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Abstract
Precise descriptions of forest productivity, biomass, and structure are essential for understanding
ecosystem responses to climatic and anthropogenic changes. However, relations between these
components are complex, in particular for tropical forests.

We developed an approach to simulate carbon dynamics in the Amazon rainforest including
around 410 billion individual trees within 7.8 million km2. We integrated canopy height observations
from space-borne LIDAR in order to quantify spatial variations in forest state and structure reflecting
small-scale to large-scale natural and anthropogenic disturbances.

Under current conditions, we identified the Amazon rainforest as a carbon sink, gaining 0.56 GtC
per year. This carbon sink is driven by an estimated mean gross primary productivity (GPP) of
25.1 tC ha−1 a−1, and a mean woody aboveground net primary productivity (wANPP) of
4.2 tC ha−1 a−1. We found that successional states play an important role for the relations between
productivity and biomass. Forests in early to intermediate successional states are the most productive,
and woody above-ground carbon use efficiencies are non-linear. Simulated values can be compared
to observed carbon fluxes at various spatial resolutions (>40 m). Notably, we found that our GPP
corresponds to the values derived from MODIS. For NPP, spatial differences can be observed due to
the consideration of forest successional states in our approach.

We conclude that forest structure has a substantial impact on productivity and biomass. It is an
essential factor that should be taken into account when estimating current carbon budgets or
analyzing climate change scenarios for the Amazon rainforest.

Introduction

The terrestrial biosphere represents an important, but
also an uncertain component of the global carbon
cycle (Le Quéré et al 2016). In particular, the Ama-
zon rainforest, which accounts for 50% of carbon
stored in tropical forests (Pan et al 2011), takes a
great share of this uncertainty. Estimates on stocks
(Mitchard et al 2014) and fluxes (Johnson et al 2016,

Castanho et al 2016) diverge for several reasons. On
the one hand, the Amazon shows regional differences
in mean wood densities and turnover rates although
the drivers are still not entirely understood (Chave
et al 2006, Malhi et al 2006, 2015). On the other
hand, the Amazon is exposed to disturbances such
as wind blow-downs (Chambers et al 2013, Fisher
et al 2008), droughts (Phillips et al 2009, Gatti et al
2014), and deforestation (van der Werf et al 2009,
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Pütz et al 2014, Poorter et al 2014). Such distur-
bances shift forests into earlier successional states and
influence forests’ species composition and structure
(Feldpausch et al 2011, Dubayah et al 2010), fac-
tors that are often neglected in large-scale estimates of
the carbon budget (Houghton 2005).

Inmany global vegetationmodels, net primary pro-
ductivity is mainly related to the amount of standing
biomass (Johnson et al 2016). Thereby, models miss
out on accounting for the effect of forest structure
on productivity. Recent field studies deliver valuable
analyses on potential drivers for the spatial variation
of biomass and productivity within the Amazon rain-
forest. It was found that forest dynamics and hence
biomass and productivity might be related to season-
ality (Chave et al 2006, Malhi et al 2015, Hofhansl
et al 2014) or soil properties (soil phosphorus and
soil physical properties, Quesada et al 2017). It is,
however, challenging to derive relations from field
studies for large regions as the number and sizes of
sample plots may not always be sufficient to be rep-
resentative of an entire landscape (Marvin et al 2014).
Analyses of the relation between biomass stocks and
climatic conditions in the Amazon are based on ca.
300 one-hectare plots (e.g. Malhi et al 2006), and
analyses of biomass increments on even less (ca. 200,
Brienen et al 2015a, 2015b). More detailed analyses on
carbon partitioning into gross and net primary pro-
duction, for example, are based on an even smaller
number of plots (e.g. 10 plots in Malhi et al 2015).
An additional limitation lies in the fact that field stud-
ies do not account for the full range of successional
states, forest structure, and species composition.

In this study, we present an approach that links a
canopy height map with an Amazon-wide forest gap
model (Rödig et al 2017a). Forest gap models sim-
ulate forest succession at the individual tree level. In
our regionalization approach, precipitation and clay
content of the soil are taken as a proxy for tree mor-
tality which is supported by relations observed in the
field (Quesada et al 2017). This relation was found
to reproduce spatial differences in forest succession
(Rödig et al 2017a). Spatially variable mortality rates
are of particular importance in highly dynamic forests
where small-scale mortality events can have a strong
effect on forest carbon stocks (Espı́rito-Santo et al
2014). In addition, our forest model simulates for-
est structure and species compositions throughout
all successional states. The linkage with the remotely
sensed canopy height map derived from spaceborne
LIDAR data (measurements in 2005, Simard et al
2011) allows for deriving the current state of the for-
est at a specific location, considering disturbance at
different spatial scales under spatially heterogeneous
environmental conditions.

Our approach allows for presenting static maps
of carbon fluxes such as gross primary productivity
(GPP), above-ground woody net primary productiv-
ity (wANPP), and net ecosystem productivity (NEP)

for the Amazon rainforest. Simulation results were
compared to previous mean global maps derived from
MODIS (Zhao and Running 2010), up-scaled eddy
flux measurements FLUXCOM (Jung et al 2017, Tra-
montana et al 2016), forest inventories (Malhi et al
2015, Brienen et al 2015a), and measurements at
two eddy-flux towers (FLUXNET, GF-Guy, BR-Sa3).
In addition, relations between above-ground biomass
(AGB), carbon fluxes, and successional states are
explored at various spatial resolutions (≥40 m).

In this study we address the following questions:
(a) How do successional states of forests influence the
carbon dynamics of the Amazon? (b) How do carbon
fluxes vary spatially across the Amazon region? (c) Is
the spatial variability of GPP and NPP in the Amazon
rainforest mainly driven by standing biomass?

Methods

Study region
The study region covers 7.8 million km2 of forests in
South America that are categorized as rainforest or
moist deciduous rainforest (fewer than 5 dry months in
which precipitation (mm) ≤2 times mean temperature
(◦C) (FAO 2001)), have an annual mean temperature
above 18 ◦C, are located at an elevation below 1000 m
and have an AGB >20 t ha−1 (Rödig et al 2017a).

An Amazon-wide individual-based forest gap model
Our analyses are based on a regionalized Amazon-wide
version (Rödig et al 2017a) of the forest gap model
FORMIND, which has already been applied at various
locations in the tropics (Fischer et al 2016). The forest
gap model is driven by mean photosynthetic photon
flux density (PPFD), mean precipitation (both 0.5◦,
mean over 2003–2012, Weedon et al 2014), and clay
fraction of soil (8 km, Wieder et al 2014). It simulates
forest dynamics at the individual tree level consider-
ing the following main processes at a yearly time step:
tree growth, competition, establishment, and mortal-
ity. Growth of an individual tree depends on its location
within the forest community, where trees compete for
light and space. A gain in tree biomass results from
the difference between photosynthesis and respiration
losses. A seedling can establish if light intensity on the
forest floor is sufficient.

In our model, tree mortality is an important driver
for forest dynamics. Mortality increases when tree
crowns are limited in space (crowding). Falling of large
trees can damage surrounding trees (gap building)
which causes conditional mortality events. In addi-
tion, every tree underlies a basic mortality rate which
is determined stochastically. The characteristic of the
Amazon-wide forest model is that this basic mortal-
ity rate varies spatially depending on temporal mean
precipitation and the fraction of clay content in soil
(Rödig et al 2017a). That means that in the model,
mortality rates vary in space, but not in time. Hence,
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Figure 1. Map of simulated successional states of forests in the Amazon rainforest (for 2005). The simulated basal area fraction of late
successional trees is used to classify the forest into different successional states: early successional state with basal area fractions of late
successional trees <0.25, early-mid successional state with fractions between 0.25 and 0.50, mid-late successional state with fractions
between 0.50 and 0.75, and late successional state with fractions >0.75.

the forest model accounts for regional forest dynamics
under mean climate conditions but does not con-
sider inter-annual climate anomalies. Dead biomass
is transferred to a dead wood carbon pool from which
carbon is constantly transferred to a soil carbon pool
(decomposition) or respired to the atmosphere.

The exchange of carbon between the forest and
the atmosphere (net ecosystem productivity NEP
[tC ha−1 a−1]), which is sometimes also referred to
as net biome productivity (e.g. Jung et al 2011), is
described as follows (Paulick et al2017, Sato et al2007):

NEP =∑

trees

(
GPPtree −𝑅tree

)
+ 𝑡DA𝑆dead + 𝑡SA𝑆slow

+𝑡FA𝑆fast

The sum of gross primary productivity (GPPtree
[tC ha−1 a−1]) minus autotrophic respiration (Rtree
[tC ha−1 a−1]) over all tress equals the woody
above-ground NPP (wANPP) of the forest site
([tC ha−1 a−1]). Autotrophic respiration Rtree is calcu-
lated as the sum of maintenance and growth respiration
which also includes root respiration (figure S1 available
at stacks.iop.org/ERL/13/054013/mmedia). Its annual
rate is calculated in order to fit observed above-ground
biomass growth of a tree. We assume that wANPP is a
constant fraction of NPP (NPP = 2.72wANPP, derived
for mature forests from Anderson-Teixeira et al 2016).
Sdead is the dead wood pool, Sslow the slow decompos-
ing soil carbon pool and Sfast the fast decomposing soil
carbon pool (all [tC ha−1]) with its respiration rates to
the atmosphere (tDA Sdead: to atmosphere, tSA: Sslow to
atmosphere, tFA: Sfast to atmosphere, table S1).

The advantage of simulating each tree individu-
ally is that changes in forest structure are captured
throughout all different successional states with differ-
ent species compositions: from bare ground to climax
stage includingnatural treedeath.Differences in species
composition are represented by three plant functional
types: early successional, mid successional and late
successional tree types that differ mainly in productiv-
ity, light needed at establishment, and mortality rates
(table S1). Forest dynamics differ spatially as spatial
variable mortality rates cause changes in competition

between PFTs. This study focuses on the impact of
forest structure on carbon fluxes under mean climatic
conditions. This means that tree growth is limited to
light and space, but trees grow (in the mean) under
mean annual temperature and water conditions.

Technically, the individual-based model could
simulate tree growth for every tree in the Amazon
rainforest. However, the computational effort can be
reduced for areas with similar environmental condi-
tions at 1 km2 resolution. That means that for every
area with similar environmental conditions (in total
1280 areas with similar mean precipitation, mean
photosynthetic photon flux density (PPFD), and clay
content, Rödig et al 2017a), only one model realization
on 1 km2 (100 ha) is performed representatively (fig-
ure S2). Our simulation represents 7.8 million km2 of
forest with 410 billion individual trees (>10 cm).
Forest succession is simulated over 1000 years from
bare ground to climax state (figure S3) on a high-
performance Unix cluster.

Identifying the state of the Amazon rainforest
The successional state of each forest site within the
Amazon is identified via a canopy height map (Simard
et al 2011) as in Rödig et al (2017a). The canopy
height map is based on space-borne LIDAR measure-
ments taken aboard ICESat in May and June 2005.
Consequently, the identified successional state of the
forests represents the state in 2005. For each location in
the Amazon rainforest (1 km2), we selected the simu-
lated successional states to which the simulated canopy
height equals the height given by the canopy height
map. A successional state of the forest is here described
as thebasal area fractionof late successional trees (figure
1). We could then identify the forest’s current carbon
stock and its associated carbon fluxes (figure S2).

The canopy height map comes with a root
mean square error of 6.1 m at 1◦ resolution (Simard
et al 2011). We performed an error analysis on how
this uncertainty influences simulated GPP, wANPP,
and NEP (see supporting information S1). This also
includes those uncertainties that result from simulated
canopy height and their different identified states. In
addition, we tested how fluxes change when keeping
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Figure 2. Estimated (a) above-ground biomass (AGB), (b) gross primary productivity (GPP), (c) woody aboveground net primary
productivity (wANPP), (d) net ecosystem productivity (NEP) for forests in the Amazon, analyzed for different successional states
(spatial resolution 0.16 ha, 4.8 billion simulated forest plots). The simulated basal area fraction of late successional trees is used to
classify the forest into different successional states as in figure 1. The is shown as a blue horizontal line and outliers (outside whiskers)
as blue dots.

the mortality rate constant throughout the Amazon
(table S3).

Cross-comparison and validation
We compared our simulation results against observed
NPP and GPP values from ten inventory sites in the
lowland Amazon rainforest (Malhi et al 2015), mea-
sured woody above-ground net primary productivity
(wANPP) from 193 sites (Brienen et al 2015a, 2015b),
and GPP and NEP from two eddy covariance sites
(<1 km2 footprint, annual means between 2004–2014,
GF-Guy, Bonal et al 2008, annual means between
2000–2004, BR-Sa3, Goulden et al 2004). Please, note
that the eddy covariance method observes the entire
net ecosystem exchange (NEE) and we assumed here
–NEE = NEP (Chapin et al 2006). Global mean GPP
and NPP estimates from MODIS at 1 km2 resolu-
tion for the years 2000–2010 (Zhao and Running
2010, Running et al 2004) and GPP estimates from
FLUXCOM at 0.5◦ resolution for the years 2000–2010
(mean over all realizations of different machine learn-
ing methods, Jung et al 2017, Tramontana et al 2016)
were remapped (nearest neighbor, CDO 2015) to the
resolution of our map to be compared against our
simulation results.

Results

Dynamics of forests in different successional states
By linking vegetation modelling with canopy height
map information from remote sensing (Simard et al
2011), we were able to derive the successional state
of forests in the Amazon rainforest (figure 1), here

as basal area fraction of late successional trees. AGB
increases throughout the successional state of a for-
est as expected (figure 2, figure S5 for additional
attributes) while GPP peaks at early-mid successional
state and is significantly higher than in mid-late and
late successional state. wANPP decreases with succes-
sional state of the forest. NEP is significantly higher in
early successional than in late successional state. NEP
is around 0 in mid-late to late successional state. All
fluxes in all states show significant differences (except
NEP in mid-late and late successional state).

Spatial distribution of GPP, wANPP and NEP at dif-
ferent spatial scales
Across the Amazon basin, we obtain a mean GPP of
forests of 25.1 tC ha−1 a−1 (figure 3(a), table 1). GPP
values are higher along the Amazon river and in the
southern Amazon rainforest (figure 3(a)). The pattern
of woody aboveground productivity (wANPP, figure
3(b)) resembles the one of GPP with higher values
along the rivers and in the southern Amazon. Mean
wANPP is 4.2 tC ha−1 a−1. In some parts of the Ama-
zon (e.g. the Guiana Shield), GPP values are higher
than the mean while wANPP values are lower than
the mean. NEP varies around zero (figure 3(c)) with a
mean NEP value of 0.7 tC ha−1 a−1. NEP values of up
to 5 tC ha−1 a−1 are reached only along the south-east
and north-west.

The variation of GPP, wANPP, and NEP values
at small scales (0.16 ha resolution) is higher than the
variation at 1 km2 resolution (frequency distributions
in figure 3). For example, the analysis of NEP at
0.16 ha resolution shows that forests can release up to
20 tC ha−1 a−1 to the atmosphere (figure 2(d)), while its
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Table 1. Mean± standard deviation across Amazon rainforest (at 1 km2 resolution) of gross primary productivity (GPP), net primary
productivity (NPP), net ecosystem productivity (NEP), and above-ground biomass (AGB) over 7.8 million km2 for four sub-regions
(according to Feldpausch et al 2011, figure S11) derived from three different approaches: FORMIND, MODIS and FLUXCOM.

FORMIND MODIS FLUXCOM

Mean
GPP± std

tC ha−1 a−1

Mean
NPP± std
tC ha−1 a−1

Mean
NEP± std
tC ha−1 a−1

Mean
AGB± std

t ha−1

Mean
GPP± std

tC ha−1 a−1

Mean
NPP± std
tC ha−1 a−1

Mean
GPP± std

tC ha−1 a−1

Western Amazon 24.7± 3.0 10.2± 2.9 0.7± 1.2 208± 120 27.9± 4.8 13.2± 4.6 29.1± 6.1
Brazilian Shield 25.6± 3.9 12.4± 2.7 1.2± 1.7 123± 112 23.4± 3.9 8.5± 2.3 25.9± 4.8
East Central Amazon 24.7± 2.8 11.7± 2.3 0.5± 1.1 218± 86 25.2± 2.6 8.8± 2.6 30.3± 2.1
Guiana Shield 25.0± 2.2 10.7± 2.7 0.3± 0.8 255± 93 24.8± 2.3 9.9± 1.8 31.1± 3.1
Amazon region 25.1± 3.2 11.3± 2.8 0.7± 1.4 188± 120 25.4± 4.2 10.3± 3.7 28.8± 5.1

maximum release at 1 km2 is 0.23 tC ha−1 a−1. Within
an area of 7.8 Mio km2, the Amazon rainforest takes up
0.56 GtC per year (emissions due to fire and outtake of
wood are not included).

Comparison of simulation results with other flux
estimates
We compare our obtained values at 1 km2 resolu-
tion (figure 4) with estimates derived from MODIS
(1 km2 resolution, Running et al 2004, Zhao and Run-
ning 2010), FLUXCOM (0.5◦ resolution, Jung et al
2017, Tramontana et al 2016), inventory data (ca.
1 ha plots, Brienen et al 2015a, 2015b, Malhi et al
2015), and eddy-covariance measurements (<1 km2

footprint, FLUXNET stations GF-Guy and BR-Sa3).
Gross primary production: The overall frequency

distribution of simulated GPP resembles the one
derived from MODIS with a mean of 25 tC ha−1 a−1

(figure 4(a)). We observe slightly higher GPP values
with MODIS than with our approach for forests in late
succession while it seems to be inverse for forests in
early succession (figure 5). FLUXCOM GPP is higher
with a mean of 28.8 tC ha−1 a−1. GPP derived from
inventory data (24–42 tC ha−1 a−1, Malhi et al 2015)
and from eddy flux measurements at GF-Guy (32–
40 tC ha−1 a−1, Bonal et al 2008) and BR-Sa3 eddy
flux station (29–42 tC ha−1 a−1, Goulden et al 2004)
fall into the upper ranges of our simulated GPP. A
one-to-one comparison shows that eddy flux measure-
ments are in rather good agreement with simulation
results at the nearest location (figure S8).

Net primary production: MODIS NPP shows a
similar pattern as the related GPP distribution and has
a clearly defined peak at 9–10 tC ha−1 a−1 with a mean
of 10 tC ha−1 a−1 (figure 4(b)). NPP simulated with
FORMIND, on the other hand, is broadly distributed
between of 8–16 tC ha−1 a−1. In contrast, if the entire
region was assumed to be in climax state, there is a
single well defined peak in the NPP distribution (figure
S9). NPP values derived from forest inventory range
from 9–16 tC ha−1 a−1 (Malhi et al 2015). Estimated
wANPP from field inventories (Brienen et al 2015b)
range from 1.1–4.7 tC ha−1 a−1, while FORMIND
reaches high wANPP values of up to 6 tC ha−1 a−1 (fig-
ure S10). Note that the field inventories are limited to
measurements (193 sites) mainly taken in old-grown
forests.

Net ecosystem productivity: Simulated NEP val-
ues under mean climate conditions fall into the
range of recordings at the GF-Guy eddy flux
station (1.57 tC ha−1 a−1) and the BR-Sa3 station
(1.65 tC ha−1 a−1).

Relation between analyzed carbon stocks, dynamics
and species compositions
Figure 6 shows the obtained relations between car-
bon fluxes and stocks according to the successional
state of a forest plot. Forests in early successional state
reach AGB values of 100–150 t ha−1. Forests in early-
mid and mid-late successional state reach values up to
300 t ha−1. Forests in late successional state have AGB
values greater than 250 t ha−1.

wANPP and AGB stock show a bell-shaped rela-
tion (figure 6(a)). GPP values and AGB values form
a triangle (figure 6(b)). Forests in early successional
states reach higher GPP values than forests in late suc-
cessional state (with the same AGB). Comparing both
figures (a and b) in late successional states, it is evident
that wANPP decreases with increasing AGB while GPP
increases with AGB.

The relation between GPP and wANPP displays
the woody above-ground carbon use efficiency which
varies for different successional states (figure 6(c)). Low
GPP values are reached for all successional states with
a broad range of wANPP values. NEP is always positive
for early successional forests, but NEP values of late
successional forests show a large variation (figure 6(d)).

Error analysis
GPP values in our map come, on average, with a
standard error of 4.15 tC ha−1 a−1 caused by the uncer-
tainties in the canopy height map (figure S6(b), table
S2). Errors in the GPP map are slightly higher for the
Brazilian Shield (including the ‘Arc of Deforestation’)
than for the other regions. wANPP has a mean standard
error of 0.90 tC ha−1 a−1. Errors in wANPP are high-
est in East Central Amazon and West Amazon. NEP
has an average standard error of 0.65 tC ha−1 a−1 and is
highest for the Brazilian Shield where the error is 23%
higher than the overall mean. All fluxes show lower
uncertainties for the Guiana Shield.

When keeping mortality rates constant through-
out the Amazon, the standard deviations across the
Amazon stay more or less constant (table S3).
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Figure 3. Maps and frequency distributions (normalized) under mean climate conditions of (a) gross primary productivity (GPP),
(b) woody above-ground net primary productivity (wANPP), and (c) net ecosystem productivity (positive values indicate a sink of
atmospheric carbon), estimated by linking simulations of the forest model FORMIND with a canopy height map. Note that our NEP
estimates does not include the carbon emitted due to fire and deforestation (see methods). The maps represent the time when LIDAR
measurements were taken (2005). The maps and the left histograms have a resolution of 1 km2. The right histograms have a resolution
of 0.16 ha. Note that the mean values for both frequencies are the same.

Discussion

In this study, we link individual-based simulations with
remote sensing measurements to assess the Amazon
rainforest’s carbon stocks and fluxes.

Carbon fluxes and stocks at different successional
states
Our analysis shows how the successional states of a
forest (figure 1) influence carbon stocks and fluxes.
Noticeably, wANPP, GPP, and NEP are highest for
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Figure 4. Frequency distributions of FORMIND estimates for (a) gross primary productivity (GPP), (b) net primary productivity
(NPP), and (c) net ecosystem productivity (NEP) for forests in the Amazon at 1 km2 resolution in comparison to: estimates from
MODIS (1 km2 resolution), FLUXCOM (0.5◦ resolution), inventory data (≤1 ha resolution, 10 plots with recorded GPP and NPP,
Malhi et al 2015), and eddy covariance measurements (GF-Guy and BR-Sa3). The ranges of estimated values from field inventories are
marked in grey. Mean eddy-flux values are plotted as grey dots. Note that positive values of NEP define a sink of atmospheric carbon.

Figure 5. Differences of (a) gross primary productivity (GPP) and (b) net primary productivity (NPP). MODIS derived values (mean
values 2000–2010) and the approach presented here (FORMIND).

forests in early to mid-successional states (figures 2(c)
and (d)). Such forests of high productivity can be found
(figure 3), for example, along the ‘Arc of deforestation’
in the south-east (Nogueira et al 2008) where forests
are degraded by human activities.

The successional state of a forest is not only influ-
encedby large-scaledisturbances, but alsoby individual
tree mortality. This means that even undisturbed,

large forests in mature state consist of different succes-
sional states at the small scale (e.g. 400 m2, figure S2)
and can hence show fluctuations in its carbon dynam-
ics. Chambers et al (2013) found, for example, that
biomass of a mature forest is stable over time only
for sample plots greater than 10 ha. For that reason,
derived flux values at small scales show larger variabil-
ity than at coarser resolution (frequency distributions

7
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Figure 6. Relation between simulated carbon fluxes and successional states within the Amazon rainforest at a resolution of 0.16 ha
(4.975 billion plots; Figure S4 for 1 ha resolution). Successional states are represented by the simulated basal area fraction of late
successional trees within each 0.16 ha plot (as in figure 1). (a) Woody above-ground net primary productivity (wANPP) vs. above-
ground biomass (AGB), (b) gross primary productivity (GPP) vs. AGB, (c) wANPP vs. GPP, and (d) net ecosystem productivity (NEP)
vs. AGB. GPP, NEP and wANPP are in tons carbon per hectare per year (tC ha−1 a−1); AGB values are in tons dry mass per hectare
(t ha−1).

at 400 m2 = 0.16 ha vs. 1 km2 resolution in figure 3,
and figure 6 vs. Figure S4). This may be related to
the finding of Espı́rito-Santo et al (2014) that indi-
vidual tree mortality over the entire Amazon cause
greater biomass losses than large-scale disturbances.
Note here that our study includes the consequences
of disturbances (regrowth from earlier successional
state), but does not account for emissions due to fire
or outtake of wood (logging).The relations derived
here between simulated stocks and fluxes (figure 6)
show that the amount of standing biomass (AGB)
is not the only driver for productivity. Our derived
relation between wANPP and AGB (figure 6(a)) is in
agreement with a global field study which reports that
highly productive forests may limit AGB values due to
a dominance of species with low wood density (Keel-
ing and Phillips 2007). Our relation therefore differs
from simulation results of 4 DGVMs for the Ama-
zon region presented in Johnson et al (2016). In their
study, three DGVMs simulate increasing NPP with
increasingAGB. Only one DGVM shows a slight reduc-
tion of NPP at high AGB values. They conclude that
stem mortality rates need to be included in order to

capture the relation between woody productivity and
biomass as observed in the field (Johnson et al 2016).
In our approach, we explicitly simulate stem mortality
which is driven by a spatial variation of precipitation
and clay content. As a consequence, spatial differences
in dynamics and mean wood density are considered
(Rödig et al 2017a). This is particularly important
for the Amazon where carbon stocks and dynamics
are driven by a spatial variation of mortality (Malhi
et al 2015, Galbraith et al 2013, Quesada et al 2017,
Baker et al 2004, Phillips et al 2004).

Limitations of our approach
The approach brings along structural uncertainties
such as the simplified assumption that NPP is a
constant fraction of wANPP, parameter uncertain-
ties, and limitations due to the resolution of input
data, here climatological data and the canopy height
map (Simard et al 2011). The canopy height map
is based on discrete LIDAR shots and provides esti-
mates for canopy height at a resolution of 1 km2.
Missing information between shots is a source for
uncertainties in the map (Simard et al 2011). The
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effect these uncertainties on carbon fluxes is discussed
below.

We here make simplifications regarding the han-
dling of disturbance histories of the forests (i.e. fire
event, logging). Currently, we cannot reconstruct the
type of disturbance event from the canopy height map.
Consequently, a disturbed forest site is based on the
assumption that it either regenerates after deforesta-
tion (simulation from bare ground with initialized
dead wood and soil pools, table S1), or is influ-
enced by natural tree fall and its resulting mortality
(gap-dynamics).

The study presented here focuses on the spatial
variability in carbon dynamics resulting from forest
structural and environmental differences under cur-
rent climatic conditions. Consequently, results capture
all fluxes for only one point in time (i.e. an average over
the period 2003–2012 with structural information of
the canopy height map in 2005, Rödig et al 2017a).
The study design does not yet consider the effects
of inter- or intra-annual variations of temperature
or atmospheric CO2 on forest structure (Sakschewski
et al 2015, Haverd et al 2013). It is anticipated to
integrate such effects (as it has already been tested
for temperate forests in Bohn and Huth 2017 and
Rödig et al., 2017) into future work in order to also
have the possibility effects of droughts.

Comparison with field data and remote sensing mea-
surements
Testing the representativeness of our GPP map relies
on the comparison with other maps derived from
remote sensing and simulation (MODIS, Running
et al 2004, Zhao and Running 2010) and upscaled
eddy flux measurements (FLUXCOM, Jung et al 2017,
Tramontana et al 2016). Direct carbon flux mea-
surements in the Amazon rainforest are rare (10
inventory plots (Malhi et al 2015) and two eddy
flux measurements) and only partly suitable for large-
scale estimates.

GPP: The frequency distribution of the MODIS
GPP (Running et al 2004, Zhao and Running 2010)
resembles our simulated GPP distribution (figure
4(a)) although both maps are derived from differ-
ent remote sensing techniques (NDVI vs. LIDAR)
which lends confidence to our simulations. MODIS
and FLUXCOM show particularly low GPP values for
the Brazilian Shield for which FORMIND produces
higher GPP values than for the rest of the Amazon
(table 1, figure 5). These differences probably arise
from the fact that our approach uses a representation
of forest succession which leads to higher GPP val-
ues in early-mid successional states (figure 2(b)). This
may also be the reason for differences in GPP values
towards the Andes (figure 5, figure S7). In addition,
discrepancies may arise from the fact that our approach
includes spatial variable mortality rates which lead to
differences in forest gap-dynamics across the Amazon.
Our simulations at 1 ha resolution reach GPP values

comparable to field observations (figure S4), whereas
simulated values at 1 km2 are lower.

NPP: Our approach (figure 4(b)) displays more
forests with high NPP values (>12 tC ha−1 a−1) than
the MODIS product. Please note that the NPP pat-
tern of the MODIS product correlates with its GPP
pattern (table 1) whereas our approach indicates for-
est structure as an important additional factor (GPP
vs. NPP, carbon use efficiency is not constant, figure
6(c), figure S5(a)). We identify two potential expla-
nations for such discrepancy. First, the representation
of different PFTs, which allows for simulating forest
succession, leads to higher NPP values (figure 2(c)),
especially in highly disturbed regions like the Brazilian
shield (table 1). The successional state identified with
the canopy height map seems to have more influence
on NPP than internal gap-dynamics due to variable
mortality rates (table S3). Second, the MODIS prod-
uct, which is often used for global estimates (Jung et al
2017, Bloom et al 2016, Zhao and Running 2010), is
limited by the fact that it is derived from Normalized
DifferenceVegetation Index (NDVI) values.TheNDVI
tends to saturate in dense mature forests and, thus, has
limited capability to identify spatial variations, such as
in the Amazon (Hall et al 2011, Myneni et al 2001).
The method presented here uses a canopy height map
(Simard et al 2011) that is derived from LIDAR mea-
surements. Active remote sensing tracers (here LIDAR)
have the advantage that they are highly sensitive
to structural variations (Lefsky et al 2002).

NEP: We here estimate that the Amazon forest
gains, on average, 0.56 Gt of carbon per year and as
such yields a positive NEP. Even when considering a
mean standard error of±0.51 Gt of carbon per year due
to uncertainties in the canopy height map, the Ama-
zon is identified as a sink of atmospheric carbon. As
this value is the potential carbon uptake due to the
successional states of the forests, our estimate compen-
sates approximately the amount of carbon currently
released due to deforestation and land-use change
in South America (Baccini et al 2012). In particu-
lar, forests in earlier successional states contribute to
an uptake of atmospheric carbon (Poorter et al 2014,
figure 2(d)).

Conclusion

In our study, we have shown that the successional
state of forests, and hence forest structure and species
composition, have a strong effect on NPP and NEP.
This effect is reflected in higher NEP and wANPP val-
ues for forests that regrow after deforestation (Poorter
et al 2014), particularly, along the Arc of defor-
estation and higher wANPP values in East-central
Amazon due to internal gap-dynamics. Our results
reveal that NEP across the Amazon is a carbon sink of
0.56± 0.51 Gt C per year driven by high productivity
in regenerating forest areas, approximately offsetting
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estimates of fire and deforestation emissions. We show
that AGB alone does not account for productivity
differences (figure 6) and found that structure and
species compositions are important as well.

Individual-based modelling at the large scale, such
as theAmazonrainforest, is expensive in computational
demand. However, a high-resolution approach allows
for integrating observational data at different spatial
scales and contributes to a better understanding of for-
est dynamics at the large scale. The approach can be
expanded in future work by integrating further remote
sensing data into the analysis. For example, matching
vertical canopy profiles from LIDAR with simulated
profiles (Knapp et al 2018) can provide additional
insights into the actual successional state of forests.
Our analyses highlight the importance of accounting
for forest structure when simulating carbon dynam-
ics. We therefore suggest that forest structure should
also be incorporated in global dynamic vegetation
modelling.
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