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Abstract

The electrification of final energy demand and expansion of renewable generation
units and storage systems lead to an increasing number of controllable and decentral-
ized assets in energy systems. Consumers become prosumers by installing their own
generation units, can transform into active participants with their controllable assets,
and prefer electricity products with specific quality attributes. Consequently, energy
systems become climate-neutral, decentralized, and volatile, while costs to maintain
grid stability and security of supply rise. To cost-effectively ensure security of supply
while expanding renewable energies and electrifying the mobility and heating sec-
tors, it will be essential to integrate and coordinate consumers, prosumers, and their
controllable assets. This results in the need for energy models that reflect both the
coordination of active participants and their interests.

In the first part of this dissertation, I present a library of coordination mechanisms
and a bidding format that allow to model an increasing number of active consumers
and prosumers in local energy markets. The coordination models are examined and
evaluated using a Monte Carlo simulation. Based on the simulation results, an innova-
tive auction-based coordination mechanism is identified that verifiably satisfies con-
sumer preferences, considers their willingness to pay a premium for heterogeneous
energy qualities, and increases local electricity coverage.

Furthermore, I introduce a blockchain implementation of a local energy market
that allows to evaluate the added value of the technology compared to a centralized
setup. Characteristics of the blockchain implementation are evaluated in a compara-
tive performance analysis and a qualitative assessment of application-specific require-
ments for local energy markets. Results of the analyses show that the blockchain tech-
nology does not fulfill essential requirements for local energy markets such as data
privacy and scalability, and therefore cannot empower decentralized participants to
host their own energy trading applications at its current stage of development.

The final part of this dissertation presents a new model that quantifies and prices
market-based flexibility potentials of consumers’ and prosumers’ controllable assets,
thereby transforming them into flexumers. The functional capabilities of the model
are demonstrated in a case study for electric vehicles with field trial mobility data
from California and Germany, various electricity tariffs, and charging strategies. The
case study results reveal that electric vehicles can provide both positive and negative
flexibility. Power and energy quantities depend on the time of day, electricity tariff,
charging strategy, and maximum charging power. Owners of controllable appliances
can be incentivized to pay grid operators to call their flexibility potential.

Researchers, energy experts, and regulators can use the coordination mechanisms
and flexibility model to investigate the market-based integration and coordination of
increasingly distributed participants in a more electrified world and a carbon-neutral
energy system.



Zusammenfassung

Die Elektrifizierung des Endenergiebedarfs und der Ausbau von erneuerbaren
Erzeugungsanlagen und Speichersystemen fiihrt zu einer steigenden Anzahl von steu-
erbaren und dezentralen Anlagen in Energiesystemen. Konsumenten werden durch
die Installation eigener Erzeugungsanlagen zu Prosumenten, konnen mit ihren steuer-
baren Anlagen zu aktiven Teilnehmern werden und besitzen Praferenzen fiir Energie-
produkte mit bestimmten Qualitdtsattributen. Dies trdgt zur Klimaneutralitdt des
Energiesystems bei, erthoht gleichzeitig Dezentralitdat und Volatilitdt. Die Kosten fiir
die Aufrechterhaltung der Netzstabilitdt und Versorgungssicherheit steigen. Um die
Versorgungssicherheit kosteneffizient zu gewéhrleisten und gleichzeitig die erneuer-
baren Energien auszubauen sowie den Mobilitdts- und Warmesektor zu elektrifizie-
ren, miissen die Konsumenten, Prosumenten und ihre steuerbaren Anlagen integriert
und koordiniert werden. Daraus ergibt sich die Notwendigkeit von Modellen, die die
Koordinationsmechanismen zwischen und die Interessen der aktiven Teilnehmer in
Energiesystemen widerspiegeln.

Im ersten Teil dieser Dissertation stelle ich Koordinierungsmechanismen und ein
Gebotsformat vor, die es ermoglichen, eine wachsende Anzahl von aktiven Konsu-
menten und Prosumenten in lokalen Energiemarkten zu modellieren. Die Koordi-
nationsmodelle werden mit Hilfe einer Monte-Carlo-Simulation untersucht und be-
wertet. Basierend auf den Simulationsergebnissen wird ein innovativer auktions-
basierter Koordinationsmechanismus identifiziert, der die Konsumentenpraferenzen
und zusitzlichen Zahlungsbereitschaften fiir heterogene Energiequalitdten bertick-
sichtigt und nachweislich erfiillt sowie den lokalen Deckungsgrad erhoht.

Dariiber hinaus stelle ich eine Blockchain-Implementierung eines lokalen Energie-
marktes vor, die es erlaubt, den Mehrwert der Technologie im Vergleich zu einem
zentralen Aufbau zu bewerten. Die Eigenschaften der Blockchain-Implementierung
werden in einer vergleichenden Leistungsanalyse und einer qualitativen Bewertung
der anwendungsspezifischen Anforderungen an lokale Energiemérkte bewertet. Die
Ergebnisse der Analysen zeigen, dass die Blockchain-Technologie wesentliche An-
forderungen fiir lokale Energiemarkte wie Datenschutz und Skalierbarkeit nicht er-
fiillt und es daher in ihrem derzeitigen Entwicklungsstadium dezentralen Marktteil-
nehmern nicht ermoglicht, eigene Anwendungen zum lokalen Handel von Energie
zu betreiben.

Der letzte Teil dieser Dissertation stellt ein neues Modell vor, das die marktba-
sierten Flexibilitidtspotenziale der steuerbaren Anlagen von Konsumenten und Pro-
sumenten quantifiziert und bepreist, wodurch Konsumenten und Prosumenten zu
Flexumenten werden. Die Funktionsfahigkeit des Modells wird in einer Fallstudie fiir
Elektrofahrzeuge mit Mobilitdtsdaten aus Feldversuchen in Kalifornien und Deutsch-
land, verschiedenen Stromtarifen und Ladestrategien demonstriert. Die Ergebnisse
der Fallstudie zeigen, dass Elektrofahrzeuge sowohl positive als auch negative Flexi-
bilitat anbieten konnen. Leistung und Energie hangen von der Tageszeit, dem Strom-
tarif, der Ladestrategie und der maximalen Ladeleistung ab. Dartiber hinaus kénnen
Besitzer von steuerbaren Geriten dazu veranlasst werden, Netzbetreiber fiir die Inan-
spruchnahme ihres Flexibilitidtspotenzials zu bezahlen.

Forscher, Energieexperten und Regulierungsbehtrden konnen die prasentierten
Koordinierungsmechanismen und das Flexibilitdtsmodell nutzen, um die marktba-
sierte Integration und Koordination von zunehmend dezentralen Teilnehmern in einer
starker elektrifizierten Welt und einem klimaneutralen Energiesystem zu modellieren.

ii



Acknowledgements

Throughout my doctoral candidacy I have received support from various people
to whom I would like to express my gratitude.

I'am grateful for the colleagues with whom I was able to collaborate, share knowl-
edge, and have fruitful and insightful discussions over the past five years. Special
thanks go to Clara Orthofer, Daniel Zinsmeister, and Sebastian Dirk Lumpp who be-
came close friends and whose feedback I learned to appreciate very much and helped
me to enhance my personal and scientific toolsets. I thank Johannes Honold for su-
pervising me as master student and taking me in as his office mate in the first years
of my PhD. I am thankful to Wessam El-Baz, Yasin Incedag, Babu Kumaran Nalini,
and Zhengjie You for working with me on the C/sells project and sharing their views
with me. Additionally, I thank the students I worked with for their support. Another
thank you goes to the RegHEE project partners Sylke Schlenker-Wambach, Ulrich
Sperling, and Josef Lipp for sharing their experiences and continuously supporting
our research.

I thank my supervisor Professor Dr.-Ing. Ulrich Wagner and mentor Dr.-Ing. Pe-
ter Tzscheutschler who have given me the opportunity to do my PhD on decentral-
ized energy systems, the freedom to explore new research fields, guidance on how
to become a tutor and scientist, and support throughout my time at the institute of
Energy Economy and Application Technology. Furthermore, I would like to thank
Prof. Dr.-Ing. Stefan Niessen for his support as co-examiner and the exchanges about
our research projects.

Finally, I thank my wife Sandra for always being there for me and proofreading
first drafts, thank my friends for their final reviews and my family for their support
and constant belief in my ability to succeed.

Michel Zade March 2022

iii



Contents

Abstract
Zusammenfassung
Acknowledgements

Contents

1 Introduction
1.1 Motivation and research questions . . . .. ... ... ... ... .. ...,
1.1.1 Transformation of the energy system . . . . . ... .. .. ... ...
1.1.2  Technological advancements . . ... ... ..............
1.2 Structure . . . . . . . . e e e
1.3 Definitions . . . . . . . . . ... e
1.3.1 Consumer, prosumer, and flexumer . .. ... ............
132 Localenergymarkets. . . .. ... ... ....... .. ... ..
1.3.3 Market-based flexibility . . ... ... ... ... .. .. ... ..

2 Local energy markets for active consumers and prosumers
2.1 Considering energy qualities and preferences . . . . . ... ... ... ...
2.2 Evaluating the added value of blockchains . . . ... ... .........
2.3 Digression: Power demand of Bitcoin and Ethereum . . . . . .. ... ...

3 Flexumers’ market-based flexibility
3.1 Quantifying and pricing flexibility . . . .. ... ..... ... ... ...
3.2 Assessing the potential of electric vehicles . . . . . ... ..... ... ...

4 Conclusion and future research
4.1 Conclusion . . . . . . . e,
4.2 Futureresearch . . . . . . . . . . . . e

A List of publications

=

Preparatory study on the power demand of Bitcoin and Ethereum

C Acronyms

iv

ii
iii

iv

O O Ul U1 = W /)

10
11
27

44

54

78
78
79

81
83
97



Contents v

List of Figures 98
List of Tables 98
Bibliography 99



Chapter 1

Introduction

1.1 Motivation and research questions

In 2022, scientists of the Intergovernmental Panel on Climate Change observed that hu-
man-induced global warming already had caused more frequent and extreme weather
events and led to irreversible impacts, which human and natural systems cannot adapt to
[1]. To limit future impact of climate change on human and planetary health, the energy
system must become carbon-neutral [1].

1.1.1 Transformation of the energy system

Generating Variable Renewable Electricity (VRE) is becoming increasingly cheaper com-
pared to conventional fossil-fueled generation [2]. As a result, since 2015 more than 50 %
of annually installed generation capacity has been renewable energies [2], globally reach-
ing a total capacity of 2.8 TW in 2020 [3]. However, this transformation can only be a start-
ing point to limit global warming to 1.5° Celsius compared to pre-industrial temperature
levels [4]. Current projections outline that approximately 30 TW of renewable generation
capacity is required by 2050 to maintain the 1.5° Celsius limit [2, 5].

In this context, consumers are transforming into prosumers by installing generation
units and storage systems for renewable energies on their premises, temporarily supply-
ing their energy demands, and feeding into and consuming energy from the public grid.
In Germany, the total number of generation units increased from 1.2 million in 2011 to
over 2 million in 2020, leading to an increase in the renewable share of gross electricity
consumption from 20 % to 45 % (see figure 1.1 and [6, 7]).

These increasing numbers of generation units and storage systems and the intermit-
tency of the electricity feed-in make the transportation, trading, and balancing of renew-
able energies significantly more complex compared to conventional fossil fueled power
plants, which offer reliable and steady operation schedules. This complexity combined
with insufficiently expanded power grids causes costly grid congestion management and
ultimately increases consumers’ energy bills (see figure 1.1).

Energy system scenarios for 2050 estimate that the global final energy demand will be
supplied by more than 50 % with electricity [2, 5]. Electricity will be used to charge 1.8
billion Electric Vehicles (EVs) and power 400 million Heat Pumps (HPs) by mid-century
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Figure 1.1: German grid congestion management costs according to [8, 9, 10, 11]. Renewable energy
share of gross electricity consumption from 2000 to 2020 [12]. Projection of VRE share based on coalition
agreement of German government [13].

[2, 14]. EVs and HPs can be used as controllable assets to shift consumption behavior,
participate in Local Energy Markets (LEMs), and offer valuable and cost-efficient grid
services that support a continuous expansion of volatile renewable energies while main-
taining security of supply.

The increasing electrification of the final energy demand changes the role of currently
passive consumers. They will be incentivized to offer their flexibility in carbon-neutral en-
ergy systems, thereby becoming more active participants [15]. In this dissertation, flexi-
bility refers to deviations from controllable assets” operation schedules that will be traded
in a market-based setting (see definition in 1.3.3).

Failing to adequately coordinate these small-scale and controllable assets while pha-
sing-out fossil-fueled power plants and neglecting to sufficiently expand power grids
could cause additional infrastructure costs, power losses, and reduce energy systems’ se-
curity of supply [16, 17]. With this in mind, I formulate the following Research Ques-
tions (RQs).

RQ#1 Whatdo coordination mechanisms look like that allow consumers and prosumers
to be integrated as active participants into the energy system, to trade energy locally, and
to take into account their preferences for energy qualities such as green or local?
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RQ#2 How can consumers and prosumers become flexumers that provide market-based
flexibility to grid operators and how much flexibility at what time and price can be ex-
pected from them?

1.1.2 Technological advancements

In recent years, multiple technological advancements were introduced that can help to in-
tegrate and coordinate the aforementioned billions of controllable assets as active and flex-
ible components in energy systems. Future households will most probably be equipped
with Home Energy Management Systems (HEMSs) and Smart Meters (SMs) [18] since
they have promising features and form the basis for the transformation of market partici-
pants from consumers to prosumers and flexumers.

HEMSs are discussed in the literature as demand response tools that communicate
with home appliances, optimize their schedules based on user preferences, forecasts, and
costs, and control their operation [19]. Today, companies such as Sonnen, KiwiGrid, and
GridX are developing and offering commercial products for private households world-
wide that visualize energy consumptions and feed-ins from household appliances. Once
HEMSs are able to control household appliances, a wide range of grid services and ap-
plications will be possible by intelligently controlling each appliances” operation sched-
ule, reducing household energy bills, and ideally optimizing the overall system efficiency
[20].

Another important technology that enables the provision and billing of grid-stabilizing
services is the smart metering infrastructure. A smart metering infrastructure measures
the energy consumed or fed into the grid and allows metering operators to receive meter-
ing values in Real-Time (RT) [21]. As soon as SMs are installed in households and grid
operators set up appropriate coordination mechanisms, it will be possible to set tailored
incentives for consumers, prosumers, and their controllable assets that can be automati-
cally processed and used to cost-efficiently avoid grid congestions [22].

In parallel, a decentralized and potentially disruptive technology, known as blockchain,
and its potential to empower consumers and prosumers to host their own energy trad-
ing applications was discussed among researchers and energy experts [23, 24, 25, 26,
27]. A blockchain is a distributed database, does not rely on a central entity hosting
the infrastructure, and allows to execute code decentralized with smart contracts. For
a more detailed description please refer to section 1.3.2. Since 2016, a variety of stud-
ies were published theoretically assessing blockchains in the energy sector. Studies were
released describing promising characteristics such as process automation, transparency,
decentralization, and tamper-resistance [27, 28] and evaluated a variety of energy-related
blockchain use cases [29]. Interviews among energy experts were conducted investigat-
ing the potential impact of the blockchain technology on the energy economy [30, 31].
However, how the blockchain technology can empower consumers, prosumers, and flex-
umers and what role it will take in the coordination of them is still an open question.
Therefore, I formulate the following RQ.

RQ#3 What value can blockchain technology add in coordinating consumers and pro-
sumers, particularly in LEMs compared to centralized implementations?
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To answer the aforementioned RQs, energy models are needed that represent both
the coordination of individual participants and their interests. Furthermore, the models
should be implementable on varying systems such as a blockchain.

1.2 Structure

This dissertation presents two energy models that allow to investigate coordination mech-
anisms for and flexibility potentials of consumers, prosumers, and flexumers, and the
evaluation of the potential added value that recent technological advances can provide.
The overall structure of this dissertation is visualized in figure 1.2.
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Figure 1.2: Schematic of the dissertation and the chapters therein. Red circles are links to the corresponding
sections in this dissertation. lemlab and OpenTUMFlex are models developed as part of this dissertation
and in collaboration with colleagues [32, 33].

The transformation from consumers to flexumers is the overarching theme of this the-
sis. Formerly passive consumers are transforming into active participants of the energy
system with controllable loads and preferences for electricity from specific generation
types and locations. Simultaneously, consumers who install generation units and storage
systems on their premises are becoming prosumers, which temporarily supply their own
demand and feed-in and consume electricity from the public grid. Consumers and pro-
sumers who are able to calculate their flexibility potential and offer it to grid operators
transform into flexumers.
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In section 2.1, I present an article introducing a new coordination model for active con-
sumers and prosumers. This coordination model is based on a new bidding format and a
newly developed library of auction-based Iterative Market Clearing Algorithms (IMCAs)
that considers and verifiably satisfies consumers’ preferences for specific energy qualities
and their Willingness To Pay a Premium (WTPP). WTPP refers to an additional amount
of money a user is willing to pay for an electricity product with specific attributes such
as a regional provider or a certain share of VRE [34, 35]. To demonstrate the capabili-
ties and characteristics of the newly developed coordination model, the results of Monte
Carlo simulations are presented. The model library is publicly available as part of the
open-source project lemlab [32].

Section 2.2 analyzes how the introduction of blockchain could empower consumers
and prosumers to self-responsibly host their own LEM applications. A comparative per-
formance analysis of a blockchain-based and centralized implementation indicates what
added value the blockchain technology can provide in the context of LEMs. The block-
chain-based LEM implementation and the performance analysis are publicly available as
part of the open-source project lemlab [32]. Additionally, I briefly introduce a prepara-
tory study I conducted and published on the power demand of the Bitcoin and Ethereum
blockchain network.

In section 3.1, I present an article introducing a flexibility quantification and pricing
model for flexumers” market-based flexibility potential. The capability of the model is
demonstrated in a case study with mobility data from field trials in California and Ger-
many, varying electricity tariffs, and charging strategies that allow to investigate future
flexibility offers of EVs (see section 3.2). The model is publicly available as part of the
open-source project OpenTUMFlex [33].

Finally, section 4 concludes this dissertation, puts key findings into the broader scien-
tific context, and makes recommendations for future research.

1.3 Definitions

Before presenting the articles of this dissertation, I will specify the most important terms
for this dissertation since there is no distinct definition of these terms in the literature.

1.3.1 Consumer, prosumer, and flexumer

Consumer

Consumers are households that obtain energy from the grid. Furthermore, consumers
can be subdivided into active and passive participants. Passive consumers are partici-
pants that do not actively control their consumption behavior whereas active consumers
express their preferences for certain energy qualities, participate in LEMs, and optimize
the operation of their controllable loads.

Prosumer

Prosumers are consumers that install a decentralized energy generation unit on their
premise, temporarily supply their own energy demands, feed excess energy into and con-
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sume energy from the public grid. Prosumers can participate in LEMs based on forecasts
and optimize their energy costs but do not consider external limitations such as grid con-
gestions.

Flexumer

Flexumers are consumers or prosumers that own controllable household appliances, can
calculate flexibility offers, communicate them to a market platform, and control them
accordingly if being called to prevent grid congestions (see flexibility in 1.3.3).

1.3.2 Local energy markets

LEMs allow non-professional participants to trade excess and deficit energy in a defined
regional area [36].

The value proposition of a LEM is to exchange energy locally; thereby economically
strengthening local communities, increasing their acceptance for VRESs, reducing grid fees
and grid expansion costs [36].

The roles in a LEM involve multiple parties dependent on the national regulatory
framework the design is implemented in. Non-professional and professional participants
such as prosumers and aggregators act as Distributed Energy Resource (DER) operators
on the LEM. Retailers are simultaneously connected to a whole-sale market and a LEM
to ensure market liquidity (see market thickness in [37]). Market operators provide the
information and communication infrastructure for the exchange of data. Grid operators
and regulators are not directly involved but observe the market and use outcomes to cal-
culate power flows and monitor market operations.

Coordination types of distributed energy resources

The differentiation of coordination types is mainly based on a review article published in
[38] and is in line with previous review articles [39, 40].

In centrally optimized LEMs coodinators collect information from all connected DERSs,
optimize their operations, and control them. This approach has the advantage to find a
cost-optimal solution and is capable to incorporate grid constraints. However, this coordi-
nation strategy quickly becomes computationally expensive with a high number of DERs
and requires the disclosure of personal information to coordinating entities. Aggregating
or controlling DERs as a virtual power plant are subsets of this coordination type.

Peer-to-peer markets are fully decentralized coordination mechanisms that allow par-
ticipants to directly communicate with each other; thereby reducing the disclosed infor-
mation and transparency. Over-the-counter contracts and power purchase agreements
can be understood as large-scale examples of Peer-to-Peer (P2P) mechanisms.

In community-based markets, participants send pre-defined data to an independent
entity that processes the data based on agreed coordination rules. Afterwards, partici-
pants self-responsibly react and control their devices with respect to the market outcome.
An example would be the spot market of the EPEX SPOT or auction-based LEMs.
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Functions

I distinguish four fundamental LEM functions.

User and meter management allows to create, initialize, edit, delete user accounts,
and map connected HEMSs and SMs to users.

Market clearing is the core function of a LEM. This function calculates the exchange-
able market volume and price based on inputs from market participants. Once, the vol-
ume and price have been calculated, user accounts are credited or debited with the ap-
propriate quantities.

Settlement is executed after energy has been matched, physically exchanged among
market participants, and logged with SMs. The function calculates balancing energies,
grid fees, and taxes. These calculated quantities are then credited or debited from the
users’ accounts.

Labelling energy quantities refers to the assignment of energy quality labels to energy
quantities that are fed into the grid, matched in the market clearing, and metered by SMs.
Energy quality labels can for example be generation-unit-specific, region-specific, or CO;-
specific.

Requirements

To objectively compare different setups of LEMs objective requirements are necessary. In
the case of a LEM, these requirements can be categorized in market clearing and infras-
tructure.

Market clearing requirements are specified to evaluate whether a matching algorithm
satisfies user preferences for heterogeneous energy qualities, incorporates users’” WIPP,
increases local coverage of demand and supply, and ensures individual rationality and
computational tractability.

Infrastructure requirements are defined to assess whether an infrastructure such as a
blockchain ensures data security, reliability, scalability, tamper resistance, and low oper-
ating costs.

Heterogeneous energy qualities and preferences

Heterogeneous energy qualities are labels that a community can assign to electricity quan-
tities fed into the grid, cleared on a market, or consumed and metered through a SM. La-
bels can be based on generation types, CO,-emissions, geographic distance or arbitrarily
chosen. DER owners are able to label their placed market bids with an energy quality
and consumers can in return indicate their preference for a particular energy quality on a
LEM. Within this thesis, I use the quality labels NA, local, green-local to indicate whether
a certain electricity quantity originated from a non-local, local, or a CO;-neutral and local
generation unit.

Willingness to pay a premium

WTPP refers to an amount of money a consumer is willing to additionally pay for a specific
product with distinct attributes. Studies use choice experiments to estimate consumers’
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WTPP for certain product attributes [41, 42, 35, 43].

Bidding format

The bidding format defines what information participants need to provide to place valid
market bids on a LEM. Whereas conventional double auctions only require a price and a
quantity, I extended the bidding format to include the WIPP and heterogeneous energy
quality label (see section 2.1).

Iterative market clearing algorithms

IMCAs refer to a newly developed set of market clearing algorithms that iteratively use a
Periodic Double Auction (PDA) to verifiably satisfy heterogeneous energy quality prefer-
ences. A PDA refers to a market mechanism where market bids are collected in a closed
book and cleared at predefined intervals [44, 45]. The publication in section 2.1 presents
two general architectures and multiple combinations of IMCAs.

Blockchain

This definition is mainly based on [46] if not indicated otherwise. Blockchains are vir-
tual state machines. Changes to the blockchain’s state are stored in blocks on distributed
network nodes. The total amount of data that can be inserted into a block is limited to
ensure synchronicity among all network nodes. Each appended block consists of transac-
tions that represent validated state transition requests and the hash value of the previous
block, thereby building a chain of blocks.

Hashing functions are one-way mathematical functions that compute a unique hash
value of a predefined length for any kind of input [47]. One-way refers to a function
that makes it very difficult or impossible to reproduce the input data based on the output.
Due to their characteristics, hashing functions are used in the mining process and for
connecting consecutive blocks in blockchains.

Ablockchain node requests a state transition by sending out a transaction. In the most
basic form a transaction consists of a sender, a receiver, and a value. However, transactions
are also used to deploy programmable scripts also known as smart contracts.

Smart contracts are programmable scripts that can be deployed to a blockchain. Once
deployed to a blockchain they allow to modify a blockchain’s state variably. Off- & on-
chain refer to the executing infrastructure of a function. On-chain means that a function
is executed inside a deployed smart contract on a blockchain and off-chain that it is ex-
ecuted on a conventional non-blockchain system but uses the blockchain infrastructure
eventually.

lemlab

lemlab is a modular and agent-based simulation toolbox for LEMs that allows to connect
to RT and emulated test beds, centralized and decentralized data base infrastructures
such as blockchains, simulate various market mechanisms, prosumer strategies and char-
acteristics, and integrate a variety of time series [32]. lemlab was developed at the Chair
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of Energy Economy and Application Technology as part of the research project RegHEE
[32]. The bidding format, IMCAs, and analyses presented in chapter 2 are published as
add-ons in lemlab.

1.3.3 Market-based flexibility
Flexibility

Flexibility refers to a designated deviation from a planned operating schedule [48]. This
definition includes large-scale measures such as redispatch, feed-in management, shed-
dable loads, and small-scale market-based flexumer offers presented in chapter 3. How-
ever, within this dissertation I focus on market-based flexibility where provider and grid
operators negotiate a compensation for flexibility [49]. Furthermore, flexibility can be
subdivided into a positive and negative type: negative is the reduction of electricity feed-
in or the consumption of non-scheduled energy and positive the delay of energy consump-
tion or non-scheduled feed-in [50].

Flexibility platform or market

A flexibility platform is used to match flexibility demands and offers. Demands come
from grid operators who need to stabilize grid operations, and offers come from DER
operators who can quantify, price, and control the operation of their assets accordingly.
Flexibility offers consist of positive and negative power, available energy, price, and
a time step in which the offer is valid. The price has to at least ensure that the flexibility
provider does not experience an economical disadvantage. The location of the DER can
be explicitly added or is implicitly included through the identifier of the offering operator.

Vehicle availability

To quantify the flexibility potential of EVs we need to know when a vehicle is parked
and available for charging at a certain location. This information is referred to as vehicle
availability and is described by the following parameters: an identifier for the location,
the arrival and departure time of the vehicle, and the distance the vehicle has travelled
since its last departure. Based on these parameters OpenTUMFlex calculates flexibility
offers.

OpenTUMFlex

OpenTUMFlex is an open-source market-based flexibility model, which quantifies and
prices flexibility potentials of controllable household appliances [33]. The model was
developed at the Chair of Energy Economy and Application Technology as part of the
research project SINTEG C/sells [22]. Chapter 3 presents the theoretical basis and the
functional capabilities of OpenTUMFlex.



Chapter 2

Local energy markets for active
consumers and prosumers

At the turn of the millennium, energy systems in the European Union (EU) and North
America were liberalized with the aim of establishing a competitively efficient energy
market and strengthening consumer rights [51, 52]. Formerly integrated energy supply
companies were subdivided into separate entities, operating power grids, generating, and
distributing electricity (see EU directive 96/92/EC [53]). Nowadays, producers and re-
tailers trade electricity in competitive markets, consumers can freely choose and change
their retailers, and prosumers in Germany for example get a fixed price for their VRE
feed-ins [52].

In 2003, the EU went one step further and formulated the idea to label electricity ac-
cording to its environmental impact and transparently communicate these labels (see
EU directive 2003/54/EC [54]). This concept was further specified in the EU directive
2009/28/EC with the aim to label the origin of electricity for consumers, anticipating in-
creased demands for VREs, thereby supporting the expansion of renewable generation
units [55].

These market mechanisms and subsidy systems were designed for formerly central-
ized energy systems with fossil-fueled power plants and renewable generation units, which
were not yet competitively marketable [56, 39]. Nowadays, these systems cause high grid
congestion management costs, have not created the expected incentives, and slow down
the integration of additional VREs [57, 58, 56]. Therefore, new market designs are neces-
sary that consider the location dependency, intermittency, and uncertainty of VREs [56].

LEMs are discussed in the literature as coordination mechanisms that can fulfill the
aforementioned needs such as the integration of consumers and prosumers as active par-
ticipants into energy systems and the reduction of transmission losses and grid expan-
sion costs [40, 36, 39]. Furthermore, LEMs are divided into three coordination types:
centrally optimized, P2Ps, or community-based markets (see definitions in section 1.3.2).
Within this dissertation, I will refer to a LEM as a community-based market platform
that enables non-professional participants such as consumers and prosumers to engage
in market-based, local and self-responsible electricity trading.

10
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2.1 Considering energy qualities and preferences

Scientific context

Concurrently to the aforementioned introduction of energy quality labels, studies showed
how consumers are developing preferences and are actively asking for specific electric-
ity products with distinct attributes (see table 2.1), thereby transforming from formerly
passive to active consumers. These product attributes can mark whether the electricity
originates completely or partially from carbon-neutral energy sources, from regional re-
tailers or producers, or whether a certain security of supply level can be ensured. Within
this dissertation, I refer to these product attributes as heterogeneous energy qualities and
consumer preferences (see definition in 1.3.2).

Table 2.1: Electricity product attributes analyzed in consumer surveys with choice experiments in [34, 59,
43, 60, 35,41, 61, 62, 63, 64, 42, 65, 66, 67, 68, 69].

Attribute Description

Generation type mix Shares of generation types e.g. wind or nuclear

Generation location mix Shares of locally, regionally, or nationally generated electricity
Retailer ties Whether retailer have local, regional, or national ties

Security of supply Outage frequency and duration per time period

Visual landscape Impact on the visual appearance of the landscape

These heterogeneous consumer preferences are studied by marketing and social sci-
entists who conduct choice experiments with electricity products to analyze consumer
preferences and their WTPP [70]. Whereas most studies conclude that the price is the
key attribute of electricity products [35, 41, 66, 34], the studies also show that consumers
are interested in locally generated renewable electricity and have a WTPP for the listed
attributes [59, 43, 35, 41, 42, 65, 66, 68].

However, current market designs only insufficiently allow consumers to express these
preferences or verifiably satisfy them [71, 72]. Nowadays, consumers in liberalized Eu-
ropean energy systems sign contracts with retailers that ensure their electricity supply.
If consumers ask for VRE, retailers purchase sufficient Renewable Energy Certificates
(RECs) within a year to meet the energy demand of VRE-demanding consumers on a
balance sheet basis [58]. This is possible because RECs are valid for a year and can be
traded separately from the physical electricity feed-in (see EU directive 2009/28/EC [55]).
Consequently, consumers cannot know whether they are consuming renewable energy
and modify their behavior to satisfy their preference for VRE.

This discrepancy between verified heterogeneous consumer preferences and energy
market models, which do not consider them, is criticized in the literature because the
energy transition is a social process and a holistic analysis requires the inclusion of so-
cial and individual preferences [73, 74,71, 72]. Narrowing down the literature to auction-
and community-based LEMs only one relevant publication can be found, which addresses
heterogeneous consumer preferences. Richter et al. introduced a market mechanism that
contains separate markets for each energy quality; thereby allowing consumers to pur-
chase electricity with their heterogeneous energy quality preference [71]. This publica-
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tion is an important first step but lacks an analysis of the algorithm’s efficiency, and a
consideration of consumers” WTPP for heterogeneous energy qualities.

Contribution

This section presents an article introducing a library of IMCAs and a new bidding format
that allow to integrate and coordinate an increasing number of active consumers and pro-
sumers and consider their heterogeneous energy qualities and preferences. The newly
developed set of IMCAs iteratively use a PDA to ensure a verifiable satisfaction of con-
sumer preferences. Consumer preferences are dynamically communicated through an
energy quality preference field and the corresponding WTPP in each market bid. Fur-
thermore, the IMCA library consists of two subcategories of market clearing algorithms:
the Check and Curtail (CC) and Preference Prioritization (PP). While the PP algorithms
are enhancements and variations of the algorithm presented in [71], the CC variant rep-
resents an innovative approach to clear heterogeneous consumer preferences without the
creation of separate market clearings for each energy quality. Finally, the library also
includes combinations of the two subcategories and standard PDAs, which allow to inte-
grate consumers” WTPP.

Since no realistic consumer and prosumer behavior data is available for such a new
bidding format and market mechanism, the performance of the IMCA library was eval-
uated with Monte Carlo simulations and a scalability analysis. Monte Carlo simulations
were chosen in this context because they allow to estimate unbiased expected market out-
comes such as market prices and volumes within a finite amount of time while data for
realistic user behavior is not available for the newly presented market designs.

Based on the Monte Carlo simulation results, we identified a market clearing algo-
rithm that verifiably matches prosumers who supply electricity with a specific energy
quality label with consumers who ask for an electricity product with the same attributes,
considers consumers” WIPP for heterogeneous electricity qualities, and increases cover-
age of local demand and local supply compared to conventional LEM models. Further-
more, results from the scalability analysis show that all presented algorithms are capable
of matching up to 10,000 market bids on average within less than two minutes.

In conclusion, the paper introduces for the first time a library of auction-based coor-
dination mechanisms that allow consumers and prosumers to become active participants
in energy systems and express their heterogeneous energy preferences, to increase local
electricity coverage while not significantly affecting social welfare. The presented analy-
ses verify the described benefits and indicate potential for future improvements. Future
research should investigate how the library can be used in whole-sale markets with con-
ditional market bids and cross-border trades.
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The advancing energy transition is leading to a constantly increasing number of prosumers and active
participants in the energy system. Local energy markets are considered a promising approach to coordinate
those active participants efficiently, increase acceptance among the population, and decrease grid expansion
costs. However, energy models and markets do not consider heterogeneous user preferences which are
considered crucial for the progressing energy transition. Therefore, this paper proposes new auction-based local
energy market models that consider user preferences and users’ willingness to pay a premium for heterogeneous
energy qualities. In order to account for the unknown and stochastic user behavior in such a new market
setting, we simulate and compare existing and newly developed auction-based clearing algorithms with an
unbiased Monte Carlo method and evaluate whether they fulfill pre-defined key characteristics. Based on
the results, we conclude and identify a clearing algorithm that verifiably satisfies user preferences, considers
willingness to pay a premium, increases local coverage of electricity, maintains individual rationality, and
computational tractability. The presented clearing algorithms enable new market designs that can help to
increase acceptance and accelerate the expansion of renewable energies. All market models and simulations
are publicly available in the open-source repository lemlab. Future research will validate the presented results
in a field trial in Germany with 20 households.

1. Introduction

In 2007, authors of the Intergovermental Panel on Climate Change
(IPCC) report concluded that a migration to Renewable Energy Sources
(RESs) would provide “proven benefits linked with energy access,
distributed energy, health, equity and sustainable development” [1].
They further conclude that a Decentralized Energy System (DES) offers
advantages such as reduced need of transmission infrastructures, re-
duced power losses, and a higher share of zero-carbon electricity [1].
In the following years, the installed capacity of RES more than doubled
from 1.3TW to 2.8 TW from 2011 to 2020 [2]. At the same time, the
total number of generation units in Germany increased from 1.2 to
over 2 million [3,4]. The formerly centralized energy system is con-
tinuously being transformed into a decentralized, renewable, volatile,
and complex one. This transformation impacts in various ways the
energy trilemma of energy security, energy equity, and environmental
sustainability [5,6].

In this context, regulators in the European Parliament and the
Council of the European Union recognize the potential of an increasing
number of prosumers and designed a directive to enable the active
participation of individual and grouped prosumers as part of citizen
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E-mail address: michel.zade@tum.de (M. Zade).
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energy communities in electricity and flexibility markets [7,8]. Fur-
thermore, the Australian Energy Security Board pursues reforms that
overcome current challenges that hinder an efficient market integration
of Distributed Energy Resources (DERs) [9]. Challenges include access
barriers to markets, high costs, and static pricing structures. Even
though specific regulations are not widespread yet, the aforementioned
initiatives and directives indicate a future empowerment of prosumers.

Local Energy Markets (LEMs) are discussed as one possible im-
plementation of a citizen energy community to coordinate the in-
creasing number of DES [10-12]. LEMs are a branch of transactive
energy, ideally consider prosumers’ perspectives, ensure safe and ef-
ficient system operation, reduce grid expansion and transmission costs,
and strengthen local communities by enabling prosumers to actively
negotiate and trade their energy and flexibility [11-13]. Participants
of LEMs can be generators, prosumers, retailers, grid operators, and
potentially mediators who serve as intermediaries between them.

In order to describe LEMs in a standardized way, Zhang et al.
derived a three dimensional, four-layered architecture that categorizes
the relevant spatial, functional, and temporal dimension [14]. The first
dimension splits the functionality into a power grid, information and
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communication, control, and business layer. The second dimension
describes the spatial resolution from a small premise to an entire
region, and the third dimension describes the temporal sequence of
a LEM. In this paper, we will focus on auction-based market clearing
algorithms that take place in a local community and before the energy
has been exchanged (ex-ante). Therefore, we will be talking about the
pre-exchange time period, the business layer, and premises’ market
agents in terms of the four-layered architecture.

Despite of the aforementioned description methods, LEMs are nowa-
days mostly distinguished by their interaction and coordination pro-
cesses. Coordination processes in LEMs define what kind of information
market participants need to exchange and whether mediators or coordi-
nators are involved or not. Generally, we distinguish three coordination
types: a centralized/coordinated system in which a coordinator decides
and optimizes each participant’s device control, a fully decentralized
Peer-to-Peer (P2P) system in which all participants communicate di-
rectly with each other, and a community-based market where par-
ticipants communicate pre-defined and limited private information
to a market coordinator that returns a price signal [13,15,16]. Cen-
tralized implementations have the advantage of considering network
constraints but require the disclosure of private information to central
entities, and quickly become computationally expensive [12,13]. On
the other hand, fully decentralized P2P approaches bear the risk of
being inefficient and make it difficult for grid operators to ensure
security of supply [13,15,16]. In a community-based market, market
participants or their market agents disclose bidding information to a
central community platform where the clearing is executed. Thereby,
this community platform becomes a potential single point of failure and
must be designed and secured accordingly. Even though a community-
based market does not offer the same level of data privacy as a full P2P
approach, the disclosed information is reduced to a minimum compared
to centrally optimizing approaches while allowing grid operators access
to the platform in order to ensure system stability. In this paper,
we focus on a community-based LEM and explicitly exclude full P2P
and centrally optimized approaches. For simplicity, we will abbreviate
community LEMs to LEM.

Many papers in the literature use auction-based approaches to trade
electricity between multiple buyers and sellers in a LEM [12]. Gener-
ally, we distinguish two forms of two-sided auctions: the Continuous
Double Auction (CDA) and the Periodic Double Auction (PDA), of-
ten called a clearinghouse or call market [17,18]. In both auction
types, agents place their bids with a price and a quantity in an order
book [18]. In a CDA, the mechanism tries immediately to match the bid
with other bids from the order book. This continuous design, however,
encourages high frequency trading, and diminishes welfare of “slow”
traders [19,20]. Therefore, we consider PDAs, where bids are collected
and cleared at predefined intervals, to be better suited for LEMs with
non-professional participants and will focus on them for the remainder
of the paper.

PDAs are used in stock exchanges, electricity markets, and are
considered allocationally efficient mechanisms [18,21]. In this context,
a mechanism is “allocationally efficient if those who value the goods
most are able to buy them from those who can produce them at the
lowest cost” [21]. However, market participants express their valuation
in a conventional double auction only through a price that cannot
capture participants’ differentiated valuation for heterogeneous energy
qualities. Therefore, we argue that the definition of allocative efficiency
needs to be adapted to auction-based LEMs that incorporate user pref-
erences for heterogeneous energy qualities. Nevertheless, LEMs must
adhere to basic market design principals: Individual Rationality (IR),
thickness, and tractability [18,22,23]. A LEM is individually rational
if market participants receive a non-negative gain from participating,
thick if enough supply and demand are brought together, and tractable
if executable in a reasonable amount of time. For a more detailed
description of those properties, please refer to [18,22,23].
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In parallel to the increasing expansion of RES and research interest
in LEMs, many studies have investigated consumer preferences based
on choice experiments. In choice experiments, participant’s are asked to
choose between electricity tariffs that contain a variation of different
characteristics. Recurring characteristics are location of suppliers (in-
ternational, national, regional, local), energy generation types (nuclear,
renewable, fossil), costs, and reliability of electricity supply. Based on
the participant’s choices, a WTPP for specific types of electricity is
calculated. Even though quantitative results are heavily dependent on
the presented choices, the region and demographic background of the
participants, qualitative valuations of the participants for certain char-
acteristics can be extracted. Many studies identify the cost of electricity
as the decisive characteristic [24,25]. One study concludes that the
electricity source is the most important attribute [26], other studies
find it in second place [24,25,27]. Regional generation units and head-
quarters of suppliers are in third position [24,25,28,29]. A WTPP for
reliability of electricity supply was not investigated in comparison to
other characteristics [30].

While previously mentioned studies identify a WTPP and heteroge-
neous user preferences for renewable and regional energy generation,
only few publications can be found that incorporate those user pref-
erences into their auction-based market designs that are considered
crucial for the continuous energy transition [31]. A review conducted
in 2018 on LEMs, their interaction types, market clearing approaches,
and requirements, found that most auction-based publications have
the objective to either maximize social welfare which refers to the
sum of consumer and producer surplus or to minimize operational
costs [12]. The satisfaction of heterogeneous user preferences or WTPP
were not listed as an objective. In 2018, the concept of a Federated
Power Plant (FPP) was formulated that may satisfies heterogeneous
energy preferences of consumers [10]. More recent publications on
auction-based LEMs analyzed whether a PDA can be performed by
smart contracts in a blockchain network. Wang et al. Troncia et al. and
Zahid et al. implemented and demonstrated the feasibility of a trading
and digital certification platform for electricity in smart contracts [32-
34]. Oprea et al. implement two different settlement functions in smart
contracts and compare their performance in multiple scenarios with
each other [35]. Khorasany et al. investigated a two-stage auction de-
sign to allow last minute adjustments to schedules and to reduce energy
costs [36]. However, only one publication was found that considers
heterogeneous user preferences in an auction-based LEM [37]. Richter
et al. propose a market mechanism that considers heterogeneous user
preferences by creating separate markets for separate preferences [37].
Even though this publication is an important first step, it lacks an anal-
ysis of the algorithm’s efficiency, and the consideration of participants’
WTPP for heterogeneous energy qualities.

Therefore, we present six alternative auction-based LEM algorithms
that satisfy user preferences and consider WTPP for heterogeneous
energy qualities. In order to analyze and objectively compare the core
characteristics of the different LEM algorithms and due to the lack of
realistic user data, we present the results of a Monte Carlo simulation.
The evaluated characteristics are: how efficient the algorithms are
compared to conventional ones, whether they are individual ratio-
nal, verifiably satisfy user preferences, consider WTPP, maximize local
electricity coverage, and tractability.

The rest of the paper is organized as follows. Section 2 describes
a standard PDA and presents six alternative auction-based LEM algo-
rithms. Section 3 explains the setup of the Monte Carlo simulation and
the computed results. A thorough discussion and comparison of the
developed algorithms is provided in Section 3.2. Section 4 concludes
the paper.

2. Auction-based clearing algorithms for local energy markets

This section describes auction-based clearing algorithms for LEMs
that we found in the literature and developed ourselves in order to
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Fig. 1. Graphical visualization of a double auction. With the utilities of the interested buyers and marginal costs of the suppliers of electricity. The shaded area represents the

social welfare and the dashed line the uniform market clearing price.

Table 1
Bidding format of a LEM that incorporates heterogeneous user preferences and WTPP.
This format is publicly available in the open-source project lemlab [38].

Parameter Description
idyger User identification number or string
1Y energy Quantity of energy a user would like to ask or buy for

Price a user is willing to sell or buy for
Quality (preference) label a user is offering/asking for

Priceenergy
qualitYepergy

WIPPquality Willingness to pay a premium for energy if a certain quality is
supplied

typepiq Bid type (e.g. ask or buy)

1S gelivery Timestamp of delivered energy quantity

Mposition Bid number for a user who wants to place multiple bids for one

timestamp

satisfy heterogeneous user preferences, users’ WTPP, and to increase
coverage of local demand and local supply. Section 2.1 starts by out-
lining the bidding format. Section 2.2 provides an overview of a stan-
dard PDA with additional features for non-professional traders such as
prosumers. Section 2.3 describes basic Iterative Market Clearing Algo-
rithms (IMCAs). Finally, Section 2.4 describes combinations of IMCA
and how a WTPP is considered in them. The presented clearing algo-
rithms are publicly available as part of an open-source project [38].

2.1. Bidding format

A key component of a LEM is the market mechanism and the
corresponding bidding format [11]. The bidding format describes what
kind information participants need to exchange with a trading platform
in order to express a willingness to trade. In a conventional electricity
market, this exchanged information is called a bid with a buy or an
ask price and an energy quantity. A buy price refers to an electricity
demand by the participant and an ask price to the supply of electricity.
On the trading platform, all placed bids are stored in an order book.

In our special case of LEMs, conventional bidding formats are ex-
panded to incorporate heterogeneous user preferences and their WTPP.
Therefore, Table 1 summarizes not only parameters for a conventional
PDA but also for alternative market models presented later in this paper
that incorporate heterogeneous user preferences and WTPP.

Whereas parameters such as idyser; q'Venergy> and priceepergy are
self-explanatory, the remaining parameters require further elaboration.
qualityenergy refers to a quality label a prosumer can give his bid,
if it fulfills certain pre-defined characteristics. Characteristics can be
that the electricity is produced within a certain region, from a certain

generation type, or without the use of fossil fuels. The same parameter
can however also be used by buyers to express their preference for a
specific electricity quality. wtpp is a parameter that represents the user’s
willingness to pay a price premium if the market mechanism can ensure
the satisfaction of the bidder’s transmitted quality preference. A WTPP
can be expressed in absolute values or in percent of the price a user
is willing to pay for electricity (priceenergy)- t¥Peposition 1S @ flag that
indicates whether it is an ask or a buy bid. In some implementations
this indication can be omitted because a plus or minus in front of the
communicated priceenerg, indicates buy and ask bids. tsgejivery defines
the starting point of the delivery period of electricity. If the market
mechanism operates at quarter-hourly intervals and accepts bids 24 h in
advance, prosumers can place bids for any of the 96 delivery periods.
Finally, nposiion Tepresents the bid number of a user for a certain
delivery period on the platform. The idea is that a user can place
multiple, independent bids on the platform with potentially varying
energy quantities and prices in order to account for uncertainties or
probabilistic forecasts.

After defining the bidding format, the subsequent sections will
describe the already existing and newly developed market mechanisms
for satisfying user preferences in LEMs.

2.2. Periodic double auction

Double auctions have been used in the last 100 years throughout
the world to trade stocks, electricity and other homogeneous products.
Even though double auctions achieve very efficient allocations and
prices, a theoretical explanation is missing [17,18]. Nevertheless, a
commonly used measure of efficient allocation is social welfare. Math-
ematically, social welfare is formulated by the sum of the bidders’
utility minus the sum of producers’ costs [12]. The goal of a PDA is
to maximize social welfare (see Eq. (A.1)). A utility function maps an
agent’s level of interest for a certain state to real numbers [18]. In
PDAs, bidders express their utilities and costs for electricity via a price
(see priceepergy in Table 1). Geometrically, social welfare is the area
surrounded by the demand and supply curve and the price axis (see
shaded area in Fig. 1) [39]. A mathematical formulation of the PDA
clearing algorithm is provided in (A.1).

In PDAs, bids are collected in an order book. At clearing time, all
buy bids are sorted by price from biggest to lowest and ask bids from
lowest to highest. All bids where the buy price exceeds or equals the
ask price are matched. If all buy prices are above the offer prices, all
bids are matched that fulfill the market clearance condition (supply
energy quantity equals demand energy quantity). In a final step, the
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clearing prices are calculated. Here, multiple calculation methods can
be used such as uniform, discriminatory, or discriminatory midpoint
pricing [39]. For simplicity we will only use uniform prices throughout
this paper. A graphical visualization of demand and supply curve, social
welfare, and uniform prices is shown in Fig. 1.

For LEMs and non-professional participants, we inserted a shuffling
of bids before the sorting in order to further discourage high frequency
trading and ensure that bidders are not penalized for a slower internet
connection.

This market mechanism ensures a competitive equilibrium in which
agents prefer their allocation over any other allocation, supplied and
demanded electricity are equal, and participants receive non-negative
gains (IR). What this mechanism does not reflect, are the users’ het-
erogeneous user preferences for certain electricity qualities. There-
fore, we will introduce alternative auction-based clearing algorithms
in the following subsections that verifiably satisfy heterogeneous user
preferences and incorporate WTPP.

2.3. Iterative market clearing algorithms

Since PDAs do not consider any form of heterogeneous preferences,
we introduce one existing and three newly developed IMCAs that
verifiably satisfy heterogeneous user preferences. Preferences refer to
the parameter qualityepergy in @ LEM bid (see bidding format in Table 1).

2.3.1. Check and curtail

In order to verifiably satisfy heterogeneous user preferences, we
present one variant that clears a PDA, checks whether all buyer pref-
erences are satisfied by matched ask bids, and potentially curtails
unsatisfied buy bids before re-initiating the entire process. Hence, we
call this variant the Check and Curtail clearing algorithm (CC). This al-
gorithm starts by computing a PDA independent of any energy qualities
and preferences. Then, the algorithm checks whether the preferences
of all buy bids are satisfied by all cleared ask bids. If that is the case,
the algorithm is done within one iteration. However, if not all buy
bids can be satisfied with the cleared ask bids, the algorithm curtails
the lowest priced buy bids that could not be satisfied. After curtailing
unsatisfied bids, the algorithm re-initiates a PDA without curtailed buy

CC clearing starts

. J

h 4 Whlle‘loop: Nomaz,iteration

PDA clearing <

Y Curtailment of
unsatisfied bids

A

Preferences
satisfied?

4

CC clearing done

Fig. 2. Flowchart of the CC clearing algorithm. PDA clearing refers to a periodic double
auction (see Section 2.2).
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bids. Curtailed bids are then excluded from this CC clearing but market
agents can place the same or altered bids in consecutive clearings
for the same time of delivery. This process continues until all cleared
buy bids are verifiably satisfied by cleared ask bids. A mathematical
formulation of the CC clearing algorithm is provided in Appendix A.2.
Fig. 2 visualizes the algorithm as a flowchart.

Optionally, the algorithm can consider a quality order that can
“assign” higher energy qualities to lower energy preferences. This is
possible if the quality order is designed so that higher energy qualities
include their lower ones (e.g. na, local, local-green). Otherwise, the
algorithm could not label buy preferences for local energy as satisfied
even if there exists excess local-green electricity on the market because
local-green would represent a separate energy quality.

The CC algorithm is implemented in a while-loop since it cannot
be foreseen how many iterations it will take to satisfy all cleared buy
bids. Potentially, the algorithm does not find a solution because bid
curtailment ultimately leads to a steeper demand curve, which leads to
a smaller possible market volume and fewer ask bids that can satisfy
bidders’ preferences. A maximum number of iterations or execution
time can be defined to limit computational costs (see npy,y iterations il
Fig. 2). This number should be chosen heuristically based on expected
traded energy quantities and market granularity.

In conclusion, this IMCA variant ensures that bidders’ preferences
are satisfied by cleared ask bids. However, the algorithm’s compu-
tational costs can vary significantly and potentially does not find a
solution at all. Therefore, the next subsection introduces three alterna-
tive clearing algorithms that can satisfy heterogeneous user preferences
with reduced and foreseeable computational costs.

2.3.2. Preference prioritization

Preference Prioritization clearing algorithms (PP) describe a subset
of IMCAs that compute a PDA for each energy quality and prefer-
ence. Hence, PP clearings compute as many PDAs as there are energy
qualities (ngyaities)- In this paper, we propose and analyze three PP
variants. The variants differ in the sequence of market clearing of
the heterogeneous energy classes (prioritization) and whether they
consider uncleared bids in subsequent clearings. Fig. 3 visualizes the
general structure of a PP clearing as a flowchart.

First, buy and ask bids are extracted by quality. Which of the quali-
ties are extracted first and last differs by variant. Then, a PDA computes
the matched bids and calculates a market clearing price. Optionally,
uncleared buy bids can be reinserted into subsequent clearing rounds
(see paragraph ). A PP clearing is done when one PDA was computed
for every electricity quality. This algorithm calculates for every energy

PP clearing starts
v for-loop: Ngualities
Extract bids |
by quality 1

Optional re-insertion
v of uncleared bids

PDA clearing

4

PP clearing done

. J

Fig. 3. Flowchart of the preference prioritization clearing algorithm.
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quality preference a specific clearing price and thereby uses discrimi-
natory prices. A mathematical formulation of the PP clearing algorithm
is provided in Appendix A.3. The following paragraphs describe the
specific characteristics of the three variants.

Preference separation. Richter and others introduced an auction-based
market clearing that treats separate energy qualities and preferences
as different goods [37]. This variant matches offers of a certain energy
quality with bids that explicitly ask for this energy quality. The order of
PDA executions does not change the outcome of the clearing algorithm
because all energy qualities are treated independent of each other.
Uncleared bids are not reinserted in subsequent clearing iterations. We
call this variant the Preference Separation clearing algorithm (SEP).

This approach ensures that consumers are only matched with pro-
ducers that fulfill their exact preference. However, this approach does
not allow consumers who ask for local energy to be matched with
producers who offer local & green energy because this quality poten-
tially is offered only in a separate clearing iteration. Therefore, we
potentially not match a significant amount of buy bids that could have
been matched while still satisfying the consumers’ preferences. Hence,
we introduce two alternative variants that are able to incorporate ask
bids of higher qualities into clearings for lower preferences.

Highest-to-lowest preference. Since SEPs potentially compute inefficient
allocations of heterogeneous bids, we present the Highest-to-Lowest
clearing algorithm (H2L) that performs ngyaites PDAs and allows the
reinsertion of uncleared ask bids of higher qualities into clearings
for lower user preferences. This variant clears the highest energy
preferences first and the lowest ones last.

In a first step, the algorithm computes a PDA for ask and buy bids
with the highest energy quality. In the second iteration, unmatched
ask bids of the highest energy quality and ask bids of the second-
highest energy quality are matched with buy bids that request the
second highest energy preference. This is possible if the quality order
is designed so that higher energy qualities include their lower ones
(e.g. none, local, local-green). Unmatched buy bids with the highest
energy preference cannot be reinserted because their preference satis-
faction cannot be ensured since ask bids of lower quality are included.
This procedure continues until a clearing for the lowest energy quality
is computed. Due to the reinsertion of unmatched ask bids of higher
quality in subsequent clearing iterations, this variant matches ask bids
of higher energy quality more often than ask bids with lower qualities
and therefore prioritizes higher energy qualities.

This approach ensures that consumers are supplied with energy that
fulfills or exceeds buyers communicated preferences and therefore leads
to more efficient allocations of buy and ask bids. However, this variant
potentially matches a buyer that places a buy bid for a specific quality
of energy with a lower price than a buyer that placed a buy bid for any
kind of energy with a high price because higher energy qualities are
cleared before lower ones are. In order to prevent this aforementioned
case, the following paragraph describes a third variant that flips the
order of clearing executions.

Lowest-to-highest preference. Since the H2L variant potentially clears
buyers that request higher energy qualities with a lower price than
buyers who ask for lower energy qualities, we introduce the third PP
variant Lowest-to-Highest clearing algorithm (L2H). This third variant
computes consecutive PDAs starting with the lowest buyers’ preference
and concluding with the highest and inserts ask bids of higher qualities
into clearings for lower preferences.

In the first iteration, the algorithm matches buy bids that request
the lowest energy quality with all available ask bids. This is possible
if the quality order is designed so that higher energy qualities include
their lower ones (e.g. none, local, local-green). Therefore, consumers
do not experience any disadvantage if they are matched with ask bids
of higher quality. The second round will then consider buy bids of the
second-lowest preference and match them with all remaining ask bids
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that fulfill or exceed the second-lowest energy quality. This procedure
continues for all energy qualities and preferences until the highest
energy quality is cleared.

This variant ensures that consumers are supplied with energy that
fulfills or exceeds buyers’ communicated preferences and a buyer that
asks for any kind of energy will be matched more likely than a buyer
that asks for a specific higher type. This variant prioritizes buy bids
that ask for lower energy qualities because they are cleared with the
maximum number of ask bids and ask bids of higher qualities because
they are reinserted in multiple clearings for lower preferences.

2.4. Combining iterative market clearing algorithms

All of the presented IMCA in Section 2.3 satisfy verifiably heteroge-
neous user preferences. However, one variant potentially does not find
a solution (CC) and none of the presented algorithms consider a WTPP.
Therefore, we investigated multiple combinations of the previously
mentioned clearing algorithms that compensate the drawbacks of the
single IMCA and incorporate users’ WTPP for heterogeneous energy
qualities. Here, we present two of the most promising combinations.
Interested readers may refer to [38] for all investigated combinations.

2.4.1. Matching curtailed bids

One major drawback of the CC clearing algorithm is that potentially
no matching is possible because no PDA satisfies the cleared buyer
bids or the computational costs are too high to find a feasible solution.
In those cases, curtailed and uncleared bids can be re-inserted in a
consecutive PP clearing variant.

Hence, we propose a combination of a CC and a H2L clearing. We
call this variant Check and Curtail combined with Highest-to-Lowest
clearing algorithm (CC-H2L). First, a CC clearing is performed, once
this algorithm ends, all uncleared and curtailed bids are reinserted in a
consecutive H2L clearing. This only makes sense if uncleared ask bids
request a lower price than uncleared and curtailed buy bids.

This combination allows suppliers and buyers to be matched even
though the CC did not match them or did not find a feasible solution in
a given number of iterations or period of time. All other characteristics
that were described above for the CC and H2L remain true for the
combination of the two.

2.4.2. Integrating willingness-to-pay a premium

A WTPP for certain types of energy qualities are expressed in
the literature mostly as some percentage of some reference cost (see
Section 1). So far, the presented IMCA did not consider any kind of
WTPP for a certain type of electricity. They would either satisfy the
bids and their corresponding preferences by the available ask bids or
leave buy bids uncleared.

Consumers can communicate their WTPP for certain energy qual-
ities via the parameter wtppquqiiry (see Table 1). By doing so, they
express their willingness to pay a price premium if they can be ensured,
that they are matched with ask bids that fulfill their energy preference.
If they cannot be ensured to be matched with their preferred energy
quality, then only their regular priceepergy is valid.

On the market platform, buy bids are first inserted with their
specified preferences and their WTPP into an IMCA which ensures
consumers’ preference satisfaction. In a second phase of the clearing,
buy and ask bids that are not cleared in the IMCA are then inserted
into a PDA. In this second phase, no WTPP are considered since it
cannot be ensured that bidders will be supplied with their preferred
type of electricity. With this combination, bidders’ preferences can
verifiably be satisfied and their WTPP for a specific energy quality can
be considered.

As discussed in the beginning of this subsection, we will present the
results of the most promising combination (Check and Curtail combined
with Highest-to-Lowest and Periodic Double Auction clearing algorithm
(CC-H2L-PDA)).

The key characteristics of the proposed market clearing algorithms
are further analyzed and discussed in the following sections.
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3. Analyzing of clearing algorithms for local energy markets

In this section, we evaluate the performance of the presented clear-
ing algorithms. Therefore, we formulate key properties a LEM for
non-professional participants should possess. A LEM should:

1. verifiably satisfy heterogeneous user preferences for different
electricity qualities,

. incorporate users’ WTPP for specific energy qualities,

. increase coverage of local demand and local supply,

. motivate investments in high energy qualities,

. be individually rational, and

. be tractable.

U WN

A LEM verifiably satisfies heterogeneous user preferences when the
market matches supplier and buyer bids so that buyers’ preferences are
fulfilled in quantity and quality. In order to incorporate a WTPP, a
LEM needs to ensure that the WTPP is only applied if the market can
supply the buyer with the requested electricity quality. Furthermore,
it is desirable that the LEM increases the quantities exchanged within
the community and decreases its energy exchange with non-local par-
ticipants. In order to motivate participants to invest in generation units
that produce electricity of higher quality (e.g., wind turbines), a LEM
should not price local electricity qualities lower than non-local ones.
Finally, basic design principals such as IR and tractability should be
met.

After defining those key characteristic, a proper analysis method
must allow an unbiased analysis of them. Many publications use case
studies as a method to demonstrate certain characteristics of new mar-
ket designs (see [37,39,40]). Even though the results and conclusions
drawn are heavily dependent on the design of the case studies, this
makes sense in settings where input data can be easily modeled or
was collected in previous field trials. In our case, we introduce a new
market design and a new bidding format that require user input that is
difficult to model and has not been collected in field trials in the past.
Furthermore, modeled input data would influence the outcomes of the
clearing algorithms so that an unbiased analysis is not possible.

Another approach to estimate outcomes of models whose input
parameters are unknown and all possible input variations cannot be
executed in a feasible amount of time is the Monte Carlo method [41].
There, we approximate deterministic quantities such as cleared market
volumes or market clearing prices by an average of random values
that are computed in simulations with independent and identically dis-
tributed (i.i.d.) random input data. This is possible because the Strong
Law of Large Numbers (SLLN) is at the core of the Monte Carlo method
and states that the average of the randomly computed outcomes be-
comes equal to the expected value if the number of simulations (N)
goes to infinity (inf). In order to reach “good approximations” of the
expected value in a finite amount of time, the number of simulations
can be calculated (see Appendix B.3) [41,42].

In the past, Monte Carlo methods have been used in energy related
research to model stochastic processes. Hardi modeled the energy
demand of last mile deliveries and used Monte Carlo simulations to
model stochastic drop-off locations [43]. Other publications use Monte
Carlo simulations to incorporate the uncertainty of electricity demand,
solar, and wind energy availability [44,45]. Nikmehr et al. use Monte
Carlo simulations to model uncertain behavior of DES [46].

With this in mind, we find Monte Carlo simulations an appropriate
method to model stochastic input data to LEM, objectively evaluate the
newly presented clearing algorithms, and their key characteristics. The
setup of the Monte Carlo simulations with a description of the input
data, extracted key parameters, necessary number of simulations, and
computing environment can be found in Appendix B. The results are
summarized in the following subsections.
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3.1. Results

This section visualizes and describes the results of the Monte Carlo
method. The 10,000 simulations of the seven clearing algorithms were
computed in approximately 7 h. Based on the calculation of the neces-
sary simulations in the previous section, we consider our results robust
and stable.

3.1.1. Cleared energy quantities, prices, and welfare

Fig. 4 shows the average cleared energy quantity, price, and welfare
for each clearing algorithm. Dashed lines indicate the reference lines of
the PDA clearing algorithm. In the following paragraphs, each plot is
described separately.

Cleared energy quantities. The cleared energy quantities vary from
—8.8% to 36.4% compared to the standard PDA. The standard PDA
clears on average approximately 23.7kWh. Whereas SEP and L2H clear
slightly less energy with 23.3kWh and 23.5kWh, the H2L algorithm
clears slightly more energy with 24.2kWh. CC clears the least energy
with only 21.6 kWh. This can be explained by the curtailment of unsat-
isfied buy bids if they cannot be fulfilled. Additionally, the algorithm
does not clear any bids if the maximum number of iterations is reached.
CC-H2L clears 25kWh which is an increase of 5.4 % compared to the
PDA. If we add price premiums with the CC-H2L-PDA, the algorithm
clears 32.3 kWh which is an increase of 36.4 % compared to the standard
PDA. The latter two clearing algorithms, CC-H2L and CC-H2L-PDA,
benefit from the combination of complementary clearing methods that
increases the total amount of cleared energy on the LEM.

Clearing prices. The clearing prices vary from —9 % to 12 % compared
to the standard PDA. The standard PDA and the SEP algorithm clears
the energy on average for 0.05 ﬁ This clearing price corresponds to
the mean of the lower and upper bounds of the energy prices set in
Table B.3. H2L and CC-H2L calculate a clearing price that is slightly
below the PDA prices with 0.049 ﬁ CC and L2H clear the market at
0.048 —=— and 0.046 ¢/kWh respectively. The CC algorithm curtails the

lowestkggared buy bids if they cannot be satisfied, thereby increases
the slope of the demand curve, and ultimately leads to lower clearing
prices. The L2H computes the lowest clearing prices because it con-
siders all ask bids in the first clearing iteration and thereby computes
the least increasing supply curve. CC-H2L-PDA clears the energy on
average for the highest cost with 0.056 k\th which corresponds to a
12% increase compared to the PDA. This price increase is a direct
consequence of the incorporation of WTPP for heterogeneous electricity

qualities in the CC-H2L-PDA.

Welfare. Welfare is the sum of consumer and producer surplus. In a
PDA this value can be visualized as the area surrounded by the price
axis, the demand, and supply curve (see Fig. 1). In the case of IMCA,
the welfare is calculated as the sum of the single welfares computed
in each clearing execution. Among the seven clearing algorithms, the
welfare varies from —17 % to 74 %. Clearing algorithms PDA, SEP, H2L,
and CC-H2L all calculate a similar welfare in the range from 0.68€
to 0.7€. L2H and CC calculate a welfare of 0.58€ and 0.61 <€, which
corresponds to —17 % compared to the PDA results. This decrease of
welfare can be explained by the curtailment of unsatisfied buy bids
in the case of CC and by not efficient allocations in the case of L2H.
Due to the consideration of WTPP, the CC-H2L-PDA reaches the highest
welfare of 1.22€ which corresponds to an increase of 74 %.

After having summarized the overall results of the clearing algo-
rithms, the following subsections illustrate how many shares of specific
heterogeneous electricity qualities and user preferences are cleared and
what clearing prices were computed for each electricity quality.
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Fig. 4. Monte Carlo simulation results for cleared energy quantities, clearing prices and welfare for each one of the seven clearing algorithms. Markers indicate the mean within

a 99% CL

3.1.2. Cleared energy qualities

Fig. 5 shows the shares of cleared ask bids with a specific quality
label for each clearing algorithm.

The algorithms PDA, SEP, and CC clear each quality with an equal
probability of 33.3 %. Algorithms H2L, L.2H, CC-H2L and CC-H2L-PDA
clear ask bids of higher qualities more often than the ones of lower
qualities. The range varies from the lowest to the highest qualities from
16.7 % to 49.8 %.

%¢-na local -%¢-local-green
CC_H2L_PDA 3 3
CC_H2L ~ 2.3 3
CC A X
L2H % 3
H2L 23 3
SEP — x
PDA X

15 20 25 30 35 40 45 50
Share of ask bids cleared [%]

Fig. 5. Shares of ask bids cleared with a specific quality label. Marker represent the
mean with a CI of 99 %. Each row represents one clearing algorithm.

Whereas the results of the H2L, CC-H2L and CC-H2L-PDA only vary
from 28.9% to 37.6%, the greatest difference is recognizable in the
results of the L2H algorithm. The L2H approach starts by clearing buy
bids with the lowest energy preference with all available ask bids. This
is possible because ask bids with higher energy qualities satisfy lower
energy preferences. In the second round, buy bids with the second-
lowest preferences are cleared with all remaining ask bids that fulfill
the preference requirement or exceed them. This procedure continues
until all types of bid preferences are cleared. Therefore, ask bids with
high energy qualities are cleared more often than ask bids of lower
qualities.

The H2L algorithm clears first buy bids with the highest energy
preference and ask bids that fulfill this requirement. Then, bids with the
second-highest energy preference are cleared with ask bids that fulfill
this requirement and the ones that were not cleared in the first iteration
(see Section 2). Therefore, ask bids of higher energy qualities also have
multiple chances of being cleared in subsequent clearings. The CC-H2L,
and CC-H2L-PDA algorithms are a combination of the aforementioned
algorithms and therefore inherit their characteristics.

In summary, the clearing algorithms H2L, L2H, CC-H2L, and
CC-H2L-PDA clear ask bids of higher energy qualities more often than
ask bids of lower quality. In the next section, we analyze the cleared
buy bids.

3.1.3. Cleared user preferences

Fig. 6 shows the shares of buy bids cleared with a specific preference
from each clearing algorithm. PDA and SEP clear all preferences with
equal probabilities since those algorithms treat all energy preferences
equally. All other algorithms clear bids with lower ranked energy pref-
erences more often than bids with higher ranked preferences. However,
the value ranges vary significantly between the clearing algorithms.
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Fig. 6. Shares of buy bids cleared with a certain energy preference. Markers indicate
the mean within a 99 % CI. Each row represents one clearing algorithm.

The markers for the PDA and SEP algorithm are stacked on top of
each other and show that all buy bids are cleared with an equal prob-
ability of 33.3 % independent of their preferences. Clearing algorithm
H2L, CC-H2L, and CC-H2L-PDA indicate that buy bids with higher
energy preferences are cleared slightly less often compared to buy
bids with lower preferences. The ranges vary from 32.2% to 34.2 %.
Clearing algorithms, L2H and CC, amplify this behavior significantly.
Buy bids that ask for local-green energy have a probability of only
16.4 % whereas buyer who do not care about their energy quality would
be matched 2 times more often. This happens because the clearing
algorithm starts to match the bids with the lowest preferences first
with all available ask bids. Buy bids with higher preferences are only
cleared in subsequent steps with the remaining uncleared ask bids.
The CC algorithm shows a similar behavior. However, the range varies
only from 29.2% to 39.1 %. This behavior is the consequence of the
curtailment of unsatisfied buy bids in the CC algorithm.

3.1.4. Prices of cleared energy qualities

Fig. 7 visualizes the weighted average clearing prices for each
clearing algorithm and energy quality. The clearing prices for different
energy qualities are the same at 0.05 ﬁ for the PDA and SEP algo-
rithms. Clearing algorithm CC computes a slightly lower clearing price
of 0.048 —=- because unsatisfied bids are curtailed and the downwards
slope of the demand curve increases which leads to slightly lower
clearing prices. H2L, L2H, CC-H2L, and CC-H2L-PDA algorithms show
a price increase with the rank of energy quality. However, the value
ranges in which the prices rise vary significantly.

In the H2L and CC-H2L clearing algorithms, clearing prices for
the lowest to the highest energy quality vary from 0.048€/kWh to
0.052€/kWh. This range corresponds to a price difference of +4 % com-
pared to the PDA clearing prices. Clearing prices of the CC-H2L-PDA
algorithm show an increase due to the incorporation of price premiums.
The range is slightly larger and goes from 0.053 €/kWh to 0.058 €/kWh.
These results can be explained by the H2L algorithm that clears ask
bids of higher quality with a higher price because of limited ask bids
that can satisfy preferences of the higher quality. Ask bids with the
lowest quality are cleared with the lowest prices of approximately
0.036 €/kWh in the L2H algorithm. This happens because ask bids with
the lowest energy quality are cleared only in one clearing iteration in
which all ask bids are also included, and thereby the supply curve has
the least increasing slope. Clearing prices from the L.2H clearing vary
from 0.036 €/kWh to 0.05€/kWh.
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Fig. 7. Weighted average clearing prices per clearing algorithm and quality. Markers
represent the means with a CI of 99 %. Each row represents one clearing algorithm.

The next section will discuss the implications of those results, their
limitations, and whether the initially formulated key characteristics can
be met.

3.2. Discussion

At the beginning of this section we formulated key requirements a
LEM should satisfy. In this subsection, we discuss whether the presented
clearing algorithms can fulfill those key requirements, what the results
of the Monte Carlo method imply, and what the results’ limits are.

Two of the reasons for introducing LEMs are the satisfaction of user
preferences and the consideration of WTPP (see Section 1). All of the
presented IMCA verifiably satisfy user preferences due to their market
design. WTPP for heterogeneous energy qualities are considered only
in the CC-H2L-PDA algorithm. However, the same method of applying
WTPP in a first stage and then clearing a PDA without them in a
second stage 2.4.2, can be applied to any of the presented LEM clearing
algorithms that verifiably satisfy user preferences. From all investigated
combinations presented in this paper and in lemlab, the CC-H2L-PDA
algorithm showed the best performance.

Another goal is to increase coverage of local demand and local
supply of electricity. The results of the Monte Carlo method showed
that H2L, L2H, CC-H2L, and CC-H2L-PDA algorithms clear offers of
higher energy qualities more often than those of lower qualities. Higher
qualities refer, in our simulations, to local and local-green electricity
generation (see Appendix B). Hence, the aforementioned algorithms
increase the coverage of local demand and supply compared to conven-
tional PDAs, whereas PDA, SEP and CC algorithms clear all qualities
equally. Therefore, market designers should choose a LEM algorithm
that contains the H2L or L2H method, in order to increase coverage of
local supply and demand of electricity.

Price results showed that H2L, L2H, CC-H2L, and CC-H2L-PDA
algorithms calculate a higher clearing price for higher energy qualities
than for lower ones. On the one hand, this characteristic motivates
suppliers to invest in new generation units that generate electricity of
higher qualities. On the other hand, some user behavior studies have
shown that electricity prices are the most decisive selection criterion
for consumers [24,25]. Therefore, price spreads between electricity
qualities and realistic user behavior need to be investigated further.

One of the basic design rules is that a market needs to provide
non-negative gains to its participants and thereby be individually ra-
tional [22,23]. All of our clearing algorithms fulfill this requirement
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because the double auction mechanism is at the core of all presented
algorithms.

A LEM is a real world application that must be tractable for small
communities in a finite amount of time. From the presented market
clearing algorithms, the PDA is the computationally cheapest option. A
single clearing for a PDA with 200 random market bids takes approxi-
mately tpp4 = 0.1 s on an Intel(R) Core(TM) i7-8550U. The execution
time for PP and CC algorithms can be calculated by Eq. (1) and (2).

pp = Nqualities X ’PDA @
tcc = [fppas Mmax,iterations X Tppal (©))

Rqualities 1S the number of distinct electricity qualities and 7,y jterations
the maximal number of while-loop iterations in the CC clearing al-
gorithm. Whereas the execution times of the PDA and PP clearing
algorithms are rather insignificant compared to the current time gran-
ularity of 15 min in electricity markets, the execution time of CC
algorithms potentially is more critical. Due to the iterative while-loop
design, the algorithm’s execution time cannot be precisely calculated.
Only a time range with a lower and upper bound can be provided.
Hence, the choice of 1y, jterations PECOMES a critical design decision due
to its direct impact on the upper bound of execution time. Additionally,
the pure CC algorithm does not clear any bids if the maximum number
of iterations are reached. Therefore, we declare the pure CC algorithm
as potentially intractable for LEMs.

In order to evaluate the scalability of our newly developed clearing
algorithms, we computed a time complexity analysis and summarized
the results in Appendix C. For 10,000 bids the computationally most
expensive clearing algorithm consumes on average only 2 min. Hence,
we assume our clearing algorithms to be scalable for the use case of
LEMs that trade quarter-hourly. More importantly, the time complexity
results of all presented clearing algorithms are subject to a linear
growth rate. Furthermore, we want to point out that our clearing
algorithms do not contain non-deterministic functions and are therefore
reproducible.

Another important property of clearing algorithms is which buy
bids they clear more often. The iterative clearing algorithms clear
buy bids with lower energy preferences more often than those with
higher preferences. This happens because buy bids that request higher
energy qualities have a more restricted pool of possible ask bids to be
matched with. Therefore, a clearing algorithm that considers different
electricity qualities ultimately clears buy bids with preferences for
higher electricity qualities less often. However, the results in 6 indicate
that the impact is not as significant in the H2L as in the L2H. In order
not to motivate buyer to continuously ask for lower energy qualities,
market designers should pay attention to this characteristic.

An essential part of the PP clearing algorithms is the order of energy
qualities. In this paper we used the order na, local, local-green, which
is convenient for a LEM. Nevertheless, the market models and their
designs can be used for other commodities (e.g. heat) with similar
characteristics (interchangeable but heterogeneous) as well. However,
the definition of adequate quality/preference orders that are accepted
by all market participants potentially remains a challenge. A demo-
cratic method to define this order was proposed using a Borda Count
Scores [37].

In summary, the CC-H2L-PDA algorithm fulfills all of the formulated
key characteristics. The algorithm verifiably satisfies heterogeneous
user preferences, incorporates users’ WTPP, increases local coverage of
electricity, is individually rational, and tractable. The other presented
algorithms were important intermediary market designs but lack the
overall performance of the CC-H2L-PDA.

Table 2 summarizes the most important properties of the simulated
clearing algorithms.

The results presented in this section are computed with i.i.d. random
input data with the Monte Carlo method and allow an objective and
unbiased comparison of the clearing algorithms’ key features. This
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Table 2
Key features of the presented auction-based clearing algorithms for a LEM.

Characteristic PDA SEP H2L L2H CC CC-H2L CC-H2L-PDA
Satisfying user preferences No Yes Yes Yes Yes Yes Yes
Considering price premiums No No No No No No Yes
Increasing local coverage No No Yes Yes Yes Yes Yes
Motivate high quality No No Yes Yes Yes Yes Yes
Individual rational Yes Yes Yes Yes Yes Yes Yes
Tractable Yes Yes Yes Yes No Yes Yes

approach was used in order to incorporate the so far unknown and
stochastic user behavior in such a new LEM design. Hence, we as-
sume the Monte Carlo method to be currently the best approach to
analyze the algorithms’ key features. Once user behavior data for such
a LEM design becomes available or can be appropriately modeled,
case studies can be conducted to evaluate the performance of the
clearing algorithms. Nevertheless, the newly designed bidding format
and auction-based market clearing algorithms are ready to be used
for real world implementations of local energy markets and allow
to verifiably satisfy heterogeneous user preferences and users’ WTPP.
Currently, we are implementing the presented clearing algorithms in a
field trial with 20 German households and try to validate the presented
results.

The next section concludes this paper and gives an outlook into
future research goals.

4. Conclusion

Within this paper we introduced a new bidding format, investigated
a variety of auction-based clearing algorithms for local energy markets
and identified the CC-H2L-PDA that verifiably satisfies user preferences
and incorporates users’ willingness to pay a premium for heterogeneous
electricity qualities. Furthermore, this clearing algorithm can increase
coverage of local demand and local supply compared to conventional
periodic double auctions, is individually rational, and tractable. This
clearing algorithm is thereby the first auction-based approach for local
energy markets that coordinates a constantly increasing number of
distributed energy suppliers, consumers, retailers, and incorporates
important user preferences in order to increase the acceptance of
renewable energies and can fuel the advancing energy transition in the
long term.

All presented and evaluated clearing algorithms and the conducted
Monte Carlo simulation are implemented open-source in lemlab and
offer interested parties the opportunity to reuse the implemented meth-
ods for their models, implement their own market models or verify our
results [38]. Topics for future research could include but are not limited
to modeling of realistic user behavior in local energy markets with
heterogeneous energy qualities, a quantitative and qualitative com-
parison similar to [16,47] of our newly developed community-based
clearing algorithms with fully decentralized peer-to-peer and centrally
optimized approaches, and whether the markets can be gamed. Cur-
rently, we are setting up a field trial with 20 households in a German
village where we want to validate our presented algorithms. This is
part of the research project RegHEE - Local Trade of Electricity from
Renewables over a Blockchain Platform and enables us to collect realistic
load, generation profiles, and user behavior data [48].

5. Supplementary materials

All presented market mechanisms were implemented in the open-
source lemlab software project [38]. The source code for all experiments
presented in this publication are available under an open-source licence
in the Github repository.

lemlab is an open-source tool for multi-agent-based development
and testing of LEM applications. Interested parties are invited to clone
our repository and use the toolbox to investigate their research ques-
tions. We explicitly invite collaboration and feedback regarding the
toolbox.
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Appendix A. Mathematical formulations

This section provides mathematical formulations of the clearing
algorithms. In the first part of this section we introduce relevant
sets. Subsequent subsections show mathematical formulations of the
presented clearing algorithms.

S ={1,2,..., Ng} refers to the set of all sellersand B = {1,2, ..., N}
to the set of all buyers. d represents an energy demand and s an energy
supply. O = {1,2,...,0,,,.} is the set of all energy qualities, M =
{1,2,...,n,z} the subset of all matched buyers, My = {1,2,...,n,g} of
all matched suppliers, Uy = {1,2,...,n,p} the subset of all unmatched
buyers, and Ug = {1,2,...,n,g} the subset of all unmatched suppliers.
Consequently, Mg,Ug C .S and Mz, Up C B.

A.1. Periodic double auction
Mathematically, social welfare SW is formulated by the sum of the

bidders’ utility U minus the sum of producers’ costs C [12]. The goal
of a PDA is to maximize social welfare (see Eq. (A.1)).

NmB s
max SWpps = Y, Ui(d) = D C;(s;) (A1)
i=1 j=1
s.t
Nmp s
di=Ys; (A.2)

i J
1

i J

VieMp and je Mg
A.2. Check and curtail

Mathematically, the CC clearing algorithm can be formulated as a
social welfare maximization problem. We maximize social welfare in
equation while satisfying buy bids with ask bids of equal or higher
energy quality (see Eq. (A.3)). We ensure with the binary variable «
that an ask bid is only matched once with a buy bid (see Eq. (A.5).
Eq. (A.4) ensures that matched buy bids with a preference p are satisfied
with supplies that offer a quality ¢ that is equal or higher than the
preference.

Omax [ "mB s
max SWee = ) <2 i)~ 2 (s,q> (A.3)
q=1 i=1
s.t.
Nmp Qpax "ms
DILVEDIPIHY A4
g=p j=1
Opax
(A.5)

PEFES
p=1

VieMp and je Mg and pgeQ and ae€ {01}
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A.3. Preference prioritization

Mathematically, we formulate the PP clearing algorithm as a series
of social welfare maximization for every energy quality preference (see
Eq. (A.6) to (A.8)).

B Oumax Mms

max SW, = U, d,)~ Y, Z 2550 (A.6)
i=1 q=py j=
nmB OQmax Mus

max SW, = D Uy, (d, )= 20 D Coulsy, (A7)
i=1 q=pw u=1
nmB Omax Mus

max SW, = U, (d;, )= ' 3" Cplsy.) (A.8)
i=1 q=px u=1

VieMg and jeMg and ueUg and pgeQ

In a first step, the algorithm maximizes social welfare for all buy
bids that ask for preference p, and ask bids that have the energy quality
g = p, or higher. Then, all matched and unmatched bids are extracted.
In a second iteration, the algorithm clears buy bids of preference p,,
with ask bids that provide the energy quality ¢ = p,, or higher and are
unmatched which is indicated by the index u.

Appendix B. Monte Carlo simulation — setup

In this section we describe the randomly generated input data,
the extracted key outcomes of the clearing algorithms, the computing
environment, and calculate how many Monte Carlo simulations are
necessary to approximate the outcomes within a given CI.

B.1. Input data

The general idea of the Monte Carlo method is to approximate an
outcome of a model or a function by inserting i.i.d. random input data
and averaging the outcomes over all simulations. In order to compare
the outcomes of all clearing algorithms, the same randomly generated
input data is used for each of the clearing algorithms. Table B.3
summarizes all randomly varied input data, their value ranges and
corresponding units.

In this simulation, we use the set of qualities 0 = {1 : na,2 :
na,3 : local-green}. Other qualities such as “green” could be considered
as well. However, some algorithms benefit from the fact that we can
assign ask bids of higher quality to buy bids of the same or lower
energy quality preferences. In order to do so high energy qualities must
include their lower ones. Since green energy could be produced locally
or non-locally, this label cannot be considered in such a hierarchy.
Therefore, we have only limited ourselves to this subset of qualities. A
more elaborate description of what the different parameters represent
can be found in Section 2.1. A total of 200 market bids was inserted
into each market clearing to simulate a reasonably sized LEM.

Table B.3

Variables and corresponding value ranges for the Monte Carlo simulations. U() refers
to a uniform distribution in the provided value range. The quality,,,,, set represents
the order of qualities with na being the lowest quality and local-green being the highest
electricity quality.

Parameter Value range Unit
typepiq {buy, ask} -
AMVenergy U(1,1000) Wh
PriCCenergy U(0.02,0.08) €/kWh
qualityenergy {na,local,local — green} -
WIPPquality U(0,50) %
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Table B.4
Extracted key parameters from market results.

Key parameter Description

G Yicaded Quantity traded

Priceyqyg Weighted average clearing price

wel fare Welfare (producer plus consumer surplus)

share,g qq Share of ask bids cleared with a specific quality
shareyy qq Share of buy bids cleared with a specific preference
Pricequaliry Weighted average clearing prices per quality

B.2. Extraction of key parameters

In order to evaluate whether the clearing algorithms fulfill the
formulated key characteristics, we extract a variety of key parameters
from the market results and average them according to the Monte Carlo
method. Table B.4 provides a list of all extracted key parameters.

qtYiraded 18 the total amount of cleared energy quantity and price,,ayg
the weighted average clearing price over all cleared market bids.
wel fare is the sum of consumer and producer surplus. share,g (g Tefer
to the shares of buy and ask bids cleared with a specific preference
or quality label. pricequa, are the prices paid for certain electricity
qualities.

B.3. Number of simulations

After defining all input variables and key outcomes, we calculate
the necessary number of simulations to get a “good” estimate of the
outcomes with Eq. (B.1).

N><a*z)2
- €

(B.1)

N represents the number of simulations one needs to perform in
order to achieve a certain accuracy (¢) for an expected value with a
standard deviation (¢). z represents the z-score of the CI of a normal
distribution.

Before we calculate the number of simulations, we need to compute
the standard deviations (o) of the expected outcomes, define a desired
accuracy, and a CL. ¢ is calculated by the outcomes of a small Monte
Carlo simulation (e.g., with 100 simulations). The accuracy ¢ must
be set to a value of the same unit as the standard deviation. In this
simulation, we set the accuracy level to one percent of the calculated
averages from the small Monte Carlo simulation. Furthermore, we
choose a z-score of 2.58 which corresponds to a CI of 99 %.

Inserting o, €, and the z-score into Eq. (B.1) for each computed
outcome from each of the seven clearing algorithm leads to a variety
of necessary simulations. The numbers of simulations vary from 172 to
8922. In order to fulfill the desired accuracy and confidence level for all
outcomes, we compute a total of 10,000 simulations for each clearing
algorithm.

B.4. Computing environment

The clearing algorithms and the described Monte Carlo simulation
setup are implemented in Python as part of the lemlab toolbox [38].
For the generation of i.i.d. random input variables, we use the Python
built-in, pseudo-random number generator random. Furthermore, we
simulate the clearing simulations in parallel with the help of the mul-
tiprocessing library on a computer with an Intel(R) Core(TM) i7-3930K
with 6 cores and 48 GB of random-access memory (RAM).
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Fig. C.8. Results of the time complexity analysis for the seven clearing algorithms.
The number of bids were increased from 10 to 10,010 bids with a step size of 500.
The visualized results show the average from 100 samples for each number of bids.

Appendix C. Time complexity analysis

In this section we describe the results of a time complexity anal-
ysis in order to analyze the computing time of our newly developed
auction-based clearing algorithms with an increasing number of inputs.
The analysis was implemented in lemlab where all market clearing
algorithms are available as an open-source project.

We inserted a linearly increasing number of bids from 10 to 10,010
with a step size of 500. Furthermore, we generated 100 samples for
every number of bids and plotted their average in C.8. A high sample
size is necessary because the CC clearing algorithm is not only depen-
dent on the number of bids but also on the inserted user preferences
and available energy qualities, which have a significant impact on the
computing time.

For up to 10,000 bids the PDA needs only 0.15s and the PP clearing
algorithms up to 0.32s of computing time. The fluctuating results of
the CC, CC-H2L, and CC-H2L-PDA clearing algorithms indicate that the
number of samples might not have been sufficiently high in order to
even out the computing time’s dependency on the user preferences and
energy qualities of the bids. More importantly, the computing times of
all clearing algorithms show a linear growth rate and can be described
with the big O notation O(n) where n is the number of inserted bids.

Appendix D. Acronyms

LEM Local Energy Market

WTPP Willingness To Pay a Premium
IPCC Intergovermental Panel on Climate Change
RES Renewable Energy Source
DES Decentralized Energy System
DER Distributed Energy Resource
p2p Peer-to-Peer

MEM Microgrid Energy Market

FPP Federated Power Plant

CDA Continuous Double Auction
PDA Periodic Double Auction

IR Individual Rationality
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IMCA Iterative Market Clearing Algorithm

PP Preference Prioritization clearing algorithms

SEP Preference Separation clearing algorithm

L2H Lowest-to-Highest clearing algorithm

H2L Highest-to-Lowest clearing algorithm

CC Check and Curtail clearing algorithm

CC-H2L Check and Curtail combined with Highest-to-Lowest
clearing algorithm

CC-H2L-PDA Check and Curtail combined with Highest-to-Lowest

CI

SLLN

ii.d.

and Periodic Double Auction clearing algorithm
Confidence Interval
Strong Law of Large Numbers

independent and identically distributed
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2.2 Evaluating the added value of blockchains

Scientific context

After the introduction of the blockchain technology and the rising interest among energy
researchers and experts, the energy industry and academia began to discuss whether the
blockchain technology could become a chance for consumers to be empowered and fur-
ther liberalized in energy systems [27]. Blockchain properties were described that chal-
lenged the need for utilities and described more than 90 potential use cases in the energy
sector [28, 29].

Scientific articles with blockchain use cases in energy-related applications were first
published in 2013 by Dimitriou and Karame proposing to use Bitcoins to reward partici-
pants in a smart grid for the execution of certain tasks [24]. Bitcoins refer to the inherent
digital currency of the first blockchain network implementation of the same name. A year
later, Mihaylov et al. suggested to use a similar blockchain protocol to reward the feed-in
of VRE with digital coins and to trade them in smart grids [26]. Similarly, Al Kawasmi
et al. came up with the idea to use the Bitcoin protocol and its digital currency to trade
CO,-emission certificates [23]. Although these articles represent innovative and vision-
ary ideas at that time, blockchain technology attracted significantly more attention among
energy researchers and experts after the introduction of the Ethereum blockchain in 2015.
For the first time, the Ethereum blockchain allowed to deploy programmable scripts on a
blockchain, permitting to modify the state of a blockchain in a more sophisticated fashion
[75].

Since the introduction of smart contracts in 2015, the number of scientific publica-
tions investigating blockchain use cases in the energy sector grew annually [76, 77, 78].
Scientific papers discussing LEMs and blockchains focus on demonstrating the feasibility
with a variety of blockchain protocols such as Tendermint [79], Ethereum [80, 81], Hy-
perledger [82], or proprietary blockchains [83]. Other articles present comparisons with
a variety of consensus mechanisms [84, 85] or implemented the functionality off-chain
and used the blockchain to represent monetary values or to store market results [86, 87,
88, 89].

Only few articles include community-based LEMs on a blockchain and performance
or scalability analyses. Han et al. and Son et al. present a brief analysis of a blockchain
setup and visualize the throughput, latency, and computational expenses of the market
clearing [90, 91]. Vieira etal. and Tsaousoglou et al. present an analysis of varying market
clearing algorithms on a blockchain but do not assess the added value of the technology
itself [92, 93]. Other papers conduct economic analyses of their implementations [88, 94].

In summary, the literature so far lacks an objective evaluation based on technology-
independent infrastructure requirements of the added value of blockchain-based LEM
implementations compared to centralized setups. Hence, the hypothesis that blockchain
technology could be a chance for consumers and prosumers and can empower them in
the context of LEMs has so far not been investigated.
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Contribution

The article presented in this section analyzes whether the blockchain technology can em-
power and further liberalize consumers and prosumers by enabling them to host their
own community-based LEM applications.

For a comparative evaluation, the developed library of market clearing algorithms in-
troduced in section 2.1 is used as a central reference implementation. Additionally, the
same functionality of the market clearing and settlement for a PDA was implemented in
the form of smart contracts on an Ethereum blockchain network. To feed both systems
with variable input data and to test balancing energy functions, a market bid and meter-
ing data generator was used (see figure 2.1). The code of the centralized and blockchain-
based LEM implementations is publicly available as part of the open-source project lemlab
[32]. Furthermore, the article contains technology-independent LEM-specific infrastruc-
ture requirements that are used to objectively compare essential features of a LEM such
as data privacy and scalability.
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Figure 2.1: Schematic of the experimental test setup for the blockchain-based and centralized LEM imple-
mentation. Figure was taken from [95] and graphically edited.

To evaluate the performance of both systems, we designed and implemented a com-
parative performance analysis for the centralized and blockchain-based LEM implemen-
tation. We inserted an increasing number of market bids into both implementations and
measured the execution time of each market function. Market functions refer in this con-
text to the posting of bids, clearing, logging of meter readings, and settlement. Further-
more, we qualitatively evaluated the technology-independent LEM-specific infrastruc-
ture requirements.

The results presented in the paper show that blockchain promises of a decentralized
and transparently managed infrastructure can only be realized to a limited extent for
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community-based LEMs. The presented blockchain-based implementation is reliable, but
requires more than 140 times the computation time compared to a centralized implemen-
tation, and cannot fulfill data security requirements such as closed-order books and pro-
tect personal metering data. Only the tamper resistance, which is a consequence of the
consensus mechanism, represents a significant added value that comparable centralized
implementations cannot similarly provide. In conclusion, blockchain technology at its
current stage of development does not add sufficient value to LEMs that could empower
consumers and prosumers to host their own energy trading application.
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1 | INTRODUCTION
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Abstract

The continuous decentralisation of the energy system due to the expansion of renewable
energies requires new coordination mechanisms such as Local Energy Markets (LEMs)
that are capable of integrating millions of prosumers as active participants. Since the end
of the 2010s, the blockchain technology has been discussed as a potential infrastructure
for LEMs and as a potential game-changer in the energy industry. In this work, the
authors introduce LEM specific technology-independent infrastructure requirements,
present a Solidity and Python toolbox that allows to compute a comparative performance
analysis between a blockchain-based and a central LEM and evaluate the added value of a
blockchain-based implementation compared to a conventional reference implementation.
Simulations of a LEM with a periodic double auction and settlement showed that a
blockchain-based LEM operation requites more than 140 times the computation time
compared to a centralised implementation and cannot fulfil data security requirements.
Thus, the authors find that blockchain technology in its current state of development
does not add significant value to LEMs. All implemented programmes are published in
the open-source project lemlab as part of the research project RegHEE.

(VPP), letting prosumers trade among each other in Peer-to-
Peer (P2P) or coordinated Local Energy Matkets (LEMs), or

Our energy system is continuously transforming from a
formerly centralised system with few fossil-fuelled and nuclear
power plants to a renewable, distributed, and volatile energy
system consisting of millions of participants [1]. Consumers
become prosumers and legislation empowers individual
households to become an active part of the energy transition [2].

However, the conventional coordination mechanisms used
to manage a relatively small number of fossil-fuelled power
plants are not-transferable to millions of non-professional
prosumer households [3]. Therefore, we need new coordina-
tion mechanisms that are capable of integrating millions of
prosumers as active participants into our energy system.
Recent research has investigated ideas such as aggregating
single households and marketing their surplus or deficits on
wholesale markets, operating them as Virtual Power Plant

centrally optimising their control. As nations realise the ne-
cessity for new ways of coordination, they start to incentivise,
enable, or fund various variants of the aforementioned ideas
[2, 4]. In this work, we focus on auction-based LEMs. LEMs
allow prosumers to trade their energy surpluses and deficits
locally, to react to external signals such as prices, thereby
making them an active part of the energy system [5]. At the
same time, LEMs do not necessarily require prosumers to
disclose too much personal data and can enable grid operators
to maintain grid stability [6].

Towards the end of the 2010s, researchers and the energy
industry started to discuss whether the blockchain technology
could provide significant benefits to LEMs while at the same
time being transparent, automated, and completely decentral-
ised [7]. Immediately following the launch of the Ethereum
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blockchain in 2015 and the introduction of smart contracts, a
study was published by PricewaterhouseCoopers summarising
the potential opportunities of lower transaction costs, trans-
parency, and the ability to become electricity or service pro-
viders for prosumers and consumers [8]. In the same year, the
German energy agency Dena conducted a survey among
managers of the energy industry and found that half of the 70
managers interviewed were already experimenting with block-
chains or planning to and 21% said that blockchain would
become a ‘game changer’ in the energy industry [9]. In 2018,
the Forschungsstelle fiir Energiewirtschaft characterised
blockchain as tamper proof, reliable, transparent, highly auto-
matable, and easily accessible and identified 91 potential use
cases in the energy sector [10]. The first scientific papers on
blockchains from an energy perspective investigated the po-
tential in microgrid exchanges [11], P2P electricity trading
among hybrid electric vehicles [12], and among neighbours [13,
14]. The number of scientific publications has since increased
year by yeatr [15-17]. For a detailed description of blockchain
technology, see section Blockchain technology of the appendix.

Most papers investigating auction-based LEMs in a
blockchain network demonstrated their feasibility on different
kinds of blockchains such as Tendermint [18], Ethereum
[19, 20], Hypetledger [21], proprietary blockchains [22], or
compared different consensus mechanisms [23, 24]. Other
papers described off-chain market-clearing algorithms, using
the blockchain only to represent monetary values or to store
market results [25-28]. Off-chain refers to a centralised system
hosted by a single entity that retrieves data from the blockchain
(on-chain), processes it on its own system, and then returns the
results to the blockchain in order to reduce the computational
complexity on-chain. Troncia et al. implemented different
variants of LEMs on a blockchain that considered network
constraints and compared them to an optimal power flow
result [29]. Meeuw et al. compared and evaluated smart grid
communication technologies for blockchain applications [30]
and Christidis et al. analysed how market positions are effi-
ciently encrypted on a blockchain so that closed-order book
LEMs are possible [31].

Narrowing the search to papers that include an auction-
based LEM on a blockchain and a performance or scalability
analysis, we find papers such as Han et al. that present the
throughput, latency, and computational expenses of a single
setup [32, 33] or of functionally differing algorithms [34, 35].
Other papers conduct economic analyses of their imple-
mentations [27, 36]. However, no publication was found that
includes an auction-based LEM on a blockchain, compares its
performance to a centralised system, and assesses the actual
added value of blockchains to LEMs based on application-
specific infrastructure requirements.

Therefore, this paper addresses the above-mentioned
research gap by investigating whether a blockchain-based
implementation adds significant value to auction-based
LEMs in comparison to a centralised implementation. Within
this paper, we introduce application-specific infrastructure re-
quirements for LEMs, present an open-source evaluation
and  blockchain-based LEM

toolbox for centralised

applications, discuss the results of a comparative performance
analysis, and evaluate whether the implementations under
investigation can fulfil the introduced requirements.

The paper is structured as follows. Section 2 introduces the
application-specific infrastructure requirements for LEMs
while section 3 describes the experimental setup of the eval-
uation toolbox with the blockchain-based and centralised LEM
implementations. Section 4 presents the results of the
comparative performance analysis, which are discussed in
section 5. Finally, section 6 puts the findings of this paper into
a broader perspective.

2 | INFRASTRUCTURE
REQUIREMENTS FOR LOCAL ENERGY
MARKETS

Recent technological advancements such as the blockchain
technology, machine learning, Internet of things, or artificial
intelligence allow us to design new systems or re-implement
existing systems in new ways. Despite these new possibilities,
we must define requirements for LEMs that need to be fulfiled
by any infrastructure or algorithm that handles personal data
and is connected to our energy system (see [35, 37, 38]). We
summarise  technology-independent  infrastructure  re-
quirements that are in our opinion essential for LEMs in the

following paragraphs.

2.1 | Reliability

A reliable software can be described by the probability of
failure-free operation [39]. Applied to a LEM, we can define a
‘failure-free’ operation as the availability of the LEM for pro-
sumers, grid and market operators, as well as the correct
processing of data.

2.2 | Scalability

A scalable system ensures that a given quality of service is
maintained as data input increases [40]. A LEM, for example,
must fulfil temporal requirements such as a 15 min market
interval. In addition, a scalable infrastructure must provide
developers with the ability to implement the necessary func-
tions has an only open-source community that improves and

documents functionalities and bottlenecks, and, ideally, pro-
vides pre-built libraries for efficient implementations.

2.3 | Data security

An executing infrastructure must comply with existing data
protection regulations, depending on the data processed. In the
case of a LEM, we process personal data in the form of ac-
count balances, market positions, and meter readings, which
requires the infrastructure to comply, for example, in Europe



ZADE ET AL.

| 3

with the General Data Protection Regulation (GDPR). Market
positions refer to a tuple of quantity and price placed by
prosumers on LEMs in order to express their willingness to
buy or sell energy. In addition, closed-order book auctions
such as a Periodic Double Auction (PDA) require that market
positions must be kept concealed in order to prevent gaming.
Gaming refers to agent strategies that depend on the expected
decisions of other agents [41] and potentially manipulate a
market.

2.4 | Tamper resistance

The infrastructure must ensure that stored data cannot be
manipulated, is trustworthy and should automatically detect
manipulations [37]. Optimally, the validity of the data can be
confirmed by anyone.

2.5 | Low operating costs

When considering LEMs for prosumers that trade on an hourly
or quarter-hourly basis with traded volumes of a few 100 Wh, it
is important that the operating costs of the platform do not
significantly influence the incentive to participate in LEMs.

3 | EVALUATION TOOLBOX

In order to objectively compare a blockchain-based and cen-
tralised LEM, we built the comparative performance analysis
toolbox for lemlab. The functional and implemented software

components of the toolbox are described in the following
subsections. Figure 1 visualises the functional components of
the evaluation toolbox. The toolbox consists of a prosumer
simulation, a blockchain-based, and a centralised LEM imple-
mentation. The performance analysis module is not visualised
but accesses the results on the blockchain and the centralised
database. The following subsections describe the functional
LEM modules, implemented connector classes, used block-
chain and central database configuration, and prosumer
simulation.

3.1 | Local energy market functions

This section describes the main functions of the LEM from
user management to market clearing and settlement. This
description is technology independent since it has been
mirrored on both systems.

3.1.1 | User and meter management

Before a user can participate in a LEM, a user account
needs to be created, labelled, and linked to corresponding
meters and their Home Energy Management Systems
(HEMSs). HEMSs refer to a smart home device that col-
lects data from the household, retrieves forecasts, has a web
interface to the user, optimises operating strategies, acts on a
LEM on behalf of the household, and controls the house-
hold devices accordingly. During operation it may be
necessary to add new users or meters, to edit, or delete
existing ones. Additionally, users and market operators must
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overview of the toolbox but accesses the results on the blockchain and the central database
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be able to access and alter their data on the LEM. The
functions that manage user accounts and meters are nor-
mally executed only when a user is added or if unexpected
events happen that influence user accounts (e.g. a replaced
meter).

3.1.2 | Market clearing

The main goal of a LEM is to match supply and demand
energy locally between prosumers. However, different ap-
proaches exist which differ greatly and can be distinguished
by their market-clearing time. If a LEM is cleared before the
energy is exchanged between LEM participants, we talk about
an ex-ante clearing. For an ex-ante clearing, we need feed-in
and consumption forecasts and a settlement that calculates
differences between market results and meter readings. A
LEM that clears energy after it has been exchanged is called
an ex-post clearing and does not require any forecasts. In this
context, we will often talk about the time of delivery that
refers to the starting point of the energy exchange petiod.
The toolbox presented in this paper contains an ex-ante
clearing but can be easily extended to incorporate ex-post
clearings.

Market-clearing algorithms can be further distinguished by
the clearing mechanism. In the literature, we often find a
Continuous Double Auction (CDA) that clears the market
whenever new market positions are placed on the LEM or a
PDA that clears the market at pre-defined intervals [42]. Since
CDAs discriminate prosumers with slower internet connec-
tions and motivate high-frequency trading [43], we imple-
mented a standard PDA in the LEM toolbox that clears in
quarter-houtly intervals market positions based on their
quantity and price. Market positions are placed by market
agents that trade energy on LEMs on behalf of prosumer
households.

In summary, the market-clearing functions read stored
market positions, compute a sorted ascending supply and a
descending demand curve, find the intersection of the two,
calculate a uniform clearing price, label cleared positions, and
store them.

3.1.3 | Settlement

After the ex-ante market clearing and the exchange of energy
took place for a specific time of delivery, the LEM needs to
be settled. Settling a market refers to functions that are
executed after meter readings are transferred to the LEM.
After the arrival of meter readings, balancing energies can be
calculated for each user. Balancing energy refers to the dif-
ferences between market results and measured energy con-
sumption and feed-in. Based on balancing energies user
accounts are credited or debited by the appropriate amounts.
Finally, price components such as grid fees and taxes are

applied.

3.1.4 | TLabelling

Labels in a LEM offer prosumers information about the origin
of their consumed electricity and ideally motivate consumers to
consume more climate-neutral and less fossil-fuelled energy
(see [44]). In the evaluation toolbox presented in this paper, the
labelling of energy quantities is implemented in all of the
aforementioned LEM functions as pre-defined energy quali-
ties. Energy qualities refer to labels such as green, local, or
local-green electricity but can be easily replaced by any other
label type.

During a user registration, each meter that measures energy
feed-in is labelled with a specific energy quality. Whenever
prosumers wish to sell energy from or to the LEM, market
agents on behalf of their prosumer households place ask po-
sitions with the quality labels of their meters on the LEM.
After the PDA, cleared energy qualities can then be labelled
based on the shares of the cleared ask positions. Finally, set-
tlement functions label balancing energies based on the actual
shares exchanged in the LEM or as an unknown energy quality.

3.2 | Local energy market connectors

In order to interact with the central database and the block-
chain infrastructure, we implemented two Python classes that
abstract all interactions with the two database infrastructures
for the LEM user. These connectors retrieve data from the
databases, trigger functions in smart contracts, and wait for
transaction receipts in order to ensure a completed execution.

3.3 | Ethereum blockchain

This subsection describes all components that are necessary to
implement a LEM on a private or consortium Ethereum
blockchain. The words private and consortium indicate the
accessibility and operation type of the blockchain network.
Private blockchains are operated and useable only by a ho-
mogeneous group such as a company, whereas consortium
blockchains are operated and managed by a variety of groups
or institutions [45].

As this paper focusses on the implementation of a LEM
application, we used a private blockchain with a Proof-of-
Authority (PoA) consensus mechanism. This setup allows us
to have an insignificant energy demand, to minimise external
influences, and to modify the blockchain's parameters ac-
cording to our will (see [24]). We set up two Linux machines as
block validators, signing blocks every 5 s. To allow LEM ex-
ecutions with more than a hundred market positions, we set
the block gas limit to 1.5 billion gas. All connected nodes use
OpenEthereum clients that establish the connection to the
network.

In Ethereum, all functions are implemented in smart
contracts. The following paragraphs summarise their func-
tional scope.
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ClearingExAnte: the contract contains all functions for the
market clearing and stores static and dynamic user data. Static
user data refer to users' identifiers on the platform and their
related meters. Dynamic user data refer to their placed market
positions. As for the clearing functionality, we implemented
functions that sort all placed market positions, filter them by
their time of delivery, calculate a market-clearing price, calcu-
late the cleared energy qualities, and update user balances. In
addition, the contract contains functions to add, edit, or
remove users and meters, and to place market positions.

Settlement: functions that are executed after energy has
been exchanged between LEM users and meter readings are
available. In this contract, we store all meter readings,
balancing energies, and settlement prices in a ‘rolling horizon
array’ for a configurable number of timesteps. The rolling
horizon approach allows us to keep the storage consumption
to a minimum. Past data can be accessed via past blocks.
Furthermore, this contract is linked to the ClearingExAnte
contract at deployment in order to access market results and
user data.

Sorting, Param, and LEMLib: in addition to the core
modules ClearingExAnte and Settlement, we implemented a
variety of reusable subcontracts that contain static LEM pa-
rameters, data structures for exchanged and stored informa-
tion, sorting algorithms, and a variety of array functions, for
example, finding the minimal and maximal value of an array.
Especially, the sorting library with implementations of
quick_sort, counting sort, and insertion_sort offers a variety
of different sorting algorithms in Solidity. These functions atre
implemented in the contracts Sorting, Param, and LEMLib.

3.4 | Central database

Our central reference database setup is a relational database
implemented as a PostgreSQL server. On this server, we set up
roles for market operators and users who have different
reading and writing privileges on the different tables. Features
such as composite keys and upsert statements are used in order
to prevent data collisions. Multiple tables store LEM data
ranging from static user and meter information to dynamic
market positions and results, meter readings, balancing en-
ergies, and settlement prices. The number of tables increases if
additional market-clearing variants are executed in parallel.

3.5 | Prosumer

In a real-world setting, a prosumer would need to be equipped
with a HEMS that acts on the LEM on behalf of the prosumer,
and a smart meter to reliably transmit verified meter readings to
the platform. Such a prosumer configuration is set up in a
German field trial with 17 households as part of the research
project RegHEE—ILocal Trade of Renewable Energies and
Labelling on a Blockchain Platform [46]. As the focus of this
paper is not to precisely model prosumer behaviour but to
analyse whether the LEM requirements can be fulfiled by a

blockchain-based LEM and a centralised approach, we simulated
prosumer inputs in a data generator arbitrarily (see Figure 1).

During market initialisation, we generate a pre-defined
number of user accounts and associated smart meters and
register them on the two LEM platforms. Afterwards, the bid
generator creates a random set of market positions based on
parameter ranges given in Table 1 and pushes them into the
two LEMs. After the ex-ante market clearing is completed, the
data generator retrieves the market-clearing results from
the LEM platforms, adds or subtracts an arbitrary value from
the market results and reinserts these values as meter readings
to the platform. The arbitrary values simulate deviations from
the market results. In order to generate independent and
identically distributed (i.i.d.) random data samples, we used the
numpy package random.

4 | COMPARATIVE PERFORMANCE
ANALYSIS

This section presents a quantitative performance evaluation of
the decentral blockchain-based LEM and the central database
LEM. After briefly describing the setup of the analysis, we will
present the results of the analysis in three parts: an equality
check, a time complexity analysis, and a computational effort
analysis of the blockchain-based LEM. The script to conduct
this or similar analyses is publicly available in the open-source
project lemlab [47].

4.1 | Configuration

For this performance analysis, we implemented automated test
cases that insert a random set of market bids, clear the cen-
tralised and blockchain-based LEM using the same market
positions, simulate meter readings with arbitrary deviations
from the market results, and settle the central and blockchain-
based LEMs according to the meter readings. These test cases
were executed for 50 to 550 market positions with an incre-
ment of 50. The maximum number of 550 inserted market
positions is a direct consequence of the set block gas limit of
1.5 billion gas. The block gas limit refers to the maximum
number of operations, measured in Ethereum's own compu-
tational currency gas, that can be inserted into a block to
ensure a decentralised consensus mechanism. In each test, we
measure the execution time for position placement, market
clearing, logging of meter readings, and market settlement.
Additionally, we measure the gas consumption and compare

TABLE 1 Parameters used in the comparative performance analysis
to simulate prosumer buy and ask bids on the LEM

Parameter Value range Unit
type {buy, sell} -

qty U(1, 1000) Wh
price U(.2, 0.1) €/kWh
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whether the results of the two markets are equivalent. All test
cases and market position placements are executed from a
single computer that is connected to the institute's Local Area
Network (LAN). The two blockchain authorities and the
central database server are connected to the same network. In
otder to reduce the impact of blockchain node instabilities and
network loads, we executed all test cases 10 times and restart a
test in case of connection problems. Hence, a total of 110
simulations in approximately 22 h were executed for this
analysis.

4.2 | Equivalence analysis

Before we compare the computation time of the blockchain-
based and central LEM, we need to ensure that both imple-
mentations computed equivalent results. However, equivalent
results must be defined first. Since the PDA only sorts market
positions by price, it is possible that positions from different
users but of the same type and price lead to different results on
two different systems because the sorting might place one
position before the other. Even though, the results are not
equal they can be considered equivalent and valid as long as
they maximise social welfare and ensure individual rationality.
Therefore, we considered market results equivalent if they
cleared an equal social welfare. Social welfare is defined as the
area enclosed by the supply and demand curve and the y-axis
[48]. All 110 simulated test cases resulted in equivalent market-
clearing results. Thus, we have demonstrated that a blockchain-
based LEM is capable of computing equivalent results to a
centralised implementation.

4.3 | Time complexity analysis

In this subsection, we present the results of the time
complexity analysis. In a time complexity analysis, we insert an
increasing amount of data into our function under investiga-
tion and measute the times basic operations are executed or
the wall clock time the algorithm under investigation requitres
to process inserted data. In a blockchain setup, we need to
consider a significant amount of time to wait for transaction
receipts that ensure the correct processing of the data.
Therefore, a pure consideration of the basic operations would
be insufficient. Hence, we assume wall clock measurements of
a time complexity analysis with 10 simulations of the same
experimental setup and visualising the distribution of those
measurements as a reasonably accurate approach to evaluate
and compare the performance of the centralised and
blockchain-based LEM. We acknowledge that wall clock
measurements are dependent on the network load and the
executing machine. Therefore, we limited the blockchain
network load as much as possible by only executing LEM-
related transactions during the experiment. These measure-
ments are then used to evaluate the performance and scalability
of the two LEM implementations.

Figure 2 shows the computation time of the centralised and
blockchain-based LEM. The measurements include the time to
post the market positions on the LEM, calculate a market-
clearing price, log meter readings, and settle the LEM.
Additionally, we calculated the ratio of the means of the
computation times for each number of inserted positions. All
shown data points were fitted with polynomials from the
numpy polyfit library. Coefficients and residuals for the fitting
curves are summarised in Table Al.

Since both versions of LEM are triggered and run on
the same computer, the results depend on the computer's
petformance. As the simulations ran for approximately 22 h
inside the institute's internal network, we were not able to
exclude all peripheral network load effects. However, the
spreads of results across the 10 samples in Figure 2 show
that most peripheral network load effects were within
insignificant ranges and allow us to use our timing results as
reasonable comparative parameters. The centralised LEM
takes 0.65 s to process 50 and 2.3 s for 550 market
bids. The green dotted curve represents a second-order
polynomial.

The blockchain-based LEM processes 50 bids in 94 s and
550 bids in 1343 s on average. The blue dotted curve is a
second-order polynomial. Diamond markers in Figure 2 visu-
alise the ratio between the mean blockchain-based and cen-
tralised LEM computation times and allow us to quantify the
performance of the two algorithms independent of the
executing machine's performance. We see that the computation
time for 50 bids is 144 times and, for 550 bids, it is 583 times
larger than on the blockchain-based LEM.

Since the calculation time for 450 entered market positions
already exceeds a 15 min market interval, we consider the
entered number of market positions to be sufficient to evaluate
the usability of a blockchain-based LEM in a realistic
environment.

Furthermore, we analysed which functions require the
most computation time and visualised the percentage of
computation time for the centralised and blockchain-based
LEM in Figure 3. In the case of the central LEM, the
computation shares stay almost constant from 50 to 550
inserted bids. Posting bids consumes from 2.6% to 5.5%,
logging meter readings less than 1%, clearing the market
41%—44%, and settling the market 52%-56% of the
computation time on the central LEM. On the blockchain-
based LEM, the shares shift from the lowest to the highest
amount of inserted bids significantly. The share for market
clearing increases from 38% for 50 inserted bids to 58% for
550 bids. At the same time, the share for the market settle-
ment decreases from 53% for 50 bids inserted to 37% for
550 bids. Posting bids and logging meter readings stay in the
ranges from 5% to 1% of the computation time.

Based on these results, the blockchain-based market-
clearing algorithm should be the first to be investigated in
terms of its optimisation potential. The appendix contains the
results of the Ethereum-specific gas consumption (see
Figure Al).
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5 | DISCUSSION As mentioned in section 4.2, we were able to compute

equivalent results on the blockchain-based and central LEM.
We will first discuss whether both implementations meet the Hence, we conclude that both implementations are reliable in
LEM specific infrastructure requirements introduced in sec- terms of correct data processing. It is worth mentioning that this

tion 2 before putting the results in a broader perspective. correct data processing was only possible with the help of



8 |

ZADE ET AL.

waiting periods for transaction receipts that increased the overall
computation time extensively and made the wall time mea-
surements necessary for the time complexity analysis. In addi-
tion, the blockchain-based LEM did not prove to be
continuously available during the analysis because the block-
chain node lost frequently the connection to the network and
needed to be restarted due to unidentifiable synchronisation
problems. On the other hand, the central LEM did not cause any
connection problems during our analysis. Hence, we conclude
that the blockchain-based LEM is less reliable for a continuous
operation compated to a centralised implementation.

As the open-source project lemlab shows, a LEM is pro-
grammable and deployable on an Ethereum blockchain
network. The results of the performance analysis indicate that
the implemented blockchain-based LEM is scalable up to 400
bids in a time of less than 900 s, which would correspond to a
15-min market interval. Further improvements in the code can
potentially increase the number of processable market posi-
tions in both implementations but we do not expect the rela-
tive difference of computation times to be significantly
affected. Therefore, we conclude that the blockchain-based
LEM is limited in its scalability and would likely not allow
the use of advanced market-clearing algorithms such as opti-
misation functions. The central LEM processed 550 market
positions in less than 3 s and single experiments showed that
10,000 market positions can be processed in less than 5 min.
Noteworthy are the necessary modifications of the blockchain
parameters such as gas floor target, transaction gas limit, and
gas capacity to 1.5 billion gas in order to insert transactions for
the market clearing with more than 1 billion gas. If we would
have kept them at their default with an average of 15 million
gas, we would not have been able to process 50 bids on the
LEM and would have needed to split the functionality further
apart.

In addition, we want to point out major challenges that
hindered an efficient implementation: basic libraries for sorting
and filtering data on blockchains are not available, variable size
arrays could not be initialised, debugging Solidity code is still a
major obstacle and slows down development due to missing
integrated development environments for larger code projects,
and the stability of blockchain nodes on Windows machines
was insufficient for development but could potentially be fixed
with additional blockchain authorities running on Windows
machines.

Whether our implementation is GDPR compliant and a
pseudonym for users is sufficient to anonymise personal data is
a matter of legal assessment and is likely to vary from country
to country. What we can say with certainty is that all market
positions and meter readings are transmitted to the blockchain
unencrypted
blockchain-based LEM can be gamed as long as the positions

network  as transactions. However, the
are written unencrypted to the blockchain. Christidis et al.
presented three variants of encrypting positions in a first phase
and sending a key for their decryption in a second phase that
potentially can avoid LEM gaming [31]. Nevertheless, position
encryption and decryption would increase computation time

and would not be useful for privacy applications such as

logging of meter readings. Overall, we conclude that the
blockchain-based LEM implementation cannot fulfil the data
security requirement. The central LEM can fulfil the require-
ment as long as the position and meter reading transfer can be
encrypted and the access rights to the central database are
carefully designed.

By nature, data that is stored in the state of the blockchain
is tamper proof as long as hash functions cannot be reversed.
In this context, the blockchain has a significant advantage over
a centralised system that stores data on a proprietary server and
can manipulate it at will. Nevertheless, we would like to
emphasise that trusted entities that insert data into the
blockchain are potential vulnerabilities in terms of tamper
proof. If they are not completely trustworthy, the advantage of
a tamper-proof blockchain is gone. In contrast, the possibilities
to manipulate a central LEM are for a market operator
manifold. Therefore, a tamper-resistant central LEM requires
all LEM participants' trust.

In order to ensure a continuous prosumer household
participation, operating costs need to be low, especially, when
we consider the significantly smaller energy quantities,
compared to a wholesale electricity market. Since we used an
energy-efficient PoA consensus mechanism in our setup, the
energy demand is insignificantly low and can be compared to a
centralised setup that has redundant servers running (see sec-
tion Blockchain technology). Therefore, we conclude that low
operating costs are achievable with a central and a blockchain-
based LEM implementation. Table 2 summarises the LEM
requirement analysis.

Finally, the question remains as to how decentralised our
blockchain-based LEM actually is. In our LEM, we need a
market operator who adds users, maps them to their meter
readings, keeps them accountable for their actions on the
LEM, and triggers the market clearings periodically. Some of
those functionalities could be implemented in smart contracts
but would further inflate the computation time and were out of
the scope of this project. Additionally, we would need to select
trustworthy authorities that validate new blocks and ensure
that they do not illegally collude. In summary, a decentralised
blockchain-based LEM would need to be designed extremely
carefully, is not readily feasible, and may need to be regulated.

TABLE 2 Qualitative comparison of Local Energy Market
requirement fulfilment

LEM requirement Central LEM Blockchain-based LEM

Reliability + + 4+b
Scalability 4+ _c
Data security + + R
Tamper resistance +* + +
Low operating costs + + + +

°If market operator trustworthy.
"If we wait for transaction receipts.
“Up to 400 market positions for a 15 min market interval.

9If we use energy-efficient and not completely decentralised consensus mechanisms.
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This paper LEM
quirements, a modular open-source Solidity toolbox for
LEMs that allows to develop applications for a blockchain-
based and a central reference setup in parallel and to

presents specific  infrastructure re-

quantify and evaluate their performances against each other.
Furthermore, we show the results of a comparative perfor-
whether the
independent LEM specific infrastructure requirements are
met by the blockchain-based and central LEM implementa-
tions. Our results indicate that the blockchain promises of a

mance analysis and discuss technology-

decentrally and transparently managed infrastructure can only
be realised to a limited extent in the context of LEMs, that a
blockchain-based LEM implementation is reliable but re-
quires more than 140 times the computation time compared
to a centralised implementation, and cannot fulfil data se-
curity requirements. Only the tamper resistance represents a
significant added value that comparable centralised imple-
mentations cannot provide to a similar degree. Thus, we
conclude that blockchain technology in its current state of
development is not a ‘game changer’ for LEMs. Neverthe-
less, we invite researchers to collaborate and work on the
open-source LEM toolbox [47], adapt it to their needs, and
send us their suggestions for improvements. The solidity
toolbox for LEMs is another part in the scientific toolset to
model prosumer-centric applications more precisely and
evaluate the potential of blockchain implementations in the
energy context. Future research should focus on the ident-
fication of optimisation potential, verifiable tamper resistance
in proprietary systems, data security on blockchains and their
legal assessment, and a deeper analysis of the timing
complexity.
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Acronyms

BC Blockchain

CDA  Continuous Double Auction

DB Database

GDPR General Data Protection Regulation
HEMS Home Energy Management System
LAN  Local Area Network

LEM  Local Energy Market

P2p Peer-to-Peer

PDA  Periodic Double Auction

PoA  Proof-of-Authority

PoW  Proof-of-Work

VPP  Virtual Power Plant

Blockchain technology

Blockchains are virtual state machines that store data on
distributed nodes. The data inserted into a blockchain be-
comes part of the blockchain's state and is stored as a hashed
value in discrete blocks. Hash values refer to outputs of one-
way mathematical functions that compute a unique value of a
pre-defined length for any kind of input data but make it very
difficult to reproduce the input data based on a hash value
[49]. Blocks contain the current state and all requested state
changes in the form of transactions [50]. When we talk about
a chain of blocks, we are referring to each new block that
contains a hash value of the previously added block.
Advanced blockchains such as Ethereum allow us to deploy
code on a blockchain and process data in a programmable
manner. These scripts are informally known as smart con-
tracts [50].

In order to decide what state changes are valid, so-called
consensus mechanisms were developed for blockchains.
Consensus mechanisms refer to network protocols that
define how a network of equal and independent nodes can
agree on the validity of current and historical states of the
shared data [51]. The most prominent consensus mechanism
is Proof-of-Work (PoW). PoW allows all nodes in a network
to add new blocks to the chain as long as they provide a
proof of their ‘work’ in the form of a hash value that con-
tains all inserted transactions and fulfils a certain condition.

This condition could be a certain number of leading zeros.
Nodes are motivated to prove their work to the network
because they are rewarded with coins in the blockchain's own
currency if they are the first ones that compute a hash value
that fulfils the aforementioned conditions. The outcome of a
hashing function cannot be foreseen with today's computers
and therefore must be computed by trial and error. This
process is energy intensive and therefore widely criticised
[52, 53]. To avoid the high energy demand in blockchains, the
PoA consensus mechanism was introduced [54]. As the name
indicates, selected authorities are allowed to wvalidate blocks
and append them to the blockchain. This reduces the energy
demand of the blockchain significantly but at the same time
does not provide a similarly decentralised structure as the
PoW consensus mechanism. Over the past years, a variety of
other consensus mechanisms were proposed to tackle these
challenges [54].

Polynomial fitting functions and residuals

Table A1 lists all polynomial coefficients used to fit the data in
Figure 2 and residuals.
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Computation effort in Ethereum's gas as box plots.

TABLE Al
polynomial fitting curves

Coefficients and residuals of

Computation time
Central LEM

Ratio of mean

Blockchain-based LEM Computation times

a —5.5¢107¢
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c 3.7%107"
Residuals 4.8+¥1072
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Gas analysis

Figure Al shows the computational effort for the different
main functions of the blockchain-based LEM in Ethereum's
own computation currency ‘gas’. The clearing and settlement of
the LEM consume most of the gas. Settling the market

consumes slightly more gas than clearing the market up until
500 inserted bids and seems to reach a tipping point at 550 bids.
Noteworthy is that the settlement is split up into four separate
transactions while the clearing of the market is initiated with a
single transaction. Hence, we assume the additional gas con-
sumption from 50 to 500 bids is due to transaction overheads.
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2.3 Digression: Power demand of Bitcoin and Ethereum

In parallel to the rising interest in energy-related use cases with blockchain technology, re-
searchers questioned and investigated the power demand of blockchain protocols and the
underlying consensus mechanism [96, 97, 98, 99]. Consensus mechanisms are network
protocols that define how a network of independent and equal blockchain nodes agrees
what past and current state transitions are valid [100]. As part of a preparatory investiga-
tion of the blockchain technology, I conducted a scenario analysis with a power demand
model published by Malone and O’'Dwyer [97] and investigated parameters influencing
the power demand of Bitcoin and Ethereum.

Based on mining hardware data [101], the Bitcoin and Ethereum blockchain protocol,
and publicly available historical blockchain parameter data, the analysis presented sce-
narios for potential power demands up until 2025. The results indicated that the average
power demands were 3.9 GW for the Bitcoin and 1 GW for the Ethereum network in 2018.
Furthermore, the scenarios showed that more efficient mining hardware would have only
a limited impact on future power demands as long as the block difficulty of the mining
process grows exponentially as was the case from 2016 to 2018.

The results of the analysis are published in a peer-reviewed article and included in this
dissertation in appendix B. Based on a variety of energy consumption models including
ours, the Cambridge Bitcoin Electricity Consumption Index provides a live visualization
of the power demand of the Bitcoin blockchain.

Even though the results presented in this article describe power demands for the op-
eration of blockchain networks that are comparable to entire countries such as Ecuador,
alternative and more energy efficient consensus mechanisms allow to reasonably consider
energy-related applications on a blockchain [102].



Chapter 3

Flexumers’ market-based flexibility

Scientific context

By 2050, more than 30 TW of renewable generation capacity will be installed globally to
supply more than 50 % of the final energy demand with electricity [5,2]. VRE will be used
in the transportation and heating sectors [14] and will cause grid congestions that cannot
completely be prevented due to lengthy administrative processes, economic reasons, and
acceptance problems of grid expansions [49, 2]. Therefore, to integrate the projected and
increasing quantities of VRE into energy systems, power grids need to be expanded and
grid congestion management measures enhanced.

In the 2010s, large-scale power plants with more than 10 MW capacity were asked to
provide countermeasures for grid congestion management with rule-based frameworks
such as redispatch in Germany [103]. Since 2017, grid congestion management in Ger-
many cost on average more than 1.4 B€ annually (see figure 1.1). As of 2021, power plants
with generation capacities of more than 100 kW have to provide redispatch services in a
rule-based setting in Germany [104]. This development raises the question whether flex-
umers are technically feasible, can provide a cost-effective alternative to existing counter-
measures, and can reduce grid management costs [105, 2, 106].

Currently discussed grid congestion management measures can be divided into two
categories: dispatch and flexibility [49]. Dispatch measures refer to mechanisms that con-
sider potential grid congestions already during dispatching processes on energy markets
with nodal pricing, zonal bidding, or load-variable grid fees. Flexibility measures are pro-
cured by grid operators after the dispatching process has been completed on flexibility
markets or on the basis of regulatory frameworks. In this chapter, I focus on market-based
procurement of flexibility, which was the subject of extensive research in recent years [22,
107,108, 109, 110] and is currently considered by the EU to be the most efficient method
to transparently and non-discriminatory prevent congestions in distribution grids [15].

According to the European Clean Energy Package, market-based flexibility procure-
ment allows grid operators to trade flexibility bilaterally or in an organized market with
active network participants directly or through third parties that act on their behalf [105].
Active network participants refer in this chapter to flexumers that are able to offer their
flexibility to grid operators [15]. Since grid congestion management measures are mo-
nopolistic, close regulatory oversight is necessary [105].

44
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In this context, the following section presents a model for quantifying and pricing
flexibility, through which consumers and prosumers become flexumers that help ensure
security of supply while the energy system becomes carbon-neutral and volatile. A case
study in the second section quantifies how much and at what time flexibility from EVs
can be expected in the future with realistic Californian and German mobility behavior,
charging strategies, and electricity pricing tariffs.

3.1 Quantifying and pricing flexibility
Contribution

Consumers and prosumers install generation units on their premises, buy EVs, optimize
their own consumption, and in the future potentially participate in a certain form of en-
ergy trading as described in chapter 2. However, their market-based flexibility has so far
not been used to prevent grid congestions. The EU directive 2019/944 lays the regulatory
groundwork to transform consumers and prosumers into flexumers by explicitly men-
tioning their role and declaring them as essential participants of a renewable and carbon
neutral energy system [15]. When the paper of this section was published in 2018, no
prior work could be found quantifying and pricing flexumers” market-based flexibility.

Therefore, the paper referred to in this section introduces a flexibility quantification
and pricing model for consumers, prosumers, and their controllable assets. A schematic
of the model is visualized in figure 3.1.
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markge}; - Forecast
: ,/ Generation/Load
| 4 V== =
v i < Optimization
7 -
- =1
7 ()
>
m

——————————— Optimal solution HEMS

N N = Flexibillity
\ ] calculation

\ Flexibility offers

Flexibility
market

Figure 3.1: Schematic of a HEMS for a flexumer and its connections to energy and flexibility markets.
Within the HEMS, gray boxes show data in- and outputs and white boxes the implemented functionality.
Figure was taken from [101] and graphically edited © 2018 IEEE.

The model can be subdivided into two main steps: First, the operation of controllable
household appliances are optimized with a mixed-integer linear programming model.
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Based on the outcome of the optimization, a market agent buys or sells energy quantities
on an energy market on behalf of the household. In the second step, the flexibility poten-
tial for each controllable household appliance is quantified and priced separately based
on electricity price forecasts, appliance availability, and user comfort. These flexibility
potentials are then offered by a market agent on a flexibility platform, which allows grid
operators to prevent grid congestions cost-efficiently. The entire process will start over
if the grid operator calls the household’s flexibility. In the future, such a method can be
integrated into HEMSs that have interfaces to all controllable household appliances, have
the computational capacity either on-site or in the backend and control the household
appliances’ operations.

The following article describes the model using the example of an EV, explains why
EV owners will pay in the future to provide flexibility, proposes a format for flexibility
offers, and shows how HEMSs re-optimize the operation schedules of the appliances once
flexibility has been called. The article was submitted to the 2nd IEEE Conference on En-
ergy Internet and Energy System Integration (EI2), received one of the best paper awards,
and the model is publicly available in the open-source repository OpenTUMFlex [33].

The article presented in this section described the method for EVs, however, other
household appliances such as HPs, combined heat and power, and photovoltaic systems
were complemented by colleagues at the institute of Energy Economy and Application
Technology of the Technical University of Munich and integrated into the open-source
project OpenTUMFlex [111, 112, 113].
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Abstract— The impact of renewable energies on the power
grid is continuously increasing. Besides the emission-free power
generation, the renewable energies often are the cause for con-
gested grids, component failure and costly interventions by the
distribution system operators (DSO) and transmission system
operators (TSO) in order to maintain grid stability. The scien-
tific community discusses in recent years the usability of distrib-
uted energy resources (DER) as flexible devices. However, no
approach can be found that actually quantifies the potential
flexibility and sets a price to it. The model presented in this pa-
per optimizes the charging operation of an electric vehicle (EV)
according to a price signal with a state of the art exhaustive
search algorithm. Furthermore, this model offers all possible de-
viations from the optimal operation as flexibility to a corre-
sponding market platform and sets a price to each offer, which
is dependent on the future price level of the energy. With this
model, it is possible to offer positive and negative prices for flex-
ibility. The proposed model shows that an exhaustive enumera-
tion algorithm is feasible to calculate flexibility offers, prices and
applicable on currently discussed platform models. The example
of an EV charging schedule is successfully modelled and de-
scribed in this paper.

Keywords—flexibility platform, distributed energy resources,
home energy management system, operation planning, electric ve-
hicles, smart grids

1. INTRODUCTION

The Union of the Electricity Industry (Eurelectric) de-
scribes flexibility as “the modification of the generation injec-
tion and/or consumption patterns in reaction to an external sig-
nal (price signal or activation) in order to provide a service
within the energy system. The parameters used to characterize
flexibility include the amount of power modulation, the dura-
tion, the rate of change, the response time, the location, etc.”

(1]

In accordance to the above mentioned definition, positive
flexibility describes the consumption of energy or the post-
ponement of feeding energy into the grid at times when it was
initially scheduled. Negative flexibility means the exact oppo-
site, i.e. to refrain from consuming energy or feeding energy
into the grid at times when it was not scheduled.

On a large scale (> 1 MW) flexibility measures are already
common practice to maintain grid frequency and avoid grid

978-1-5386-8549-5/18/$31.00 ©2018 IEEE

congestion. Concepts like ‘redispatch’ on the supply side, as
well as demand-side-management in energy intensive indus-
tries are grid ancillary services applied by transmission system
operators (TSO) and distribution system operators (DSO) to-
day [2, 3, 4]. However, in addition to already available energy
markets and regulatory mechanisms, the idea of a separate,
flexibility platform or market arises and is proposed more fre-
quently in academic and industrial research [5, 6, 7, 8, 9, 10].
Proposed platforms are meant to be accessible, not only by
large industrial parties, but also by small DER, such as resi-
dential heat pumps (HP), combined-heat-and-power units
(CHP), electric vehicles (EV) as well as photovoltaic (PV) and
battery storage units. Such a platform would provide an alter-
native to grid expansion, modulation of large power plants and
especially curtailing renewables and therefore allow the DSO
and TSO to manage grid congestions in a more cost-effective
and resource-efficient manner [11, 12].

The paper at hand presents a novel home energy manage-
ment system (HEMS) which provides the opportunity to par-
ticipate in above mentioned flexibility market, as well as in a
regular energy market. State-of-the-art HEMS are mostly
known to determine the cost-optimal operation of energy gen-
eration and storage units within a household, mostly by utiliz-
ing mixed-integer-linear programming (MILP) or meta-heu-
ristic search algorithms, such as genetic algorithm (GA) [13,
14, 15]. However, the proposed HEMS will - on top of finding
the cost optimal operation strategy — find every deviation from
this optimized schedule and post them as flexibility options on
flexibility market platforms, by determining a price and con-
sidering user and unit specifications. This approach is consid-
ered an exhaustive enumeration method, which is often criti-
cized for its high computational costs [16, 17].

Flexibility market concepts for residential participants are
designed and discussed in various different forms by current
research projects, the most prominent ones in Germany/Eu-
rope being Invade H2020, Empower H2020, Flex4Energy,
Enko, and SINTEG C/sells [18, 19, 20, 21, 22]. The main dis-
tinction between an existing energy market and a potential
flexibility market is that power (kW) is traded, instead of en-
ergy (kWh). The demand is given by the congestion forecasts
of DSOs and TSOs. A flexibility platform that is currently de-
veloped within the project C/sells is based on the following
premises:
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Energy
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Flexibility
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Fig. 1 Schematic of the HEMS and its connection to the energy
market and to the flexibility platform

*  Day-Ahead and congestion predictions are performed
by DSO and TSO to generate flexibility demand

*  Flexibility offers are posted for the next 24 hour in 15
minute intervals on the platform

*  Every participant has direct access to the platform and
can place offers

e (Call and settlement will be communicated 15 minutes
before delivery

* The efficiency of a flexibility measure on grid in-
stances will be calculated by the platform itself and
factored in to the given price

+ A flexibility offer by a HEMS is defined by the fol-
lowing parameters: Time and date, negative/positive
flexibility (power), available energy (negative/posi-
tive) and costs

In the following, a HEMS model for participation on a
flexibility platform with above mentioned characteristics is
proposed and described in detail.

II. METHOD

Fig. 1 visualizes the home energy management system
(HEMS) as the central control unit of a property and the con-
nected devices therein (e.g. electric vehicles (EV), heat pumps
(HP), cogeneration units (CHP), heat storages and batteries).
In Fig. 2 the functional overview of the HEMS is displayed.
At the beginning of any optimization and calculation of flexi-
bility offers the HEMS is supplied with input data. After-
wards, the optimization algorithm calculates an operating
strategy for each device that minimizes energy costs. The cov-
erage of the electricity, heat and mobility demand is the most
important constraint and has to be fulfilled at any time. In ac-
cordance to the optimization result the HEMS will then buy or
sell energy on the energy market for the operation of the con-
nected distributed energy resources (DER). Deviations from
the optimal solutions can further be offered as flexibility to a
flexibility platform. The following subsections will describe
the functionalities of the HEMS from Fig. 2 in detail.

A. Input Data, Generation and Consumption Forecast

In order to optimize the devices operation the HEMS de-
pends on input data from multiple parties such as the user,
weather stations, forecast provider or the DER itself. Device
parameters are either set at the initial operation by setting for
example an EV’s battery capacity, maximum charging power
etc. On the other hand, some parameters are continuously
communicated when a new unit state occurs or for example

certain boundaries such as the maximum SOC have been
reached. The user provides general operational constraints.
For example, the user sets the time when he needs to have a
fully charged EV, what temperature level he would like to
maintain inside his house, or at what time he might have
scheduled to turn on his sauna. Besides those inputs from par-
ties within the household the HEMS is fed with historical data
and forecasts of the upcoming weather conditions and energy
prices.

Based on all the described input data, the HEMS formu-
lates constraints that limit the possibilities of the unit’s opera-
tion. Below are the fundamental constraints of the model for
the charging process of an EV listed.

(SOCBat,desired_SOCBat(l))'EBat,cap

PBat,charg,max

(1

PBat,charging(t) < PBat,charg,max vVt € 1' ey end (2)

S0Cg () < SOCBat,max Vtel,..,end (3)
SOCBat(tend) = SOCBat,desired “4)

The first constraint (1) covers that the operation time
toperation 18 greater or equal than the time it takes to charge
the battery with maximum charging power Pgachargmax -
SOCgat gesired indicates the desired SOC of the user at the
pick-up time, SOCg, (1) the initial SOC and Egag,cap the bat-
tery capacity in kWh. Constraints (2) and (3) limit the charg-
ing power and SOC during all time steps t. Equation (4) en-
sures that the desired SOC is reached at the last time step tepq-
Non-negativity and further constraints are neglected within
this brief summary.

toperation =

Based on all the formulated constraints and input data the
HEMS starts to forecast the energy consumption and genera-
tion of the entire household and the devices therein.

B. Optimization Approach

A fundamental difference between the approaches dis-
cussed in section [ is the usage of an exhaustive search method
to find the connected devices’ optimal cost operation. Because
only if all possibilities are available, the model offers the en-
tire solution space as flexibility and likewise calculates its
costs. The brute-force method is often criticized for its high
computational cost [16, 17]. However, in the case of a HEMS
the presented model finds the cheapest operation plan for the
case of an EV charging optimization within less than 1 second
on a state-of-the-art personal computer. Prerequisites are ac-
curate thermal and electric demand forecasts, a temporal res-
olution of 15 minutes and that the number of possibilities is
furtherly reduced by constraints. The model’s temporal reso-
lution is set in accordance to common forecasting and data ac-
quisition models, the European energy market, and the flexi-
bility platforms developed in current research projects [22].
Therefore, this method is used in this model to calculate the
cheapest operation plan.

Once all constraints are formulated, all possible operation
plans of the unit can be extracted. Operation plans that do not
fulfill the aforementioned constraints are disregarded. The
next step is to calculate the operation plan’s cost by summing
up the consumption at each time step and multiplying it by the
energy prices which are given as a price forecast to the HEMS.
Based on the calculated costs of each operation plan the cost
optimal solution can be determined.
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Finding the cost optimal solution for the charging process
of an EV follows the above mentioned method. First, the nec-
essary time to charge the EV with maximum power
tmin,Bat,charg 18 calculated in (5).

(SOCBat,desired_SOCBat(tl))'EBat,cap

PBat,charg,max

)

tmin,Bat,charg =

Equation (6) divides tmin at,charg DY the HEMS’ temporal

resolution to calculate the necessary time steps
ntSteps,min,Bat,charg for Chargmg the EV.
_ tmin,Bat,charg
ntSteps,min,Bat,charg - (6)

Mminutes/timeslot

Next, the model sorts the time table by price forecast in
ascending order. The cost optimal charging plan is then, to
charge the EV at the Nstepsmin,Bat,charg 1irst time steps of the
sorted price forecast with maximum power.

After determining the cost optimal solution of the DER the
HEMS interacts with the day-ahead energy market, buys en-
ergy and communicates the charging plan to the unit control.
The next subsection will discuss how the HEMS will deter-
mine the flexibility offers of the DER.

C. Flexibility Offers

The DSO is interested in the information of how much
power the DER can offer as flexibility, for how long, at what
location in the grid, and at what price. Therefore, a HEMS that
offers flexibility must answer all of the mentioned character-
istics. As described in section I, flexibility is defined as the
“modification of generation injection and/or consumption”
[1]. Hence, it is essential to analyze the ‘normal’, in the pre-
sented model the cost optimal, operation, in order to determine
possible ‘modifications’ of the operation plan and offer those
to a flexibility platform.

1) Location, Positive, and Negative Flexibility

The location of DER is a constant and therefore, can be set
just once. For the German grid the description of the location
can be described by the accounting grid, grid area and an iden-
tification number of the DER set by the DSO or TSO.

Positive flexibility in terms of consuming energy can be
summarized as charging an EV, a battery or operating a HP.
From the perspective of a CHP unit, positive flexibility can be

Historical Forecast Device User
Data Data Parameter Preferences
/ S \
/

Optimal
solution

Solution | |
space

Flexibility Offers
Power, Energy, Price

Fig. 2 Functional overview of the HEMS

offered by stopping the operation of the unit or feeding elec-
trical energy into a local battery instead of the grid. Negative
flexibility can be offered by the same DER by stopping the
charging operation of an EV or the operation of a HP, starting
to feed electrical energy into the grid with the CHP, PV unit
or the battery. Therefore, with all above mentioned units pos-
itive and negative flexibility can be offered.

For the example of an EV, the decision whether it can offer
positive or negative flexibility is dependent on the charging
plan. Is the EV currently not charging and not fully charged,
positive flexibility can be offered. On the other hand if the EV
is scheduled to be charged, negative flexibility can be offered.

After determining the direction of the flexibility and at
which location it can be offered it is important to quantify the
power and energy to be offered.

2) Power, Duration and Energy

The DER’s operating power is mostly limited by design
and only in a few cases dependent on the unit’s current state.
Therefore, the presented model uses the maximum power as
the power with which it can offer flexibility. In the case of a
HP and positive flexibility it is the maximum operating power
or in the case of negative flexibility the planned operating
power.

The duration for which the flexibility tgjey offer can be of-
fered is calculated in (7). Egjex offer S€ts the amount of energy
EFlex offer that can be consumed, restrained or generated and
the offered power Prjey offer 18 S€t as above mentioned.

EFlex,offer = PFlex,offer ' tFlex,offer (7)

The amount of energy is always dependent on the unit’s
current state. Using the example of a battery storage the flexi-
bility that can be offered depends on its SOC. Similarly, the
CHP and HP’s flexibility depends on the SOC of the heat stor-
ages that are connected to them and the load that is consuming
energy. If no heat storages are installed the flexible energy will
depend on the heat storage capacity of the supplied building
and its current state.

Coming back to the example of an EV, the offered flexible
power is equal to the maximum charging power as positive
flexibility and the planned charging power as negative flexi-
bility. In the case of an initial SOC of 50 % and a battery ca-
pacity of 80 kWh the flexible energy can be +40 kWh.

3) Price of the flexibility

After determining all technical characteristics of a flexibil-
ity offer, the final step is to calculate a reasonable price that
ensures the reimbursement of additional effort, considers a fi-
nancial risk on the energy market, and creates a high probabil-
ity of being called. In order to fulfill those requirements (8) to
(10) were developed.

In (9) the cost for a kWh of positive flexibility is calcu-
lated. Meaning, the unit’s offered flexibility price when the
HEMS already bought the energy on the day-ahead market for
a later operation but it is being called up for operation ahead
of time. Hence, when a flexibility call occurs, the HEMS can
sell the pre-bought energy on the intra-day market and even
offer negative prices for positive flexibility. Negative prices
mean that the HEMS pays money to be called up for flexibil-
ity. Similar to (7), (8) calculates the number of offered flexi-
bility time steps Mot plextsteps DY dividing the offered energy
by the power at time step i and the number of time steps per
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hour Nsteps/hour- In (9) the average of the N prex tsteps MiN-
imal prices is multiplied by a factor consisting of the risk mar-
gin Ryargin from which minus 1 is subtracted. The risk mar-
gin can be in the range of 0 to 1. Zero indicating a very low
risk and the expectancy to sell energy at the buy-in price and
one expecting high fluctuations on the intra-day market.

EFlex,offer(i) (8)

n = -
off.Flex,tSteps PFlex,offer(1) Ntsteps/hour
Cpos.,Flex = mean (mink(CForecast (i: iend)' noff,Flex,tSteps))
’ (Rmargin -1 ©

The cost for negative flexibility can be calculated by as-
suming the scenario of a HEMS that has pre-bought energy on
the day-ahead market for charging an EV at a certain point in
time. Negative flexibility for this exact moment is being
called, meaning that the HEMS will send appropriate signals
to the charging station to stop the charging process of an EV.
In this scenario the refrained energy must be caught up at a
later point in time. The HEMS must therefore buy the energy
on the intra-day market, which can result in much higher
prices than the pre-bought energy. Therefore the prices will be
positive, indicating that the HEMS will receive money for of-
fering negative flexibility.

In (10) the average of the Ny piex tsteps Minimal prices in
which no operation was initially scheduled in,n—operationat
by the HEMS and past the flex offer is multiplied with a factor
consisting of a risk margin to which 1 is added to.

Cpos.,Flex = mean (mlnk(cForecast (l
+ lnon—operational: end)' noff,Flex,tSteps))

' (Rmargin + 1) (10)

The accumulation of the aforementioned characteristics of
flexibility offers are then communicated as a table to a flexi-
bility platform. In the event of a forecasting error, new input
data, a flexibility call, or an unexpected user behavior the
HEMS restarts the optimization process.
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III. RESULTS

Within this section the results of the above described
model for offering flexibility with an EV that requires a total
energy of 80 kWh, can be charged with a maximum power of
20 kW and is available for operation in the time period from
04:30 to 18:30 are presented. Fig. 3 shows the cost optimal
charging plan (black line), all placed flexibility offers (color
map, from orange to purple), a simulated flexibility call (red
line) and the new optimization results (grey line) after a flexi-
bility call. The x-axis shows the time of a day and the y-axis
the cumulated energy. The calculated cost optimal operation
shows multiple charging periods over the period of the day.
When the EV is not available for operation, the HEMS cannot
offer any flexibility and therefore, shows only dots in the pe-
riod from 00:00 until 4:00 and in the late evening. Once the
EV is available for operation the flexibility offers are visible
as colored lines, that start on the line of the cost optimal oper-
ation plan, either start to rise with a constant gradient and end
at a certain energy level. The starting point of each flexibility
line is equal to the time step at which the flexibility is offered.
The gradient of the offers is dependent on the offered power.
In the case of positive flexibility the gradient will be propor-
tional to the charging power of 20 kW and for negative flexi-
bility equal to zero, since the HEMS will refrain from charg-
ing the EV in those time steps. The offered flexible energy is
for positive flexibility the difference between the energy lev-
els (from starting to end point) of each flexibility offer. Is neg-
ative flexibility offered, the energy is equal to the difference
between the end point of the flexibility offer and the energy
level of the cost optimal operation plan at the same time step.

At time step 10:00 Fig. 3 shows the simulated call for pos-
itive flexibility. The total offered flexibility at this time is ac-
cording to Table 1 40 kWh but only 25 kWh are called, indi-
cated by the red line. The power of the flexibility offer is com-
pletely retrieved, indicated by the congruence of the flexibility
retrieval with the offer. After the flexibility retrieval ends the
HEMS calculates a new cost optimal operation plan for the
remaining energy. Because in the presented model the price
forecast was not altered between the initial optimization and
the simulated flexibility retrieval the new optimal operating
strategy is only slightly different than the initial strategy.

= Cost optimal operation
m— F|ex retrieval

= New optimal operation
| | J

Cost optimal energy profile and flex offers in kWt

00:00 06:00

12:00
Time

18:00 00:00
Jan 01, 2019

Fig. 3 Flexibility model of an EV with, cost optimal operation plan, simulated flexibility call and re-optimization results
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Table 1 Flexibility offers from 9:45 to 12:45 with the scheduled power, negative and positive power, energy, and prices

Time Scheduled Power | Neg. Power Pos. Power | Neg. Energy Pos. Energy | Neg. Price  Pos. Price
in kW in kW in kW in kWh in kWh in €/kWh  in €/kWh
01.01.201909:45 | 0 0 20 0 45 0,000 -0,182
01.01.2019 10:00 | 0 0 20 0 40 0,000 -0,181
01.01.201910:15 | 0 0 20 0 35 0,000 -0,180
01.01.201910:30 | 0 0 20 0 30 0,000 -0,180
01.01.201910:45 | 0 0 20 0 25 0,000 -0,179
01.01.2019 11:00 | 0 0 20 0 20 0,000 -0,178
01.01.201911:15 | 0 0 20 0 15 0,000 -0,177
01.01.201911:30 | 0 0 20 0 10 0,000 -0,177
01.01.201911:45 | 0 0 20 0 5 0,000 -0,176
01.01.2019 12:00 | 20 -20 0 -15 0 0,379 0,000
01.01.2019 12:15 | 20 -20 0 -10 0 0,375 0,000
01.01.2019 12:30 | 20 -20 0 -5 0 0,366 0,000
01.01.201912:45 | 0 0 20 0 25 0,000 -0,180

After discussing the technical characteristics of the flexi-
bility offers, Table 1 is an excerpt of the flexibility offers in a
tabular form and Fig. 4 shows the offered flexibility prices and
the power over one day. The flexibility power is constant at a
level of = 20 kW for either positive or negative flexibility and
corresponds to the maximum charging power of the EV. The
subplot below, shows the offered flexibility prices in €/kWh.
The HEMS calculates for positive flexibility negative prices
and for negative flexibility positive prices.

The prices for negative flexibility rise towards the end of
the day because the energy must be caught up at a later point
in time and the number of possible operation time steps de-
creases. The prices at 12:00 temporarily decrease for negative
flexibility due to the fact, that the offered energy is decreasing
over time and therefore more options to catch up the energy
are available. The prices for positive flexibility slightly de-
crease with the amount of offered energy. Only at the last
block of positive offers the costs stay constant. This behavior
of the model can be explained with (9) in which the average
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Fig. 4 Offered flexible power and prices for flexibility in €/kWh

of the minimum prices for the required energy is calculated.
When the amount of offered energy is high, more time steps
must be considered, indicating a higher risk on the energy
market and therefore resulting in a higher energy price. The
constant prices for the last block of negative prices (time pe-
riod 17:15 to 18:00) is caused by the constant amount of of-
fered energy of 5 kWh (see Fig. 3).

The presented results verify the models structure described
in section II. The next section will summarize the possible ap-
plications and limitations of the presented model.

IV. DISCUSSION

The model presented in this paper is capable of processing
user preferences, historical data, unit parameters, energy price
and weather forecasts, calculating cost optimal operating strat-
egies and flexibility offers. The results of the model show the
compatibility to flexibility platforms described in section I and
developed in current research projects [22]. A simulation of a
unidirectional EV model verified the functionalities of the
proposed HEMS. The implementation of HEMS models for
further DER shall verify the applicability of the presented
method to HP, CHP, PV units and connected battery and heat
storages.

The general criticism regarding exhaustive enumeration
methods of consuming too much computational costs [16, 17]
could not be confirmed by the results of the presented model.
The model shows rather that for a discrete model with a time
horizon of 24 h and a temporal resolution of 15 minutes, the
exhaustive enumeration approach can calculate an optimal op-
erating strategy and the respective flexibility offers in less than
1 second on a personal state-of-the-art computer. Moreover,
this technique offered a simple approach to investigate all pos-
sible deviations from the cost optimal operating strategy,
hence laid the foundation of the flexibility calculations.

V. CONCLUSION AND OUTLOOK

Within this paper, a novel HEMS model is presented,
which processes input data from multiple parties, optimizes
the DER’s operation strategy and calculates offers for a flexi-
bility market platform. The results of the EV simulation are
presented in this paper. It is verified that the proposed model
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shows the expected functionality and enhances the economic
opportunities for DER’s and prosumers, by participating on a
flexibility platform. The quantification of the offerable flexi-
bility by DER and their pricing, which so far cannot be found
in the literature, represents a novelty to the scientific commu-
nity.

In future research, the transferability to other DER units
will be demonstrated and more complex systems of multiple
market participants will be investigated. Within the scope of
the SINTEG project c/sells, where more than 50 partners from
German academic and industrial research institutions, includ-
ing multiple DSOs and TSOs participate in discussions and
the development of different local flexibility platforms, the
opportunity for in-depth analysis and validation of the concept
is given. The next step will be the application of the presented
method to a PV and battery storage combination and HP/CHP
unit and heat storage combination. Laboratory testing in a
Hardware-in-the-Loop environment as well as testing in the
field will be conducted in near future. Another field of re-
search is the investigation of alternative cost functions, such
as minimizing CO,-emmissions or maximizing the level of au-
tarky.
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3.2 Assessing the potential of electric vehicles

Contribution

After introducing the OpenTUMFlex model, the question is how much flexibility can be
expected from flexumer appliances such as EVs with realistic user behavior. Since the lit-
erature did not offer any approach to model flexumer behavior in a market-based setting,
the following article presents a case study based on publicly available real-world vehicle
field trial data that allow to estimate the flexibility potentials of EVs in the future.

The case study consists of a raw data acquisition, preprocessing, optimization and
flexibility calculation, and a post-processing phase (see figure 3.2). In the first phase, mo-
bility data from a Californian and a German field trial and three electricity pricing tariffs
(RT, Time-of-Use (ToU), and Constant (Con) ) were collected. Based on the collected data
sets, I computed more than 15,000 vehicle availabilities, implemented controller strategies,
which cause the HEMS to either charge immediately after arrival or to wait until the last
possible moment to recharge, and modelled pricing tariffs for the field trial years. After
the preparation stage, OpenTUMFlex is iteratively fed and executed to calculate optimal
charging schedules and flexibility offers with varying controller strategies, pricing tariffs,
and maximum charging power levels. Finally, results are aggregated and visualized for
analyses.

Data acquisition Preprocessing Optimization and Postprocessing
flexibility calculation

[~ Controller 1

ToU [ Us strategy ' Analysis

CHTS model
— *
Mee—
Electricity HEMS »| Acorecation

RTP tariff model 1 ... Ntarift * Navail * Ncontr ggregato

~—
v

o
[~ Vehicle 1
Con I | GERMP » availability - Visualization
I model

Figure 3.2: Overview of the performed flexibility case study for EVs. Tol, Con, and RT are the collected
electricity pricing schemes, whereas US CHTS and GER MP mark the Californian and German mobility
field trial data sets. Figure was taken from [50] and graphically edited.

The results indicate that EVs can provide

— positive flexibility mostly in the morning or evening hours depending on the con-
troller strategies,

— negative flexibility, which follows the vehicle availability if the controller strategy is
to charge as late as possible,

- no negative flexibility if a Con tariff and a charge as soon as possible strategy is used,
and
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- increased amounts of flexibility if the charging power levels are higher.

Furthermore, the results verify that ToU tariffs and a controller strategy that charges the
vehicle as soon as possible can lead to demand peaks that are 250 % to 300 % higher com-
pared to the other investigated pricing strategies and controllers, thereby potentially in-
creasing grid congestions.

As part of the C/sells research project, we verified our model outputs on the flexibility
platforms developed by research partners such as Forschungsstelle fiir Energiewirtschaft
e.V. and Tennet TSO GmbH. Furthermore, the pricing results of the case study were an-
alyzed in a student project supervised by me [114]. The presented case study was pub-
lished as an add-on to the open-source project OpenTUMFlex [33].

This case study design allows fellow researchers, regulators, and energy industry ex-
perts to model flexumers in detail and investigate various impacts on their flexibility po-
tential and prices.
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Abstract: The adoption of electric vehicles is incentivized by governments around the world to
decarbonize the mobility sector. Simultaneously, the continuously increasing amount of renewable
energy sources and electric devices such as heat pumps and electric vehicles leads to congested grids.
To meet this challenge, several forms of flexibility markets are currently being researched. So far,
no analysis has calculated the actual flexibility potential of electric vehicles with different operating
strategies, electricity tariffs and charging power levels while taking into account realistic user behavior.
Therefore, this paper presents a detailed case study of the flexibility potential of electric vehicles for
fixed and dynamic prices, for three charging power levels in consideration of Californian and German
user behavior. The model developed uses vehicle and mobility data that is publicly available from
field trials in the USA and Germany, cost-optimizes the charging process of the vehicles, and then
calculates the flexibility of each electric vehicle for every 15 min. The results show that positive
flexibility is mostly available during either the evening or early morning hours. Negative flexibility
follows the periodic vehicle availability at home if the user chooses to charge the vehicle as late as
possible. Increased charging power levels lead to increased amounts of flexibility. Future research
will focus on the integration of stochastic forecasts for vehicle availability and electricity tariffs.

Keywords: charging strategy; optimization; electricity pricing; electric vehicle; flexibility; flexibility market;
home energy management system

1. Introduction

Scarcity of fossil fuels, oil price fluctuations, and increased awareness of the negative impacts
caused by anthropogenic climate change have led to an increasing use of variable renewable energy
(VRE) sources. With the agreed goal of limiting anthropogenic global warming to well below 2 degrees
Celsius, this trend is expected to continue and even accelerate. While hydropower and biomass
are, in their operational behavior comparable to conventional power plants, the power generation
of photovoltaic and wind systems is variable, and generation prediction challenging and subject to
uncertainty. Introducing flexibility products to the power system is one measure to cope with this
variability and uncertainty.

Ma et al. define flexibility as the “the ability of a power system to cope with variability and
uncertainty in both generation and demand, while maintaining a satisfactory level of reliability
at a reasonable cost, over different time horizons” [1]. While this definition describes the general
characteristic of flexibility, the Union of the Electricity Industry—Eurelectric—defines flexibility in
a more application-oriented way, as “the modification of generation injection and/or consumption
patterns in reaction to an external signal (price signal or activation) in order to provide a service

Energies 2020, 13, 5617; doi:10.3390/en13215617 www.mdpi.com/journal/energies
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within the energy system. The parameters used to characterize flexibility include the amount of power
modulation, the duration, the rate of change, the response time, the location, etc.” [2].

Nowadays, large-scale flexibility products with a capacity greater than 1 MW are widely
used to stabilize grid frequency. On the supply side, system operators (SO) use measures such
as redispatch and feed-in management. On the demand side, they use sheddable loads and industrial
demand-side-management as grid ancillary services [3-5]. While regulation and various market
designs for energy trading already exist, academic and industrial research now focus on introducing
unique flexibility platforms [6]. Such new platforms will allow residential consumers and prosumers
to participate with their distributed energy resources (DER)—such as combined-heat-and-power units
(CHP), electric vehicles (EV), residential heat pumps (HP), photovoltaic systems (PV), and battery
storage units—as well as large industrial parties to offer flexibility [7-9]. In the future, SO will be
able to manage grid congestions in a less resource-intensive manner and potentially avoid costly grid
expansions and the curtailment of VRE [10,11]. Such flexibility platforms differ from existing energy
market mechanisms in that they trade power instead of energy. SOs place their flexibility demand on
the platform and are matched with residential and industrial flexibility providers.

Flexibility can be both negative and positive. Negative flexibility refers to the delay of grid
feed-in or the consumption of non-scheduled energy. Positive flexibility is the delay of grid energy
consumption or the non-scheduled grid feed-in.

Home energy management systems (HEMS) can quantify, price, and offer flexibility from private
DER to such platforms and re-schedule devices based on the platform response. Beaudin et al.
conclude that an HEMS is a demand response tool with the goal of optimizing consumption and
production profiles in a house that communicates with household devices, utilities, and forecasting
service provider [12]. The most important components of such a system required for calculating
flexibility offers are visualized in Figure 1.

Historical & Device User
forecast data parameter preference
| |
4 HEMS A 4 N

| 4 )
Optimization —I—b Energy market

g J
7 |
| o
Flexibility

I

il

I

I 4

| ( Flexibility calculation > market
I

I

U

I

: :
|

Device control

Figure 1. Generalized structure of an HEMS. Historical and forecast data refers to weather data,
historical consumption and production data and expected energy prices.
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A review of HEMS concluded that cost optimization is the most frequently implemented objective
function [12]. Yan et al. state that price-driven demand response is an important demand response
measure [13]. Therefore, the type and structure of the electricity price signal is of crucial importance
for the optimization problems of HEMSs.

Eurelectric differentiates fixed-priced offers and various types of dynamic pricing [14]. Nowadays,
the majority of residents in the US, for example, have a fixed-priced electricity tariff [15].
Besides fixed-priced offers, utilities offer different types of dynamic pricing: time-of-use (ToU),
real-time pricing (RTP), and others, such as critical peak pricing (CPP). ToU tariffs offer static pricing
schemes with pre-defined prices for specified periods and seasons. As such, ToU tariffs are easy to
follow for any customer, however, for the SO they run the risk of creating demand peaks of higher
magnitude than the ones caused by fixed-priced offers [13]. In RTP, prices vary over short periods
and are communicated to customers one day or less in advance. California was one of the first
states to introduce RTP, in 1985 [16]. Nowadays, only a few RTP programs, such as ComEd’s Hourly
Pricing, exist because they are technically difficult to implement and hard for customers to understand.
A lot of studies have investigated the impact of different electricity tariffs on the peak demand of a
distribution grid and concluded that simple ToU strategies can lead to increased peak demand [17,18].
However, the literature rarely discusses the impact of different electricity tariffs on flexibility.

Zade et al. published an HEMS model that optimizes the charging process of an electric vehicle
(EV), and calculates the flexibility based on synthetic electricity prices, vehicle availabilities, and energy
demands [9]. In order to analyze the realistic flexibility potential of EVs in a distribution grid, this paper
describes a detailed case study conducted with vehicle field trial data from California, USA and
Germany, three electricity tariffs, two controller strategies, and three charging power levels.

2. Materials and Methods

Figure 1 provides a functional overview of the generalized structure of an HEMS. As defined
above, the primary objective of the HEMS is to fulfill the electricity, heat, and mobility demand of the
household. For this purpose, the HEMS retrieves historical load profiles from an internal database
and various other input data, e.g., user preferences, weather, and price forecasts from external sources.
Then, an optimizer inside the HEMS calculates cost-optimal operating strategies for all controllable
devices. Based on those operating schedules, the HEMS buys and sells energy on the energy market.
Afterwards, the HEMS can offer deviations from the cost-optimal operating strategy as flexibility to
SOs via a flexibility platform.

2.1. Input Data, Generation, and Consumption Forecast

The HEMS receives data from various parties, e.g., household inhabitants, forecast providers
and weather stations. In an initial configuration step, household inhabitants insert device parameters
like the charging station’s maximal charging power, or EV’s battery capacity, etc. More frequently,
inhabitants update operational constraints, such as the daytime when an EV needs to be fully charged or
the room temperature they find comfortable. Besides those user inputs, the HEMS is fed with different
forecasts such as the upcoming weather conditions and expected energy prices. Finally, the optimization
is triggered whenever new input data arrives or a certain amount of time has passed.

2.2. Optimization Approach

The calculation of the cost-optimal charging schedule is based on [19] but has been modified
in order to incorporate constraints such as EV availabilities over time. This section describes the
mixed-integer linear programming (MILP) model that has been used to calculate the cost-optimal
charging schedule. In this work, it is assumed that the prosumer prefers a cost-optimized solution to the
scheduling problem. Therefore, the target function in Equation (1) is formulated as a cost minimization.
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T
min| Y (pic — poci¥ 4 pi*.cS®)- At + K-ASoCy (1)
t=1
Here T is the set of time steps (¢) considered throughout the scheduling horizon. At is the duration
of each time step, p™™ and p®* are the electrical import and export power, while ¢ and c¢®* are the
corresponding electricity costs or revenues. p3* and ¢* denote the volume of natural gas used and
its specific cost, respectively. K represents a penalty coefficient that is multiplied with the variable
ASoC; which is the difference between the desired final state of charge (SoC) and the actual SoC at the
end of charging. This penalty term allows the optimizer to create a feasible problem even though the
available time is not sufficient to charge a vehicle fully. Thereby, infeasible problems are avoided.
In addition, the energy balance and constraints for each appliance are critical to reflect a correct and
realistic optimization. The constraints are as follows. The energy balance for electricity is represented
by Equation (2) and for heat by Equation (3).

pta Y - optt =0 vie[LT] 2)
O€Flex,
Y, poar=0 Vte[LT] ®)
o€Flexy,
P and gl represent the electrical and thermal load of the household. p° is the power of one

specific device, which belongs to one of the flexible appliance groups Flex,; € {EV, CHP, HP, PV, Bat}
or Flexy, € {CHP, HP, TES}. The group Flex,; includes electric vehicles (EV), combined heat and power
(CHP), heat pumps (HP), photovoltaic (PV), and battery systems (Bat). The group Flex, covers CHP,
HP and thermal energy storages (TES). CHPs and HPs are classified into both groups because CHP
produce electricity and heat at the same time and heat pump can convert power to heat.

For each flexible appliance and storage system, multiple constraints exist concerning their
operation. Because this paper focuses on the quantification of flexibility of EVs, Equations (4)-(10)
only list the constraints for EVs.

t

1
SoCt = SoCq + e Z(pr.n _prt:ons).At Vte[1,T] @)
s=1
S0Cypin < S0Ct < S0Cpax Vte[1,T] (5)
SoCt > SoC¢ — ASoCy vee (e, s, ) (6)
SoCy < SoC; vie (s, ) (7)
0<ptY < ApPEV. Vt e [1,T] (8)
vtele, e luls,elu...
R PR o M o 0
0 vielo, £)u(e,slu...
P =0 Vte [1,T] (10)

In Equations (4)—(7), SoC represents the SoC of the EV battery. SoCy denotes the initial SoC of the
EV, S0Cypin and S0Cpyay are minimal and maximal SoC. SoC; refers to the SoC at time step zero and SoC}
represents the SoC at the last available time step. SoC; may be reduced by ASoC; if the time the vehicle
is parked at home is not sufficient to charge the battery from start SoC to the desired end SoC. #* and t*
refer to the start and end time of each availability period of the EV. Cp; is the battery capacity, pfv is

the charging power of the EV, and 1) is the charging efficiency. p;°" is a variable that covers the power
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demand if the EV is available for multiple periods and energy has been discharged from the battery
in between.

Equations (8)-(10) describe the constraints for pfv. At describes the vehicle availability for
charging, which is 1 between #* and ¢, and otherwise zero. Integrated into Equation (8), the availability
does not allow the charging power to be greater than 0 if the vehicle is not available for charging.
If the vehicle is available for charging, the charging power can be as high as the maximal charging
power PEV..

The formulated MILP model can be solved using commercial and open-source solvers, such as
GLPK or Gurobi. Depending on the problem complexity, a conventional computer (e.g., Intel i7,
4 Cores, 24 GB RAM) presents a solution within a few seconds.

After optimizing the device’s operating strategy, a market agent in the HEMS trades its excess and
required energy on the energy market and a controller schedules the device’s operation accordingly.
After successful interaction with the energy market, the HEMS can start the flexibility calculation.

2.3. Flexibility Offers

Based on the optimal operating strategy of the devices described in the previous subsection,
the HEMS calculates flexibility offers. Such a flexibility offer consists of the flexible power they can
offer, the duration they can offer it, at what time, at which position in the grid, and at what price.
The following subsections describe the calculation of these parameters in detail.

2.3.1. Location, Negative, and Positive Flexibility

Since in the setting considered here all flexible devices are stationary, the location of a
flexible device is considered to be constant and is described by a unique identifier. In Germany,
the Bundesnetzagentur introduced a 11-digit identifier (MaLo-ID: market location identifier) to
simplify the market communication. Therefore, each HEMS that offers flexibility must attach the
MaLo-ID to their bids.

Generally, all flexible devices are able to offer positive and negative flexibility, some even at the
same time. For example, an EV charging station can offer positive flexibility by stopping an ongoing
charging process or by reducing the charging power. Negative flexibility can be offered by charging a
vehicle even though it has not been scheduled or by increasing the charging power while charging.

2.3.2. Power, Duration, and Energy

The DERs have different operating types. For both operating types, flexibility can be determined
using Equations (11) and (12).

Po —1° Vo eG

o max — P

Ppos - { pé VdeC (11)
O

5 —p YoeG

pi’lé‘g - { pé _P?mzx VoeC (12)

As mentioned in Section 2.2, p® denotes the power of the electricity consumer (C) and generator
(G). P2, is the maximal power of each flexible device. pgos and p‘f,eg represent the resulting positive
and negative flexibility power for each device. Note that the positive and negative flexibility power is
always positive and negative, respectively, or zero. As described above, one device can offer positive
and negative flexibility at the same time.

Equations (13)—(15) describe the duration that flexibility is available. d®  isthe maximal duration

flex
that flexibility can be offered by a flexible device.

max  d° :("z -t )At (13)
tfflexe[tj‘lex’ T] flex flex " flex
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s.t.
AP Phes) =0 AT (14)
Tl vt e [tj’lex’ tj‘lex]
s, ) <0 e (15)
' Plex Vi e [tsﬂex,t;lex]

This optimization problem is solved for each time step. The start time £}, of each flexibility is
exactly the time step chosen by each iteration. t;lex is variable in this problem and should be maximized
without violating constraints f; and g, which are abstracted from the equality and inequality constraints
discussed in Section 2.2, respectively. Subscript t for f and g indicates that the constraints shall be
satisfied in the whole domain of ¢. p?lex is the positive or negative power of one specific flexible

appliance, whereas p° refers to all other flexible appliances that still follow the cost-optimal schedules.
Once the flexibility duration has been acquired, the flexible energy is calculated by Equation (16).

0
bl 1

) _ o
St = Dy Py (16)
s=t

Hence, the duration for which flexibility can be offered depends on the device’s current state.
In the case of an EV, the flexibility that can be offered depends on the battery’s SoC, maximal charging
power and availability.

In a final step, the flexibility would need a price tag in order to be offerable on a flexibility platform.
However, this paper focuses on the quantification of flexibility of EVs and therefore the pricing is
excluded from this analysis. Nevertheless, one possible pricing mechanism for flexibility of EV is
described in [9].

Finally, the HEMS transfers the calculated flexibility parameters to a flexibility platform and waits
for flexibility calls. Once a provider is called for flexibility, user preferences change, or new forecasts
are available, the HEMS reinitiates the entire procedure from optimization to flexibility calculation and
updates the offers on the flexibility platform.

The model is open-source and accessible via the link in the Supplementary Material.

3. Case Study

Figure 2 visualizes the general design of the case study. In a first step, we computed vehicle
availabilities based on field trial data, collected by the California Department of Transportation and the
Karlsruhe Institute of Technology. After gathering and pre-processing the vehicle availabilities and
electricity tariffs, the cost-optimal charging schedules and the flexibility for each vehicle availability
is calculated using the model described in Section 2. In order to analyze the aggregated flexibility
potential of more than 4000 Californian and more than 11,000 German vehicle availabilities, the final
results are aggregated. The following paragraphs describe the case study setup in detail. The link in
the Supplementary Material contains an open-source script for the case study.



Energies 2020, 13, 5617

r ]
i Raw data i
N — !
; ToU [22] Con [21] RTP [23]
E ————— ——— |
i ———%
i | USCHTS i
i 18, 20] GER MP [19] i
T S Y e
i Preprocessing :
i A y i
i Controller . Vehicle i
i Electricity e L
i strategy " availability | |
! tariff model i
i model model !
E L T E
Fom o o o o o o ] - -
| e e e s
i Optimization and flexibility calculation '
i HEMS
E 1 ... Neariff * Navail * Ncontr l
S i

Analysis  [€ Aggre

gation P Visualization

7 of 21

Figure 2. Case study design, US CHTS, and GER MP refers to the Californian and German field trial
data used to calculate the vehicle availabilities [18-20]. Con refers to the constant electricity rate in
California [21], ToU refers to the “ToU-D-Prime’ electricity tariff of Southern California Edison [22],
and RTP refers to the Hourly Real-Time prices of ComEd in Illinois [23], US. n,yiff refers to the number

of electricity tariffs, n,y,ij refers to the number of vehicle availabilities, and ncontr refers to the number

of controller strategies investigated in this case study.

3.1. Data Input and Preprocessing

For the case study, vehicle availabilities at home are computed based on the data sets of the
Californian Household Travel Survey (US CHTS) and the German Mobility Panel (GER MP) [20,21].
Table 1 summarizes the parameters that characterize a vehicle availability.

Table 1. Vehicle availability characterizing parameters.

Parameter Unit Description
IDyen - Vehicle identifier
tarrival Timestamp Arrival time at home
tdeparture Timestamp Departure time from home
diravelled km Distance traveled since last departure from home
Atavailable S Available time at home

The following subsections provide a brief summary of the most important characteristics and
differences of the data sets used, as well as a short analysis of the computed vehicle availabilities.
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3.1.1. Californian Household Travel Survey

Between February 2012 and March 2013, 677 Californian vehicles were equipped with in-vehicle
GPS tracking devices. Every trip made by each vehicle was tracked for one week. The publicly
available data set contains information about start and end times, start and end location, average speed
and miles driven for every trip [22]. In the data set, 19,075 trips by 662 unique vehicles are recorded.
The distance traveled varies from less than 0.5 km up to 1289 km. The average distance traveled is
35 km for all conducted trips (see Table 2). Start and end locations are categorized in four categories:
HOME, WORK, SCHOOL, and OTHER.

Table 2. Mean, maximum, minimum and 95%-ile of distance traveled since last departure from home.

Parameter Unit US CHTS GER MP
dtravelled,avg km 35 38
dtravelled,max km 1289 1992
Atravelled,min km 0.5 0.2
dtravelled,95% km 131 130

Based on these parameters, the availability of vehicles at ‘'HOME’ can be extracted, with arrival
and departure time. Furthermore, the distance traveled is used to calculate the energy used by an
average vehicle from its last departure from home. This procedure results in 4062 vehicle availabilities
of 592 unique vehicles that contain a vehicle identifier, the distance traveled since the vehicle’s last
departure from home, its arrival time at and departure time from home. Inconsistencies in the GPS
data set, e.g., a vehicle arrives at home but departs for the next trip from another location, are neglected
in this analysis.

3.1.2. German Mobility Panel

Between September and November 2017, 3867 persons from 1881 households logged their daily
mobility behavior in a travel diary. After plausibility checks conducted by the Karlsruhe Institute of
Technology (KIT), a total of 70,252 trips were gathered from 1850 persons [21]. The final trip data set
includes information about the date, the trip’s start and end time, purpose, mode of transport used,
duration, distance, and household. In 33,250 of the 70,252 trips logged, the person recorded having
driven a vehicle as a driver either as a first, second or third “mode of transport used”. In 13,550 of the
33,250 trips, the purpose of the trip was to return home.

Based on the 33,250 trips, a total of 11,458 vehicle availabilities at home are computed by
considering household and person identifier, trip purpose, and the trips’ chronology.

3.1.3. Vehicle Availabilities

In this subsection, the calculated vehicle availabilities are visualized and analyzed. In order to
analyze the number of available vehicles at home during an average week, all vehicle availabilities
are summed up for each time step of the week. Thereafter, the sums are averaged over all weeks of
the field trials. Figure 3 shows the results for the Californian and German data sets. The average
number of vehicles available in the Californian data set is 4.5 vehicles and for the German data set
21.3 vehicles. This can be explained by the compressed German field trial period of three months and
the higher number of field trial participants (see [20,21]). Despite the differences in quantity, the vehicle
availabilities indicate the same trends. At night, the number of vehicles increases until 12 a.m. and
then decreases until 12 p.m. This behavior is repeated every day of the week. On weekends, however,
the magnitude of the oscillation decreases approximately by a factor of three.

Figure 4 visualizes a histogram of the total number of available vehicles over the distance traveled
since their last departure from home. The results of both data sets show an exponential decay with
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only a few outliers. Ninety-five percent of the American and German vehicles arrive at home with less
than 130 km driven since their last departure from home (see Table 2).
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Figure 3. Percentage of vehicles available at home during an average week. The maximum number of
vehicles available at home is 6 for the US CHTS data and 120 for the GER MP.
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Figure 4. Distribution of the distance traveled since the vehicle’s last departure from home—sampled
from all modeled vehicle availabilities.

Figure 5 visualizes a relative frequency histogram of the total number of vehicles over the period
the vehicles are available at home. Both data sets (US CHTS and GER MP) indicate a periodic behavior
with a decreasing amplitude for an increasing time of availability. Most vehicles are available either for
less than 1 to 3 h or for 7 to 25 h. Far fewer vehicles are available for 4 to 6 h or for more than 25 h.
Table 3 summarizes the mean, maximum, minimum and 95%-ile of the available time for both data sets.

Figure 6 visualizes the distribution of the number of vehicles arriving at home over the hour of
the day and the day of the week. Most vehicles arrive at home during the afternoon hours from 3 to
6 p.m. and depart from home between 6 and 9 a.m. Vehicles arrive at and depart from home more
frequently during the week than on the weekend. Neither result is surprising considering conventional
9 to 5 working hours.
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Figure 5. Distribution of the time period vehicles spend at home—sampled from all modeled
vehicle availabilities.

Table 3. Mean, maximum, minimum, and 95%-ile of time of availability at home.

Parameter Unit US CHTS GER MP
Atavailalble, avg h 10.43 16.16
Atavailable, max h 142.38 148.67
Atavailable, min h 0 0.02
Atavailable, 95% h 34 47.5
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of departure time.
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3.1.4. Electricity Tariffs

In order to quantify the impact of different electricity tariffs on the flexibility potential of electric
vehicles, three tariffs are used in this case study.

The first tariff is a constant tariff ‘Con’ in which the electricity price does not vary. The price is set
to 0.19 $/kWh, which was the average electricity price in California in 2018 [23].

“Toll’ tariffs are offered throughout the United States and in other countries to motivate the
reduction of electricity consumption in peak demand periods. Southern California Edison offers
multiple Toll tariffs for residential customers on their website. For the simulations, the “ToU-D-Prime’
tariff as published on the website in the beginning of 2020 has been used. The tariff differentiates
between winter and summer, weekday and weekend, and hour of day. In the winter, weekdays and
weekends are priced equally. Between 4 and 9 p.m. the mid-peak tariff is active during the entire winter
(0.36 $/kWh) and on weekends in the summer (0.27 $/kWh). During the summer, on weekdays from 4
to 9 p.m., the on-peak tariff for 0.39 $/kWh is active. From 9 to 4 p.m. the off or super-off-peak tariff at
0.14 and 0.13 $/kWh is active. This tariff motivates customer to reduce their electricity consumption in
the late afternoon and early evening.

The third tariff integrated in this analysis is RTP. California already implemented two RTP
programs in 1985 and 1987. However, both RTP programs had been canceled by 2003 [16]. Nowadays,
California only offers Con and Tol tariffs. Therefore, a publicly available RTP tariff from ComkEd,
an energy supplier in Illinois, US is chosen [24]. In order to equalize the electricity prices for all tariffs,
PRTP,offset is added to the real-time prices. prrp offset is the equal to the constant electricity price of
0.19 $/kWh minus the mean of all RTP. Since an analysis of the forecasting error of RTP is beyond the
scope of this publication, the RTP tariff is assumed to be a perfect forecast of the electricity prices.

T
1
PRTP,offset = PCon ~ 37 ; PRTP,i (17)

3.1.5. Controller Strategies

In order to quantify the impact of different controller strategies or user preferences on the flexibility
potential of electric vehicles, we implemented two controller strategies.

The first controller strategy is to charge the vehicle at minimal costs but as soon as possible.
Such behavior can be simulated by adding a minimal price increment onto the electricity prices
(see Equation (18)).

grid, im/ex

cim/ex — ¢ + ceontr Vte[1,T] (18)

grid, im/ex
t
accordance with the controller strategy. In the case of the first controller strategy, minimal price

increments are added in the range of 0.00001 to 0.00002 $/kWh and therefore do not affect the actual
price of electricity for the user. In the case of constant electricity prices, the optimizer would choose
the first possible time steps in order to charge at minimal costs. For the rest of this publication,
this operating strategy is denoted as “+MI".

In order to conserve battery life, a second controller strategy is to charge the vehicle as late
as possible and therefore to keep the SoC of the EV battery as low as possible as long as possible.
This controller strategy can be implemented either by the addition of a minimal price decrement in
Equation (18) or in the optimizer by default. In our case, this behavior was implemented by default in
the solver. Therefore, this controller strategy is not separately labeled.

Table 4 lists the five simulated operating strategies that represent the combination of the three
electricity tariffs and the two controller strategies.

denotes the actual electricity prices/revenues and c{"" the term that is added in
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Table 4. Simulated operating strategies that represent the combination of electricity tariffs and
controller strategies.

Operating Strategy Electricity Tariff Controller Strategy

Con Con Minimal decrements
TolU ToU Minimal decrements
Con + MI Con Minimal increments
Tol + MI ToU Minimal increments
RTP RTP -

3.2. Flexibility Calculation

In order to use the vehicle availabilities described in Section 3.1 as EV input parameters for
the model described in Section 2, the energy demand is calculated based on the distance traveled.
The energy required is the product of the specific energy consumption of the EV eywh/km and the
distance traveled diavelled-

Egv,i = exwh/km * dravelled (19)

For this case study, a specific energy consumption of 0.2 kWh/km is used for all vehicle
availabilities [25,26]. Furthermore, the user preference for the desired SoC of the vehicle at the
time of departure feparture Was set to 100 %. The charging efficiency is set to 98 %.

In order to investigate the impact of the maximal charging power, the maximal charging power
is varied in three steps: Pchargemax € {3.7 kW, 11 kW, 22 kW}. This variation allows all current and
possible future residential charging station configurations to be analyzed.

While the HEMS is capable of calculating the flexibility of HP, CHP, PV, and batteries, all other
possible inputs, such as additional electrical or thermal loads or generation, are set to zero.

For every one of the five operating strategies listed in Table 4 and every Pcharge,max, the model
calculates the optimal charging schedule and flexibility potential as a time series. This procedure
resulted in a total of 165,870 for GER MP and 60,930 for US CHTS executions of the model.

3.3. Data Aggregation

Once optimal charging schedules and flexibility have been calculated for more than 15,000 vehicle
availabilities for 5 operating strategies and 3 maximal charging powers, the results are aggregated.

First, all available vehicles, charging schedules, flexible power and energies are summed up for
every time step of the field trial periods. The result is a data set that shows the total number of available
vehicles at home, charging powers, flexible power and energy for every time step of the field trial.

In a final step, the summed data is clustered into weekly time steps (e.g., “Monday, 09:00”),
and weekdays and weekends. The clusters are then averaged over the field trial duration.

4. Results

This chapter visualizes and describes the results of the case study in detail. The cost-optimal
charging schedules are shown in the top two rows of plots, whereas the flexibility potential is shown in
the bottom two rows of plots (Figure 7). The first section describes the cost-optimal charging schedules,
and the second section the flexibility potentials of the vehicle availabilities from both data sets for the
five operating strategies.
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Figure 7. The plot series visualizes the charging and flexible power per available EV. The first two rows of plots show the charging power per available EV for the five

operating strategies on weekdays and weekends. The third and fourth rows of plots show the flexible power per available EV for the five operating strategies on
weekdays and weekends.
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4.1. Cost-Optimal Charging Schedules

In the top two rows of plots, Figure 7 shows the cost-optimal power demand per vehicle for
weekdays in the first row and for weekends in the second row. The curves of the Con and the ToU
operating strategy are almost identical and can only be distinguished by their behavior between 3 p.m.
and 9 p.m. At 4 p.m., the ToU curves show a smaller second peak compared to the early morning
hours. This behavior can be explained by the optimizer logic and mid/on-peak tariffs. The optimizer
implemented charges the vehicles as late as possible and as cheaply as possible. Considering the
mid/on-peak tariffs starting at 4 p.m., the optimizer schedules all vehicles that depart between 4 and
9 PM to charge right before 4 p.m. Therefore, this trend is consistent with the implemented optimizer
logic. Besides the difference mentioned in the early afternoon, the power curves for the Tol and
Con operating strategy show the same trend as visualized by the histogram of the departure times
in Figure 6. The amplitude ranges from 0 to 2.5 kW/EV for both data sets. On weekends, the power
ranges from 0 to 1.9 kW/EV and is more spread out throughout the day. Generally, the results indicate
that the Californian vehicles require greater power per vehicle compared to the German vehicles.

The RTP operating strategy causes charging peaks that are spread out from 11 p.m. to 8 a.m.
The peaks are more irregular than the ones for the Con and Tol operating strategies. While the power
curves for the Con and ToU operating strategy indicate similar trends for the US CHTS and the GER MP
data set, the cost-optimal charging power differ significantly between the German and the Californian
data set in the RTP operating strategy. The charging power for the Californian data set looks rather
smooth, whereas the results of the German vehicles look much spikier. Since the German data set was
collected over a period of three months, a single drop in the real-time prices and the corresponding
peak of charging power have a greater impact on the average charging power than those that occurred
during the 12-month Californian field trial with only a few vehicles. However, the amplitude ranges
also from 0 to 2.5 kW/EV for both data sets. Since real-time prices are much more difficult to forecast and
exhibit erratic short-term changes, the demand peaks are most probably overestimated in these results.

The cost-optimal charging power for the operating strategy Con + MI indicates a shifted charging
behavior. Whereas the Con operating strategy schedules vehicle charging right before their departure
in the morning hours, the minimal price increments force the optimizer to charge the vehicles right
after they arrive home. Therefore, the charging power curve for the Con + MI follows the almost
Gaussian distribution of the arrival times shown in Figure 6. The amplitude ranges from 0 to 2 kW/EV,
which is comparable to the curves of the Con and ToU operating strategies.

Nevertheless, Tol + MI cause the greatest charging power peaks (see Figure 7). Every day at
9 p.m., the optimizer schedules the vehicles that arrived between 4 and 9 p.m. to start charging at the
same time. This leads to power peaks of more than 6 kW/EV for both data sets.

Overall, the US CHTS and the GER MP results show similar trends for the cost-optimal charging
power for the five operating strategies simulated.

4.2. Flexibility

4.2.1. Operating Strategies

In the bottom two plots of Figure 7 the ranges of flexibility for the five operating strategies
simulated are visualized.

For EVs, positive flexibility is equivalent to a pause or postponement of the charging process.
Therefore, the upper boundary of the flexibility is equal to the optimal charging power.

According to the definition in Section 1, negative flexibility is the ability to consume electricity
ahead of its schedule. Considering the operating strategy Con + MI and a cost optimization, no negative
flexibility can be offered. Therefore, the lower boundary of the simulation results is congruent with the
zero line (see Figure 7).

Similar to the aforementioned operating strategy, ToU + MI result in no negative flexibility between
9 p.m. and 4 p.m. From 4 p.m. to 9 p.m., the negative flexibility increases linearly as vehicles arrive
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home, and their charging process is scheduled from 9 p.m. onwards owing to lower electricity prices.
At 9 p.m., negative flexibility drops back to zero.

The operating strategy Con and Tol result in almost identical negative flexibility results.
Furthermore, the negative flexibility that can be offered follows the vehicle availability curves
discussed in Section 3.1.3). Periodically, at night time, negative flexibility increases and reaches its
maximum around 1 to 3 a.m. During the morning hours before 12 a.m., the flexibility decreases.
Negative flexibility ranges from —5 kW/EV to —7.5 kW/EV with the Con and ToU operating strategies.
On weekends, the ranges are smaller since vehicle fluctuations also decrease. At 4 p.m., the Tol
operating strategy causes a minor drop in negative flexibility due to the charging of vehicles that
depart between 4 and 9 p.m.

The RTP operating strategy also follows the vehicle availability described in Section 3.1.3).
However, in contrast to the results of the Tol and Con operating strategies, the maximum negative
flexibility is available right before midnight. After midnight, when electricity prices are the lowest,
the vehicles are charged and the available negative flexibility decreases. On weekends, the range of
negative flexibility that can be offered decreases slightly as the fluctuations in vehicle availabilities
also decrease. The negative flexibility that can be offered ranges between -2 kW/EV and -7 kW/EV
for both data sets. Therefore, RTP prices lead to less offerable negative flexibility than a Con or ToU
operating strategy.

Having described the impact of the five operating strategies, the next subsections describe the
impact of the maximal charging power on the offerable flexibility of EVs.

4.2.2. Maximal Charging Power

To analyze the impact of the maximum charging power level, the optimization and flexibility
calculation for all vehicle availabilities are repeated for three maximum charging power levels: 3.7 kW,
11 kW, and 22 kW. Figure 8 shows the positive and negative flexible power that can be offered for the
GER MP data set. Each operating strategy corresponds to a row and each maximum charging power
level to a column of heat maps. Tables 5 and 6 summarize the maximal flexible power and average
flexible power for all five operating strategies. Generally, the positive flexibility is also representative
of the cost-optimal charging power.

Table 5. Maximum and average positive flexible power for five operating strategies and three maximum
charging powers.

. Ppos,max [kW/EV] PpOS,an [kW/EV]
Operating Strategy
3.7kW 11 kW 22 kW 3.7kW 11 kW 22 kW

Con 1.1 1.8 2.1 04 0.5 0.5

Tol 1.1 2.1 2.8 0.4 0.5 0.5
Con + MI 1.1 1.6 2.0 0.4 0.5 0.5
Tol + MI 2.4 5.7 9.1 04 0.4 0.5

RTP 1.9 4.0 6.2 0.4 0.4 0.4

Table 6. Maximum and average negative flexible power for five operating strategies and three maximum
charging powers.

. Pregmax [KW/EV] Pregavg [KW/EV]
Operating Strategy
3.7 kW 11 kW 22 kW 3.7kW 11 kW 22 kW
Con -2.9 -7.8 -12.8 -19 -6.9 -11.3
Tol -29 -7.8 -12.8 -19 -6.8 -11.1
Con + MI 0.0 0.0 0.0 0.0 0.0 0.0
Tol + MI -2.3 -5.6 -9.0 0.0 -0.6 -0.9

RTP -29 -7.6 -12.2 -0.2 -4.3 -6.7
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Figure 8. Resulting positive and negative flexible power per available EV. These results are based on the GER MP vehicle availabilities, the five operating strategies
{Con, Tol, Con + MI, ToU + MI, RTP}, and three maximal charging power levels {3.7, 11, 22 kW}.
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The results of the ToU and Con operating strategy show similar behavior. As described in
Section 4.1, the optimizer schedules EV chargings at the latest possible time. This leads to higher
charging powers and a high level of positive flexibility from 3 a.m. to 8 a.m. on weekdays. A higher
maximum charging power increases the maximal and average positive flexible power that can be
offered (see Figure 8). However, the duration of positive flexibility seems to decrease with increasing
maximum charging power in Figure 8. With a higher charging power level, the energy required
is charged over a shorter time period, and therefore leads to a compressed availability of positive
flexibility. The increase of maximal and average positive flexible power with an increasing maximum
charging power can be explained by assuming that with a low charging power, e.g., 3.7 kW, not all
vehicles are completely charged. In this case, the vehicle cannot offer any flexibility. With a higher
maximum charging power, the charging station charges the EV over a shorter period and can therefore
offer more flexibility. However, this relation is not linear, since the average positive flexible power
seems to only change insignificantly from 11 to 22 kW. Therefore, the two observations described
complement each other.

Considering the cost optimization described in IV.A, the results for positive flexible power for
the TolU + MI, Con + MI, and RTP operating strategies indicate a similar behavior. With an increasing
charging power, the positive flexible power that can be offered is compressed in time whereas
the maximal power increases. Furthermore, the average quantity of positive flexibility increases
(see Table 5). Both effects are explained in the previous paragraph.

Nevertheless, the TolU + MI and RTP operating strategies cause such high charging peaks at
9 p.m. (TolU + MI) and overnight (RTP) that the average maximal positive flexible power is three and
two times higher than in the remaining operating strategies. Whereas the impact of the RTP might
be overestimated since in a real-world scenario prices cannot be predicted as easily, the Toll + MI
operating strategy can pose a major threat to grid stability.

Considering ToU and Con operating strategies, most negative flexibility can be offered at night and
on weekends, when most vehicles are at home. Operating strategies with minimal price increments
result in no flexibility (Con + MI) or only for short durations from 4 to 9 p.m. (ToU + MI). The causes
have been discussed in the previous section. An RTP operating strategy shows similar trends as
the ToU and Con operating strategies for weekdays. Most negative flexibility is offered at nighttime,
from 5 p.m. to 3 p.m. On weekends, negative flexibility is at a high level and homogenously distributed
for the Con and TolU operating strategy, whereas RTP results indicate a similar behavior as during the
week. Such behavior can be explained by the time-varying electricity prices that are lower at nighttime
throughout the entire week.

As discussed in the previous subsection the Toll, Con, and RTP operating strategies show similar
trends in offerable negative flexibility. Table 6 displays the absolute differences between the operating
strategies and the maximal charging power.

A variation in charging power results in an increase in maximal and average negative flexibility
for all five simulated pricing scenarios. In order to identify a mathematical relationship between the
maximum charging power and the amount of negative flexibility further simulations are required.

With all results summarize, the next chapter discusses the validity and limitations of the
applied method.

5. Discussion

This paper presents a thorough analysis of cost-optimal charging schedules and flexibility potential
of more than 15,000 vehicle availabilities at home for five operating strategies, and three maximal
charging power levels. While the calculation of cost-optimal charging schedules is state of the
art, the quantification and analysis of the available flexibility of EV complements and enhances
existing literature.

In this analysis, perfect price forecasts have been used to analyze the flexibility of EVs. For the
first four operating strategies, which were based on Con and ToU tariffs, the consideration of perfect
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price forecasts would not have led to any other results. However, in the case of RTP the effect of the
perfect price forecast is not negligible. Since RTP cannot be forecasted precisely and multiple methods
lead to a range of results, the absolute impact of RTP is expected to be smaller in reality. Therefore,
future research will investigate the impact of the uncertainty of price forecasts on the flexibility that
can be offered.

Overall, the ToU + MI operating strategy leads to the least favorable charging behavior and
flexibility offers. The average charging power indicates major peaks at 9 p.m. and a smaller peak at
3:45 p.m. Both peaks are caused by the mid- and on-peak prices between 4 and 9 p.m. These peaks
occur every weekday with similar power levels and therefore represent a significant stress for grid
operation. The original assumption that the network could be relieved by time-varying discrete tariffs
will become obsolete in the near future, when charging processes will be optimized and automated.
This conclusion is in line with the existing literature [13,17]. Nevertheless, ToU operating strategies
lead to the overall minimum charging costs compared to the other operating strategies (see Figure 9).
Despite the seemingly cheaper Tol tariffs, regulators should omit operating strategies that offer
pre-known price differences in the future for the sake of grid stability and security of supply.
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Figure 9. Cumulated charging costs in € for five operating strategies and three maximum charging
power levels. For this analysis, the 11,103 vehicle availabilities of the GER MP field trial were used.

In order to achieve grid-friendly user behavior and not to create further grid congestions, we will
investigate the integration of local energy markets (LEM). LEM enable participants to trade and
exchange their electricity locally. Market agents within HEMS predict the vehicle availability, post bids
on the LEM, and adjust their bids automatically based on market results. With this approach,
different prices are calculated locally, and users are motivated to consume electricity in times of high
generation and to generate electricity in times of high demand.

For this case study, the most recent publicly available data sets with all required parameters were
chosen. Since the field trial data was collected from a wide variety of households with different types
of vehicles and only contain information about the distances traveled, departure and arrival times,
the results can only be representative for realistic user behavior but not for specific types of vehicles.
The energy demands of the vehicles were calculated based on the distances traveled. Even though
the two data sets are not from the same year (2012/2013 and 2017), the results do not indicate any
major differences. Furthermore, the report on the GER MP state that the trends in transportation and
individual mobility have remained almost constant over the last 10 years [21]. Therefore, the effect
of the different survey periods is considered insignificant. Nevertheless, the continuation of the
coronavirus pandemic may mean that employees will be able to work from home to a greater extent,
and that vehicle availability may therefore change in the long term. This effect has not yet been taken
into account in this study but would be an interesting new aspect.
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The gathered flexibility results of this case study are based on availabilities of vehicles at home.
However, the method described is neither limited to those two regions nor to quantify flexibility
based on EVs at home. This method is applicable to any region/data set that contains information
about trip start and end times, purpose or start and end location of the trip, means of transport and
distance travelled. Further investigations will investigate differences from other world regions and the
quantification of flexibility at other locations, such as workplaces.

6. Conclusions

This paper describes in detail a model that calculates cost-optimal charging schedules and
quantifies the flexibility of EV. A case study with more than 15,000 vehicle availabilities from Germany
and the USA was conducted and the results visualized for weekdays, weekends, and an average week.
Furthermore, the impact of five operating strategies and three charging power levels on the offerable
flexibility were analyzed.

Based on these results, the following key findings can be drawn:

1. Tol tariffs in combination with the user preference to charge the vehicle as soon as possible
(ToU + MI) leads to significant increased grid congestions.

2. Positive flexibility is mostly available during either the evening hours or early morning hours
depending on the user’s preferred charging time (MI).

3. No negative flexibility is available if the user is charged a constant electricity rate and chooses to
charge as soon as possible (Con + MI).

4. Negative flexibility follows the periodic availability of vehicle availabilities at home if the user
chooses to charge the vehicle as late as possible (Con).

5. Increased charging power levels lead to higher absolute positive and negative flexibility power
levels and also increase the total offerable flexibility of EVs.

In conclusion, the model presented in Section 2 is able to quantify EV flexibility. Regulators,
researchers, and system operators can use this model to investigate various influences such as tariff
structures, user preferences, charging power levels etc. on the flexibility of EVs. Furthermore,
the presented HEMS model can calculate the flexibility of heat pumps, combined heat and power,
photovoltaic and battery systems. Once completed, this model will be a new helpful tool for tasks
such as flexibility calculation, grid expansion planning, and the design and implementation of future
electricity regulations.

Supplementary Materials: The model and the script to perform the ev case study is open-source and accessible
via the following link: https://zenodo.org/badge/latestdoi/212816117.
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Chapter 4

Conclusion and future research

This dissertation describes how formerly passive consumers and prosumers are integrated
and coordinated as active participants in LEMs and are transforming into flexumers pre-
venting grid congestions and enabling a continuous expansion of renewable energies.

4.1 Conclusion

The articles presented in this dissertation introduce new coordination mechanisms, an
innovative flexibility model, and the results of three analyses that provide new insights on
how to coordinate increasingly decentralized, renewable, and electrified energy systems.
Based on these findings, the RQs formulated in section 1.1 are answered.

RQ#1 addressed coordination mechanisms that allow consumers and prosumers to
be integrated as active participants into energy systems, to trade energy locally, and to
take into account their preferences for energy qualities such as green or local. Simulation
results show that the newly developed library of IMCAs and bidding format fulfill the
aforementioned criteria. With the help of these algorithms, consumers and prosumers can
verifiably supply their energy demand with electricity of their preferred energy quality
and adapt their feed-in and consumption behavior based on the availability of renewable
or local electricity. This enables consumers and prosumers to support the decarbonization
of the energy system and the reduction of both transmission losses and grid expansion
costs.

RQ#2 asked how consumers and prosumers can support grid operations by provid-
ing market-based flexibility to grid operators and how much flexibility at what time and
price could be expected from them. A case study with real world mobility data demon-
strated the functionality of the introduced flexibility quantifying and pricing model and
visualized the flexibility potential of EVs that can be used to prevent future grid conges-
tions. This model represents the first approach transforming consumers and prosumers
into flexumers who can decentrally offer market-based flexibility as requested in the EU’s
Clean Energy Package directive 2019/944 [15]. Ideally, these flexumers help to efficiently
avoid grid congestions, which reduces grid management costs and enables the continued
expansion of renewable energies.

78



4. Conclusion and future research 79

RQ#3 concerned the potential added value the blockchain technology could provide
in coordinating consumers and prosumers compared to centralized implementations, par-
ticularly in LEMs. The results of a comparative performance analysis show that the block-
chain-based LEM implementation does not fulfill essential LEM requirements such as
data privacy and scalability and only adds value in the category of tamper resistance.
Therefore, I conclude that the blockchain technology at its current stage of development
does not help to coordinate or empower consumers and prosumers to host their own en-
ergy trading applications.

With the help of the presented models, scientists, energy experts, and regulators are
able to model the coordination of consumers, prosumers and flexumers and their prefer-
ences, thus facilitating their efficient integration into energy systems.

4.2 Future research

I conclude this dissertation with the following recommendations for future research.

Consumer- and prosumer-centric energy markets

After investigating consumer preferences for heterogeneous energy qualities in detail in
community-based LEMs, an interesting field of research is to incorporate consumer pref-
erences also in centralized optimizations and pure P2P approaches and to compare the
results with each other.

In the future, LEMs are going to be coupled either directly to whole-sale markets or
to neighbouring platforms to increase liquidity. In chapter 2, market coupling is mod-
elled with a retailer that is connected to both markets and bears the entire whole-sale
market risk by setting fixed upper and lower price boundaries on the LEM. Future re-
search should investigate how LEMs can be coupled with each other, to whole-sale and
flexibility markets, and evaluate the markets” interdependencies.

While the newly developed clearing algorithms were tested and analyzed for local
electricity-only markets, an interesting RQ could be whether the presented clearing algo-
rithms for heterogeneous energy qualities can be used for other commodities such as heat
or in whole-sale markets with interconnected bidding blocks.

Within this dissertation, I modelled auction-based LEMs without grid constraints. Fu-
ture research should investigate how grid constraints can be considered in community-
based LEMs and what impact they have on consumer preferences. lemlab offers the basis
for modelling grid constraints and load-dependent grid fees, thereby allowing to investi-
gate how grid congestions can be prevented in dispatching processes.

Hybrid blockchain solutions

With regard to RQ#3, I introduced an experimental test setup comparing a fully blockchain-
based implementation with a centralized LEM. Future work should study how the ful-
fillment of the technology-independent LEM requirements changes with a hybrid imple-
mentation to combine the advantages of a central and a blockchain-based LEM structure.
The developed add-on for the open-source project lemlab can help to quickly implement
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different variants and assess their performances similar to section 2.2. Additionally, lemlab
is extendable to support other blockchain protocols such as Tendermint and Hyperledger
to analyze alternative blockchain protocols and their suitability for LEM applications.

Further flexibilization of energy systems

The presented model, which quantifies and prices flexibility potentials of consumers and
prosumers, can only be the first step in the field of market-based procurement of flexibility
with flexumers. Future research should investigate how uncertainties and probabilistic
forecasts can be considered in the model, how regulatory decisions impact flexibility po-
tentials, and how the model can be used for commercial and industrial sites.

In order to further validate the flexibility offers of flexumers and assess whether in-
vestments in flexible infrastructures could be stimulated by flexibility markets, research
on flexibility demands, market platform designs, and the interdependencies between en-
ergy and flexibility markets needs to be intensified.
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When an author under the pseudonym Satoshi Nakamoto published the paper “Bitcoin:
A Peer-to-Peer Electronic Cash System” in 2008, the first cryptocurrency using the new
blockchain technology was introduced. Over the last decade, more than 1,000 different
cryptocurrencies, such as Ethereum, Ripple, and Litecoin were developed and Bitcoin’s
currency had almost reached an equivalent value of 20,000 $/BTC. After recognizing the
disrupting momentum that the blockchain technology generated, scientists started to
develop blockchain use cases for the energy sector. However, the scientific literature so
far offers only rough and incomplete estimations when questions about the current and
future energy consumption of the Bitcoin network are raised. This paper introduces a
new scenario model to estimate the mining power demand of the Bitcoin and Ethereum
network. Six scenarios are developed on the basis of mining hardware efficiency and
network parameter data. The results show that an increase of the mining hardware
efficiency will only have a limited impact on the overall power demand of blockchain
networks. Furthermore, the current power demand of the Ethereum network is in the
range from 0.6to 3 GW and therefore, is similar to the one of Bitcoin. In case of linear
growth of the block difficulty and sigmoidal increase of the hardware efficiency until the
year of 2025, the mining power demand for the Bitcoin blockchain will be approximately
8 GW. Furthermore, the model and the scenarios are adaptable to other cryptocurrencies
that use the proof-of-work consensus algorithm to create scenarios for their future
power demand.

Keywords: blockchain, bitcoin, ethereum, mining power demand, scenario, block difficulty, hardware efficiency

1. INTRODUCTION

In 2008, an author under the pseudonym Satoshi Nakamoto published the idea of a decentralized
cryptocurrency based on the blockchain technology (Nakamoto, 2008). The idea became reality in
2009 when the Bitcoin network was launched. Since then, and especially in 2017, when the Bitcoin
price nearly reached 20,000 $/BTC, the blockchain technology witnessed an immense growth of
attention. Many research papers have so far focused on the usability of the blockchain technology
on the peer-to-peer (P2P) level, and in micro-grid energy markets (Sabounchi and Wei, 2017;
Wang et al., 2017; Mengelkamp et al., 2018). However, since 2017, the public raises questions about
the current, and future energy consumption, and environmental impact of the Bitcoin blockchain
and other cryptocurrencies (altcoins) (DiChristopher, 2017; Popper, 2018). The scientific literature
currently offers few, and incomplete models to answer these questions.
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Economical models to estimate the energy consumption of
blockchains were introduced in 2015. Hayes presented the first
model that estimated the energy consumption of the Bitcoin
network based on the marginal product and costs. The break-
even points are based on the market prices, the difficulty of
the network (an indicator for the computing power in the
blockchain), and an average price for electricity (see Hayes, 2015).
Vries argues that Hayes’ model does not cover the investment
costs of the mining hardware and concludes that only 60 % of
the marginal product is used to cover the electricity demand
(de Vries, 2018b). The latter approach is used on the website
of the Digiconomist (de Vries, 2018a). At the end of 2017,
the Bitcoin market price fluctuated heavily, whereas the Bitcoin
block difficulty grew steadily (see Figure 1). As a result of this
development, the aforementioned economical approaches can
only offer an upper bound of the overall energy consumption of
the network.

Hashrate-based, bottom-up models were first introduced by
Malone and O’Dwyer (2014). The calculation of the Bitcoin
power demand considered the Bitcoin block difficulty and the
efficiency of the mining hardware (Malone and O’Dwyer, 2014).
Malone et al. calculated only lower and upper bounds of the
mining power demand with the most and least efficient hardware
available in 2014 because of an unknown combination of the
actual operating hardware. Mora et al. used the equations
developed in the aforementioned model (Mora et al., 2018).
However, the researchers picked for each mined block in 2017 an
arbitrary hardware efficiency to calculate the power demand. The
procedure was repeated 1,000 times, in order to reduce the impact
of the randomness (Mora et al., 2018). Unfortunately, the latter
approach does not consider the release date and the profitability
of the randomly picked mining hardware. Therefore, the estimate
for the power demand and the resulting CO, emissions is
most likely unrealistically high for 2017. Krause et al. presented
a model that estimates the annual average power demand of
Bitcoin, Ethereum, Litecoin, and Monero for the years of 2016,
2017, and partially 2018 by multiplying an average hardware
efficiency to the network’s hashrate (Krause et al., 2018). The
network’s hashrate is calculated by dividing the block difficulty
by the mining rate.

Models, that estimate the future power demand of
blockchains, have for the first time been introduced in 2018.
Vries proposed the idea to forecast the future power demand
by analyzing the supply chain of hardware manufacturers such
as Bitmain (de Vries, 2018b). This approach relies on business
secrets that are publicly not accessible and therefore, can hardly
be objectively verified. Mora et al. fit a logistic curve to the
adoption rates of 40 different technologies and use random
samples of the 2017 mined blocks to estimate the future CO,
emissions (Mora et al., 2018). This approach neglects any future
improvements of mining hardware. Furthermore, Mora et al.
consider mining hardware that is uneconomic already in 2017,
and fit the adoption rate of Bitcoin to household appliances that
offer insufficient parallels.

In 2017 Vranken, and Giungato et al. published reviews
summarizing the previously mentioned approaches but did not
introduce new methods (Giungato et al., 2017; Vranken, 2017).

Other estimates presented on the Internet claiming to
estimate the energy consumption of blockchains often
are not reproducible, and therefore are excluded from this
scientific discussion.

In conclusion, a reliable hashrate-based scenario model for
the future power demand of blockchains is a research gap in the
scientific literature (de Vries, 2018b).

This paper presents a new hashrate-based, bottom-up model
that allows the creation of scenarios for the future mining power
demand of the Bitcoin, and Ethereum blockchain. The model is
based on the past development of the mining hardware efficiency,
and mining difficulty of the network and is applicable to
other blockchains, that use the proof-of-work (POW) consensus
algorithm. Section 2 describes the analysis of the network
difficulty, mining hardware efficiency, and the setup of the
scenarios. In section 3, the results of the model are presented and
finally discussed in section 4.

2. METHODS

This section describes the scenario model for the future mining
power demand of the Bitcoin and Ethereum blockchain. The first
subsection covers the block difficulty, and the second one the
mining hardware efficiency. Each subsection is split in two parts:
(a) a brief summary of the past evolution and (b) the created
scenarios. The final subsection describes the combination of the
two isolated scenarios into the final model for the future mining
power demand.

2.1. Block Difficulty

The block difficulty is a network parameter in the Bitcoin and
Ethereum blockchain that automatically adapts its value to the
recent block mining rates of the blockchain. Therefore, the block
difficulty can be used as an indicator for the computational
power of the blockchain network. In order to create reasonable
scenarios, it is crucial to understand the way the block difficulty
changes.

2.1.1. Bitcoin Protocol

According to the Bitcoin protocol, the block mining rate
shall stay constant at Tgrc = 10min/block. Every 2016
blocks Tgrc adjust,period = 2016block, the block difficulty is
automatically adjusted to make up for the deviations from the
intended block mining rate of Tprc. Equation (1) shows the
adjustment formula.

dprc = dprcprev X (TBTC X TBTC, Adjust,Period)/IBTC,2016,blocks (1)

The block difficulty (dprc) is calculated by multiplying the
previous difficulty (dprcprev) With a correction factor. The
correction factor is the quotient of the scheduled time Tprc X
TBTC,Adjust,Period @nd the actual time to mine the last 2016 blocks
tBTC2016blocks: Lherefore, the block difficulty increases when
the actual time fgyco16blocks 1S smaller than the intended
time Tprc X TBTC AdaptPeriod to mine the last 2016 blocks.
Furthermore, the correction factor is limited to not fall below
25%, and to not exceed 400% (Nakamoto and The Bitcoin
Developers, 2012).
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FIGURE 1 | Development of the Bitcoin block difficulty and the market price from January 2013 until October 2018 (Blockchain Luxembourg S.A., 2018).

Figure 1 visualizes the development of the Bitcoin block
difficulty and the market price from January 2013 to October
2018. Since the beginning of 2014 until October 2018, the
difficulty shows an exponential growth. This growth correlated
with the development of the Bitcoin price until December 2017.
However, since January 2018 the Bitcoin price shows great
fluctuations, whereas the network difficulty constantly rises (see
Figure 1). Considering the adjustment formula of the mining
difficulty in Equation (1) it can be concluded that the computing
power added to the Bitcoin network has been exponentially
growing since 2014.

While preparing this article from November 2018 until the
end of December 2018, the Bitcoin block difficulty decreased
for four consecutive 2-week-periods for the first time in Bitcoin
history. This decrease coincides to a significant price drop
from 6,400 to 3,200$ as of December 16, 2018. However in
January 2019, the block difficulty has again increased for two
consecutive 2-week-periods. These fluctuations make it difficult
to foresee, and extrapolate future developments of the Bitcoin
block difficulty. Therefore, a range of possible scenarios are
presented in the next section.

2.1.2. Bitcoin Scenarios

Considering the exponential growth of the block difficulty in
Figure 1, three basic scenarios for the difficulty are employed that
seem most convenient. The first one is assuming a continuous
exponential increase of the difficulty with a least-squares fit. One
data point per day has been used for the fitting. The second
scenario is a linear interpolation of the difficulty from January 1st,
2013 and October 31st, 2018. The third scenario is considering a
stagnating difficulty. Figure 2 shows the three chosen scenarios.

The next sections focus on the Ethereum protocol and the
scenarios for the Ethereum block difficulty.

2.1.3. Ethereum Protocol

The Ethereum network is designed to offer a “more secure,
trustworthy and globally accessible internet,” and will undergo
multiple development phases and versions to reach this goal
(Buterin, 2015b). Those updates had in the past and likely
will in the future continue to have direct impact on the
calculation of the block difficulty. In the original implementation
of 2015, the Ethereum block difficulty (dgrh) was calculated
from the previous block difficulty (dgTH,prev) and two additional
arithmetic expressions (see Equation 2).

detH = dETH prev + dETH,prev/ /2048
X (1 if tyjock — Thlock,prev < 13 else — 1) (2)
2 ((block/ /100000)~2)

The first expression is a correction factor, including the spend
time to mine the previous block. If the calculated time is shorter
or longer than 13s a correction factor is added or subtracted
from the difficulty of the previously mined block. The second
expression is called the difficulty bomb. Every 100,000 blocks
this expression grows exponentially, starting at block 300,000.
The difficulty bomb was implemented to move toward an “ice
age” with the POW algorithm, in order to pressure the transition
to proof-of-stake (POS), an alternative consensus algorithm.
Double dashes symbolize an integer division, curtailing the
remainder (Buterin, 2015a).

Equation (3) shows the updated adjustment formula for the
block difficulty after the Homestead release, which was the
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FIGURE 2 | Exponential, linear, and stagnating scenario for the future development of the Bitcoin block difficulty fitted to the past difficulty. Data for the Bitcoin block

second version of the Ethereum platform and included multiple
protocol and network changes (Jeffrey Wilcke, 2016).

detH = dETH prev + dETH prev/ /2048

x max(1 — (tplock — tblock,prev)//lo’ —99)

+2(("block//100000)*2) (3)

In the Homestead update released in March 2016, the difficulty
formula was adjusted in such a way that the difficulty does not
change when the time necessary to mine a block stays in the range
from 10 to 19 s. The block difficulty increases whenever the time
drops below the range, and when it exceeds the range it decreases.
The difficulty bomb was not altered in the Homestead update
(Buterin, 2015a).

Equations (4-6) show the updated adjustment formula and
current state of the Ethereum protocol for the block difficulty
after the Byzantium and Constantinople hard forks, which are
updates of the Ethereum protocol (Schoedon and Buterin, 2017;
Schoedon, 2018). The Byzantium and Constantinople hard forks
are part of the Metropolis release, which is the third version
of the Ethereum platform. The Byzantium hard fork happened
in October 2017 and Constantinople is planned for early 2019
(Foundation, Ethereum, 2018).

rnaX[dETH,prev + (dETH,prev//
DETH,constant) X adj’ min(dETH,preva DMIN)]
42 ((Mblock fake//100000)—2)

dgTH

)

adj = max((2 if len(unclesprey) else 1)

—((tplock — tblock,prev)//g)) —=99) (5)

Nplock fake = mMax(0, npjock — 5,000, 000 block) (6)
With the introduction of the adjustment factor (adj) the existence
of uncles is factored in the calculation of the block difficulty.
Uncles are blocks that are correctly mined but are not included
into the blockchain, and were not considered until the Byzantium
hard fork. Furthermore, the range in which the block difficulty
stays constant was altered from 9 to 18 s (Buterin, 2016). Figure 3
visualizes the evolution of the Ethereum block difficulty from
March 2015 to October 2018 with a solid black line.

Until the beginning of 2017, the graph shows a steady and
continuous growth of the block difficulty. Especially in mid-
2017, an increasing impact of the difficulty bomb becomes visible
from the exponential steps towards the Byzantium update. In
October 2017, the difficulty drops from 3 x 10' to 1.5 x 10'°,
due to the reset of the difficulty bomb in the Byzantium update,
by 3,000,000 blocks (Schoedon and Buterin, 2017). Since the
Byzantium update, the block difficulty exponentially rose again
after reaching a level of saturation at approximately 3 x 10%°.
For the Constantinople release, the Ethereum developers already
agreed on delaying the difficulty bomb for another 2,000,000
blocks (Schoedon, 2018), resulting in a total delay of 5,000,000
blocks Equation (6). Therefore, the impact of the difficulty bomb
will not be visible before 2020 assuming an average mining rate

of 15.9 s (see Figure 3).

Frontiers in Energy Research | www.frontiersin.org

March 2019 | Volume 7 | Article 21



Zade et al.

Is Bitcoin the Only Problem?

2.1.4. Ethereum Scenarios

Three scenarios for the future development of the Ethereum
block difficulty are presented in Figure 3. The first scenario is the
development of the difficulty bomb only, according to Equations
(4-6). The second scenario is a linear interpolation of the block
difficulty on October 31, 2018 and the initial block difficulty in
2015. The last scenario is a stagnating block difficulty. Stagnation
of the block difficulty is only realistic if the Ethereum community
agrees to further delay the difficulty bomb.

2.2. Mining Hardware

This section summarizes the development of the efficiency of the
currently available mining hardware and describes the creation of
the efficiency scenarios for Bitcoin and Ethereum. A pessimistic,
and an optimistic scenario for each the Bitcoin and the Ethereum
mining hardware efficiency is shown until 2025.

2.2.1. Evolution of Bitcoin Hardware
Bitcoin mining hardware witnessed many advancements in the
past decade. In the first years of the Bitcoin network, mining was
still possible with conventional computers and laptops (Bitcoin
Forum, 2012; Bitcoin Wiki, 2018). As Bitcoin became more
popular and the price increased, field programmable gate arrays
(FPGA) and then application specific integrated circuits (ASIC)
were developed (Bitcoin Wiki, 2018). In 2018, the most powerful
ASIC calculates up to 16 Th/s (Shivam Chawla, 2017).

The investigation of the development of the hardware
efficiency requires a data set, that contains information about
the energy consumption, the hashrate, and the release date of

the mining hardware. The data, used in this paper, is available
in Zade and Myklebost (2018). Figure 4 visualizes the efficiency
of the mining hardware as crosses at the date corresponding to
their release date or the date the information of the hardware was
originally retrieved. The data starts in 2013 because beforehand
Bitcoin mining was mostly done on personal computers (PC)
and graphical processing units (GPU). Around 2013, FPGAs
were introduced to mine Bitcoins, however were quickly outrun
by ASICs. Since 2013, the efficiency of the mining hardware
grows steadily.

2.2.2. Efficiency Scenarios for Bitcoin Hardware
In order to create reasonable scenarios of the hardware efficiency
of the Bitcoin network, it is necessary to consider a certain
time lag until the network adopts the newly released hardware.
In Figure4, a 6 months time lag, which is equivalent to
1/4 of the duration of use, has been added to the release
dates to make up for the adoption time (see de Vries,
2018b). The scenarios are then created with one pessimistic
and one optimistic least-squares fits. The data that has been
fitted are the release dates in Zade and Myklebost (2018)
delayed by the time lag and the corresponding efficiency
(see Figure4). In the fitting, one data point per release date
was used.

The first one, is a standardized second order polynomial fit,
and returns the parameters in Equation (7).

Nnd(®) =3.0x 1078 x 2 —8.0x 1074 x t+5.4 x 10° (7)
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FIGURE 3 | Past Ethereum block difficulty development according to Etherscan (2018) and exponential, linear, and stagnating scenarios for the future.
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FIGURE 4 | Quadratic and sigmoid scenario for the development of the Bitcoin mining hardware efficiency fitted to the past development. Data for the hardware

The second fitting curve is a sigmoid curve, which was derived
from Equation (8).

®)

Equation (9) is a modification of Equation (8), so that it
is applicable to the data with UNIX timestamps. Therefore,
additional parameters are introduced.

t—B
n%anzAx(gIﬁjﬁ+D> ©)

A variation of the parameter A results in an amplification of the
function values. Altering B causes a shift on the x-axis and C
affects the gradient of the curve. Finally, the parameter D creates
a shift on the y-axis. A least-square curve fitting function fitted
the parameters. The initial parameters, the lower and the upper
bounds and the optimized values are summarized in Table 1.

Figure 4 displays the results of the two fitting functions. The
curves are congruent until the last data point. The quadratic
curve indicates a scenario in which the hardware efficiency
will increase to approximately 45 Gh/J in 2025. The sigmoid
curve shows a rather pessimistic scenario in which the hardware
efficiency reaches a saturation at approximately 13 Gh/J in 2025.
The actual development of the hardware efficiency will most
probably be in between the proposed scenarios, as long as
no breakthrough technology is developed for Bitcoin mining
(see Figure 4).

TABLE 1 | The parameters used to fit the hardware mining data to a sigmoid
curve [see Equation (9)].

A B c D
Initial values 1.12 x 104 1.52 x 109 5 x 108 05
Lower bound 5.59 x 108 1.48 x 109 1 x 108 0
Upper bound 4.47 x 104 1.53 x 109 1 x 109 1
Optimized values 1.22 x 10% 1.48 x 109 1.12 x 108 0.51

2.2.3. Evolution of Ethereum Hardware
The mining process in the Ethereum network was built to be
ASIC-resistant, in order to keep mining profitable for ordinary
computers (Ethereum Wiki, 2018). This ASIC-resistance was
originally implemented by the Dagger-Hashimoto algorithm
and currently is used in the Ethash implementation. Ethash
forces full clients to create a 1 GB dataset which is updated
every 30,000 blocks, grows linearly over time, and has to
be stored. Mining is only possible, if random parts of the
dataset can be accessed, combined with the block data, and
altogether hashed. Therefore, a GPU is the best mining
hardware, due to its built-in memory and high access rate
(Ethereum Wiki, 2017).

Analogous to the hardware evolution analysis for Bitcoin,
a data set for the Ethereum mining hardware was needed
that includes information about the energy consumption,
hashrate, and release date. However, manufacturers of GPUs
do not normally state the reachable hashes per second nor
the hashes per joule in the technical data, because mining
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Ethers is a new field of application. Therefore, the energy
consumption of GPUs are from technical data sheets, whereas
the hashrates are from different websites that offer test results
(Zade and Myklebost, 2018).

Figure 5 shows the evolution of the mining hardware
efficiency over time in Mh/J. The displayed data starts in 2012,
since already earlier produced GPUs are likely to be used
for mining Ethers. Unlike the hardware to mine Bitcoins, the
development of the Ethereum mining hardware is widely spread.
This is most probably due to the fact, that GPUs are not primarily
developed to mine Ethers, but instead to enable advanced
computer gaming, image processing, and artificial intelligence
applications (Karpistsenko, 2017).

2.2.4. Efficiency Scenarios for Ethereum Hardware

Analogous to Bitcoin, it is reasonable to consider a certain
time lag until the network adopts the newly released hardware.
Therefore, the release dates in Figure 4 indicate a 6 months
time lag, which is equivalent to 1/4 of the duration of use
(see de Vries, 2018b). The scenarios are then created with
one pessimistic and one optimistic least-squares fit. The data
that has been fitted are the release dates from Zade and

when Ethereum developers want to shift toward a less
computational expensive protocol with POS. Therefore,
the first scenario for the development of the Ethereum
mining hardware efficiency is rather pessimistic and
follows a linear trend. The second scenario assumes an
optimistic exponential evolution of the hardware efficiency.
The second scenario would propose a mining efficiency
of 0.8 Mh/J in 2025.

2.3. Future Mining Power

This section describes the calculation of the future power
demand for Bitcoin and Ether mining. The formula for the
Bitcoin mining power demand is shown in Equation (10)
(Malone and O’Dwyer, 2014).

P p Dgtc X 232 p Dgrc X 232

iine = Mimi X = — X =

BTC_mining miner HW At % RHW HW At x W
(10)

TABLE 2 | Block difficulty and hardware efficiency combination for each scenario
for the Bitcoin network.

Myklebost (2018) delayed by the time lag and the corresponding  Scenario Difficulty Hardware efficiency
efficiency (see Figure 4). In the fitting, one data point per release
date was used 1 Stagnating Sigmoid

Figure 5 shows the results of the two least-squares fits. 2 Linear . ngmofd
First, the historical data shows, that GPUs are primarily not ~ ° Exponentia Sigmoid
optimized or developed to increase the mining efficiency. * Stagnating 2nd order
Secondly, manufacturers of GPUs will have limited interest ° Linear 2nd order

6 Exponential 2nd order

in optimizing their processing units for mining Ethers,
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FIGURE 5 | Exponential and linear scenario for the development of the Ethereum hardware efficiency fitted to the past development. Data for the hardware release
dates from Zade and Myklebost (2018).
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PBTC_mining represents the power demand for Bitcoin mining,
Nminer the number of miners within the network, Pyw the
power demand of a certain mining hardware, Dprc the difficulty
of the Bitcoin network, At the preset time to mine a block
(for Bitcoin 10min), and Ryw the hashrate. The hashrate
and the power demand can be summarized in the mining
efficiency nyw.

Equation (11) calculates the network-wide power demand to
mine Ethers. The main difference is the absence of the lower
bound factor 232.

3.1. Bitcoin Mining Power Demand

Scenarios

Six scenarios are investigated for the Bitcoin blockchain, in order
to analyze the future mining power demand. The development
of the scenarios is described in section 2. Table2 lists the
combinations of the hardware efficiency and block difficulty for
each scenario.

TABLE 3 | Block difficulty and hardware efficiency variations for each scenario for

DeTH DeTH the Ethereum network.
PETH_mining = Mminer X PHw = A % Ros X Prw = —
£ X Ryw tx ”H(Vi’l) Scenario Difficulty Hardware efficiency
Section 3 displays the results of the different scenarios. 1 Stagnating Linear
2 Linear Linear
3 RESU LTS 3 Bomb Linear
) 4 Stagnating Exponential
This section presents the results of the scenario model for the — ° Linear Exponential
power demand of the Bitcoin and Ethereum blockchain. 6 Bomb Exponential
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FIGURE 6 | Power demand for Bitcoin mining until October 2018 if only one hardware was used throughout the network and scenarios 1-6 until 2025 for the future
development of the power demand. Bitcoin hardware data from Zade and Myklebost (2018).
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Figure 6 visualizes three results:

1. How much power the Bitcoin blockchain demanded in the
past, if the entire mining process would have followed the
fitted curves in section 2.

2. How much power the Bitcoin blockchain demanded in the
past, if the entire mining process would have been done on
one of the selected hardware.

3. How much power the Bitcoin blockchain will demand, if one
of the scenarios from Table 2 materializes.

Even though the Bitcoin network went live in 2009, the data
starts in 2013, because mining was done on conventional CPUs
beforehand, and the release of Bitcoin specific hardware started
in 2013 (Malone and O’Dwyer, 2014).

The y-axis is a logarithmic scale, in order to show the vast
range of mining power demand. The curves of the hardware start
at their release date or at the time, when the information about
the hardware was first made available. For a better visualization,
only a selection of 9 hardware mining machines are shown in
Figure 6. In 2013, the first data points are FPGAs (e.g., Icarus)
and were quickly followed by ASICs (e.g., Antminer). The mining
power demand approximately was in the range from 0.1 MW to
10 MW in 2013. With the releases of the first ASICs in 2014, the
mining power demand rose drastically to the range from 0.01 GW
to 5 GW. In the beginning of 2018, the range of the mining power
demand was already from 1.5 GW to more than 5,000 GW. The
power demand approximately is at 5 GW, if Bitcoin mining was
done in October 2018 with a mix of the three most efficient,
displayed ASICs. In 2018, the mining power demand could be
higher than 10,000 GW, if mining was entirely done with the
FPGAs that were released in 2013.

The curves for the six scenarios indicate the potential
development of the power demand of the Bitcoin and Ethereum
blockchain. Green curves show sigmoidal, and turquoise curves
exponential scenarios for the hardware efficiency of the Bitcoin
mining hardware. Dashed lines indicate the exponential increase,
solid lines a linear rise, and dotted lines the effect of a stagnating
block difficulty.

The curves for scenario 1-3 and 4-6 are congruent to each
other from 2014 until the beginning of 2018. The congruence
of the curves is a result of the usage of the historical block
difficulty data that was for all scenarios the same. Furthermore,
the hardware efficiency only show slight deviations between the
sigmoidal and exponential fit between 2014 and the beginning
of 2018. In 2013, the differences of the curves are caused by
the deviating scenarios for the hardware efficiency in Figure 4.
Differences from mid-2018 onwards are a result of the deviating
scenarios for the hardware efficiency and block difficulty.

In 2025, the power demand of the Bitcoin network will be
greater than 10,000 GW, if the block difficulty continues to
rise exponentially and the hardware efficiency either follows a
sigmoidal or an exponential growth. Considering the worldwide
installed generation capacity for electricity of 6,300 GW in 2015,
these two scenarios are highly unlikely (Central Intelligence
Agency, 2018). In the case of a linear growth of the block
difficulty, the expected power demand of the Bitcoin network
is in the range from 2.5 to 8 GW. A stagnating difficulty

results in an overall power demand in the range from
1.2 to 4 GW in 2025.

Conclusively, Figure 6 shows that the greatest impact results
from the development of the block difficulty and that the Bitcoin
power demand can potentially decrease, if the block difficulty
stagnates or even decreases. Improvements in the hardware
efficiency will have limited influence on the power demand of the
Bitcoin network.

3.2. Ethereum Mining Power Demand

Scenarios
Six scenarios are investigated for the future mining power
demand of the Ethereum blockchain. Table3 shows the
combinations of the hardware efficiency and block difficulty
within each scenario.

Figure 7 shows three results:

1. How much power the Ethereum blockchain demanded in the
past, if the entire mining process would have followed the
fitted curves in section 2.

2. How much power the Ethereum blockchain demanded, if the
entire mining process would have been performed using the
same hardware.

3. How much power the Ethereum blockchain will demand, if
one of the scenarios from Table 3 materializes.

calculated mining power demand of the Ethereum blockchain for
the researched data in Zade and Myklebost (2018) and the above
mentioned six scenarios.

For a better visualization, only 10 of the 45 listed mining
machines are visualized, in order to display the full range of the
power demand in Figure 6 (Zade and Myklebost, 2018). The x-
axis starts at the beginning of the Ethereum network in July 2015,
and ends with the forecast in 2025. The curves of the hardware
start at their release date. In January 2016, the mining power
demand ranged from 3 to 9MW. In January 2017, the mining
power demand was in the range from 25 to 90 MW. After the
Byzantium update in October 2017, the demand dropped shortly
to a range from 0.45 to 1.5 GW but increased again until January
2018 up to 0.5 to 2 GW.

The mining power demand of the Ethereum blockchain would
have been at approximately 0.9 GW on October 31st, 2018, if
the network used a mixture of the five most efficient GPUs to
mine Ethers. This estimate and the one in section 3.1 about a
similar mixture for the Bitcoin network conclude that the mining
power demand of the Bitcoin and the Ethereum blockchain are
in similar ranges.

The two dashed lines show the development of the power
demand when the block difficulty grows according to the
difficulty bomb and the hardware efficiency either increases
linearly (dashed brown line) or exponentially (dashed green line).
The average power demand of the scenarios 1 and 4 would exceed
10,000 GW before the beginning of 2020. These scenarios seem,
from the energy system’s perspective highly unlikely, considering
the worldwide installed generation capacity for electricity of
6,300 GW in 2015 (Central Intelligence Agency, 2018). The green,
and turquoise solid lines show the mining power demand if the
block difficulty rises linearly. The average power demand in 2025
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FIGURE 7 | Mining power demand of the Ethereum blockchain until October 2018 if only one hardware was used throughout the network and scenarios 1-6 until
2025 for the future development of the power demand. Ethereum hardware data from Zade and Myklebost (2018).
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of the scenarios 2 and 5 would be at 1.4 GW. The dotted lines
represent the scenarios 3 and 6 in which the difficulty stagnates
at the level of the October 31, 2018 and the hardware efficiency
increases exponentially or linearly. The average power demand
would be in 0.4GW in 2025. Therefore, a stagnating block
difficulty will result in a mining power demand by 2025 of less
than half compared to the scenarios with an linearly increasing
block difficulty.

Similarly to section 3.1, the scenarios for the Ethereum
blockchain indicate that the future power demand most
significantly depends on the block difficulty. The hardware
efficiency has a limited impact.

4. DISCUSSION

This paper presents a scenario model that estimates the future
mining power demand of the Bitcoin and Ethereum blockchain.
This section discusses the selected model’s input scenarios,
limitations, results, and compares them with the scientific
literature.

The model creates scenarios for the efficiency of mining
machines, based on release dates and efficiencies of hardware

from the last decade. The chosen scenarios follow the trend
of processor efficiencies described in (Hasler and Marr, 2013;
Marr et al., 2013; Rupp, 2013). However, they do not assume
any breakthrough technology that would improve the efficiency
of mining hardware by more than 400% in 2025 compared to
October 2018. This method allows the creation of efficiency
scenarios for mining hardware, which can also be applied to
other technologies.

In the Bitcoin blockchain, the block difficulty only depends
on the block mining rate. In the Ethereum network, the
block difficulty also is affected by the difficulty bomb. The
different influences on the block difficulty were analyzed,
extrapolated, and fitted with multiple functions, in order to
create reasonable scenarios for the future. The developed
scenarios offer a wide range of possible developments, because
the computing power in a blockchain is amongst others
dependent on the market price which is hard to predict.
Furthermore, this method cannot cover the impact of protocol
changes, such as in the Byzantium and Constantinople release.
However, the creation of scenarios for the block difficulty
based on the past development appears to be the most
appropriate approach.
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TABLE 4 | Annual average powerdemand of bitcoin and ethereum.

Blockchain Bitcoin Ethereum
Model O’Dwyer Mora et al Krause et al. This study Krause et al. This study
in MW in MW in MW in MW in MW in MW
2014 10-10,000 - 168 -
2015 100-100,000 - - 202 - 3
2016 1,000-1,000,000 - 283 364 24 19
2017 - 11,959-12,5382 948 843 299 367
2018 - 3,441b 3,852¢ 1,165° 991°¢

aSince the model of Mora et al. provides only the energy per block in GWh. The annual average power demand has been calculated by dividing the energy per block by the expected

block mining time of 0.167 h.
bAverage from January 1 to June 30, 2018.
¢Average from January 1 to October 31, 2018.

Large mining farms that were built to pool the computing
power of multiple thousands of mining machines require extra
cooling elements (de Vries, 2018b). However, the analyzed
hardware does only consider on-board cooling elements.
Moreover, the power demand of the GPU’s auxiliary equipment is
not considered. Therefore, the results presented in this paper are
alower bound of the power demand of the Bitcoin and Ethereum
blockchain. The investigation of the cooling demand requires
further research.

In consideration of the aforementioned limitations, this model
calculates the power demand of the Bitcoin and Ethereum
blockchain, and provides the following answers:

1. Mining efficiency has increased significantly over the past

years. Today’s mining would result in a power demand of

more than 1,000 GW in 2018 if mining was done on a mix

of hardware that was released in 2013.

. Future hardware efficiency improvements will have only a
limited impact on the total power demand of the Bitcoin and
Ethereum blockchain if the block difficulty follows similar
growth patterns as in the past decade.

. The power demands of the Bitcoin and Ethereum blockchain
are expected to decrease if the block difficulty stagnates.
However, the demand will stay constant if the block difficulty
only grows linearly.

. The power demands of the Bitcoin and Ethereum blockchain
are estimated to be in similar ranges, at least 5 and 0.9 GW,
respectively as of October 2018.

For comparison and verification of the presented model, Table 4
shows the average annual power demand of the Bitcoin and
Ethereum blockchain from the scientific literature and the
presented scenario model for the years from 2014 to 2018.

For the years 2014 and 2015, the model calculates power
demands for Bitcoin that correspond to the results presented in
O’Dwyer (2017). For 2016, 2017, and 2018, the model’s results for
Bitcoin are in similar ranges as the results presented by Krause
et al. (2018). The scenario model does not match the results of
O’Dwyer in 2016 because the hardware selection in O’Dwyer
(2017) was not updated from the author’s original selection from
2014 and therefore calculated with less efficient hardware a higher
power demand range for 2016 (see Malone and O'Dwyer, 2014).
For 2017, the scenario model calculates an annual average power
demand for Bitcoin of 843 MW and for Ethereum of 367 MW.
Mora et al. (2018) published a model that calculates a power

demand for Bitcoin in the range from 11,959 to 12,538 MW. The
reason behind this high power demand can be explained with the
random selection of hardware that was already uneconomic and
out-dated in 2017 (see section 1). In summary, the comparison of
the results in Table 4 verifies the output of the scenario model and
provides explanations for deviations to other scientific models for
the years from 2014 to 2018.

5. CONCLUSION

This paper presented a new hashrate-based model for the
creation of scenarios for the future mining power demand of
the Bitcoin and Ethereum blockchain. Hence, providing an
alternative to economical models that require business secrets,
or technical models that use unrelated adoption rates. The
developments of the block difficulty and the hardware efficiency
of the last decade provided the basis for the developed scenarios.
The investigation of six scenarios until 2025 revealed that the
hardware improvements will have only a limited impact on the
total power demand of the Bitcoin and Ethereum blockchain,
and that the mining power demand of the Ethereum network
is in a similar range as the one of Bitcoin. Furthermore, the
presented methodology can be applied to create scenarios for
the power demand of any other blockchain that uses the POW
consensus algorithm by adjusting the formulas to the network’s
characteristics.

Future research shall investigate the impact of the market
price on the block difficulty and the consideration of cooling
equipment in the overall power demand of the Bitcoin and
Ethereum blockchain.
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Appendix C

Acronyms

CC
Con
DER
EU
EV
HEMS
HP
IMCA
LEM
P2P
PDA
PP
REC
RQ
RT
SM
ToU
VRE
WTPP

Checkand Curtail . . . . . ... ... ... .. L 12
Constant . . . . . . . . .. 54
Distributed Energy Resource . . . . . ... .. ............. 6
EuropeanUnion . . . . .. ... ..................... 10
Electric Vehicle. . . . . . . .. ... . ... 1
Home Energy Management System . . . . .. ... ... ....... 3
HeatPump . . . . ... ... ... . . . 1
Iterative Market Clearing Algorithm . . . .. .. ..... ... ... 5
Local Energy Market . . ... ... ... ... .. .......... 2
Peer-to-Peer . . . .. . . ... 6
Periodic Double Auction . . . . .. ... ... ... ... .. ... 8
Preference Prioritization . . . ... ... ... ... ... ....... 12
Renewable Energy Certificate . . . . ... ... ............ 11
ResearchQuestion. . . . . . . . . .. .. ... ... ..., 2
Real-Time . . . . . . . . . .

SmartMeter . . . . .. ... 3
Time-of-Use . . . . . . . . . . 54
Variable Renewable Electricity . . . .. .. ............. .. 1
Willingness To Pay a Premium . . . . ... ............... 5
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