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Abstract
Small-angle neutron scattering is used in combination with transport measurements to
investigate the current-induced effects on the morphology of the intermediate mixed state (IMS)
domains in the intertype superconductor niobium. We report the robust self-organisation of the
vortex lattice domains to elongated parallel stripes perpendicular to the applied current in a
steady-state. The experimental results for the formation of the superstructure are supported by
theoretical calculations, which highlight important details of the vortex matter evolution. The
investigation demonstrates a mechanism of a spontaneous pattern formation that is closely
related to the universal physics governing the IMS in low-κ superconductors.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Independent of their microscopic nature superconductors
(SCs) are usually categorized via their response to an external
magnetic field. Materials only exhibiting complete flux expul-
sion (Meissner state) are classified as type I, whereas materi-
als, showing the penetration of an array of supercurrent vor-
tices in the mixed state, are referred to as type II [1]. For
SCs with a Ginzburg-Landau parameter close to κ≈ κ0 (κ0 =
1/
√
2), broadly referred to as intertype (IT) or type II/1 SCs,
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this standard categorization breaks down [2]. A broad range
of exotic magnetic flux patterns in the κ-T plane emerges in
vicinity of the Bogomolnyi point (κ0,Tc) due to the infinite
degeneracy of the superconducting condensate, incompatible
with the type I/II dichotomy [3]. The different exotic states
encountered in the IT regime, more specifically in its lower
part below the line of the zero surface energy of the normal-
superconducting interface, cannot be solely explained by a
non-monotonic vortex interaction of the two-body type, but
rather need an interaction potential showing many-body char-
acteristics [4].

The intermediate mixed state (IMS), the microscopic coex-
istence of complete magnetic flux expulsion (Meissner state)
and the penetration of an array of supercurrent vortices (mixed
state), is one of the most prominent examples of IT behavior
in SCs and has been studied extensively in several materials
[5–10]. While sharing common features with the intermediate
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state (IS) of type I SCs, where Meissner regions coexist with
normal state domains, the IMS, in contrast to the IS, can
not be solely explained by the effect of a non-zero demag-
netization factor. It can only exist in the presence of a par-
tially attractive interaction between vortices, which results in
an equilibrium vortex distance a0 [2]. Bitter decoration (ima-
ging of vortices via Fe particle decoration [11]) of pure Nb
samples shows both laminar and tubular structure of the IMS
[2] as also seen in the IS of type I SCs [12]. The beha-
viour of the IMS has been a subject of several theoretical
and experimental studies in recent years [3–10, 13] where the
temperature-field phase diagram in samples of different purity
was mostly explored. Furthermore, a recent theoretical work
[14] studied pinning effects in a two-dimensional cluster glass,
as found in and motivated by systems with non-monotonic
intervortex interactions such as, e.g. the IMS [2]. Despite these
efforts, properties of the IMS in IT SCs are far from being fully
understood.

This work reports results of combined small-angle neut-
ron scattering (SANS) and transport measurements of vortex
clusters in a single-crystal bulk sample of the archetypal IT
SC Nb. We investigate the changes in the IMS vortex config-
urations induced by an applied current. Our results strongly
indicate the emergence of a current-induced superstructure of
parallel vortex stripes. It is well known that a current applied to
a type II SC in the mixed state creates the Lorentz force acting
on the vortices. It is balanced by the drag force resulting in a
constant vortex velocity. In a typical type II SC these forces act
similarly on all vortices, which then move with almost equal
velocities and thus preserve their original Abrikosov lattice
arrangement.

In contrast, our results reveal a totally different scenario
for the vortex matter in the IMS. The initial configuration
of isotropically distributed vortex clusters quickly rearranges
itself by elongating in the direction perpendicular to the cur-
rent flow. It eventually reaches a steady state of parallel vortex
stripes. This state is robust—it is independent of the ini-
tial configuration and is conserved, when the current is rap-
idly switched off. The rearrangement dynamics suggests, that
here—unlike in type II SCs—the Lorentz and drag forces act
differently on different vortices leading to a considerable vor-
tex velocity dispersion at the initial evolution stage.

We argue that the appearance of the stripe superstructure
is a generic phenomenon closely related to the physics of the
IMS and the infinite degeneracy of the Bogomolnyi point.
To demonstrate this we perform numerical simulations using
a time-dependent Ginzburg-Landau (TDGL) model with two
components. It is the simplest approach to capture essential
features of the long-range attractive and short range repulsive
vortex–vortex interaction of a single band SC like Nb [2], and
to qualitatively reproduce characteristics of its stationary IMS
[15]. The numerical simulations reveal details of the cluster
elongation and its relation with the asymmetric current distri-
bution and the vortex velocity dispersion. The experimental
results and theoretical analysis demonstrate, that we are deal-
ing with a remarkable example of the dynamical pattern form-
ation. This places IT SCs in line with a big group of systems
where such self-organized phenomena take place, see, e.g. the

Rayleigh-Bénard convection or Turing reaction-diffusion pat-
terns in chemical reactions and biological systems [16–19].

2. Experimental setup

For our study, we used a combined transport measurement and
SANS setup, consisting of a low temperature cryostat moun-
ted inside an electromagnet, installed on the SANS diffracto-
meter D33 at the Institut Laue-Langevin [20]. A schematic
drawing of the measurement setup can be seen in figure 1(a)
with the orientation of the sample, current I and applied mag-
netic field Bapp. The sample stick was equipped with normal
conducting copper current leads in the upper part and NbSn
superconducting current leads, spot welded to the sample in
the lower part, enabling high currents with minimized ohmic
heating effects in the vicinity of the sample. For experiments
dealing with the effect of current on the IMS, Helium was
allowed to condense in the sample space at T= 4 K, com-
pletely covering the sample in order to efficiently remove any
heat created by vortex flow. Thin normal conducting copper
voltage leads, required to record characteristic I-V curves,
were attached to the sample using silver conducting paint. The
distance between the voltage leads was d≈ 8mm.

We used a thin strip of a single crystal Nb sample
(14 × 1 × 0.1 mm3) in our study. The 100 crystal direc-
tion was measured to be perpendicular to the large sample
face within a few degrees using a neutron Laue diffractometer.
As indicated in figure 1(a), the large face of the sample was
aligned perpendicular to the magnetic field direction, which
results in a large demagnetizing factor. Small cadmium sheets
were used to mask the current and voltage leads. The current
I was applied perpendicular to the magnetic field B along the
sample. The magnetic field was initially aligned parallel to the
direction of the incident neutron beam but both cryostat and
magnetic field could be rocked by the angles ϕ around a hori-
zontal axis (x-axis) and ω around a vertical axis (y-axis) with
both axes perpendicular to the neutron beam.

For the SANS measurements, the collimation was set to
12.8 m with a sample aperture of ≈ 5× 2 mm2. The scattered
neutrons were detected using a position-sensitive 2D detector
placed 12.8 m behind the sample. A medium resolution setup
using a neutron wavelength λ= 10 Å and square source aper-
ture with 30 × 30 mm2 cross section was used for mapping
the IMS phase diagram. For experiments dealing with the
effect of current on the IMS we used a high resolution setup
with neutron wavelength λ= 14 Å and a round source aper-
ture with d= 20 mm diameter. The full width half maximum
wavelength spread was∆λ/λ= 10% for both setups.

The niobium single crystal sample was prepared by spark
erosion. It was cut from a Nb single crystal obtained fromHer-
aeus previously used in other experiments on the IMS [6, 7].
The sample was left untreated after spark erosion cutting, since
there are indications, that additional surface treatments (e.g. by
means of electropolishing) increases the critical current [21].
The demagnetization factor is D= 0.87 (B⊥ to large sample
face). From I-V measurements at room temperature and just
above the transition temperature (TS = 9.5 K) a normal state
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Figure 1. (a) Geometry of the SANS experiment (b) Average internal magnetic field Bint and the colorplot of the IMS intensity. White
crosses mark the applied magnetic field Bapp and temperature T. (c) Integrated intensities derived from the first order Bragg peaks. The
dashed lines are guides to the eye.

resistivity of ρn(9.5) = (3.7 ± 0.2)× 10−10Ωm and residual
resistivity ratio of RRR≈ 390 were deduced.

Numerical calculations were done using the computational
facilities, equipped with NVIDIAGPUs, of the Laboratório de
Supercondutividade e Materiais Avançados (SUPERLAB) do
Departamento de Física da Universidade Federal de Pernam-
buco.

3. Results

3.1. Stationary IMS

We first focus on the stationary IMS without applied current.
Figure 1(a) gives an example of a typical 2D SANS detector
image of the scattering intensity profile, where the direct beam
is excluded (central black circle). The image shows the first
order Bragg peaks stemming from the ordered flux line lat-
tice inside the mixed state domains and the IMS scattering
around the blacked out direct beam resulting from the mag-
netic contrast betweenMeissner state domains andmixed state
domains. We observe 12 Bragg spots resulting from two iso-
sceles domains of Nb (α≈ β ≈ 65◦,γ ≈ 50◦) as reported pre-
viously [9]. Figure 1(b) shows the temperature dependence of
the average internal magnetic field Bint for a few selected val-
ues of the applied field Bapp. The value of Bint is obtained using
the relation

Bint =
ϕ0
√
3q2VL

8π2
, (1)

where ϕ0 is the elementary flux quantum and qVL is the aver-
age |q|-value of the first order Bragg peaks 6. The color density

6 In this equation we used the approximation of a perfect hexagonal lattice,
since we were not able to resolve the exact position of the first order Bragg
peaks for low applied magnetic fields and temperatures inside the IMS regime.
Therefore it was not possible to extract the exact reciprocal unit cell, which has
been shown to change as a function of applied fieldBapp and temperature T [9].
Equation (1) still gives a good approximation of the internal field Bint, since
the observed angles at high applied magnetic fields and low temperatures are
close to 60◦ and we only assume slight deviations for lower applied magnetic
fields and high temperatures.

map in figure 1(b) represents the IMS scattering obtained by
summing the intensity around the direct beam (between the
white circles in figure 2(a)). The data were collected during
warming (W) after field cooling (FC) in an applied magnetic
field Bapp from T= 10 K to T= 4 K and are corrected for a
high temperature background (T= 9.2 K). In the data analysis
we assume that the diamagnetic response after FC is vanish-
ingly small using the fact that other samples obtained from the
same single crystal demonstrate a negligible diamagnetic con-
tribution in FC magnetization measurements [6].

At low temperatures, the internal fieldBint in figure 1(b) fol-
lows the same universal temperature dependence B∗

int(T) for
all values of the applied field Bapp < 800G. This behavior is
known to be a hallmark of the IMS [6]. When T increases
further, Bint(T) departs from B∗

int(T) eventually approaching
the corresponding value of Bapp in a way typical for the con-
ventional mixed state. The crossover between the IMS and the
conventional mixed state is also observed in the colour dens-
ity plot in figure 1(b) representing the summed IMS scattering
intensity around the direct beam, called IMS intensity. Start-
ing at low temperatures, the IMS intensity peaks at an applied
magnetic field of Bapp = 400 G. It decreases for increasing
and decreasing magnetic fields. For a given applied magnetic
field Bapp, the IMS intensity decreases with rising temperat-
ure and vanishes once the internal magnetic field Bint leaves
the common temperature dependence. Figure 1(c) shows the
integrated intensities derived from the first order Bragg peaks.
In agreement with [6], we see a linear increase with fall-
ing temperature (typical of the vortex lattice in the standard
mixed state) and observe a downward bent curve (600G) and
an additional kink (400 G and 200G) most pronounced at
Bapp = 400G, indicating the transition to the IMS for applied
magnetic fields Bapp < 800 G. Inside the IMS the integrated
intensity does not decrease with decreasing temperatures, as
would be expected when approaching the Meissner state with
vanishing internal field. We attribute this to considerable pin-
ning effects, which lead to a macroscopic trapping of the mag-
netic flux. Note however, that these pinning effects do not
hinder a microscopic rearrangement of the vortex lattice, when
entering the IMS regime as seen from the change in internal
magnetic field Bint with T shown in figure 1(b) and reported
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Figure 2. SANS images from applied current measurements in a
magnetic field of Bapp = 500 G at T = 4 K: (a)–(c) FC approach
with incremental current ramp from I= 0 A up to I= 40 A.
(d) Subsequent current quench (QU) to I= 0 A. (e) ZFC approach
without a current and (f) subsequent current ramp to I= 40 A.
The measured flux flow voltage Vff is shown above each panel.

elsewhere [6]. The temperature of the observed kink/the start
of the downward bent part agrees sufficiently well with the
temperature of deviation from B∗

int(T) shown in figure 1(b). In
summary we established the range of the IMS in good agree-
ment with literature [6].

3.2. Current induced changes in the IMS

We will now investigate changes in the IMS induced by the
applied current I. Previous to the neutron experiment we iden-
tified the regime of the vortex movement by measuring the I–
V curves of the sample for different values of Bapp at T= 4K.
The results are shown in figure 6 in appendix A.

Figure 2 shows examples of SANS images obtained with
various applied currents in a magnetic field of Bapp = 500 G at
T = 4 K. Shown is the sum over rocking angles in the interval
ϕ,ω ∈ [−4◦,5◦]. The current is applied in x-direction perpen-
dicular to the magnetic field, as indicated in panels (a) and (b).
The flux flow voltage Vff is shown above the panels. All the
data were corrected for a zero field cooled (ZFC) background
at T= 4 K.

Figures 2(a)–(d) show measurements following a FC pro-
tocol: The sample was cooled in an applied magnetic field
of Bapp = 500G with no applied current from T= 10 K to
T= 4 K. We then performed rocking scans without applied
current (figure 2(a)) and after applying an external current in
incremental steps up to I= 30 A (figure 2(b)) and after fur-
ther increasing to I= 40 A (figure 2(c)). While still being in
an applied magnetic field Bapp = 500 G and cold at T= 4 Kwe
quenched the current to I= 0 A and subsequently performed
another set of rocking scans shown in figure 2(d).

We also employ a different protocol where the sample is
first cooled from T= 10 K to T= 4 K in the zero field (zero-
field cooling—ZFC) and then the field is ramped up to Bapp =
500 G. The SANS image obtained after this protocol for I= 0

is shown in figure 2(e) while figure 2(f) illustrates the changes
after the current is further increased to I= 40 A.

We first consider the Bragg peaks stemming from the vor-
tex lattice in the mixed state domains. For the FC protocol
at I= 0 A (figure 2(a)) and up to I= 20A (not shown) both
the position and intensity of the Bragg peaks from two well
ordered isosceles vortex lattice domains remain unchanged.
When the current passes the critical value I≳ 30A and the
vortices start to move resulting in Vff ̸= 0 the Bragg peaks
get smeared out in the azimuthal direction and decrease in
intensity due to the lattice disorder induced by the motion
(figures 2(b) and (c)). The disorder is retained after the cur-
rent is quenched to I= 0 A (figure 2(d)).

The ZFC—field ramp protocol does not create a well
ordered vortex lattice as is indicated by the smeared Bragg
peaks in figure 2(e). An external current of I= 40 A
(figure 2(f)) restored the equivalent FC case (figure 2(c))
showing an ordered vortex lattice with azimuthally smeared
out Bragg peaks. The Bragg peaks obtained after the FC and
ZFC—field ramp protocol with external current I= 40A are
practically indistinguishable in the 2D SANS image. A further
detailed analysis of the vortex lattice Bragg peaks can be found
in appendices B and C (figures 7 and 8).

Details of the IMS structure are reflected by the scattering
in the vicinity of the direct beam—between the white circles
in figure 2(b). For the FC protocol and I= 0 A (figure 2(a))
up to I= 20A (not shown) the IMS scattering is isotropic.
However, when I⩾ 30A (figures 2(b) and (c)) one observes
a notable anisotropy in the scattering pattern which becomes
elongated in the horizontal qx-direction. The anisotropy is pre-
served after a rapid current quench to I= 0 A (figure 2(d)).
After the ZFC—field ramp protocol the IMS scattering also
demonstrates a slight anisotropy in the horizontal direction
(figure 2(e)). A subsequent current ramp to I= 40 A results
in the same IMS scattering pattern as obtained after the FC
protocol (cf figures 2(c) and (f)) showing a clear anisotropic
IMS scattering around the direct beam.

Further details of the IMS scattering are presented in
figures 3(a)–(c) that plot the radially averaged IMS scattering
intensity as a function of the azimuthal angle ξ as defined in
figure 1(a). The IMS intensity is evaluated between the white
circles shown in the SANS image in figure 2(b)7. The detector
pixel size and the small scattering angles limit the azimuthal
bin size to ∆ξ = 20◦. The corresponding values of Vff and I
are shown above each panel.

At I= 0 (figure 3(a)) up to I= 20A (not shown) the IMS
scattering is isotropic being independent of the azimuthal
angle ξ. At I⩾ 30A the scattering shown in figures 3(b) and
(c) is angle-dependent having its maxima at ξ = π/2 and 3π/2
(in the horizontal qx-direction) and minima at at ξ = 0,π and
2π (in the vertical qy-direction). When the current increases
to I= 40A the difference between the maximal and minimal
values increases (see figure 3(c)).

7 To obtain the angle dependence shown in figures 3(a)–(c) we take the intens-
ity in figures 2(a)–(c), respectively, represent it as function of the radial dis-
tance from the beam center and the azimuthal angle ξ and then integrate the
intensity over the radial distance inside the sector of interest.
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Figure 3. Azimuthal averages ((a)–(c)) and rocking curves ((d)–(f))
of the IMS scattering in current experiments in a magnetic field of
Bapp = 500G at T = 4 K. The solid line is a fit of two Gaussians.
Shown are rocking scans around the x-axis in angle ϕ (curves (1) +
(3)) and the y-axis in angle ω (curves (2) + (4)). The sectors for the
azimuthal averaging and rocking scans are depicted in figures 2(b)
and (a), respectively. The current I and the voltage Vff are shown
above each column.

Finally, figures 3(d) and (e) show the rocking curves of the
IMS scattering inside the sectors 1–4 shown in figure 2(a)8.
The summed scattering intensities corresponding to sectors 1
and 3 are represented by green and red circles, respectively,
and plotted as functions of the rocking angle ϕ around the x-
axis. The summed scattering intensities inside sectors 2 and 4
are represented by orange and blue circles, respectively, and
plotted as functions of the rocking angle ω around the y-axis.
When the current is absent, I= 0 A, the IMS intensity depend-
ence on the rocking angle is qualitatively similar for all four
sectors (figure 3(d)). However, at I= 30 A figure 3(e) reveals a
clear difference between the rocking scans of the vertical sec-
tors (1 and 3) and rocking scans of the horizontal sectors (2 and
4). The intensity in the horizontal sectors increases and devel-
ops a sharper angle dependence, whereas the rocking curves
of the vertical sectors flatten. This effect is getting more pro-
nounced when the current increases (figure 3(f)).

4. Discussion

In the absence of transport current, the characteristics of the
IMS such as depicted in figures 1(b) and (c) are in agreement
with earlier experiments [6]. The hallmark of the IMS, a Bapp

independent, but T dependent internal magnetic field Bint and
the presence of very small angle scattering inside the IMS
regime is clearly observed.

8 To obtain the rocking curves we take the rocking scan intensity (not summed
over angles ϕ and ω as is done in figures 2), and sum the intensity inside the
sectors of interest for each rocking angle ϕ and ω. The magnetic field was
aligned via the standard method of using the Bragg spots of the vortex lattice.
Rocking angles ϕ <−2◦ were not achievable due to the size of the opening
window of the electromagnet.

In our study we see, that the IMS still persists when vor-
tices start moving, as evidenced by I–V-characteristics in dif-
ferent applied magnetic fields (see figure 6 in appendix A) and
the neutron data. Figure 2 clearly demonstrates, that the hall-
marks of the IMS—very small angle scattering and the con-
stant internal field Bint—are preserved in the state of vortex
movement.

Moreover, the applied current gives rise to an elongation of
the IMS domains, that coincides with the onset of flux flow.
The elongation is manifested by the transition from isotropic
to anisotropic IMS scattering parallel to the applied current
in x-direction at the onset of the vortex movement marked by
a finite voltage at Ic ≈ 30A, as seen in figures 2(b) and 3(b).
The anisotropy in the IMS scattering (figures 2(c) and 3(c))
is more pronounced with increasing current up to the maximal
applied current I= 40A. Furthermore, the rocking curve of the
IMS scattering with respect to the y-axis in angle ω becomes
more pronounced, while the rocking curve around the x-axis in
angle ϕ flattens with increasing current (figures 3(d)–(f)). Both
the anisotropy of the IMS scattering and the flattening of the
rocking curve point to an emerging sheet-like superstructure
that is orthogonal to the applied current and, thus, parallel to
the flux lines motion.

At the same time, the current induces an overall increase
of disorder of the vortex lattice. This fact is evident from
the broadening of the vertical and horizontal Bragg spots
of the vortex lattice with increasing current, seen from the
increased azimuthal smearing (figure 2), the radial width
(figure 8 in appendix C) and the rocking curve width (figure 7
in appendix B) of the Bragg peaks, as well as from the corres-
ponding loss of their intensity. The latter cannot be attributed
to an ohmic heating, since a temperature increase would also
lead to a decrease in the total IMS intensity (figure 1(b)), not
seen in figures 3(a)–(c).

A careful study of the rocking curve shape of the vortex
lattice Bragg peaks as presented in appendix B allows for an
estimation of the vortex bending due to the magnetic field
induced by the applied current referred to as magnetic self
field. The applied current splits into a bulk component Ibulk
and a non-dissipative surface component Isurf. Assuming the
bulk current equals the applied current would result in a flat
top shape of the rocking curves of vertical Bragg spots with
a broadening of almost 30◦ due to the additional magnetic
self field with a maximal value at the surface of Bsurf ≈ 250G.
In contrast, our measurements only show an additional broad-
ening of ∆σ ≈ 0.7 ± 0.1◦ at I= 40A (rocking curves of the
vertical Bragg spots with respect to the rocking curves of the
horizontal Bragg spots). Our calculations therefore suggest
a dissipationless critical current of Ic = 36A flowing on the
sample surface and the excess current of Ibulk = 4A penetrat-
ing the bulk showing good agreement with the measured rock-
ing curve. This splitting into bulk current and dissipationless
surface current has also been shown previously [22–24] and
is further strengthened by the shape of the I–V-curve, showing
the absence of a discontinuity at the critical current Ic (figure 6
in appendix A) in agreement with literature [22].

The current-driven IMS achieves a steady state, which rep-
resents a key result of this study. The steady state is robust,
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remaining after the current is abruptly quenched to zero.
This is illustrated in figure 2 that demonstrates no visible
changes in the small-angle scattering pattern. Both, the elong-
ated IMS superstructure and the disorder in the vortex lattice
are retained, when the current is off, with the exception of
the additional broadening associated with the current-induced
field. Furthermore, the transport current suppresses the hys-
teretic behaviour of the IMS pattern with respect to FC-ZFC
protocols. When the current is absent the ZFC protocol does
not produce a well ordered lattice [6]. A slight anisotropy in
the qx-direction observed after applying the ZFC protocol is
explained by flux entering the sample overcoming the Bean
barrier [25] preferentially via the short sample dimension and
therefore forming elongated IMS domains in the vertical y-
direction in figure 1(a). However, a subsequent current ramp
to I= 40A drives the system to the state, which is achieved
after applying the FC protocol for the same current. This fact
is evident in both the Bragg peak and very small-angle IMS
scattering shown in figure 2.

Our experimental results are compared with theoretical
simulations performed using themodel of two linearly coupled
Ginzburg-Landau (GL) equations. It is the simplest model that
allows one to study qualitative features of current-driven IMS
vortex configurations (an interested reader can find justifica-
tions for the choice of the model and details of the calcula-
tions in appendix D). The model was originally derived for
SCs with two separate pockets on the Fermi surface (bands)
[26, 27] and applied to explain peculiar properties of the vor-
tex matter in two-band SCs like MgB2 [28]. However, vortex
configurations given by this model [28, 29] are very similar to
those calculated theoretically [3] and observed experimentally
[2, 30] for low-κ single-band BCS SCs. This is not surprising,
given that both models reveal qualitatively similar inter-vortex
interactions, in particular, attraction at large and repulsion at
small distances [31, 32] and notable contribution of many-
vortex interactions [4, 15, 33], which are both key for the IMS
vortex pattern formation [3]. In this work we exploit this simil-
arity to investigate the evolution of the IMS in the single band
SC Nb.

Our calculations do not account for additional factors such
as crystal anisotropy, pinning, sample geometry, and the stray
field, which do affect details of the vortex arrangement inside
the mixed state. For example, the crystal anisotropy gives rise
to the isosceles vortex structure, evident in the Bragg peaks in
SANS images. Also, the presence of pinning centers reveals
itself in the stability of the IMS when the temperature is
lowered. Nevertheless, these factors are not expected to play
a major role in the current-induced formation of the vortex
superstructure. Indeed, the final IMS state, obtained in the end
of the time evolution, appears independent on the initial con-
figuration, for example, on whether it is reached by following
the ZFC or FC protocols (see figure 2). Our theoretical sim-
ulations also demonstrate that the appearance of such super-
structures is described qualitatively well without considering
these additional factors.

When the current in the sample exceeds the critical value
I> Ic, vortices start moving in the perpendicular direction

Figure 4. Numerical simulations of the IMS time evolution (the
spatial distribution of the magnetic field is given). Panel (a)
represents the initial configuration of the vortex clusters, panels
(b)–(f) give snapshots at later times. The flowing current I and the
vortex motion with velocity vL are shown by arrows in panel (f).
Details of the model and its microscopic parameters are described in
appendix D.

to the current flow due to the Lorentz force, and the IMS
configuration changes. Figure 4 shows snapshots of the time
evolution of the initial IMS with random vortex clusters in
figure 4(a). While moving, the clusters elongate in the direc-
tion parallel to their movement and merge. Finally, the time
evolution creates a superstructure of vortex stripes elongated
perpendicularly to the average current. Results of the simula-
tions are fully consistent with the experimental observations.
The type of the vortex structure inside the clusters depends on
a point in the IT phase diagram that corresponds to the super-
conducting material [3]. When the material is close to type
II (κ≳ κ0) vortices form a lattice, while in materials close to
type I (κ≲ κ0) the lattice melts becoming a liquid. However,
for any initial IMS configuration, the current-driven evolution
eventually yields qualitatively similar arrangements of vortex
stripes.

The elongation of the vortex structures and subsequent
formation of the stripe superstructure can also be traced in
the Fourier transform (FT) of the spatial field profile, which
corresponds directly to the measured intensity in a scattering
experiment. The FT calculated from the initial field configur-
ation in figure 4(a), obtained before the current is applied, is
shown in figure 5(a). Correspondingly, figure 5(b) shows the
results of the FT for the stripe configuration in figure 4(f). One
sees that the initially almost isotropic FT profile changes to the
visibly elongated structure. This fully agrees with the SANS
images in figure 2. The absence of vortex lattice Bragg peaks
in the FT is explained by the simplified numerical simulation
neglecting the crystal anisotropy.

It is worth noting that several recent studies [34, 35] on type
II superconducting films also demonstrated spontaneously
emerging vortex configurations, elongated in the direction
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Figure 5. The Fourier transform of the numerically obtained field
distribution Panel (a) at the start of the current-induced evolution
shown in figure 4(a), and Panel (b) when the stripes are formed as
shown in figure 4(f). Appearance of stripes is reflected in the
elongated central (small angle) part of the Fourier transform.

perpendicular to the current flow, when the applied cur-
rent approached the pair-breaking limit. Those ‘vortex rivers’
appear similar to quasi-1D vortex chains and enable an
ultra-fast vortex motion inside them. In contrast, the stripes
observed in our study are much wider and the rearrangement
takes place at much lower currents only slightly exceeding the
critical value of vortex movement.

The rearrangement process into the elongated IMS super-
structure is a result of a combined action of three main factors:
the current-induced Lorentz force, the drag force and the inter-
vortex interaction potential. Their action on the IMS in IT SCs
demonstrates peculiar features, that distinguish these materi-
als from conventional type II SCs. In IT materials, the vortex
core size is comparable with the inter-vortex distances result-
ing in spatially non-monotonic vortex interactions with sizable
many-vortex contributions [4, 15]. As a result, vortices neces-
sarily clusterize and can no longer be viewed as isolated ‘ele-
mentary particles’ of the mixed state [3]. Consequently, the
IMS is characterized more by the collective vortex behavior
than by the properties of an individual vortex. The total action
of the applied current thus depends on a configuration of vor-
tex clusters. In principle, this can be seen already in type II
SCs where the current modifies the vortex–vortex interactions
such that it starts to depend on the vortex orientation relative to
the current flow [36]. The proximity to the degenerate Bogo-
molnyi point enhances this geometry dependence. The cal-
culations show that the applied current flows primarily along
boundaries between the mixed and Meissner state resulting in
the Lorentz force that pulls that boundary in the normal direc-
tion towards the Meissner phase (see figure 9 in appendix E).
The asymmetry of the current flow creates a non-zero cumu-
lative force which depends on the size and shape of a vortex
structure. This results in the dispersion of the vortex velocit-
ies, which in turn distorts the structure shape. Numerical cal-
culations demonstrate that vortex structures, that are large and
elongated in the motion direction, move faster (see appendix E
for details of the time evolution of vortex clusters of differ-
ent shape and size). It is intuitively explained by the larger
current density and thus larger Lorentz force at the bound-
ary of a larger cluster. Combined with the drag force and the
non-monotonic vortex interaction, that keeps the inter-vortex
distance, this configuration-dependent Lorentz force further

elongates vortex structures in the direction perpendicular to the
applied current eventually creating a superstructure of stripes
as shown in figure 4.

We finally discuss the limitations of our theoretical
approach before we highlight future perspectives of trans-
port phenomena in the IMS to model percolation and non-
trivial flow phenomena in two domain systems. Our model
of two coupled TDGL equations does not take into account
many factors such as pinning, crystal anisotropy, and phonon-
induced relaxations. It also uses a simplified model that
assumes that the average current is injected through the sys-
tem and then redistributed by the vortex configuration. In real
samples the current in the inner part can only flow in regions
with non-vanishing curl of B according to Ampere’s law.
Transport current is therefore constrained to the mixed state,
the surface and the interfaces between the Meissner and the
mixed state domains. In turn, current cannot exist in theMeiss-
ner regions where the magnetic field is zero. In order to pass
a current through the bulk of our sample, we therefore need
a connected mixed state bridging the contacts. For our experi-
ment, the volume fraction of the mixed state is estimated using
fMS = VMS/V= Bapp/Bint with the total sample volume V and
the mixed state volume VMS. This estimation holds since we
expect a negligible diamagnetic behaviour in our sample [6]
and therefore the applied magnetic field is equal to the internal
magnetic field averaged over the whole sample volume. In our
case this estimate yields fMS ≈ 70% at the field Bapp = 500G.
This is above the percolation threshold of ρc = 44% in 2D sys-
tems [37]. Therefore we can safely assume the connectivity of
the mixed state domains of our sample takes place at the onset
of the flux flow, where we made use of the quasi two dimen-
sional character of the vortex lattice9. This renders our sim-
plified theoretical model as a valid description of our experi-
mental findings.

We note, however, that at lower magnetic fields and the
associated lower volume filling of the IMS below the per-
colation threshold, one expects a much more complex situ-
ation. When the connectivity is broken, one needs to employ a
fully inhomogeneous theoretical description for a finite sample
that takes into account the influence of the stray fields out-
side the sample to capture the essential physics of the sys-
tem. In this case two orthogonal flows restricted to a single
phase of a two phase system might lead to interesting order-
ing phenomena. Further complications arise due to the influ-
ence of the surfaces of the sample, where (a) the vortices
are nucleated and destroyed, (b) pinning is significantly dif-
ferent as compared to the bulk and (c) the influence of the
dominant surface current is unclear. Besides the unknown
balance of surface versus bulk pinning, it is also unclear
whether the IMS structure is nucleated at the surface of the
sample or forms as a steady state deep inside the bulk of the
material.

9 At the same time this means that the Meissner state domains are not percol-
ating as the Meissner state volume fraction is given as 1− fMS = 30% (again
assuming zero magnetization).
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5. Conclusion

This work studies the evolution of the IMS domains in the
IT SC Nb under the influence of an external transport cur-
rent using a combined SANS and transport measurement tech-
nique.

Our main result is an observation of a transition from
isotropic to anisotropic IMS scattering, indicating, that the
IMS rearranges itself into a stripe superstructure in the vortex
movement regime. The stripe pattern is aligned perpendicu-
lar to the current direction along the motion of the vortices.
A close examination of the rocking scans showed a splitting
of the current into bulk and surface component with the lat-
ter being dominant. Most importantly, the absence of the hys-
teretic behaviour proves that the elongated superstructure is
a steady state of the moving IMS. Numerical simulations of
the time evolution of IMS vortex configurations using a model
of two coupled Ginzburg-Landau (GL) equations qualitatively
reproduced our experimental results and revealed details of
the cluster elongation. Our findings highlight the importance
of the IMS as a model system for universal domain phys-
ics and demonstrate, that we are dealing with a remarkable
example of a self-organized pattern formation phenomenon.
The current-induced movement of vortices in the IMS might
act as a model system for the study of percolation and non-
trivial (orthogonal) flow and self-ordering phenomena in two
domain systems.
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Appendix A. Transport measurement

We used a dedicated combined transport measurement and
SANS setup presented in section 2 of the main text, which
allowed us to study the I–V-characteristics of our sample
prior to the experiment and also monitor the voltage response
of our sample to an external current during the SANS
experiment. During pre-characterization we measured I–V-
curves at 20 different applied fields in the range of Bapp ∈
[500 G,1720 G] at T= 4K. In contrast to the neutron exper-
iment, we did not follow a FC measurement protocol for the
pre-characterization measurements, since changing magnetic
field Bapp implies heating up the sample above the transition
temperature and therefore boiling away the condensed He in
the cryostat. The data points of the I–V-curves of the pre-
characterization were recorded on an average frequency of
≈0.1 Hz.

During the neutron experiment and the measurement of the
I–V-curve the sample was FC. The I–V-data points during the
neutron experiment represent an average of the voltage recor-
ded over the whole duration of a rocking scan, which leads to
an acquisition time of ≈2.5 h per point.

Figure 6 summarizes the I–V-characteristic of our sample
at T= 4 K under liquid He at different applied magnetic fields
Bapp. Figure 6(a) shows examples of I–V-curves at T= 4 K
for a few selected values of the applied field Bapp collected
prior to the neutron experiment. As expected from literature
[40], we see a decrease in the critical de-pinning current for
vortex movement with increasing applied magnetic field Bapp.
Furthermore the slope of the I–V-curve in the linear regime
related to the flux flow resistanceRff is increasingwith increas-
ing applied magnetic field10.

For a normal type-II SC, exhibiting an Abrikosov lattice
covering the whole sample for applied fields Bapp > Bc1, the
flux flow resistance has been shown to be proportional to the
applied field Bapp according to (A1) derived in the Bardeen-
Stephen model with the upper critical magnetic field Bc2 and
the normal state resistance Rn [42].

Rff ∝ Rn
Bapp

Bc2
. (A1)

This should still hold for an IT SC in the pure mixed
state. Inside the IMS regime, the sample splits into domains
of mixed state and Meissner state. Assuming a homogen-
eous current distribution constraint to mixed state domains
of the sample leads to a local decrease in the sample cross
section and therefore an increased local resistance by a factor
of Bint/Bapp = f−1

MS. The measured voltage is an average over

10 At this point we note that especially for low fields, the voltage response
shows an extended regime in vicinity of the de-pinning current, where the
voltage response is not ohmic, but rather shows a curved shape consistent with
plastic de-pinning [41].
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Figure 6. (a) Transport measurements prior to the neutron
experiment at T = 4 K as a function of different applied magnetic
fields Bapp. (b) Comparing the I–V-curve measured prior to the
experiment with the in-situ measurement in a magnetic field of
Bapp = 500 G at T = 4 K. The insets show the corresponding 2D
detector image. The dashed lines are guides to the eye.

the whole sample and since only the mixed state contributes to
the voltage build-up, we get an additional factor of Bapp/Bint =
fMS, which cancels the factor resulting from the local cross
section decrease. This however only holds, if we have a sample
with zero magnetization.

Figure 6(b) shows the I–V-curve measured prior to the
neutron experiment (blue points) and the I–V-curve derived
from the voltage measurement during the neutron experiment
(orange points), both in an applied magnetic field of Bapp =
500 G. The 2D detector images corresponding to the applied
current are shown in the insets. The dashed line is a guide
to the eye. When comparing the two I–V-curves they agree
well within errors. The critical de-pinning current for vortex
movement is slightly smaller during the neutron experiment
(Icexp ≈ 30 A vs Icpre ≈ 35 A). The data points match well for
I > 35A. The slight deviations can be explained by the dif-
ferent time scales on which the I–V-curves were recorded, as
mentioned above.

Appendix B. Flux line bending

We see from Ampere’s law (B1) that a transport current with a
non-vanishing bulk current Ibulk leads to curved flux lines due
to its self field Bself, whereas a pure surface current Isurf, retains

the alignment parallel to the external magnetic field Bapp as
schematically depicted in figures 7(a) and (b).

∇×B= µ0J. (B1)

The curvature of the flux lines can be extracted from the
width of rocking curves of the flux line lattice Bragg peaks
as previously reported [23, 43]. The shape of the flux lines
is affected by the self field resulting from the current distri-
bution of a superconducting current-carrying wire. There are
arguments for both, a constant r independent current distri-
bution J(r) = const [23] and a square-root dependent current
distribution J(r)∝

√
1/r [44], where r is the distance from the

sample’s center. Here we limit the discussion to an assumed
homogeneous current distribution over the cross section of the
Nb strip resulting in a self field, that linearly decreases when
approaching the center of the sample. The resulting maximum
tilt angles of the flux lines are given by θ =±Bself/Bapp with
the maximum value of the magnetic self-field Bself on the sur-
face of a strip with cross section w× t with w> t and current
I, approximated by

Bself =
µ0I
2w

. (B2)

The resulting broadening of the rocking curve is given by

FWHM(ϕ) = ∆ϕ= 2 · µ0I
2wBapp

. (B3)

Due to geometry, the flux lines are only bent in the y-direction,
whichmeans only the rocking curves inϕ around the x-axis are
affected by the magnetic self-field broadening.

Figures 7(c)–(f) give a detailed look on the rocking scans
of the first order vortex lattice Bragg peaks in horizontal and
vertical direction for different combinations of bulk and sur-
face current. The sectors 1–4 used for the rocking scans are
marked in the inset of figure 7(d).

Figures 7(c) and (d) compare the rocking curves of the
vertical Bragg peaks (curves (1) and (3)) in rocking angle ϕ
around the x-axis with the rocking curves of the horizontal
Bragg peaks (curves (2) and (4)) in rocking angle ω around
the y-axis for different applied currents I. Solid lines are fits to
the data. For zero applied currents the rocking curves are fit-
ted using a sum of two Gaussians, which captures the double
peak-structure. In order to limit the number of free paramet-
ers, we made use of the symmetry of the experiment and con-
strained the relative centers, the intensity and the width of two
corresponding rocking curves to be equal. To be more specific,
the widths, centers and intensities of the peaks in curve (1)
+ (3) and (2) + (4) are constrained, respectively. The integ-
rated intensity of an individual peak is given as the product
of its weight and the total integrated intensity I0 of the rock-
ing curve. When the current increases, the individual peaks of
the rocking curves are broadened becoming indistinguishable.
Therefore, the rocking curves for I= 40A are fitted using a
single Gaussian with an individual set of parameters for each
rocking curve. The essential fit parameters of the fits are sum-
marized in table 1.
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Figure 7. (a) Scheme of a straight flux line due to the absence of a bulk current. (b) Scheme of a bent flux line caused by the self-field
contribution of a non-vanishing bulk current. Panel (c) shows rocking curves and fits (solid lines) of the first order Bragg peaks around the
x-axis in angle ϕ (curves (1) and (3)) and around the y-axis in angle ω (curves (2) and (4)) with no applied current while panel (d) depicts
the corresponding rocking curves with an applied current of I= 40A. The inset shows the sectors used for the rocking curves in panels
(c) and (d). (e) Simulated rocking curves (dotted lines) for different combinations of bulk and surface current. The corresponding angular
distribution is shown in the same color code at the bottom of the plot.

Table 1. Total integrated intensity I0, the weight of the principal peak, and Gaussian widths σi of the rocking curve peaks. For zero applied
current a sum of two Gaussians was fitted, while for I= 40A a single Gaussian was fitted. σ1 describes the width of the higher intensity
peak in the double peak structure.

Current
(A) Curve

I0
(arb. unit)

Weight
(%)

σ1

(◦)
σ2

(◦)

Rocking scans around the y-axis (rocking angle ω)

0 (1)+(3) 20.3± 0.4 52 ± 7 0.94 ± 0.09 0.64 ± 0.04
40 (1) 14.3 ± 1.3 100 2.61 ± 0.31 —

(3) 13.3 ± 6.0 100 2.50 ± 0.55 —

Rocking scans around the x-axis (rocking angle ϕ)

0 (2)+(4) 9.8± 0.6 82 ± 14 1.14 ± 0.13 0.50 ± 0.12
40 (2) 12.9 ± 2.0 100 1.69 ± 0.15 —

(4) 12.8 ± 1.0 100 1.59 ± 0.09 —

We first describe changes in rocking curves of horizontal
Bragg spots (curves (2) and (4)) after a current of I= 40A is
applied with respect to zero current. The rocking curves show
an increase in the integrated intensity I0 by a factor of≈ 1.3 ±
0.1. We observe a slight increase in the rocking width (∆σ ≈
(0.5 ± 0.1)◦). We see a shift of the respective peak centers x0
in negative direction (∆x0 ≈−(0.6 ± 0.1)◦).

The rocking curves of vertical Bragg peaks (curves (1) and
(3)) show a decrease in integrated intensity I0 by a factor of≈
0.7± 0.1with respect to zero current. The rocking curve width
σ increases (∆σ ≈ (1.6 ± 0.1)◦). In contrast to the rocking
curves of the horizontal Bragg peaks, we observe a shift of x0
in positive direction (∆x0 ≈ (0.7 ± 0.3)◦).

Figure 7(e) shows simulated rocking curves (dotted lines)
for different combinations of bulk and surface current and the

rocking scan of Bragg spot (1) with applied current of I=
40A. The solid lines are the fits. All curves are scaled such that
their integral is equivalent to the integral of the 40A fit. The
rocking curves were calculated by approximating the mag-
netic self field according to (B2) and convolving the resulting
rectangular-shaped angular distribution with the fitted Gaus-
sian of the 40A rocking curve of horizontal Bragg spot (2)11.
The corresponding angular distribution is shown in the same
color code at the bottom of the plot. For low bulk currents,
the shape of the calculated rocking curve is dominated by the

11 Using the width of the horizontal Bragg peak, which we assume is inde-
pendent of magnetic self field broadening, includes the disorder due to the
vortex movement.
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Figure 8. Average radial width of all first order Bragg peaks as a
function of current I in a magnetic field of B= 500 G at T = 4 K.
The inset shows the radial average of an exemplary single Bragg
peak, here in horizontal direction, for I= 0A and I= 40A. The
resolution limit of the instrument is colored in grey.

Gaussian fit. For high bulk currents the shape is dominated
by the rectangular angular distribution and we see the flat top
shape as expected from a rocking curve corresponding to a
continuously bent flux line.

When comparing the calculated rocking curves with the
measured rocking curve in ϕ of Bragg peak (1) at I= 40 A,
the experimental curve is best approximated by the simulated
curve with a bulk current contribution of Ibulk = 4 A, which
results in a surface current of Isurf = 36 A.

Appendix C. Radial width of Bragg peaks

We can generate radial averages in |q| to extract the radial
width σq of our Bragg peaks. The radial width σq is inversely
related to the radial correlation length and is therefore a meas-
ure of the size of the well ordered mixed state domains.
Figure 8 shows the average radial width of all first order Bragg
peaks from SANS measurements FC in a magnetic field of
Bapp = 500 G at T= 4 K under liquid He as a function of
current I. The inset shows the radial average of an exem-
plary Bragg peak, here in horizontal direction, for I= 0 A and
I= 40 A. The resolution limit of the instrument is colored
in grey. The radial width of each pair of Bragg spots at a
given current I was fitted individually. Within errors, there
was no difference between the radial width of horizontal and
vertical Bragg spots. Therefore the average radial width of
all first order Bragg peaks is shown. We see a slight increase
of the average radial width with increasing current starting at
I= 30 A. This relates to a decrease in radial correlation length
and therefore to a shrinking of the well ordered mixed state
domains, for both horizontal and vertical Bragg spots. From
the radial average of the horizontal Bragg peaks shown in the
inset we can additionally clearly see the increasing intensity
in horizontal direction at low q values for increasing current
as also seen in the azimuthal averaging of the IMS scattering
and the corresponding rocking scans (see figure 3 in the main
text).

Appendix D. Theoretical model

The study of the IMS in a low-κ IT SC requires an approach
beyond the GL theory. At the same time, solving a full set of
the microscopic BCS equations with irregular IMS vortex con-
figurations is prohibitively expensive computationally. Sta-
tionary IMS configurations have been recently obtained using
the extended GL (EGL) theory [3]. However, the correspond-
ing time-dependent EGL formalism for the non-stationary
IMS is not yet available.

This computational problem can be circumvented using a
relatively simple model of two GL equations for the com-
ponentsΨν(r) (ν = 1,2) coupled by the linear Josephson-like
terms. The free energy functional for this model reads as

f=
∑
ν=1,2

( 1
2mν

∣∣DΨν

∣∣2 +αν

∣∣Ψν

∣∣2 + βν
2
|Ψν |4

)
−Γ

{
Ψ∗

1Ψ2 +Ψ1 Ψ
∗
2

}
+

B2

8π
, (D1)

where D=−iℏ∇− 2eA/c, and the coefficients αν , βν , mν

and the coupling constant Γ are to be chosen. This model
was originally derived for a two-band SC with the pairing
in two distinct pockets of the Fermi surface (bands) [26, 27]
like MgB2. It was employed to investigate peculiar properties
of the vortex matter attributed to the existence of two super-
conducting gaps—the so-called ‘type 1.5’ superconductivity
[28].

However, qualitative characteristics of the vortex matter
obtained using this two-component model [28–30] close to the
critical temperature turn out very similar to those calculated
theoretically [3] and observed experimentally [2] for conven-
tional single-band BCS SCs in the IT regime. In particular, the
two-component model reveals the non-monotonic inter-vortex
interaction, attractive at large and repulsive at small distances
[15, 31], which is a defining feature of the IT (type II/1) super-
conductivity in single-band materials [32, 45–48]. Similarly,
both models, with single [4, 49] and two [15, 33] components,
demonstrate a notably increased role of the many-vortex inter-
actions that are key to stabilize large vortex clusters [3]. Fur-
thermore, both single- [32, 45, 47] and two-band [15] models
have topologically equivalent phase diagrams of vortex con-
figurations.

This similarity is natural in the light of a long-known
fact [27] that solutions for both components Ψ1,2 of the
two-component model coincide with the standard single-
component GL theory in the limit of T→ Tc (see also discus-
sions [50, 51]). The similarity between the models is closely
related to the very origin of the IT superconductivity—the self-
duality and infinite degeneracy of the BCS theory at T→ Tc
and κ→ κ0 (the Bogomolnyi point). Lifting the degeneracy
makes this point unfold into a finite IT domain in the phase
diagram [32]. A qualitative picture of the IT superconductiv-
ity does not depend on details of the mechanism of the degen-
eracy removal, in particular, on whether this occurs due to
the beyond-GL-theory contributions or because the GL the-
ory acquires the ‘weak’ auxiliary component. In this work we
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exploit this qualitative similarity of the single- and two-band
models and investigate a non-stationary current-driven IMS in
single-band superconducting Nb using the approach based on
the model in (D1) augmented with the time dependence.

The equations of the two-component model are obtained
from the extremum condition for the energy functional (D1) to
which the time derivatives are added to account for the dynam-
ics. It is convenient to write these equations using a system of
units defined by the zero-temperature coherence length, uni-
form solution for the gap and the critical field, calculated for
one of the equations with zero Josephson coupling [15]. This
yields

ηDtψ1 = D2 ψ1 − (χ1 − |ψ1|2)ψ1 − γψ2, (D2a)

ηDtψ2 =
1
α
D2 ψ2 − (χ2 − |ψ2|2)ψ2 −

β2
β1
γψ1, (D2b)

κ21∇×∇×A=
1
κ21

ℜ
[
ψ1Dψ∗

1

]
+
α

κ22
ℜ
[
ψ2Dψ∗

2

]
, (D2c)

where D=−i∇−A and Dt = ∂t− iϕ are the scaled gauge-
invariant derivatives with A and ϕ being the vector and scalar
potentials, respectively, γ denotes the (scaled) interband coup-
ling constant, κ1,2 are the GL parameters for the components
Ψ1,2, calculated for each of the component (D2a) and (D2b)
separately at Γ = 0, and α= ξ22/ξ

2
1 where ξ1,2 are the GL

coherence lengths calculated separately for both components.
The GL parameters are related as κ2 = ακ1

√
β1/β2. Notice,

that the GL parameter κ for the entire system (at T→ Tc)
differs from both κ1 and κ2, its expression can be found in
[50]. Parameters χν = τ − Sν with τ = 1−T/Tc define the
temperature dependence. Here constants Sν are determined by
the intraband coupling. They satisfy the condition S1 S2 α2 =
γ2 β1/β2 which ensures that the superconducting order para-
meter disappears at τ→ 0, so that Tc is the superconductivity
transition temperature (one can find a detailed derivation of all
parameters for a two-band model in [15]). Finally, η is related
to the system losses and determines the time scale. The influ-
ence of the normal current on the evolution of the IMS config-
urations is neglected.

In the calculations we take S1 = 0.043, S2 = 0.188,
β1/β2 = 0.92, κ1 = 1.5. We also assume α2 = 0.65 and T=
0.74Tc which ensures that the system is in the IT domain, very
close to the line of zero surface tension of the N-S domain
wall, where the IT superconductivity is expected. These values
are taken from the earlier work, where the equivalence of the
two- and one-component models was established [15]. How-
ever, qualitative features of the IMS dynamics remain qualit-
atively similar in a wide range of parameters as long as the
system is in the IT regime.

We consider a geometry where vortices are directed along
the z axis and the corresponding magnetic field is then B=
(0,0,B(x,y)). We also assume that in the x-direction the
sample has the finite width a and that the current flows between
the sample surfaces x= 0,a. The length in the y-direction
is taken much larger, L≫ a. A complete description of the
current-induced vortex evolution requires solving (D2) for a

realistic finite-size sample together with the equation for the
charge density distribution in the sample as well as in the con-
tacts. In this work we follow a simplified approach where the
current is ‘injected’ into the SC by applying a difference of
the phase/field at the sample boundaries. Notice, that deep
inside a sample the current is absent in the Meissner phase
and therefore isolated vortex clusters do not move. However,
a current flowing at the surface interacts with vortices creat-
ing the Lorentz force (figure 7(b)). We model this situation by
injecting a small current by imposing the external linear poten-
tial ϕ(x,y) = gx which creates a phase difference between the
boundaries x= 0 and x= a, where g controls the current value.
This model neglects the current decay inside the sample and
thus does not describe the vortex bending, discussed in the
main text. It is nevertheless sufficient to capture general fea-
tures of the evolution of the IMS superstructures.

Equation (D2) are solved with the SC-metal boundary con-
ditionsD⊥ψj =−iψ/b applied at x= 0 and x= a. A particular
value of the real parameter b is not important, it is set to b= 20
in the calculations12. In the y-direction we assume the peri-
odic boundary conditions. We note, that details of the model
geometry and the boundary conditions have only little influ-
ence on the dynamics of the vortex matter far from the sample
boundaries. (D2) are solved on a two-dimensional grid with
the spacing ax = ay = 0.25 ξ1, which is sufficient to describe
vortices. In the calculations we first obtain a stationary vortex
configuration by solving (D2) with g= 0. Then, the potential
is switched on (g ̸= 0), and the evolution of the IMS begins.
We allow the vortex matter to evolve until it achieves a quasi-
stationary configuration (stripes).

Appendix E. Details of the vortex cluster evolution

Results of the calculations are shown in figure 4 in the main
text and in figure 9. When an IT SC is placed in the magnetic
field and the current is absent, vortices inside the sample form
the IMS of randomized vortex clusters (figure 4(a)). When the
current flows the IMS changes, eventually forming stripes in
the direction perpendicular to the current. We note that the
evolution is qualitatively similar for all initial IMS configur-
ations. Figures 9(a)–(l) illustrate main stages of the evolution
by showing snapshots of the current density for a relatively
large vortex cluster, where each row of the figure highlights a
specific feature in the elongation process. To demonstrate the
time evolution of the clusters shape, the observation frame in
figures 4(a)–(h) moves downward and keep the cluster in focus
so that one observes the relative motion of different clusters,
all moving downwards (in the last row of figures 4(i)–(l) the
frame does not move).

By looking at figure 9 we first note that the current dis-
tribution in voids of the Meissner phase inside the cluster
forces them to shrink and disappear (cf figures 9(a) and
(b)). The second important feature to note is that the total
current-induced force increases with the boundary length such

12 An example of the effect of changing b on the magnetization of a super-
conducting sample can be found for example in [52].
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Figure 9. The spatial dependence of the current density calculated for a vortex cluster at chosen time instants illustrating the time evolution
(the time direction is shown by an arrow marked t), panel (a) is the initial state and panel (l) is the final. Current I flows horizontally
rightwards, vortices move vertically downwards. In panels (a)–(h) the observation frame shifts downwards to keep the largest cluster in
focus to demonstrate the time evolution of its shape and relative positions of neighboring smaller clusters. Areas of the larger current (red)
correspond to a larger pulling force acting normal to the cluster boundary. Each panel row illustrates a different stage of the evolution, which
produces vertical vortex stripes in the end.

that larger clusters (or separate parts of a cluster) move faster.
This is clearly seen in figures 9(a)–(d) where smaller semi-
isolated structures at the rear move slower than the main
cluster part and break off eventually. The evolution shown in
figures 9(e)–(h) illustrates the same trend from the opposite
perspective: here a large fast-moving cluster catches up with
and then absorbs the smaller ones.

While moving, the cluster gradually elongates in the ver-
tical direction which takes place due to a combined action of
the Lorentz force, that pulls the cluster on its lower boundary,
and the drag force, that slows down vortices at its rear. As a
result, the cluster acquires the shape similar to that of a liquid
droplet falling in the air. Vortices at the rear part of the cluster

are only weakly coupled to its main body and are eventually
broken off and left behind. This process makes the neighbor-
ing clusters merge, forming a stripe in the direction of their
motion (figures 9(i)–(l)).

The evolution of vortex clusters can be intuitively under-
stood as a combination of threemain factors: the Lorentz force,
the drag force and the inter-vortex interaction potential. These
are typical for the superconducting mixed state, however, their
action on the IMS in IT SCs has a number of specific features.
In a conventional type II SC the distance between vortex cores
is much larger then their size so that each vortex can be con-
sidered separately with respect to the acting Lorentz and drag
forces. Therefore the current-induced dynamics is practically
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the same for all vortices (although even for type II SCs the
vortex motion changes the inter-vortex interaction making it
dependent on the vortex mutual position [36]).

In contrast, the size of the vortex core in IT SCs is com-
parable to the inter-vortex distance determined by the min-
imum of the non-monotonic vortex–vortex interaction poten-
tial [32]. In addition, many-vortex interactions play an increas-
ingly important role for large vortex clusters [15]. As a con-
sequence, vortices can no longer be regarded as separate ‘ele-
mentary particles’ of the mixed state. The properties of a vor-
tex cluster therefore do not depend simply on its number of
vortices but also on the cluster configuration—shape and size.
The applied current is strongly distorted by the vortex config-
uration flowing mainly along cluster boundaries (see figure 9).
Thus the Lorentz force acts mainly on the boundary pulling
it in the normal direction. In addition the current profile is
notably asymmetric, so that its density is larger at the down-
facing boundaries and consequently leads to a larger net force
in the downward direction. The drag force acting on a vor-
tex inside a cluster is smaller than that for a separate vor-
tex because the movement inside a cluster involves smaller
changes in the field-condensate profile due to the comparable
size of the vortex core to the intervortex distance. Then the
drag force is largest for the boundary vortices (we note that
our model does not take into account all mechanisms lead-
ing to the vortex drag [53, 54], however, this does not change
qualitative conclusions). The dependence of the Lorentz and
drag forces on the cluster configuration and size gives rise
to the velocity dispersion for different clusters and cluster
parts that is clearly visible in the numerical calculations in
figure 9.

Finally, the unique vortex interactions in an IT material
ensure the preferred mean intervortex distance, but not the
vortex cluster shape. The Lorentz force, that pulls the cluster
boundary downwards, the drag, that acts on vortices in the
opposite direction and a ‘soft’ inter-vortex interaction res-
ult in elongated clusters in the direction of the movement,
i.e. perpendicular to the current. The elongation increases the
bypassing current flow and thus the Lorentz force at the bound-
ary which, in turn, leads to a still faster elongation.

We conclude this discussion by noting that additional
factors such as crystal anisotropy and pinning are not expec-
ted to change the superstructure formation mechanism qual-
itatively. For moving vortices, the static potential due to the
pinning can be represented as a random force that does not
change their averaged movement, which underlies the form-
ation of superstructures. This argument applies on the large
scales, for superstructure sizes much larger then the charac-
teristic lengths associated with the pinning potential. It fails
at short scales which define vortex arrangements inside those
superstructures. A similar argument applies for the crystal
anisotropy which affects only the short–ranged correlations
between the vortex positions and not the shape and orientation
of larger vortex clusters. The model must be amended only if
the short range correlations of the vortex matter are of interest.
Analysis of the role of those additional factors is therefore bey-
ond the scope of this calculation, which aims to explain the
mechanism for emerging superstructures in IT SCs, like Nb.
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