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Background
Correlations between omics measurements are widely used to interrogate mechanisms 
of biological interactions. Differential correlation networks capture differences between 
omics correlations in two populations/conditions, e.g., cases and controls [1, 2]. They 
can thus be used to gain insight into aberrations in biological processes and mechanisms 
of disease initiation and progression [3]. They have also been instrumental in gaining 
insights into biological responses to environmental factors [4, 5] or functional conse-
quences of mutations [6, 7]. This has led to the development of multiple methods for dif-
ferential correlation analysis in recent years [8–14]; see [2, 15] for more comprehensive 
review. However, software tools for estimating and visualizing differential correlation 
networks have received less attention. Moreover, existing software either only focus on a 
single omics data type (commonly, mRNA expressions) and do not facilitate integrative 
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analysis of multiple omics data [10, 13, 14, 16–19], or only provide static visualizations 
(e.g. heatmaps) [16, 17, 19–21].

Our CorDiffViz package provides a simple tool for estimation and interactive visu-
alization of correlation networks and their differences. It also facilitates omics data inte-
gration via unifying visualizations for single and differential cross-correlation networks 
among two omics data types. Differential cross-correlation networks have been exam-
ined recently [11, 12, 21]; however, this work only provides visualization for a single cor-
relation at each time [21], or has no publicly available package or visualization tools [11, 
12] .

Correlations in multi-omics settings can be compared via a direct approach: concat-
enating the multiple omics measures into a single data set and using existing software 
tools to compare correlations in such concatenated data across two populations. How-
ever, by developing a tailored method for cross-omics correlation analysis, our software 
has at least two advantages over the direct approach. First, the direct approach requires 
estimating and testing many more correlations ( O(pX + pY )

2 for two data sets X and Y  
with pX and pY  variables), whereas our approach processes only O(pXpY ) correlations. 
This not only saves a significant amount of computation but also narrows the focus of 
multiple testing adjustments to the correlations of interest, leading to a power gain for 
statistical tests. Second, in addition to the interactive visualization that is currently not 
widely available, our software offers tailored visualization for cross-omics correlation.

Another benefit of CorDiffViz compared with existing tools is that, in addition 
to Pearson correlation, it implements rank-based correlation measures that are bet-
ter suited for non-Gaussian observations commonly encountered in omics data. The 
package provides both parametric and permutation tests for these correlation types. 
Unlike existing software tools, the resulting p-values, together with the implemented 
adjustments for multiple testing and false discovery rate (FDR) control, provide for-
mal inference for differential correlation/cross-correlation analysis by accounting for 
the uncertainty in differential correlation measures. These estimation and visualization 
capabilities are particularly designed for sparse (differential) correlation matrices, where 
most (changes in) correlations are zero or negligible. The user has access to interactive 
visualization of both single condition and differential correlation networks by just calling 
one simple function in R [22]; see Fig. 1.

Implementation
Overview

In this section, we give an overview of the estimation methods implemented in the CorDiffViz  
package for differential correlation analysis. To simplify the user interface, all methods have 
been implemented in a single function, viz() in R. The full list of its options is displayed in 
Fig. 1. In what follows, we describe the estimation methods available through the function, 
along with their various options.

Consider two sets of omics measurements (e.g., mRNA expression and pro-
tein abundances) with data matrices X

(1) ∈ R
n1×pX and Y (1) ∈ R

n1×pY  (with n1 
units and pX and pY  measurements, respectively) coming from one population and 
X
(2) ∈ R

n2×pX and Y (2) ∈ R
n2×pY  from another (with n2 units and pX and pY  meas-

urements, respectively). We estimate and visualize cor
(

X
(1),Y (1)

)

 , cor
(

X
(2),Y (2)

)

 and 
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cor
(

X
(1),Y (1)

)

− cor
(

X
(2),Y (2)

)

 , where cor
(

X ,Y
)

 denotes the matrix of correlations 
between column vectors of X  and Y  . It is worth noting that the software can also 
be used for analyzing one omics data type, e.g., mRNA expression levels, by simply 
excluding the second sets of data, Y (1) and Y (2) from the above expressions and focus-
ing on, e.g. cor

(

X
(1)
)

 . The NULL default values for dat1Y and dat2Y in Fig. 1 corre-
sponds to this simpler problem.

We consider five measures of correlation: (i) Pearson’s product-moment correla-
tion r, (ii) Kendall’s τ , (iii) Spearman’s ρ , (iv) the sin-transformed τ , sin (πτ/2) , and (v) 
the sin-transformed ρ , 2 sin (πρ/6) . For continuous distributions obtained from arbi-
trary monotone transformations of the original data (known as Gaussian copulas), the 
transformed rank correlations from (iv) and (v) consistently estimate an underlying 
Pearson’s r [23, 24]. Under non-Gaussian models, these correlation types, along with 
the corresponding tests described below, provide more robust inference for differen-
tial correlations compared to the z-tests for Pearson correlations in [16].

For each correlation measure, the user can choose from the following estimates for 
visualization: (a) the raw (differential) correlation matrices, (b) the matrices thres-
holded using parametric tests, and (c) the matrices thresholded using permutation 
tests. For (b), the limiting distribution of each sample correlation is used for z-tests 
that are further adjusted for multiple testing; entries in the matrices that are not sta-
tistically significant are set to 0. The user can choose the adjustment method through 
the adj_method argument (see Fig.  1) from those supported by p.adjust() in 
base R. Denoting by N  the standard normal distribution, and by Tn−2 the Student’s 
t-distribution with n− 2 degrees of freedom, the limiting null distributions for our 
correlation estimates are determined as follows. 

(I)	 Pearson’s correlation: under the Fisher transformation, √
n− 3 log((1+ r)/(1− r))/2 →d N  [25, 26]

(II)	 Kendall’s τ : 
√
9n(n− 1)/(2(2n+ 5))τ →d N  [26];

(III)	Spearman’s ρ : 
√
n− 2ρ/

√

1− ρ2 →d Tn−2 [26];
(IV)	τ ′ = sin(πτ/2) : 

√
18n(n− 1)/(2n+ 5)τ ′/π →d N  (from (II) with the delta 

method [27]);

Fig. 1  A screenshot of the function prototype of viz(), the main user-facing function in the CorDiffViz 
package
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(V)	 ρ′ = 2 sin(πρ/6) : 3
√
n− 2ρ′/π →d N  (from (III) with the delta method [27]).

For the differential correlations, we use limiting normal distributions that follow from 
(I)–(V) above, using the fact that var(U + V) = var(U)+ var(V) for independent ran-
dom variables U and V.

For (c), we use permutation tests in which samples are randomly shuffled; the user can 
choose the number of permutations through argument B (see Fig. 1). A random num-
ber seed for this procedure can be specified by the argument perm_seed to ensure 
reproducibility.

For either case, parametric or permutation tests, one can also choose to perform one-
sided ( ≥ 0 or ≤ 0 ) or two-sided tests using the sides argument (Fig.  1). The choice 
between parametric and permutation tests is up to the user—we note that, permuta-
tion tests tend to be more robust to violated assumptions, while parametric tests provide 
higher statistical power when their assumptions are met.

Finally, for Pearson’s correlation, the user can also choose an inference procedure for 
high-dimensional differential correlation networks adapted from the method proposed 
by [3]. Specifically, suppose we have samples X

(t)
j =

(

X
(t)
j1 , . . . ,X

(t)
jnt

)

 and 
Y

(t)
k =

(

Y
(t)
k1 , . . . ,Y

(t)
knt

)

 , corresponding to two omics data types (e.g., mRNA expression 
and protein abundances), respectively, for population t = 1, 2 and variables j = 1, . . . , pX , 
k = 1, . . . , pY  . For random vectors V = (V1, . . . ,Vn) and W = (W1, . . . ,Wn) , let 
σ̂ (V ,W ) ≡ 1

n

∑n
i=1

(

Vi − V
)(

Wi −W
)

 be the unadjusted sample covariance. Then the 
raw correlation between X (t)

j  and Y (t)
k  is r̂(t)jk ≡ σ̂ (X

(t)
j ,Y

(t)
k )/

√

σ̂ (X
(t)
j ,X

(t)
j )σ̂ (Y

(t)
k ,Y

(t)
k ).

Then the thresholded differential correlation between X j and Y k for populations t = 1, 2 
is defined as s

�
(1)
jk +�

(2)
jk

(

r̂
(1)
jk − r̂

(2)
jk

)

 . The parameter τ in (1) is empirically chosen through 

cross-validation [3]. Since cross-validation involves random sampling, a corresponding 
seed can be specified through the argument Cai_seed (Fig. 1).

Procedure

When calling the main function viz() (Fig. 1) in R, the package automatically estimates 
the (differential) correlation matrices, and performs permutation and parametric tests 
as instructed by the user. The user may run the function multiple times (with different 
arguments) on multiple datasets by assigning a different name to each run; each run can 
be visualized by selecting it from a dropdown menu in viz.html, which is automati-
cally generated by the package.
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The function outputs all raw data matrices, raw (differential) correlation matrices, and 
matrices that contain entry-wise p-values for the tests (with adjustments for multiple 
testing as selected by the user). These files store data using Javascript code and are 
for internal use by the HTML and Javascript files only. The user can then open viz.
html to access the visualization.

In addition, the function also outputs static heatmaps as well as static plots of the (dif-
ferential) undirected graphs. The randomization in the choice of layout for the latter can 
be controlled by layout_seed (Fig. 1).

Visualization design

Interactive visualization is available through the automatically copied HTML file in the 
current working directory in Google Chrome or Mozilla Firefox browsers. The user first 
needs to select the dataset (the name of the run they wish to visualize) under the cur-
rent directory from a dropdown menu. Two visualization modes are currently available: 
Correlation Plots and Interactive Networks. In both modes, one can toggle between cor-
relation matrices/networks for either population or the differential correlation matrix/
network by enabling the “One sample” and “Two sample” buttons, respectively; for the 
former, the user can choose which population to visualize. One can also choose from the 
five correlation measures discussed above. Instead of the default 5% significance level, 
the user can manually enter a desired level (before adjustments for multiple testing) for 
the tests. In addition, under both modes, a dropdown menu allows the user to choose 
which variables to include (as shown in Fig. 2). The red/blue color represents a negative/
positive (differential) correlation, whose magnitude is indicated by the color saturation.

Results and discussion
In this section we demonstrate CorDiffViz in two applications. In the first application, 
we perform differential correlation analysis in a single omics data set, the setting that 
has also been considered in some of the existing software, and compare the capabilities 
of CorDiffViz with the existing software. The second application demonstrates how 
CorDiffViz can be used for differential cross-correlation analysis among two omics 
data sets, a setting of increasing interest for which public estimation and visualization 
software tools are lacking. We end this section with additional comments about the 
broader applicability of the package.

Differential correlation analysis of single omics data

We illustrate our tool using a metabolomics dataset for mice with 100 metabolites from 
[28]. The data contains the metabolic profiles of 41 non-diabetic and 30 diabetic mice 
and has been recently analyzed in [29]. The names of the metabolites are compound IDs 
in the Kyoto Encyclopedia of Genes and Genomes (KEGG); for example, the hub node 
C00152 in Fig. 4 corresponds to L-Asparagine. In Figs. 3 and 4, we show screenshots of 
differential correlations using Kendall’s τ with permutation tests ( B = 1000 ) and p-values 
adjusted using the FDR controlling procedure of [30]. The significance level is set to 0.05.

The first visualization mode, Correlation Plots, implemented using D3.js and illus-
trated in Fig. 3, is a direct presentation of the raw or thresholded (differential) correlation 



Page 6 of 12Yu et al. BMC Bioinformatics          (2021) 22:486 

matrices. The square/rectangle represents the matrix, with the entry in the j-th row and 
k-th column representing cor

(

X
(t)
j ,X

(t)
k

)

 for one population t = 1, 2 , or their difference. 
As in the figures, the user can view the value of a specific cell in the matrix, its cor-
responding variable names, and the corresponding scatter plots (for one population or 
both depending on the selection).

The second visualization mode, Interactive Networks, is implemented using 
Cytoscape.js and is illustrated in Fig. 4. Each node in the undirected correlation net-
work represents a variable (feature), and an edge is present if the corresponding entry in 
the (differential) correlation matrix is statistically significant. Multiple network layouts 
are available. Each node is draggable with size positively related to the number of vari-
ables connected to it. The user can easily highlight an edge and hide all other edges, and 
read the (differential) correlation value and the two variables associated with it. It is fur-
ther possible to highlight one node and all edges linked to it as well as the corresponding 
(differential) correlations, sorted in descending magnitude, as shown in Fig. 4.

The differential correlation matrix heatmap from DGCA​ [19] in Fig.  5 serves a some-
what similar purpose as the correlation plots from our tool in Fig.  3. For consistency, 
this heatmap is also obtained using 1000 permutations. However, only static heatmaps 
are supported by DGCA​. Moreover, in larger data sets, even with the 100 metabolites in 
our dataset, the heatmap can become more difficult to discern, as there are no easy 
options for selecting a subset of variables to visualize. Other existing tools have similar 

Fig. 2  A screenshot of the dropdown menu for selecting variables to include in the correlation plots
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limitations—they either provide static visualization, or visualization for pairwise correla-
tions only.

Differential cross‑correlation analysis of two omics data sets

We now illustrate how our tool can be used to analyze and visualize differential cross-
correlation networks by applying it to joint protein abundances and expression levels 
(based on RNAseq) from the Cancer Genome Atlas (TCGA). We denote the protein 
abundances as X variables and the RNAseq data as Y  variables. We do not compare 
our results to DGCA​ in this dataset, as that package does not support multi-omics data 
analysis.

For simplicity, we work with the subset of samples with no missing values for all vari-
ables, as well as prostate-specific antigen (PSA) levels available. This leaves 156 samples 
with 127 X and 4749 Y  variables. Since some expression levels have extreme variance 
while the others have many zeros, following [17], we pick the Y  variables that have a 
coefficient of variation between 0.5 and 10, after which 2679 Y  variables are left. We then 
log transform the Y  variables using log(1+ y).

PSA is an established marker for prostate cancer. While PSA is a continuous meas-
ure, it is often dichotomized by practitioners in order to assess the risk of developing 
prostate cancer. Following this strategy, we split the 156 samples into 105 individ-
uals with PSA levels ≤ 10 nanograms per milliliter—a common threshold used for 

Fig. 3  A screenshot of the interactive correlation plots using D3.js for the metabolomics dataset. Red/
blue colors indicate negative/positive (differential) correlations, while color saturation and size of the circles 
suggest their magnitude
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identifying those with highest risk of prostate cancer—and the remaining individuals 
51with PSA levels > 10 who are at higher risk of prostate cancer.

To reduce the number of variables for better illustration, we focus on proteins 
and expression levels that are more clearly associated with prostate cancer. To this 
end, we use Wilcoxon signed-rank test as a screening method, where for each vari-
able we calculate the p-value associated with the hypothesis test that the two sam-
ples have equal mean. As a simple illustration, we pick pX = pY = 40 variables that 
have the highest p-values and no 0’s from both X  and Y  . We visualize the results 
using Spearman’s ρ with p-values adjusted to control the FDR [31] at significance 
level 0.2.

The correlation plots are shown in Fig. 6. In this two-omics case, the X variables are on 
the vertical axis, and Y  are on the horizontal axis. Thus, the entry in the j-th row and k-
th column now represents cor

(

X
(t)
j ,Y

(t)
k

)

 for one population t = 1, 2 , or their difference. 
Interactive network visualization for the same analysis is shown in Fig.  7. In the two-
omics case, nodes in the X and Y  groups are colored in orange and green, respectively.

Usage

The CorDiffViz package can be used to visualize differential (cross-)correlation net-
works across various omics data, both for exploratory analysis as well as formal infer-
ence. Differential network analysis can be applied to, for example, gene regulatory 
interaction networks—to analyze the mechanistic changes resulting from responses 

Fig. 4  A screenshot of the interactive network plots using Cytoscape.js for the metabolomics dataset. 
Here C00152 (L-Asparagine) is clicked on, with all its neighbors and edges highlighted, and all other edges 
hidden. Red/blue colors of the edges indicate negative/positive (differential) correlations, while color 
saturation suggests their magnitude
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to changed environmental conditions—or to metabolic interactions—to study the cel-
lular processes that are differentially important [1].

The p-values stored in the data files represent multiple testing-adjusted p-values for 
the parametric and permutation tests. These p-values can be used for direct analysis, 
or through the visualization interface, where the user can change the default signifi-
cance threshold. The interactive visualization also offers more insights into detailed 
changes in the networks. These features provide important insight into altered bio-
logical mechanisms, beyond what would be obtained by simply examining differen-
tial correlation heatmaps. In fact, our visualization was recently used to interrogate 
changes in metabolomic interaction mechanisms in Drosophila under two different 
diets [32], leading to new biological discoveries.

Conclusions
We have developed an integrated R package for estimation and interactive visualization of 
(differential) correlation matrices/networks for two populations. The package is designed so 
that by calling a single R function and specifying some parameters for estimation, the esti-
mates will be automatically saved to the local directory. Users then have access to interac-
tive visualization by simply opening an HTML file in the browser. The package is intended to 
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Fig. 5  Heatmap by DGCA​ for the metabolomics dataset
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Fig. 6  A screenshot of the interactive correlation plots using D3.js for the TCGA dataset

Fig. 7  A screenshot of the interactive network plots using Cytoscape.js for the TCGA dataset
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provide convenient tools for interpreting (differential) correlation networks for multi-omics 
data.
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