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Abstract: In embedded applications that use neural networks (NNs) for classification tasks, it is
important to not only minimize the power consumption of the NN calculation, but of the whole
system. Optimization approaches for individual parts exist, such as quantization of the NN or analog
calculation of arithmetic operations. However, there is no holistic approach for a complete embedded
system design that is generic enough in the design process to be used for different applications,
but specific in the hardware implementation to waste no energy for a given application. Therefore,
we present a novel framework that allows an end-to-end ASIC implementation of a low-power
hardware for time series classification using NNs. This includes a neural architecture search (NAS),
which optimizes the NN configuration for accuracy and energy efficiency at the same time. This
optimization targets a custom designed hardware architecture that is derived from the key properties
of time series classification tasks. Additionally, a hardware generation tool is used that creates a
complete system from the definition of the NN. This system uses local multi-level RRAM memory
as weight and bias storage to avoid external memory access. Exploiting the non-volatility of these
devices, such a system can use a power-down mode to save significant energy during the data
acquisition process. Detection of atrial fibrillation (AFib) in electrocardiogram (ECG) data is used as
an example for evaluation of the framework. It is shown that a reduction of more than 95% of the
energy consumption compared to state-of-the-art solutions is achieved.

Keywords: hardware architecture; neural networks; non-volatile memory; wearable AI; RRAM

1. Introduction

Atrial Fibrillation (AFib) is one of the most common forms of heart arrythmia. It causes
the upper chambers of the heart to contract unrhythmically and beat out of sync with the
lower chambers of the heart [1]. In recent years, the spread of the disease has been steadily
increasing, especially among the elderly population. The early identification of AFib is
crucial, as patients suffering from such a heart condition are very likely to be affected by
severe heart diseases later in life. AFib can be detected by analysis of an electrocardiogram
(ECG). Because the symptoms vary in severity and do not occur regularly, it makes sense
to monitor this condition over a longer period of time. Such a long-time monitoring can be
performed using a wearable device.
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Commonly available hardware detectors identify symptoms using statistical properties
of ECG signals defined by medical experts [1,2]. Neural networks can help detect abnor-
malities that manifest themselves on different time scales. They also generalize very well
and can therefore handle data recorded with different measurement methods [2–4]. Since
portable devices are generally battery powered, they have a strict power budget. Low-power
hardware for realizing the NN and the data acquisition process is therefore necessary.

While many generic NN ASIC accelerators have been investigated in recent years,
they often sacrifice higher power consumption for more flexibility [5]. For portable and
other embedded devices, this higher power consumption can have a significant impact
on battery life. Therefore, an adapted architecture for a system that has minimal energy
overhead for a specific classification task is necessary. In addition, usually only individual
parts of such a system are considered for optimization, rather than choosing a holistic
approach. Minimizing energy consumption only works if the optimization of all system
components is coordinated with each other, from NN algorithm design to static power
dissipation at transistor level. To solve this problem, we present a novel low-power
hardware generation framework for embedded time series classification tasks using NNs.
It contains all existential points necessary for a holistic optimization of the entire system,
which are:

• An optimized hardware architecture for minimal energy consumption, where the data
flow is implicitly given by the architecture to save energy overhead in control logic
and data routing.

• A power-down operation mode with minimal energy consumption of the system
during data acquisition.

• Non-volatile, multi-level memory in form of RRAM cells as embedded storage,
to avoid external reloading of parameters after a power-down.

• A Neural Architecture Search (NAS), which optimizes the NN configuration for
accuracy and energy efficiency at the same time.

• An architecture generator, which translates the NN into a complete accelerator hard-
ware based on our architecture, which can be manufactured as an ASIC.

This paper is structured as follows: Section 2 gives an overview of related work,
such as NN optimization strategies and hardware implementations of NNs and AFib
detectors. In Section 3, important properties of time series classification tasks are identified
and the hardware architecture concept is derived from them. We present our framework
for designing the embedded classification system with a NN in Section 4. In Section 5,
the framework is used to create an AFib detection system and an ASIC is implemented.
An evaluation of this AFib detection ASIC is carried out in Section 6. Finally, Section 7
concludes the observations and presents future work.

2. Related Work

The automated detection of abnormalities using recordings of the electrical activity
of the heart, such as arrhythmias or morphological changes, is extensively studied and is
already commercially available on clinical devices [2,6,7]. However, the rise of wearable
technologies and the associated changes of acquisition technology, as well as the increased
number of recordings in daily routine, pose new challenges to the research community.
In contrast to architectures based on predefined feature extraction, NNs generalize very
well and can therefore be used for classification using data that is noisy or measured using
different measurement methodologies. NNs can also be retrained and improved using
new data distributions from different patients, hospitals, or even novel ECG devices with
different electrode placement.

Implementing such a NN for an embedded ECG use case in an energy efficient way
is quite challenging, as the available energy budget can be really low. Some approaches
circumvent this problem by sending the raw data from the sensor to a central processing
unit using wireless transmission [8]. However, in practice this approach is limited by the
availability and range of the wireless connection. Burger et al. present an approach for an
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embedded ECG classification use case realizing NNs on small FPGA devices [9]. However,
inherently the reconfigurability of the applied FPGA devices adds overhead in hardware
and limits the optimization potential to apply beneficial improvements like power gating
in parts of the design or using novel memory technology. Loh et al. presented a DSP-based
approach [10]. While a significant reduction of the energy per classification was achieved,
the data acquisition process in a wearable use case has not been considered. We will later
show that this contributes a huge amount to the overall power consumption. Therefore,
the available concepts do not cover all the requirements for an efficient low-power system.

On the other hand, a lot of research has been done in recent years regarding efficient
hardware implementation of NNs. One important factor is the optimization of the NN
itself in order to reduce the amount of data to be processed and thus save energy [11,12].
Optimizations such as quantization or pruning can often be applied without significant
loss of accuracy. However, this is only possible because NNs, especially unoptimized
ones, contain a high degree of redundancy. To avoid this redundancy from the beginning,
the framework we present uses a so-called NAS during the design phase of the NN [13].
This helps to find an optimized NN with a high accuracy and a low number of parameters.
Since such a NN has far less redundancy, post training optimizations, such as pruning, are
no longer necessary. In contrast to state-of-the-art NAS, we have extended it with features
that are specifically adapted to our framework and architecture. These include strong
quantizations per layer and minimization of the energy consumption for our hardware
architecture as a second optimization goal. More details of our NAS are described in
Section 4.1.

On the hardware site, emerging non-volatile memories such as RRAM devices are a
good fit to be used as base for embedded low-power NN accelerators [14–16]. Calculations
can be conducted in an analog fashion by sending voltage pulses through a crossbar array
of RRAM cells which store the weight values of a NN. This approach often yields very low-
power consumption. However, it has some disadvantages when considering integration
into an overall system [15]. To perform these calculations, control logic is needed to manage
the flow and sorting of the data. In addition, only individual layers can be calculated
per crossbar array. Therefore, the results must be buffered in digital form and converted
several times from the analog to the digital domain and vice versa for a more sophisticated
NN with multiple layers. Furthermore, not all components of a NN can be mapped to
such a crossbar array. Therefore, such arrays are often embedded in surrounding CMOS
logic. However, the analog-digital/digital-analog conversion and control logic impose a
significant energy overhead on an embedded application. To achieve an efficient overall
system, we developed an architecture which calculates all values digitally and uses memory
blocks containing RRAM cells for storing the weights. Thus, all components of a NN can be
mapped individually without the need for conversion to another domain, while retaining
the advantages of multi-level capability and non-volatility of the RRAM cells. This also
means that such an accelerator can be easily integrated into a larger digital system.

3. Architectural Concept

To create an efficient architectural concept, the most important properties of an em-
bedded time series classification task must be determined. We identified three main
characteristic properties, from which we derived three main optimization strategies.

3.1. Reduction of External Memory Access

This strategy addresses the low energy budget available in an embedded device. For
this reason, external memory access should be avoided using novel non-volatile memory
technologies. For example, the usage of resistive random-access memory (RRAM) is
promising, due to its ability to store more than one or two states per cell (multi-level-
cell) [17]. This enables the storage of all parameters (e.g., weight and bias values of the NN)
locally on-chip. At the same time, heavy quantization can be used in combination with
a customized training process of the NN to adapt it exactly to the target hardware (e.g.,
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all weight values can be discretized to the three states −1, 0 or +1, and each weight value
can be stored in exactly one RRAM cell). Moreover, the quantization also leads to smaller
bit widths of operands, which results in trivial multiplications (e.g., with −1, 0, +1) and
therefore minimizes the energy requirements for arithmetic operations [18].

3.2. Minimization of Control Flow and Buffering

This strategy exploits the times series property by employing a dataflow driven
architecture, which minimizes the required control overhead. Similar to the principle of
a systolic array, where a sequence of arithmetic operations is coded into the data path,
no instruction set or programming is necessary for such an approach [19]. In contrast
to systolic arrays, our architectural concept does not target generic circuits (e.g., matrix
multiplication with arbitrary size). Rather, the developed framework introduces a tool,
which synthesized the arithmetic operations to be executed into the data path per layer of
the NN (e.g., for one convolutional layer).

3.3. Power-Down Operation Mode

This strategy utilizes the property of a low sampling rate that most embedded appli-
cations possess. This means that classification by the NN does not need to be performed
continuously, as data is collected at a low rate. A more efficient solution (especially regard-
ing the static power) is to collect data for a period of time and then classify it at once. In
common architecture approaches this is often not useful, because activating the chip after a
power-down (e.g., loading NN weights) requires more energy than the power-down saves.
RRAMs are non-volatile and do not lose their stored value after a power-down. Therefore,
using RRAM cells enables us to cut the power to the chip and save energy. This concept
is also used in non-volatile processors and can contribute to significant energy savings,
especially in the embedded context [20].

3.4. Combination of the Strategies

Using and interleaving these three optimization strategies leads to our generic ar-
chitectural concept, which can be used to derive an application specific accelerator for a
classification task using NNs. The key feature here is that the three strategies are not just
considered and used separately but are cleverly combined. Figure 1 shows a schematic
overview of this architectural concept. The design is partitioned into two power domains:
the Data Control Core and the Processing Core. The Data Control Core handles the com-
munication with the outside, the preprocessing and the buffering of the input data. This
part of the design is always powered by a 1.2 V voltage rail (VDD1V2) for data acquisition.
Since this core is always on, it also contains all the necessary controllers. This includes the
RRAM manager, which controls read and write access to the memory blocks containing
RRAM cells and thus enables reprogramming. The central control unit is also part of this
core. Its main tasks are controlling the buffering of the data and the power modes. It puts
the processing core into a low-power state by switching off its power supply (VDD1V2
and VDD3V3 voltage rails). The Processing Core contains the dataflow driven architecture
for the NN, including multiple quantized processing elements as well as memory blocks
containing RRAM cells. The power supply of this core can be cut to reduce the overall
energy consumption while data is collected. After re-enabling the power supply, the param-
eters stored inside the non-volatile RRAM cells are available without having to be reloaded
from an external memory. The multi-level property of the RRAM cells reduces the memory
footprint and increases the storage density.
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Figure 1. Schematic overview of our architectural concept.

4. Hardware Generation Framework

As discussed in Section 3, we derived a generic architectural concept for embedded
classification tasks using NNs. To design a complete system for a specific classification
problem and realize an ASIC using this architectural concept, a framework has been created.
An overview of this framework can be seen in Figure 2. The flow can be divided into three
main phases: NN design, hardware mapping and hardware implementation. This allows for the
finding of an optimal implementation regarding accuracy and energy consumption of the
final system. Red boxes in Figure 2 represent customizable, application specific constraints,
such as the training data and the desired accuracy for the classification task. Green boxes
represent fixed components specific to our proposed architectural concept. Concrete design
steps in our approach are marked with blue boxes. Yellow boxes represent results obtained
after each phase. This framework could be extended to include additional architectural
concepts than the one presented in Section 3.

2. HW Mapping1. NN Design 3. HW Implementation
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Figure 2. Overview of our hardware generation framework for problem mapping and implementation.
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At the start of the design process, boundary conditions for the NN can be specified
by the designer. This allows for the constraining of the design space of the NN and to
integrate prior knowledge about beneficial NN configurations into the NN design process.
Parameters include the type of layers and activation functions to be used as well as possible
quantization levels for parameters and partial sums of different layers. In the next step
an NAS is used, which finds a NN with minimal energy consumption for the desired
accuracy. To evaluate, if the desired accuracy is reached, a full quantization-aware training
of the NN is done. When an optimal network regarding a certain goal is found, the trained
network is exported in ONNX format. This format provides a common standard for NN
specifications [21]. In the second phase, the network defined this way can be imported
into a self-developed Bit-True simulator written in Python. It uses a fixed-point library to
exactly model the arithmetic behavior of the hardware on bit level, which leads to the
aforementioned name. With the help of this tool an evaluation of overflow and quantization
effects on the accuracy can be conducted. From this, possible options for the NN boundary
conditions can be identified, especially suitable quantization levels. This flow greatly
reduces the time needed for a design space exploration of different NN configurations,
as up to this point no hardware needs to be generated. The results of the Bit-True simulation
also act as reference for hardware verification later on. The ONNX model is also used in
our hardware generation and parametrization tool, which parses and analyzes the network
definition and creates an HDL design based on hardware components that we designed. In
the third phase, all hardware components are integrated, and the functionality is verified
by testbenches. Then a hardware implementation can be performed using commonly
available EDA tools. Our framework is not limited to a specific toolset, because the
hardware components are available as HDL description or hardware libraries. After the
implementation, an energy evaluation of the whole design can be carried out (with tools
such as Synopsys PrimePower).

4.1. Neural Network Design

In our framework, the NN design plays an important role, as optimizations on the
algorithm level have the biggest impact on the energy consumption of the final hardware
implementation. Therefore, a lot of effort was directed towards creating a generic approach
for finding an energy efficient NN and optimizing its so-called hyperparameters. Many
hyperparameters of a NN have a big influence on the energy consumption of a hardware
implementation. These hyperparameters include, but are not limited to:

• Length of the NN input (window)
• Number of convolutional layers and for each layer:

– Filter length
– Number of filters
– Stride of each filter

• Number of Fully-Connected layers and number of neurons in each layer
• Activation function used
• Quantization of the weights
• Quantization of the partial sums and activations

However, these hyperparameters also directly affect the accuracy of the classification
task and the time a classification takes. As the design space for creating a NN and defining
theses hyperparameters is very broad, a trade-off between energy efficiency, accuracy and
duration of the classification must be found. For this task an NAS can be used [13]. An
NAS helps in finding an optimal NN configuration regarding certain optimization criteria
in a defined search space. It can be distinguished by the search space that is covered,
the search strategy that is used, and the performance estimation that is applied to compare
different models.

In contrast to a state-of-the-art NAS, which often treats the target hardware as an
abstract model, if at all, we have adapted our NAS specifically to our hardware architec-
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ture [22,23]. We can therefore incorporate prior knowledge about time series classification
tasks. As an example, we constrain our search space to reach shorter search times by limit-
ing possible basic blocks of the NN to those that are well suited for time series classification
while being efficiently implementable in hardware. These blocks include convolutional
layers, Fully-Connected layers, ReLU activation functions and Max Pooling layers. With
our framework, the search space can be constrained even further by setting possible quan-
tization configurations, for weights, inputs and partial sums. These constraints can be
specified as a configuration file and be adapted to other application needs by a designer.
For the search strategy, we use a grid-based search to increase the speed of finding a
promising model.

Unlike state-of-the-art NAS, our approach simultaneously maximizes classification
accuracy and minimizes the actual energy of a hardware implementation based on our
architecture. To find the optimal trade-off, we created an energy model, which helps to
identify the impact of different hyperparameters on the overall energy consumption. The
model specifies values for the power consumption of MAC operations (PMAC) and RRAM
cells (Pmem) for different configurations. These values are stored in a lookup table. They
were extracted from hardware simulation of our architecture components and are not based
on abstract energy models as in other approaches. The parameterization is done using the
bit widths (i.e., quantization levels) of the input values (xbits), weights (wbits), and output
values (obits), respectively. For MAC operations the consumed energy can be calculated by
summing up the power estimates of all layers, parametrized with the respective bit widths
and multiplying the sum with the duration of MAC operations, depending on the targeted
clock frequency. The energy consumed by the memory can be calculated by summing up
all power estimates and multiplying the sum with the overall duration of a classification.
However, for comparing different models for the same application a fixed clock cycle and
duration can be assumed and therefore, the sums of the power values can be compared
directly. To compare the accuracy of different models, we further divide it into sensitivity
(proportion of positive cases that are correctly identified) and specificity (proportion of
negative cases that are correctly identified).

Our NAS is described by Algorithm 1. We initialize the search space with a model
found by a random search and then search for better models iteratively. In each iteration,
a small grid (set of adjustable hyperparameters) is defined, while the rest of the hyperpa-
rameters is fixed to limit the search space. The three metrics (estimated energy/power,
sensitivity, and specificity) are then calculated for each candidate model after a full training.
The best of these candidate models is then chosen, and a new grid is defined for the next
iteration. The influence of the three optimization goals can be adapted towards a certain
goal of the application by weighting them before comparison. To create an ultra-low-power
accelerator, more emphasis can be given to the estimated power than to the sensitivity or
specificity, for example. For applications, where it is critical to classify an event as soon
as it appears for the first time, it can be useful to prioritize sensitivity over specificity as a
false alarm might be better than missing the event. However, when aiming for long-term
monitoring in a wearable device it can be even more important to optimize for estimated
power, as thousands of classification runs will be done per day and a condition is likely
to appear in multiple classification runs. The optimization is finished when no better NN
configuration can be found.

It is difficult to compare the potential savings of our NAS against other NAS or
optimization approaches from the literature since there are multiple degrees of freedom
and NAS often targets generic hardware architectures. However, to get an idea of how
much energy can be saved using our NAS, a fixed specificity and sensitivity can be chosen.
Then the energy minimization is the only optimization criterion. In this case, energy savings
of up to 70% compared to an initial NN configuration can be achieved. Therefore, this NAS
is worthwhile and can yield far better energy consumption than by applying individual
optimizations alone.
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Algorithm 1 Our Neural Architecture Search.
// First NN model and grid are defined
Input: NN_start
Input: grid
Input: train_data, train_data, val_data

1

2 NN_model = NN_start
3 repeat
4 metrics = analyze(NN_model, grid)
5 NN_model = get_best_model(metrics)

// define new gird for the new found NN
Input: grid

6 until targeted metrics are reached
7

8 sens, spec = test_model(NN_model, test_data)
9 power_est = power_estimation(NN_model)

10 metric = {power_est, sens, spec}
Output: NN_model, metrics

11

12 Function analyze(model, grid):
13 for hyperparams in grid do
14 candidate = update_model (model, hyperparams)
15 trained_model = train(candidate, train_data)
16 sens, spec = test(trained_model, val_data)
17 power_est = est_power(candidate)
18 metrics.append({power_est, sens, spec})

19 return metrics

Unlike the other hyperparameters of a NN, quantization needs special attention. It
influences not only the arithmetic operations, but also the amount of memory required
for the parameters of the NN. NNs usually allow for heavy quantization, because of their
inherent redundancy. While general purpose accelerators, like CPUs or GPUs, use the
same bit widths for all arithmetic operations, in an ASIC architecture it is useful to set this
quantization per layer of a NN in order to achieve an optimal compromise between accuracy
and energy consumption. We adapt the NN to the designed hardware by developing a
training method where the reduction of precision is exactly modeled, and the network can
be forced to only use efficiently implementable operations. Rather than just quantizing to
an arbitrary number of states we look at characteristics of the used RRAM cells first. In
addition to their non-volatile property, they can in general store multiple states. However,
this requires additional hardware circuitry for reading and writing the cell states reliably,
which results in a more power intensive circuit.

In our NAS, the energy required to read out the values stored in a RRAM cell is
considered in the energy model (depending on the numbers of states). Therefore, the NAS
can be performed for different quantization levels of the parameter values. However, we
have found that a three-state configuration usually is best for minimal energy when using
RRAM memory. The reason for this lies in the trade-off between parameter quantization
and NN size. While fewer states of the NN parameters also mean less energy for storage
and arithmetic operations, binary weights are not optimal. With binary weights only two
operations (e.g., multiplication with −1 and +1 or multiplication with 0 and 1) can be
realized and the accuracy of the NN might suffer. Ternary weights (i.e., −1, 0, +1) are
beneficial, as layers can amplify, attenuate, or ignore certain features, which would not
be possible with only binary weights [18]. This results in a small network topology that
achieves a high classification accuracy. At the same time, the resulting operations can be
realized in hardware very efficiently and all three states can be stored in a single RRAM
cell. Other parameters of the NN, like bias values, can be stored into multiple (n) of these
cells, resulting in 3n possible states. Storing more than three states in a single RRAM cell is
also possible but requires a more than linear increase in the required read and write energy.
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Creating a quantized NN is not straightforward [11]. While inference of a NN using
quantized operators can be realized without any implications, training an NN requires high
precision calculations to find a minimum of a loss function. Using full precision weights
and then quantizing them severely at the end of a training would result in significant
accuracy degradation [24]. Therefore, we implemented a quantization aware training pro-
cedure that accounts for the quantization during training. In contrast to quantization after
training, this achieves higher accuracy. Each training step consists of forward-propagation,
backward-propagation, and weight update. The real-valued weights are quantized during
the forward propagation which calculates the output and loss function. The gradients
are then computed using the backward-propagation. Finally, the gradients are used to
update the real-valued (not the quantized) weights. This way the real-valued weights
can be updated slowly and eventually, and some of them might shift across the threshold
and be quantized to a different value during the forward-propagation. This approach
prevents the introduction of a bias in the gradient due to quantization [11]. At the end of
the training, the quantized weights are used in our design. The real-valued weights are
discarded, as they are only needed during the training process.

To make the final quantized NN more energy efficient, we have specified some further
constraints, which we found to be beneficial for time series classification applications: We
use a Batch Normalization layer after each Convolutional and Fully-Connected layer. This type
of layer helps to extend the range of values of strongly quantized NNs by multiplying
input values by a scaling factor and adding a bias value. Both parameters will be learned
during training. To keep Batch Normalization energy efficient, we constrain the scaling factor
to a power of two and only store the exponent. We call this type of layer Shift-Based Batch
Normalization (SBBN). This enables the realization of the multiplication with a scaling factor
using an energy efficient shift operation. The exponent as well as the bias value for the
Batch Normalization layer are also quantized (e.g., to 3n states). An example of a customized
layer configuration extracted from our NN used for ECG classification is given in Figure 3.
The weights of the Convolutional layer posess three states. The exponent of the scaling factor
is quantized to 32 states (n = 2). For the bias value n = 4 is used. This enables a broad
range of values to be used. On the other hand, we save up to 4× and 2× the amount of
memory cells, respectively, compared to binary 8 bit values. Similar to training the weights,
the Batch Normalization coefficients are quantized during the forward-propagation and the
real-values are updated in the backward-propagation. However, two training runs are done
to achieve the quantization of the Batch Normalization. During the first run the statistics
for normalization (mean and variance) are collected. The second run continues with the
model already trained in the first run. Before the second run, the collected statistics are
fixed and quantized. These values are then used along with the trained coefficients to
normalize the activations. This approach is necessary, as quantizing the mean and variance
during collection is not possible because the accuracy hit introduced by this quantization
would be too big to successfully train the network. In addition to the coefficients, we also
quantize the activations and partial sums in the layers to save even more power for the
arithmetic operations, data transfer and registers needed. For that, we use a saturated
rectified linear unit (ReLU N) as the activation function. In contrast to the regular ReLU
function, it not only cuts off values smaller than zero, but also cuts of values higher than a
certain saturation limit (N). This limit depends on the quantization of the input values of
the following NN layer.

Our quantization-aware training was implemented in the NN framework TensorFlow
by extending already existing functionality. Based on the Fully-Connected (TF FC) and
Convolutional (TC Conv) layer provided by the framework, new layer types have been
created. We use the prefix ‘quasi’ for these layers as they implement the previously de-
scribed quantization process during training. As defined by our constraints, each Quasi
Quantized Fully-Connected (Quasi QFC) and Quasi Quantized Convolutional (Quasi QConv)
is followed by a Quasi SBBN then a saturated ReLU. According to our tests, this order in
combination with the strong quantization causes the least reduction in accuracy. Figure 4
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shows exemplary for one layer the extension of the TF Conv, TensorFlow Batch Normaliza-
tion (TF BN) and Tensorflow ReLU (TF ReLU) module to achieve the quantization-aware
training. Here, Qw, Qin, Qα and Qβ are the functions that quantize the the weights, inputs,
the scale and bias of the Batch Normalization, respectively. The parameters WR, α, β represent
the real valued weights, scale and bias values that are to be quantized. These values are
stored and updated during the training process, but only the quantized weights (WQ), scale
(αQ) and bias (βQ) values are used in the hardware implementation for inference. Finally,
Saturate(N) is a function implementing the saturation of the activations at a configurable
level N, which is synonymous with the quantization of the activations. All arithmetic
operations in the network are realized using fixed point value representation, resulting in
smaller and more energy efficient hardware than a floating point implementation. Com-
pared to generic NN accelerators, which use a fixed bit width for all operands, we can show
that our individual quantization per layer can save a lot of energy using our energy model.
Thus, compared to an accelerator using 16 bit operands, up to 90% of energy is saved for
arithmetic operations and storage alone, without significant impact on the accuracy. In
contrast to accelerators using 8 bit operands it is still as high as 60%.
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Batch Normalization (SBBN) 
 

Scaling (⋅2x) 
 
 

Bias

Weights 
possible states: 
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⋅ 
Scaling factor 
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+ 
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Figure 3. Example of a customized sequence of layers in our ECG classification NN.
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Figure 4. Overview of one Convolutional layer in our quantization aware training including SBBN
and saturated ReLU.
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4.2. Dataflow Driven Architecture

An essential part of the HW mapping step in the framework is the hardware architecture
used to realize the calculation of the NN. While generic accelerators such as CPUs or GPUs
can be used to run the calculations of a NN, they are far from optimal regarding energy
consumption. They offer a high degree of flexibility, but require a lot of control overhead
(i.e., instruction decoder, branch prediction unit etc.) which greatly contributes to the
required energy. This accommodates different applications and flexible programming,
but creates an additional energy budget for applications, where a fixed procedure is known
beforehand. For NN-specific architectures this additional overhead can be omitted to
reduce the energy consumption. Even when constraining to NNs and building specialized
architectures like Eyeriss V2, a lot of energy is needed for the control logic [25]. Other
approaches, like the TPU by Google, achieve a large reduction of the control logic, but still
need large buffering structures, which occupy up to 29% of the chip area [26]. To solve
this problem, a hardware architecture is required that is in complete contrast to freely
programmable accelerators. Data paths should be defined at synthesis time and a data
flow should be chosen which does not require buffering structures. For this, weight
stationary architectures are already well researched and found to be a good approach for
energy efficiency [5]. Especially when applying NNs with a small number of parameters,
weight values can be kept in local storage and do not need to be reloaded. This saves
memory bandwidth and energy. Therefore, we designed a completely new optimized
hardware architecture based on the idea of systolic arrays, where part of the control logic
is implicitly defined by the structure of the hardware architecture. It is derived from
our optimization strategies for time series classification tasks discussed in Section 3 and
designed to be generic and energy efficient. Different hardware components based on this
hardware architecture are implemented and can be used with a hardware generation tool
to create a complete hardware design. One of the unique features of our architecture is that
it internally works completely without control logic and buffers for the calculation of the
NN. The data flow is given by the connection of the components and is derived from the
design of the NN during hardware generation.

Nevertheless, the goal of our architectural concept is furthermore to enable the use
for different applications with different NN designs. It should be possible to use the
HW generation and parametrization tool from our design flow to create and parametrize an
optimal hardware depending on the NN configuration. Therefore, all hardware blocks
designed are flexible regarding their (automated) mapping and arrangement. Figure 5
shows an overview of the hardware architecture of a Convolutional layer. As the share of the
static power of the Processing Core design is small compared to the dynamic power and
can be optimized by reducing the on-time, the hardware is designed to minimize dynamic
power. Therefore, the data arrives at each layer in a systolic manner. This means that the
first two input channels deliver values in parallel. The following channels deliver values
with an offset of one clock cycle each. The layer itself consists of several multichannel
(MC) filters, which correspond to the number of filters inside the layer defined by the NN.
Each MC filter consists of multiple single channel (SC) filters, corresponding to the amount
of input channels that the filter has. The SC filter is composed of a regular structure of
multiple processing elements (PEs). Each PE has its own weight memory in form of a
RRAM cell, which is physically not inside the PE, but in a RRAM block close to the actual
PE. However, its output is routed directly into the PE. The input values are passed from one
PE to another and a multiplication with the weight is carried out. Each arithmetic operation
is enabled by a simple counter-based controller, depending on the stride value defined
for the filter in the NN. The output values of each PE are summed using an adder tree.
Each SC filter possesses a simple 1D topology of PEs. The output of multiple of these 1D
structures is summed up inside the MC filters, which are themselves grouped to a regular
2D structure inside one layer. In our design, filter coefficients that are moved over the input
signal are directly accounted for and do not need to be stored multiple times. This design
also significantly reduces dynamic energy, as the stride value is realized using clock gating
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and no unused partial sums are calculated. The dataflow between the layers is optimized
in a way that multiple layers can be directly concatenated without the need for buffering
in between.
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Figure 5. Hardware architecture of one Convolutional/FC layer including MC filters and SC filters.

The architecture of the Fully-Connected (FC) layer is the same as the Convolutional
layer. The length of the filter is mapped to the amount of input values as well as the stride
value. This results in a very low duty cycle. However, it was tested to be more energy
efficient than mapping multiple weights into one PE. The reason is a much lower dynamic
power requirement caused by less toggling, while the higher static power requirement for
inactive PEs has an insignificant overall impact. Other hardware modules, like the ReLU
activation function, the scaling and the bias addition of the BatchNorm layer as well as the
Max Pooling layer are built of a vector of PEs. Each PE operates on its own channel. One
PE in a scaling layer shifts the input value by the amount defined in the NN. Each PE in
a bias addition layer adds the trained bias value to all inputs of one channel. The overall
dataflow is delayed by one clock cycle by all of these modules, keeping the dataflow intact
and enabling a concatenation of all layers in any order.

Implementing an architecture, which calculates all outputs of a layer fully parallel is
not possible when designing a chip that should be integrable into a wearable device or a
similar embedded environment. Even with a small network, a fully parallel configuration,
extrapolated from the components of our design, reaches a chip size of over 500 mm2. This
is not practical for embedded use cases, therefore, our architecture does not calculate each
individual output value in parallel, but one value of each channel in parallel. This is a
good compromise to achieve a realistic chip size of a few multiples of 10 mm2, depending
on the NN size. It needs more clock cycles to calculate a classification, but the individual
PEs are utilized with a high duty cycle, depending on the layer and the stride used. In
comparison to a time multiplexed architecture, where multiple operations are mapped to
the same PE, our design achieves an overall reduction of the average power. Mapping
multiple operations to the same PE results in frequent changes of the operands in the PE
and therefore a higher dynamic power. We implemented such a design for exemplary FC
layers and compared the energy after synthesis. We could show that even in these FC
layers, where the PEs possess only a low duty cycle, mapping multiple operations to the
same PE and switching the weight values requires more energy than not using some PEs
for multiple cycles.
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4.3. Non-Volatile on-Chip RRAM

Another important part of the hardware components designed by us is the embedded
RRAM memory. For a classification task in an embedded device, it is usually necessary
to collect multiple seconds of data sampled at a low rate, while no actual classification
must be carried out. In our architecture the classification is the task of the Processing Core,
which could be in a sleep state during this data acquisition process. However, in traditional
architectures, mainly volatile memory is used to store the NN parameters (e.g., NN weights,
scaling factors) locally in accelerators. This means after every power cycle of the chip these
parameters must be reloaded from external non-volatile storage. Reloading data from
external memory requires a huge amount of energy. This contradicts the goal of reducing
energy and prevents an efficient design with a power-down mode. To overcome this
problem, we use non-volatile memory in form of RRAMs to store data in an embedded way.
This RRAM cells can be read in parallel and allow for a quick availability of all parameters
after power is (re)supplied. The division into two power domains, as seen in Figure 1,
enables us to put the Processing Core into a deep sleep mode where it draws almost no
power and after waking up the chip, all the parameters of the NN are still present.

The embedded memory blocks for local storage demand efficient read and write
circuitry to be integrated in the architecture. The research on the integration of RRAM
cells is very recent and due to the manufacturing process, they often possess considerable
variations per cell. These can have an influence on the interpretation of the values stored
in them [27]. The RRAM design used in our system is provided by IHP as part of the
MEMRES module, integrated into their 130 nm SG13S-process line [27]. Previous research
has been done on the device characteristics of these cells in IHP technology and their system
level influence on NN accelerators. The typical device variations have been considered and
it has been shown that the accuracy of the NN does not decrease by more than 1% despite
the inaccuracy introduced by these variations [28].

In our architecture the memory cells are grouped into blocks of 32 and all blocks are
connected like a long shift register, as shown in Figure 1. At the same time, the values of
all cells are available to the accelerator in parallel. As discussed in Section 4.1, three states
seem like an optimal solution for most NN configurations. Therefore, we consider three
resistive states of the RRAM cells (two low resistance states (LRS1 & LRS2) and one high
resistance state (HRS)). However, the use of more states is also possible. The design of this
RRAM memory block has been optimized specifically for use in low-power accelerators for
NNs [29].

For reading and programming the RRAM cells, an analog circuit block was designed
that is used for each memory block. A diagram of this memory block and the surrounding
circuitry is shown in Figure 6. It contains 32 1T1R RRAM cells, consisting of one transistor
and one resistive switching element (hence the name 1T1R), each equipped with a read
circuit, so all cells can be read simultaneously. The red digital control signals are provided
by the RRAM manager (shown in Figure 1), while the green signals are analog signals used
inside the memory block for interactions with the 1T1R cells. Each interaction with the
RRAM cells is based on analog voltage pulses of specific height, in Figure 6 indicated as
“Vpulse”, which are buffered by an operational amplifier, that can provide sufficient output
current for reading and programming the cells in parallel. The read method is based on
a voltage divider and is done with low voltage pulses in order to prevent unintended
programming of the cells during a read operation. For programming, voltage levels above
the 1.2 V supply voltage (VDD1V2) of the digital core are necessary, therefore, the analog
circuitry is also provided with an additional 3.3 V supply rail (VDD3V3). A reference
block provides the necessary analog voltage levels for all operations. Besides the previous
mentioned pulse height of the pulses, each operation (reading, writing LRS1, LRS2 or HRS)
needs specific voltage levels at the selection transistor of the 1T1R cell, in Figure 6 shown as
“VWL”. “Vref”, which is used by the comparators to determine the state of the RRAM cells
during read operations, is also provided by the reference block. The external operation
bits provided by the RRAM manager are then processed by an internal control logic which
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applies the necessary signals to apply the voltage levels from the reference block that are
needed for the corresponding operation. Furthermore, the “cell_sel” bits determine which
cells are to be read from or written to, respectively. The power supply control is triggered
by the “pwr_en” signal, which is also provided by the RRAM manager and can detatch
the block from the supply rails, therefore saving energy. Compared to the overall design,
the read-write circuitry of the RRAM cells possesses a high static power consumption and
reading the cell state multiple times costs additional energy. Therefore, in our design the
data from the RRAM cells (“comp_out”) is read into latches once after each power up phase
of the Processing Core. After reading from the non-volatile cells, the RRAM block is put
to sleep again (controlled by the “pwr_en”-signal), thereby preventing the relatively high
power consumption of the analog circuitry compared to the static dissipation of the latches.
The output values of the latches are routed into the PEs of our design by providing the
saved parameters for the NN. Our design was created using Cadence Virtuoso with the
IHP SG13S process PDK and its functionality was verified by simulation [30].

VDD3V3 32 1T1R
memory cells 
+ read circuit

VWL

Vref

pulse
power supply

control

VDD1V2

opera�on cell_sel

Vpulse
pwr_en comp_out

32

323

opampreference
block

control 
logic

Figure 6. Block diagram of an RRAM memory block containing 32 1T1R memory cells and the
necessary peripheral circuitry for reading and writing the cells [29].

5. Further Optimizations

To implement our approach and create a system for a time series classification ap-
plication, a designer can use our framework and perform the design steps described in
Section 4. On top of these steps, some additional tweaks can be done to save even more
energy using domain- specific knowledge. In this section, we will point out possible further
optimizations as an example of the ECG classification application in a wearable device.
We will also state some ideas about how these optimizations can be transferred to other
embedded time series applications.

5.1. Data Preprocessing

When minimizing the power consumption of a classification application, it can be
important to preprocess the raw data after data acquisition. Thereby, the amount of data
that the NN must process can be limited, and unwanted frequency components can be
removed from the raw data. However, when implementing preprocessing of the data in
hardware, it must be optimized to make sure its benefits, in terms of reducing the data rate
and improving the classification accuracy with regard to outweiging the energy costs. We
have not shown the preprocessing as part of our design flow in Figure 2, even though it is
included in our architectural concept (see Figure 1). This is due to preprocessing usually
requiring domain specific knowledge per classification application, (e.g., which frequency
bands of the input data are relevant). For some classification applications using NNs it
might not be required at all, depending on the data acquisition. For the example of the
ECG classification application, we will show approaches with regard to how to derive very
energy efficient preprocessing which is adapted to the NN.
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One aspect of the optimization of the preprocessing is the data rate at the input of
the NN. For our ECG classification application, a state-of-the-art external sensor is used,
which samples the raw data at 512 Hz with a resolution of 12 bit. To minimize this data rate,
quantization on the raw input data can be applied. For ECG data we have tested different
NNs during the NN design phase of our design flow and have shown that quantizing
to a resolution of 8 bit is sufficient for the raw input data without significantly affecting
the classification accuracy. Another option for reducing the data rate is to lower the
sampling rate by downsampling. Our research showed that when using a NN, reducing
the sampling rate down to 128 Hz does not measurably reduce classification accuracy.
Therefore, a downsampling by four can be applied. For lower energy consumption, the raw
ECG data can be reduced even further. ECG data is usually sampled from two electrodes
in two channels to achieve a high signal-to-noise-ratio (SNR). When using only a single
channel, energy can be saved in the preprocessing, buffering and in the first layer of the
NN. To reach the same accuracy using only a single ECG channel, a slightly larger NN
is required. However, reducing the amount of data by omitting one channel saves more
energy than the larger NN needs. As an additional benefit, measuring a single channel
ECG signal in a wearable device can lead to an easier design of the device. In summary,
we can see that only by applying the quantization (from 12 bit to 8 bit), downsampling (by
4) and use of a single channel (instead of 2) can a data compression of a factor of 12 be
achieved. This does not only reduce the energy consumption of the preprocessing itself,
but also of the NN processing, while adding almost no hardware overhead and therefore
only a negligible additional energy consumption.

This is not all that can be done to optimize energy consumption. For ECG classification
not all frequency components contained in the raw data are relevant. The most important
frequency components are to be expected in a frequency band up to 50 Hz [31]. To reduce
the dynamic energy introduced by unneeded frequencies and to combat aliasing effects
introduced by downsampling, the raw data can be filtered by a bandpass filter. Nonlinear
algorithms, such as NNs, may not be negatively affected by these effects and may even
extract information from them. So instead of using a hand-designed filter, we came up with
a solution that is also integrated into our framework: during the NN design (as described
in Section 4) we add an additional filter without any non-linearity at the beginning of the
NN as the first pseudo layer. During training, the parameters of this filter will be learned
by the NN. The result is a preprocessing filter design with a frequency characteristic that
does not remove information relevant to the NN from the input data. To minimize the
energy of this filter we evaluate the frequency characteristic and map it to an efficiently
implementable Cascaded Integrator Comb (CIC) filter [32]. This enables maintaining
most of the learned frequency characteristic, while at the same time reducing the energy
consumption of the hardware implementation of the filter. The frequency response of the
trained and the mapped filter are shown in Figures 7 and 8. The block diagram for the
efficient implementation of the CIC filter is shown in Figure 9. For a hardware realization,
only a few arithmetic operations and registers are needed, while the dynamic energy
needed in the NN can be reduced. For other classification use cases the same strategy for a
preprocessing filter design can be applied, and the frequency characteristics can be mapped
to similar optimized filter designs. In some cases, filtering and downsampling might not
be needed. In this case, data preprocessing can be completely bypassed. Therefore, our
architectural concept (see Section 3) is flexible regarding the preprocessing to address the
requirements of different applications.
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Figure 7. Frequency response of the trained preprocessing filter.

Figure 8. Frequency response of the the approximated CIC preprocessing filter.
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Figure 9. Block diagram of the CIC filter used for preprocessing the data (using NH = 4 and NL = 3).

5.2. Optimized Dataflow

In an embedded classification application, data has to be sampled in real time. Com-
mon ECG devices used in medical facilities use a frequency of 512 Hz for this purpose,
which corresponds to a significant oversampling. Other applications might use similar
low sampling rates. However, for classification the data must be grouped into sections
of a certain length (Tsamp). These so-called windows must be buffered until all the data
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has arrived. Since data needs to be collected continuously, even when one window is
processed, a double buffering is applied. A tradeoff for the length of the input window
must be found, since a larger window benefits the classification accuracy, and a smaller
window benefits the energy needed for buffering. In general, when choosing a very short
length of only a few seconds, the accuracy (sensitivity and specificity) will decrease heavily.
With increasing window length, the quality of the classification will improve. Depending
on the application, the improvement will hit the point of diminishing returns at some point
after a certain window length. This effect can be seen in Table 1 at the example of our
NN for ECG classification. For each entry of the table a model was trained from scratch
independently for each window length to avoid any bias. As the minimization of the loss
function during training can result in local minima, these accuracy values are subject to
change for each training run and serve as approximate values to demonstrate the effect of
the window length.

Table 1. Accuracy Results (Measured Using Different Window Lengths).

Window
Size 5115 5797 6479 7161 7843

Sensetivity 90% 91% 96% 94% 96%
Specificity 85% 82% 89% 87% 90%

When increasing the window length, more hardware resources for buffering the data
and energy for preprocessing as well as processing the first layer of the NN is needed.
This window length is part of the NAS described in Section 4.1. For our ECG application,
the size of the input window was found to be 6479 samples (12.65 s). Therefore, we group
and classify the incoming data in windows with a sampling duration Tsamp = 12.65 s.

An overview of the dataflow at relevant points of our design is given in Figure 10. The
dataflow at different points of the architectural concept as seen in Figure 1 are shown. The
top of the figure shows the data at the input of the Data Control Core and the windowing
scheme that is applied. As seen in Figure 1, double buffering is used to separate the
preprocessing from the Processing Core. Incoming windows after preprocessing will be
written into the two buffers in an alternating fashion. This can be seen in the middle section
of Figure 10. From the buffers the data is read in the same alternating fashion and will be
processed by the NN.

Continuous Stream of ECG Data sampled at 512 HzInput

Windowed Input Window 1

Buffer 1 Activity

Buffer 2 Activity

Processing

Write

Proc Proc

Window 2 Window 3 Window 4

Proc

Write Read

Write

Time
Tsamp Tproc

Read

Write Read

Continuous Stream of ECG Data sampled at 512 Hz

Window 1 Window 2

Figure 10. Overview of the optimized dataflow.

The long sampling duration causes the static power of both of our cores to dominate
the dynamic power by more than one order of magnitude. As the classification of one
window is significantly faster than the sampling duration (Tproc << Tsamp), we turn off the
Processing Core for most of the time to reduce the overall static power. The dynamic power
for a given CMOS circuit is mostly dependent on the executed operation. The frequency
of the Data Control Core is defined by the sampling rate of the input data. The frequency
of the Processing Core, on the other hand, can be increased to reduce the power-on-ratio
of this core and minimize the average static power. However, a higher clock frequency
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results in more toggling in the clock tree. As the clock for the Processing Core has to be
routed through the Data Control Core to synchronize the memory access to the double
buffer, the dynamic power of the clock tree increases with a higher clock frequency, even
when the Processing Core is turned off. An optimized clock frequency of the Processing
Core can be found after generating the final design, using common EDA tools.

6. Evaluation

In this section we give an overview of the results we achieved when applying our
architectural concept to the ECG classification task in a wearable device. Our framework
discussed in Section 4 was used to generate an ASIC implementation for the task and the op-
timizations discussed in Section 5 were also realized. We evaluate the energy consumption
of this implementation and demonstrate the savings that our architectural concept intro-
duces compared to state-of-the-art approaches. At the end we also present a comparison of
our framework with those from the literature.

6.1. Training Data

To train the NN for AFib detection a dataset was used that consists of 16,000 ECG
recordings of two minutes in length. The data was sampled on two channels with 512 Hz.
One half of the recordings contains AFib, and the other half contains a healthy heart rhythm.
As in the final NN, smaller window sizes for the input data were used, the two minute
recordings were split into multiple smaller segments. All the segments were used during
training, and therefore an augmentation of the data was achieved. The segments were
partitioned into training (70%), validation (15%), and testing (15%) datasets. The training
dataset was used for training of each candidate model during NN design (see Section 4.1).
The validation dataset was then used to calculate the sensitivity and specificity metrics
used during the NAS described in Section 4.1. Finally, the testing dataset was reserved
unseen by the training and NAS. This unseen dataset was used to report the sensitivity and
specificity metric of the final model to ensure unbiased results.

6.2. Final NN Model

For our ECG classification task, a minimum sensitivity of 95% and a minimum speci-
ficity of 85% were used as target values. This makes the resulting system accuracy compa-
rable to the accuracy reached by state-of-the-art non NN-based classification devices [33].
Setting higher thresholds for sensitivity and specificity is possible at the expense of energy
consumption. However, since several thousand classifications are done per day, some
rare misclassifications do not matter much. A graphical overview of the resulting model
including the NN layers and the dimensions of their operators as well as the result values
can be seen in Figure 11. The number of parameters (i.e., weights, scaling factors and bias
values) as well as the quantization chosen for these parameters and the result values for the
final model are shown for each layer in Table 2. This model achieves a sensitivity of 97%
and a specificity of 87% on the testing dataset and therefore exceeds our minimum thresh-
old. Overall, only 1370 parameter values with different quantization are needed, which
results in 1490 ternary values that need to be stored. In total we only need to incorporate
47 memory blocks containing RRAM cells (each containing 32 RRAM cells) into our Process-
ing Core. All parameters are fully reprogrammable, enabling a retraining of the network at
any given time. After the ASIC implementation, all hyperparameters such as the number
of parameters per layer or the number of layers is fixed, but a different configuration can
easily be derived using our framework, as described in the previous sections.
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Figure 11. Overview of the final neural network model.

Table 2. Parameters of the Final Neural Network Model.

Type No. Parameter Result
Parameters Quant. (States) Quant. (Bit)

Conv 30 3 11
BatchNorm 2, 2 32, 34 19

ReLU 0 - 4
Conv 120 3 10

BatchNorm 4, 4 32, 34 18
ReLU 0 - 4
Conv 360 3 11

BatchNorm 6, 6 32, 34 19
ReLU 0 - 4
Conv 720 3 12

BatchNorm 8, 8 32, 34 20
MaxPool 0 - 20

ReLU 0 - 4

FC 64 3 8
BatchNorm 8, 8 32, 34 6

ReLU 0 - 4
FC 16 3 8

BatchNorm 2, 2 32, 34 16
ReLU 0 - 4

Overall No. Param. Ternary Values
Memory blocks

containing RRAM
cells

1370 1490 47

6.3. ASIC Implementation

Following our architectural concept shown in Figure 1, the chip for ECG classification
has been divided into two main parts, which have been synthesized independently and
implemented in the IHP 130 nm standard cell library. Figures 12 and 13 show the layout
of the implemented Data Control Core and Processing Core after place and route (with
different scaling). The area of the Data Control Core of 363 × 950 µm2 is mainly dominated
by its SRAM blocks, which are necessary for double buffering and require an area of approx.
332 × 377 µm2 each. In contrast, the memory blocks containing RRAM cells are controlled
for programming and external testing by a digital circuit that is assigned to each block,
which is also synthesized the same way. The combination of analog and digital subsystem
requires an area of 155 × 960 µm2, whereby the focus of the optimization of the blocks
was exclusively on their reusability. These memory blocks containing RRAM cells were
placed within the Processing Core 47 times in total and thus consume approx. 60% of its
total area of 4870 × 2396 µm2. The relatively high percentage for the memory blocks is a
result of the analog trade-off that minimizes the active time and enables parallel processing
at the expanse of the chip area. The processing logic of the NN was placed in between the
memory blocks containing RRAM cells to minimize space and have a short route between
the PEs and the RRAM cells. The value for the area of the Data Control Core lacks the
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IO-pads as the chip has not been produced yet. On the other hand, we estimate that the
area of the Processing Core can be reduced by half when optimizing for area. The size of
the analog read and write circuit of the RRAMs. for example, can still be further minimized
and thereby enable a tighter placement of the memory blocks containing RRAM cells.
However, this was out of scope for the current state and will be done before manufacturing
a chip. Nevertheless, it can already be seen that the area is small enough, so our design can
realistically be used for an energy efficient wearable application. Compared to accelerators
using classical memory cells, such as SRAM, our approach has the benefit that weights
and other parameters are stored locally, near the point where they are needed. In theory,
the RRAM cells also store more information in the same area. On the one hand this follows
from the fact that, compared to a binary memory cell, more information (multiple levels)
can be stored per cell, while on the other hand the cell itself possesses a significantly smaller
area than SRAM, for example [34].

Figure 12. The layout of the Data Control Core with an area of 363 × 950 µm2, dominated by the
SRAM double buffer with the control circuits in between.

6.4. Energy Evaluation

To demonstrate the energy savings introduced by our framework, comparisons at
different stages of our design flow have been conducted. The evaluation of the effect of the
optimizations applied during NN design is done using the energy model (see Section 4.1).
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We could show by using hard quantization alone to three state weights ([−1, 0, +1]) and 3n

state bias values and scaling factors as well as adapted quantization of the partial sums
and activations per layer, energy savings as high as 60% can be reached. Integrated into
the NAS proposed by us, another 70% can be saved, depending on how optimal the initial
NN already is regarding the optimization goals. Combined with the RRAM cells which
possess multiple possible states, less memory cells are needed to store the weights and
other NN parameters, compared to an accelerator with binary storage cells. Therefore, it
can be seen that the goal of vast energy savings by avoiding external memory access and
applying heavy quantization was reached, due to the efficient use of local, on-chip RRAM
storage and our NAS.

Figure 13. The layout of the Processing Core with the 47 memory blocks containing RRAM cells and
the hardware for the NN in between. It takes up an area of 4870 × 2396 µm2.

For the hardware mapping process, no direct energy evaluation can be made. However,
in comparison to a low-power general purpose CPU, for example, based on the RISC-V
architecture, our dataflow driven architecture has almost no control overhead, which can
account for up to 95% of the energy consumption of such a CPU [35]. Minimization of
control flow and buffering leads to a massive reduction of the energy consumption, even
when compared to other devices suitable for an embedded application.

After the final step in our framework, (the hardware implementation) an estimation of the
energy consumption of the digital components has been generated using the tools Synopsys
PrimeTime and Synopsys PrimePower. For this estimation, the final post place-and-route
netlist and the power models provided by the standard cell library in combination with
toggle data extracted from several real simulation runs have been used. A simulation
of the analog circuit block and the RRAM cells has been conducted separately using a
RRAM model adapted for the IHP cells based on the Stanford-PKU Model and SPICE-based
analog simulation tools [36]. The resulting energy for classifying a window of 12.65 s of
ECG data as well as the average power consumption of our design is given in Table 3. The
Data Control Core is running with a clock frequency of 512 Hz and the Processing Core is
running at 70 kHz.

The energy of the Processing Core is minimized by the efficient dataflow driven
architecture and all the optimizations included in our framework. The dynamic energy
specifically is also reduced by the preprocessing and removal of unwanted frequencies
in the raw data. Therefore, at this point, the biggest amount of energy can be saved by
minimizing the on-time of the Processing Core and thereby the static energy. To demonstrate
the impact of such an optimization, a comparison between an always-on operation and a
power-down operation is shown in Table 3. For the power-down operation the parameter
values must be provided by the RRAM cells after every power cycle. However, as the
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energy needed for loading the data from the RRAM cells only makes up about 0.4% of
the overall energy, this influence is negligible. In the always-on case the parameters need
to be loaded only once. As the influence of a single loading of the parameters on the
average energy is marginal and decreases with longer runtime, it has been ignored here.
It can be seen that our power-down approach results in savings of 99.8% of the energy of
the Processing Core. This is significant, considering that this effect is on top of the other
optimizations. It is a direct effect of the on-time of this core being only 0.2% of Tsamp and
the drastic reduction of static energy. The average overall energy needed per classification
of one window is 12.4 mJ. In wearable devices, such as a current generation smartwatch
powered by a small battery (which can provide around 1.3 Wh of energy), this corresponds
to an extremely long duration of almost two months and almost 400,000 classification
results before the battery would need to be recharged.

Table 3. Energy Evaluation per ECG Window of 12.65 s.

Always-On Power-Down

Data Control Core 11.75 mJ
Processing Core 220.5 mJ 0.55 mJ

Memory blocks containing
RRAM cells (analog) 1.24 mJ 0.055 mJ

Overall 233.5 mJ 12.4 mJ

Average Power 18.46 mW 0.98 mW

6.5. Framework Evaluation

A direct comparison of our framework with other approaches from the literature is
difficult since no one has yet integrated all system levels, as we have in our approach. In
addition, the results are often not directly reproducible due to unpredictable outcomes of the
optimization processes. This problem already concerns the subtopic of NAS and solutions to
make different NAS approaches comparable have been described by Li et al. [37]. However,
the consideration of the complete system view is also missing here. Nevertheless, we were
able to make a qualitative comparison of our framework with other approaches found
in the literature, which is given in Table 4. The table shows where these approaches fall
short, and more research toward a complete system needs to be done. It can be seen,
for example, that often only partial optimization goals are used, such as minimizing the
size (i.e., number of parameter bits) of the NN. However, this does not necessarily lead
to a minimization of the energy of the entire system if, for example, this results in more
arithmetic operations having to be performed. Other approaches simply map the NN to
the hardware without considering it during the NN design. Due to the unique combination
of features of our framework, it is clear that a quantitative comparison is not really possible
at this point. The other approaches would need to be extended to also cover an end-to-end
design of an embedded system using NNs for classification. Only then could the results
from the frameworks be compared. Since the optimizations of our framework are directly
intertwined with a global optimization goal, an isolation of individual steps is not possible.
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Table 4. Comparison of our framework with different approaches from the literature.

Target NN Design Hardware Support for End-to-End NN Applied
HW Using Aware NVM and System Optimization Optimizations

Known HW Metrics Training Power-Down Design Goal

Our Yes Yes Yes Yes Yes Accuracy NAS
HW Energy Hard Quantization

Energy Efficient Operations

[11] No No Yes No No Accuracy Pruning
NN Size Hard Quantization

[12] Yes No Yes No No Accuracy Quantization
NN Size

[38] No No No No No Accuracy NAS
NN Size

[39] No No No No No Accuracy NAS
NN Operations

[40] No No No No No Accuracy NAS
NN Operations

[41] Yes No No No No None None

[42] Yes No No No No None None

7. Conclusions and Future Work

In this work, we created a framework that helps to design an ultra low-power system
for embedded time series classification applications using NNs. We have developed an
energy efficient hardware architecture for this problem class which has a very low overhead
for the control flow. To allow an easy end-to-end design of a system, we have incorporated
this hardware architecture into a framework. This framework optimizes the configuration
of the NN in terms of power consumption and accuracy using a NAS. A designer can
parameterize how these two optimization goals should be weighted. A hardware generator
extracts the data flow and the interconnection of the hardware components from the result-
ing NN configuration. We have shown that while many optimizations for NNs and their
hardware implementations exist, essential considerations of an efficient overall system are
often missing. With our framework a system designer is provided with an easy-to-use tool
that generates very efficient hardware without the need to apply additional optimizations.

To validate the claims in practice, we evaluated the application at detecting AFib in
ECG data using a NN. We could show that 95% of the energy consumption, compared
to an unoptimized, always-on solution, can be saved with the help of our framework.
To compare the energy savings provided by our framework with other approaches, we
participated with the ASIC implementation of the AFib detection application at a national
challenge between leading universities and research institutes in neuromorphic computing.
Our hardware design won the first prize for energy efficiency [43]. However, the evaluation
of this competition focused only on the energy required to classify an ECG signal of 2 min
in length. The energy saving due to the power-down mode in a real wearable application
(up to 95%) was not considered. This shows that the joint optimization of software and
hardware, which has been incorporated into our framework, leads to a massive reduction
in the energy consumption of the final system.

Nevertheless, further optimizations of our framework can be achieved. One point is to
optimize the implemented hardware components with regard to their area, which was not
the focus of this work. Minimizing the power required for reading and writing the RRAM
cells is also still the subject of research and could allow for more power efficient data access
in the future. The tools that make up our framework can be extended or included in a
broader context to cover more NN related problems and NN designs. For example, further
hardware architectures for other classification tasks could be included. The implemented
NAS as well as the underlying power estimation model can also be extended further.
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The more precise the different hardware components are modeled, the more accurate the
results will be. This will lead to finding more efficiently implementable NN configurations.
Other emerging non-volatile memory elements can also be integrated into the framework
and targeted with the NAS. On-device training is an additional extension option. This
is especially useful for applications where the NN must learn new information during
runtime (e.g., reinforcement learning). For the implementation of on-device training,
however, an extension of the hardware architecture by the appropriate components is
necessary (e.g., memory and interface for training data, computation units for gradient
calculation). Likewise, the extension of the tool flow of our framework is required to
generate the components for the training hardware and to transfer the data required
for training to the target system. Another important step for future work is to develop
standardized methods to compare such end-to-end frameworks in a meaningful way, since
a baseline must be created in order to create quantitative statements about the quality of
such a framework.
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The following abbreviations are used in this manuscript:

1T1R One Transistor and One Resistor
AFib Atrial Fibrillation
CMOS Complementary Metal-Oxide-Semiconductor
EDA Electronic Design Automation
ECG Electrocardiogram
HDL Hardware Description Language
HRS High Resistive State
LRS Low Resistive State
NAS Neural Architecture Search
NN Neural Network
ONNX Open Neural Network Exchange
RRAM Resistive Random Access Memory
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