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Abstract

Aerosols affect Earth’s radiation budget by scattering and absorbing solar radiation (di-
rect effect) and by influencing the cloud formation processes (indirect effect). Accurate
assessments of aerosol properties, such as optical depth and layer height, are important
for the global monitoring of air pollution in the lower atmosphere.

A number of passive satellite sensors enable to monitor aerosol properties on both
regional and global scale using spectral information at various wavelengths. For example,
measurements in the oxygen A-band from the Scanning Imaging Absorption Spectrometer
for Atmospheric CHartographY (SCIAMACHY), the Global Ozone Mapping Experiment
(GOME) and GOME-2, the Greenhouse Gases Observing Satellite (GOSAT), and the
TROPOspheric Monitoring Instrument (TROPOMI) are used to retrieve both aerosol
optical depth and layer height. The ultimate generation of passive satellite sensors, as
for example, the TROPOMI/S5P has an extraordinary spatial, temporal and spectral
resolutions. The challenge of processing hyperspectral data is to increase the performance
of the retrieval algorithms in order to achieve near-real-time requirements.

The goal of this thesis is the design of algorithms for retrieving aerosol parameters
from TROPOMI/S5P measurements in the oxygen A-band. The designed algorithms
can be grouped into two categories. The first category includes Bayesian-based retrieval
algorithms for a specified aerosol model and a set of candidate models. In the latter case,
two solutions estimates, namely (i) the maximum solution estimate, corresponding to the
model with the highest evidence, and (ii) the mean solution estimate, representing a linear
combination of solutions weighted by their evidences, are proposed. The algorithms use
a linearized radiative transfer model relying on the discrete ordinate method with matrix
exponential, and as acceleration approaches, the telescoping technique, the method of
false discrete ordinate, the correlated k-distribution method, and the principal component
analysis. The inverse problem is formulated as a least-squares problem and solved by
means of the iteratively regularized Gauss-Newton method. The second category includes
neural network retrieval algorithms. These are trained (i) to emulate the radiative transfer
model, which is then used in conjunction with a Bayesian approach to solve the inverse
problem, and (ii) to learn the inverse model using as input either the synthetic radiances
or their principal components. The retrieval performances of the retrieval algorithms are
analyzed on synthetic and real data.
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Zusammenfassung

Aerosole beeinflussen den Strahlungsbilanz der Erde, indem sie Sonnenstrahlung streuen
und absorbieren (direkte Wirkung) und die Wolkenbildungsprozesse beeinflussen (indi-
rekte Wirkung). Genaue Bewertungen der Aerosoleigenschaften wie optische Tiefe und
Schichthöhe sind wichtig für die globale Überwachung der Luftverschmutzung in der un-
teren Atmosphäre.

Eine Reihe von passiven Satellitensensoren ermöglichen die Überwachung von
Aerosoleigenschaften sowohl auf regionaler als auch auf globaler Ebene unter Verwen-
dung von Spektralinformationen bei verschiedenen Wellenlängen. Zum Beispiel Messungen
im Sauerstoff-A-Band vom Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY), dem Global Ozone Mapping Experiment (GOME) und
GOME-2, dem Greenhouse Gases Observing Satellite (GOSAT) und dem TROPOspheric
Monitoring Instrument (TROPOMI) werden verwendet, um sowohl die optische Tiefe als
auch die Schichthöhe wiederherstellen. Die ultimative Generation passiver Satellitensen-
soren wie zum Beispiel der TROPOMI/S5P hat außergewöhnliche räumliche, zeitliche und
spektrale Auflösungen erreicht. Die Herausforderung bei der Verarbeitung hyperspektraler
Daten besteht darin, die Leistung der Retrievalalgorithmen zu steigern, um Anforderungen
an die nahezu Echtzeit zu erfüllen.

Das Ziel dieser Arbeit ist die Entwicklung von Algorithmen zum Retrieval von Aerosol-
parametern aus TROPOMI/S5P-Messungen im Sauerstoff-A-Band. Die entworfenen Al-
gorithmen werden in zwei Kategorien eingeteilt. Die erste Kategorie umfasst Bayes’sche
Retrievalalgorithmen für ein bestimmtes Aerosolmodell und einen Satz von Kandidaten-
modellen. Im letzteren Fall werden zwei Lösungsschätzungen vorgeschlagen, nämlich (i)
die maximale Lösungsschätzung, die dem Modell mit der höchsten Evidenz entspricht, und
(ii) die mittlere Lösungsschätzung, die eine lineare Kombination von Lösungen darstellt,
die mit ihren Evidenzen gewichtet ist. Die Algorithmen verwenden ein linearisiertes
Strahlungstransfermodell, das auf der diskreten Ordinatenmethode mit Matrixexponen-
tialfunktion beruht, und als Beschleunigungsverfahren, die Teleskoptechnik, die Meth-
ode der falschen diskreten Ordinaten, die korrelierte k-Verteilungsmethode und die Haup-
tkomponentenanalyse benützt. Das inverse Problem wird als Kleinste-Quadrate-Problem
formuliert und mittels des iterativ regularisierten Gauß-Newton-Verfahrens gelöst. Die
zweite Kategorie umfasst Retrievalalgorithmen für neuronale Netze. Diese werden darauf
trainiert, (i) das Strahlungstransfersmodell zu emulieren, das dann in Verbindung mit
einem Bayes’schen Verfahren verwendet wird, um das inverse Problem zu lösen, und (ii)
das inverse Modell zu lernen, indem entweder die synthetischen Spektren oder ihre Haup-
tkomponenten als Eingabe verwendet werden. Die Leistungen der Retrievalalgorithmen
werden anhand von synthetischen und realen Daten analysiert.
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1 Introduction

Atmospheric aerosols from both natural and anthropogenic sources have a significant im-
pact on Earth’s climate and environment. They affect Earth’s energy budget directly by
scattering and absorbing solar radiation and indirectly by altering the lifetime and radia-
tive properties of clouds. Moreover, highly absorbing aerosols have a warming effect on
the atmosphere leading to the evaporation of cloud particles, and so, to a reduction of
the cloud cover (semi-direct effect). Accurate assessments of aerosol properties, such as
optical depth and layer height, are important for the global monitoring of air pollution in
the lower atmosphere. In particular, the vertical distribution of aerosols determines the
magnitude of the aerosol scattering effects [Peters et al., 2011; Wilcox, 2012; Zhang et al.,
2013], as well as, the cloud cover and lifetime [Koch and Del Genio, 2010]. Smoke and
dust aerosols can change the air temperature profile and modify the atmospheric stability
in the free troposphere [Babu et al., 2011; Wendisch et al., 2008], while elevated dense
aerosol plumes such as airborne volcanic ash, are a significant hazard to aviation, causing
engine failure, damage to avionics systems and abrasion to exposed airframe parts [Sears
et al., 2013]. Aerosol vertical distribution is essential in retrieving aerosol optical depth
in the UV channels [Torres et al., 1998], and can affect the retrieval accuracy of aerosol
microphysical properties from photopolarimetric measurements [Chowdhary et al., 2005;
Waquet et al., 2009], the atmospheric correction for ocean color remote sensing [Duforêt
et al., 2007], the retrieval of the thermal state of the atmosphere from infrared sounders
[Maddy et al., 2012], and the remote sensing of the surface concentration of particulate
matters from space [Wang and Christopher, 2003].

Because aerosol profiles simulated by current climate models can differ by up to an order
of magnitude [Kipling et al., 2016; Koffi et al., 2012], satellite remote sensing techniques
are used to infer the spatial and temporal variations of aerosol profiles across the globe.
Aerosol profiles can be recovered either by (accurate) active remote sensing techniques
using LIDAR (such as CALIOP equipped on the CALIPSO platform [Winker et al., 2009]),
or by passive remote sensing techniques, which offer a better spatial coverage and more
frequent measurements.

1.1 Passive remote sensing techniques

Several retrieval algorithms have been developed for deriving aerosol profile information
from passive satellite sensors. These were mostly developed based on heritages of the re-
mote sensing of cloud altitude [Kokhanovsky and Rozanov, 2004; Loyola et al., 2007; Wang
et al., 2008; Yang et al., 2013]. However, the retrieval of aerosol height is a much more
challenging task, because aerosols are less optically thick and have more complex optical
properties (depending on the size distribution and chemical composition). Moreover, the
heterogeneity of the underlying surface increases the complexity of the retrieval.

The passive remote sensing techniques can be divided into two main categories:
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1 Introduction

1. the stereoscopic technique based on the principle of parallax [Fisher et al., 2014;
Muller et al., 2007; Zakšek et al., 2013], and

2. the spectroscopic techniques based on radiative transfer methods.

The spectroscopic technique includes three approaches:

1. the polarimetric analysis of reflected sunlight at the near-ultraviolet spectrum [Wu
et al., 2016],

2. the spectroscopy in the oxygen (O2) absorption bands [Corradini and Cervino, 2006;
Ding et al., 2016; Dubuisson et al., 2009; Kokhanovsky and Rozanov, 2010; Sanders
et al., 2015] and the O2 −O2 band [Chimot et al., 2017; Park et al., 2016], and

3. the thermal infrared spectral radiance technique [Pierangelo et al., 2004; Vanden-
bussche et al., 2013].

The first approach uses measurements at wavelengths with negligible gas absorption in the
context of air molecular scattering, while the second approach uses measurements in the
A and B absorption bands of molecular oxygen located in the spectral ranges of 755–775
nm and 685–695 nm, respectively.

The retrieval in the oxygen bands is based on the fact that the aerosol layer scatters
photons back to space and reduces the amount of photons captured by the O2 molecules.
A higher scattering layer provides a larger number of photons scattered back to space,
and so, enhances the reflectivity in the oxygen A-band. Moreover, because O2 is a well-
mixed gas in the atmosphere with a well-defined vertical structure, the absorption profile of
molecular O2 can be accurately described. Thus, the spectral dynamics of the reflectance in
the oxygen A-band characterize the interaction of aerosol particles with oxygen absorption
through multiple scattering in different altitudes.

From the measurement perspective, the retrieval algorithms for aerosol vertical distri-
bution based on O2 spectroscopy can be divided into two categories.

1. Algorithms of the first category derive the aerosol height based on the reflectance
ratio of channels inside and outside the absorption band [Dubuisson et al., 2009;
Duforêt et al., 2007; Xu et al., 2017]. This approach is well suited for narrow-band
measurements in the O2 absorption spectrum, such as those from MERIS (Medium
Resolution Imaging Spectrometer), POLDER (POLarization and Directionality of
the Earth’s Reflectances), and EPIC (Earth Polychromatic Imaging Camera). How-
ever, the reflectance ratio approach can only yield a single piece of aerosol height
information, and requires appropriate assumptions on aerosol optical properties and
surface reflectance. The errors in the retrieved aerosol height are larger for brighter
surfaces, because the surface reflection dominates the apparent reflectance at the
top-of-atmosphere. Therefore, it is difficult to retrieve aerosol height over land, for
which the reflectances of the vegetation and soil surface are often larger than 0.3.
To overcome this drawback, adding polarization measurements (the degree of polar-
ization is less sensitive to the surface reflectance) [Boesche et al., 2009; Ding et al.,
2016; Wang et al., 2014] and/or measurements in the oxygen B-band (the reflectance
of a vegetation surface is much lower in the oxygen B-band) [Pflug and Ruppert,
1993] have been proposed.
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1.1 Passive remote sensing techniques

2. Algorithms of the second category are based on the spectral fitting of the reflectance
measured in the O2 absorption bands by spectrometers at a moderate to high spec-
tral resolution. The studies of Koppers and Murtagh [Koppers and Murtagh, 1997]
for GOME (Global Ozone Mapping Experiment) data, Kokhanovsky and Rozanov
[Kokhanovsky and Rozanov, 2010] and Sanghavi et al. [Sanghavi et al., 2012]
for SCIAMACHY (SCanning Imaging Absorption Spectrometer for Atmospheric
CHartographY) data, and Sanders et al. [Sanders et al., 2015] for GOME-2 and
TROPOMI (TROPOspheric Monitoring Instrument) data, are relevant in this con-
text. The spectrally resolved measurements contain more pieces of information
than a single reflectance ratio. As shown by Corradini and Cervino [Corradini and
Cervino, 2006], SCIAMACHY measurements (with a spectral resolution of about 0.4
nm) can provide a degree of freedom of 3 (in the troposphere, a three-layer profile can
be retrieved), though the retrieval depends strongly on the aerosol optical properties
and the surface reflectivity. Higher spectral resolution measurements in the oxygen
A-band, such as those from GOSAT (Greenhouse gases Observing SATellite), OCO-2
(Orbiting Carbon Observatory), and TanSat (Chinese Carbon Dioxide Observation
Satellite Mission) with a spectral resolution as high as 0.04 nm, can improve the
aerosol height information content by reaching a degree of freedom of 4–5; thus,
the aerosol profile can be recovered [Colosimo et al., 2016; Geddes and Bösch, 2015;
Hollstein and Fischer, 2014]. Moreover, if multiangle measurements in the oxygen
A-band are used, a degree of freedom of about 7 can be reached [Frankenberg et al.,
2012]. Note that for such an enhanced spectral resolution, the influence of aerosol
optical properties and surface albedo is significantly reduced [Colosimo et al., 2016].

The Table 1.1 presents the main characteristics of the satellite instruments that perform
measurements in O2 absorption bands.

The retrieval algorithms use various assumptions on the aerosol profile and models, and
employ several fast radiative transfer models.

1. Aerosol profile. The vertical distribution of aerosols is determined by the emission
and deposition processes, aerosol microphysical properties (size and composition),
and meteorological conditions (wind, atmospheric stability, planetary boundary layer
evolution, and precipitation). Anthropogenic aerosols in industrial pollution source
regions and sea salts over oceans are usually located below 1 km in the planetary
boundary layer, while elevated aerosol layers are found over the dust belt and source
regions of biomass-burning particles (e.g., southern Africa and South America). In
retrieval algorithms, the common assumption is that aerosol is homogeneously dis-
tributed within a layer of given depth [Kokhanovsky and Rozanov, 2010; Pierangelo
et al., 2004], which can extend from the surface or be an aloft layer in the atmo-
sphere. In this case, the retrieved parameter is the top altitude [Kokhanovsky and
Rozanov, 2010] or the central altitude of the aerosol layer [Pierangelo et al., 2004].
In other studies, it is assumed that the profile of the aerosol extinction coefficient
follows a certain type of distribution function, as for example, an exponential-decay
profile characterized by a scale height [Gordon, 1997], and a Gaussian [Ding et al.,
2016; Dubovik et al., 2011; Wu et al., 2016; Xu et al., 2017] or a log-normal distri-
bution function [Hollstein and Fischer, 2014; Sanghavi et al., 2012] characterized by
a peak height and a half-width parameter.

3



1 Introduction

Table 1.1: Satellite instruments that perform measurements in O2 absorption bands.

Instrument/
Satellite

Spectral
Channels

Spectral
Resolution

Spatial
Resolution

MERIS/
ENVISAT

753.75 nm;
761.75 nm

7.5 nm;
3.75 nm

ocean:1040× 1200 m2

land:260× 260 m2

POLDER
763 nm;
765 nm

10 nm;
40 nm

EPIC/
DSCOVR

680 nm;
688 nm;
764 nm

3± 0.6 nm;
0.8± 0.2 nm
1± 0.2 nm

12× 12 km2

GOME-2/
METOP-A/B/C

240− 790 nm 0.2− 0.5 nm 80× 40 km2

SCIAMACHY/
ENVISAT

240− 2380 nm 0.48 nm 30× 60 km2

TANSO-FTS/
GOSAT

758− 775 nm 0.5 cm−1 10.5× 10.5 km2

OCO-2 757− 778 nm 0.042 nm 1.3× 2.25 km2

CarbonSpec/
TanSat

758− 778 nm 0.044 nm 2× 2 km2

TROPOMI/
Sentinel-5
Precursor

675− 775 nm 0.38 nm 3.5× 7 km2
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1.1 Passive remote sensing techniques

2. Aerosol models. The aerosol microphysical properties (size and composition) play an
important role in the retrieval. To describe the wide range of possible compositions,
the aerosol particles are modeled as components, which are externally mixed to form
aerosol models. An aerosol component is characterized through the refractive index
and the size distribution. The size distribution is assumed to be a log-normal distri-
bution, and is specified as a number or a volume distribution. These are summarized
below.

a) The Optical Properties of Aerosols and Clouds (OPAC) database [Hess et al.,
1998] includes as aerosol components: the water-insoluble part of aerosol par-
ticles, the water-soluble part of aerosols, the soot component, sea-salt, mineral
aerosol, mineral transported aerosol, and the sulfate component, and as aerosol
models: continental clean, continental polluted, urban, desert, maritime clean,
maritime polluted, maritime tropical, arctic, and antarctic.

b) Ten aerosol models (sulfurous dusty smoke, marine sulfate, dusty sulfate, dust,
sulfurous smoke, sulfurous dust, marine dusty sulfate, sulfate, sulfurous marine,
and smokey sulfate), considered to be mixtures of sulfate, dust, sea salt, black
carbon, and organic carbon, have been obtained by a cluster analysis using
the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model
[Taylor et al., 2015].

c) The OMI multiwavelength aerosol retrieval algorithm [Torres et al., 2002] in-
cludes five major aerosol types, where each type consists of several aerosol
models. On a global scale, five main aerosol types can be distinguished: (i)
urban-industrial aerosols originating from fossil fuel combustion, (ii) carbona-
ceous aerosols generated from natural and anthropogenic biomass burning, (iii)
desert dust aerosols, injected into the atmosphere by winds, (iv) naturally pro-
duced oceanic aerosols, and (v) volcanic aerosol.

d) The MODIS aerosol retrieval algorithm [Levy et al., 2007] includes a set
of aerosol models derived from a cluster analysis on the entire time se-
ries of almucantur-derived aerosol properties from global AERONET [Holben
et al., 1998] sites. There are three fine-dominated (spherical) and one coarse-
dominated (spheroid) aerosol optical models that represent the range of likely
and observable global aerosol conditions. The fine-dominated aerosol models,
i.e., moderately absorbing, absorbing, and nonabsorbing, differ mainly in their
values of the single scattering albedo.

e) At selected AERONET [Dubovik et al., 2002] sites, with well-known meteoro-
logical and environmental conditions, four aerosol models have been identified:
(i) urban-industrial from fossil fuel combustion in populated industrial regions,
(ii) biomass burning produced by forest and grassland fires, (iii) desert dust
blown into the atmosphere by wind, and (iv) aerosol of marine origin.

3. Radiative transfer models. A variety of fast radiative transfer models for computing
the spectral signal in the O2 absorption bands have been designed. They rely on the
discrete ordinate method [Kokhanovsky and Rozanov, 2010; Spurr, 2006], matrix
operator method [Hollstein and Fischer, 2014; Hollstein and Lindstrot, 2014], and a
layer-based orders of scattering method (a variant of the doubling-adding method
[de Haan et al., 1987; Hovenier et al., 2004] in which the adding of different layers is

5



1 Introduction

replaced by orders of scattering for the atmospheric layers), The derivatives with re-
spect to the fit parameters are calculated analytically (linearized forward approach)
[Spurr, 2006], or by using the adjoint theory (linearized forward-adjoint approach)
[Landgraf et al., 2001]. In order to reduce the computation time, several accel-
eration methods have been proposed. These include the correlated k-distribution
method [Hasekamp and Butz, 2008], the principal component analysis applied on
optical parameters [Natraj et al., 2005], the interpolation method within lookup
table for monochromatic reflectances [Sanders and de Haan, 2013] and their prin-
cipal components [Hollstein and Lindstrot, 2014], and neural networks to emulate
the top-of-atmosphere radiances [Nanda et al.]. The aerosol parameters are usually
retrieved with the optimal estimation method, an iterative retrieval scheme devel-
oped by Rodgers [Rodgers, 2000] that incorporates a priori knowledge of retrieval
parameters into their estimation.

1.2 Objective of the thesis

The main objective of the thesis is the design of retrieval algorithms to recover the aerosol
layer height and optical depth from TROPOMI/S5P measurements in the O2A-band.

Launched on 13 October 2017, TROPOMI onboard the Copernicus Sentinel-5 Precursor
satellite [Veefkind et al., 2012] is the first of the satellite-based atmospheric composition
monitoring instruments in the Sentinel mission of the European Space Agency. It was
designed to be a push-broom grating spectrometer observing trace gas concentrations and
aerosol/cloud properties that are associated with air quality, ozone layer, and climate
forcing. The satellite flies in a sun-synchronous orbit at 824 km altitude with an Equa-
tor crossing time of 13:30 local solar time, and has a wide swath of 108◦ (∼ 2600 km),
which allows to achieve a full daily global surface coverage. TROPOMI can map global
distributions of a broad range of air pollutants with a spatial resolution as high as 5.5 ×
3.5 km2 (7.0 × 3.5 km2 prior to 6 August 2019). The recorded TROPOMI spectra cover
the ultraviolet–visible (UV–Vis, 270–500 nm), near-infrared (NIR, 675–775 nm), and short-
wave infrared (SWIR, 2305–2385 nm). Band 6 of TROPOMI covers the oxygen A-band
and records the radiances and solar irradiances with a spectral sampling of 0.125–0.126 nm
and a spectral resolution of 0.34–0.35 nm. Further details of the instrument and measure-
ment characteristics can be found in Refs. [Kleipool et al., 2018; Ludewig et al., 2020].
TROPOMI records approximately 1.4 million pixels within a single orbit where, on aver-
age, 50 000 pixels are typically identified as aerosol contaminated pixels. This places a
steep requirement on the computational architecture with respect to processing all possible
pixels from a single orbit. The operational TROPOMI/S5P aerosol layer height retrieval
algorithm has the following key features [de Graaf et al., 2021; Nanda et al.].

1. The main fit parameters are the aerosol layer mid pressure and aerosol optical depth.

2. A single, average aerosol model, characterized by a (fixed) single scattering albedo
of 0.95 and a Henyey-Greenstein phase function with an asymmetry parameter of
0.7, is considered.

3. Monochromatic (high-resolution) reflectances are computed with the layer-based
orders-of-scattering method. Polarization and inelastic scattering (rotational Ra-
man scattering) are not taken into account.

6



1.3 Thesis structure

4. Derivatives of reflectance with respect to the fit parameters are calculated in a semi-
analytical manner using reciprocity (equivalent to the adjoint method).

5. Line-by-line monochromatic calculation of top-of-atmosphere reflectance, and its
derivatives with respect to the aerosol layer height and optical depth, are performed
at 3980 absorption lines in the oxygen A-band (wavelengths ∼ 758− 770 nm). The
computation time is of about 30-40 seconds on a computer equipped with Intel R
Xeon R CPU E3-1275 v5 at a clock speed of 3.60 GHz.

6. A neural network is trained to learn the (sun-normalized) top-of-atmosphere radi-
ance, and other two neural networks to emulate the derivatives of the reflectance
with respect to the aerosol layer height and optical depth.

7. The inverse problem is solved by using a Bayesian approach with a priori chosen
error covariance matrices for the measurement and the a priori state vector.

In order to achieve the objective of the thesis, the following tasks will be performed.

1. Design of an aerosol database that includes several aerosol models and vertical pro-
files.

2. Design of a linearized radiative transfer model,

a) relying on the discrete ordinate method with matrix exponential,

b) using as acceleration approaches: the method of false discrete ordinate, the
correlated k-distribution method, and principal component analysis, and

c) computing the partial derivatives of the spectral signal with respect to the
aerosol optical depth and layer height by forward and forward-adjoint ap-
proaches.

3. Design of Bayesian-based retrieval algorithms for a specified aerosol model and a
set of candidate models, using the iteratively regularized Gauss-Newton method as
regularization tool.

4. Design of neural network algorithms

a) to emulate the radiative transfer model and to be used in conjunction with a
Bayesian approach to solve the inverse problem,

b) to learn the inverse model using as input either the synthetic radiances or their
principal components.

1.3 Thesis structure

This is a cumulative thesis which includes three full peer-reviewed research papers, namely

1. Rao, L.; Xu, J.; Efremenko, D.S.; Loyola, D.G.; Doicu, A. Hyperspectral Satellite
Remote Sensing of Aerosol Parameterss . Front. Environ. Sci., 14 January 2022 —
https://doi.org/10.3389/fenvs.2021.770662

2. Rao, L.; Xu, J.; Efremenko, D.S.; Loyola, D.G.; Doicu, A. Optimization of
Aerosol Model Selection for TROPOMI/S5P. Remote Sens. 2021, 13, 2489.
https://doi.org/10.3390/rs13132489
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1 Introduction

3. Rao, L.; Xu, J.; Efremenko, D.S.; Loyola, D.G.; Doicu, A. Aerosol Parameters
Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks. IEEE J. Sel.
Top. Appl. Earth Obs. 2022, 15, 6473-6484, doi: 10.1109/JSTARS.2022.3196843

The organization of the thesis is as follows. Chapter 2 describes the aerosol database,
Chapter 3 provides a description of the radiative transfer models, Chapter 4 presents the
Bayesian-based retrieval algorithm, Chapter 5 describes the neural network algorithms,
and Chapter 6 contains some concluding remarks.

8



2 Aerosols database

The aerosol particles are modeled as components, each of them representing an internal
mixture of all chemical substances that have a similar origin. These components can be
externally mixed to form aerosol models, where external mixture means that there is no
physical or chemical interaction between particles of different components.

2.1 Aerosol components

The size distribution of an aerosol component is a log-normal distribution. The log-normal
mode can be described by

1. the number size distribution

dN(a)

d ln a
=

N0√
2πσ

exp
[
−(ln a− ln amod)2

2σ2

]
, (2.1)

where amod is the modal or median radius of the number size distribution, σ the
standard deviation, and

N0 =

∫ ∞

0

dN(a)

d ln a
d ln a (2.2)

the total number of particles (per cross section of the atmospheric column), or

2. the volume size distribution

dV (a)

d ln a
=

V0√
2πσ

exp
[
−(ln a− ln av)2

2σ2

]
, (2.3)

where

av = amod exp(−3σ2) (2.4)

is the median radius of the volume size distribution and

V0 =

∫ ∞

0

4πa3

3

dN(a)

d ln a
d ln a = N0

4πa3mod

3
exp(4.5σ2) (2.5)

the volume of particles (per cross section of the atmospheric column).

Thus, the size distribution of an aerosol component is specified by

1. the modal radius amod, the standard deviation σ, and the total number of particles
N0 for a number size distribution, or

2. the median radius of the volume size distribution av, the standard deviation σ, and
the volume of particles V0 for a volume size distribution.
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2 Aerosols database

When these parameters together with the wavelength-dependent refractive index maer

are known, the scattering characteristics of an aerosol component, i.e., the size averaged
extinction and scattering cross sections Cext and Csct, respectively, as well as, the size
averaged expansion coefficients χn of the phase matrix

P (a, cos Θ) =

Nrank∑

n=0

√
2n+ 1

2
χn(a)Pn(cos Θ),

where Pn are the Legendre polynomials and Nrank the maximum expansion order, can
be computed. In particular, if p(a) is the probability density function associated to the
number size distribution, i.e.,

p(a) =
1

N0

dN(a)

da
, (2.6)

implying

p(a) da =
1

N0
dN(a) =

1

N0

dN(a)

d ln a
d ln a, (2.7)

the size averaged quantities are computed by using the relations

Cext =

∫ amax

amin

Cext(a)p(a) da, (2.8)

Csct =

∫ amax

amin

Csct(a)p(a) da, (2.9)

χn =

∫ amax

amin

χn(a)p(a) da, n ≥ 0, (2.10)

where amin and amax are the lower and upper bounds of the size distribution, and Cext(a),
Csct(a), and χn(a) are computed by an electromagnetic scattering code for a spherical
particle of radius a.

Two databases for aerosol components are implemented in the retrieval algorithm.

Database 1 The database, consisting of the aerosol components included in the OPAC
model [Hess et al., 1998], i.e.,

1. water-insoluble (soil particles with a certain amount of organic material),

2. water-soluble (sulfates, nitrates, and water-soluble substances),

3. soot (absorbing black carbon),

4. sea-salt (accumulated and coarse),

5. mineral (accumulated and coarse) or desert dust,

6. mineral transported (desert dust transported over long distances with a reduced
amount of large particles), and

7. sulfate (also used as stratospheric background aerosol),

provides the values of Cext, Csct, ω = Csct/Cext, and χn , computed by using a Mie
electromagnetic scattering code, for

10



2.2 Aerosol models

1. each aerosol component,

2. a size distribution with amin = 0.005µm and amax = 10.0µm,

3. a set of 61 values of the wavelength in the range 0.250µm− 40µm, and

4. a set of 8 values of the relative humidity: 0.00, 0.70, 0.80, 0.90, 0.95, 0.98, and 0.99
(note that mineral and water-insoluble aerosols have no relative humidity induced
swelling).

Database 2 The database, including the aerosol components:

1. black carbon,

2. dust,

3. organic carbon,

4. sea salt, and

5. sulfate,

provides the values of Cext, Csct, ω = Csct/Cext, and χn for

1. each aerosol components,

2. size distributions with amin = 0.005µm and amax = 0.3µm for black carbon, organic
carbon and sulfate, amin = 0.1µm and amax = 10.0µm for dust, and amin = 0.03µm
and amax = 10.3µm for sea salt [Gong, 2003],

3. a set of 61 values of the wavelength in the range 0.250µm− 40µm, and

4. a set of 36 values of the relative humidity: 0.00, 0.05, . . . , 0.80, 0.81, 0.82, . . . , 0.99.

Here, the aerosol single scattering properties are calculated by using the formalism pre-
sented in Ref. [Chin et al., 2002], the growth factors for organic carbon and sulfate, as
well as, the spectral complex refractive index are taken from the OPAC database [Hess
et al., 1998], the empirical relationship of Gerber [Gerber, 1985] is used for determining
the growth factors of sea salt, and the scattering characteristics are computed by using a
Mie electromagnetic scattering code, except for dust, where a precomputed database for
ellipsoidal particles [Meng et al., 2010] is used.

2.2 Aerosol models

The aerosol components are externally mixed to form aerosol models. For an aerosol
model consisting of Nc aerosol components, the extinction and scattering cross sections,
the single scattering albedo, and the expansion coefficients of the phase function are given

11



2 Aerosols database

by

Caer
ext =

Nc∑

i=1

wiC
(i)
ext, (2.11)

Caer
sct =

Nc∑

i=1

wiC
(i)
sct, (2.12)

ωaer = Caer
sct /C

aer
ext , (2.13)

χaer
n =

1

Caer
sct

Nc∑

i=1

wiC
(i)
sctχ

(i)
n , (2.14)

respectively, where the weight

wi =
N

(i)
0∑Nc

i=1N
(i)
0

(2.15)

is the number mixing ratio, and C
(i)
ext, C

(i)
sct, χ

(i)
n , and N

(i)
0 correspond to the ith aerosol

component. In this context, the extinction and scattering coefficients are calculated re-
spectively, as

σaerext = nCaer
ext , (2.16)

σaersct = ωaerσ
aer
ext = nCaer

sct , (2.17)

where

n =

∑Nc
i=1N

(i)
0

V
=

Nc∑

i=1

N
(i)
0

V
=

Nc∑

i=1

ni, (2.18)

is the number density of the aerosol particles, and ni = N
(i)
0 /V the number density of the

ith aerosol component. Note that Eq. (2.15) can be expressed in terms of ni as

wi =
N

(i)
0∑N

i=1N
(i)
0

=
ni
n
. (2.19)

By combining the aerosol components from the databases described in Section 2.1,

different aerosol models can be defined. Using the optical parameters C
(i)
ext, C

(i)
sct, and

χ
(i)
n taken from one of the two databases, and specifying the weight wi of each aerosol

component i, the optical parameters of an aerosol model can be computed by means of Eqs.
(2.11)–(2.14). For the second database, aerosol mixtures of sulfate, dust, sea salt, black
carbon, and organic carbon, have been obtained by a cluster analysis using the Goddard
Chemistry Aerosol Radiation and Transport (GOCART) model [Taylor et al., 2015]. The
resulting aerosol models, i.e., smoke (sulfurous dusty, sulfurous), sulfate (marine, dusty,
marine dusty, smokey), dust, and marine, together with the weights of their components
(expressed in percent) are given in Table 2.1.

The aerosol databases found in the literature use different predefined aerosol models.
In these databases, the aerosol components of each model are specified together with their
microphysical properties, that is,

12



2.3 Aerosol vertical profiles

Table 2.1: Aerosol mixtures of sulfate (SS), dust (DU), sea salt (SS), black carbon (BC), and
organic carbon (OC) obtained by a cluster analysis using the Goddard Chemistry
Aerosol Radiation and Transport (GOCART) model.

Model Component
SU DU SS BC OC

Sulfurous dusty SMOKE 27.4 30.7 5.9 5.9 30.1
Marine SULFATE 44.6 4.7 36.7 3.0 11.0
Dusty SULFATE 54.7 25.6 7.2 3.4 9.1

DUST 13.0 80.2 1.1 1.7 4.0
Sulfurous SMOKE 29.7 6.0 3,.1 9.3 51.8
Sulfurous DUST 31.0 53.1 4.7 3.2 8.0

Marine dusty SULFATE 43.1 27.0 19.5 3.2 7.2
SULFATE 66.1 4.7 14.1 3.4 11.6

Sulfurous MARINE 28.8 3.8 58.4 1.7 7.3
Smokey SULFATE 45.0 6.8 14.0 6.7 27.5

1. size distribution parameters, e.g., the modal radius amod, the standard deviation σ,
and the total number of particles N0,

2. the number mixing ratio wi, and

3. the wavelength-dependent refractive index maer.

In the retrieval algorithm we included the aerosol models used in the OPAC database
[Hess et al., 1998], the OMI multiwavelength aerosol retrieval algorithm [Torres et al.,
2002], and the MODIS aerosol retrieval algorithm [Levy et al., 2007]. These are listed in
Tables 2.2–2.4. The computational process is organized as follows:

1. knowing the microphysical properties of the aerosol components and using a Mie

electromagnetic scattering code, we compute the optical parameters C
(i)
ext, C

(i)
sct, and

χ
(i)
n of each component i according to Eqs. (2.8)–(2.10), and then

2. we calculate the optical parameters C
aer
ext, C

aer
sct , and χaer

n of the aerosol model by
means of Eqs. (2.11)–(2.14).

It should be pointed out that the aerosol models included in the MODIS aerosol retrieval
algorithm have dynamic (function of optical depth τaer) size parameters (radius, standard
deviation, volume distribution) and complex refractive index. In this case, we compute
C

aer
ext, C

aer
sct , and χaer

n at a ten equidistant values of log τaer, with τaer ranging from 0.01 to
2.0, and linearly interpolate on this data set during the retrieval.

2.3 Aerosol vertical profiles

To provide the aerosol optical depths, the altitude profile of the particle number density
n(r) have to be specified. The number density is written as

n(r) = n0f(r,Haer),

where n0 is the maximum value of the number density, f(r,Haer) ≤ 1 the indicator function
of the aerosols, and Haer a parameter characterizing the altitude profile. For the indicator
function, we have several choices, as for example,
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2 Aerosols database

Table 2.2: Table 3: Aerosol models from OPAC database. The relative refractive index corre-
sponds to λ = 750 nm and U = 0.8.

Model Component rmod(µm) s = eσ m = (Re(m), Im(m)) wi
N0(total)
(cm

−3
)

Cont.
clean

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 1.0 2600
Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.577× 10−4

Cont.
avrg.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.95
15300Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.05

Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.261× 10−4

Cont.
pol.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.90
50000Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.10

Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.12× 10−4

Urban
Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.80

158000Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.20
Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.949× 10−5

Desert

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.87

2300Mineral nuc. 0.0700 1.95 (1.53, 4.00× 10−3) 0.117
Mineral acc. 0.3900 2.00 (1.53, 4.00× 10−3) 0.133× 10−1

Mineral coa. 1.9000 2.15 (1.53, 4.00× 10−3) 0.617× 10−4

Marit.
clean

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.987
1520Sea salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.132× 10−1

Sea salt coa. 1.7500 2.03 (1.35, 2.72× 10−7) 0.211× 10−5

Marit.
pol.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.422

9000Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.576
Sea salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.222× 10−2

Sea salt coa. 1.7500 2.03 (1.35, 2.72× 10−7) 0.356× 10−6

Marit.
trop.

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.983
600Sea salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.167× 10−1

Sea salt coa. 1.7500 2.03 (1.35, 2.72× 10−7) 0.217× 10−5

Arctic

Water sol. 0.0212 2.24 (1.40, 2.83× 10−3) 0.197

6600Soot 0.0118 2.00 (1.75, 4.3× 10−1) 0.803
Water insol. 0.4710 2.51 (1.53, 8.0× 10−3) 0.152× 10−5

Sea salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.288× 10−3

Antarctic
Sulfate 0.0695 2.03 (1.35, 1.39× 10−7) 0.998

43Sea salt acc. 0.2090 2.03 (1.35, 2.73× 10−7) 0.109× 10−2

Mineral tra. 0.5000 2.20 (1.530, 4.0× 10−3) 0.123× 10−3
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2.3 Aerosol vertical profiles

Table 2.3: Aerosol models assumed in the OMI multiwavelength aerosol retrieval algorithm. For
each model, the first and second lines are related to the accumulated and coarse modes,
respectively.

Model Sub-Model rmod(µm) s = eσ m = (Re(m), Im(m)) wcoarse

Weakly
absorbing

WA1101
0.071
0.369

1.499
2.160 (1.4, 5.0× 10−8) 4.36× 10−4

WA1102
0.081
0.378

1.499
2.160 (1.4, 5.0× 10−8) 4.04× 10−4

WA1103
0.126
0.421

1.499
2.160 (1.4, 5.0× 10−8) 8.10× 10−4

WA1104
0.023
0.186

2.030
2.030 (1.4, 5.0× 10−8) 1.53× 10−2

WA1201
0.071
0.369

1.499
2.160 (1.4, 4.0× 10−3) 4.36× 10−4

WA1202
0.081
0.378

1.499
2.160 (1.4, 4.0× 10−3) 4.04× 10−4

WA1203
0.126
0.421

1.499
2.160 (1.4, 4.0× 10−3) 8.10× 10−4

WA1301
0.071
0.369

1.499
2.160 (1.4, 1.2× 10−2) 4.36× 10−4

WA1302
0.081
0.378

1.499
2.160 (1.4, 1.2× 10−2) 4.04× 10−4

WA1303
0.126
0.421

1.499
2.160 (1.4, 1.2× 10−2) 8.10× 10−4

Biomass
burning

(carbonaceous)

BB2101
0.067
0.374

1.537
2.203 (1.5, 1.0× 10−2) 1.70× 10−4

BB2102
0.079
0.415

1.537
2.203 (1.5, 1.0× 10−2) 2.06× 10−4

BB2103
0.113
0.526

1.537
2.203 (1.5, 1.0× 10−2) 2.94× 10−4

BB2201
0.067
0.374

1.537
2.203 (1.5, 2.0× 10−2) 1.70× 10−4

BB2202
0.079
0.415

1.537
2.203 (1.5, 2.0× 10−2) 2.06× 10−4

BB2203
0.113
0.526

1.537
2.203 (1.5, 2.0× 10−2) 2.94× 10−4

BB2301
0.067
0.374

1.537
2.203 (1.5, 3.0× 10−2) 1.70× 10−4

BB2302
0.079
0.415

1.537
2.203 (1.5, 3.0× 10−2) 2.06× 10−4

BB2303
0.113
0.526

1.537
2.203 (1.5, 3.0× 10−2) 2.94× 10−4

Desert
dust

(minerals)

DD3101
0.036
0.562

1.697
1.806 (1.53, 4.0× 10−3) 4.35× 10−3

DD3102
0.045
0.562

1.697
1.806 (1.53, 4.0× 10−3) 4.35× 10−3

DD3201
0.036
0.562

1.697
1.806 (1.53, 1.0× 10−2) 4.35× 10−3

DD3202
0.036
0.562

1.697
1.806 (1.53, 1.0× 10−2) 4.35× 10−3

Maritime
Maritime
mod. abs.

0.023
0.186

2.030
2.030

(1.4, 4.0× 10−3)
(1.4, 5.0× 10−8)

1.55× 10−4

Maritime
abs.

0.023
0.186

2.030
2.030

(1.4, 1.2× 10−2)
(1.4, 5.0× 10−8)

1.55× 10−4

Volcanic VO4101
0.224
0.224

0.800
0.800 (1.45, 7.5× 10−7) 0.5
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2 Aerosols database

Table 2.4: Aerosol models considered in the MODIS aerosol retrieval algorithm. For each model,
the first and second lines are related to the accumulated and coarse modes, respectively.
The four values of the refractive index for dust, correspond to the wavelengths λ =
0.470, 0.550, 0.660, 2.100µm.
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2.3 Aerosol vertical profiles

1. a ground box profile

f(r,Haer) =

{
1,
0,

0 ≤ r ≤ Haer

otherwise

∣∣∣∣ , (2.20)

2. an elevated box profile with a fixed thickness of 0.5 km (Haer >= 0.25 km, treated
as a ground box profile when Haer < 0.25 km)

f(r,Haer) =

{
1,
0,

Haer − 0.25 km ≤ r ≤ Haer + 0.25 km
otherwise

∣∣∣∣ , (2.21)

3. a Gaussian profile
f(r,Haer) = exp[−(r −Haer)

2/(2R)2], (2.22)

where R is the profile standard deviation,

4. an exponential profile

f(r,Haer) = exp[−(r −Haer)/R], (2.23)

where R is the scale height, and

5. a combination of a ground box and an exponential profile

f(r,Haer) =

{
1,
exp[−(r −Haer)/R],

0 ≤ r ≤ Haer

otherwise

∣∣∣∣ . (2.24)

As a result, the extinction coefficient profile and the optical depth of aerosols are given,
respectively, by

σaerext(r) = f(r,Haer)n0C
aer
ext

and

τaer =

∫ ∞

0
σaerext(r)dr = n0C

aer
extF (Haer),

where F (Haer) =
∫∞
0 f(r,Haer)dr. It should be pointed out that if at some iteration

step of the inversion process, τaer and Haer are known, a radiative transfer calculation is
performed for the altitude extinction and scattering profiles

σaerext(r) = f(r,Haer)σ
aer
ext0 and σaersct (r) = ωaerσ

aer
ext(r),

respectively, where the maximum value of the extinction coefficient is computed as

σaerext0 = n0C
aer
ext = τaer/F (Haer).
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3 Radiative transfer model

In atmospheric remote sensing, the state parameters x, are related to collected measure-
ments making up a set of data y through a forward model F, that is,

y = F(x).

The task of computing the data y given the state parameters x is called the forward
problem, while the task of computing x given y is called the inverse problem. The forward
problem reflects the physics of the measurements and deals with the computation of the
spectral signal measured by an instrument by using a radiative transfer model. In contrast,
the inverse problem deals with the retrieval of some atmospheric parameters (given the
measurement) by using a mathematical approach, which is to some extent independent of
the physical process. Because the solution of the inverse problem requires the knowledge
of the forward model function F(x) and its Jacobian K(x) = ∂F(x)/∂x, the radiative
transfer model should not only deliver the spectral signal measured by an instrument but
also its derivative with respect to an atmospheric parameter of interest.

In this section we present the linearized radiative transfer model which is used for aerosol
retrieval.

3.1 Radiative transfer equation

In a pseudo-spherical atmosphere, the radiative transfer equation for the diffuse radiance
I(r,Ω) at point r in direction Ω = (µ, ϕ) is given by

µ
dI

dr
(r,Ω) = −σext(r)I(r,Ω) + F0

σsct(r)

4π
P (r,Ω, Ω0)e

−τ0ext(|r−rTOA|) (3.1)

+
σsct(r)

4π

∫

4π
P (r,Ω,Ω′)I(r,Ω′) dΩ′,

where, σext and σsct are the extinction and scattering coefficients, respectively, F0 is the
incident solar flux, P the scattering phase function, Ω0 = (−µ0, ϕ0) with µ0 > 0 the
incident solar direction, and τ0ext(|r − rTOA|) the solar optical depth between a generic
point r and the characteristic point at the top of the atmosphere rTOA in a spherical
atmosphere. The boundary conditions associated to the radiative transfer equation (3.1)
are (i) the top-of-atmosphere boundary condition (r = rTOA),

I(rTOA,Ω
−) = 0, (3.2)

and (ii) the surface boundary condition (r = rs),

I(rs,Ω
+) = F0

A

π
µ0ρ(Ω+,Ω0)e

−τ0ext(|rs−rTOA|) (3.3)

+
A

π

∫

2π
I(rs,Ω

−)|µ−|ρ(Ω+,Ω−) dΩ−,
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3 Radiative transfer model

where A and ρ are the surface albedo and the normalized bi-directional reflection function,
respectively, and the notations Ω+ and Ω− stand for an upward and a downward direction,
respectively.

The phase function P is expanded in terms of normalized Legendre polynomials Pn, i.e.,

P (r,Ω,Ω′) = P (r, cos Θ) =
∞∑

n=0

cnχn(r)Pn(cos Θ),

where χn are the expansion coefficients, cn =
√

(2n+ 1) /2, and cos Θ = Ω · Ω′. In the
case of an atmosphere consisting of Ng gas molecules and aerosols, the extinction and
scattering coefficients are computed respectively, as

σext(r) = σaerext(r) + σmol
sct (r) +

Ng∑

g=1

σgasabsg(r),

σsct(r) = σaersct (r) + σmol
sct (r),

and the phase function as

σsct(r)P (r,Ω,Ω′) = σmol
sct (r)Pmol(Ω,Ω

′) + σaersct (r)Paer(Ω,Ω
′),

where σaerext , σaersct , and Paer are the extinction coefficient, scattering coefficient, and the
phase function of the aerosols, respectively, σmol

sct is the molecular scattering coefficient
due to Rayleigh scattering, σgasabsg the absorption coefficient of gas g, and Pmol the effective
scattering phase function accounting for molecular scattering. For a specified aerosol model
and under the assumption that the aerosol optical depth τaer and the aerosol indicator
function f(r,Haer) are known,

1. the expansion coefficients χaer
n are computed by means of Eqs. (2.14), and

2. the aerosol extinction and scattering coefficients are calculated as σaerext(r) =
f(r,Haer)σ

aer
ext0 and σaersct (r) = ωaerσ

aer
ext(r), respectively, where σaerext0 = τaer/F (Haer)

with F (Haer) =
∫∞
0 f(r,Haer)dr, is the maximum value of the extinction coefficient,

and ωaer, computed by means of Eq. (2.13), is the aerosol single scattering albedo.

In the discrete ordinate method, we consider a cosine-azimuth expansion of the diffuse
radiance (ϕ0 = 0),

I(r,Ω) =

M∑

m=0

Im(r, µ) cosmϕ,

and the phase function

P (r,Ω,Ω′) =

M∑

m=0

(2− δm0)pm(r, µ, µ′) cos[m(ϕ− ϕ′)], (3.4)

pm(r, µ, µ′) =

M∑

n=m

χn(r)Pmn (µ)Pmn (µ′), (3.5)
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3.1 Radiative transfer equation

and discretize the radiative transfer equation in the angular domain by considering a set
of Gauss-Legendre quadrature points and weights {µk, wk}NDO

k=1 in the interval (0, 1). For
each azimuth mode m, we obtain the radiative transfer equation

±µk
dIm
dr

(r,±µk)
= −σext(r)Im(r,±µk)

+(2− δm0)
F0

4π
σsct(r)pm(r,±µk,−µ0)e−τ

0
ext(|rs−rTOA|) (3.6)

+
1

2

NDO∑

l=1

wlσsct(r) [pm(r,±µk, µl)Im(r, µl) + pm(r,±µk,−µl)Im(r,−µl)] ,

where NDO is the number of discrete ordinates per hemisphere and M = 2NDO − 1
the number of azimuth modes. Further, we discretize the atmosphere in Nlev levels:
r1 = rTOA > r2 > ... > rNlev

= rs. The number of layers is Nlay = Nlev − 1, and a layer j,
bounded above by the level rj and below by the level rj+1, has the geometrical thickness
4rj = rj−rj+1. The extinction and scattering coefficients σext(r) and σsct(r), respectively,
as well as the phase function coefficients χn(r) and the azimuth phase function coefficients
pm(r, µ, µ′) are assumed to be constant within each layer; their average values in layer
j are σextj , σsctj , χnj , and pmj(µ, µ

′) =
∑M

n=m χnjP
m
n (µ)Pmn (µ′), respectively. By the

discretization process we are led to the following linear system of differential equations in
layer j,

dim
dr

(r) = Amjim(r) + e−τ
0
ext(|r−rTOA|)bmj , rj+1 ≤ r ≤ rj , (3.7)

where im(r) = [i+m(r); i−m(r)]T is the radiance vector in the discrete ordinate space,
[i±m(r)]k = Im(r,±µk), k = 1, ..., NDO,

Amj =

[
A11
mj A12

mj

−A12
mj −A11

mj

]
, (3.8)

with

[A11
mj ]kl =

1

2µk
[wlσsctjpmj(µk, µl)− 2σextjδkl], (3.9)

[A12
mj ]kl =

1

2µk
wlσsctjpmj(µk,−µl), (3.10)

the layer matrix, and bmj = [b+
mj ; b

−
mj ]

T with

[b±mj ]k = ± 1

µk
(2− δm0)

F0

4π
σsctjpmj(±µk,−µ0),

the layer vector.
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3 Radiative transfer model

For a practical implementation, it is useful to expand the product σscatP as (cf. Eqs.
(3.4) and (3.5))

σsct(r)P (r,Ω,Ω′) =

M∑

m=0

(2− δm0)sm(r, µ, µ′) cos[m(ϕ− ϕ′)], (3.11)

sm(r, µ, µ′) = σsct(r)pm(r, µ, µ′)

=
M∑

n=m

ξn(r)Pmn (µ)Pmn (µ′), (3.12)

ξn(r) = σsct(r)χn(r), (3.13)

in which case, the product smj(µ, µ
′) = σsctjpmj(µ, µ

′) in Eqs. (3.9) and (3.10) is computed
as

smj(µ, µ
′) = σsctjpmj(µ, µ

′) =
M∑

n=m

ξnjP
m
n (µ)Pmn (µ′), (3.14)

ξnj = σsctjχnj . (3.15)

By this construction, the optical input parameters of the radiative transfer model are σextj
and ξnj for j = 1, . . . Nlay, and n = 0, . . . ,M .

3.2 Discrete ordinate method with matrix exponential

The Discrete Ordinate method with Matrix Exponential (DOME) was described in Refs.
[Doicu and Trautmann, 2009d,d]. In this section we provide a brief summary of the
method.

Rewriting the layer equation (3.7) as

dim
dr

(ρ) = Amjim(ρ) + e−τ
0
ext(ρ)bmj , (3.16)

where ρ = r − rj+1 with 0 ≤ ρ ≤ 4rj is the layer coordinate, and integrating Eq. (3.16),
yields the integral form of the layer equation

im,j+1 = e−Amj4rj imj −
∫ 4rj
0

e−Amjρe−τ
0
ext(ρ)bmj dρ, (3.17)

for the level values of the radiance field imj = [i+mj ; i
−
mj ]

T with [i±mj ]k = Im(rj ,±µk),
k = 1, ..., NDO.

The matrix exponential in Eq. (3.17) can be computed by using the eigendecomposition
method or Padé approximation.

1. The eigendecomposition method for computing the matrix exponential is based on a
spectral decomposition of the matrix Amj given by Eq. (3.8). This can be obtained
by one of the following methods: direct decomposition of an asymmetric matrix
[Stamnes and Swanson, 1981], square-root decomposition [Nakajima and Tanaka,
1986], and Cholesky decomposition [Stamnes et al., 1988]. In the direct decomposi-
tion method, we use the block symmetry of Amj , to obtain

Amj = VmjΛmjV
−1
mj , (3.18)
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3.2 Discrete ordinate method with matrix exponential

where Λmj = diag[λk;−λk], and

Vmj =

[
V+
mj V−mj

V−mj V+
mj

]
, (3.19)

V±mj = [v±1 , . . . ,v
±
NDO

]. (3.20)

In Eqs. (3.19) and (3.20),

[
v+
k

v−k

]
are the right eigenvectors of Amj corresponding to

eigenvalue λk, and

[
v−k
v+
k

]
the right eigenvectors of Amj corresponding to eigenvalue

−λk. Using Eq. (3.18), we compute the matrix exponential as

e−Amj4rj = VmjΛ
0
mjV

−1
mj ,

where Λ0
mj = diag[a0(λk4rj); a0(−λk4rj)] and a0(x) = e−x, and derive the layer

equation
A1
mjimj + A2

mjimj+1 = bmj , (3.21)

where

A1
mj = D1

mjV
−1
mj ,

A1
mj = −D2

mjV
−1
mj ,

bmj = BmjV
−1
mj(4rjbmj),

and

D1
mj = diag[a0(λk4rj); 1],

D2
mj = diag[1; a0(λk4rj)],

Bmj = diag[b1(λk4rj); b2(λk4rj)],

b1(x) =
e−(τ

0
extj+x) − e−τ

0
ext,j+1

τ0ext,j+1 − τ0extj − x
,

b2(x) = e−xb1(−x) =
e−(τ

0
ext,j+1+x) − e−τ

0
extj

τ0extj − τ0ext,j+1 − x
,

with τ0extj and τ0ext,j+1 being the solar optical depths at the boundary levels j and
j + 1.

2. In the first-order Padé approximation to the matrix exponential, the layer equation
reads as

A1
mj = I− 4rj

2
Amj , (3.22)

A2
mj = −

(
I +
4rj

2
Amj

)
, (3.23)

bmj = Bmj(4rjbmj)e−τ
0
extj , (3.24)

where Bmj is now given by

Bmj = I0(τ0)I +
[1

2
I0(τ0)− I1(τ0)

]
4rjAmj , (3.25)
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3 Radiative transfer model

with τ0 = τ0extj+1 − τ0extj and

I0(x) =
1− e−x

x
, (3.26)

I1(x) =
1

x

[
1− e−x

x
(1− e−x)

]
. (3.27)

The layer equation (3.21) together with the boundary conditions at the top and bottom
of the atmosphere, i.e., (cf. Eq. (3.2))

i−m1 = 0, (3.28)

and (cf. Eq. (3.3))

i+mNlev
= RmNlev

i−mNlev
+ rmNlev

, (3.29)

with

[RmNlev
]kl = 2Awlµlρm(µk,−µl),

[rmNlev
]k = A

F0

π
µ0ρm(µk,−µ0)e−τ

0
ext(|rs−rTOA|),

and

ρ(Ω+,Ω−) =
M∑

m=0

(2− δm0)ρm(µ,−µ′) cos[m(ϕ− ϕ′)],

for Ω = (µ, ϕ) and Ω′ = (−µ′, ϕ′) with µ, µ′ > 0, respectively, are assembled into the global
matrix Am of the entire atmosphere. The solution of the resulting system of equations
Amim = bm yields the level values of the radiance field. The matrix Am of dimension
2NDONlev × 2NDONlev has 3NDO − 1 sub- and super-diagonals and is compressed into
band-storage and then inverted using, for example, the LU factorization. For optically thin
layers, for which the condition ||Amj4rj || ≤ 1 is satisfied, the matrix exponential can be
computed by means of the Padé approximation instead of the eigendecomposition method.
Because for such layers, the Padé approximation is more efficient, the computation speed
is enhanced.

3.3 Acceleration techniques

3.3.1 Telescoping technique

The telescoping technique relies on the following result [Spurr, 2008]: For an atmosphere
consisting of gas molecules (Rayleigh layers) and any group of contiguous aerosol or cloud
layers, the azimuth phase function coefficients pmj vanish for all m > 2, and all Rayleigh
layers j. As a result, the layer matrix Amj becomes a diagonal matrix, and the layer vector
bmj vanishes. In practice, this technique is implemented as follows: solve a boundary-
value problem for the (active) aerosol/cloud layers, and then compute the radiances at the
remaining levels recursively.
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3.3 Acceleration techniques

3.3.2 False discrete ordinate

The radiance at the top-of-atmosphere in a measurement direction Ωm = (µm, ϕm) with
µm > 0,

Im = I(rTOA,Ωm), (3.30)

is usually computed by the source function integration technique. An alternative approach
is the method of false discrete ordinate. Specifically, the radiance at point r in the upward
direction Ω = (µ, ϕ) with µ > 0, can be calculated by using the integral form of the
radiative transfer equation, that is,

I(r,Ω) = I(rs,Ω)e
− 1
µ
τ(r)

+
1

µ

∫ r

rs

J(r′,Ω)e
− 1
µ
[τ(r)−τ(r′)]

dr′, (3.31)

where

J(r,Ω) = F0
σsct(r)

4π
P (r,Ω, Ω0)e

−τ0ext(|r−rTOA|)

+
σsct(r)

4π

∫

4π
P (r,Ω,Ω′)I(r,Ω′) dΩ′

is the source function, and τ(r) =
∫ r
rs
σext(r

′) dr′ the vertical optical depth. As the signal
received by the detector is I(rTOA,Ωm), we can simulate this radiance in the framework
of the discrete ordinate method by introducing an additional stream in the direction µm.
Because the integral

∫
4π P (·,Ω,Ω′)I(r,Ω′) dΩ′, which appears in the expression of the

source function, involves only the contribution of the Gaussian quadrature points µk,
k = 1, . . . , NDO, we choose wm = 0; therefore, µm is called a false discrete ordinate.
In conclusion, the top-of-atmosphere radiance at the false discrete ordinate is exactly the
top-of-atmosphere radiance in the measurement direction computed by the source function
integration method.

For a highly anisotropic phase function, the delta-M method [Wiscombe, 1977] with the
TMS correction of Nakajima and Tanaka [Nakajima and Tanaka, 1988] is very effective
for computing the transmitted and reflected radiances [Rozanov and Lyapustin, 2010].
The TMS correction requires one additional computational step, which consists in the
calculation of the single scattering correction term in the measurement direction Ωm. As
we intend to avoid any post-processing step, the implementation of the TMS correction
in the framework of the false discrete ordinate method seems to be beneficial. For this
purpose, we recall some fundamental results. In the delta-M method, the exact phase
function P (r, µ) =

∑Nrank
n=0 cnχn(r)Pn(µ), where µ = cos Θ and Nrank > M is the maximum

expansion order, is replaced by an approximate phase function P(r, µ). The approximate
phase function is chosen as P(r, µ) = 2fδ(1 − µ) + (1 − f)P (r, µ), where δ(1 − µ) is
the forward peak, and P (r, µ) =

∑M
n=0 cnχn(r)Pn(µ) the truncated phase function. The

truncation factor is computed as f(r) = χM+1(r)/2, while the expansion coefficients of
the truncated phase functions are related to the expansion coefficients of the exact phase
function by the relation χn(r) = [χn(r) − 2f(r)]/[1 − f(r)]. In this context, the diffuse
radiance is the solution of a radiative transfer equation with the scaled parameters σext =
σext − fσsct, σsct = (1 − f)σsct and P substituting the original parameters σext, σsct and
P , respectively. In the TMS method, the scaled single scattering term

Jss(r,Ωm) = F0
σsct(r)

4π
P (r,Ωm, Ω0)e

−τ0ext(|r−rTOA|)
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3 Radiative transfer model

is expressed in terms of the exact phase functions P instead of the approximate phase
functions P. More precisely and taking into account that for µ 6= 1, P = (1 − f)P , the
term σsctP = σsctP/(1− f) is replaced by σsctP/(1− f) = σsctP ; thus,

Jss(r,Ωm) = F0
σsct(r)

4π
P (r,Ωm, Ω0)e

−τ0ext(|r−rTOA|).

In this regard, the TMS correction for a false discrete ordinate requires to compute
the component of the layer vector bmj corresponding to µm by using the unscaled
scattering coefficient σsct and the azimuth phase function coefficients pmj(µ, µ

′) =∑Nrank
n=m χnjP

m
n (µ)Pmn (µ′) (involving all expansion coefficients of the phase function Nrank).

3.3.3 The correlated k-distribution method and the Principal
Component Analysis (PCA)

In hyper-spectral remote sensing, the monochromatic radiative transfer calculations are the
most time consuming part of the computational process. In order to reduce the monochro-
matic computations, the spectral radiance is not computed in a line-by-line framework,
but rather by taking into account the interdependency between spectral channels.

The spectral signal of an instrument that measures the radiance at the top of the
atmosphere in direction Ωm at wavelength λ in the spectral interval [λmin, λmax], is given
by

Im(λ) =

∫ λmax+s/2

λmin−s/2
g(λ− λ′)Im(λ′) dλ′, (3.32)

where g(λ) is the slit function and s the slit width. In principle, the computation of
Im(λ) requires the knowledge of Im(λ) at a fine set of spectral points in the spectral
interval [λmin− s/2, λmax + s/2]. To speed up the computations, DOME is equipped with
a broadband acceleration approach that combines the correlated k-distribution method
with dimensionality reduction techniques. These approaches are summarized below.

1. The correlated k-distribution method. Consider a discretization of the spectral in-
terval [λmin − s/2, λmax + s/2] into a set {λk}Wk=1 of W equally spaced wavelengths
with the discretization step 4λ, and assume that the transmission within a spectral
interval depends only on the distribution of the gas absorption coefficient σgasabs(λ)
within the spectral interval [Ambartzumian, 1936]. Let F = F (σgasabsk) be the cumu-
lative density function of σgasabs(λ) in the spectral interval [λk − 4λ/2, λk + 4λ/2],

σgasabsk(F ) the inverse distribution function, and {Fl, $l}Nq

l=1 a set of Nq quadrature
points and weights in the interval [0, 1]. The spectral signal (3.32) is then computed
as

Im(λ) =
W∑

w=1

ωwg(λ− λw)Im(σgasabs(λw)), (3.33)

where λw = λk, ωw = 4λ$l, and σgasabs(λw) = σgasabsk(Fl) for w = l + (k − 1)Nq,
k = 1, . . . ,W , l = 1, . . . , Nq, and W = WNq. Thus, in the correlated k-distribution
method, W monochromatic radiative transfer calculations are required for computing
Im(λw), and so, Im(λ). A further acceleration can be achieved when Im(λw) is
computed by using dimensionality reduction techniques, as for example, the principal
component analysis [Natraj et al., 2005, 2010].
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3.3 Acceleration techniques

2. Principal component analysis. At wavelength λw, the signal Im(λw) is related to
the signal calculated by a simplified radiative transfer model Ism(λw) through the
relation

ln
Im(λw)

Ism(λw)
= f(λw), (3.34)

i.e.,

Im(λw) = Ism(λw)ef(λw). (3.35)

The simplified model used in this study is a two-stream version of DOME, in which
the eigenvalues and the eigenvectors of the layer matrix are computed analytically,
and the system of equations for the entire atmosphere is solved by means of a penta-
diagonal solver as in Ref. [Spurr and Natraj, 2011]. The correction factor f(λw) in
Eq. (3.34) is the quantity which is calculated by means of the principal component
analysis. To summarize this approach, we assume that for each wavelength λw, the
spectral variability of the optical parameters can be described by a vector xw ∈ RN ,
defined by

xTw =
[
lnσgasabs1(λw), ..., lnσgasabsNlay

(λw), lnσmol
sct1(λw), ..., lnσmol

sctNlay
(λw)

]
, (3.36)

where σgasabsj and σmol
sctj are the optical coefficients in the jth layer, and N = 2Nlay.

Denoting by x = (1/W )
∑W

w=1 xw the sample mean of the data, the goal is to
find an M-dimensional subspace (M < N ) spanned by a set of linear independent
vectors {ak}Mk=1, such that the centered data xw − x belong to this subspace, i.e.,

xw ≈ x+
∑M

k=1 ywkak = x+Ayw yielding yw = A†(xw−x) for w = 1, . . . ,W . Here,
A = [ak]

M
k=1 ∈ RN×M, A† = (ATA)−1AT ∈ RM×N is the pseudoinverse of A, and

ywk is the kth component of the vector of parameters yw ∈ RM. In the principal
component analysis, the original N -dimensional centered data X = [xw − x]Ww=1 ∈
RN×W are projected onto the M-dimensional subspace spanned by the dominant
singular vectors of the data covariance matrix Cx = (1/W )XXT ∈ RN×N , that
is, with σk and uk being the kth singular value and singular vector of the matrix

Cx, respectively, we choose A = UMΣ
1/2
M and A† = Σ

−1/2
M UT

M, where UM =
[uk]

M
k=1 ∈ RN×M and ΣM = diag[σk]

M
k=1 ∈ RM×M. Furthermore, approximating

the correction factor f(xw) by a second-order Taylor expansion around x, and the
gradient and the Hessian of f by central differences, we are led to the computational
formula

f(xw) ≈ f(x) +
1

2

M∑

k=1

[f(x + ak)− f(x− ak)]ywk

+
1

2

M∑

k=1

[f(x + ak)− 2f(x) + f(x− ak)]y
2
wk. (3.37)

To compute the radiance correction factor we identify f(xw) with f(λw) =
ln[Im(λw)/Ism(λw)]. From Eq. (3.37) it is apparent that the computation of the
correction factor requires 2M + 1 calls of the full- and two-stream models. As a
result and taking into account that M� W , we are led to a substantial reduction
of the computational time. It should be pointed out that the principal component

27



3 Radiative transfer model

analysis can also be used to compute the derivative of Im(λw) with respect to the at-
mospheric parameter ς. In this case, we identify f(xw) with the derivative correction
factor

fς(λw) = ln
[∂Im
∂ς

(λw)/
∂Ism
∂ς

(λw)
]
. (3.38)

3.4 Linearized radiative transfer model

The radiance measured by an instrument at the top of the atmosphere in direction Ωm =
(µm, ϕm), µm > 0, Im = I(rTOA,Ωm) depends on various atmospheric parameters. The
retrieval of an atmospheric parameter requires the knowledge of the partial derivatives of
the measured radiance with respect to the atmospheric parameter of interest (the weighting
functions). The process of computing the partial derivatives is commonly referred to as
linearization. Two linearization methods can be found in the literature, namely, the
linearized forward approach and the forward-adjoint approach.

1. In the linearized forward approach, the partial derivatives are computed analytically
(see for example, Refs. [Spurr, 2002, 2008; Spurr and Christi, 2007; Spurr et al.,
2001]).

2. In the forward-adjoint approach, the measured radiance is expressed as the scalar
product of the solution of the adjoint problem and the source term of the forward
problem. Applying the linearization technique to the forward and adjoint problems,
analytical expressions for the weighting functions have been derived in Refs. [Box,
2002; Doicu and Trautmann, 2009a; Landgraf et al., 2001; Marchuk, 1964, 2013;
Rozanov and Rozanov, 2007; Ustinov, 2001, 2005]. Note that the forward-adjoint
approach is extremely efficient because only two radiative transfer calculations are
required for derivative calculation.

In this section, we describe the main peculiarities of these approaches and their imple-
mentation in the framework of the discrete ordinate method with matrix exponential. In
particular, we consider the computation of the partial derivatives of the measured radiance
with respect to an atmospheric parameter ς, where for the aerosol layer (2.20), ς stands for
the aerosol optical depth τaer and layer height Haer. Because the optical input parameters
of the radiative transfer model are σextj and ξnj for j = 1, . . . Nlay, and n = 0, . . . ,M , we
assume that the partial derivatives ∂σextj/∂ς and ∂ξnj/∂ς are computable quantities.

3.4.1 Derivatives with respect to aerosol layer height

For an aerosol layer, caution should be used when computing the derivatives with respect
to the aerosol layer height Haer. For doing this we consider an homogenization approach,
that is, the atmosphere is discretized into a fixed grid, and the layer containing the aerosol
height Haer is homogenized. The homogenization approach is summarized below.

Let the optical properties of the homogeneous aerosol layer be described by the extinc-
tion coefficient σaerext and the expansion coefficients ξaern . Assume that the aerosol layer
height Haer lies between the levels rjmin+1 and rjmin , i.e., rjmin+1 < Haer < rjmin . In layer
jmin containing the aerosol layer height Haer, we compute the optical parameters σextjmin
and ξnjmin by using the relations
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3.4 Linearized radiative transfer model

σextjmin = σ0extjmin + w(Haer)σ
aer
ext, (3.39)

ξnjmin = ξ0njmin + w(Haer)ξ
aer
n , (3.40)

where the superscript “0” refers to a clear sky atmosphere, and the weighting factor w is
defined as

w(Haer) =
Haer − rjmin+1

4rj
. (3.41)

By this homogenization procedure, σextjmin and ξnjmin become functions of Haer, i.e.,

σextjmin = σerxtjmin(σ
aer
ext, Haer) and ξnjmin = ξnjmin(σ

aer
ext, Haer),

so that the partial derivatives ∂σextjmin/∂Haer and ∂ξnjmin/∂Haer can be readily computed.

3.4.2 Linearized forward approach

In the linearized version of the discrete ordinate method with matrix exponential, we take
the derivative of the layer equation (3.21) with respect to the atmospheric parameter ς,
and obtain [Doicu and Trautmann, 2009b]

A1
mj

∂imj
∂ς

+ A2
mj

∂imj+1

∂ς
=
∂bmj
∂ς
−
∂A1

mj

∂ς
imj −

∂A2
mj

∂ς
imj+1. (3.42)

Some comments can be made here.

1. The linearized layer equations (3.42) are assembled into a global system of equations,
which coincides with the system matrix for radiance calculations; only the right-hand
sides are different.

2. To compute ∂A1
mj/∂ς, ∂A2

mj/∂ς and ∂bmj/∂ς , we apply the chain rule. In the case
of Padé approximation, the derivative calculations are trivial, but in the case of the
eigendecomposition method we have to compute the partial derivatives of the inverse
of the eigenvector matrix V−1mj and of the eigenvalues λk. The procedure is based on
the following idea. Let A be an n × n matrix with eigenvalues µk and eigenvectors
wk, that is,

Awk = µkwk, k = 1, . . . , n. (3.43)

Taking the derivative of this equation with respect to ς, we obtain

∂A

∂ς
wk + A

∂wk

∂ς
=
∂µk
∂ς

wk + µk
∂wk

∂ς
, (3.44)

and we see that Eq. (3.44) is a system of n equations with n + 1 unknowns: the
scalar ∂µk/∂ς and the vector ∂wk/∂ς. In order to obtain an additional equation, we
take into account that the eigenvectors wk are normalized, i.e., wT

k wk = 1 ; hence,
we get

wT
k

∂wk

∂ς
= 0. (3.45)

By Eqs. (3.44) and (3.45), we are led to the system of equations

[
wk µkI−A
0 wT

k

][ ∂µk
∂ς
∂wk
∂ς

]
=

[
∂A
∂ς wk

0

]
, (3.46)

which can be solved for ∂µk/∂ς and ∂wk/∂ς.
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3 Radiative transfer model

3.4.3 Forward-adjoint approach

In order to describe the forward-adjoint approach we consider the boundary value problem
for the total radiance I(r,Ω), which consists in the radiative transfer equation

µ
dI

dr
(r,Ω) = −σext(r)I(r,Ω) +

σsct(r)

4π

∫

4π
P (r,Ω,Ω′)I(r,Ω′) dΩ′, (3.47)

and the top-of-atmosphere and surface boundary conditions

I(rTOA,Ω
−) = F0δ(Ω

− −Ω0), (3.48)

and

I(rs,Ω
+) =

A

π

∫

2π
ρ(Ω+,Ω−)|µ−|I(rs,Ω

−) dΩ−, (3.49)

respectively. The total radiance is decomposed into the diffuse radiance I(r,Ω) and the
direct solar beam I0(r,Ω), i.e.,

I(r,Ω) = I(r,Ω) + I0(r,Ω), (3.50)

where

I0(r,Ω) = F0δ(Ω−Ω0)T (r), (3.51)

and T (r) = exp[−τext(|r− rTOA|,Ω0)] with τext(|r− rTOA|,Ω0) = τ0ext(|r− rTOA|), is the
solar transmission.

In the next step, we express the radiative transfer equation in an operator form. For
this purpose, we define the forward transport operator L and the forward source term Q
by the relations

LI(r,Ω)

= µ
dI

dr
(r,Ω) + σext(r)I(r,Ω)− σsct(r)

4π

∫

4π
P (r,Ω,Ω′)I(r,Ω′) dΩ′

− A

π
δ(r − rs)H(µ)µ

∫

4π
ρ(Ω,Ω′)H(−µ′)|µ′|I(r,Ω′) dΩ′ (3.52)

and

Q(r,Ω) = F0µ0δ(r − rTOA)δ(Ω−Ω0), (3.53)

respectively, where δ is the Dirac delta function and H is the Heaviside step function. In
the adjoint radiative transfer theory, we consider the adjoint radiative transfer operator
L†, defined through the Lagrange identity

〈
LI, I†

〉
=
〈
I,L†I†

〉
, (3.54)

where the scalar product of the fields I1 and I2 is given by

〈
I1, I2

〉
=

∫ rTOA

rs

∫

4π
I1(r,Ω)I2(r,Ω) dΩdr.
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3.4 Linearized radiative transfer model

The expression of the adjoint operator L†, under the assumptions that (i) I satisfies the
boundary conditions I(rTOA,Ω

−) = I(rs,Ω
+) = 0, and (ii) I† satisfies the boundary

conditions I†(rTOA,Ω
+) = I†(rs,Ω

−) = 0, is given by

L†I†(r,Ω)

= −µdI†

dr
(r,Ω) + σext(r)I

†(r,Ω)− σsct(r)

4π

∫

4π
P (r,Ω′,Ω)I†(r,Ω′) dΩ′

− A

π
δ(r − rs)H(−µ)|µ|

∫

4π
ρ(Ω′,Ω)H(µ′)|µ′|I†(r,Ω′) dΩ′. (3.55)

In view of Eq. (3.30) giving the expression of the measured radiance Im, we define the
adjoint source term by

Q†(r,Ω) = δ(r − rTOA)δ(Ω−Ωm), (3.56)

in which case, the representation

Im =
〈
Q†, I

〉
, (3.57)

readily follows. The main result of the adjoint radiative transfer theory states that if (i)
the radiance I solves the forward problem consisting in the operator equation LI = Q
and the boundary conditions I(rTOA,Ω

−) = I(rs,Ω
+) = 0 , and (ii) the radiance I† solves

the adjoint problem consisting in the operator equation L†I† = Q† and the boundary
conditions I†(rTOA,Ω

+) = I†(rs,Ω
−) = 0, then (cf. Eqs. (3.54) and (3.57))

Im =
〈
Q†, I

〉
=
〈
L†I†, I

〉
=
〈
I†,LI

〉
=
〈
I†, Q

〉
. (3.58)

Thus, the signal measured by the instrument is the scalar product between the adjoint
radiance and the forward source term. The solution of the adjoint radiative transfer
problem can be found by using the same solution method as for the forward problem with
a modified source term. Actually, by using using the symmetry properties of the phase
function P (r,−Ω,−Ω′) = P (r,Ω′,Ω) and of the the normalized bi-directional reflection
function ρ(−Ω,−Ω′) = ρ(Ω′,Ω), it can be shown that the conjugate adjoint radiance
Î†, defined by Î†(r,Ω) = I†(r,−Ω) solves the conjugate adjoint problem consisting in the
operator equation LÎ† = Q̂† and the boundary conditions Î†(rTOA,Ω

−) = Î†(rs,Ω
+) = 0,

where Q̂†(r,Ω) = F̂0µmδ(r− rTOA)δ(Ω− Ω̂m) is the conjugate adjoint source term, Ω̂m =
−Ωm = (µ̂m, ϕ̂m) is the conjugate adjoint direction (µ̂m = −µm and ϕ̂m = ϕm + π), and
F̂0 = 1/µm. Thus, the pseudo-forward radiance Î † solves the same type of boundary value
problem as the forward radiance I, excepting the source terms Q and Q̂†, which however,
are of similar forms.

Coming to derivative calculations, we take the derivative of Eq. (3.58) with respect to
ς, and use the relation ∂Q†/∂ς = 0, to obtain

∂Im
∂ς

=
〈
Q†,

∂I

∂ς

〉
=
〈
L†I†, ∂I

∂ς

〉
=
〈
I†,L∂I

∂ς

〉
.

Further, by using the result

L∂I

∂ς
=
∂Q

∂ς
− ∂L
∂ς

I,
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3 Radiative transfer model

in conjunction with the relation ∂Q/∂ς = 0, we end up with

∂Im
∂ς

= −
〈
I†,

∂L
∂ς

I
〉
. (3.59)

Next, we separate the total radiance I(r,Ω) into a diffuse and a direct component I(r,Ω)
and I0(r,Ω), respectively, (cf. Eq. (3.50)), and do the same for the conjugate adjoint total
radiance Î†(r,Ω), i.e.,

Î†(r,Ω) = Î†(r,Ω) + Î†0(r,Ω), (3.60)

where

Î†0(r,Ω) = F̂0δ(Ω− Ω̂m)T̂ †(r)

and T̂ †(r) = exp[−τext(|r− rTOA|, Ω̂m)]. Inserting the resulting expressions in Eq. (3.59)
gives the computational formula

∂Im
∂ς

= T1 + T2, (3.61)

where the first term

T1 = −
∫ rTOA

rs

∫

4π

∂σext
∂ς

(r)Î†(r,−Ω)I(r,Ω) drdΩ

− F0

∫ rTOA

rs

∂σext
∂ς

(r)Î†(r,−Ω0)T (r) dr

+
1

4π

∫ rTOA

rs

∫

4π
Î†(r,−Ω) drdΩ

∫

4π

∂

∂ς
[σsct(r)P (r,Ω,Ω′)]I(r,Ω′) dΩ′

+
F0

4π

∫ rTOA

rs

∫

4π

∂

∂ς
[σsct(r)P (r,Ω,Ω0)]Î

†(r,−Ω)T (r) drdΩ, (3.62)

involves integrals of the conjugate adjoint diffuse radiance Î†, while the second term

T2 = −F̂0

∫ rTOA

rs

∂σext
∂ς

(r)I(r,Ωm)T̂ †(r) dr

+
F̂0

4π

∫ rTOA

rs

T̂ †(r) dr

∫

4π

∂

∂ς
[σsct(r)P (r,Ωm,Ω

′)]I(r,Ω′) dΩ′

+
F̂0F0

4π

∫ rTOA

rs

∂

∂ς
[σsct(r)P (r,Ωm,Ω0)]T (r)T̂ †(r) dr, (3.63)

involves integrals of the (conjugate) adjoint transmission T̂ †. The computation of the
terms T1 and T2 involves the following steps.

1. Using the expansions (3.11) and (3.12), yielding

∂

∂ς
[σscat(r)P (r,Ω,Ω′)] =

M∑

m=0

(2− δm0)
∂sm
∂ς

(r, µ, µ′) cos[m(ϕ− ϕ′)],

∂sm
∂ς

(r, µ, µ′) =

M∑

n=m

∂ξn
∂ς

(r)Pmn (µ)Pmn (µ′),

32



3.4 Linearized radiative transfer model

and assuming a cosine-azimuth expansion of the diffuse radiance, the integration
over the azimuth angle in Eqs. (3.62) and (3.63) can be performed. The result is

∂Im
∂ς

=

M∑

m=0

(T1m + T2m) cos[m(ϕm − ϕ0)], (3.64)

where

T1m = −(1 + δm0)π
[∫ rTOA

rs

∫ 1

−1

∂σext
∂ς

(r)Î†m(r,−µ)Im(r, µ)drdµ
]

− F0

[∫ rTOA

rs

∂σext
∂ς

(r)Î†m(r, µ0)T (r)dr
]

+
1

2
(1 + δm0)π

[∫ rTOA

rs

∫ 1

−1
Î†m(r,−µ)drdµ

×
∫ 1

−1

∂sm
∂ς

(r, µ, µ′)Im(r, µ′)dµ′
]

+
F0

2

[∫ rTOA

rs

∫ 1

−1

∂sm
∂ς

(r, µ,−µ0)Î†m(r,−µ)T (r) drdµ
]

(3.65)

and

T2m = −F̂0

[∫ rTOA

rs

∂σext
∂ς

(r)Im(r, µm)T̂ †(r)dr
]

+
F̂0

2

[∫ rTOA

rs

T̂ †(r) dr

∫ 1

−1

∂sm
∂ς

(r, µm, µ
′)Im(r, µ′)dµ′

]

+
F̂0F0

4π
(2− δm0)

[∫ rTOA

rs

∂sm
∂ς

(r, µm,−µ0)T (r)T̂ †(r) dr
]
. (3.66)

2. To integrate over the radial coordinate in Eqs. (3.65) and (3.66), we assume that
the partial derivatives ∂σextj/∂ς and ∂ξnj/∂ς are nonzero on all layers j ∈ Jς , where
Jς is a subset of {1, . . . , Nlay}. As a result, the integration with respect to r reduces
to an integration over all layers in Jς ; thus,

∫ rTOA

rs
dr =

∑
j∈Jς

∫ rj
rj+1

dr. For the

azimuthal mode m, let Imj(ρ,±µk) and Î†mj(ρ,±µk) be the forward and conjugate
adjoint radiances at an internal point ρ in the layer j (0 ≤ ρ ≤ 4rj), respectively.
Using the analytic representation of the radiance at an internal layer point as given
in Ref. [Doicu and Trautmann, 2009c], the integrals

Imj(µ) =

∫ 4rj
0

Imj(ρ, µ)T̂ †(ρ)dρ

=

∫ 4rj
0

e
−[ ρ
4rj

τmextj+(1− ρ
4rj

)τmextj+1]Imj(ρ, µ)dρ, (3.67)

Îmj(µ) =

∫ 4rj
0

Î†mj(ρ, µ)T (ρ)dρ

=

∫ 4rj
0

e
−[ ρ
4rj

τ0extj+(1− ρ
4rj

)τ0extj+1]Î†mj(ρ, µ)dρ, (3.68)

Jmj(µ, µ′) =

∫ 4rj
0

Î†mj(ρ, µ)Imj(ρ, µ
′)dρ, (3.69)
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and

Tj =

∫ 4rj
0

T (ρ)T̂ †(ρ) dρ

=

∫ 4rj
0

e
−[ ρ
4rj

(τ0extj+τ
m
extj)+(1− ρ

4rj
)(τ0extj+1+τ

m
extj+1)]dρ (3.70)

for µ = ±µk, µ′ = ±µl, k, l = 1, . . . , NDO, can be computed analytically. Here,
τ0extj and τ0extj+1 are the optical depths along the characteristic Ω0 = (−µ0, ϕ0) at
the boundary levels j and j + 1, respectively, while τmextj and τmextj+1 are the optical

depths along the characteristic Ω̂m = (µ̂m, ϕ̂m) = (−µm, ϕm + π) at the boundary
levels j and j + 1, respectively. The final result is

T1m = −(1 + δm0)π
∑

j∈Jς

T a1mj − F0

∑

j∈Jς

T b1mj

− 1

2
(1 + δm0)π

∑

j∈Jς

T c1mj +
F0

2

∑

j∈Jς

T d1mj , (3.71)

T2m = −F̂0

∑

j∈Jς

T a2mj +
F̂0

2

∑

j∈Jς

T b2mj +
F̂0F0

4π
(2− δm0)

∑

j∈Jς

T c2mj , (3.72)

where

T a1mj =
∂σextj
∂ς

∑

k

wk[Jmj(−µk, µk) + Jmj(µk,−µk)], (3.73)

T b1mj =
∂σextj
∂ς
Îmj(µ0), (3.74)

T c1mj =
∑

l

∑

k

wlwk

[∂smj
∂ς

(µl, µk)Jmj(−µl, µk)

+
∂smj
∂ς

(µl,−µk)Jmj(−µl,−µk)

+
∂smj
∂ς

(−µl, µk)Jmj(µl, µk) +
∂smj
∂ς

(−µl,−µk)Jmj(µl,−µk)
]
, (3.75)

T d1mj =
∑

k

wk

[∂smj
∂ς

(µk,−µ0)Îmj(−µk) +
∂smj
∂ς

(−µk,−µ0)Îmj(µk)
]
, (3.76)

and

T a2mj =
∂σextj
∂ς
Imj(µm), (3.77)

T b2mj =
∑

k

wk

[∂smj
∂ς

(µm, µk)Imj(µk) +
∂smj
∂ς

(µm,−µk)Imj(−µk)
]
, (3.78)

T c2mj =
∂smj
∂ς

(µm,−µ0)Tj (3.79)

with ∂smj(µ, µ
′)/∂ς =

∑M
n=m(∂ξnj/∂ς)P

m
n (µ)Pmn (µ′). Note that the integrals

Îmj(µ0) and Imj(µm), which enter in the expressions of T b1mj and T a2mj , respec-
tively, can be computed by using the method of false discrete ordinate (the false
discrete ordinates µ0 and µm with zero weights are added to the set {µk}NDO

k=1 ).
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3.5 Forward models

3.5 Forward models

Consider the generic nonlinear equation yδ = F(x), where F is the forward model, x
the state vector, and yδ the noisy data vector. The state vector x encapsulates the
atmospheric parameters to be retrieved. At first glance, the noisy data vector yδ can
be identified with the noisy spectral signals measured by the instrument at a set of Nmλ

measurement wavelengths {λmk}Nmλ
k=1 , i.e.,

yδ =



Iδmes(λm1)

...
Iδmes(λmNmλ

)


 , (3.80)

while the forward model can be identified with the spectral signals simulated by a radiative
transfer model,

F(x) =



Isim(λm1,x)

...
Isim(λmNmλ

,x)


 . (3.81)

In the above equations, the subscript m stands for ”measurement”, and the dependency
of the spectral signals on the measurement direction Ωm is not indicated explicitly; this
is tacitly assumed.

Unfortunately, the choices (3.80) and (3.81) lead to a nonlinear equation with a high
degree of non-linearity. The following forward models, characterized by a lower degrees of
non-linearity, are implemented in the retrieval algorithm:

1. the radiance model,

ln Iδmes(λmk) = ln Isim(λmk,x) +

Ns∑

j=1

bjSj(λmk,xa), (3.82)

2. the differential radiance model with internal smoothing (DRMI),

Rδmes(λmk) = Rsim(λmk,x) +

Ns∑

j=1

bjSj(λmk,xa), k = 1, . . . , Nλ, (3.83)

Rδmes(λmk) = ln Iδmes(λmk)− Pmes(λmk, cmes), (3.84)

Rsim(λmk,x) = ln Isim(λmk,x)− Psim(λmk, csim(x)), (3.85)

and

3. the differential radiance model with external smoothing (DRME),

Rδmes(λmk) = ln Isim(λmk,x) +

Ns∑

j=1

bjSj(λmk,xa)

− P (λmk, c), k = 1, . . . , Nλ, (3.86)

Rδmes(λmk) = ln Iδmes(λmk)− Pmes(λmk, cmes).
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Note that in DRMI, the measured and simulated differential spectral signals are fitted,
while in DRME, the measured differential spectral signal and a simulated spectral signal
with its smooth component extracted are fitted. In Eqs. (3.82)–(3.86), xa an a priori
estimate of the state vector x, Sj(λmk,xa) with j = 1, . . . , Ns, the correction spectra
including for example, the polarization correction spectrum and the Ring spectrum, Ns

the number of correction spectra, and bj with j = 1, . . . , Ns, the (wavelength independent)
amplitudes of the correction spectra. The polynomials Pmes(λ, cmes), Psim(λ, csim(x)),
and P (λ, c) account for the low-order spectral structure due to the scattering by clouds
and aerosols. Specifically, in DRMI, the coefficients cmes and csim(X) of the smoothing
polynomials Pmes(λ, cmes) and Psim(λ, csim(x)), respectively, are computed as the solutions
of the least-squares problems

cmes = arg min
c

Nλ∑

k=1

[
ln Iδmes(λmk)− Pmes(λmk, c)

]2
(3.87)

and

csim(x) = arg min
c

Nλ∑

k=1

[
ln Isim(λmk,x)− Psim(λmk, c)

]2
, (3.88)

respectively. Thus, these coefficients, which are uniquely determined by ln Iδmes(λmk) and
ln Isim(λmk,x), are not a part of the retrieval, while in DRME, the coefficients c of the
smoothing polynomial P (λ, c) are included in the retrieval.
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4 Bayesian-based retrieval algorithms

For an aerosol layer with a box indicator function, we aim to retrieve the aerosol optical
depth and layer height. Hereafter, in order to simplify the notation, these quantities will
be denoted by τ and H, respectively. The retrieval can be done by

1. assuming that the aerosol model is known, or

2. selecting the best aerosol model from a set of candidate models.

4.1 Retrieval algorithm for a known aerosol model

In this section, which is adapted from the journal article in Appendix 1, we present (i) the
theoretical basis of a retrieval algorithm, designed under the assumption that the aerosol
model is known, and (ii) its application to a sensitivity analysis.

4.1.1 Algorithm description

Considering Nam aerosol models, we select an appropriate aerosol model m by using a
prior seasonal or geographical information. The retrieval of the state vector x = [τ,H] is
an inverse problem relying on the solution of the nonlinear equation

yδ = Fm(x) + δm, (4.1)

where yδ is the measurement vector or the noisy data vector, Fm(x) the forward model
corresponding to the aerosol model m,

δm = δmes + δaerm

the total data error vector, δmes the measurement error vector, and δaerm the aerosol
model error vector, i.e., the error due to an inadequate aerosol model. Here, yδ and
Fm(x) are the vectors of the log of the measured and simulated spectral signals, i.e.,
[yδ]i = ln Iδmes(λmi,x) and

[Fm(x)]i = ln I(m)
sim (λmi,x), (4.2)

respectively, where {λmi}Nmλ
i=1 is a set of Nmλ measurement wavelengths in the considered

spectral domain.
In a first step, the data model (4.1) is transformed into a model with white noise by

using the prewhitening technique. The procedure is as follows. Assuming that

1. δmes is a Gaussian random vector with zero mean and covariance matrix

Cmes = diag(σ2mesi)Nmλ
= σ2mesCmes,

Cmes = diag
(σ2mesi

σ2mes

)
Nmλ

, σ2mes =
1

Nmλ

Nmλ∑

i=1

σ2mesi,
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4 Bayesian-based retrieval algorithms

where σ2mes is the measurement error variance and Cmes a normalized measurement
error covariance matrix;

2. δaerm is a Gaussian random vector with zero mean and covariance matrix Caerm =
σ2aermINmλ

, where σ2aerm is the aerosol model error variance and INmλ
the identity

matrix; and

3. δmes and δaerm are independent random vectors,

we deduce that δm is also a Gaussian random vector with zero mean and covariance matrix

Cδm = Cmes + Caerm = σ2mCδm,
Cδm = wmesmCmes + (1− wmesm)INmλ

,

where

σ2m = σ2mes + σ2aerm

is the data error variance, Cδm a normalized data error covariance matrix, and

wmesm = σ2mes/σ
2
m

a weighting factor giving the contribution of Cmes to the covariance matrix Cδm. In this
context, the scaled data model reads as

yδ = Fm(x) + δm, (4.3)

where yδ = Pyδ, Fm(x) = PFm(x), δm = Pδm, and P = C−1/2δm is a scaling matrix.

Because Cδm = E{δmδTm} = σ2mINmλ
, it is readily seen that δm ∼ N(0,Cδm = σ2mINmλ

),
where the notation N(xmean,Cx) stands for a normal distribution with mean xmean and
covariance matrix Cx.

Further, we assume that x ∼ N(xa,Cx), where xa is the a priori state vector, the best
beforehand estimate of the solution, Cx = σ2xCx the a priori covariance matrix, and σ2x
the a priori state variance. Defining the regularization matrix L and the regularization
parameter α through the relations C−1x = LTL and α = σ2m/σ

2
x, respectively, we express

the a priori covariance matrix as Cx = σ2m(αLTL)−1.
The nonlinear equation (4.3) is solved by using a Bayesian approach. The key quantity

in this approach is the conditional probability density of x given the data yδ and the
aerosol model m, p(x | yδ,m), also called the a posteriori density. According to Bayes’
theorem, this is given by

p(x | yδ,m) =
p(yδ | x,m)p(x | m)

p(yδ | m)
,

where p(x | m) is the a priori density, i.e., the conditional probability density of x given
the aerosol model m before performing the measurement yδ, p(yδ | x,m) the likelihood
density, i.e., the conditional probability density of yδ given the state x and the aerosol
model m, and

p(yδ | m) =

∫
p(x,yδ | m) dx =

∫
p(yδ | x,m)p(x | m) dx, (4.4)
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4.1 Retrieval algorithm for a known aerosol model

the marginal likelihood density. For x ∼ N(xa,Cx = σ2m(αLTL)−1) and δm ∼ N(0,Cδm =
σ2mINmλ

), the Bayes’ formula yields

p(x | yδ,m) ∝ exp
[
−Vα(x | yδ,m)

]
, (4.5)

where

Vα(x | yδ,m) =
1

2σ2m

[∥∥yδ − Fm(x)
∥∥2 + α

∥∥L(x− xa)
∥∥2
]

(4.6)

is the a posteriori potential, and the maximum a posteriori estimate x̂δmα is computed as

x̂δmα = arg min
x
Vα(x | yδ,m). (4.7)

In a deterministic setting,

Fmα(x) = σ2mVα(x | yδ,m) =
1

2σ2m

[∥∥yδ − Fm(x)
∥∥2 + α

∥∥L(x− xa)
∥∥2
]

is the Tikhonov function for the nonlinear equation yδ = Fm(x) with the penalty term
α||L(x− xa)||2 and the regularization parameter α. Thus, a regularized solution

xδmα = arg min
x
Fmα(x). (4.8)

coincides with the maximum a posteriori estimate, i.e., xδmα = x̂δmα. The computation of
the regularized solution xδmα in the framework of the method of Tikhonov regularization
requires the knowledge of the optimal value of the regularization parameter α̂, while in a
Bayesian framework, the optimal regularization parameter is identified as the true ratio of
the data error variance and the a priori state variance, i.e., α̂ = σ2m/σ

2
x. Several regular-

ization parameter choice methods have been discussed in Ref. [Doicu et al., 2010]. These
include methods with constant regularization parameters, e.g., the maximum likelihood
estimation, the generalized cross-validation, and the nonlinear L-curve method. Unfortu-
nately, at present, there is no infallible method which guarantees an optimal choice of the
regularization parameter.

An improvement of the problems associated with the regularization parameter selection
is achieved in the framework of iterative regularization methods. These approaches are less
sensitive to overestimates of the regularization parameter, but require more iteration steps
to achieve convergence. A representative iterative approach is the iteratively regularized
Gauss-Newton method. At the iteration step k of the iteratively regularized Gauss-Newton
method, the new iterate minimizing the linearized function

Flmα(x) =
∥∥yδmk −Kmk(x− xa)

∥∥2 + αk
∥∥L(x− xa)

∥∥2, (4.9)

is given by

xδmk+1 = xa + K
†
mky

δ
mk, (4.10)

where
K
†
mk = (K

T
mkKmk + αkL

TL)−1K
T
mk (4.11)

is the regularized generalized inverse, Kmk = K(xδmk) = ∂F(xδmk)/∂x the Jacobian matrix
evaluated at xδmk, and

yδmk = yδ − F(xδmk) + Kmk(x
δ
mk − xa) (4.12)

the linearized data vector at the iteration step k. The following peculiarities of the itera-
tively regularized Gauss–Newton method deserve to be mentioned [Doicu et al., 2010].
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4 Bayesian-based retrieval algorithms

1. In contrast to the method of Tikhonov regularization, the regularization parameter
is not constant during the iterative process. Instead, the regularization parameters
αk are the terms of a decreasing (geometric) sequence, i.e., αk = qαk−1 with q < 1.
In this way, the amount of regularization is gradually decreased during the iterative
process.

2. For iterative regularization methods, the number of iteration steps k plays the role
of the regularization parameter, and the iterative process is stopped after an appro-
priate number of steps k? in order to avoid an uncontrolled expansion of the errors in
the data. The stopping rule used in this study is the discrepancy principle [Morozov,
1966], according to which, the iterative process is terminated after k? steps such that

∥∥rδmk?
∥∥ ≤ τ∆ <

∥∥rδmk
∥∥, 0 ≤ k < k?, (4.13)

where rδmk = yδ−Fm(xδk) is the residual vector at xδk, τ > 1 a control parameter, and
∆ the noise level (an upper bound for the noise in the data). Because in practice,
the noise level cannot be a priori estimated, we adopt a practical approach based
on the observation that the residual ||rδmk|| decreases during the iterative process
and attains a plateau at approximately ∆. Thus, if the nonlinear residuals ||rδmk||
converge to ||rδm∞|| within a prescribed tolerance, we use the estimate ∆ ≈ ||rδm∞||.

3. The numerical experiments performed in Ref. [Doicu et al., 2010] showed that at
the solution xδmk? , (i) αk?−1 is close to the optimal regularization parameter, and (ii)
xδmk? is close to the Tikhonov solution corresponding to the optimal regularization
parameter. Therefore, we assume that

a) α̂ = αk?−1 is an estimate for the optimal regularization parameter, and

b) xδmα̂ = xδmk? is the minimizer of the Tikhonov function with regularization
parameter α̂, Fmα̂(x).

In conclusion, the iteratively regularized Gauss-Newton method provides an optimal value
of the regularization parameter α̂ (i.e., the ratio of the data error variance σ2m and the a
priori state variance σ2x) and the corresponding regularized solution xδmα̂.

4.1.2 Sensitivity analysis

Deriving aerosol information from satellite measurements is a difficult task in terms of
retrieval sensitivity and accuracy. Several critical factors affecting the accuracy of aerosol
remote sensing includes the aerosol model, treatment of the underlying surface, sensor
calibration, and cloud screening. In this section we evaluate the retrieval accuracy of
the aerosol parameters by performing a sensitivity analysis. By studying the impact of
the forward model and instrument uncertainties on the retrieval, the expected retrieval
performance using real measurements can be estimated.

The retrieval is performed by using the Bayesian-based retrieval algorithm for a known
aerosol model and an aerosol layer that extends from the surface to the height H (box
vertical profile). The absorption cross sections of gas molecules are computed by using LBL
calculations [Schreier et al., 2014] with optimized rational approximations for the Voigt
line profile [Schreier, 2011], the wavenumber grid point spacing is a fraction (e.g., 1/4)
of the mimimum half-width of the Voigt lines taken from HITRAN database [Rothman
et al., 2009], and the Rayleigh cross-section and depolarization ratios are calculated as in
Ref. [Bodhaine et al., 1999]. In particular, the uncertainties related to
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4.1 Retrieval algorithm for a known aerosol model

1. different aerosol models,

2. surface properties,

3. solar and viewing zenith angles, and

4. the wavelength shift

are analyzed.

Aerosol model Three sets of aerosol models are used in the numerical analysis. The
first set (Set I) is taken from the MODIS aerosol retrieval algorithm, the second set (Set II)
from the OMI aerosol retrieval algorithm, and the third set (Set III) includes the aerosol
models obtained by a cluster analysis using the GOCART model. In Fig. 4.1 we illustrate
the reflectances and the phase functions for the moderately absorbing (MODABS) aerosol
model in Set I, weakly absorbing (WA1202) model in Set II, and a mixture of organic
carbon and sulfate in Set III. For sets II and III, we considered three values for the weight
of the coarse mode, i.e., wcoarse = 0.0, 0.5, and 1.0, and organic carbon i.e., wOC = 0.0, 0.5,
and 1.0, respectively

The plots show that

1. the reflectance for Set I lies between the highest and lowest reflectances for Sets II
and III,

2. the reflectances for Set II with wcoarse = 1.0 and Set III with wOC = 0.0 are similar,

3. the spectra agree well between 760 and 762 nm (where the main height information
is contained), and poorly elsewhere,

4. significant differences in the phase functions are visible for small scattering angles.

In order to analyze the influence of the aerosol models on the retrieval results, we
generate synthetic measurement spectra with the aerosol model MODABS in Set I, and
perform the retrieval with the other two models. The plots in Figs. 4.2 and 4.3 show that
an inappropriate aerosol model may result in significant retrieval errors. Specifically,

1. the error in the aerosol layer height reaches up to 1.9 km, when the true value is 9.5
km, while

2. the largest negative error in the aerosol optical depth is about −0.5, when the true
value is 2.0.

Surface albedo Previous sensitivity studies [Nanda et al., 2018; Sanders et al., 2015]
demonstrated that the accuracy in describing the surface properties can significantly in-
fluence the aerosol retrieval.

In general, the sensitivity of the signal with respect a retrieved parameter can be de-
scribed by its partial derivative with respect to this parameter. The partial derivatives
of the reflectance with respect to the aerosol layer height and optical depth as functions
of surface albedo are illustrated in Fig. 4.4. The left panel in Fig. 4.4 shows that the
derivatives decrease faster with decreasing the aerosol layer height (for the same values
of the aerosol optical depth), while the right panel shows that the derivative curves do
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Figure 4.1: Simulated reflectances versus the wavelength in the TROPOMI oxygen A-band (left),
and the phase functions versus the scattering angle (right). The results correspond to
the aerosol models from Sets I, II, and III, the aerosol optical depth τ = 0.5, aerosol
layer height H = 3.5 km, surface albedo A = 0.05, solar zenith angle θ0 = 30◦,
viewing zenith angle θ = 0◦, and relative azimuth angle ∆ϕ = 180◦. For sets II and
III three values of 0.0, 0.5, and 1.0 for the weights of the coarse mode and organic
carbon, respectively, were chosen.

not differ significantly for the three values of the aerosol optical depth. A value of the
surface albedo which is critical for the retrieval of the aerosol layer height and optical
depth is the value for which the partial derivative of the reflectance with respect to the
aerosol parameters is zero (dotted line). The plots show that the critical surface albedo is
between 0.2 and 0.3 for both the aerosol layer height (orange line in the left panel of Fig.
4.4) and aerosol optical depth (blue line in the right panel of Fig. 4.4).

The relative retrieval errors resulting from the uncertainty in the surface albedo are
shown in Fig. 4.5. The following conclusions can be drawn.

1. Over darker or less bright surface (with albedo values of 0.05 and 0.15), the uncer-
tainty of the surface albedo produces less impact on the aerosol retrieval, while over a
brighter surface (with albedo values of 0.5 and 0.9), the retrieval error is significantly
higher.

2. When the value of the surface albedo is around the critical surface albedo, an error
of 5 % in the surface albedo can yield errors of about 180 % (green line in the left
panel of Fig. 4.5) and 80 % (green line in the right panel of Fig. 4.5) in the retrieved
aerosol layer height and optical depth respectively.

Geometry In Figs. 4.6 and 4.7 we illustrate the relative retrieval errors in the aerosol
layer height and optical depth due to the relative errors in the solar and viewing zenith
angles, respectively. The plots show that the relative errors increase with increasing

1. the solar zenith angle (for an error of 5% in the solar zenith angle at 75◦, the relative
errors in the retrieved aerosol layer height and optical depth reach up to 20% and
90%, respectively), and
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Figure 4.2: Absolute retrieval errors in the aerosol layer height (ALH) and aerosol optical depth
(AOD) for the weakly absorbing model in Set II. The synthetic measurement spectra
are generated with the aerosol model MODABS in Set I. The parameters of the
simulation are as in Fig. 4.1.

2. the viewing zenith angle (for an error of 5% in the viewing zenith angle at 75◦, the
relative errors in the retrieved aerosol layer height and optical depth reach up to
30% and 20%, respectively).

However, because the accuracy of the measured solar and viewing zenith angles is within
1%, we expect that they have a minor impact on the retrieval results.

Wavelength calibration An accurate wavelength calibration of the radiance and solar
irradiance measurements is required during the Level-1b and Level-2 data processing. The
reason is that wavelength uncertainties can introduce significant errors in the retrieval.
Figs. 4.8 and 4.9 depict the relative retrieval errors in the aerosol layer height and optical
depth together with the fit residuals versus the wavelength shift (an offset in the spectral
position of a measured signal). The results correspond to two values of the surface albedo,
namely 0.05 and 0.15, respectively. The plots show that

1. the residual increases monotonically with increasing the wavelength shift, and

2. the wavelength shift has a greater impact on

a) the retrieval over brighter surfaces, and

b) the layer height retrieval than the optical depth retrieval.

Application to real data In this section, we present the retrieval results from two
real TROPOMI/S5P measurements taken on 22 June 2018 and 6 June 2020, respectively.
Fig. 4.10 displays the corresponding true-color images from the Visible Infrared Imag-
ing Radiometer (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP)
satellite, where the red rectangular region indicates the chosen TROPOMI scene. The
first scene observes a part of Atlantic ocean near West Africa with latitudes between 10◦
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Figure 4.3: The same as in Fig. 4.2 but for the sulfurous smoke model in Set III.

Table 4.1: Spectral characteristics of TROPOMI oxygen A-band measurements and the main
input retrieval parameters. The aerosol models are the weakly absorbing (WA1202)
and dust (DD3102) models in Set II.

Parameter Description

Band ID 6
Spectral range 758-771 nm
Spectral sampling 0.126 nm
Aerosol model weakly absorbing and dust
Surface albedo GE LER
Cloud parameters OCRA/ROCINN

and 12◦ N and longitudes between 22◦ and 24◦ W, while the second scene detects a desert
dust aerosol case over the Sahara with latitudes between 12◦ and 21◦ N and longitudes
between 16◦ and 20◦ W.

Table 4.1 describes the TROPOMI oxygen A-band measurements and the input re-
trieval parameters. In the retrieval, pixels with a cloud fraction greater than 0.15 are
removed, and pixels with an aerosol index below 0.0 and a solar zenith angle larger than
75◦ are not processed. The cloud parameters and the surface albedo are taken from
the operational TROPOMI cloud products (OCRA/ROCINN)[Loyola et al., 2018] and
the geometry-dependent effective Lambertian equivalent reflectivity (GE LER) products
[Loyola et al., 2020], respectively.

The retrieval results for the two scenes, plotted in Figs. 4.11 and 4.12, respectively, seem
to capture the spatial patterns seen in Fig. 4.10 under different aerosol loading scenarios.
In particular,

1. the retrieved aerosol layer height on 22 June 2018 is higher in the south than in the
north region, and the lowest values of the aerosol layer height is in the northeast
region, where the aerosol optical depth has high values;
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Figure 4.4: Derivative of the reflectance spectrum with respect to the aerosol layer height (ALH)
and aerosol optical depth (AOD) as functions of surface albedo.

2. although, due to a heavy cloud contamination, a small number of valid pixels are
processed on 6 June 2020, the spatial distribution of desert dust aerosols is well
described by the retrieved aerosol parameters.

For reference, the operational retrieval products processed by KNMI are plotted in the
bottom panel of Fig. 4.11 and 4.12. As compared to the operational products,

1. the retrieved aerosol parameters capture nearly the same spatial patterns,

2. the aerosol layer heights are slightly underestimated, and

3. the aerosol optical depths are evidently lower.

Possible reasons for these discrepancies are the different surface albedo data and aerosol
microphysical properties used in the two retrieval algorithms.

Fig. 4.13 compares the observed and modeled reflectance spectra at the solution. From
the plots, it can be seen that

1. the relative residuals are high near 760 nm, where the reflectance is rather low, and

2. for all pixels, the simulated and observed reflectance spectra at the solution are in a
good agreement; this is an evidence for an overall good fit.

Finally, in Table 4.2, the propagated retrieval error due to errors in the surface albedo
and wavelength calibration are listed. From these results we conclude that the uncertainty
in the surface albedo has a significant impact on the retrieval.

Conclusions The objective of this section was to investigate the impact of forward and
instrument model parameters on the retrieval. From our numerical analysis, the following
conclusions can be drawn
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Figure 4.5: Relative retrieval errors in the aerosol layer height (ALH) and aerosol optical depth
(AOD) due to errors in the surface albedo. The results correspond to the aerosol
model MODABS in Set I, the aerosol optical depth τ = 0.5, and the aerosol layer
height H = 3.5 km.

Table 4.2: Bias in the aerosol layer height (ALH) and aerosol optical depth (AOD) due to the
errors in the surface albedo and wavelength calibration.

Parameter Error ALH bias AOD bias

Surface albedo 0.01 0.1303 km 0.0918
Wavelength grid 0.007 nm 0.0793 km 0.0030

1. An inaccurate aerosol model can lead to a moderate loss of the retrieval accuracy.
However, choosing an appropriate aerosol model is beneficial in the operational data
processing.

2. Uncertainties in the surface albedo influence significantly the retrieval accuracy, par-
ticularly if the surface albedo is around the critical surface albedo.

3. Uncertainties in the solar and viewing zenith angles within 1% do not have a sig-
nificant impact on the retrieval accuracy, provided that the zenith angles are below
75◦.

4. The wavelength shift can potentially deteriorate the quality of the retrieved param-
eters (particularly, of the aerosol layer height), although it may have a minor impact
on the fit residuals.

Retrievals using real TROPOMI/S5P data recorded on 22 June 2018 and 6 June 2020
have shown that

1. the retrieved aerosol parameters resemble the aerosol loading scenarios identified in
the VIIRS images,

2. the simulated spectra at the solution approximate sufficiently well the observed ones,
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Figure 4.6: Relative retrieval errors in the aerosol layer height (ALH) and aerosol optical depth
(AOD) due to errors in the solar zenith angle (SZA).

3. an inaccurate surface albedo is supposed to be the most important error source in
practice.

4.2 Retrieval algorithm with aerosol model selection

In the above retrieval algorithms, an aerosol model, chosen from a set of candidate models,
is assumed to reflect the real scenario. However, model selection is not a trivial task
because several models may fit the data equally well. The Bayesian approach offers the
possibility to select the best fitting models from a set of candidate models without any prior
seasonal or geographical information. Specifically, in the Bayesian model selection, the
model with the highest evidence (i.e., the a posteriori probability densities of a model) is
selected, while in the Bayesian model averaging [Hoeting et al., 1999], the retrieval results,
corresponding to different candidate models weighted by their evidences, are combined.
Note that Määttä et al. [Määttä et al., 2014] introduced the Bayesian approach into
the aerosol model selection of the Ozone Monitoring instrument AEROsol (OMAERO)
algorithm, Kauppi et al. [Kauppi et al., 2017] applied the Bayesian approach to real data
of OMI, while Sasi et al. [Sasi et al., 2020a,b] applied the Bayesian approach to EPIC
[Marshak et al., 2018] synthetic measurements. The content of this section is adapted
from the journal article in Appendix 2.

4.2.1 Algorithm description

For model comparison, the so-called relative evidence of the mth aerosol model p(m | yδ)
plays an important role. In view of Bayes’ theorem, this conditional probability density is
defined by

p(m | yδ) =
p(yδ | m)p(m)

p(yδ)
=

p(yδ | m)
∑Nam

m=1 p(y
δ | m)

, (4.14)
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Figure 4.7: The same as in Fig. 4.6 but for the errors in the viewing zenith angle (VZA).

where p(yδ | m) is the marginal likelihood density, and the last equality follows from the
mean formula p(yδ) =

∑Nam
m=1 p(y

δ | m)p(m) and the assumption that all aerosol models
are equally like, i.e., p(m) = 1/Nam. In terms of p(m | yδ), the mean a posteriori density
is given by

pmean(x | yδ) =

Nam∑

m=1

p(x | yδ,m)p(m | yδ), (4.15)

while the mean and the maximum solution estimates are defined by

x̂δmean =

Nam∑

m=1

xδmα̂p(m | yδ), (4.16)

and
x̂δmax = xδm?α̂, m

? = arg max
m

p(m | yδ), (4.17)

respectively. In Eq. (4.16), the Bayesian model averaging technique is used to combine
the individual solutions weighted by their evidences, while in Eq. (4.15), the aerosol model
with the highest evidence is considered to be the best among all aerosol models involved.
Intuitively, we expect that in practice, a linear combination of the retrieved parameters
corresponding to different candidate models will better reproduce the real scenario than
an a priori selected model. The relative evidence p(m | yδ) can be computed as follows.

1. In a stochastic setting, p(m | yδ) can be calculated via Eq. (4.14) by using a
linearization of the forward model around the solution, i.e.,

Fm(x) = Fm(xδmα̂) + Kmα̂(x− xδmα̂),

in which case, the marginal likelihood density computes as

p(yδ | m) =

√
det(INmλ

− Âmα̂)

(2πσ2m)Nmλ

× exp
[
− 1

2σ2m
yδTmα̂(INmλ

− Âmα̂)yδmα̂

]
, (4.18)
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Figure 4.8: Relative retrieval errors in the aerosol layer height (ALH) and aerosol optical depth
(AOD), as well as, the corresponding fit residuals, versus the wavelength shift. In
the retrieval, the true values of the aerosol layer height are 1.5, 3.5, 5.5, and 7.5 km,
while the true value of the aerosol optical depth is 0.5. The plots in the left panel
correspond to a surface albedo of 0.05, while the plots in the right panel to a surface
albedo of 0.15.

where
yδmα̂ = yδ − F(xδmα̂) + Kmα̂(xδmα̂ − xa),

and Âmα̂ = Kmα̂K
†
mα̂ , Kmα̂ and K

†
mα̂ are the influence matrix, the Jacobian matrix,

and the generalized inverse at the solution xδmα̂, respectively. In Eq. (4.18), σ2m
can be estimated in the framework of the maximum marginal likelihood estimation
[Kendall et al., 1999; Patterson and Thompson, 1971; Smyth and Verbyla, 1996] as

σ2m =
1

Nmλ
yδTmα̂(INmλ

− Âmα̂)yδmα̂, (4.19)

or in the framework of generalized cross-validation [Wahba, 1977, 1990] as

σ2m =
||rδmα̂||2

[trace(INmλ
− Âmα̂)]

, (4.20)

where rδmα̂ = yδ − Fm(xδmα̂) the nonlinear residual vector.

2. In a deterministic setting, p(m | yδ), regarded as a merit function characterizing
the solution xδmα̂, can be defined in terms of the marginal likelihood function or the
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Figure 4.9: The same as in Fig. 4.8, but for the true aerosol optical depth values of 0.5, 1.0, 1.5,
and 2.0, and a true aerosol layer height value of 3.5 km.

generalized cross-validation function. In the second case, p(m | yδ) is computed as

p(m | yδ) =
1/υ(m)

∑Nam
m=1 1/υ(m)

, (4.21)

where

υ(m) =
||rδmα̂||2

[trace(I− Âmα̂)]2
(4.22)

is the generalized cross-validation function.

4.2.2 Numerical analysis

Two sets of aerosol models are used in the numerical analysis. The first set (Set 1) is
taken from the MODIS aerosol retrieval algorithm and includes the following four aerosol
models: non-absorbing (NONABS), moderately absorbing (MODABS), absorbing (ABS),
and desert dust (DUST), while the second set (Set 2) is taken from the OMI aerosol
retrieval algorithm and includes the following five major aerosol types: weakly absorbing
(WA), biomass burning (BB), desert dust (DD), marine (MA), and volcanic (VO). In the
following, if not stated otherwise, the surface albedo, solar zenith angle, viewing zenith
angle, and relative azimuth angle are A = 0.05, θ0 = 60◦, θ = 0◦, and ∆ϕ = 180◦,
respectively.
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Figure 4.10: VIIRS true-color images on 22 June 2018 (left) and 6 June 2020 (right). The red
rectangular region displays the chosen TROPOMI scene.

Test 1 In the first test example, synthetic measurement spectra are computed for each
aerosol model included in Set 1 (me = NONABS, MODABS, ABS, DUST), and for each
measurement, all aerosol models from Set 1 are considered in the retrieval. Thus, the
retrieval algorithm has the possibility of identifying the correct aerosol model. The exact
aerosol optical depths and layer heights to be retrieved are τe = 0.25, 0.5, 0.75, 1, 1.25,
1.75, and 2, and He = 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, and 9.5 km, respectively. The
accuracy of the solution estimates is quantified through the relative errors

ετmean(τe, He) =
|τmean − τe|

τe
and εHmean(τe, He) =

|Hmean −He|
He

(4.23)

corresponding to (cf. Eq. (4.16)) x̂δmean = [τmean, Hmean] and

ετmax(τe, He) =
|τmax − τe|

τe
and εHmax(τe, He) =

|Hmax −He|
He

(4.24)

corresponding to (cf. Eq. (4.17)) x̂δmax = [τmax, Hmax], where xe = [τe, He] is the exact
solution.

In Fig. 4.14 and 4.15, we illustrate the variations of the relative errors with respect
to the exact aerosol layer height He for τe = 0.5 (i.e., ετ,Hmean,max(τe = 0.5, He)), and the

aerosol optical depth τe for He = 3.5 km (i.e., ετ,Hmean,max(τe, He = 3.5 km)), respectively.
The following conclusions can be drawn:

1. The relative errors corresponding to the maximum solution estimate (ετmax and εHmax)
are significantly smaller than those corresponding to the mean solution estimate
(ετmean and εHmean). Because the errors are acceptable according to the scientific
requirements defined in the pre-launch characterization tests, we conclude that the
retrieval algorithm recognize correctly the exact aerosol model.

2. The maximum solution estimate of the aerosol optical depth is more accurate than
the maximum solution estimate of the aerosol layer height.
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Figure 4.11: Retrieved aerosol layer height (ALH) and aerosol optical depth (AOD) for the
TROPOMI scene on 22 June 2018. The results are obtained with the present re-
trieval algorithm (top panel) and the operational retrieval algorithm (bottom panel).

3. Because the inversion process is not perfect, an inappropriate aerosol model with
unexpected large errors can occasionally be identified (τe = 1, 1.25).

The relative errors ετmax(τe, He = 3.5 km) and εHmax(τe, He = 3.5 km) attain their highest
values (of about 0.22 and 0.016, respectively) for me = MODABS and τe = 1, 1.25. To
explain this result, we plot in Fig. 4.16 the a posteriori densities p(x = [τ,H] | yδ,m) for
m = NONABS, MODABS, ABS, DUST, and the mean a posteriori densities pmean(x =
[τ,H] | yδ) in the case me = MODABS, τe = 1.25 and He = 3.5 km. The plots indicate
that the a posterior density for m = DUST is of similar height and width to that for
m = MODABS; the maximum solution is achieved at m = MODABS, i.e., the DUST
appears to be the model with the highest evidence.
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Figure 4.12: The same as in Fig. 4.11 but for the TROPOMI scene on 6 June 2020.
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Figure 4.14: Relative errors ετ,Hmean,max(τe = 0.5, He) versus the aerosol layer height (ALH) for the
aerosol models from Set 1. 53
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Figure 4.13: Observed and modeled reflectance spectra at the solution for four (randomly chosen)
TROPOMI ground pixels on 22 June 2018 (top panel) and 6 June 2020 (bottom
panel).
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Figure 4.15: Relative errors ετ,Hmean,max(τe, He = 3.5 km) versus the aerosol optical depth (AOD)
for the aerosol models from Set 1.
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Figure 4.16: The a posteriori densities p(x = [τ,H] | yδ,m) for m = NONABS, MODABS, ABS,
and DUST, and the mean a posteriori densities pmean(x = [τ,H] | yδ) in the case
me = MODABS, τe = 1.25, and He = 3.5 km. The black curve indicates the mean
a posterior density. In each plot, the red vertical dashed line corresponds to the
exact values to be retrieved (τe, He), the blue vertical dashed line to the maximum
solution estimate (τmax, Hmax), and the green dashed line to the mean solution
estimates (τmean, Hmean).

Test 2 In the second test example, synthetic measurement spectra are computed for
each aerosol model included in Set 1 (me = NONABS, MODABS, ABS, DUST), and for
each measurement, all aerosol models from Set 2 are considered in the retrieval. The mean
solution estimate and the mean a posteriori density are computed for the first 10 aerosol
models with the highest evidence.

The variations of the relative errors with respect to the exact aerosol layer height He

for τe = 0.5 and the aerosol optical depth τe for He = 3.5 km are illustrated in Fig. 4.17
and 4.18, respectively. The plots show that

1. the relative errors are larger than those in the first test example,

2. the relative errors corresponding to the maximum solution estimate (ετmax and εHmax)
and the mean solution estimate (ετmean and εHmean) are comparable, and

3. on average, the retrieved aerosol layer height has a higher accuracy than the retrieved
aerosol optical depth.

The mean a posteriori densities pmean(x = [τ,H] | yδ) are shown in Fig. 4.19 and 4.20 for
τe = 0.5, He = 3.5 km, and all exact aerosol models me = NONABS, MODABS, ABS,
and DUST. The following conclusions can be drawn:

1. Hmean and Hmax are both not too far from He; thus, for aerosol layer height retrieval,
the maximum solution estimate and the mean solution estimate (ετmean and εHmean)
have similar accuracies;

2. τmean is relatively closer to τe than τmax; thus, for aerosol optical depth retrieval,
the mean solution estimate performs better than the maximum solution estimate;

3. aerosol layer height retrievals have wide a posteriori densities that cover the exact
layer height; and
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4. aerosol optical depth retrievals have multi-peaked densities, in which the exact op-
tical depth does not have the highest probability.
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Figure 4.17: Relative errors ετ,Hmean,max(τe = 0.5, He) for the aerosol models from Set 2.
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Figure 4.18: Relative errors ετ,Hmean,max(τe, He = 3.5 km) for the aerosol models from Set 2.
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Figure 4.19: The mean a posteriori densities pmean(H | yδ) for me = NONABS, MODABS,
ABS, DUST, τe = 0.5, and He = 3.5 km. In each plot, the red vertical dashed line
correspond to the exact values to be retrieved (τe, He), the blue vertical dashed line
to the maximum solution estimate (τmax, Hmax), and the green dashed line to the
mean solution estimates (τmean, Hmean).
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Figure 4.20: The same as in Figure 4.19 but for the mean a posteriori densities pmean(τ | yδ).

Application to real data To test the performance of the retrieval algorithm on real
TROPOMI/S5P data, we choose a wild fire scene in South Africa and consider the mea-
surements recorded on 4 and 5 July 2019. As it can be seen from the corresponding VIIRS
images in Fig. 4.21, the wild fire smoke on 4 July 2019 traveled beyond the coastline and
extended over the ocean, so that the smoke on 5 July 2019 was thinner.

In the retrieval, the aerosol models included in Sets 1 and 2 are considered, the ground
pixels with cloud fraction larger than 0.15 are excluded, and the geometry-dependent
effective Lambertian equivalent reflectivity (GE LER) products are used.

A synthetic presentation of the results of our numerical simulation is given below.
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1. For the retrieval on 4 July 2019, we show in Fig. 4.22 the aerosol model with the
highest evidence from Set 1, as well as, the aerosol type containing the aerosol model
with the highest evidence from Set 2. The most likely models are absorbing (ABS)
from Set 1 and biomass burning (BB) from Set 2. The model evidence for each
aerosol model from Set 1 is shown in Figure 4.23. Observe that (i) the differences
between the model evidences for the four aerosol models are not very large, and (ii)
the model evidence of absorbing aerosols was slightly larger than those of the other
models. In Set 2, there are 26 aerosol models and five aerosol types. The sum of the
first 10 best aerosol model evidences for each aerosol type from Set 2 are illustrated
in Fig. 4.24. The most probable type is biomass burning. In conclusion, the most
plausible aerosol models identified by the algorithm are of biomass burning type,
and this strongly absorbing aerosol type is consistent with the thick smoke observed
in the true-color image.

2. For the retrieval on 5 July 2019, the predominant models are absorbing (ABS) and
dust (DUST) among Set 1 (Fig. 4.25a), and biomass burning (BB) and desert dust
(DD) among Set 2 (Fig. 4.25b). Thus, in addition to the aerosol models identified
on 4 July 2019, the dust aerosol model comes into play. The model evidence for
each aerosol model from Set 1 and each aerosol type from Set 2 are displayed in
Figs. 4.26 and 4.27, respectively. In conclusion, compared with the result on 4 July
2019, the dominance of biomass burning aerosol type (ABS and BB) is less obvious.
Taking into account the thinner smoke on 5 July 2019 and the long traveling distance
from the origin, the presence of a less absorbing mixture of aerosol types (biomass
burning and dust) seems to be plausible.

3. The maximum and mean solution estimates are shown in Figs. 4.28 and 4.30 for Set
1, and Figs. 4.29 and 4.31 for Set 2.

Based on the above results, we see that

1. the most likely model varies from pixel to pixel, indicating that in some cases a
”wrong” model can be chosen (this is consistent with the findings using synthetic
data),

2. the mean solution estimates show a slightly smoother spatial pattern than the max-
imum solution estimates, and

3. despite the differences in the micro-physical properties of the aerosol models from
Sets 1 and 2, the spatial distributions of the mean solution estimate are comparable.

Note that on a Dell desktop (with 12 processors at 3.2 GHz, 31.2 GB of RAM) the retrieval
took less than 10 min (10–15 iterations in total) for all models included in Set 1, and longer
than 60 min (approximately 100 iterations in total) for all models included in Set 2.
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Figure 4.21: True-color VIIRS images recorded on 4 (left) and 5 (right) July 2019.
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Figure 4.22: The aerosol model with the highest evidence from Set 1 (a), and the aerosol type con-
taining the aerosol model with the highest evidence from Set 2 (b). The TROPOMI
spectra were recorded on 4 July 2019.
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Figure 4.23: The model evidence for each aerosol model from Set 1. The TROPOMI spectra
were recorded on 4 July 2019.
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Figure 4.24: The sum of the first 10 best aerosol model evidences for each aerosol type from Set
2. The TROPOMI spectra were recorded on 4 July 2019.
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Figure 4.25: The same as in Fig. 4.22 but for the data on 5 July 2019.
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Figure 4.26: The same as in Fig. 4.23 but for the data on 5 July 2019.
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Figure 4.27: The same as in Fig. 4.24 but for the data on 5 July 2019.
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Figure 4.28: The maximum solution estimates (Hmax, τmax) and the mean solution estimates
(Hmean, τmean) for Set 1 and data on 4 July 2019.
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Figure 4.29: The maximum solution estimates (Hmax, τmax) and the mean solution estimates
(Hmean, τmean) for Set 2 and data on 4 July 2019.
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Figure 4.30: The same as in Fig. 4.28 but for the data on 5 July 2019.
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Figure 4.31: The same as in Fig. 4.29 but for the data on 5 July 2019.

Conclusions In this section, the results of aerosol retrieval computed by means of a
Bayesian algorithm that takes into account the uncertainty in aerosol model selection
are presented. The algorithm is applied to the retrieval of aerosol optical depth and
layer height from synthetic and real TROPOMI/S5P data by considering two sets of
aerosol models; these are taken from the MODIS aerosol retrieval algorithm the OMI
Multiwavelength aerosol retrieval algorithm.

Through a numerical analysis, we come to the following findings.

1. When the exact aerosol model, for which synthetic data are generated, is included
in the set of candidate models, the relative errors corresponding to the maximum
solution estimate are relatively small. When this is not the case, it is likely that
several aerosol models are able to fit the data equally well. In such situations, the
mean solution estimate has a smaller bias than the maximum solution estimate.

2. For the real measurements on 4 July 2019 taken over a wild fire scene in South Africa,
the absorbing aerosol model from Set 1 and the biomass burning aerosol type from
Set 2 are found to be the most plausible. This result is in agreement with the thick
smoke observed in the true-color image. For the thinner smoke scenario on 5 July
2019, the above models together with the dust aerosol model are found to be the
most probable aerosol models. Actually, no dominant aerosol model, but rather a
less absorbing mixture of different aerosol types, is identified in this case. The mean
and maximum solution estimates have a similar spatial distribution, but the mean
solution estimates have a more continuous spatial pattern.

3. A definitive choice between Sets 1 and 2 as possible candidate models cannot be
made, and a suitable aerosol model seems to be problem dependent.

Note that when applying the Bayesian approach, we have to perform a retrieval for each
candidate model. For this reason, the retrieval algorithm is computationally expensive,
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4.2 Retrieval algorithm with aerosol model selection

especially for Set 2 which contains a larger number of aerosol models. To enhance the
retrieval efficiency, a machine learning-based retrieval algorithm will be designed.
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In Bayesian-based retrieval algorithms, the computation of the forward model and its
Jacobian are computational expensive. Therefore, these approaches are not efficient for
the operational processing of large volumes of data. In contrast, an inversion method
based on neural networks is very efficient because it can provide accurate predictions of
the forward model and its Jacobian in a fraction of millisecond. The content of this
section is adapted from the journal article in Appendix 3.

In atmospheric remote sensing, neural networks have been designed to

1. emulate a radiative transfer model, which is then used in conjunction with a Bayesian
approach to solve the inverse problem [Fan et al., 2019, 2017; Gao et al., 2021; Shi
et al., 2020],

2. learn the retrieval mappings directly from data [Brath et al., 2018; H̊akansson et al.,
2018; Holl et al., 2014; Jiménez et al., 2003; Strandgren et al., 2017; Wang et al.,
2017], and

3. recover the atmospheric parameters of interest, which are then used as initial guess
in an optimization algorithm [Di Noia et al., 2015; Noia et al., 2017].

The TROPOMI/S5P operational retrieval algorithm in the O2 A-band uses a neural net-
work based forward model and a Bayesian inversion approach [Nanda et al., 2018; Sanders
and de Haan, 2013; Sanders et al., 2015]. For this instrument, the difficulty in designing
neural networks for learning the inverse model consists in the fact that each swath row
(angle) r with r = 1, . . . ,R, is characterized by its own measurement wavelength grid
{λrmk}

Nmλ
k=1 and slit function gr, where R is the number of swath rows and Nmλ the number

of spectral grid points. This is due to the point spread function, aberrations, and defo-
cussing of the optical system and small changes in the width of the slit. Specifically, for
an aerosol model m, the noisy and synthetic spectral signals measured by the instrument
at a wavelength λrmk are given respectively, by

Iδmes(λ
r
mk) = I(m)

sim (λrmk) + δmk, (5.1)

I(m)
sim (λrmk) =

∫
gr(λ

r
mk − λ)I

(m)
sim (λ) dλ, (5.2)

where I
(m)
sim (λ) is the radiance computed by a radiative transfer model at a forward wave-

length λ (before convolution) and δmk the (row-independent) measurement noise.

To explain the neural network technique, we consider a generic model y = F(x), where
x ∈ RNx is the input vector, F a deterministic function, and y ∈ RNy the output vector,
and intend to approximate F(x) by a neural network model f(x,ω) characterized by a
set of parameters ω. Deep neural networks consist of units (nodes) arranged in an input
layer, an output layer, and a number of hidden layers. For a neural network with L + 1
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layers and Nl units in layer l, the feed-forward operations can be written in matrix form
as

y0 = x, (5.3)

ul = Wlyl−1 + bl, (5.4)

yl = φl(ul), l = 1, . . . , L, (5.5)

f(x,ω) = yL, (5.6)

where l = 0 is the input layer, l = L the output layer, φl the layer activation function,
Wl ∈ RNl×Nl−1 the matrix of weights connecting the layers l−1 and l, bl ∈ RNl the vector
of biases corresponding to layer l, and ω = {Wl,bl}Ll=1 the set of network parameters. The
process of computing the network parameters ω on a data set D = {(x(n),y(n))}Nn=1, where
y(n) = F(x(n)) and N is the number of samples, represents the so-called deep learning
process. Actually, a point estimate ω̂ is computed as the minimizer of a loss function,
defined as the log likelihood of the data set, with eventual a regularization term to penalize
the network parameters, i.e.,

E(ω) =
1

2

N∑

n=1

||y(n) − f(x(n),ω)||2 + α||ω||2,

where α is the regularization parameter. In order to train a neural network, we split the
optical and geometrical parameters in (i) retrieval parameters, i.e., the aerosol optical
depth τ and layer height H, and (ii) forward model parameters (parameters that are
known to some accuracy, but are not included in the retrieval), as for example, the solar
zenith angle θ0, viewing zenith angle θ, relative azimuth angle ∆ϕ, surface height Hs, and
surface albedo A.

In this section we design neural networks for learning

1. the radiative transfer model (neural network for the forward operator), and

2. the inverse model (neural network for the inverse operator).

5.1 Algorithm descriptions

5.1.1 Neural network for the forward operator

For emulating the radiative transfer model, we consider a neural network in which, the
input x is the set of optical and geometrical parameters, while the output y is the set of

synthetic radiances I
(m)
sim (λk) computed on the forward wavelength grid {λk}Nλk=1 , i.e.,

x =

[
[τ,H]T

[θ0, θ,∆ϕ,Hs, As]
T

]
7−→ y = [I

(m)
sim (λk)]

Nλ
k=1. (5.7)

In this case, the dimensions of the input and output vectors are Nx = 7 and Ny = Nλ,
respectively.

After the radiative transfer model is learned, the synthetic radiances computed on the

forward wavelength grid I
(m)
sim (λk) are convolved with a slit function gr to obtain the

synthetic spectral signals on the measurement wavelength grid I(m)
sim (λrmk) (cf. Eq. (5.2)).

The aerosol parameters encapsulated now in the state vector x = [τ,H]T are obtained
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as the solution of the nonlinear equation (cf. Eq. (4.1)) yδ = Fm(x) + δm, where,
for a given swath row r, yδ = [ln Iδmes(λ

r
mk)]

Nmλ
k=1 is the measurement vector, and Fm(x) =

[ln I(m)
sim (λrmk,x)]Nmλ

k=1 the forward model. This equation can be solved by using the inversion
algorithm described in Section 4.1.

5.1.2 Neural network for the inverse operator

For solving the inverse problem, we designed two types of neural networks, which use as
input

1. the synthetic radiances computed on the measurement wavelength grid, and

2. the principal-component transform of synthetic radiances.

Neural network for the inverse operator with synthetic radiances For emulating
the inverse model, we may use a neural network in which, the input x includes the spectral
signals measured by the instrument and the forward model parameters, while the output
y includes the parameters to be retrieved, i.e.,

x =

[
[I(m)

sim (λrmk) + δmk]
Nmλ
k=1

[θ0, θ,∆ϕ,Hs, As]
T

]
7−→ y = [τ,H]T . (5.8)

The measurement noise vector δm is assumed to be a Gaussian random vector with
zero mean and noise covariance matrix Cδm. For simplicity, we approximate Cδm by a
diagonal matrix, i.e., Cδm = diag[σ2mk]

Nmλ
k=1 , where σ2mk are the diagonal elements of Cδm,

and assume that estimates of σ2mk are available.
From Eq. (5.8), we see that the same output [τ,H]T corresponds to different realization

of the random noise δmk, as well as, to different wavelength grids λrmk. This problem,
which leads to a huge dimension of the data set, can be overcomed by using the jitter
approach, under the assumption that the measurement wavelength grid {λrmk}

Nmλ
k=1 is a

discrete random variable which can take the values {λ1mk}
Nmλ
k=1 , . . . , {λRmk}

Nmλ
k=1 . According

to this approach, at each forward pass through the network, a measurement wavelength
grid {λrmk}

Nmλ
k=1 is randomly selected from the R wavelength grids, and a new random noise

δmk ∼ N(0, σ2mk) is added to the synthetic spectral signal I(m)
sim (λrmk). In other words, the

input sample is different every time it is passed through the network.

Neural network for the inverse operator with the principal-component trans-
form of synthetic radiances In Section 3.3.3 the principal component analysis has
been applied on the optical properties of the medium. Here, this approach is applied on the

spectral data, and in particular, on the synthetic radiance vector im = [I(m)
sim (λrmk)]

Nmλ
k=1 ∈

RNmλ with the purpose of reducing its dimension (note that the dependency of im on the

swath row r is implicitly assumed). Considering the Nt-dimensional data set {i(n)m }Nt
n=1,

the principal component analysis involves the following steps.

1. compute the sample mean of the data
〈
im
〉

= (1/Nt)
∑Nt

n=1 i
(n)
m ;

2. stack all centered data i
(n)
m −

〈
im
〉

into the columns of the matrix I, i.e., I =

[i
(1)
m −

〈
im
〉
, . . . , i

(Nt)
m −

〈
im
〉
] ∈ RNmλ×Nt ;
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Table 5.1: Intervals of variation of the optical and geometrical parameters for generating the data
set.

Parameter Interval of variation

τ 0.05− 5
H 0.1− 15.75 km
θ0 0− 75◦

θ 0− 70◦

∆ϕ 0− 180◦

Hs 0− 2.61 km
A 0− 0.4

3. compute the covariance matrix C = (1/Nt)IIT ∈ RNmλ×Nmλ and a singular value
decomposition of C, i.e., C = USUT , where S = diag[sk]

Nmλ
k=1 is the diagonal matrix

of the singular values s1 > s2 > . . . > sNmλ
> 0 and U = [u1, . . . ,uNmλ

] ∈ RNmλ×Nmλ

is the orthogonal matrix of the singular vectors;

4. take the inverse transformation matrix as UM = [u1, . . . ,uM] ∈ RNmλ×M, in

which case, the forward transformation matrix is U†M = UT
M ∈ RM×Nmλ and the

dimensionality-reduced input is î
(n)
m = U†M(i

(n)
m −

〈
im
〉
) ∈ RM, and

5. compute the number of principal components M by monitoring the reconstruction

error EM = 1
Nt

∑Nt
n=1 ||(i

(n)
m −

〈
im
〉
)−UMî

(n)
m )||2 as function ofM, that is, determine

M, for which EM is below a prescribed tolerance.

Note that for the noisy radiance vector iδm = im + δm, where δm ∼ N(0,Cδm) is the
measurement noise vector, we find

〈
iδm
〉

=
〈
im
〉
, yielding îδm = UT

M(iδm −
〈
im
〉
) = îm + δ̂m

with δ̂m = UT
Mδm ∼ N(0, Ĉδm) and Ĉδm = UT

MCδmUM ∈ RM×M.

Thus, instead of the synthetic radiances im ∈ RNmλ , the input of the neural network
is the principal-component transform of synthetic radiances îm = U†M(im −

〈
im
〉
) ∈ RM,

and during each forward pass through the network, the random noise δ̂m ∼ N(0, Ĉδm) is
added to îm.

5.2 Numerical analysis

The data set is obtained, by generating samples of optical and geometrical parameters by
means of the smart sampling technique [Loyola et al., 2016]. The intervals of variation
of these parameters are given in Table 5.1. In the numerical analysis, the moderately
absorbing aerosol model taken from the MODIS aerosol retrieval algorithm is considered,
and the aerosol layer is assumed to be homogeneous with a fixed thickness of 0.5 km,
spreading evenly from H − 0.25 km to H + 0.25 km.

For the design of neural network architectures, the Python PyTorch machine learning
library is used. The following features of the neural networks deserve to be mentioned.

1. The numbers of hidden layers and units in each layer are optimized by using 10%
of the samples from the training set for validation. In the validation stage, the
holdout cross-validation together with a grid search over a set of 3 values for the
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number of hidden layers, i.e., {2, 3, 4}, and a set of 5 values for the number of units,
i.e., {20, 40, 60, 80, 100}, are used. Through a numerical analysis, we found that a
network architecture with 4 hidden layers and 40 nodes in each layer yields the lowest
root-mean-square error on the validation data set.

2. A hyperbolic tangent activation function is assumed.

3. The mini-batch gradient descent in conjunction with ADAptive Moment Estimation
(ADAM) is used as optimization tool.

Other peculiarities of the neural networks are listed below.

1. In the case of the neural network for the forward operator

a) the forward wavelength grid consists of Nλ = 485 equidistant spectral points
ranging from 758 to 771 nm,

b) the number of samples in the training set is Nt = 151 423,

c) in the inversion step, the noise covariance matrix is chosen as Cδm =

diag[σ2mk]
Nmλ
k=1 with σmk = 0.1× I(m)

simk and

I(m)
simk =

1

R
R∑

r=1

I(m)
sim (λrmk,xa)

for all k = 1, . . . , Nmλ, and the a priori covariance matrix as Cx = diag[σ2xk]
2
k=1

with σxk = 0.2 × xak and xak standing for the a priori values τa = 1 and
Ha = 2 km.

2. In the case of the neural network for the inverse operator

a) the number of swath rows isR = 448, the number of points in each measurement
wavelength grid is Nmλ = 131, and the measurement wavelength grids are
chosen from the TROPOMI Level-1 products, e.g.,

{λ1mk}Nmλ
k=1 = {755.120, . . . , 770.929 nm},

{λ2mk}Nmλ
k=1 = {755.133, . . . , 770.942 nm}

...

{λRmk}Nmλ
k=1 = {755.264, . . . , 771.071 nm},

b) the noisy spectra are generated as in the case of the neural network for the
forward operator,

c) the number of samples in the training set is Nt = 404 901, where each sample
consists of a set of optical and geometrical parameters and the corresponding
synthetic radiances computed on all measurement wavelength grids.

d) for the inverse operator with the principal-component transform of synthetic
radiances, we

i. approximate the dimensionality-reduced noise covariance matrix Ĉδm =
UT
MCδmUM by a diagonal matrix, i.e., Ĉδm ≈ diag[Ĉm,kk]

M
k=1, where Ĉm,ij

are the entries of Ĉδm, and

ii. use M = 14 principal components, for which the reconstruction error EM
is below 1.6× 10−3.
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5.2.1 Synthetic retrieval

The performances of the retrieval algorithms are tested on a prediction set consisting of
Np = 10 000 samples

(τ (n), H(n), θ
(n)
0 , θ(n),∆ϕ(n), H(n)

s , A(n)),

chosen randomly in their intervals of variation (see Table 5.1). For a statistical interpre-
tation of the results, we split the interval of variation of x, [xmin, xmax], where x stands
for τ and H, into Nb = 40 equidistant bins, i.e., [xmin, xmax] = ∪Nb

j=1Bxj , and compute the
(bin) mean

Ej(xpred) =
1

Nxj

∑

n, s.t.x(n)∈Bxj

x
(n)
pred

and standard deviation

√
Ej([xpred − Ej(xpred)]2) =

√√√√ 1

Nxj

∑

n, s.t.x(n)∈Bxj

[x
(n)
pred − Ej(xpred)]2,

over all Nxj samples x
(n)
pred, whose corresponding x(n) are in Bxj . To quantify the retrieval

accuracy we use the first two moments of the absolute error over the prediction set ∆x =
xpred−x, where xpred and x are the predicted and true values, respectively. These are the
mean absolute error

E(|∆x|) =
1

Np

Np∑

n=1

|∆(n)
x |

and the standard deviation of the absolute error

√
E([∆x − E(∆x)]2) =

√√√√ 1

Np

Np∑

n=1

[∆
(n)
x − E(∆x)]2

computed over the prediction set. In Figs. 5.1, 5.2, and 5.3, we illustrate the mean
Ej(xpred) and standard deviation

√
Ej([xpred − Ej(xpred)]2) versus the midpoint xj of the

jth bin, while in Table 5.2 we show the mean absolute error E(|∆x|) and the standard
deviation of the absolute error

√
E([∆x − E(∆x)]2) over the prediction set. The following

conclusions can be drawn.

1. The accuracy is low for small values of the aerosol optical depth τ and layer height
H.

2. The inverse-operator neural networks with synthetic radiances and their principal
components have comparable accuracies; these are higher than that of the forward-
operator neural network.

The low accuracy for small values of τ and H is due to the fact that in this domain,
the residual of the measured and synthetic radiances has several local minima, while the
low accuracy of the forward-operator neural network is due to the inherent errors of the
inversion algorithm.
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Figure 5.1: Predictions of the forward-operator neural network. The plots show the predicted

values x
(n)
pred (blue points) together with the mean Ej(xpred) (red points) and standard

deviation
√
Ej(xpred − Ej(xpred)]2) (red error bars) over all samples x

(n)
pred, whose

corresponding x(n) are in the jth bin. The interval of variation of x is split into
Nb = 40 bins, where x stands for the aerosol optical depth τ and aerosol layer height
H.

Figure 5.2: The same as in Fig. 5.1 but for the inverse-operator neural network with synthetic
radiances.

Figure 5.3: The same as in Fig. 5.1 but for the inverse-operator neural network with the principal-
component transform of synthetic radiances.
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Table 5.2: Mean absolute error E(|∆x|), and the standard deviation of the absolute error√
E([∆x − E(∆x)]2) over the prediction set. The results correspond to the forward-

operator neural network (Method 1), and the inverse-operator neural networks with
synthetic radiances (Method 2) and the principal-component transform of synthetic
radiances (Method 3).

Method x E(|∆x|)
√

E([∆x − E(∆x)]2)

1
τ 0.169 0.410
H 0.879 1.749

2
τ 0.115 0.243
H 0.336 0.740

3
τ 0.136 0.316
H 0.437 0.951

The variations of the absolute error ∆x = xpred − x with respect to the optical and
geometrical parameters are illustrated in Figs. 5.4, 5.5, and 5.6. Here, the interval of vari-
ation of a parameter b, [bmin, bmax] is split into Nb = 40 equidistant bins, i.e., [bmin, bmax] =
∪Nb
j=1Bbj , and the mean Ej(∆x) and standard deviation

√
Ej([∆x − Ej(∆x)]2) over all sam-

ples ∆
(n)
x , whose corresponding b(n) are in the jth bin Bbj , are plotted versus the midpoint

bj of the bin. From Figs. 5.4, 5.5, and 5.6 we infer that

1. the standard deviation of the absolute error in the aerosol optical depth τ is large
when the solar zenith angle θ0, viewing angle θ, and surface albedo A are large,

2. the standard deviation of the absolute error in the aerosol layer height H is large
when the aerosol optical thickness τ is small and the surface albedo A is large, and

3. the inverse-operator neural network with synthetic radiances yields the smallest stan-
dard deviations, and the forward-operator neural network the largest ones.

5.2.2 Retrieval from real data

To test the performances of the retrieval algorithms on real TROPOMI/S5P data, we
choose a wild fire scene in California and consider the measurements recorded on 12
December 2017.

The retrieval results for the aerosol optical depth and layer height are illustrated in
Fig. 5.7. In Fig. 5.8, we illustrate the absolute errors in the retrieved aerosol optical
depth δτ = τpred − τ refpred and aerosol layer height δH = Hpred − Href

pred corresponding to
the forward-operator neural network and the inverse-operator neural network with the
principal-component transform of synthetic radiances, where the results provided by the
inverse-operator neural network with synthetic radiances are taken as a reference. The
plots show that

1. the absolute errors in the retrieved aerosol optical depth δτ are smaller than 0.1 over
the entire scene,
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Figure 5.4: Absolute error in the retrieved aerosol optical depth ∆τ and aerosol layer height
∆H versus the optical and geometrical parameters b, where b stands for the aerosol
optical depth τ , aerosol layer height H, solar zenith angle θ0, viewing zenith angle θ,
relative azimuth angle ∆ϕ, surface height Hs, and surface albedo A. The plots show

the absolute error ∆
(n)
x (blue points) together with the mean Ej(∆x) (red points)

and standard deviation
√
Ej([∆x − Ej(∆x)]2) (red error bars) over all samples ∆

(n)
x ,

whose corresponding b(n) are in the jth bin. The results correspond to the forward-
operator neural network.
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Figure 5.5: The same as in Fig. 5.4 but for the inverse-operator neural network with synthetic
radiances.
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Figure 5.6: The same as in Fig. 5.4 but for the inverse-operator neural network with the principal-
component transform of synthetic radiances.
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2. the absolute errors in the retrieved aerosol layer height δH are smaller than 0.4 km
over the entire scene.

The computational time of a Bayesian-based retrieval algorithm is 2 − 3 minutes for one
pixel on a computer Intel Core i7-4770M CPU 3.40GHz with 16 GB RAM, while the
computational times of a forward- and an inverse-operator neural networks are 0.4 and
0.003 seconds, respectively.

5.2.3 Conclusions

In this section, we analyzed the numerical performances of three neural network algorithms
for aerosol retrieval from TROPOMI/S5P measurements in the oxygen A-band. They use
neural networks (i) to emulate the radiative transfer model and a Bayesian approach to
solve the inverse problem, (ii) to learn the inverse model from the synthetic radiances,
and (iii) to learn the inverse model from the principal-component transform of synthetic
radiances. The neural networks were trained for moderately absorbing aerosols taken from
the MODIS aerosol retrieval algorithm. Our numerical analysis, performed on synthetic
and real data, has shown that inverse-operator neural networks, which use the jitter ap-
proach in order to deal with the row-dependent measurement wavelength grid and the
random measurement noise, are more accurate and efficient than a forward-operator neu-
ral network. However, all neural network retrieval algorithms have incomparably higher
efficiency than a Bayesian-based retrieval algorithm.
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Figure 5.7: Retrieved aerosol optical depth τpred and aerosol layer height Hpred from
TROPOMI/S5P measurements recorded on 12 December 2017 in California. The
results correspond to the forward-operator neural network (upper panels), the inverse-
operator neural network with synthetic radiances (middle panels), and the inverse-
operator neural network with the principal-component transform of synthetic radi-
ances (lower panels).
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Figure 5.8: Absolute errors in the retrieved aerosol optical depth δτ and aerosol layer height
δH corresponding to the forward-operator neural network (upper panels) and the
inverse-operator neural network with the principal-component transform of synthetic
radiances (lower panels). The results provided by the inverse-operator neural network
with synthetic radiances are taken as a reference.
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6.1 Summary

This thesis aims to design algorithms for retrieving aerosol parameters (layer height and
optical depth) from TROPOMI/S5P measurements in the oxygen A-band. In summary,
the major achievements of this thesis are outlined:

1. A database that provides the single scattering albedo and the phase function coef-
ficients of different aerosol models has been created. The aerosol models included
in the database are either user defined or taken from the GOCART model, OPAC
database, OMI multiwavelength aerosol retrieval algorithm, and MODIS aerosol re-
trieval algorithm.

2. A Bayesian-based retrieval algorithm has been designed under the assumption that
the aerosol model is known. The algorithm uses a linearized radiative transfer model
relying on the discrete ordinate method with matrix exponential. To speed up the
computation, the telescoping technique, the method of false discrete ordinate, the
correlated k-distribution method, and principal component analysis are used. For
aerosol retrieval, the partial derivatives of the spectral signal with respect to the
aerosol optical depth and layer height are computed by a forward-adjoint approach
in conjunction with an homogenization procedure for the aerosol layer, while the
forward model used in the inversion algorithm is the radiance model without spectral
corrections. The inverse problem is formulated as a least-squares problem and solved
by means of the iteratively regularized Gauss-Newton method. This approach is less
sensitive to overestimates of the regularization parameter and provides an optimal
value of the regularization parameter (the ratio of the data error variance and the a
priori state variance ) and the corresponding regularized solution.

3. A Bayesian-based retrieval algorithm, that take into account the uncertainty in
model selection, has been designed. In this case, two solutions estimates can be
computed

a) the maximum solution estimate, corresponding to the model with the highest
evidence, and

b) the mean solution estimate, representing a linear combination of solutions
weighted by their evidences.

4. Three neural network retrieval algorithms have been developed. The first one uses
a neural network to emulate the radiative transfer model and a Bayesian approach
to solve the inverse problem. The second and third ones employ a neural network to
learn the inverse model and use as input either the synthetic radiances computed on
the measurement wavelength grid or the principal-component transform of synthetic
radiances.

A comparison of the operational and the designed retrieval algorithm is given in Table 6.1.
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Table 6.1: Special features of the operational and designed retrieval algorithm.

Feature
Operational Retrieval
Algorithm

Designed Retrieval
Algorithm

aerosol
model

average aerosol model
with fixed single scattering
albedo and asymmetry
parameter

aerosol database with (i) user
defined aerosol models, and
(ii) aerosol models included,
in the GOCART, OPAC, OMI,
and MODIS databases.

radiative
transfer
model

layer based orders-of-
scattering method

discrete ordinate method equipped
with acceleration methods
(telescoping technique, method
of false discrete ordinate method,
k-distribution method, and
principal component analysis)

linearization
approach

semi-analytic approach
(equivalent to the adjoint
method)

forward and forward-adjoint
approaches relying on an
analytic computation of the
derivatives and the adjoint
theory, respectively

retrieval
algorithm

neural network to emulate
the radiative transfer model,
and a Bayesian approach
(with a priori chosen
covariance matrices)
to solve the inverse problem

1. Bayesian-based retrieval
algorithms for (i) a specified
aerosol model and (ii) a set of
candidate models, using
a Bayesian approach and the
iteratively regularized Gauss-
Newton method to solve the
inverse problem;
2. Neural network algorithms
(i) to emulate the radiative transfer
model and (ii) to learn the inverse
model (using as input either the
synthetic radiances or their
principal components).
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6.2 Outlook

6.2 Outlook

The main conclusion of this thesis is that inverse-operator neural networks are the best
choice for retrieving the aerosol parameters from TROPOMI/S5P measurements in oxy-
gen A-band. However, the design of neural networks for atmospheric retrieval is a very
complex research field that requires more developments. In fact, the inverse-operator neu-
ral networks presented in this thesis need to be extended by including additional features.
Along this line, the inverse-operator neural networks should be

1. trained on the remaining aerosol models considered in the MODIS aerosol retrieval
algorithm, i.e., non-absorbing, absorbing, and desert dust,

2. trained to learn the relative evidences of different aerosol models, so that, a mean
solution estimate, representing a linear combination of candidate solutions weighted
by their evidences, can be computed, and

3. redesigned in a Bayesian deep learning framework in order to predict input aleatoric
and model uncertainties [Doicu et al., 2021].
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Hyperspectral Satellite Remote
Sensing of Aerosol Parameters:
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Precise knowledge about aerosols in the lower atmosphere (optical properties and vertical
distribution) is particularly important for studying the Earth’s climatic and weather
conditions. Measurements from satellite sensors in sun-synchronous and geostationary
orbits can be used to map distributions of aerosol parameters in global or regional scales.
The new-generation sensor Tropospheric Monitoring Instrument (TROPOMI) onboard the
Copernicus Sentinel-5 Precursor (S5P) measures a wide variety of atmospheric trace
gases and aerosols that are associated with climate change and air quality using a number
of spectral bands between the ultraviolet and the shortwave infrared. In this study, we
perform a sensitivity analysis of the forward model parameters and instrument information
that are associated with the retrieval accuracy of aerosol layer height (ALH) and optical
depth (AOD) using the oxygen (O2) A-band. Retrieval of aerosol parameters from
hyperspectral satellite measurements requires accurate surface representation and
parameterization of aerosol microphysical properties and precise radiative transfer
calculations. Most potential error sources arising from satellite retrievals of aerosol
parameters, including uncertainties in aerosol models, surface properties, solar/satellite
viewing geometry, and wavelength shift, are analyzed. The impact of surface albedo
accuracy on retrieval results can be dramatic when surface albedo values are close to the
critical surface albedo. An application to the real measurements of two scenes indicates
that the retrieval works reasonably in terms of retrieved quantities and fit residuals.

Keywords: aerosol retrievals, aerosol layer height, O2 A-band, radiative transfer, TROPOMI/S5P

1 INTRODUCTION

Estimating aerosol optical properties and vertical distribution appears to be a challenging task
because of real-time variations in aerosol microphysical properties. Remote sensing techniques for
measuring aerosol properties from space have been developing rapidly and can be classified into two
major groups. Active remote sensors such as the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) instrument measure backscattered signal and have the capability to accurately profile the
scattering/absorption owing to aerosols/clouds in the atmosphere, whereas passive remote sensors
can by far not offer the same level of details, but provide a global mapping of aerosol properties.
Although aerosol height information with a vertical resolution as fine as 30 m can be obtained, the
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CALIOP observations possess a limited spatial coverage (Winker
et al., 2009). In regard to passive sensors, considerable effort has
been put into derive aerosol vertical information by employing
the O2–O2 absorption band (∼ 477 nm), e.g., from the Ozone
Monitoring Instrument (OMI) (Park et al., 2016; Chimot et al.,
2017, 2018; Choi et al., 2019). Absorption of reflected sunlight by
O2 in its A band (∼ 760 nm) has been extensively used to derive
cloud height information, and the relevant studies can be found in
Kokhanovsky et al. (2006a), Kokhanovsky et al. (2006b), Wang
et al. (2008), Lelli et al. (2014), Loyola Rodriguez et al. (2007),
Loyola et al. (2018). A number of passive satellite sensors have
been launched to monitor aerosol properties on a global or
regional scale using spectral information at various
wavelengths. Atmospheric absorption in the O2 A-band
provides an opportunity to derive vertical distributions of
aerosols as a result of the dynamic range of optical depth in
this spectral domain. Recently, a great amount of efforts have
been made to retrieve the aerosol height information from the O2

A-band, e.g., the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) (Corradini and
Cervino, 2006; Kokhanovsky and Rozanov, 2010; Sanghavi
et al., 2012), the Global Ozone Mapping Experiment (GOME)
(Koppers and Murtagh, 1997) and GOME-2 (Tilstra et al., 2019),
the Greenhouse Gases Observing Satellite (GOSAT)
(Frankenberg et al., 2012), the Orbiting Carbon Observatory-2
(OCO-2) (Zeng et al., 2020). Some studies also focused on the
joint use of O2 A and B bands for vertical profiling of aerosols
(Ding et al., 2016; Xu et al., 2017b).

As a new generation of hyperspectral sensor, the Tropospheric
Monitoring Instrument onboard the Copernicus Sentinel-5
Precursor satellite (TROPOMI/S5P, hereafter referred to as
TROPOMI) (Veefkind et al., 2012) was designed to be a push-
broom grating spectrometer observing trace gas concentrations
and aerosol/cloud properties that are associated with air quality,
ozone layer, and climate forcing. The satellite flies in a sun-
synchronous orbit at 824 km altitude with an Equator crossing
time of 13:30 local solar time, allowing to achieve a full daily
global surface coverage thanks to a wide swath of
108°(∼ 2,600 km). The recorded TROPOMI spectra cover the
ultraviolet–visible (UV–Vis, 270–500 nm), near-infrared (NIR,
675–775 nm), and shortwave infrared (SWIR, 2,305–2,385 nm).
TROPOMI is the first Copernicus mission for atmospheric
monitoring, launched on October 13, 2017, for a nominal
lifetime of 7 years. In addition to the broad spectral coverage,
TROPOMI can map global distributions of a broad range of air
pollutants with a spatial resolution as high as 5.5 × 3.5 km2 (7.0 ×
3.5 km2 prior to August 6, 2019). Band 6 of TROPOMI covers the
O2 A-band and records the radiances and solar irradiances with a
spectral sampling of 0.125–0.126 nm and a spectral resolution of
0.34–0.35 nm. The first calibration observations showed
3,000–5,000 and 250–700 for the high- and low-albedo signal-
to-noise ratios, respectively. The main products of Band 6 are
aerosols (height) and clouds (height and optical thickness).
Further details of the instrument and measurement
characteristics can be found in Kleipool et al. (2018), Ludewig
et al. (2020).

Aerosol parameters like UV aerosol index, aerosol layer height
(ALH) and optical depth (AOD) are useful to the global
monitoring of air pollution in the lower atmosphere. The
TROPOMI operational ALH retrieval algorithms in the O2

A-band were developed by the Royal Netherlands
Meteorological Institute (KNMI) and use a neural network
based forward model and the optimal estimation method for
inversion (Rodgers, 2000). For more details about the operational
retrieval algorithms see (Sanders and de Haan, 2013; Sanders
et al., 2015; Nanda et al., 2018a; Nanda et al., 2018b).

Deriving aerosol information from satellite measurements
remains a critical challenge in terms of retrieval sensitivity and
accuracy. This is in general an underdetermined task and often
requires several assumptions to be made with respect to the
properties of aerosol and surface (Kokhanovsky and Rozanov,
2010). Li et al. (2009) also discussed several critical factors
affecting the accuracy of aerosol remote sensing, including the
assumptions in the aerosol model, treatment of the underlying
surface, sensor calibration, and cloud screening. In a conventional
retrieval framework, an operational retrieval handles the
minimization of the objective function, which should include
sufficiently fast radiative transfer computations, and is capable of
dealing with large amount of satellite measurements and needs to
converge robustly. Retrievals from synthetic measurements are
necessary and important for analyzing the impact of forward and
instrument model parameters on the retrieval output and
exploring the expected retrieval performance using real
measurements. Based on these experiments, an optimal
retrieval setup for realistic measurement conditions and a
better understanding of instrument characteristics could be
achieved.

We have developed a conventional retrieval framework
dedicated to estimating aerosol and cloud parameters from
satellite measurements. Retrieval applications to the Earth
Polychromatic Imaging Camera (EPIC) onboard the Deep
Space Climate Observatory (DSCOVR) satellite were reported
(Molina García et al., 2018a; Molina García et al., 2018b; Sasi
et al., 2020a; Sasi et al., 2020b). In this work, we adapt the
framework to the TROPOMI measurements, and the primary
objective is to evaluate the retrieval feasibility and accuracy of
aerosol parameters (ALH and AOD) using the O2 A-band of
TROPOMI. Concerning the associated retrieval error
characterization for the O2 A-band, only a few sensitivity
studies were carried out (Hollstein and Fischer, 2014; Sanders
et al., 2015). In this study, we extend the sensitivity analysis by
taking into account more inputs during the inversion,
i.e., different models for aerosol microphysical
parameterization, surface properties, solar/viewing geometry,
and wavelength shift. These inputs and information are
considered to likely affect the retrieval accuracy and this
sensitivity analysis aims to quantify the impact and
importance of each input. Additionally, an application with
real TROPOMI data can help us to better understand the
measurement characteristics and retrieval performance in
reality. We seek a characterization of the associated retrieval
error by reasonbly assuming uncertainties on the crucial inputs
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identified in the sensitivity analysis. Accordingly, the retrieval
could be further optimized by refining these inputs.

The remainder of the article is formulated as follows: A brief
description of the retrieval algorithm is given in Section 2.
Section 3 analyzes the sensitivity of retrieved aerosol
parameters to different parameters and information associated
with the instrument itself and radiative transfer calculations. A
retrieval application using real TROPOMImeasurements is given
in Section 4. Section 5 concludes the study.

2 THEORY

We have developed an algorithm dedicated to aerosol parameters
retrieval from hyperspectral satellite sensors like TROPOMI. The
theoretical concepts of atmospheric retrieval are presented in this
section. This physical retrieval algorithm consists of a forward
model in which radiative transfer of electromagnetic radiation
through the atmosphere is calculated, and an inversion process in
which a nonlinear minimization problem is solved. The purpose
of the forward model is to simulate the signal received by the
sensor as a function of atmospheric parameters and surface
properties of interest, employing the discrete ordinate method
to solve the radiative transfer equation. Inverse problems arising
in atmospheric retrieval are typically ill-posed in the sense that
perturbations in the data can cause large errors in the retrieval
result. Our retrieval problem is formulated as a nonlinear least
squares problem and can be solved by the Gauss–Newtonmethod
with the aid of Tikhonov regularization. In this study, the retrieval
relies on the TROPOMI O2 A-band (758–771 nm). The recorded
radiances and solar irradiances are converted to the reflectances.
The inversion returns the best estimates of the retrieval target by
approximating the measured reflectances with the simulated
ones. In the forward model, aerosols are assumed as a single
atmospheric layer with a fixed thickness of 0.5 km. The retrieval
target ALH is defined as the middle height of this aerosol layer.
Section 2.1 describes the physical and mathematical
fundamentals of radiative transfer and different models for
characterizing aerosol microphysical properties. Section 2.2
presents the inversion procedure and associated approaches.

2.1 Radiative Transfer
In a pseudo-spherical atmosphere, the radiative transfer equation
for the diffuse radiance I(r, Ω) at point r in direction Ω � (μ, φ) is
given by

μ
dI
dr

r,Ω( ) � −σext r( )I r,Ω( ) + J r,Ω( ) , (1)

where

J r,Ω( ) � Jss r,Ω( ) + Jms r,Ω( ) ,
Jss r,Ω( ) � F0

σsct r( )
4π

P r,Ω,Ω0( )e−τ0ext |r−rTOA r( )|( ) ,

Jms r,Ω( ) � σsct r( )
4π

∫
4π

P r,Ω,Ω′( )I r,Ω′( ) dΩ′ ,

is the source function summing the contributions of the single
and multiple scattering terms Jss(r, Ω) and Jms(r, Ω), respectively,
σext and σsct are the extinction and scattering coefficients,
respectively, F0 is the incident solar flux, P the scattering
phase function, Ω0 � (−μ0, φ0) with μ0 > 0 the incident solar
direction, and τ0ext(|r − rTOA(r)|) the solar optical depth between
point r and the characteristic point at the top of the atmosphere
rTOA in a spherical atmosphere. For the phase function P, we
assume an expansion in terms of normalized Legendre
polynomials Pn, i.e.,

P r,Ω,Ω′( ) � P r, cosΘ( ) � ∑∞
n�0

�����
2n + 1

2

√
χn r( )Pn cosΘ( ) , (2)

where cosΘ � Ω ·Ω′. The boundary conditions associated to the
radiative transfer (Eq. 1) consist in the top-of-atmosphere
boundary condition (r � rTOA),

I rTOA,Ω
−( ) � 0 , (3)

and the surface boundary condition (r � rs),

I rs,Ω
+( ) � F0

A

π
μ0e

−τ0ext |rs−rTOA rs( )|( ) + A

π
∫
2π

I rs,Ω
−( )|μ−| dΩ− , (4)

where for a Lambertian surface, A is the surface albedo, and the
notationsΩ+ andΩ− stand for upward and downward directions,
respectively.

The aerosol particles are modeled as components, while the
size distribution dN(a)/d ln a of an aerosol component is chosen a
log-normal distribution, characterized by the modal radius rmod,
the standard deviation σ, and the total number of particles N0. If
these parameters together with the (wavelength-dependent)
refractive index maer are specified, the size averaged extinction
and scattering cross sections, as well as the expansion coefficients
of the size averaged phase function are computed as

�Cext � ∫amax

amin

Cext a( )p a( ) da ,

�Csct � ∫amax

amin

Csct a( )p a( ) da ,

�χn � ∫amax

amin

χn a( )p a( ) da, n≥ 0 ,

respectively, where amin and amax are the lower and upper bounds
of the size distribution, p(a) � (1/N0)dN(a)/da is the probability
density function associated to the number size distribution, and
Cext(a), Csct(a), and χn(a) are computed by an electromagnetic
scattering code for a spherical particle of radius a. The aerosol
components are externally mixed to form aerosol models. For an
aerosol model m consisting of N aerosol components, the
extinction and scattering cross sections, and the expansion
coefficients of the phase function are computed as
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�C
m( )
ext � ∑N

i�1
wi

�C
i( )
ext ,

�C
m( )
sct � ∑N

i�1
wi

�C
i( )
sct ,

�χ m( )
n � 1

�C
m( )

sct

∑N
i�1

wi
�C

i( )
sct�χ

i( )
n ,

respectively, where the weight wi � N(i)
0 /∑N

i�1N
(i)
0 is number

mixing ratio, and �C
(i)
ext, �C

(i)
sct , �χ

(i)
n , and N(i)

0 correspond to the
ith aerosol component. In this context, the extinction and
scattering coefficients that enter into the radiative transfer model
are calculated as σ(m)

ext � n0 �C(m)
ext and σ(m)

sct � n0 �C(m)
sct , respectively,

where n0 �∑N
i�1n

(i)
0 is the total number density of the aerosol

particles, and n(i)0 the number density of the ith aerosol
component.

A set of aerosol models is an ensemble of a variety of aerosol
models corresponding to different aerosol types. In the forward
model, the following sets of aerosol models are taken into
account:

• Set I The aerosol models employed in the Moderate
Resolution Imaging Spectroradiometer (MODIS) aerosol
retrieval algorithm (Levy et al., 2007a; Levy et al., 2007b).
There are three fine-dominated (spherical) and one coarse-
dominated (spheroid) aerosol models that differ by the
single scattering albedo �ω(m) � �C

(m)
sct /�C

(m)
ext ; we distinguish

moderately absorbing (�ωm � 0.90), absorbing (�ωm � 0.85),
and nonabsorbing (�ωm � 0.95) aerosols. For each aerosol
model, the parameters of the size distribution and the
refractive index depend on the aerosol optical depth.

• Set II The aerosol models employed in the Ozone
Monitoring Instrument (OMI) Multiwavelength aerosol
retrieval algorithm (Torres et al., 1998). There are five
major aerosol types, i.e., weakly absorbing, biomass
burning, desert dust, marine, and volcanic, whereby each
type consists of several aerosol models depending on their
optical properties and particle size distribution.

• Set III The aerosol models (mixtures of sulfate, dust, see salt,
black carbon, and organic carbon components) obtained by
a cluster analysis using the Goddard Chemistry Aerosol
Radiation and Transport (GOCART) model (Chin et al.,
2002; Taylor et al., 2015).

• Set IV The aerosol models (mixtures of water-insoluble,
water-soluble, soot, sea-salt, mineral, mineral transported,
and sulfate components) included in the Optical Properties
of Aerosols and Clouds (OPAC) dataset (Hess et al., 1998;
Thomas et al., 2009).

The radiative transfer computation relies on the discrete
ordinate method with matrix exponential (Doicu and
Trautmann, 2009a; Doicu and Trautmann, 2009b). To deal
with computationally expensive radiative transfer calculations
in the TROPOMI O2 A-band absorption channel, several
acceleration techniques, as for example, the telescoping
technique (Spurr, 2008; Efremenko et al., 2013), the method of
false discrete ordinate, the correlated k-distribution method
(Goody et al., 1989), and principal component analysis (Natraj
et al., 2005, 2010) are implemented.

In Section 3.1 we investigate the impact of different aerosol
models on the retrieval performance.

2.2 Inversion
The retrieval is performed by using the method of Tikhonov
regularization (Tikhonov, 1963). Essentially, the inverse problem
is solved by minimizing the objective function,

F x( ) � 1
2

F x( ) − yδ
				 				2 + λ L x − xa( )‖ ‖2[ ] , (5)

where F : Rn → Rm and yδ ∈ Rm are the vector-valued forward
model and the noisy measurement vector, respectively, λ is the
regularization parameter, L the regularization matrix, and xa the a
priori state vector.

The goal of minimizing the Tikhonov function (Eq. 5) is to
search for a solution providing a compromise between the
residual term ‖F(x) − yδ‖ and the penalty term ‖L(x − xa)‖. A
global minimizer xλ is called a regularized solution. The
minimization procedure can be performed by means of
nonlinear optimization algorithms like Newton-type methods.
At the iteration step i, the objective function is approximated by
its linearization around the current iterate xλ,i. The regularized
solution (the new iterate xλ,i+1) is found by an iterative process:

xλ,i+1 � xa + K†
λ,i y

δ − F xλ,i( ) + Ki xλ,i − xa( )( ) , (6)

where

K†
λ,i � KT

i Ki + λLTL( )−1KT
i , (7)

is the regularized generalized inverse matrix, and Ki the Jacobian
matrix of F at xλ,i.

The penalty term ‖L(x − xa)‖ directly influences the inversion
result, for instance, constraining the solution to be within a
range. In fact, the regularization parameter λ controls the
relative weight of the residual term and the penalty term,
whereas the regularization matrix L influences the magnitude
or smoothness of the solution. An appropriate value of λ
(constant or changeable during iterations) and a proper choice
of L (e.g., the identity matrix, discrete approximations of the first
and second order derivative operators, the Cholesky factor of the
a priori profile covariance matrix) can help to obtain a solution
with a well-defined physical sense. Xu et al. (2016), Xu et al.
(2020) compared a variety of approaches for choosing λ and L,
and suggested optimal strategies for practical problems. Note that
as an alternative, iterative regularization methods (e.g., the
iteratively regularized Gauss-Newton method) that employ a
monotonically decreasing sequence of λ and an a posteriori
stopping criterion, have been proved to be effective in practice.

The iterative process is terminated when a favorable
convergence is reached in accordance with predefined stopping
tolerances. The favorable convergence is based on two tests:

1. the x-convergence test, which checks if the sequence xλ,i is
converging and the change in xλ satisfies a predefined
criteria, and

2. the relative-function-convergence test, which checks if the
relative change in F is within a predefined value.
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3 SENSITIVITY TO EXPECTED ERROR
SOURCES

In practice, several assumptions in the forward model (e.g.,
aerosol model, instrument parameters etc.) are required.
Nevertheless, it is of importance to investigate how imperfect
forward model inputs and instrumental knowledge contribute to
the retrieval performance. In this section, we analyze the impact
of different inputs used in the forward and instrument models on
the retrieval of aerosol properties from the O2 A-band spectral
measurements. Two types of uncertainty are discussed: 1) model
uncertainty (aerosol model) and 2) parameter uncertainty
(surface albedo, solar/sensor viewing geometry, and
wavelength calibration). Only the most representative error
sources identified in the consortium for satellite remote
sensing of aerosols (also from previous studies, e.g., (Sanders
and de Haan, 2013; Sanders et al., 2015) were considered in this
study. The sensitivity analysis was based on simulated reflectance
spectra that largely resemble typical TROPOMI measurements in
the O2 A-band.

Here, the state vector x consists of two components, i.e., AOD
τaer and ALH haer. The principle of AOD retrieval lies on the
aerosol scattering and absorption features in the O2 A-band. The
ALH retrieval depends mainly on a narrow oxygen absorption
band (between 760 and 762 nm) where aerosol layer will
attenuate the oxygen absorption below. The inversion results
in this section are represented as retrieval errors (with respect to
the true state) due to various inputs in the forward and
instrument models.

3.1 Aerosol Model
Each set of aerosol models described in Section 2.1 is a collection
of aerosol models that are employed to parameterize the aerosol
microphysical properties for specific aerosol types, including the
corresponding scattering and absorption properties, which plays
an important role in an accurate retrieval. In this section, its

influence on the retrieval of AOD and ALH is discussed. For an
assumption of aerosol microphysical properties, three sets of
aerosol models were considered in this analysis: Sets I, II, and
III that have been used in satellite retrievals and weather/climate
model simulations, respectively.

The simulated reflectance spectra (758–771 nm) using
three sets of aerosol models are compared in Figure 1.
“MODABS” from Set I, “MODABS” from Set II, and
“Organic + Sulfate” from Set III were considered as the
three models should represent the same aerosol
characteristics. For Sets II and III, three values of 0.0, 0.5,
and 1.0 for the effective radius Reff were chosen. An aerosol
loading scenario with 0.5 and 3.5 km for AOD and ALH,
respectively, was considered. 0.05, 30°, 0°, and 180°were
chosen for the surface albedo, solar and viewing zenith, and
relative azimuth angles, respectively.

The left panel of Figure 1 shows that the reflectance using Set
I lies between the highest and lowest reflectances using Sets II
and III. By using Reff � 1.0 and Reff � 0.0 for Sets II and III,
respectively, the simulated reflectances are almost equivalent.
Nevertheless, the spectra do not match perfectly between the
three sets of aerosol models. For example, the blue solid line
(“Organic + Sulfate” from Set III, Reff � 0.0) and the yellow
dotted line (“MODABS” from Set II, Reff � 1.0) are close. Both
spectra agree well between 760 and 762 nm where contains
majority of aerosol height information, while slight
discrepancies can be found elsewhere. The phase functions
(P) and single scattering albedos (�ω) computed with the
parameters of the size distribution and the refractive index
are compared as well in the right panel of Figure 1.
Significant differences between different phase functions can
be noticed when scattering angles are close to zero. These
discrepancies should not be overlooked because it may
produce a noticeable error in the retrieved ALH.

To study the influence of aerosol models on the retrieval
results, an experiment using synthetic spectra simulated with

FIGURE 1 | (A): Simulated reflectances as functions of wavelength in the TROPOMI O2 A-band (758–771 nm) using aerosol models from Sets I, II and III,
respectively. (B): The corresponding phase functions as functions of scattering angle.
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“MODABS” from Set I was carried out. In the subsequent
retrieval procedure, “MODABS” from Set II and “Organic +
Sulfate” from Set III were used, respectively. In this case, the
underlying surface was assumed to be a dark surface (with an
albedo of 0.05). The retrieval errors of ALH and AOD using Sets
II and III (with Reff � 0.0, 0.1, 0.2, . . . , 1.0) are shown in Figures 2,
3, respectively. Figures 2, 3 reveal that applying an inappropriate
aerosol model may result in significant retrieval errors. In both
figures, the error of ALH reaches up to 1.9 kmwhen the true value
is 9.5 km, and the largest negative error of AOD is about −0.5
when the true value is 2.0. Interestingly, the retrieval error
gradually increases in Figure 2 with increasing Rreff, while the
error in Figure 3 behaves in an opposite way. Although the
differences in the simulated reflectance spectra between the
models characterizing the same aerosol type found in Figure 1
can result in different retrieval outputs, its impact is estimated to
be moderate.

3.2 Surface Albedo
Apart from the aerosol parameterization, the previous sensitivity
studies (Sanders et al., 2015; Nanda et al., 2018a) demonstrated
that the accuracy of surface properties could greatly influence the
aerosol retrieval from the O2 A-band measurements.

The sensitivity of the reflectance spectrum to the retrieved
parameter can be described by its partial derivative with respect to
this parameter. The partial derivatives of the reflectance (in terms
of the natural logarithm) with respect to ALH and AOD as
functions of surface albedo are illustrated in Figure 4. The left
panel of Figure 4 indicates that the derivatives decrease faster
with the decreasing ALH when the value of AOD was assumed to
be identical. As can be seen from the right panel of Figure 4, the
derivative curves do not differ significantly between the three
values of AOD.

A surface albedo at the turning point where the partial
derivative of the reflectance with respect to ALH or AOD is

FIGURE 2 | Retrieval (absolute) errors of ALH and AOD using “MODABS” from Set II. The synthetic spectra were simulated using “MODABS” from Set I.

FIGURE 3 | Retrieval (absolute) errors of ALH and AOD using “Organic + Sulfate” from Set III. The synthetic spectra were simulated using “MODABS” from Set I.
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zero (dotted line), is called the critical surface albedo (Seidel and
Popp, 2012), namely, this special surface albedo is “critical” for
retrieval of ALH or AOD. It is noteworthy that the critical surface
albedo varies with the value of ALH or AOD. Figure 4 illustrates
that the value of the critical surface albedo increases substantially
with the increasing ALH (left panel for a fixed AOD), while the
value of the critical surface albedo increases gradually when AOD
increases (right panel for a fixed ALH).

The relative retrieval errors resulting from the uncertainty in
the surface albedo is shown in Figure 5. In this case, 0.5 and
3.5 km were used as the true values of AOD and ALH,
respectively, “MODABS” from Set I was used as the aerosol
model. Over darker or less bright surface (with albedo values of
0.05 and 0.15), the uncertainty of the surface albedo seems to
produce less impact on the aerosol retrieval. Apparently, the
retrieval error is more pronounced over a brighter surface (with
albedo values of 0.5 and 0.9). When the value of surface albedo is
around the critical surface albedo, an error of 5% in the surface
albedo could yield errors of about 180% (green line in the left

panel of Figure 5) and 80% (green line in the right panel of
Figure 5) in the retrieved ALH and AOD, respectively.

The critical surface albedo is between 0.2 and 0.3 for ALH
(orange line in the left panel of Figure 4) and AOD (blue line in
the right panel of Figure 4). Along with Figure 5, an indication is
that an overestimated surface albedo tends to introduce an
underestimation of ALH and an overestimation of AOD for
surface albedos higher than the critical surface albedo, whereas
for surface albedos lower than the critical surface albedo, an
underestimated surface albedo is inclined to cause an
overestimation of ALH and an underestimation of AOD.
When the surface albedo is close to the critical surface albedo,
the retrieval can be exceptionally challenging even though the
error of the surface albedo is small. In Figure 5, the largest
retrieval errors of ALH and AOD correspond to the case with
surface albedo of 0.3. These findings are consistent with the
implications from (Seidel and Popp, 2012).

The consequence of using inaccurate surface albedos in
retrieval can be serious, and a joint-fitting of the surface

FIGURE 4 | Derivative of reflectance spectrum with respect to ALH and AOD as functions of surface albedo.

FIGURE 5 | Relative error of ALH (A) and AOD (B) caused by the error of surface albedo.
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albedo cannot guarantee an improved retrieval accuracy, albeit
with more computational effort (Sanders et al., 2015). In practice,
the geometry-dependent effective Lambertian equivalent
reflectivity (GE_LER) (Loyola et al., 2020) can be considered
to be a reliable alternative. Its retrieval algorithm is based on the
framework called the “Full-Physics Inverse Learning Machine”
(FP-ILM) (Xu et al., 2017a; Efremenko et al., 2017; Hedelt et al.,
2019). In contrast to LER climatologies, GE_LER takes into
account the drastically improved spatial resolution of
TROPOMI and represents actual surface conditions accurately.
The retrieved GE_LER data has been included in the operational
TROPOMI products for cloud and UV/VIS trace gases O3, SO2,
and HCHO.

3.3 Geometry
In this section, we discuss the influence of solar and sensor
viewing geometry parameters on the aerosol retrieval. The
simulation was performed by assuming an error in the solar
zenith angle (SZA) and viewing zenith angle (VZA), respectively.

Figure 6 shows the relative retrieval errors of AOD and ALH
due to the relative error of SZA. As expected, when dealing with
measurements at higher SZAs, the retrieval accuracy is more
sensitive to the error of SZA. With an error of 5% in SZA at 75°,
the relative error of retrieved ALH and AOD reaches up to 20 and
90%, respectively.

Figure 7 shows the relative retrieval errors of AOD and ALH
due to the relative error of VZA. Likewise, the retrieval error of
both parameters increases with the increasing VZA. The relative
error of retrieved ALH and AOD is up to 30 and 20%,
respectively. As compared to Figure 6, VZA seems to impose
less impact on the retrieved aerosol parameters. In reality, the
accuracy of measured SZA and VZA is within 1% and estimated
to make a minor impact on retrieval results.

3.4 Wavelength Calibration
An accurate wavelength calibration of the radiance and solar
irradiance measurements is required during the Level-1b and
Level-2 data processing. A wavelength shift is an offset found in

FIGURE 6 | Relative retrieval errors of ALH and AOD due to the error of SZA.

FIGURE 7 | Relative retrieval errors of ALH and AOD due to the error of VZA.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7706628

Rao et al. Aerosol Retrieval from TROPOMI/S5P



the spectral position of a measured signal. It is anticipated that
uncertainty in the wavelength can introduce an error in the
retrieval output. Here, we performed retrievals by assuming a
wavelength shift with different combinations of aerosol
parameters over two surface types (with albedo values of 0.05
and 0.15). Figures 8, 9 depicts the retrieval errors of ALH and
AOD as functions of the wavelength shift as well as the fit
residuals. In Figure 8, the true value of ALH was assumed to
be 1.5, 3.5, 5.5, and 7.5 km, respectively, and the true value of
AOD was fixed to be 0.5; whereas in Figure 9, the true value of
AOD was 0.5, 1.0, 1.5, and 2.0, respectively, and the true value of
ALH was fixed to be 3.5 km.

The wavelength shift has a seemingly greater impact on the
retrieval results over the brighter surface. The retrieval errors
of ALH and AOD and the corresponding residuals are
“augmented” by the larger surface albedo. The residual
plots show a monotonic increase with the increasing
wavelength shift, whereas the retrieval errors appear to
increase oscillatingly with the increasing wavelength shift.
The ALH retrieval only relies on the information from a
narrow range (760–762 nm), and therefore, the error plots
indicate a more pronounced impact on the ALH retrieval when

the wavelength shift increases, as compared to the AOD
retrieval.

Based on the synthetic analysis, uncertainties in surface albedo
and wavelength calibration could cause significant effects on the
retrieval output and should not be neglected when dealing with
retrievals from real measurements.

4 APPLICATION TO REAL DATA

In this section, we present the retrieval results using the real
TROPOMImeasurements. We considered two scenes on June 22,
2018 and June 6, 2020, respectively. Figure 10 displays the
corresponding true-color images from the Visible Infrared
Imaging Radiometer (VIIRS) on the Suomi National Polar-
orbiting Partnership (Suomi NPP) satellite. The red
rectangular region indicates the chosen TROPOMI scene. The
first TROPOMI scene observed a part of Atlantic ocean nearWest
Africa with latitudes between 10.0 and 12.0°N and longitudes
between 22.0 and 24.0°W. The second TROPOMI scene detected
a desert dust aerosol case over the Sahara with latitudes between
12.0 and 21.0°N and longitudes between 16.0 and 20.0°W.

FIGURE 8 | Relative retrieval errors of ALH and AOD as functions of wavelength shift as well as the corresponding fit residuals. The retrievals were performed with
true values of a fixed AOD ( ∼0.5) and varying ALH. Results with surface albedo values of 0.05 (A) and 0.15 (B) are plotted.
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Table 1 describes the TROPOMI O2 A-band
measurements and the input parameters for retrieval. The
aerosol models “MODABS” and “DUST” from Set II were

selected for the retrieval of the two scenes, respectively. The
cloud parameters were taken from the operational
TROPOMI cloud products (OCRA/ROCINN) whose

FIGURE 9 | The same as in Figure 8 but with true values of a fixed ALH ( ∼ 3.5 km) and varying AOD.

FIGURE 10 | VIIRS true-color images on June 22, 2018 (A) and June 6, 2020 (B). The red rectangular region displays the chosen TROPOMI scene.
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retrieval algorithms were described by Loyola et al. (2018).
Inaccuracy in surface properties could play a crucial role in
retrieval, as discussed in Section 3.2. Instead of fitting it as an
additional parameter in the state vector or using LER
climatologies, the surface albedo was taken from the
retrieved GE_LER product. The a priori state xa was
updated with the retrieval from the previous processed pixel.

We removed pixels with a cloud fraction greater than 0.15 that
ensures a sufficient number of valid retrievals without significant
cloud contamination. The pixels with the TROPOMI UV aerosol
index below 0.0 were not processed. The maximum SZA for
processing was 75°.

The inversion calculation carried out by the computer code
(yet to be optimized) typically converges in less than five
iterations. This translate to a 2–3 min processing time of one
pixel on an up-to-date desktop. The retrieval results of ALH and
AOD for the two selected TROPOMI scenes are plotted in
Figures 11, 12, respectively, which seem to capture the spatial
patterns seen from Figure 10 under different aerosol loading
scenarios. The retrieved ALH on June 22, 2018 looks higher in the
south, and the lowest values of ALH can be found in the northeast
where the highest values of AOD are located. Due to heavy cloud
contamination on June 6, 2020, a small number of valid pixels
were processed. Nevertheless, the spatial distribution of desert
dust aerosols is well described by the retrieved aerosol

TABLE 1 | Spectral characteristics of TROPOMI O2 A-band measurements and
the main input parameters for retrieval.

Parameter Description

Band ID 6
Spectral range 758–771 nm
Spectral sampling 0.126 nm
Aerosol model “MODABS” and “DUST” (Set II)
Surface albedo GE_LER
Cloud parameters OCRA/ROCINN

FIGURE 11 | Retrieved ALH and AOD for TROPOMI scene on June 22, 2018 between our results (A) and the operational product (B).
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parameters. For reference, the operational retrieval products
processed by KNMI were plotted in the bottom row of
Figures 11, 12. As compared to the operational products, our
retrieved aerosol parameters capture nearly the same spatial
pattern and the ALH results are slightly underestimated.
However, our retrieved AOD values seem evidently lower than
the operational ones. Different surface albedo data and aerosol
microphysical properties used in the two retrieval algorithms are
possibly the main factors explaining these discrepancies. A
comprehensive validation is needed in the future.

Table 2 lists the propagated retrieval error with taking into
account the most important error sources that are figured
out in Section 3. According to a thorough comparison with
the OMI LER for clear sky scenarios (Loyola et al., 2020), an
error of 0.01 was added to the original values of surface albedo
from GE_LER, causing a mean bias of 0.130 3 km and 0.091 8
on the retrieved ALH and AOD, respectively. For wavelength
calibration, we computed the effect of a shift of 0.007 nm in
the nominal wavelength grid for the radiance (with the
spectral bin size is 0.10 nm). A mean bias of 0.079 3 km and

FIGURE 12 | Retrieved ALH and AOD for TROPOMI scene on June 6, 2020 between our results (A) and the operational product (B).
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0.003 0 on the retrieved ALH and AOD was achieved. Please
note that a wavelength shift of 0.007 nm in the case of
TROPOMI is already quite large and used here as a
conservative estimate.

Figure 13 compares the observed and modeled reflectance
spectra on June 22, 2018 (top row) and June 6, 2020 (bottom
row). The modeled reflectance spectra were simulated with the
retrieved aerosol quantities after convergence. We randomly
chosen four pixels with converged retrieval runs from each
scene. The relative residuals turn out to be higher near
760 nm where the reflectance is rather low. For all pixels, the
simulated and observed reflectance spectra reach a good
agreement, providing an evidence of an overall good fit.

5 CONCLUSION

A conventional retrieval algorithm for hyperspectral satellite
remote sensing that meets the scientific requirements should
enable efficient radiative transfer calculations and reliable
inversion computation. We have developed an aerosol
retrieval algorithm for estimating aerosol parameters
(ALH and AOD) from the O2 A-band of TROPOMI

onboard the S5P satellite. The key objective of this study
was to investigate the impact of forward and instrument
model parameters on the retrieval result. The aerosol model
for microphysical properties, solar/viewing geometry,
surface properties, wavelength calibration have been taken
into account.

Aerosol models play an important role in accurately
describing aerosol microphysical properties under various
measurement conditions. The forward and retrieval
simulations using aerosol models from three sets have been
compared for the same aerosol type. An inaccurate aerosol
model could have a moderate loss of accuracy of retrieved
aerosol parameters. Choosing an appropriate aerosol model
would be useful in the operational data processing. However,
this is not an easy job since for a given measurement it is likely
that not just one aerosol model delivers the good fit. Rao et al.
(2021) have developed an optimized model selection schemed
based on the Bayesian approach and are currently validating its
applicability to the real TROPOMI measurements.

As expected, an error of the surface albedo can contribute
largely to the accuracy of aerosol retrievals, particularly if the
surface albedo is around the critical surface albedo. We
suggest that the GE_LER product can be employed instead
of LER climatologies based on low-resolution measurements
or fitting the surface albedo simultaneously.

The solar and viewing zenith angles represent the solar and
viewing geometry and their accuracy are important to the
retrieval accuracy as well. An enhancement in the retrieval
algorithm is needed particularly when dealing with satellite
measurements at higher SZAs. Another instrument parameter
worthy of attention is the wavelength uncertainty. The

TABLE 2 | Bias of ALH and AOD due to errors in surface albedo and wavelength
calibration.

Parameter Error ALH bias AOD bias

Surface albedo 0.01 0.130 3 km 0.0918
Wavelength grid 0.007 nm 0.079 3 km 0.0030

FIGURE 13 | Observed and modeled reflectance spectra for four random TROPOMI ground pixels on June 22, 2018 (A) and June 6, 2020 (B).
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wavelength shift can potentially deteriorate the quality of the
retrieved parameters (particularly of ALH), although it may
have a minor impact on the fit residuals.

Retrievals using real TROPOMI O2 A-band data recorded on
June 22, 2018 and June 6, 2020 have been performed. The
retrieved aerosol parameters resemble both aerosol loading
scenarios identified in the VIIRS images and the simulated
spectra well approximate the observed ones, that have proved
the application feasibility of the algorithm itself. Inaccurate
surface albedo was supposed to be the most important error
sources in practice and reliable measurements of surface albedo
are required.

The future work will focus on a comprehensive global/regional
validation with other satellite-based (e.g., CALIPO) and ground-
basedmeasurements. For efficiency purposes, the development of a
retrieval framework using machine learning techniques is ongoing.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

Conceptualization, JX and LR; methodology, JX and AD; software
and visualization, LR; investigation, DE and DL; data curation,
LR; writing–original draft preparation, LR and JX; writing–review
and editing, DE, DL, and AD; supervision, JX and AD; project
administration, DE and DL.

FUNDING

This research was supported by the DLR programmatic
(Nachwuchsgruppe “Retrieval der nächsten Generation”,
2472469) and the CAS “Pioneering Initiative Talents Program”
under Grant E1RC2WB2. The work of LR was partly funded by
the Chinese Scholarship Council.

ACKNOWLEDGMENTS

The authors are grateful to the DLR’s UPAS team for processing
the cloud and GE_LER products from TROPOMI.

REFERENCES

Chimot, J., Veefkind, J. P., Vlemmix, T., de Haan, J. F., Amiridis, V., Proestakis, E.,
et al. (2017). An Exploratory Study on the Aerosol Height Retrieval from OMI
Measurements of the 477 Nm O2 − O2 Spectral Band Using a Neural Network
Approach. Atmos. Meas. Tech. 10, 783–809. doi:10.5194/amt-10-783-2017

Chimot, J., Veefkind, J. P., Vlemmix, T., and Levelt, P. F. (2018). Spatial
Distribution Analysis of the OMI Aerosol Layer Height: a Pixel-By-Pixel
Comparison to CALIOP Observations. Atmos. Meas. Tech. 11, 2257–2277.
doi:10.5194/amt-11-2257-2018

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., et al.
(2002). Tropospheric Aerosol Optical Thickness from the GOCARTModel and
Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci.
59, 461–483. doi:10.1175/1520-0469(2002)059〈0461:TAOTFT〉2.0.CO;2

Choi, W., Lee, H., Kim, J., Ryu, J.-Y., Park, S. S., Park, J., et al. (2019). Effects of
Spatiotemporal O4 Column Densities and Temperature-dependent O4
Absorption Cross-Section on an Aerosol Effective Height Retrieval
Algorithm Using the O4 Air Mass Factor from the Ozone Monitoring
Instrument. Remote Sensing Environ. 229, 223–233. doi:10.1016/
j.rse.2019.05.001

Corradini, S., and Cervino, M. (2006). Aerosol Extinction Coefficient Profile
Retrieval in the Oxygen A-Band Considering Multiple Scattering
Atmosphere. Test Case: SCIAMACHY Nadir Simulated Measurements.
J. Quantitative Spectrosc. Radiative Transfer 97, 354–380. doi:10.1016/
j.jqsrt.2005.05.061

Ding, S., Wang, J., and Xu, X. (2016). Polarimetric Remote Sensing in Oxygen A
and B Bands: Sensitivity Study and Information Content Analysis for Vertical
Profile of Aerosols. Atmos. Meas. Tech. 9, 2077–2092. doi:10.5194/amt-9-2077-
2016

Doicu, A., and Trautmann, T. (2009a). Discrete-ordinate Method with
Matrix Exponential for a Pseudo-spherical Atmosphere: Scalar Case.
J. Quantitative Spectrosc. Radiative Transfer 110, 146–158. doi:10.1016/
j.jqsrt.2008.09.014

Doicu, A., and Trautmann, T. (2009b). Discrete-ordinate Method with Matrix
Exponential for a Pseudo-spherical Atmosphere: Vector Case. J. Quantitative
Spectrosc. Radiative Transfer 110, 159–172. doi:10.1016/j.jqsrt.2008.09.013

Efremenko, D., Doicu, A., Loyola, D., and Trautmann, T. (2013). Acceleration
Techniques for the Discrete Ordinate Method. J. Quantitative Spectrosc.
Radiative Transfer 114, 73–81. doi:10.1016/j.jqsrt.2012.08.014

Efremenko, D. S., Loyola R., D. G., Hedelt, P., and Spurr, R. J. D. (2017). Volcanic
SO2 Plume Height Retrieval from UV Sensors Using a Full-Physics Inverse
Learning Machine Algorithm. Int. J. Remote Sensing 38, 1–27. doi:10.1080/
01431161.2017.1348644

Frankenberg, C., Hasekamp, O., O’Dell, C., Sanghavi, S., Butz, A., and Worden, J.
(2012). Aerosol Information Content Analysis of Multi-Angle High Spectral
Resolution Measurements and its Benefit for High Accuracy Greenhouse Gas
Retrievals. Atmos. Meas. Tech. 5, 1809–1821. doi:10.5194/amt-5-1809-2012

Goody, R., West, R., Chen, L., and Crisp, D. (1989). The Correlated-K Method for
Radiation Calculations in Nonhomogeneous Atmospheres. J. Quant. Spectrosc.
Radiat. Transf. 42, 437–651. doi:10.1016/0022-4073(89)90044-7

Hedelt, P., Efremenko, D. S., Loyola, D. G., Spurr, R., and Clarisse, L. (2019). Sulfur
Dioxide Layer Height Retrieval from Sentinel-5 Precursor/TROPOMI Using
FP_ILM. Atmos. Meas. Tech. 12, 5503–5517. doi:10.5194/amt-12-5503-2019

Hess, M., Koepke, P., and Schult, I. (1998). Optical Properties of Aerosols and
Clouds: The Software Package OPAC. Bull. Amer. Meteorol. Soc. 79, 831–844.
doi:10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2

Hollstein, A., and Fischer, J. (2014). Retrieving Aerosol Height from the Oxygen a
Band: a Fast Forward Operator and Sensitivity Study Concerning Spectral
Resolution, Instrumental Noise, and Surface Inhomogeneity. Atmos. Meas.
Tech. 7, 1429–1441. doi:10.5194/amt-7-1429-2014

Kleipool, Q., Ludewig, A., Babić, L., Bartstra, R., Braak, R., Dierssen, W., et al.
(2018). Pre-launch Calibration Results of the TROPOMI Payload On-Board the
Sentinel-5 Precursor Satellite. Atmos. Meas. Tech. 11, 6439–6479. doi:10.5194/
amt-11-6439-2018

Kokhanovsky, A. A., Rozanov, V. V., Nauss, T., Reudenbach, C., Daniel, J. S.,
Miller, H. L., et al. (2006a). The Semianalytical Cloud Retrieval Algorithm for
SCIAMACHY I. The Validation. Atmos. Chem. Phys. 6, 1905–1911.
doi:10.5194/acp-6-1905-2006

Kokhanovsky, A. A., and Rozanov, V. V. (2010). The Determination of Dust Cloud
Altitudes from a Satellite Using Hyperspectral Measurements in the Gaseous
Absorption Band. Int. J. Remote Sensing 31, 2729–2744. doi:10.1080/
01431160903085644

Kokhanovsky, A. A., von Hoyningen-Huene, W., Rozanov, V. V., Noël, S.,
Gerilowski, K., Bovensmann, H., et al. (2006b). The Semianalytical Cloud
Retrieval Algorithm for SCIAMACHY II. The Application to MERIS and
SCIAMACHY Data. Atmos. Chem. Phys. 6, 4129–4136. doi:10.5194/acp-6-
4129-2006

Koppers, G. A. A., and Murtagh, D. P. (1997). “Retrieval of Height Resolved
Aerosol Optical Thickness in the Atmospheric Band,” in Radiative Transfer in

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 77066214

Rao et al. Aerosol Retrieval from TROPOMI/S5P



the Absorption Bands of Oxygen: Studies of Their Significance in Ozone
Chemistry and Potential for Aerosol Remote Sensing (Stockholm, Sweden:
Stockholm University).

Lelli, L., Kokhanovsky, A. A., Rozanov, V. V., Vountas, M., and Burrows, J. P.
(2014). Linear Trends in Cloud Top Height from Passive Observations in the
Oxygen A-Band. Atmos. Chem. Phys. 14, 5679–5692. doi:10.5194/acp-14-5679-
2014

Levy, R. C., Remer, L. A., and Dubovik, O. (2007a). Global Aerosol Optical
Properties and Application to Moderate Resolution Imaging
Spectroradiometer Aerosol Retrieval over Land. J. Geophys. Res. 112.
doi:10.1029/2006JD007815

Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J. (2007b).
Second-generation Operational Algorithm: Retrieval of Aerosol Properties over
Land from Inversion of Moderate Resolution Imaging Spectroradiometer
Spectral Reflectance. J. Geophys. Res. Atmos. 112. doi:10.1029/2006JD007811

Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L., Lee, K.-H., et al. (2009).
Uncertainties in Satellite Remote Sensing of Aerosols and Impact on
Monitoring its Long-Term Trend: a Review and Perspective. Ann. Geophys.
27, 2755–2770. doi:10.5194/angeo-27-2755-2009

Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Romahn, F., Spurr, R. J. D.,
et al. (2018). The Operational Cloud Retrieval Algorithms from TROPOMI on
Board Sentinel-5 Precursor. Atmos. Meas. Tech. 11, 409–427. doi:10.5194/amt-
11-409-2018

Loyola, D. G., Xu, J., Heue, K.-P., and Zimmer, W. (2020). Applying FP_ILM to the
Retrieval of Geometry-dependent Effective Lambertian Equivalent Reflectivity
(GE_LER) Daily Maps from UVN Satellite Measurements. Atmos. Meas. Tech.
13, 985–999. doi:10.5194/amt-13-985-2020

Ludewig, A., Kleipool, Q., Bartstra, R., Landzaat, R., Leloux, J., Loots, E., et al.
(2020). In-flight Calibration Results of the TROPOMI Payload on Board the
Sentinel-5 Precursor Satellite. Atmos. Meas. Tech. 13, 3561–3580. doi:10.5194/
amt-13-3561-2020

Molina García, V., Sasi, S., Efremenko, D. S., Doicu, A., and Loyola, D. (2018a).
Linearized Radiative Transfer Models for Retrieval of Cloud Parameters from
EPIC/DSCOVR Measurements. J. Quantitative Spectrosc. Radiative Transfer
213, 241–251. doi:10.1016/j.jqsrt.2018.03.008

Molina García, V., Sasi, S., Efremenko, D. S., Doicu, A., and Loyola, D. (2018b).
Radiative Transfer Models for Retrieval of Cloud Parameters from EPIC/
DSCOVR Measurements. J. Quantitative Spectrosc. Radiative Transfer 213,
228–240. doi:10.1016/j.jqsrt.2018.03.014

Nanda, S., de Graaf, M., Sneep, M., de Haan, J. F., Stammes, P., Sanders, A. F. J.,
et al. (2018a). Error Sources in the Retrieval of Aerosol Information over Bright
Surfaces from Satellite Measurements in the Oxygen A Band. Atmos. Meas.
Tech. 11, 161–175. doi:10.5194/amt-11-161-2018

Nanda, S., Veefkind, J. P., de Graaf, M., Sneep, M., Stammes, P., de Haan, J. F., et al.
(2018b). A Weighted Least Squares Approach to Retrieve Aerosol Layer Height
over Bright Surfaces Applied to GOME-2 Measurements of the Oxygen A Band
for forest Fire Cases over Europe. Atmos. Meas. Tech. 11, 3263–3280.
doi:10.5194/amt-11-3263-2018

Natraj, V., Jiang, X., Shia, R.-l., Huang, X., Margolis, J. S., and Yung, Y. L. (2005).
Application of Principal Component Analysis to High Spectral Resolution
Radiative Transfer: A Case Study of the Band. J. Quantitative Spectrosc.
Radiative Transfer 95, 539–556. doi:10.1016/j.jqsrt.2004.12.024

Natraj, V., Shia, R.-L., and Yung, Y. L. (2010). On the Use of Principal Component
Analysis to Speed up Radiative Transfer Calculations. J. Quantitative Spectrosc.
Radiative Transfer 111, 810–816. doi:10.1016/j.jqsrt.2009.11.004

Park, S. S., Kim, J., Lee, H., Torres, O., Lee, K.-M., and Lee, S. D. (2016). Utilization
of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-
Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study. Atmos.
Chem. Phys. 16, 1987–2006. doi:10.5194/acp-16-1987-2016

Rao, L., Xu, J., Efremenko, D. S., Loyola, D. G., and Doicu, A. (2021). Optimization
of Aerosol Model Selection for TROPOMI/S5P. Remote Sens 13. doi:10.3390/
rs13132489

Rodgers, C. (2000). Inverse Methods For Atmospheric Sounding: Theory And
Practise. Singapore: World Scientific.

Rodriguez, D. G. L., Thomas, W., Livschitz, Y., Ruppert, T., Albert, P., and
Hollmann, R. (2007). Cloud Properties Derived from GOME/ERS-2
Backscatter Data for Trace Gas Retrieval. IEEE Trans. Geosci. Remote
Sensing 45, 2747–2758. doi:10.1109/TGRS.2007.901043

Sanders, A. F. J., and de Haan, J. F. (2013). Retrieval of Aerosol Parameters from the
Oxygen a Band in the Presence of Chlorophyll Fluorescence. Atmos. Meas.
Tech. 6, 2725–2740. doi:10.5194/amt-6-2725-2013

Sanders, A. F. J., de Haan, J. F., Sneep, M., Apituley, A., Stammes, P., Vieitez, M. O.,
et al. (2015). Evaluation of the Operational Aerosol Layer Height Retrieval
Algorithm for Sentinel-5 Precursor: Application to O2 A Band Observations
from GOME-2A. Atmos. Meas. Tech. 8, 4947–4977. doi:10.5194/amt-8-4947-
2015

Sanghavi, S., Martonchik, J. V., Landgraf, J., and Platt, U. (2012). Retrieval of the
Optical Depth and Vertical Distribution of Particulate Scatterers in the
Atmosphere Using O2 A- and B-Band SCIAMACHY Observations over
Kanpur: a Case Study. Atmos. Meas. Tech. 5, 1099–1119. doi:10.5194/amt-5-
1099-2012

Sasi, S., Natraj, V., Molina García, V., Efremenko, D. S., Loyola, D., and Doicu, A.
(2020a). Model Selection in Atmospheric Remote Sensing with an Application
to Aerosol Retrieval from DSCOVR/EPIC, Part 1: Theory. Remote Sens 12,
3724. doi:10.3390/rs12223724

Sasi, S., Natraj, V., Molina García, V., Efremenko, D. S., Loyola, D., and Doicu, A.
(2020b). Model Selection in Atmospheric Remote Sensing with Application to
Aerosol Retrieval from DSCOVR/EPIC. Part 2: Numerical Analysis. Remote
Sens 12, 3656. doi:10.3390/rs12213656

Seidel, F. C., and Popp, C. (2012). Critical Surface Albedo and its Implications to
Aerosol Remote Sensing. Atmos. Meas. Tech. 5, 1653–1665. doi:10.5194/amt-5-
1653-2012

Spurr, R. (2008). “LIDORT and VLIDORT. Linearized Pseudo-spherical
Scalar and Vector Discrete Ordinate Radiative Transfer Models for
Use in Remote Sensing Retrieval Problems,”. Light Scattering Reviews.
Editor A. Kokhanovsky (Berlin: Springer-Verlag), 3, 229–271.

Taylor, M., Kazadzis, S., Amiridis, V., and Kahn, R. A. (2015). Global Aerosol
Mixtures and Their Multiyear and Seasonal Characteristics. Atmos. Environ.
116, 112–129. doi:10.1016/j.atmosenv.2015.06.029

Thomas, G. E., Poulsen, C. A., Sayer, A. M., Marsh, S. H., Dean, S. M., Carboni, E.,
et al. (2009). The GRAPE Aerosol Retrieval Algorithm. Atmos. Meas. Tech. 2,
679–701. doi:10.5194/amt-2-679-2009

Tikhonov, A. (1963). On the Solution of Incorrectly Stated Problems and a Method
of Regularization. Dokl. Acad. Nauk SSSR 151, 501–504.

Tilstra, L., Tuinder, O., Wang, P., and Stammes, P. (2019). GOME-2 Absorbing
Aerosol Height Algorithm Theoretical Basis Document. Tech. rep. De Bilt,
Netherlands: Royal Netherlands Meteorological Institute KNMI.

Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J. (1998).
Derivation of Aerosol Properties from Satellite Measurements of Backscattered
Ultraviolet Radiation: Theoretical Basis. J. Geophys. Res. 103, 17099–17110.
doi:10.1029/98JD00900

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., et al.
(2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for
Global Observations of the Atmospheric Composition for Climate, Air Quality
and Ozone Layer Applications. Remote Sensing Environ. 120, 70–83.
doi:10.1016/j.rse.2011.09.027

Wang, P., Stammes, P., van der A, R., Pinardi, G., and van Roozendael, M. (2008).
FRESCO+: an Improved O2 A-Band Cloud Retrieval Algorithm for
Tropospheric Trace Gas Retrievals. Atmos. Chem. Phys. 8, 6565–6576.
doi:10.5194/acp-8-6565-2008

Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., et al.
(2009). Overview of the CALIPSO mission and CALIOP Data Processing
Algorithms. J. Atmos. Oceanic Techn. 26, 2310–2323. doi:10.1175/
2009JTECHA1281.1

Xu, J., Rao, L., Schreier, F., Efremenko, D. S., Doicu, A., and Trautmann,
T. (2020). Insight into Construction of Tikhonov-type Regularization
for Atmospheric Retrievals. Atmosphere 11, 1052. doi:10.3390/
atmos11101052

Xu, J., Schreier, F., Doicu, A., and Trautmann, T. (2016). Assessment of Tikhonov-
type Regularization Methods for Solving Atmospheric Inverse Problems.
J. Quantitative Spectrosc. Radiative Transfer 184, 274–286. doi:10.1016/
j.jqsrt.2016.08.003

Xu, J., Schussler, O., Rodriguez, D. G. L. D., Romahn, F., and Doicu, A. (2017a). A
Novel Ozone Profile Shape Retrieval Using Full-Physics Inverse Learning
Machine (FP-ILM). IEEE J. Sel. Top. Appl. Earth Observations Remote
Sensing 10, 5442–5457. doi:10.1109/JSTARS.2017.2740168

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 77066215

Rao et al. Aerosol Retrieval from TROPOMI/S5P



Xu, X., Wang, J., Wang, Y., Zeng, J., Torres, O., Yang, Y., et al. (2017b).
Passive Remote Sensing of Altitude and Optical Depth of Dust Plumes
Using the Oxygen A and B Bands: First Results from EPIC/DSCOVR at
Lagrange-1 point. Geophys. Res. Lett. 44, 7544–7554. doi:10.1002/
2017GL073939

Zeng, Z.-C., Chen, S., Natraj, V., Le, T., Xu, F., Merrelli, A., et al. (2020).
Constraining the Vertical Distribution of Coastal Dust Aerosol Using OCO-
2 O2 A-Band Measurements. Remote Sensing Environ. 236, 111494.
doi:10.1016/j.rse.2019.111494

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Rao, Xu, Efremenko, Loyola and Doicu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 77066216

Rao et al. Aerosol Retrieval from TROPOMI/S5P





B Optimization of Aerosol Model
Selection for TROPOMI/S5P

Rao, L.; Xu, J.; Efremenko, D.S.; Loyola, D.G.; Doicu, A. Optimization of
Aerosol Model Selection for TROPOMI/S5P. Remote Sens. 2021, 13(13), 2489, doi:
10.3390/rs13132489

121



remote sensing  

Article

Optimization of Aerosol Model Selection for TROPOMI/S5P

Lanlan Rao 1,2 , Jian Xu 1,*,† , Dmitry S. Efremenko 1 , Diego G. Loyola 1 and Adrian Doicu 1

����������
�������

Citation: Rao, L.; Xu, J.;

Efremenko, D.S.; Loyola, D.G.; Doicu,

A. Aerosol Model Selection for

TROPOMI/S5P. Remote Sens. 2021, 13,

2489. https://doi.org/10.3390/

rs13132489

Academic Editor: Luke Knibbs

Received: 14 May 2021

Accepted: 22 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany;
lanlan.rao@dlr.de (L.R.); dmitry.efremenko@dlr.de (D.S.E.); diego.loyola@dlr.de (D.G.L.);
adrian.doicu@dlr.de (A.D.)

2 Department of Aerospace and Geodesy, Technische Universität München, 80331 Munich, Germany
* Correspondence: jian.xu@dlr.de; Tel.: +49-8153-28-3353
† Current address: National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China.

Abstract: To retrieve aerosol properties from satellite measurements, micro-physical aerosol models
have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an
appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that
takes into account model uncertainties to retrieve the aerosol optical depth and layer height from
synthetic and real TROPOMI O2A band measurements. The results show that in case of insufficient
information for an appropriate micro-physical model selection, the Bayesian algorithm improves the
accuracy of the solution.

Keywords: model selection; aerosol retrievals; TROPOMI/S5P

1. Introduction

Aerosols affect the Earth’s climate directly by disturbing the Earth’s radiation budget
and indirectly by altering cloud processes. To better understand the role of aerosols in
the Earth’s climate, it is important to observe concentrations and properties of aerosols.
Satellite sensors provide long-term measurements that can effectively monitor aerosol
information on both regional and global scales.

The information on the aerosol optical depth can be retrieved from the data provided
by satellite sensors, such as the Advanced Very High Resolution Radiometer (AVHRR) [1],
the Moderate Resolution Imaging Spectroradiometer (MODIS) [2], the Visible Infrared
Imaging Radiometer (VIIRS) [3], and the Advanced Himawari Imager (AHI) [4], helping to
understand the temporal and spatial distribution characteristics of atmospheric aerosols.
Aerosol height information can be retrieved from (i) multi-angle instruments, e.g., the Multi-
angle Imaging Spectroradiometer (MISR) [5], and the Advanced Along-Track Scanning
Radiometer (AATSR) [6]; (ii) polarization measurements, e.g., the Polarization and Direc-
tionality of the Earth’s Reflectances (POLDER) [7]; and (iii) measurements in the oxygen
absorption band, e.g., the TROPOspheric Monitoring Instrument (TROPOMI) [8]. A com-
bination of multi-angle and polarization observations [9] can also provide information of
micro-physical parameters such as particle size distribution and refractive index.

However, the information that can be retrieved from space is quite limited. To retrieve
the aerosol parameters, aerosol models characterizing the micro-physical properties have
to be assumed. Aerosol properties exhibit high spatial inhomogeneity because of various
origins and complex processes during transportation in the atmosphere. Aerosol particles
are originated from both natural processes (such as wind-blown desert dust and sea salt,
wild forest fire, and volcano eruption) and anthropogenic activities (such as industrial
activities, artificial vegetation fire, and fossil fuel combustion). The selection of a suitable
aerosol model in the retrieval algorithm relies on the knowledge of emission sources.

There are several databases and sets of aerosol models portraying the aerosol micro-
physical properties on a global scale. The Optical Properties of Aerosols and Clouds (OPAC)
database [10] describes the size distribution and spectral refractive index of 10 aerosol
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components under different humidities. These components can form various aerosol
types through internal mixture. The dark-target algorithm of the Moderate-Resolution
Imaging Spectroradiometer (MODIS) characterizes a set of aerosol models and provides
global distributions of aerosol types for different seasons based on a cluster analysis of
the AERONET climatology [2,11]. The OMI near-UV (OMAERUV) algorithm and the
multi-wavelength algorithm (OMAERO) consider several major aerosol types which are
split into different aerosol models. The selection of an aerosol model is based on spectral
and geographic considerations [12]. A chemical transport model, such as the Goddard
Chemistry Aerosol Radiation and Transport (GOCART) model also supplies distributions
of different aerosol types [13,14]. Besides, a number of studies coping with classification of
aerosol types based on satellite remote sensing were carried out, see, e.g., in [15–19].

In standard retrieval algorithms, an aerosol model is chosen from a set of candi-
date models, and the retrieval is performed as if the selected model reflects the real
scenario. In general, model selection is not a trivial task because for a given measurement,
several models may fit the data equally well. The Bayesian approach and, in particular,
the Bayesian model selection and model averaging Hoeting et al. [20], is a statistical method
using measurement data to select the best fitting models from a set of candidate models
without any prior seasonal or geographical information. The Bayesian method provides a
posteriori probability densities for given models, also known as model evidences. In the
Bayesian model selection, we select the model with the highest evidence, while in the
Bayesian model averaging, we combine the retrieval results corresponding to different
candidate models weighted by their evidences. Määttä et al. [21] introduced the Bayesian
approach into the aerosol model selection of the OMAERO algorithm, Kauppi et al. [22]
applied the Bayesian approach to real data of OMI, while Sasi et al. [23,24] applied the
Bayesian approach to EPIC (Earth Polychromatic Imaging Camera) [25] synthetic measure-
ments.

In this paper, for the first time, we use the Bayesian approach to jointly retrieve the
aerosol optical depth and aerosol layer height from TROPOMI/S5P (Sentinel-5 Precur-
sor) [26] measurements in the O2A band (758–771 nm). TROPOMI is a hyperspectral instru-
ment on board the Copernicus Sentinel-5 Precursor satellite launched on 13 October 2017,
measuring the solar radiance backscattered by atmosphere and Earth’s surface in the ul-
traviolet (UV), visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) spectral
ranges. The aerosol parameters are retrieved using NIR measurements with a spectral
resolution of ∼0.45 nm. As the first atmospheric monitoring mission within the Coperni-
cus program, TROPOMI has a very high spatial resolution of 3.5 × 7 km2 (3.5 × 5.5 km2

since 6 August 2019), as compared with its predecessors. In particular, the spectra in
O2A band (758–771 nm) provides a way to retrieve the aerosol height information. The
physical principle of aerosol height detection in O2A band lies on the fact that the aerosol
layer attenuate the reflection of solar radiance by the lower atmosphere at high oxygen
absorption wavelengths. This attenuation decreases as the decline of oxygen absorption
coefficient. To our best knowledge, currently no satellite passive sensor except TROPOMI
can provide official product of aerosol height information.

The paper is organized as follows. In Section 2, we review the Bayesian model
selection approach and discuss its application to aerosol retrievals. Section 3 describes the
sets of aerosol models used in our numerical analysis. The accuracy of the Bayesian model
selection approach is analyzed in Section 4 for synthetic measurements and in Section 5 for
real data over a wild fire scene in South Africa.

2. Methodology

We have developed a retrieval algorithm dedicated to satellite remote sensing of
aerosol and cloud parameters. The physics-based retrieval algorithm comprises a forward
model calculating radiative transfer of electromagnetic radiation through a planetary atmo-
sphere and an inversion module solving a nonlinear minimization problem. In the forward
model, the radiative transfer calculation depends on the discrete ordinate method with
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matrix exponential. To speed up the computation in the oxygen absorption band from
sensors (e.g., TROPOMI) with very high spectral resolution, we have implemented acceler-
ation techniques like the telescoping technique [27,28], the false discrete ordinate approach,
the correlated k-distribution method [29], and the principal components analysis [30,31].
The inversion is performed by the means of Tikhonov regularization with optimal strategies
for constructing the regularization parameter and matrix [32,33]. For further details about
the retrieval algorithm and its forward model, we refer to the works in [34–36].

In this study, the aerosol optical depth τ and the layer height h are retrieved in the O2A
band (758–771 nm). The retrieval algorithm can deal with four types of aerosol profiles:
Gaussian, exponential decay, elevated box, and a combination of exponential decay and
ground box. To simplify the analysis, the aerosol layer is assumed to be homogeneous,
spreading evenly from near surface to the top aerosol layer height h. Considering Nm
aerosol models, the retrieval of the state vector x = [τ, h] is an inverse problem relying on
the solution of the nonlinear equation

yδ = Fm(x) + δm, (1)

where yδ is the measurement vector, Fm(x) is the forward model corresponding to the
aerosol model m with m = 1, . . . , Nm, δm = δmes + δaerm the total data error vector, δmes
the measurement error vector, and δaerm the aerosol model error vector, i.e., the error due to
an inadequate aerosol model. In our analysis, Fm(x) is the vector of the log of the simulated
radiances corresponding to aerosol model m, i.e., [Fm(x)]i = ln Im(λi, x), where {λi}M

i=1 is
a set of M wavelengths in the considered spectral domain.

The data model (1) is transformed into a model with white noise by using the
prewhitening technique. The procedure is as follows. Assuming that

1. δmes is a Gaussian random vector with zero mean and covariance matrix Cmes =

σ2
mesCmes, where σ2

mes is the measurement error variance and Cmes a normalized
measurement error covariance matrix;

2. δaerm is a Gaussian random vector with zero mean and covariance matrix Caerm =

σ2
aermIM, where σ2

aerm is the aerosol model error variance and IM the identity matrix;
and

3. δmes and δaerm are independent random vectors,

we deduce that δm is also a Gaussian random vector with zero mean and covariance
matrix Cδm = Cmes + Caerm = σ2

mCδm, where σ2
m = σ2

mes + σ2
aerm is the data error variance

and Cδm = wmesmCmes + (1− wmesm)IM with wmesm = σ2
mes/σ2

m, a normalized data error
covariance matrix. In this context, the scaled data model reads as

yδ = Fm(x) + δm, (2)

where yδ = Pyδ, Fm(x) = PFm(x), δm = Pδm, and P = C−1/2
δm is a scaling matrix. As Cδm =

E{δmδ
T
m} = σ2

mIM, it is readily seen that δm ∼ N(0, Cδm = σ2
mIM), where the notation

N(xmean, Cx) stands for a normal distribution with mean xmean and covariance matrix
Cx. In a stochastic setting, we assume that x ∼ N(xa, Cx), where xa is the a priori state
vector, the best beforehand estimate of the solution, Cx = σ2

xCx is the a priori covariance
matrix, and σ2

x the a priori state variance. Defining the regularization matrix L and the
regularization parameter α through the relations C−1

x = LTL and α = σ2
m/σ2

x , respectively,
we express the a priori covariance matrix as Cx = σ2

m(αLTL)−1.
The scaled nonlinear Equation (2) is solved by means of a Bayesian approach. The key

quantity in this approach is the a posteriori density p(x | yδ, m), which represents the
conditional probability density of x given the data yδ and the aerosol model m. According to
Bayes’ theorem, the a posteriori density is given by

p(x | yδ, m) =
p(yδ | x, m)p(x | m)

p(yδ | m)
,
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where p(x | m) is the a priori density, i.e., the conditional probability density of x given the
aerosol model m before performing the measurement yδ, p(yδ | x, m) the likelihood density,
i.e., the conditional probability density of yδ given the state x and the aerosol model m, and

p(yδ | m) =
∫

p(x, yδ | m)dx =
∫

p(yδ | x, m)p(x | m)dx, (3)

the marginal likelihood density. Although, in the Bayesian parameter estimation, the
marginal likelihood density p(yδ | m) plays the role of a normalization constant and is
usually ignored, this probability density is of particular importance in the Bayesian model
selection. For x ∼ N(xa, Cx = σ2

m(αLTL)−1) and δm ∼ N(0, Cδm = σ2
mIM), the Bayes’

formula gives

p(x | yδ, m) ∝ exp
[
−1

2
Vα(x | yδ, m)

]
, (4)

where
Vα(x | yδ, m) =

1
σ2

m

[∥∥yδ − Fm(x)
∥∥2

+ α
∥∥L(x− xa)

∥∥2
]

(5)

is the a posteriori potential. Consequently, the maximum a posteriori estimate x̂δ
mα is

computed as
x̂δ

mα = arg min
x

Vα(x | yδ, m). (6)

In a deterministic setting, Fmα(x) = σ2
mVα(x | yδ, m) is the Tikhonov function for the

nonlinear equation yδ = Fm(x) with the penalty term α||L(x− xa)||2 and the regularization
parameter α. Thus, a regularized solution xδ

mα, which minimizes Fmα(x), coincides with
the maximum a posteriori estimate, i.e., xδ

mα = x̂δ
mα. The computation of the regularized

solution xδ
mα in the framework of the method of Tikhonov regularization requires the

knowledge of the optimal value of the regularization parameter α̂. Because in practice, this
is a very challenging task, the nonlinear equation yδ = Fm(x) is solved by means of the
iteratively regularized Gauss–Newton method. This method provides an optimal value of
the regularization parameter α̂ (i.e., the ratio of the data error variance σ2

m and the a priori
state variance σ2

x ) and the corresponding regularized solution xδ
mα̂.

For model comparison, the so-called relative evidence of the mth aerosol model
p(m | yδ) plays an important role. In view of Bayes’ theorem, this conditional probability
density is defined by

p(m | yδ) =
p(yδ | m)p(m)

p(yδ)
=

p(yδ | m)

∑Nm
m=1 p(yδ | m)

, (7)

where the last equality follows from the mean formula p(yδ) = ∑Nm
m=1 p(yδ | m)p(m) and

the assumption that all aerosol models are equally like, i.e., p(m) = 1/Nm. In terms of
p(m | yδ), the mean a posteriori density reads as

pmean(x | yδ) =
Nm

∑
m=1

p(x | yδ, m)p(m | yδ), (8)

while the mean and the maximum solution estimates are defined by

x̂δ
mean =

Nm

∑
m=1

xδ
mα̂ p(m | yδ), (9)

and
x̂δ

max = xδ
m? α̂, m? = arg max

m
p(m | yδ), (10)

respectively. In Equation (9), the Bayesian model averaging technique is used to combine
the individual solutions weighted by their evidences, while in Equation (8), the aerosol
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model with the highest evidence is considered to be the best among all aerosol models
involved. Intuitively, we expect that in practice, a linear combination of the retrieved
parameters corresponding to different candidate models will better reproduce the real
scenario than the retrieved parameters corresponding to an a priori selected model. In a
stochastic setting, the relative evidence p(m | yδ) can be computed via Equation (7) by
using a linearization of the forward model around the solution and under the assumption
that the data error variance σ2

m is known. In [23,24], estimates for σ2
m were obtained in the

framework of the maximum marginal likelihood estimation [37–39] and the generalized
cross-validation method [40,41]. In a deterministic setting, p(m | yδ), regarded as a merit
function characterizing the solution xδ

mα̂, can be defined in terms of the marginal likelihood
function or the generalized cross-validation function. In the latter case, the computational
formula is

p(m | yδ) =
1/υ(m)

∑Nm
m=1 1/υ(m)

. (11)

where

υ(m) =
||rδ

mα̂||2
[trace(I− Âmα̂)]2

(12)

is the generalized cross-validation function, rδ
mα̂ = yδ − Fm(xδ

mα̂) the nonlinear residual vec-

tor, Âmα̂ = Kmα̂K†
mα̂ the influence matrix, Kmα̂ the Jacobian matrix, and K†

mα̂ the generalized
inverse at the solution xδ

mα̂.

3. Aerosol Models

Two sets of aerosol micro-physical models are used in our numerical analysis. The first
set (Set 1) is taken from the MODIS dark-target algorithm [11] and includes the following
four aerosol models:

1. non-absorbing (NONABS) aerosols, generated from fossil fuel combustion in urban-
industrial areas;

2. moderately absorbing (MODABS) aerosols;
3. absorbing (ABS) aerosols, generated from biomass burning; and
4. desert dust (DUST), originated from desert and transported by wind.

The volume size distribution of each aerosol model is a bimodal log-normal distribu-
tion consisting of a fine and a coarse mode. The parameters of the size distribution (median
radius, standard deviation, and volume of particles) and the complex refractive index,
which depend on the aerosol optical depth, are illustrated in Table 1. The second set (Set 2)
is taken from the OMAERO algorithm and includes the following five major aerosol types:

1. weakly absorbing (WA),
2. biomass burning (BB),
3. desert dust (DD),
4. marine (MA), and
5. volcanic (VO).

Each type is split into several aerosol models depending on their optical properties
and particle size distribution. The parameters of the size distribution (median radius,
standard deviation, and fraction of coarse mode) and the complex refractive index are
shown in Table 2.

In the forward model, the scattering characteristics (e.g., the single scattering albedo,
the phase function, and the asymmetry parameter) can be computed by the Mie theory
in the case of spherical particles, and the null-field method with discrete sources in the
case of spheroidal particles with a size parameter smaller than 50. For spheroidal particles
with large size parameter, we use a precomputed database as given in [42]. In this study,
the aerosol particles are assumed to be spherical for simplicity.
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Table 1. Micro-physical properties of aerosols models of Set 1. Each model is composed of a fine and coarse mode. The
median radius of the volume distribution rv, standard deviation σ, the volume of particles V0, and complex refractive index
m of each mode are listed in the table.

Model Mode rv (µm) σ m = (Re(m), Im(m)) V0 (µm3/µm2))

NONABS fine 0.160 + 0.0434τ 0.364 + 0.1529τ (1.42, 0.004− 0.0015τ) 0.1718τ0.821

coarse 3.325 + 0.1411τ 0.759 + 0.0168τ 0.0934τ0.639

MODABS fine 0.145 + 0.0203τ 0.374 + 0.1365τ (1.43, 0.008− 0.002τ) 0.1642τ0.775

coarse 3.101 + 0.3364τ 0.729 + 0.098τ 0.1482τ0.684

ABS fine 0.134 + 0.0096τ 0.383 + 0.0794τ (1.51, 0.02) 0.1748τ0.891

coarse 3.448 + 0.9489τ 0.743 + 0.0409τ 0.1043τ0.682

DUST fine 0.1416τ−0.052 0.7561τ0.148
(1.48τ−0.021, 0.0018τ−0.08) 0.087τ1.026

coarse 2.2 0.554τ−0.052 0.6786τ1.057

Table 2. Micro-physical properties of aerosols models of Set 2. The median radius of the number size
distribution rmod, stand deviation σ, and complex refractive index m of two modes are listed in the
table. wcoarse is the fraction of coarse mode in number concentration. The two lines of m for MA mod.
abs. and MA abs. aerosol model are the refraction index of fine and coarse modes, respectively.

Type Model
Fine Mode Coarse Mode

m = (Re, Im) wcoarse
rmod eσ rmod eσ

WA

WA1101 0.078 1.499 0.497 2.160 (1.4, 5.0× 10−8) (4.36× 10−4)

WA1102 0.088 1.499 0.509 2.160 (1.4, 5.0× 10−8) (4.04× 10−4)

WA1103 0.137 1.499 0.567 2.160 (1.4, 5.0× 10−8) (8.10× 10−4)

WA1104 0.030 2.030 0.240 2.030 (1.4, 5.0× 10−8) (1.53× 10−2)

WA1201 0.078 1.499 0.497 2.160 (1.4, 4.0× 10−3) (4.36× 10−4)

WA1202 0.088 1.499 0.509 2.160 (1.4, 4.0× 10−3) (4.04× 10−4)

WA1203 0.137 1.499 0.567 2.160 (1.4, 4.0× 10−3) (8.10× 10−4)

WA1301 0.078 1.499 0.497 2.160 (1.4, 1.2× 10−2) (4.36× 10−4)

WA1302 0.088 1.499 0.509 2.160 (1.4, 1.2× 10−2) (4.04× 10−4)

WA1303 0.137 1.499 0.567 2.160 (1.4, 1.2× 10−2) (8.10× 10−4)

BB

BB2101 0.074 1.537 0.511 2.203 (1.5, 1.0× 10−2) (1.70× 10−4)

BB2102 0.087 1.537 0.567 2.203 (1.5, 1.0× 10−2) (2.06× 10−4)

BB2103 0.124 1.537 0.719 2.203 (1.5, 1.0× 10−2) (2.94× 10−4)

BB2201 0.074 1.537 0.511 2.203 (1.5, 2.0× 10−2) (1.70× 10−4)

BB2202 0.087 1.537 0.509 2.203 (1.5, 2.0× 10−2) (2.06× 10−4)
BB2203 0.124 1.537 0.719 2.203 (1.5, 2.0× 10−2) (2.94× 10−4)

BB2102 0.087 1.537 0.509 2.203 (1.5, 3.0× 10−2) (2.06× 10−4)

BB2103 0.124 1.537 0.719 2.203 (1.5, 3.0× 10−2) (2.94× 10−4)

DD

BB2101 0.074 1.537 0.511 2.203 (1.5, 3.0× 10−2) (1.70× 10−4)
DD3101 0.042 1.697 0.670 1.806 (1.53, 4.0× 10−3) (4.35× 10−3)

DD3102 0.052 1.697 0.670 1.806 (1.53, 4.0× 10−3) (4.35× 10−3)

DD3201 0.042 1.697 0.670 1.806 (1.53, 1.0× 10−2) (4.35× 10−3)

DD3202 0.052 1.697 0.670 1.806 (1.53, 1.0× 10−2) (4.35× 10−3)
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Table 2. Cont.

Type Model
Fine Mode Coarse Mode

m = (Re, Im) wcoarse
rmod eσ rmod eσ

MA
MA mod. abs. 0.030 2.030 0.240 2.030 (1.4, 4.0× 10−3)

(1.55× 10−4)
(1.4, 5.0× 10−8)

MA abs. 0.030 2.030 0.240 2.030 (1.4, 1.2× 10−2)
(1.55× 10−4)

(1.4, 5.0× 10−8)

VO VO4101 0.230 0.800 0.240 2.030 (1.45, 7.5× 10−8) 0.5

Both sets of aerosol models have been widely used in satellite remote sensing of
aerosol properties and are representative for characterizing aerosol microphysical proper-
ties. According to the EPIC experiment in [24], Set 2 slightly outperformed in the retrieval
outcome and can be suggested as a proper choice.

4. Tests with Synthetic Data

In this section, we analyze the accuracy of the Bayesian model selection algorithm for
synthetic measurements.

4.1. Test 1

In the first test example, synthetic measurement spectra are simulated for each aerosol
model included in Set 1 (me = NONABS, MODABS, ABS, DUST), and for each measure-
ment, all aerosol models from Set 1 are considered in the retrieval. Thus, the retrieval
algorithm has the possibility of identifying the correct aerosol model. The exact aerosol
optical depths and layer heights to be retrieved are

τe = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 (13)

and
he = 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5 km, (14)

respectively. The a priori values, which coincide with the initial guesses, are τa = 2.0 and
ha = 2 km, and a Lambertian surface with an albedo of 0.05 being assumed. The solar
zenith, viewing zenith, and relative azimuth angles are θo = 60◦, θv = 0◦, and ∆φ = 180◦.
For the exact solution xe = [τe, he], the accuracy of the solution estimates is quantified
through the relative errors

ετ
mean(τe, he) =

|τmean − τe|
τe

and εh
mean(τe, he) =

|hmean − he|
he

(15)

corresponding to (cf. Equation (9)) x̂δ
mean = [τmean, hmean] and

ετ
max(τe, he) =

|τmax − τe|
τe

and εh
max(τe, he) =

|hmax − he|
he

(16)

corresponding to (cf. Equation (10)) x̂δ
max = [τmax, hmax].

In Figures 1 and 2, we illustrate the variations of the relative errors with respect
to the exact aerosol layer height he for τe = 0.5 (i.e., ετ,h

mean,max(τe = 0.5, he)), and the
aerosol optical depth τe for he = 3.5 km (i.e., ετ,h

mean,max(τe, he = 3.5 km)), respectively.
The following conclusions can be drawn:

1. The relative errors corresponding to the maximum solution estimate (ετ
max and εh

max)
are considered to be acceptable according to the scientific requirements defined in the
pre-launch characterization tests and significantly smaller than those corresponding
to the mean solution estimate (ετ

mean and εh
mean). Thus, the retrieval algorithm can

recognize correctly the exact aerosol model.
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2. For the maximum solution estimate, the retrieved aerosol optical depth achieves a
higher accuracy than the retrieved aerosol layer height.

3. Different aerosol models could have similar a posteriori densities as the inversion
process is not ideally perfect. An inappropriate aerosol model may occasionally be
identified, which can result in unexpected errors (τe = 1, 1.25).

The relative errors ετ
max(τe, he = 3.5 km) and εh

max(τe, he = 3.5 km) attain their highest
values (of about 0.22 and 0.016, respectively) for me = MODABS and τe = 1, 1.25. To ex-
plain this result, in Figure 3 we plot the a posteriori densities p(x = [τ, h] | yδ, m) for m =
NONABS, MODABS, ABS, DUST, and the mean a posteriori densities pmean(x = [τ, h] | yδ)
in the case me = MODABS, τe = 1.25 and he = 3.5 km. The plots indicate that a posterior
density for m = DUST is of similar height and width to that for m = MODABS; the maxi-
mum solution is achieved at m = MODABS, i.e., the DUST appears to be the model with
the highest evidence.
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Figure 1. Relative errors ετ,h
mean,max(τe = 0.5, he) for the aerosol models from Set 1. ALH represents

the aerosol layer height.
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Figure 2. Relative errors ετ,h
mean,max(τe, he = 3.5 km) for the aerosol models from Set 1. AOD represents

the aerosol optical depth.
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Figure 3. The a posteriori densities p(x = [τ, h] | yδ, m) for m = NONABS, MODABS, ABS, and
DUST, and the mean a posteriori densities pmean(x = [τ, h] | yδ) in the case me = MODABS, τe = 1.25,
and he = 3.5 km. The black curve indicates the mean a posterior density. In each plot, the red vertical
dashed line corresponds to the exact values to be retrieved (τe, he), the blue vertical dashed line to the
maximum solution estimate (τmax, hmax), and the green dashed line to the mean solution estimates
(τmean, hmean).

4.2. Test 2

In the second test example, synthetic measurement spectra are produced for each
aerosol model included in Set 1 (me = NONABS, MODABS, ABS, DUST), and for each
measurement all aerosol models from Set 2 are considered in the retrieval. The mean
solution estimate and the mean a posteriori density are computed for the first 10 aerosol
models with the highest evidence.

The variations of the relative errors with respect to the exact aerosol layer height he for
τe = 0.5 and the aerosol optical depthτe for he = 3.5 km are illustrated in Figures 4 and 5,
respectively. The plots indicate that

1. the relative errors are larger than those in the first test example,
2. the relative errors corresponding to the maximum solution estimate (ετ

max and εh
max)

and the mean solution estimate (ετ
mean and εh

mean) are comparable, and
3. on average, the retrieved aerosol layer height obtains a higher accuracy than the

retrieved aerosol optical depth.

The mean a posteriori densities pmean(x = [τ, h] | yδ) are shown in Figures 6 and 7 for
τe = 0.5, he = 3.5 km, and all exact aerosol models me = NONABS, MODABS, ABS, and
DUST. The following conclusions could be made:

1. hmean and hmax are both not too far from he; thus, for aerosol layer height retrieval,
the maximum solution estimate and the mean solution estimate (ετ

mean and εh
mean)

have similar accuracies;
2. τmean is relatively closer to τe than τmax; thus, for aerosol optical depth retrieval,

the mean solution estimate performs better than the maximum solution estimate;
3. aerosol layer height retrievals have wide a posteriori densities that cover the exact

layer height; and
4. aerosol optical depth retrievals have multi-peaked densities, in which the exact optical

depth does not have the highest probability.
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Figure 4. Relative errors ετ,h
mean,max(τe = 0.5, he) for the aerosol models from Set 2.
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Figure 5. Relative errors ετ,h
mean,max(τe, he = 3.5 km) for the aerosol models from Set 2.
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Figure 6. The mean a posteriori densities pmean(h | yδ) for me = NONABS, MODABS, ABS, DUST,
τe = 0.5, and he = 3.5 km. In each plot, the red vertical dashed line correspond to the exact values
to be retrieved (τe, he), the blue vertical dashed line to the maximum solution estimate (τmax, hmax),
and the green dashed line to the mean solution estimates (τmean, hmean).
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Figure 7. The same as in Figure 6 but for the mean a posteriori densities pmean(τ | yδ).

5. Case Study with TROPOMI Data

To test the performance of the retrieval algorithm on real TROPOMI data, we chose a
wild fire scene in South Africa and considered the measurements recorded on 4–5 July 2019.
As can be seen from the respective VIIRS images, the wild fire smoke on 4 July 2019
(Figure 8a) traveled beyond the coastline and extended over the ocean, so that the smoke
on 5 July 2019 (Figure 8b) was thinner. Regional studies of aerosol optical/microphysical
properties during biomass burning can be found in [43–45].

The aerosol models included in Sets 1 and 2 are used in the retrieval. To decrease the
retrieval uncertainty caused by unrealistic surface properties, the geometry-dependent
effective Lambertian equivalent reflectivity (GE_LER) products [46] are used. The ground
pixels with cloud fraction larger than 0.15 are excluded for this analysis, in which case,
the scene is assumed to be cloud free so that we can retrieve valid aerosol information on
sufficient number of pixels without significant impact by cloud contamination.

Figure 9 shows the aerosol model with the highest evidence from Set 1 as well
as the aerosol type containing the aerosol model with the highest evidence from Set 2.
The most likely models are ABS from Set 1 and BB type from Set 2. The model evidence for
each aerosol model from Set 1 is shown in Figure 10. Note that the differences between the
model evidences for the four aerosol models are not very large, and the model evidence of
ABS was slightly larger than those of the other models. In Set 2, there are 26 aerosol models
and five aerosol types. The sum of the first 10 best aerosol model evidences for each aerosol
type from Set 2 are illustrated in Figure 11. The most probable type is BB. In conclusion,
the most plausible aerosol models identified by the algorithm, that is, ABS from Set 1 and
BB from Set 2, are of the biomass burning aerosol type. This strongly absorbing aerosol
type is consistent with the thick smoke observed in the true-color image.

The predominant models for retrieval on 5 July 2019 are ABS and DUST among Set 1
(Figure 12a), and BB and DD among Set 2 (Figure 12b). Thus, in addition to the aerosol
models identified for 4 July 2019, the dust aerosol model comes into play. The model
evidence for each aerosol model from Set 1 and and each aerosol type from Set 2 are dis-
played in Figures 13 and 14, respectively. In conclusion, compared with that on 4 July 2019,
the dominance of biomass burning aerosol type (ABS and BB) is less obvious. Taking into
account the thinner smoke on 5 July 2019 and the long traveling distance from the origin,
the presence of a less absorbing mixture of different aerosol types (biomass burning and
dust) seems to be plausible. The corresponding maximum and mean solution estimates are
shown in Figures 15–18 (Figures 15 and 17 for Set 1, and Figures 16 and 18 for Set 2).
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Figure 8. True-color VIIRS images recorded on (a) 4 and (b) 5 July 2019.
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Figure 9. (a) The aerosol model with the highest evidence from Set 1, and (b) the aerosol type
containing the aerosol model with the highest evidence from Set 2. The TROPOMI spectra were
recorded on 4 July 2019.
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Figure 10. The model evidence for each aerosol model from Set 1. The TROPOMI spectra were
recorded on 4 July 2019.

To demonstrate the performance under various aerosol loading scenarios, we per-
formed retrievals for another two cases from TROPOMI. The first case focused on a
desert dust aerosol case in Sahara on 6 June 2020 (see Figure S1 for the VIIRS image).
The model evidence for the aerosol models in Set 1 and the aerosol types of Set 2 are given
in Figures S2–S4. The prevailing aerosol model and aerosol type are DUST from Set 1 and
DD from Set 2, given the fact that both models represent desert dust aerosols. The second
case was for a urban aerosol case on 10 February 2020 over eastern China (see Figure S7 for
the VIIRS image) where many industrial cities are located. As shown in Figures S8–S10,
the NONABS model in Set 1 and the WA aerosol type in Set 2 are the most plausible choices,
as both stands for industrial aerosols.
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Figure 11. The sum of the first 10 best aerosol model evidences for each aerosol type from Set 2.
The TROPOMI spectra were recorded on 4 July 2019.

Figures S5 and S6 illustrate the maximum and mean solution estimates for the first
case, respectively. Figures S11 and S12 depict the corresponding solution estimates for the
second case.

The dominant aerosol type or aerosol model for each study can be found from the
above analysis. However, the most likely model varies from pixel to pixel, indicating that
sometimes a “wrong” model may be chosen, which is consistent with the findings using
the synthetic data. Based on the results of the retrieval solutions, we can see that

1. the mean solution estimates show a slightly smoother spatial pattern than the maxi-
mum solution estimates, and

2. despite the differences in the micro-physical properties of the aerosol models from
Sets 1 and 2, the spatial distributions of the mean retrieval results are comparable.

In this study, the state vector was a two-element vector (aerosol optical depth and
layer height) by considering the box profile for simplicity. The degree of freedom was
estimated to be 2 in most cases. From the practical point of view, the retrieval on a Dell
desktop (with 12 processors at 3.2 GHz, 31.2 GB of RAM) took less than 10 min (10–15
iterations in total) by running the program with all the models included in Set 1 and longer
than 60 min (approximately 100 iterations in total) by considering all the models included
in Set 2.

9.0 E 9.2 E 9.4 E 9.6 E
(a) Set 1

7.5 S

7.4 S

7.3 S

7.2 S

7.1 S

7.0 S

NONABS
MODABS
ABS
DUST

9.0 E 9.2 E 9.4 E 9.6 E
(b) Set 2

7.5 S

7.4 S

7.3 S

7.2 S

7.1 S

7.0 S

WA
BB
DD
MA
VO

Figure 12. The same as in Figure 9 but for the data on 5 July 2019.
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Figure 13. The same as in Figure 10 but for the data on 5 July 2019.
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Figure 14. The same as in Figure 11 but for the data on 5 July 2019.
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Figure 15. The maximum solution estimates (hmax, τmax) and the mean solution estimates (hmean,
τmean) for Set 1 and data on 4 July 2019.
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Figure 16. The maximum solution estimates (hmax, τmax) and the mean solution estimates (hmean,
τmean) for Set 2 and data on 4 July 2019.
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Figure 17. The same as in Figure 15 but for the data on 5 July 2019.
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Figure 18. The same as in Figure 16 but for the data on 5 July 2019.

6. Conclusions

In this paper, the results of aerosol retrieval computed by means of a Bayesian al-
gorithm that takes into account the uncertainty in aerosol model selection are presented.
The solution corresponding to a specific aerosol model is characterized by a relative evi-
dence which is used to construct (i) the maximum solution estimate, corresponding to the
aerosol model with the highest evidence, and (ii) the mean solution estimate, representing
a linear combination of solutions weighted by their evidences. The algorithm is applied to
the retrieval of aerosol optical depth and layer height from synthetic and real TROPOMI
data. The real TROPOMI data were taken on 4–5 July 2019 over a wild fire scene in South
Africa. In the retrieval, two sets of aerosol models are taken into account; these correspond
to the MODIS dark-target and OMAERO algorithms. The following conclusions are drawn.

1. When the exact aerosol model, for which synthetic data are generated, is included
in the set of candidate models, the relative errors corresponding to the maximum
solution estimate are relatively small. When this is not the case, it is likely that several
aerosol models are able to fit the data equally well. In such situations, the mean
solution estimate has a smaller bias than the maximum solution estimate.

2. For the real measurements on 4 July 2019, the absorbing aerosol model from Set 1
and the biomass burning aerosol type from Set 2 are found to be the most plausible.
This result is in agreement with the thick smoke observed in the true-color image.
For the thinner smoke scenario on 5 July 2019, the above models together with the
dust aerosol model are found to be the most probable aerosol models. Actually, no
dominant aerosol model, but rather a less absorbing mixture of different aerosol
types, is identified in this case. The mean and maximum solution estimates have a
similar spatial distribution, but the mean solution estimates have a more continuous
spatial pattern.

3. The two TROPOMI cases on 6 June 2020 and 10 February 2020 for desert dust and
urban aerosols, respectively, have demonstrated the promising performance of the
proposed algorithm under various aerosol loading scenarios.

4. A definite choice between Sets 1 and 2 for possible candidate models may not exist
and a suitable one could be problem dependent.

Note that when applying the Bayesian approach, we have to perform a retrieval for
each candidate model. For this reason, the retrieval algorithm is computationally expensive,
especially a set like Set 2 contains a larger number of aerosol models. To enhance its
efficiency, development of a machine learning-based scheme is currently ongoing.
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10.3390/rs13132489/s1, Figure S1: True-color VIIRS image recorded on 6 June 2020. Figure S2: (a)
The aerosol model with the highest evidence from Set 1, and (b) the aerosol type containing the
aerosol model with the highest evidence from Set 2. The TROPOMI spectra were recorded on 6 June
2020. Figure S3: The model evidence for each aerosol model from Set 1. The TROPOMI spectra
were recorded on 6 June 2020. Figure S4: The sum of the first 10 best aerosol model evidences for
each aerosol type from Set 2. The TROPOMI spectra were recorded on 6 June 2020. Figure S5: The
maximum solution estimates (hmax, τmax) and the mean solution estimates (hmean, τmean) for Set 1
and data on 6 June 2020. Figure S6: The same as in Figure S5 but for Set 2. Figure S7: True-color VIIRS
image recorded on 10 February 2020. Figure S8: (a) The aerosol model with the highest evidence
from Set 1, and (b) the aerosol type containing the aerosol model with the highest evidence from Set 2.
The TROPOMI spectra were recorded on 10 February 2020. Figure S9: The model evidence for each
aerosol model from Set 1. The TROPOMI spectra were recorded on 10 February 2020. Figure S10:
The sum of the first 10 best aerosol model evidences for each aerosol type from Set 2. The TROPOMI
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and the mean solution estimates (hmean, τmean) for Set 1 and data on 10 February 2020. Figure S12:
The same as in Figure S11 but for Set 2.
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Abbreviations
The following abbreviations are used in this manuscript:

ALH Aerosol Layer Height
AOD Aerosol Optical Depth
GE_LER Geometry-dependent Effective Lambertian Equivalent Reflectivity
MODIS Moderate-resolution Imaging Spectroradiometer
NIR Near-infrared
OMI Ozone Monitoring Instrument
OMAERO OMI Multi-wavelength
S5P Sentinel-5 Precursor
TROPOMI Tropospheric Monitoring Instrument
ABS Absorbing (Set 1)
DUST Desert dust (Set 1)
MODABS Moderately absorbing (Set 1)
NONABS Non-absorbing (Set 1)
BB Biomass Burning (Set 2)
DD Desert Dust (Set 2)
MA Marine (Set 2)
VO Volcanic (Set 2)
WA Weakly absorbing (Set 2)
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and Adrian Doicu

Abstract— In this article, we present three algorithms for aerosol
parameters retrieval from TROPOspheric Monitoring Instrument
measurements in the O2 A-band. These algorithms use neural
networks 1) to emulate the radiative transfer model and a Bayesian
approach to solve the inverse problem, 2) to learn the inverse model
from the synthetic radiances, and 3) to learn the inverse model
from the principal-component transform of synthetic radiances.
The training process is based on full-physics radiative transfer
simulations. The accuracy and efficiency of the neural network
based retrieval algorithms are analyzed with synthetic and real
data.

Index Terms—Aerosol information retrieval, neural networks,
TROPOspheric Monitoring Instrument/Sentinel-5 Precursor
(TROPOMI/S5P).

I. INTRODUCTION

A EROSOLS affect Earth’s radiation budget by scattering
and absorbing solar radiation (direct effect) and by influ-

encing the cloud formation processes (indirect effect). Highly
absorbing aerosols also have a warming effect on the atmosphere
leading to the evaporation of cloud particles, which results in
a reduction of the cloud cover (semidirect effect). Accurate
assessments of aerosol properties, such as optical depth and layer
height, are important for the global monitoring of air pollution
in the lower atmosphere.

A number of passive satellite sensors enable to monitor
aerosol properties on both regional and global scale using spec-
tral information at various wavelengths. For instance, measure-
ments in the O2 A-band from the Global Ozone Mapping Ex-
periment (GOME) [1] and GOME-2 [2], the Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography [3]–
[5], the Greenhouse Gases Observing Satellite [6], and the
TROPOspheric Monitoring Instrument (TROPOMI) onboard
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the Sentinel-5 Precursor (S5P) [7], [8] are used to retrieve aerosol
optical depth and height information.

The inversion methods used in atmospheric remote sensing
aim to recover atmospheric parameters by minimizing the
residual between the measurements and the radiative transfer
model simulations. The solution of the minimization problem
can be found by using deterministic (e.g., Tikhonov-type
regularization methods [9], [10]) or stochastic approaches (e.g.,
Bayesian methods [11]). In both cases, the computations of the
forward model and the Jacobian matrix impose the performance
bottleneck in the whole processing chain. Therefore, it would
be problematic to adopt these approaches for the operational
processing of remote sensing data from new-generation sen-
sors. To tackle this problem, artificial neural networks, which
are able to approximate very quickly any continuous function
with a sufficiently high accuracy [12], [13] and to estimate the
derivatives of the function with respect to the model inputs,
can be used. Actually, a trained neural network may provide
accurate estimates of the forward model and its Jacobian, in a
fraction of time compared to classical retrieval algorithms. In
atmospheric remote sensing, neural networks have already been
widely applied. These techniques have been used 1) to approx-
imate a radiative transfer model (or a part of it) [14]–[19], 2) to
learn the inverse mappings [20]–[28], and 3) to recover some
atmospheric retrieval parameters, which are then taken as initial
guesses in an optimization approach [29], [30]. In this context,
it should be pointed out that the two TROPOMI operational
retrieval algorithms based on the O2 A-band measurements use
neural network based forward models together with a Bayesian
approach for the retrieval of cloud properties [31], [32] and the
aerosol layer height [33]–[35].

In this study, we present three types of neural networks for
aerosol retrieval from TROPOMI measurements. The first one
uses a neural network to emulate the radiative transfer model and
a Bayesian approach to solve the inverse problem, the second
one uses a neural network to learn the inverse model from the
synthetic radiances, and the third one uses a neural network to
learn the inverse model from the principal-component transform
of synthetic radiances following the full-physics inverse learning
machine method [18]. The major goal of this study is to incor-
porate the three neural network algorithms into a common tool
and to analyze and compare their retrieval performances. To the
best of our knowledge, such a comparison study had not been
done before. This article is organized as follows. In Section II,
we summarize the main features of the adopted radiative transfer
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model, while in Section III, we provide a detailed description of
three physics-based algorithms using neural networks. In Sec-
tion IV, the corresponding retrieval performances of the neural
networks are analyzed using synthetic and real TROPOMI data.

II. RADIATIVE TRANSFER MODEL

Any physics-based retrieval algorithm uses a model for com-
puting the radiative transfer in a planetary atmosphere. We begin
our analysis by summarizing the peculiarities of the radiative
transfer model used in this study.

Regarding the TROPOMI instrument, each swath row (angle)
r with r = 1, . . . , R is characterized by its own measurement
wavelength grid {λr

mk}Nmλ

k=1 and slit function gr, where R is the
number of swath rows and Nmλ is the number of spectral grid
points. This is due to the optics of the spectrometer (point spread
function, aberrations, and defocusing) and small changes in the
width of the slit. The noisy and synthetic radiances measured by
the instrument at a wavelength λr

mk are given, respectively, by

Iδ(λr
mk) = I(λr

mk) + δmk, (1)

I(λr
mk) =

∫ ∞

−∞
gr(λ

r
mk − λ)I(λ) dλ (2)

where I(λ) is the radiance computed by a radiative transfer
model at a forward wavelength λ (before convolution) and δmk

is the measurement noise. Note that because {λr
mk}Nmλ

k=1 changes
slightly with r, we assumed that the noise is row independent.

The synthetic radiances I(λ) are computed on the forward
wavelength grid by a radiative transfer model relying on the
discrete ordinate method with matrix exponential [36], [37].
To speed up the computation, standard acceleration methods,
i.e., the telescoping technique [38], [39] and the method of
false discrete ordinate [40], as well as hyperspectral acceleration
methods, i.e., the correlated k-distribution method [41] and prin-
cipal component analysis [42]–[46], are employed. Line-by-line
calculations [47] with optimized rational approximations for the
Voigt line profile [48] (taken from HITRAN database [49]) are
used to compute the absorption cross sections of gas molecules;
the methodology described in [50] is used to compute the
Rayleigh cross section and depolarization ratios, and the delta-M
approximation [51] and truncated multiple and single scattering
approximation correction [52], [53] are used in the radiative
transfer calculations. The radiative transfer model includes sev-
eral types of bidirectional reflectance distribution functions over
land and water. However, in order to simplify the analysis, we
use the geometry-dependent effective Lambertian equivalent re-
flectivity (GE_LER) product that accounts for satellite viewing
dependencies and improves the accuracy for actual snow/ice
conditions [28].

The aerosol optical depth τ and layer height H are retrieved
in the oxygen absorption A-band (758–771 nm). To simplify the
analysis, the aerosol layer is assumed to be homogeneous with a
fixed thickness of 0.5 km, spreading evenly fromH − 0.25km to
theH + 0.25 km. As the considered spectral range is narrow, the
aerosol optical depth is assumed to be constant within this range.
There are five sets of aerosol microphysical models [54], [55]
included in the radiative transfer model under the assumption

of spherical aerosol particles. For example, the set of aerosol
models taken from the MODIS dark-target (DT) algorithm [56]
includes nonabsorbing, moderately absorbing, and absorbing
aerosols, as well as desert dust. Each aerosol model is char-
acterized by a bi-mode log-normal volume size distribution
comprising a fine and a coarse mode. Specifically, in the case
of moderately absorbing aerosols, the median radius of the fine
mode rvf and the coarse mode rvc are given, respectively, by

rvf = 0.145 + 0.0203τ (μm), (3)

rvc = 3.101 + 0.3364τ (μm) (4)

the standard deviations of the fine mode sf and the coarse mode
sc by

sf = 0.374 + 0.1365τ, (5)

sc = 0.729 + 0.098τ (6)

the volumes of the fine mode particles V0f and the coarse mode
particles V0c by

V0f = 0.1642τ0.775 (μm3/μm2), (7)

V0c = 0.1482τ0.684 (μm3/μm2) (8)

and the complex refractive index of the aerosol particles by
m = (1.43, 0.008− 0.002τ). Note that the parameters of the
size distribution and the refractive index depend on the aerosol
optical depth τ . In addition, the radiative transfer model can
deal with several types of aerosol profiles, such as, for example,
elevated box, exponential decay, a combination of exponential
decay and ground box, and Gaussian.

III. NEURAL NETWORK ALGORITHMS

In this study, neural networks are employed 1) to emulate
the radiative transfer model and 2) to learn the inverse model.
The first one is referred to as a neural network for the forward
operator, whereas the second one as a neural network for the
inverse operator.

The neural network approach can be briefly summarized as
follows. Let us consider the model y = F(x), where x ∈ RNx

and y ∈ RNy are the input and output vectors, respectively, and
F is a deterministic function. In order to approximate F(x) by a
neural network model f(x,ω) with parameters ω, we consider
a deep neural network consisting of units (nodes) arranged in an
input, output, and several hidden layers. For a neural network
with L+ 1 layers and Nl units in layer l, the feed-forward
operations read as

ul = Wlyl−1 + bl, (9)

yl = φl(ul), l = 1, . . . , L (10)

where l = 0 and l = L are the input and output layers, re-
spectively, φl is the layer activation function, Wl ∈ RNl×Nl−1

is the matrix of weights connecting the layers l − 1 and l,
bl ∈ RNl is the vector of biases corresponding to layer l,
and ω = {Wl,bl}Ll=1 is the set of network parameters. In the
input and output layers, we have y0 = x and yL = f(x,ω),
respectively, so that N0 = Nx and NL = Ny. Deep learning
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Fig. 1. Mean square error for the validation data set. The results correspond to all neural networks considered in this study, i.e., (a) the forward-operator neural
network, (b) the inverse-operator neural network with synthetic radiances, and (c) inverse-operator neural network with the principal-component transform of
synthetic radiances.

TABLE I
VALUE RANGES OF THE OPTICAL AND GEOMETRICAL PARAMETERS

FOR GENERATING THE DATA SET

is the process of computing the network parameters ω on a
data set D = {(x(n),y(n))}Nn=1, where y(n) = F(x(n)) and N
is the number of samples. This is done by computing a point
estimate ω̂ as the minimizer of a loss function with a penalty
term controlling the amplitudes of the network parameters, i.e.,
E(ω) = 1

2

∑N
n=1 ||y(n) − f(x(n),ω)||2 + γ||ω||2, where γ is

the regularization parameter.
To formulate the retrieval problem, we group the optical and

geometrical parameters into the following:
1) retrieval parameters, which include the aerosol optical

depth τ at 760 nm and aerosol layer height H defined as
the middle height of an aerosol layer with a fixed thickness
of 0.5 km;

2) forward model parameters, which include the solar zenith
angle θ0, viewing zenith angle θ, relative azimuth angle
Δϕ, surface height Hs, and surface albedo As (note that
the forward model parameters are not part of the retrieval).

For generating the data set, samples of optical and geomet-
rical parameters are produced by means of a smart sampling
technique [57] based on Halton sequences [58]; their ranges of
variations are shown in Table I . The neural networks are trained
for the moderately absorbing aerosol model from the MODIS
DT algorithm.

The hyperparameters of the neural network, i.e., the number of
hidden layers and the number of units in each layer, are optimized
by using 10% of the samples from the training set for validation.
In the validation stage, the holdout cross-validation and a grid
search procedure are used; the grid search is performed over the
sets {2, 3, 4} of hidden layers and {20, 40, 60, 80, 100} of layer
units. For all neural network considered in this study, a network
architecture with 4 hidden layers and 40 units in each layer
yields the lowest mean-square error on the validation data set

(see Fig. 1), and no overfitting has been observed. A hyperbolic
tangent activation function is taken, and as optimization tool, the
mini-batch gradient descent with adaptive moment estimation
[59] is utilized.

A. Neural Network for the Forward Operator

For emulating the radiative transfer model, we consider a
neural network in which the input x is the set of optical and
geometrical parameters, while the output y is the set of syn-
thetic radiances I(λk) computed on the forward wavelength grid
{λk}Nλ

k=1, i.e.,

x =

[
[τ,H]T

[θ0, θ,Δϕ,Hs, As]
T

]
�−→ y = [I(λk)]

Nλ

k=1. (11)

Thus, the dimensions of the input and output vectors are Nx = 7
and Ny = Nλ, respectively.

The forward wavelength grid consists of Nλ = 465 equidis-
tant spectral points ranging from 757.4 to 771.6 nm, while the
number of samples in training set is Nt = 151 423 based on the
number of combinations of optical and geometrical parameters
defined by Table I. After the radiative transfer model is learned,
the synthetic radiances computed at a high spectral resolution
on the forward wavelength grid I(λk) are convolved with a slit
function gr to obtain the synthetic radiances on the measurement
wavelength grid I(λr

mk) [cf. (2)].
The retrieval of aerosol parameters encapsulated now in the

state vector x = [τ,H]T requires the solution of the nonlinear
equation

yδ = F(x) + δm (12)

where, for a given swath row r,yδ = [Imes(λ
r
mk)]

Nmλ

k=1 is the mea-
surement vector,F(x) = [I(λr

mk)]
Nmλ

k=1 is the forward model, and
δm = [δmk]

Nmλ

k=1 is the measurement noise vector. The nonlinear
equation (12) is solved by using a Bayesian approach [11]. In
this approach, the a posteriori density p(x | yδ) representing
the conditional probability density of the state vector x given
the data yδ is the quantity of interest. Assuming that

1) the measurement noise vector δm is a Gaussian ran-
dom vector with zero mean and noise covariance ma-
trix Cm = diag[σ2

mk]
Nmλ

k=1 = σ2
mCm, i.e., δm ∼ N (0,Cm),

where σ2
m =

∑Nmλ

k=1 σ
2
mk is the noise variance, and
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Fig. 2. Contribution of the first 14 principal components to the total variance
(top) and reconstruction error with respect to the first 14 principal components
(bottom).

2) the state vector x is a Gaussian random vector with mean
xa and a priori covariance matrix Cx = diag[σ2

xk]
Nx
k=1 =

σ2
xCx, i.e., x ∼ N (xa,Cx), where xa is the a priori state

vector, σ2
x =

∑Nx
k=1 σ

2
xk is the a priori state variance, and

the notation N (xmean,Cx) symbolizes a normal distribu-
tion with mean xmean and covariance matrix Cx,

we find

p(x | yδ) ∝ exp
[
−1

2
Vα(x | yδ)

]
(13)

where

Vα(x|yδ) =
1

σ2
m

{
[yδ − F(x)]C−1

m [yδ − F(x)]T

+ α(x− xa)C−1
x (x− xa)

T
}

(14)

is the a posteriori potential and α = σ2
m/σ

2
x is the regularization

parameter. Here, the notation N (xmean,Cx) stands for a normal
distribution with mean xmean and covariance matrix Cx. The
maximum a posteriori estimate x̂δ

α is then computed as

x̂δ
α = argmin

x
Vα(x|yδ). (15)

After scaling the data model (12) with the matrix P = C−1/2
m ,

i.e., after transforming the data model into a model with white
noise and introducing the regularization matrix L through the
Cholesky factorizationC−1

x = LTL, we are led to a least-squares
problem which is solved by using the iteratively regularized
Gauss–Newton method [60]. This method supplies the optimal
value of the regularization parameter and the corresponding
regularized solution.

In the inversion step, the noise covariance matrix is chosen as
Cm = diag[σ2

mk]
Nmλ

k=1 with σmk = 0.02× I(λmk) and I(λmk) =

(1/R)
∑R

r=1 I(λ
r
mk) for all k = 1, . . . , Nmλ, and the a priori

covariance matrix as Cx = diag[σ2
xk]

2
k=1 with σxk = 0.2× xk

and xk standing for τ and H .

Fig. 3. Predictions of the forward-operator neural network (top row), the
inverse-operator neural networks with synthetic radiances (middle row),
and the principal-component transform of synthetic radiances (bottom row),

respectively. The plots show the predicted values x
(n)
pred (blue points) to-

gether with the mean Ej(xpred) (red points) and standard deviation√
Ej(xpred − Ej(xpred)]2) (red error bars) over all samples x

(n)
pred, whose

corresponding x(n) are in the jth bin. The value range of x is split intoNb = 40
bins, where x stands for the aerosol optical depth τ and aerosol layer height H .

B. Neural Network for the Inverse Operator

For solving the inverse problem, we designed two types
of neural networks following the full-physics inverse learning
machine method. The first one uses as input the synthetic radi-
ances computed on the measurement wavelength grid, while the
second one uses as input the principal-component transform of
synthetic radiances.

1) Neural Network for the Inverse Operator With Synthetic
Radiances: In principle, for emulating the inverse model, we
may use a neural network in which the input x includes the
noisy radiances on a measurement wavelength grid and the
forward model parameters, while the output y includes the set
of parameters to be retrieved, i.e.,

x =

[
[I(λr

mk) + δmk]
Nmλ

k=1

[θ0, θ,Δϕ,Hs, As]
T

]
�−→ y = [τ,H]T . (16)

In this case, the dimensions of the input and output vectors are
Nx = Nmλ + 5 and Ny = 2, respectively.

The problem which appears is that because we are dealing
with a random measurement noise and a set of measurement
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Fig. 4. Absolute error in the retrieved aerosol optical depth Δτ and aerosol
layer height ΔH versus the optical and geometrical parameters b, where b
stands for the aerosol optical depth τ , aerosol layer height H , solar zenith
angle θ0, viewing zenith angle θ, relative azimuth angle Δϕ, surface albedo As,
and surface height Hs. The results correspond to the forward-operator neural

network. The plots show the absolute error Δ(n)
x (blue points) together with the

mean Ej(Δx) (red points) and standard deviation
√

Ej([Δx − Ej(Δx)]2)

(red error bars) over all samples Δ(n)
x , whose corresponding b(n) are in the jth

bin. The interval of variation of each parameter b is split into Nb = 40 bins.

wavelength grids, the same output corresponds to different
realization of the random noise as well as to different wave-
length grids. To reduce the dimension of the data set, we use
the jitter approach under the assumption that the measurement
wavelength grid {λr

mk}Nmλ

k=1 is a discrete random variable which
can take the values {λ1

mk}Nmλ

k=1, . . . , {λR
mk}Nmλ

k=1. According to this
approach, at each forward pass through the network, a measure-
ment wavelength grid {λr

mk}Nmλ

k=1 is randomly selected from the
R wavelength grids, and a new random noise δmk ∼ N (0, σ2

mk)

Fig. 5. Same as in Fig. 4 but for the inverse-operator neural network with
synthetic radiances.

is added to the synthetic radiance I(λr
mk). In other words, the

input sample is different every time it is passed through the
network.

In the training stage, the number of swath rows is R = 448,
the number of points in each measurement wavelength grid is
Nmλ = 131, and the measurement wavelength grids are chosen
from the TROPOMI Level-1 product, e.g.,

{λ1
mk}Nmλ

k=1 = {755.120, . . . , 770.929 nm},

{λ2
mk}Nmλ

k=1 = {755.133, . . . , 770.942 nm}
...

{λR
mk}Nmλ

k=1 = {755.264, . . . , 771.071 nm}. (17)
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Fig. 6. Same as in Fig. 4 but for the inverse-operator neural network with the
principal-component transform of synthetic radiances.

As before, the noisy spectra are generated with the noise
standard deviation σmk = 0.02× I(λmk), where I(λmk) =

(1/R)
∑R

r=1 I(λ
r
mk). The number of samples in the training

set is Nt = 404 901, where each sample consists of a set of
optical and geometrical parameters and the corresponding syn-
thetic radiances computed on all measurement wavelength grids
{λr

mk}Nmλ

k=1 , r = 1, . . . , R.
2) Neural Network for the Inverse Operator With the

Principal-Component Transform of Synthetic Radiances: To
reduce the dimension of the synthetic radiance vector im =
[I(λr

mk)]
Nmλ

k=1 ∈ RNmλ , the principal-component analysis is ap-
plied. Here, the dependency of im on the swath row r is implicitly
assumed. For the Nt-dimensional data set {i(n)m }Nt

n=1, let
〈
im
〉
=

Fig. 7. Retrieved aerosol optical depth τpred and aerosol layer height Hpred
from TROPOMI measurements recorded on December 12, 2017 in California.
The results correspond to the forward-operator neural network (the first row),
the inverse-operator neural network with synthetic radiances (the second row),
the inverse-operator neural network with the principal-component transform
of synthetic radiances (the third row), and the TROPOMI official operational
product (the fourth row).

(1/Nt)
∑Nt

n=1 i
(n)
m be the sample mean of the data. The goal of a

linear embedding method is to find an M -dimensional subspace
(M < Nmλ) spanned by a set of linear independent vectors
{uk}Mk=1, such that the centered data i(n)m −

〈
im
〉

belongs mainly

to this subspace, i.e., i
(n)
m ≈

〈
im
〉
+UM î

(n)
m , where UM =
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Fig. 8. Absolute differences in the retrieved aerosol optical depth δτ and
aerosol layer height δH corresponding to the forward-operator neural network
(upper panels) and the inverse-operator neural network with the principal-
component transform of synthetic radiances (lower panels). The results provided
by the inverse-operator neural network with synthetic radiances are taken as a
reference.

[u1, . . . ,uM ] ∈ RNmλ×M is the (inverse) mapping from the low-
to the high-dimensional space. The dimensionality-reduced in-
put is then î(n)m = U†

M (i
(n)
m −

〈
im
〉
) ∈ RM , where the (forward)

mapping from the high- to the low-dimensional space U†
M ∈

RM×Nmλ is the pseudoinverse of UM , i.e., U†
MUM = IM .

In the principal-component analysis, the transformation ma-
trix UM is computed as follows: 1) stack all centered data
i
(n)
m −

〈
im
〉

into the columns of the matrix I , i.e., I = [i
(1)
m −〈

im
〉
, . . . , i

(N)
m −

〈
im
〉
] ∈ RNmλ×Nt , 2) compute the covariance

matrix C = (1/N)IIT ∈ RNmλ×Nmλ and a singular value de-
composition of C, i.e., C = UΣUT , where Σ = diag[σk]

Nmλ

k=1

is the diagonal matrix of the singular values σ1 > σ2 > · · · >
σNmλ

> 0 and U = [u1, . . . ,uNmλ
] ∈ RNmλ×Nmλ is the orthog-

onal matrix of the singular vectors, and 3) take the inverse
transformation matrix as UM = [u1, . . . ,uM ] ∈ RNmλ×M . In
this case, the forward transformation matrix is U†

M = UT
M ∈

RM×Nmλ . The number of principal componentsM is determined
by monitoring the reconstruction error

EM =

Nt∑

n=1

||(i(n)m −
〈
im
〉
)−UM î(n)m ||22

=

Nt∑

n=1

||(i(n)m −
〈
im
〉
)−UMU†

M (i(n)m −
〈
im
〉
)||22 (18)

as function ofM , and theM , for whichEM is below a prescribed
tolerance, is chosen. For the noisy radiance vector iδm = im + δm,
where δm ∼ N (0,Cm) is the measurement noise vector, we find〈
iδm
〉
=

〈
im
〉
, yielding îδm = UT

M (iδm −
〈
im
〉
) = îm + δ̂m with

δ̂m = UT
Mδm ∼ N (0, Ĉm) and Ĉm = UT

MCmUM ∈ RM×M .
Thus, instead of the synthetic radiances im ∈ RNmλ , the input

of the neural network is the principal-component transform of
synthetic radiances îm ∈ RM , and during each forward pass
through the network, the random noise δ̂m ∼ N (0, Ĉm) is
added to îm. To simplify the computation, we approximate
the dimensionality-reduced noise covariance matrix Ĉm by a
diagonal matrix, i.e., Ĉm ≈ diag[Ĉmkk]

M
k=1, where Ĉmij are the

entries of Ĉm. Through a numerical analysis, we found that
for M = 14, EM < 1.6× 10−3; thus, 14 principal components
appear to be sufficient for aerosol retrieval. The corresponding
analysis results for the first 14 principal components are shown
in Fig. 2.

It should be pointed out that the number of principal
components M can be also determined by reducing the
measurement noise [29]. In this case, the reconstruction er-
ror EM =

∑Nt
n=1 ||(i

(n)
m −

〈
im
〉
)−UMU†

M (i
δ(n)
m −

〈
im
〉
)||22

is monitored, and the M that minimizes EM is chosen.

IV. RESULTS AND DISCUSSION

In this section, we analyze the retrieval performances of the
neural network retrieval algorithms using the synthetic and real
TROPOMI data.

A. Synthetic Retrieval

To test the performances of the retrieval algorithms on syn-
thetic data, we consider a prediction or a test set consisting of
Np = 11 868 samples

(τ (n), H(n), θ
(n)
0 , θ(n),Δϕ(n), H(n)

s , A(n)
s ) (19)

chosen randomly in their assumed intervals of variation. For
the forward-operator neural network equipped with a Bayesian
approach, the initial and a priori values for the aerosol optical
depth and layer height are 2 and 2 km, respectively.

To interpret the results, we split the interval of variation of
x, [xmin, xmax], where x stands for τ and H , into Nb = 40
equidistant bins, i.e., [xmin, xmax] = ∪Nb

j=1Bxj , and compute the
(bin) mean

Ej(xpred) =
1

Nxj

∑

n, s.t.x(n)∈Bxj

x
(n)
pred (20)

and standard deviation
√

Ej([xpred − Ej(xpred)]2)

=

√
1

Nxj

∑
n, s.t.x(n)∈Bxj

[x
(n)
pred − Ej(xpred)]2 (21)

over allNxj samplesx(n)
pred, whose correspondingx(n) are inBxj .

To quantify the retrieval accuracy, we use the first two moments
of the absolute error over the prediction set Δx = xpred − x,
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Fig. 9. Mean values of aerosol optical depth τmean
pred and aerosol layer height Hmean

pred for the three neural network based algorithms and the official operational
product. The mean differences in aerosol layer height against the official operational product are plotted as δmean

H . The comparison is done for the entire year of
2019.

Fig. 10. Histogram of the differences in aerosol layer height H between the TROPOMI and CALIPSO products. The TROPOMI retrievals are generated by
(a) forward-operator neural network, (b) inverse-operator neural networks with synthetic radiances, and (c) principal-component transform of synthetic radiances.

where xpred and x are the predicted and true values, respectively.
These are the mean absolute error

E(|Δx|) =
1

Np

Np∑

n=1

|Δ(n)
x | (22)

and the standard deviation of the absolute error

√
E([Δx − E(Δx)]2) =

√
1

Np

∑Np

n=1
[Δ

(n)
x − E(Δx)]2.

(23)
In Fig. 3, the mean Ej(xpred) and standard deviation√
Ej([xpred − Ej(xpred)]2) are plotted versus the midpoint xj

of the jth bin, while in Table II, we show the mean absolute
error E(|Δx|) and the standard deviation of the absolute er-
ror

√
E([Δx − E(Δx)]2) over the prediction set. Note that 1)√

E([Δx − E(Δx)]2) reproduces the square root of the diagonal
elements of the so-called epistemic covariance matrix of all

TABLE II
MEAN ABSOLUTE ERROR E(|Δx|) AND THE STANDARD DEVIATION OF THE

ABSOLUTE ERROR
√

E([Δx − E(Δx)]2) OVER THE PREDICTION SET

The results correspond to the forward-operator neural network
(Method 1), and the inverse-operator neural networks with synthetic
radiances (Method 2) and the principal-component transform of
synthetic radiances (Method 3).

network errors over the prediction set, and 2) the epistemic
uncertainties are large if there are large variations around the
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mean, e.g., if
√

Ej([xpred − Ej(xpred)]2) are large. Also note that
nonoptimal hyperparameters and training parameters as well as
a nonoptimal optimization algorithm are the main sources of
epistemic or model uncertainty [61]. The following conclusions
can be drawn.

1) In general, the accuracy is low for small values of the
aerosol optical depth τ and layer height H .

2) The inverse-operator neural networks with synthetic radi-
ances and the principal components of synthetic radiances
have comparable accuracies; these are higher than that of
the forward-operator neural network. The low accuracy of
the forward-operator neural network, especially for small
value of the aerosol optical depth and layer height, is
due to the fact that in this domain, the residual function
has several local minima and the global minimum cannot
be found by the iteratively regularized Gaussian method
(which is a local optimization method).

The variations of the absolute error Δx = xpred − x with
respect to the optical and geometrical parameters are illustrated
in Figs. 4–6. As before, each interval of variation of a param-
eter b, [bmin, bmax] is split into Nb = 40 equidistant bins, i.e.,
[bmin, bmax] = ∪Nb

j=1Bbj , and the mean Ej(Δx) and standard

deviation
√

Ej([Δx − Ej(Δx)]2) over all samplesΔ(n)
x , whose

corresponding b(n) are in the jth bin Bbj , are plotted versus the
midpoint bj of the bin. The plots show the following.

1) The standard deviation of the absolute error in the aerosol
optical depth τ is large when τ is small, and the solar
zenith angle θ0, viewing angle θ, and surface albedo As

are large.
2) The standard deviation of the absolute error in the aerosol

layer height H is large for small values of the aerosol
optical thickness τ and large values of the surface albedo
As.

3) The smallest standard deviations correspond to the
inverse-operator neural network with synthetic radiances,
while the largest correspond to the forward-operator neu-
ral network.

For instance, in Fig. 4 (the forward-operator neural network),
the standard deviation in Δτ can be of 1.14 for small values of
τ , and of 0.69, 0.64, and 0.92 for large values of θ0, θ, and As,
respectively, whereas the standard deviation in ΔH can be of
5.32 km for small values of τ and of 2.36 km for large values of
As.

B. Retrieval from Real Data

To investigate the performances of the retrieval algorithms
on real TROPOMI data, we first choose a wild fire scene in
California on December 12, 2017. In this case, the surface albedo
is given by the GE_LER product [28], and pixels with

1) a cloud fraction [taken from the operational TROPOMI
cloud product (OCRA/ROCINN) [31]] greater than 0.25,
or

2) an aerosol absorbing index (taken from the TROPOMI
Level-2 AAI product) lower than 1,

are not considered in the retrieval.

The retrieval results for the aerosol optical depth and layer
height are illustrated in Fig. 7. With the results by the inverse-
operator neural network with synthetic radiances as a refer-
ence, Fig. 8 shows the absolute differences in the retrieved
aerosol optical depth δτ = τpred − τ ref

pred and aerosol layer height
δH = Hpred −H ref

pred corresponding to the forward-operator neu-
ral network and the inverse-operator neural network with the
principal-component transform of synthetic radiances. The plots
demonstrate that the differences in the retrieved aerosol optical
depth δτ are smaller than 0.1 over the entire scene, while the
absolute differences in the retrieved aerosol layer height δH are
smaller than 0.4 km.

Finally, we compare the retrieval results between the three
neural network based algorithms and the official operational
algorithm for the entire year of 2019. From Fig. 9, the following
features are apparent.

1) The mean values of the aerosol optical depth delivered by
the three neural network algorithms are in general underes-
timated. The reason for this discrepancy is that the official
retrieval algorithm uses different aerosol microphysical
properties (a fact also seen in the previous study [8]).

2) The mean values of the aerosol layer height delivered
by the three neural network algorithms agree well with
those by the operational retrieval algorithm. However,
as expected, a better agreement can be seen between
the forward-operator neural network and the operational
algorithm whose forward model adopts the neural network
approach [35].

It should be pointed out that the computational time of a
physics-based retrieval algorithm using online radiative transfer
calculations is approximately 3 min for one ground pixel on a
computer Intel Core i7-4770 CPU 3.40 GHz with 16 GB RAM,
while the computational time of a forward- and an inverse-
operator neural networks are 0.4 and 0.003 s, respectively. For
these calculations, the Bayesian approach typically converges in
less than five iterations.

Likewise, we perform a comparison with the weighted
aerosol heights derived from the Cloud-Aerosol LIDAR Infrared
Pathfinder Satellite Observations (CALIPSO) Level-2 aerosol
extinction profile product for the entire year of 2019. The
weighted aerosol height is computed as a linear combination of
the heights above the sea level weighted by the corresponding
extinction coefficients. Fig. 10 depicts the histograms of the dif-
ferences in aerosol layer height (TROPOMI minus CALIPSO),
where a TROPOMI value is the mean value over all TROPOMI
pixels within a distance of 100 km to a single CALIPSO pixel.
The difference E(ΔH)±

√
E([ΔH − E(ΔH)]2) is highest

for the forward operator neural network (1.54± 1.62 km),
whereas a better agreement with the CALIPSO product is appar-
ently achieved by the inverse operator with synthetic radiances
(1.38± 1.47 km) and the inverse operator with the principal-
component transform of synthetic radiances (1.48± 1.43 km).

V. CONCLUSION

In this article, we have developed three neural network algo-
rithms for aerosol retrieval from TROPOMI measurements in
the O2 A-band.
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1) The first algorithm uses a neural network to emulate the
radiative transfer model and a Bayesian approach to solve
the inverse problem. To speed up the computation, the
radiative transfer model combines standard acceleration
methods (the telescoping technique and the method of
false discrete ordinate) with hyperspectral acceleration
methods (the correlated k-distribution method and the
principal-component analysis). The inverse problem is
solved by using the iteratively regularized Gauss–Newton
method, which provides at the same time the optimal value
of the regularization parameter and the corresponding
regularized solution.

2) The second and third algorithms employ a neural net-
work to learn the inverse model and use as input either
the synthetic radiances computed on the measurement
wavelength grid or the principal-component transform of
synthetic radiances. The design of an inverse-operator
neural network for TROPOMI/S5P is not a trivial task
because, on the one hand, we are dealing with random
measurement noise and, on the other hand, there are a large
number of measurement wavelength grids corresponding
to each swath row. To solve this problem, we used the
jitter approach. More precisely, in the training stage and
at each forward pass through the network, a measurement
wavelength grid is randomly selected from a set of possible
wavelength grids, and a new random noise is added to
the synthetic radiance. Note that in the algorithm relying
on the principal-component analysis, the random noise
is described through an analytic dimensionality-reduced
noise covariance matrix.

The neural networks are incorporated into a common tool
and their performances are analyzed and compared with syn-
thetic and real data. Our numerical analysis has shown that
the inverse-operator neural networks are more accurate and
efficient than a forward-operator neural network. The reason
is that for small values of the aerosol optical depth and layer
height, the residual function has several local minima, and in the
latter case, the inversion method, which is a local optimization
method, cannot determine the global minimum. These results
may suggest that a TROPOMI operational retrieval algorithm
can be built on an inverse-operator neural network rather than
on a forward-operator neural network.

The design and refinement of neural networks for atmospheric
retrieval is a very complicated research field that requires more
developments that consist of the following:

1) application of the inverse-operator neural networks to
the remaining aerosol models considered in the MODIS
algorithm, i.e., nonabsorbing, absorbing, and desert dust
(the selection of an appropriate aerosol model is then based
on a combination of spectral and geographic information);

2) training the neural networks to learn the relative evidences
of different aerosol models, so that a mean solution esti-
mate, representing a linear combination of candidate solu-
tions weighted by their evidences, can be computed [62];

3) redesign of the neural networks in a Bayesian deep learn-
ing framework in order to predict input aleatoric and model
uncertainties [61].
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