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Abstract: (1) Background: Contact Endoscopy (CE) and Narrow Band Imaging (NBI) are optical
imaging modalities that can provide enhanced and magnified visualization of the superficial vas-
cular networks in the laryngeal mucosa. The similarity of vascular structures between benign and
malignant lesions causes a challenge in the visual assessment of CE-NBI images. The main objective
of this study is to use Deep Convolutional Neural Networks (DCNN) for the automatic classification
of CE-NBI images into benign and malignant groups with minimal human intervention. (2) Meth-
ods: A pretrained Res-Net50 model combined with the cut-off-layer technique was selected as the
DCNN architecture. A dataset of 8181 CE-NBI images was used during the fine-tuning process in
three experiments where several models were generated and validated. The accuracy, sensitivity,
and specificity were calculated as the performance metrics in each validation and testing scenario.
(3) Results: Out of a total of 72 trained and tested models in all experiments, Model 5 showed high
performance. This model is considerably smaller than the full ResNet50 architecture and achieved
the testing accuracy of 0.835 on the unseen data during the last experiment. (4) Conclusion: The
proposed fine-tuned ResNet50 model showed a high performance to classify CE-NBI images into the
benign and malignant groups and has the potential to be part of an assisted system for automatic
laryngeal cancer detection.

Keywords: Deep Convolution Neural Network; contact endoscopy; narrow band imaging; classifica-
tion; larynx; cancer

1. Introduction

Laryngeal cancer is one of the most common malignancies in the head and neck area,
with a growing incidence rate every year [1]. The treatment options and prognosis depend
on the cancer stage at the time of diagnosis. Precancer or early-stage laryngeal cancer is
associated with high rates of laryngeal preservation, a local control rate of 87–89%, and a
favorable prognosis [2]. On the other hand, advanced-stage cancer requires multi-modal
treatment strategies resulting in significant toxicities and a poorer quality of life. Despite
optimized treatment schemes, studies report high recurrence rates and a 5 year overall
survival of 33–61% [3,4].
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Nowadays, the endoscopic imaging modalities have become the standard procedure
for screening and early diagnosis of laryngeal cancerous and precancerous lesions in clinical
settings. These methods are widely applicable before performing a surgical biopsy for
histological tissue examination in the context of the so-called optical biopsy [5,6]. As one of
these techniques, the combination of Contact Endoscopy (CE) with Narrow Band Imaging
(NBI) can represent an enhanced and magnified visualization of changes in the morphology
and three-dimensional orientation of vocal fold’s subepithelial blood vessels [7,8]. The
visual evaluation of these vascular structures in CE-NBI images can provide complementary
information for the diagnosis of laryngeal cancerous or precancerous lesions. However, the
use of CE-NBI for diagnosis highly relies on the experience of the otolaryngologists and
requires several years of training. This can result in a subjective decision process followed
by an overtreatment or undertreatment planning [7,9,10].

The advanced development of feature engineering, Machine Learning (ML), and
Deep Learning (DL) methods in the area of medical applications provides several paths
to assist the clinicians and overcome such challenges in the clinical environments. In this
regard, several computer-based approaches were used on the larynx endoscopic images.
These methods can assist otolaryngologists by providing complementary information
regarding the stage of the cancer and characteristics of the vascular trees and larynx
epithelial tissue [11]. In the area of laryngoscopic and NBI image analysis, an ensemble
of Convolutional Neural Networks (CNN) with texture and frequency-domain-based
features [12] and a set of hand-crafted texture and first-order statistical features [13] were
proposed for larynx cancerous tissue classification. A Deep Convolutional Neural Network
(DCNN) achieved the overall accuracy of 86% to detect cancer, precancerous lesions, and
normal tissues in larynx [14]. A image classification system based on CNN outperformed
the manual assessment of trainees in discriminating cysts, granulomas, nodules, normal
cases, palsies, papillomas, and polyps [15]. The combination of hand-crafted and DL-based
features showed a median classification recall of 98% for the diagnosis of early stage
Squamous Cell Carcinoma (SCC) in larynx [16]. Moreover, another CNN-based approach
achieved an equivalent performance to otolaryngologists’ predictions for the diagnosis of
laryngeal SCC [17].

Given that there is a need for more magnified and enhanced endoscopic techniques
such as CE-NBI images, two sets of hand-crafted features combined with ML techniques
were proposed for the automatic assessment of these type of images. These methods have
the potential to provide an evaluation of vascular characteristics [18,19], assist otolaryngol-
ogists when there are disagreements regarding the final diagnosis [20,21], and present a
computer-based classification of benign and malignant laryngeal lesions [22]. However,
these works exhibited certain drawback in terms of the multiple image preprocessing stages
that resulted in the loss of information from the images as well as manual feature extraction
processes. Additionally, these studies focused only on some specific characteristics of
the CE-NBI images, such as vascular geometry and textural characteristics and not the
structures as a whole.

The main objective of this study is to use a fully automatic CE-NBI endoscopic image-
based DCNN approach for the classification of laryngeal lesions and provide an objective
assessment for otolaryngologists during the treatment process. This is performed to circum-
vent the disadvantages posed by ML-based approaches and rather have an approach that
is more streamlined and automatic with minimal human intervention in the classification
of lesions. To our knowledge, this is the first study that applies a DCNN-based approach
for larynx CE-NBI image classification. The proposed approach uses the transfer learning
concept which includes a pretrained ResNet50 model instead of developing a network
from the scratch. Moreover, the pretrained ResNet50 model was tuned and combined with
cut-off-layer technique to achieve the optimum architecture for this classification task. The
performance of the proposed approach was evaluated in three different experiments. Then,
it was compared to the performance of the state-of-the-art methods in the area of CE-NBI
image classification.
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2. Materials and Methods

In this section, we highlight the aspects of data preparation, discuss the model archi-
tecture, and detail the steps carried out during the experiments and training of the DCNN.

2.1. Data Preparation

CE-NBI video scenes of 146 patients who went through a microlaryngoscopy proce-
dure were captured using an Evis Exera III Video System with integrated NBI-filter (Olym-
pus Medical Systems, Hamburg, Germany). This setup included a rigid 30-degree contact
endoscope (Karl Storz, Tuttlingen, Germany) with a fixed magnification of 60×. Then,
8181 CE-NBI images were extracted from the videos as explained in Esmaeili et al. [7,18].
We went through each video scene and manually selected the time intervals where the
video quality was good enough to visualize the blood vessels. Then, one in every ten
frames was automatically extracted from the selected intervals in JPEG format images
(1008 × 1280 pixels) to have unique and nonredundant vascular pattern in CE-NBI images.
All patients’ data were pseudonymized, and only biopsy results were taken to label images
into benign and malignant lesions according to the WHO classification [23]. The benign
class has 5313 images of patients with histopathologies such as Cyst, Polyp, Reinke’s edema,
Papillomatosis, Hyperplasia, Hyperkeratosis, and Mild Dysplasia. The malignant group
includes 2868 images of patients diagnosed with Moderate Dysplasia, Severe Dysplasia,
and Carcinoma in situ and SCC. The data were preprocessed and prepped in terms of size
before being used as an input for the DCNN.

2.2. Model Architecture

The DCNN architecture used in this study is discussed here. DCNNs have gained
recognition due to their adaptability for image recognition problem statements. These
networks also yield higher accuracies as compared to other ML methods, due to their
ability to solve problems from end-to-end rather than breaking them down as in the case
of ML.

Transfer learning concept has become an important part of the growth of DL-based
approaches in the field of medical image classification. It provides the chance of reusing
a pretrained model as a starting point for a new classification task with comparatively
few data. The pretrained network is a network that has already been introduced to a
specific dataset and learned to extract valuable features from it. The dataset used for
the pretraining is not always the same as the actual dataset for the second classification
task, but the extracted features are similar in nature. This network can then be used as a
starting point to learn a new classification task. In this study, a pretrained ResNet50 on
ImageNet [24] database was considered for CE-NBI image classification task. Residual
Networks (ResNets) are considered as examples of very deep classic structures in the
computer vision literature [25]. ResNet50 is 50 layers deep, and the deepness level is
related to the network’s capability to capture high (or higher) patterns. ResNets optimize
toward zero, which in turn accelerates the convergence to the optimal point in the solution
space, instead of a real number. Batch normalization is another interesting feature that is
embedded in ResNet’s structure. It speeds up the convergence and in doing so reduces
the training epochs required. It also has a regularization effect during the training phase.
Figure 1 shows the overall view of the proposed architecture.

The pretrained ResNet50 was combined with the fine-tuning strategy as well as cut-
off-layer technique to obtain the optimum performance for CE-NBI image classification.
Fine-tuning a pretrained DCNN is beneficial as it enables the user to speed up training
and overcome smaller dataset sizes. The fine-tuning technique wherein all the layers were
fine-tuned was adopted for this work. In order to account for the issue of overfitting of
ResNet50, we proposed setting the cut-off-layer to discard part of the network. The cut-off
layer is the last layer in feature extraction part of the network, where the classifier part
begins. This layer tends to be where the activation occurs. While training the network, it
was noted that overfitting occurred due to the large size of the original ResNet architecture.
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Hence, the cut-off layer was set empirically. This resulted in several models with different
layer counts and therefore feature counts depending on where the cut-off layer was set.
The final cut-off layer was selected based on the overall performance of the network.
Then, different variations of the model were implemented for having sufficient number of
features in a trade off between the training stage success and generalization ability of the
model on unseen images.

Input 
Layer

Conv 1 Set
Max Pooling

Conv 2 Set
Global Max 

pooling

224×224×3

112×112×32 56×56×32

56×56×256
256×1

1×1

Figure 1. The overall architecture of the proposed approach.

2.3. Experiments

The experiments for this work were divided into three parts as shown in Table 1.
A total of three experiments were conducted to determine the model most suitable for
our problem statement. In the conducted experiments, a total of 72 models were trained
and tested using the data collected. The main difference between these experiments was
related to the strategy of data separation. Apart from this, a few experiments also took into
consideration different network hyperparameters and changes in the volume of data. In
Experiment 1, the separation into training and testing sets was performed randomly to form
a 80–20 train-test split. Additionally, different cut-off-layer strategies and classifiers were
tested in this experiment. In Experiment 2, we employed a manual method for splitting the
training and testing data. This was performed so as to ensure that none of the test data
were part of the training data as well as the images of patients exclusively tied to separate
sets. Then, the best-performed model from Experiment 1 was tested in this experiment.
In Experiment 3, data augmentation (vertical and horizontal flipping) was applied, and
testing data selection criteria were kept the same as Experiment 2. The best-performed
model from Experiment 1 was also tested under the specified condition of Experiment 3.

Table 1. The summary of three experiments classified according to the different conditions.

Experiment Data
Augmentation Cut-Off Layer Classifier Dataset

Separation

Experiment 1 No

conv2_block3_out
(230 K parameters)

Global Max
Pooling

Randomconv2_block3_out
(230 K parameters)

Global Max
Pooling + Dropout

No cut-off
(23.5 M parameters)

Global Max
Pooling

Experiment 2 No conv2_block3_out
(230 K parameters)

Global Max
Pooling Manual

Experiment 3 Yes conv2_block3_out
(230 K parameters)

Global Max
Pooling Manual



Sensors 2021, 21, 8157 5 of 11

2.4. Training Details

The ResNet50 model was adopted as the backbone for this work. Input images were
resized to 224 × 224 pixels in the preprocessing stage. Data augmentation on the images
was performed by employing the horizontal and vertical flipping methods. Binary cross
entropy was used as a loss function along with Stochastic Gradient Descent (SGD) as the
optimizer. The parameters were tuned as follows: batch_size = 32, learning_rate = 0.001,
decay = 1 × 10−6, momentum = 0.9, Nesterov momentum = True. The cut-off layer was set
at “conv2_block3_out” in an iterative process. Early stoppage was also set with a patience
of 5 epochs. The network was trained for a total of 35 epochs and programmed using
Python version 3.8.8. The study was carried out on a deep learning workstation with and
Nvidia Quadro P6000 GPU. The 5-fold crossvalidation technique was used for validating
the models.

2.5. Performance Metrics

The study used accuracy, sensitivity, and specificity as performance metrics. These are
given below along with their formulas:

Accuracy =
TruePositives + TrueNegatives

TotalNumbero f Images
(1)

Sensitivity =
TruePositives

TruePositives + FalseNegatives
(2)

Speci f icity =
TrueNegatives

TrueNegatives + FalsePositives
(3)

3. Results

The performance of the selected models from the three experiments are listed in
Table 2. On average, 69.9 min was taken to execute the training and validation phase
during different experiments, followed by a testing phase that took on average 52.3 s.

Table 2. Results of the selected models in each experiment. Metrics of the validation and testing
phases are averages over five folds.

Experiment Model
Validation Testing

Accuracy Sensitivity Specificity Loss Accuracy

Experiment 1

Model 5 0.979 0.967 0.986 0.06 0.991

Model 6 0.943 0.914 0.959 0.15 0.958

Model 7 0.967 0.960 0.974 0.11 0.984

Experiment 2 Model 5 0.976 0.958 0.985 0.07 0.929

Experiment 3 Model 5 0.925 0.888 0.960 0.20 0.835

Of the all models trained and tested, Models 5–7 showed the most promising results
during Experiment 1. Model 5 achieved an accuracy, sensitivity, and specificity of 0.979,
0.967, and 0.986, respectively. When compared to the metrics produced by Model 6 and
Model 7, these scores were higher in both the validation and testing phases. Figure 2 shows
the comparison between the accuracy curves between Models 5 and 7 over 35 epochs for
Experiment 1. It can be seen from the figure that the curves for Model 5 are more consistent
as opposed to the curves seen in Model 7 in the this experiment. On the other hand, by
visual evaluation of the graph, we can see that the accuracy achieved by Model 5 at epoch 5
is equal to 0.927, while Model 7 had a lower rate equal to 0.853% at the same epoch. Based
on these evaluations, we decided to move forward with Model 5 and Global Max Pooling
classifier for the following two experiments.
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Figure 2. Comparison of the accuracy track between Model 5 and Model 7 in Experiment 1. Orange
and blue lines represent the training and validation phase, respectively.

In Experiment 2, Model 5 exhibited marginally lower scores in terms of validation
accuracy, sensitivity, and specificity where the testing data were manually selected so as to
ensure they were not part of the training set. In this experiment, the deviation in accuracy
value occurs between validation and testing scenarios because there is the possibility that
the validation set is not representative to the testing dataset. This can lead to biased fine-
tuned model to the validation set and possible overfitting in this scenario. Therefore, we
moved on to Experiment 3 with Model 5 and Global Max Pooling classifier together with
data augmentation techniques.

Model 5 in Experiment 3 exhibited an accuracy, sensitivity, and specificity of 0.925,
0.888, and 0.960, respectively, during the validation phase and an accuracy score of 0.835 in
the testing scenario. Figure 3 depicts the examples of the classification given by Model 5.
The top row of the Figure 3 corresponds to accurately classified images and the bottom
row to inaccurately image classifications. The Perpendicular Vascular Changes (PVC) in
laryngeal Papillomatosis can be difficult to visually distinguish from PVC in premalignant
and malignant histopathologies [26]. Among the accurate classifications represented in
Figure 3, it is significant to note that Model 5 was able to accurately differentiate such im-
ages where there were similar vascular structures but different histopathologies (malignant
Carcinoma in situ vs. benign Papilloma). On the other hand, classification inaccuracies can
arise due to the complexity of the vessel arrangements in the CE-NBI images. This issue
was predicted in Experiment 3 as the testing data included a set of unseen and augmented
images. Moreover, the dataset has a comprehensive selection of several histopathologies
from different patients that can increase the chance of complexity during classification
scenarios of the unseen and augmented data.

Figure 4 depicts the graphs of the accuracy and loss for Model 5 in Experiment 3. Both
graphs follow a smooth ascend (accuracy) and descend (loss). From this, we can infer that
the model followed a relatively stable training cycles through each of the epochs. The
accuracy (training vs. validation) graph show a good fit overall for the model during the
experiment. Although they meet in the end, the loss (training vs. validation) graph shows
a much more erratic behavior during the epochs.

Figure 5 exhibits the confusion matrix of Model 5 in testing scenario of Experiment 3.
The images in the benign and malignant groups were labeled as 0 and 1, respectively. With
this explanation, it can be seen from this matrix that the number of misclassified images in
the malignant group is more than the benign class.
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Figure 3. The example of correct and incorrect classification of CE-NBI images in Experiment 3.
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Figure 4. The accuracy and loss graphs of model Model 5 in Experiment 3. Orange and blue lines
represent the training and validation phase, respectively.
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Figure 5. Confusion matrix testing scenario of Experiment 3.

4. Discussion

In this study, a fully automatic DCNN-based approach using a pretrained and fine-
tuned ResNet50 architecture was adopted and evaluated on CE-NBI images for the benign
and malignant laryngeal lesion classification. To the best of our knowledge, no previous
study has applied DCNN-based models on larynx CE-NBI images for any classification or
segmentation purposes. Considering the presented results, the DCCN-based approach has
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the potential to differentiate malignant lesions from several benign ones in CE-NBI images
with high performance and can provide a more consistent interpretation and an objective
decision-making process for clinicians.

The application of DCNN-based methods has brought effective solutions in the area of
image analysis for a better understanding of image content. Together with the development
of these techniques, the concept of transfer learning has introduced a new perception to
deal with the problem of a limited number of images for training these models. It allows
reusing the pretrained models for a similar task, such as image classification. Among DC-
NNs that achieved significant outcomes, AlexNet [27], VGGNets [28], InceptionNets [29],
and ResNets [25] are some well-known pretrained models for medical image classifica-
tion. These architectures were developed for certain purposes and have shown their own
strengths and limitations. Depending on the area of application as well as the type of
imaging modality, each of these networks has shown the ability to provide a better un-
derstanding of the patients’ status for the clinicians [30–32]. Among them, the ResNet
convolutional networks are the most popular as they can offer very deep architectures
with shortcut connections to solve the vanishing gradient problem. Moreover, the batch
normalization features in these networks can speed up the convergence and reduce the re-
quired training epochs [25]. In the area of medical image analysis, ResNet34 was evaluated
to determine the class of laryngeal Stimulated Raman Scattering (SRS) images based on
normal or neoplastic classes. This architecture showed the rapid and automated recognition
on the validation set with an accuracy of 0.959 [33]. In another study, a fine-tuned ResNet50
network was used for classifying multimodal images of breast tissues into normal, fat,
and cancerous. Using leave-one-patient-out crossvalidation, the model achieved the mean
sensitivity of 0.862 on the validation images [34]. In addition, fine-tuned ResNet50, In-
ceptionV2, and SqueezeNet models were selected to multiclassify laryngoscopy frames
into four classes and were achieved the macroaverage AUC (Area Under the Curve) of
0.998, 0.989, and 0.999, respectively [35]. In a recent evaluation, ResNet50 and ResNet101
architectures were part of an ensemble model that was applied for cancer tissue classifi-
cation in larynx NBI images. The combination of this ensemble model with a series of
hand-crafted features achieved the classification accuracy of 0.954 [12]. Considering the
proven performance of ResNet convolutional networks in medical image classification
tasks as well as the advantages of these architectures over other networks, the pretrained
ResNet50 was used for our evaluation. This network utilized images in the pretraining
step that displayed a pattern similar to that of the blood vessels as used in this study.

After the evaluation, the outcomes of three different experiments, the fine-tuned
ResNet50 model from the Experiment 3 was proposed as the final architecture from 72 total
models. This model achieved the mean accuracy, sensitivity, and specificity of 0.925, 0.888,
and 0.960 in the validation phase and the mean accuracy of 0.835 from the testing scenario.
Although this model showed lower performance than the tested models in Experiments 1
and 2, it was evaluated in a more realistic scenario. One of the major benefits of this model
over the latest DCNN-based methods is the size of the fine-tuned ResNet50 model. The
application of the cut-of-layer technique resulted in a smaller model that only has the size
equal to ≈1% of the full ResNet50 architecture (1.96 Megabytes versus 180.65 Megabytes).
In addition, the smaller architecture showed faster training with less prone to result in
overfitting. Earlier, it was mentioned that the chance of overfitting increases while using
the ResNet50 architecture. Hence, apart from cut-off-layer technique, other strategies such
as including a larger number of images, performing data augmentation, and early stopping
were also employed to avoid the overfitting of ResNet50 in this study.

In comparison to the other works in the area of laryngeal cancer detection and classifi-
cation, we used the CE-NBI images as the imaging modality. NBI imaging enables a highly
contrasted visualization of vascular structures. The essential advantage of CE-NBI over the
normal white light laryngoscopy is the highly magnified visualization of vascular patterns
that results in a more precise evaluation of laryngeal lesions [7].
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In this study, there is a slight data imbalance between the number of benign and
malignant images in the CE-NBI image dataset (≈60% benign vs. ≈40% malignant). This
issue could be solved by using a two-fold data augmentation approach where the data
augmentation is first performed to balance the data and then the second augmentation is
applied to the entire dataset as a whole. However, this can increase the risk of redundancies
especially in the case of CE-NBI images as vascular patterns are already very similar. For
this reason, we chose not to tamper with the imbalance issue because it is not significantly
greater than it would affect the performance of the network. Moreover, the data, as they
are, are representative of the true clinical scenario where there is often an imbalance in
the data collected. This dataset includes around 8000 CE-NBI images from a wide range
of various histopathologies in both benign and malignant groups, which is a compara-
ble number of data in comparison to other studies where the endoscopy-based imaging
techniques were used for similar classification tasks in the larynx. The number of images
on these evaluations ranges from a minimum of 330 to a maximum of 14,000 [12–16,35].
This maximum number exists because multiple clinical centers were in the data collection
process simultaneously [14]. On the other hand, the subsets of this CE-NBI image dataset
were used to develop and test multiple hand-crafted feature extraction and ML methods
for laryngeal cancer classification [18,20,22]. In this respect, the recent work reported the
classification accuracy of 0.966 using two feature sets combined with k-Nearest Neighbors
(kNN) classifier [22]. Even though this method outperformed the proposed model, it in-
cluded three different image preprocessing stages, needed the manual parameter selections,
and was tested on a smaller dataset.

As was mentioned before, the benign lesions show similar vascular patterns to the
malignant ones in CE-NBI image analysis. The visual evaluation of this cases can cause one
of the serious problems in the clinical environment which is the differentiation between
benign and malignant lesions [20]. In the present study, the achieved specificity was higher
than the sensitivity values in all experiments. This outcome can emphasize the ability of
the proposed model to overcome this issue and assist otolaryngologists to also evaluate
benign cases more confidently.

5. Conclusions

In summary, a CE-NBI endoscopic image-based DCNN model was developed and
tested through a fine-tuned ResNet50 architecture. The proposed model had a high perfor-
mance for the automatic classification of laryngeal cancerous lesions and showed compara-
ble performance to the studies in the area of larynx CE-NBI image classification, as was
explained in the previous section. The proposed structure is significantly smaller than the
full ResNet50 architecture as a result of the cut-off-layer technique. Moreover, no over- and
under-fitting were observed in the final architecture. The proposed model has the potential
to be a solution for the subjective assessment of the benign and malignant laryngeal lesions
in clinical settings and reduce the chance of performing an invasive surgical biopsy. This
effective solution can be part of the Compute-Aided-Diagnosis (CAD) system that assists
otolaryngologists during the decision-making process and improves the optical diagnosis
rate of larynx cancer.

To improve the performance of the proposed model, more investigations are planned
for multidomain feature extraction methods (DCNN combined with hand-crafted features)
as well as the development of ensemble DCNN models for the future work. Moreover, it is
essential to continue further development on a multiclassification scenarios to differentiate
between different laryngeal histopathologies and improve the application of optical biopsy
in the clinical settings.



Sensors 2021, 21, 8157 10 of 11

Author Contributions: Conceptualization, N.E., E.S., E.J.G.A. A.I., A.B., N.D., C.A., N.N. and M.F.;
methodology, N.E., E.S. and E.J.G.A.; software, E.S. and E.J.G.A.; validation, N.E., E.S., E.J.G.A., A.I.,
A.B. and N.D.; formal analysis, N.E., E.S., E.J.G.A., A.I., A.B. and N.D.; investigation, N.E., E.S.,
E.J.G.A., A.I., A.B.; data curation, N.E., N.D. and C.A.; writing—original draft preparation, N.E., E.S.
and E.J.G.A.; writing—review and editing, N.E., E.S., E.J.G.A., A.I., A.B., N.D., C.A., N.N. and M.F.;
visualization, N.E., E.S. and E.J.G.A.; supervision, M.F. and N.N.; project administration, N.E. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The research related to human use complies with all the
relevant national regulations and institutional policies and was performed in accordance with the
tenets of the Helsinki Declaration and has been approved by the authors’ institutional review board
or equivalent committee (number 49/18).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are part of the research
project and are not publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.Y.; Zhang, Q.W.; Wen, K.; Wang, C.; Ji, X.; Zhang, L. Temporal trends in incidence and mortality rates of laryngeal cancer

at the global, regional and national levels, 1990–2017. BMJ Open 2021, 11, e050387. [CrossRef]
2. Guimarães, A.V.; Dedivitis, R.A.; Matos, L.L.; Aires, F.T.; Cernea, C.R. Comparison between transoral laser surgery and

radiotherapy in the treatment of early glottic cancer: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 11900. [CrossRef]
[PubMed]

3. García-León, F.J.; García-Estepa, R.; Romero-Tabares, A.; Borrachina, J.G.M. Treatment of advanced laryngeal cancer and quality
of life. Systematic review. Acta Otorrinolaringol. 2017, 68, 212–219. [CrossRef] [PubMed]

4. Elicin, O.; Giger, R. Comparison of current surgical and non-surgical treatment strategies for early and locally advanced stage
glottic laryngeal cancer and their outcome. Cancers 2020, 12, 732. [CrossRef] [PubMed]

5. Missale, F.; Taboni, S.; Carobbio, A.L.C.; Mazzola, F.; Berretti, G.; Iandelli, A.; Fragale, M.; Mora, F.; Paderno, A.; Del Bon, F.; et al.
Validation of the European Laryngological Society classification of glottic vascular changes as seen by narrow band imaging in
the optical biopsy setting. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 2397–2409. [CrossRef]

6. Lauwerends, L.J.; Galema, H.A.; Hardillo, J.A.; Sewnaik, A.; Monserez, D.; van Driel, P.B.; Verhoef, C.; Baatenburg de Jong, R.J.;
Hilling, D.E.; Keereweer, S. Current Intraoperative Imaging Techniques to Improve Surgical Resection of Laryngeal Cancer: A
Systematic Review. Cancers 2021, 13, 1895. [CrossRef]

7. Davaris, N.; Lux, A.; Esmaeili, N.; Illanes, A.; Boese, A.; Friebe, M.; Arens, C. Evaluation of Vascular Patterns using Contact
Endoscopy and Barrow-Band Imaging (CE-NBI) for the Diagnosis of Vocal Fold Malignancy. Cancers 2020, 12, 248. [CrossRef]

8. Puxeddu, R.; Sionis, S.; Gerosa, C.; Carta, F. Enhanced contact endoscopy for the detection of neoangiogenesis in tumors of the
larynx and hypopharynx. Laryngoscope 2015, 125, 1600–1606. [CrossRef]

9. Mannelli, G.; Cecconi, L.; Gallo, O. Laryngeal preneoplastic lesions and cancer: Challenging diagnosis. Qualitative literature
review and meta-analysis. Crit. Rev. Oncol./Hematol. 2016, 106, 64–90. [CrossRef]

10. Mehlum, C.S.; Døssing, H.; Davaris, N.; Giers, A.; Grøntved, Å.M.; Kjaergaard, T.; Möller, S.; Godballe, C.; Arens, C. Interrater
variation of vascular classifications used in enhanced laryngeal contact endoscopy. Eur. Arch. Oto-Rhino-Laryngol. 2020,
277, 2485–2492. [CrossRef]

11. Singh, V.P.; Maurya, A.K. Role of Machine Learning and Texture Features for the Diagnosis of Laryngeal Cancer. Mach. Learn.
Healthc. Appl. 2021, 353–367. [CrossRef]

12. Nannia, L.; Ghidoni, S.; Brahnam, S. Ensemble of convolutional neural networks for bioimage classification. Appl. Comput.
Inform. 2020, 17, 19–35.

13. Moccia, S.; De Momi, E.; Guarnaschelli, M.; Savazzi, M.; Laborai, A.; Guastini, L.; Peretti, G.; Mattos, L.S. Confident texture-based
laryngeal tissue classification for early stage diagnosis support. J. Med. Imaging 2017, 4, 034502. [CrossRef]

14. Xiong, H.; Lin, P.; Yu, J.G.; Ye, J.; Xiao, L.; Tao, Y.; Jiang, Z.; Lin, W.; Liu, M.; Xu, J.; et al. Computer-aided diagnosis of laryngeal
cancer via deep learning based on laryngoscopic images. EBioMedicine 2019, 48, 92–99. [CrossRef] [PubMed]

15. Cho, W.K.; Lee, Y.J.; Joo, H.A.; Jeong, I.S.; Choi, Y.; Nam, S.Y.; Kim, S.Y.; Choi, S.H. Diagnostic Accuracies of Laryngeal Diseases
Using a Convolutional Neural Network-Based Image Classification System. Laryngoscope 2021, 131, 2558–2566.

16. Araújo, T.; Santos, C.P.; De Momi, E.; Moccia, S. Learned and handcrafted features for early-stage laryngeal SCC diagnosis. Med.
Biol. Eng. Comput. 2019, 57, 2683–2692. [CrossRef]

http://doi.org/10.1136/bmjopen-2021-050387
http://dx.doi.org/10.1038/s41598-018-30218-x
http://www.ncbi.nlm.nih.gov/pubmed/30093659
http://dx.doi.org/10.1016/j.otorri.2016.11.005
http://www.ncbi.nlm.nih.gov/pubmed/28351474
http://dx.doi.org/10.3390/cancers12030732
http://www.ncbi.nlm.nih.gov/pubmed/32244899
http://dx.doi.org/10.1007/s00405-021-06723-7
http://dx.doi.org/10.3390/cancers13081895
http://dx.doi.org/10.3390/cancers12010248
http://dx.doi.org/10.1002/lary.25124
http://dx.doi.org/10.1016/j.critrevonc.2016.07.004
http://dx.doi.org/10.1007/s00405-020-06000-z
http://dx.doi.org/10.1002/9781119792611.ch23
http://dx.doi.org/10.1117/1.JMI.4.3.034502
http://dx.doi.org/10.1016/j.ebiom.2019.08.075
http://www.ncbi.nlm.nih.gov/pubmed/31594753
http://dx.doi.org/10.1007/s11517-019-02051-5


Sensors 2021, 21, 8157 11 of 11

17. Hu, R.; Zhong, Q.; Xu, Z.; Huang, L.; Cheng, Y.; Wang, Y.; He, Y. Application of deep convolutional neural networks in the
diagnosis of laryngeal squamous cell carcinoma based on narrow band imaging endoscopy. Chin. J. Otorhinolaryngol. Head Neck
Surg. 2021, 56, 454–458.

18. Esmaeili, N.; Illanes, A.; Boese, A.; Davaris, N.; Arens, C.; Friebe, M. Novel Automated Vessel Pattern Characterization of Larynx
Contact Endoscopic Video Images. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1751–1761. [CrossRef] [PubMed]

19. Esmaeili, N.; Illanes, A.; Boese, A.; Davaris, N.; Arens, C.; Friebe, M. A Preliminary Study on Automatic Characterization and
Classification of Vascular Patterns of Contact Endoscopy Images. In Proceedings of the 2019 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2703–2706.

20. Esmaeili, N.; Illanes, A.; Boese, A.; Davaris, N.; Arens, C.; Navab, N.; Friebe, M. Laryngeal Lesion Classification based on
Vascular Patterns in Contact Endoscopy and Narrow Band Imaging: Manual versus Automatic Approach. Sensors 2020, 20, 4018.
[CrossRef]

21. Esmaeili, N.; Illanes, A.; Boese, A.; Davaris, N.; Arens, C.; Navab, N.; Friebe, M. Manual versus Automatic Classification of
Laryngeal Lesions based on Vascular Patterns in CE+NBI Images. Curr. Dir. Biomed. Eng. 2020, 6, 70–73. [CrossRef]

22. Esmaeili, N.; Boese, A.; Davaris, N.; Arens, C.; Navab, N.; Friebe, M.; Illanes, A. Cyclist Effort Features: A Novel Technique
for Image Texture Characterization Applied to Larynx Cancer Classification in Contact Endoscopy—Narrow Band Imaging.
Diagnostics 2021, 11, 432. [CrossRef] [PubMed]

23. Gale, N.; Hille, J.; Jordan, R.C.; Nadal, A.; Williams, M.D. Regarding Laryngeal precursor lesions: Interrater and intrarater
reliability of histopathological assessment. Laryngoscope 2019, 129, E91–E92. [CrossRef]

24. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

26. Arens, C.; Piazza, C.; Andrea, M.; Dikkers, F.G.; Gi, R.E.T.P.; Voigt-Zimmermann, S.; Peretti, G. Proposal for a descriptive
guideline of vascular changes in lesions of the vocal folds by the committee on endoscopic laryngeal imaging of the European
Laryngological Society. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 1207–1214. [CrossRef]

27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

28. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
29. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

30. Sarvamangala, D.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2021,
1–22. [CrossRef]

31. Upreti, M.; Pandey, C.; Bist, A.S.; Rawat, B.; Hardini, M. Convolutional Neural Networks in Medical Image Understanding.
Aptisi Trans. Technopreneurship (ATT) 2021, 3, 6–12. [CrossRef]

32. Yadav, S.S.; Jadhav, S.M. Deep convolutional neural network based medical image classification for disease diagnosis. J. Big Data
2019, 6, 1–18. [CrossRef]

33. Zhang, L.; Wu, Y.; Zheng, B.; Su, L.; Chen, Y.; Ma, S.; Hu, Q.; Zou, X.; Yao, L.; Yang, Y.; et al. Rapid histology of laryngeal
squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy. Theranostics 2019, 9, 2541–2554.
[CrossRef]

34. Ali, N.; Quansah, E.; Köhler, K.; Meyer, T.; Schmitt, M.; Popp, J.; Niendorf, A.; Bocklitz, T. Automatic label-free detection of
breast cancer using nonlinear multimodal imaging and the convolutional neural network ResNet50. Transl. Biophotonics 2019,
1, e201900003. [CrossRef]

35. Galdran, A.; Costa, P.; Campilho, A. Real-Time Informative Laryngoscopic Frame Classification with Pre-Trained Convolutional
Neural Networks. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice,
Italy, 8–11 April 2019; pp. 87–90.

http://dx.doi.org/10.1007/s11548-019-02034-9
http://www.ncbi.nlm.nih.gov/pubmed/31352673
http://dx.doi.org/10.3390/s20144018
http://dx.doi.org/10.1515/cdbme-2020-3018
http://dx.doi.org/10.3390/diagnostics11030432
http://www.ncbi.nlm.nih.gov/pubmed/33802625
http://dx.doi.org/10.1002/lary.27813
http://dx.doi.org/10.1007/s00405-015-3851-y
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/s12065-020-00540-3
http://dx.doi.org/10.34306/att.v3i2.188
http://dx.doi.org/10.1186/s40537-019-0276-2
http://dx.doi.org/10.7150/thno.32655
http://dx.doi.org/10.1002/tbio.201900003

	Introduction
	Materials and Methods
	Data Preparation
	Model Architecture
	Experiments
	Training Details
	Performance Metrics

	Results
	Discussion
	Conclusions
	References

