriptional delay, the transcriptional and the translational process of the synthesis of SOCS3 were merged into one

single reaction.

The three model reduction steps yielded a model with only two remaining practically non-identifiable parameters: the rate of Epo

receptor mediated STAT5 phosphorylation (STAT5ActEpoR) and the parameter capturing the inhibition STAT5 phosphorylation by

CIS (CISInh). These parameters cannot be determined from the available experimental data, but related studies showed the rele-

vance of these processes (Gobert et al., 1996; Yoshimura et al., 1995). To ensure biological plausibility of the model and because

these non-identifiabilities do not diminish the predictive power of the model’s output, we did not perform an additional model reduc-

tion step.
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The different parameter and state eliminations provide a reducedmodel (see Model equations below) which captures the core fea-

tures of the original model and is able to describe all available population-average data. However, the identifiability of the remaining

model parameters improved considerably when compared to the model suggested from Bachmann et al. (2011) and provides finite

profile likelihood-based confidence intervals at a confidence level of 0.95 for 19 of the 21 dynamic parameters. At a confidence level

of 0.68, all dynamic parameters have finite profile likelihood-based confidence intervals. In addition, the described model reduction

resulted in a substantial improvement of optimizer performance and convergence. On average 4.1 fits per hour converged to the

global optimum for the reduced model and the complete dataset, whereas only 2.6 fits per hour converged to the global optimum

for the initial model structure. All fits belonged to a multi-start sequence with 5000 initial guesses on a 16-core @ 2.4 GHz CPU.

Model equations
Set of ordinary differential equations (ODEs) for the reduced model:

d½EpoRJAK2�
dt

= �½Epo�$½EpoRJAK2�$JAK2ActEpo
½SOCS3�$SOCS3Inh+ 1

+
½EpoRpJAK2�$½SHP1Act�$DeaEpoRJAKActSHP1

SHP1ActEpoR

+
½SHP1Act�$DeaEpoRJAKActSHP1$½p1EpoRpJAK2�

SHP1ActEpoR

+
½SHP1Act�$DeaEpoRJAKActSHP1$½p2EpoRpJAK2�

SHP1ActEpoR

+
½SHP1Act�$DeaEpoRJAKActSHP1$½p12EpoRpJAK2�

SHP1ActEpoR
d½EpoRpJAK2�
dt

=
½Epo�$½EpoRJAK2�$JAK2ActEpo

½SOCS3�$SOCS3Inh+ 1
� ½EpoRpJAK2�$½SHP1Act�$DeaEpoRJAKActSHP1

SHP1ActEpoR

�EpoRActJAK2$½EpoRpJAK2�
½SOCS3�$SOCS3Inh+ 1

� 3$EpoRActJAK2$½EpoRpJAK2�
½SOCS3�$SOCS3Inh+ 1
d½p1EpoRpJAK2�
dt

=
EpoRActJAK2$½EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1
� 3$EpoRActJAK2$½p1EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1

�½SHP1Act�$DeaEpoRJAKActSHP1$½p1EpoRpJAK2�
SHP1ActEpoR
d½p2EpoRpJAK2�
dt

=
EpoRActJAK2$½EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1
� EpoRActJAK2$½p2EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1

�½SHP1Act�$DeaEpoRJAKActSHP1$½p2EpoRpJAK2�
SHP1ActEpoR
d½p12EpoRpJAK2�
dt

=
3$EpoRActJAK2$½p1EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1
+
EpoRActJAK2$½p2EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1

�½SHP1Act�$DeaEpoRJAKActSHP1$½p12EpoRpJAK2�
SHP1ActEpoR
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d½SHP1Act�
dt

= SHP1init$SHP1ActEpoR$ð½EpoRpJAK2�+ ½p12EpoRpJAK2�+ ½p1EpoRpJAK2�
+ ½p2EpoRpJAK2�Þ � ½SHP1Act�$SHP1Dea
d½STAT5�
dt

= ½STAT5�$STAT5ActJAK2

$
½EpoRpJAK2�+ ½p12EpoRpJAK2�+ ½p1EpoRpJAK2�+ ½p2EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1

�½STAT5�$STAT5ActEpoR$ð½p12EpoRpJAK2�+ ½p1EpoRpJAK2�Þ2
ð½CIS�$CISInh+ 1Þ$ð½SOCS3�$SOCS3Inh+ 1Þ

+STAT5Exp$½npSTAT5�$0:275
0:4
d½pSTAT5�
dt

= ½STAT5�$STAT5ActJAK2

$
½EpoRpJAK2�+ ½p12EpoRpJAK2�+ ½p1EpoRpJAK2�+ ½p2EpoRpJAK2�

½SOCS3�$SOCS3Inh+ 1

+
½STAT5�$STAT5ActEpoR$ð½p12EpoRpJAK2�+ ½p1EpoRpJAK2�Þ2

ð½CIS�$CISInh+ 1Þ$ð½SOCS3�$SOCS3Inh+ 1Þ

�STAT5Imp$½pSTAT5�
d½npSTAT5�
dt

= STAT5Imp$½pSTAT5�$ 0:4

0:275
� STAT5Exp$½npSTAT5�
d½CISnRNA1�
dt

= CISRNAEqc$CISRNATurn$½npSTAT5�$ðActD� 1Þ � CISRNADelay$½CISnRNA1�
d½CISnRNA2�
dt

= CISRNADelay$½CISnRNA1� � CISRNADelay$½CISnRNA2�
d½CISRNA�
dt

= CISRNADelay$½CISnRNA2�$0:275
0:4

� ½CISRNA�$CISRNATurn
d½CIS�
dt

= CISEqc$½CISRNA�$CISTurn� ½CIS�$CISTurn
d½SOCS3�
dt

= SOCS3Eqc$SOCS3Turn$½npSTAT5�

�½SOCS3�$SOCS3Turn+SOCS3Turn$SOCS3oe
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Initial values of ODE system:

CIS t= 0ð Þ=CISinit = 0
CISRNA t= 0ð Þ=CISRNAinit = 0

CISnRNA1 t= 0ð Þ=CISnRNA1init = 0
CISnRNA2 t= 0ð Þ=CISnRNA2init = 0

EpoRpJAK2 t= 0ð Þ=EpoRpJAK2init = 0
SHP1Act t= 0ð Þ=SHP1Actinit = 0
SOCS3 t= 0ð Þ=SOCS3init = 0

npSTAT5 t= 0ð Þ= npSTAT5init = 0
p12EpoRpJAK2 t= 0ð Þ=p12EpoRpJAK2init = 0
p1EpoRpJAK2 t= 0ð Þ=p1EpoRpJAK2init = 0
p2EpoRpJAK2 t= 0ð Þ=p2EpoRpJAK2init = 0

pSTAT5 t= 0ð Þ=pSTAT5init = 0

Applied parameter transformations:

CISInh /
CISInh

CISEqc

SOCS3Inh/
SOCS3Inh

SOCS3Eqc

An implementation of these equations is available in SBML format within the Biomodels repository:MODEL2103080001.

Mixed-effect modeling for cell population
In this study we account for cell-to-cell variability be allowing the protein abundances and parameters of individual cells to differ. This

is a common approach to capture (slow) extrinsic noise. As shown in Bachmann et al. (2011), the abundance of most biochemical

species involved in the process is rather high. In particular, validation using the stochastic simulation algorithm (Gillespie, 1977)

showed a negligible effect of stochastic dynamics (or intrinsic noise) for phosphorylated cytoplasmic and nuclear STAT5. Hence,

we assumed that the overall influence of intrinsic noise (stochasticity of cellular processes causing differences) is minimal. Mathe-

matically, considering differences between the parameters of individual cells yield a mixed-effect model of the process. As we prop-

agate this model through an ODE – providing a non-linear map from parameters to outputs –, we obtain a nonlinear mixed-effect

model (NLMEM).

To simulate the NLMEM, we create an in-silico population of cells, in which each single-cell has its own parameter vector. The

parameter vector fi for the i-th cell is given as

fi = Fb+Rbi;

in which F and R are called design matrices for fixed and random effects, b˛Rnb is the vector of fixed effects (i.e., the parameter set

describing the populationmean), bi˛Rnb is the vector of random effects for the i-th cell. The fixed effects b influence the parameters of

all cells, while the random effects bi are specific to one single-cell. We assume the random effects to follow a multivariate normal

distribution with mean 0 and covariance matrix S, bi � Nð0;SÞ. The covariance matrix S is parameterized by a vector d, yielding

the parameter vector q = ðb;dÞ, which describes the population dynamics. Hence, the parameter estimation problem of the popula-

tion-average model (where only b has to be inferred) is extended for the mixed effect model by the parameters of the population dis-

tribution which are grouped in d.

The term ‘‘NLMEM’’ is typically used when analyzing single-cell time-lapse data (Karlsson et al., 2015), however, many of the

models used for single-cell snapshot data are also NLMEM (Loos et al., 2018). As the cells from different time points in a time series

of flow cytometry data are not the same and are hence not directly comparable, we did not fit single-cell trajectories to the whole

dataset. Instead, we simulated a heterogeneous population, propagated it through the ODE and fitted the shapes of the simulated

distributions of certain protein abundances to the snapshots. As a measure of the shape of these distributions, we used means, var-

iances, and covariances.

In more detail, this means that for a population with M individuals, we simulated M trajectories of state variables

xiðtÞ =
Z t

t0

f
�
s; x

�
s;fi

�
;fi

�
ds

for each random effect vector bi, where f is the vector field of the considered ODEmodel: _xi tð Þ= f t; xi tð Þ;fi
� �

with xiðt0Þ = x0ðfiÞ. This
yielded M trajectories of observables

yiðtÞ = h
�
xiðtÞ;fi

�
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from which the means, variances, and the covariances (and possibly higher moments) can be computed and fitted to measurement

data.

Approximations to simulate cell populations
A faithful representation of the cell-to-cell variability at a given time point in a cell population had to be balanced with computa-

tional costs of the utilized multi-start parameter estimation. Because the number of molecules ranged from around 1,000 mole-

cules for the EpoR to around 20,000 molecules per cell for STAT5 (Bachmann et al., 2011) and was therefore sufficiently large,

we employed a deterministic mixed-effect modeling approach (Fröhlich et al., 2017). Mixed-effect modeling allowed each param-

eter to be either fixed or variable across cells. Parameters, which are assumed to be variable across cells, were referred to as

‘‘random effects,’’ otherwise they were called ‘‘fixed effects.’’ Random effects should follow a multivariate normal distribution,

which was parametrized by the population mean and a covariance matrix. Hence, compared to the population-average JAK2/

STAT5 model, the single-cell JAK2/SAT5 model was extended by additional degrees of freedom, which parametrize the covari-

ance matrix of the random effects.

The calibration of the single-cell model was computationally much more demanding, because (i) the additional degrees of freedom

increased the dimensionality of the estimationproblem, and (ii) the evaluation of the cell-population dynamics required a large number of

single-cell simulations, with parameters sampled from the multivariate normal distribution. Hence, we had to improve the feasibility of

previously proposed approximation methods. The key challenge was the computational complexity of simulating the population dy-

namics, a step which needs to be repeated during every step of the model calibration. To reduce the computational costs, the

mean and the covariance can be approximated using sigma points (Loos et al., 2018; Toni and Tidor, 2013). However, as shown in Fig-

ure 3A, this method possesses a low accuracy for the considered problem.

Thus, we introduced a Dirac-mixture distribution (Gilitschenski and Hanebeck, 2013), which allows for a high approximation

accuracy via the specification of an appropriate number of samples. The sample points were chosen such that the corresponding

Dirac-mixture distribution provided an accurate approximation of the multivariate normal distribution (Hanebeck and Klumpp,

2008) describing cell-to-cell variability (Figure 3B). We used 42 sample points for this approximation, thus we required about

250 times fewer simulations than for a correspondingMonte-Carlo-based trajectory (Figure 3C). Our approach allowed to flexibly

balancing the computational complexity, as determined by the number of points, and approximation accuracy. The validity of

this approximation, on which all results of the parameter estimation and the model selection relied, was ensured by comparing

the final approximate simulations after the model calibration (Figure 3B) to an accurate Monte Carlo simulation with 10,000

samples, which is considered to be as close as possible to the truth (Figure 3C). To further enhance computational efficiency

and optimizer convergence, we derived the respective forward sensitivity equations for the gradient calculations, optimized

logicle- and log-transformed parameters and developed a parametrization approach for the covariance matrix (for details,

see below).

Monte Carlo sampling
The simplest way to approximate themeans, variances, and the covariances is to directly simulate a cell population using parameters

obtained from Monte Carlo sampling. For each individual cell i˛1;.;M, the random effect vector bi is given by

bi;Samp = cSampði;M;SÞ : =Lεi;

in which L is the lower factor of the Cholesky decomposition of covariance matrix S and ε
i is th i-th sample from a set ofM standard

normally distributed points in Rnb . Outputs like mean and covariance of observables are obtained from the outputs of each sample.

The size M of the sampled population must be large enough to reflect the behavior of the distribution function. For this purpose,

sample sizes of e.g., 10,000 simulated cells are common, which means that the computation time necessary for model parametri-

zation must be multiplied with the size of the cell population. While this may be feasible for analytic or very simple ODE models, it

is computationally intractable for the model considered in this work, since this would result in millions of hours of computation

time. However, simulating a full population of cells represents the most faithful method for describing the actual biological system.

Hence, we compared the final simulation results obtained from other approximation methods regularly to simulation results obtained

using Monte Carlo sampling.

Sigma point methods
The sigma point approach (van derMerwe, 2004) is one of the computationally most efficient methods to approximate a population of

cells. Given nb random effects, we need to compute 2nb + 1 (sigma) points and propagate them through the ODE. These points are

usually located at 0 and ±h along the parameter axes in each random effect direction, where h is a chosen step size, which is set toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5$nb

p
. If S is the unit matrix, this will yield bi;SP =hei with ei being the i-th unit vector. In the general case, the sigma points get

transformed with the lower Cholesky decomposition of the covariance matrix:
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bi;SP = cSPði;M;SÞ : =Lhei; for i˛f1;.;nbg;
bi;SP = cSPði;M;SÞ : = � Lhei; for i˛fnb + 1;.;2nbg;
and

b0;SP = 0:

Additionally, the sigma points carry weights wi
m; i˛f0;.; 2nbg for the means and weights wi

C; i˛f0;.; 2nbg for the covariances.

They are computed as:

w0
m =

l

l+nb
wi
m =

1

2ðl+nbÞ ; for i > 0
w0
C =

2l+nb

l+nb

+q� a2
wi
m =

1

2ðl+nbÞ ; for i > 0

where we fixed a= 0:7 (it should hold: 0<a%1), q= 2 (it should hold qR1) and l = nbða2 � 1Þ. These weights are then used to

compute means, variances, and covariances of observables.

Dirac mixture models
The sigma point approximation may be computationally efficient, but it reflects the mean and variance only for linear systems

exactly. Therefore, it can be inaccurate for highly nonlinear applications such as nonlinear ODE systems. Since in our case,

massive Monte Carlo sampling was computationally infeasible and sigma points approximations provided poor results, we

decided to use Dirac mixture distribution (DMD) approximations (Gilitschenski and Hanebeck, 2013). A DMD is a small set

of points, which attempts to accurately reflect a multivariate normal distribution by fulfilling an optimality condition on the

approximation quality. The number of these Dirac points can be freely chosen, in order to adapt the approximation quality.

Thus, a DMD can either be interpreted as a small, but optimal sample, or as a sigma point method with adjustable accuracy.

This allowed us to balance computational effort and numerical accuracy with high flexibility. However, this has the disadvan-

tage that the DMD with the desired properties must be computed before it can be used for parameter estimation. To do so, a

multivariate standard normal distribution with the desired dimension nb is approximated by a mixture of nD Dirac-delta distri-

butions. We decided to use nD = 42, since this yields nD=nb = 6, which are three times as many points as in the case of the

sigma point approximation, which has nD = 2nb + 1. This guarantees a substantially higher approximation accuracy than the

sigma point approximation.

The DMD for the smaller models (nb = 6 and nb = 4) were computed from the largest one by integrating out the corresponding col-

umns. In this way, we could make sure that the calibrated models are really nested and can be analyzed with means such as the BIC.

Otherwise, slightly different approximation accuracies due to different numbers of mixture points can dominate the parameter esti-

mation results and may lead to incorrect conclusions when applying model criteria such as the BIC.

In order to compute the locations of the nD Dirac-points z = ðz1;.;znD
Þ˛Rnb3nD , a modified Cramér-von Mises-distance between

distributions is defined based on ameasure called localized cumulative distribution (LCD) (Hanebeck and Klumpp, 2008). The LCD is

a substitute for the cumulative distribution for multivariate probability density functions. For an nb-dimensional probability density

function f : Rnb/R+ , the corresponding LCD is defined as

Ffðm;BÞ = pf

�
xi �mn%

1

2
Bi

�

withB˛Rnb ;+ ,m˛Rnb ;+ and pf being the probability given the density function f. This is used to define a (so-called modified Cramér-

von Mises) distance between two densities f and g in the following way:

Du f;gð Þ=
Z
Rnb

Z
Rnb ;+

uðm;BÞ;
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where an additional weighting function u can be used.

We chose f to be a multivariate standard normal distribution Nð0; 1Þ with dimension nb = 7, and g to be a DMDðzÞ with nD = 42

points at the locations zi ; i = 1;.;nD and the weighting to

uðm;BÞ =
8<
:

�
Bi
�1�nb

;
0;

Bi ˛½0;3�
otherwise

Then we optimized these locations in order to minimize the distance D and obtained the Dirac points for a standard normal

distribution:

bi;DMD;SN = argminzðDuðNð0; 1Þ;DMDðzÞÞÞ:
Once the DMD points bi;DMD;SN were computed, they can be transformed with the lower Cholesky decomposition L of the covariance

matrix S

bi;DMD = Lbi;DMD;SN;

and all computations are carried out in the same way as for Monte Carlo sampling.

Parametrizations of covariance matrices
To parametrize the covariance matrices S of the random effects, we tested different approaches, as described in Pinheiro and Bates

(1996):

d A log-matrix parametrization, in which a symmetric matrix R is parametrized, which fulfils S = expðRÞ.
d The Givens parametrization, in which the eigenvalues are parametrized logarithmically as a diagonal matrix

L=diagðexpðl1;.; lnb
ÞÞ and the system of eigenvectors is parametrized as a product of nu =nbðnb �1Þ=2 rotations Uð41;.;

4nu
Þ = Qnu

i =1uið4iÞ, where the 4i˛½0;p� are rotation angles. This yields S = UTLU.

Since none of these methods led to satisfactory results, we designed an approach based on Lie-theoretic considerations: We

parametrized the eigenvalues logarithmically as diagonal matrix

L=diag
�
exp

�
l1;.; lnb

��
and defined

S=UTLU

with U being a rotational matrix. However, we parametrized U not directly, as done in the Givens-formula, but indirectly, via the Lie

algebra of the rotation group SOðnÞ, i.e., we set

U = expðAÞ; with = � AT ;

which we assume to have entries Aij˛½ � b; b�; with b[1, where b is an arbitrarily chosen bound, for which we used b =

20. Thus, we only need to parametrize the antisymmetric matrix A, which is a much simpler task than parametrizing the

rotations.

This approach takes advantage of the fact that the exponential map is a local diffeomorphism around the unit elements of the Lie

group and the Lie algebra. Furthermore,A= 0 being a natural initial guess for the optimization problem, lies at the center of the param-

eter interval. Compared to theGivens parametrization, this has the advantage of reducing the dependence of the4i on each other and

hence improving the optimizer convergence.

Parameter estimation for the single-cell models
Theparameterestimation for the single-cellmodelswascarriedoutusing theMATLAB-based toolboxPESTO (Staporet al., 2018).Model

calibrationwasperformedusing the trust-region-reflectivealgorithmof the function fmincon (MATLABRelease2017a),which ispartof the

MATLAB optimization toolbox. The optimization algorithm was provided with gradients and the Fisher information matrix from forward

sensitivity analysis. The mixed-effect model, the different methods for parametrizing the covariance matrix of random effects, and the

correspondingsensitivitieswereconstructedusing theMATLAB-basedtoolboxMEMOIR (Fröhlichetal., 2018).MEMOIRalsoassembled

theobjective function,whichwaspassed toPESTO, as the log-posterior function of observing aparameter vector given the experimental

data, assuming aGaussian noisemodel for the population-average data, and themean values, variances, and covariances of the single-

cell snapshot data. The numerical integration of theODE systems and their forward sensitivities was carried out using theC++ andMAT-

LAB-based toolbox AMICI (Fröhlich et al., 2017), which interfaces the CVODES solver from the SUNDIALS suite (Hindmarsh et al., 2005).

For Single-Cell Model 1 we considered our previously established concept that intracellular information processing is largely deter-

mined by the abundance of signaling components (Adlung et al., 2017) and allowed the initial amount of EpoR, SHP1 and total STAT5

to vary between cells. Additionally, the measured basal phosphorylation of STAT5 was represented by a cell-specific offset param-
Cell Reports 36, 109507, August 10, 2021 e10



Article
ll

OPEN ACCESS
eter, which comprised ligand-independent phosphorylation and the background-signal of the secondary antibodies (see Figure 1A).

Accordingly, these parameters of an individual cell were a combination of fixed and random effects, while all other parameters were

only defined by fixed effects. To account for interdependencies between the initial amount of EpoR, SHP1 and total STAT5 as well as

the pSTAT5 offset (i.e., basal activation plus measurement background), we estimated variances as well as the full covariance struc-

ture of the random effects (Figure 4B, blue).

In Single-Cell Model 2 we additionally assumed that the nucleocytoplasmic import and export rate constants are variable between

cells, since we showed previously that due to the rapid nucleocytoplasmic cycling behavior of STAT5, both the nucleocytoplasmic

import and export rates strongly influence the transcriptional yield of nuclear pSTAT5 (Swameye et al., 2003). This could be due to

cell-to-cell variability in the cytoplasmic and nuclear volumes of CFU E cells, which influences the effective import and export rates of

individual CFU-E cells. We estimated covariances between these two parameters to account for their correlation, but we disregarded

possible interdependencies between the translocation rate constants and other entries of the covariance matrix to limit the overall

complexity (Figure 4B, green).

In Single-Cell Model 3, we further allowed the input Epo to vary between cells, since we previously observed rapid receptor-medi-

ated ligand internalization (Becker et al., 2010) and therefore considered the possibility of an uneven distribution of the ligand in the

medium or differential ligand accessibility of individual CFU-E cells. We considered the random effect of Epo to be independent from

the other cell-to-cell variabilities (Figure 4B, orange).

Each of the three single-cell models was calibrated by multi-start local optimization with analytical gradient information of the

aforementioned approximation using Dirac-mixture distributions. In addition to the population-average data used for the popula-

tion-average model (Figures 4C–4E, upper panels), the three single-cell models were also parameterized using variances of total

STAT5 and pSTAT5 (Figures 4C–4E, bottom panels), and their covariances, and the means of total STAT5 as measured by flow cy-

tometry, which comprised a total of 960 additional data points. As demonstrated in Figure 4F, the optimizations for all three single-cell

models converged well. We performedmodel selection using the Bayesian information criterion (BIC) (Schwarz, 1978) and found that

Single-Cell Model 2 provides an appropriate balance between goodness-of-fit andmodel complexity (Figure 4G). The optimal values

of the log-likelihood functions for Single-Cell Model 2 and 3 were identical, and the difference of 7.5 in the BIC values was due to the

penalization of the additional parameters of Single-Cell Model 3. The additional random effect of Epo implemented in Single-Cell

Model 3 did not improve the model’s performance. Overall, there was a good agreement and high correlation (r = 0.974; see Figures

S4C and S4D) between model simulations and experimental data (Figures 4C–4E), but the single-cell model output was markedly

improved by assuming cell-to-cell variability in the import rate of pSTAT5 and the export rate of STAT5 in Model 2 (Figure 4D).

QUANTIFICATION AND STATISTICAL ANALYSIS

Model selection criteria
Model selection for the single-cell models was based on the Bayesian information criterion (BIC) to have a asymptotically consistent

model selection criterion. The BIC accounts for the maximum log-likelihood of each model (as a measure for fit quality) and model

complexity. The BIC is computed as follows:

BICðMÞ = � 2l
�
qMAP
M

�
+ nqMlogðndÞ;

whereM is themodel, l log-posterior (or the log-likelihood) with themaximum a posteriori (ormaximum likelihood) estimate qMAP, nqM is the

number of parameters ofM and nd is the number of data points. Especially for models withmany data points (like in our case), the BIC pe-

nalizesmodel complexity stronger than the Akaike information criterion (AIC) andmay hence give stronger indications formodel selection.

Translocation rates and compartmental volumes
Our single-cell model selection reveals the import and export rates to be variable, and it predicts the heterogeneity of the import rates

to be higher than the heterogeneity of the export rates (Figure 6A): In order to quantify this difference more precisely, we used the

estimated decadic translocation rate constants ImportSTAT5 and ExportSTAT5 and the estimated covariance matrix of random effects

S for the simulation of 1,000 cell populations with 100,000 cells each. In this way, we can compute the ratios of the coefficients of

variation CV of the rate constants in linear scale for each cell population. This yields for the respective mean values

CV
�
10ImportSTAT5

�
CV

�
10ExportSTAT5

� =
CVðImport rate constantÞ
CVðExport rate constantÞ= 3:9;

and a value of 1.6 for the standard deviation of this ratio.

The inverses of the import and export rates on the other hand are proportional to the expected time for a molecule of STAT5 to be

imported or exported, respectively (having the unit s/mol or only s, if we consider molecules instead of abundances):

10�ExportSTAT5 fEðtExportÞ and 10�ImportSTAT5fEðtImportÞ
If we assume that molecular transport is driven by diffusion, this expected time for a molecule to be exported should depend on the

radius of the cell’s nucleus rnuc, which is related to the nucleic volume by rnuc =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4pVcell

3

q
. On the other hand, we assume the expected
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time for a molecule to be imported to depend on the thickness of the cytoplasmic shell tcyt around the nucleus, which is related to the

compartmental volume via tcyt =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4pVcell

3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4pVnuc

3

q
(see Figure 6B).

Results from the theory of cellular diffusion processes (Bressloff, 2014) state that relations

EðtExportÞf r2nuc and EðtImportÞft2cyt

should hold. We confirmed the first relation by simulating 10,000 random walks in three dimensions with for different nucleic radii

(Figure 6C). In such a random walk, which we always started in the center of the nucleus, a molecule could move along each coor-

dinate axis either forward or backward with a fixed step size until it reached the boundary of the nucleic sphere. The mean of the

computation times of these random walks was computed and used as a proxy for the expected export time of a STAT5 molecule.

For the nuclear import process, we assumed that that rcyt � rnuc, which allowed us to approximate the import process by a random

walk between two planes with distance tcyt in three dimensions. We simulated again 10,000 random walks, which were constraint to

stay between the planes, starting at the first one (the cell membrane) and stopped themwhen the second one (the nucleic membrane)

was reached. By carrying out the corresponding computations for different distances between the planes, we also confirmed the

second relation (Figure 6C).

Based on these considerations, we conclude that the relation

CV
�
t2cyt

�
CV

�
r2nuc

�˛½2:3;5:5�
should hold. Evaluating the results from confocal fluorescence microscopy z stack images, the corresponding coefficients of varia-

tion indeed yielded the ratio

CV
�
t2cyt

�
CV

�
r2nuc

� = 3:1:
Inference of the survival criterion
Similar to the work by Bachmann et al. (2011), we compared different criteria for survival against each other. Considered criteria,

whether a single-cell would survive, were the total amount of pSTAT5 in the nucleus, which the respective cell is exposed to averaged

over the time interval ½0;tend�. the maximal ratio of pSTAT5 in the nucleus over the total amount of STAT5, which the respective cell is

exposed to averaged over the time interval ½0; tend�.
We checked these two proposed criteria for tend from 5 to 180 min, in steps of 5 min. The necessary thresholds for the respective

survival signals were fitted to the survival data based on the selected single-cell model at the optimal parameter value. Since we

observe survival also in the absence of Epo, we additionally fitted an offset for this basal survival rate.

The BIC values for these criteria and thresholds yielded that the criteria based on the ratio of pSTAT5with a threshold tend = 180min

was the preferred model for cell survival. The BIC values for the two criteria are shown in Figure S7A.
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