PoLiCcYy SEARCH FOR AUTOMATIC

PoLYCULTURE FARMING USING
REINFORCEMENT LEARNING

handed in
MASTER’S THESIS

Bachelor of Science Sebastian Oehme

Human-centered Assistive Robotics
Technical University of Munich

Univ.-Prof. Dr.-Ing. Dongheui Lee

Supervisor: Dr. Alejandro Agostini
Start: 01.12.2020
Delivery: 15.01.2022

TECHNISCHE UNIVERSITAT MUNCHEN

m Human-centered Assistive Robotics
UNIV.-PROF. DR.-ING. DONGHEUI LEE

November 24, 2020

MASTER'S THESIS
for
Sebastian Oehme
Student ID 3653382, Degree MSEI

Policy Search for Automatic Polyculture Farming using Reinforcement Learning

Problem description:

Polyculture farming constitutes more complex challenges compared to monoculture farming. Like in
many real world applications, there is no perfect simulation available to search for possible cultiva-
tion policies in large garden configuration spaces [1]. Furthermore, this environment is only partially
observable and is governed by complex, non-stationary dynamics. The research of agents that plan
decisions in advance in such environments has been a major task of scientists in the field of artificial
intelligence. Recently, progress has been made in deep reinforcement learning (deep RL) that permits
finding sub-optimal policies in such environments [2] — especially planning algorithms based on look-
ahead search in challenging domains [3], which would permit dealing with the gradual and delayed
correlations typical of plant caring scenarios [4]. The aim of this work is to tackle the challenges of
polyculture farming by first extending the simulator that was developed in the context of the Alpha-
Garden project [5] to enable researching robust cultivation policies with a RL approach that is based
on a tree-based look-ahead search for planning with a learned model.

Tasks:

e Literature overview on RL approaches suitable for partial observable environments.

e Implement an RL approach for polyculture farming in the Alphagarden scenario.

e Improve the Alphagarden simulator for a better sim2real transfer.

e Performance evaluation of RL approach compared to existing decision-making strategies.

Bibliography:

[1] Y. Avigal et al. Simulating Polyculture Farming to Tune Automation Policies for Plant Diversity
and Precision Irrigation, in CASE 2020.

[2] J. Schulman et al. Proximal policy optimization algorithms, in arXiv preprint:1707.06347 2017.

[3] D. Silver et al. Mastering the game of Go with deep NNs and tree search, in Nature 2016.

[4] A. Agostini et al. A cognitive architecture for automatic gardening, in Computers and Electronics
in Agriculture. 2017.

[5] K. Goldberg et al. AlphaGarden, [Online]. Available: http://rapid.berkeley.edu..

Supervisor: Dr. Alejandro Agostini
Start: 01.12.2020
Intermediate Report: 15.01.2022
Delivery: 15.01.2022

(D. Lee)
Univ.-Professor

I confirm that this Master’s Thesis is my own work and I have documented all
sources and material used.

Munich,

Place, Date Signature

Abstract

Today monoculture farming is the standard for industrialized agriculture. It allows
producing food on a large scale. Nevertheless, a significant drawback is the loss
of diversity. Polyculture farming mitigates this issue while benefiting from reduc-
ing the demand for resources, such as water. However, polyculture farming is a
complex task as it has to consider multiple growth characteristics, and the envi-
ronment is often only partially observable. This work addresses the challenge of
automating polyculture farming using a first-order simulator to identify efficient
treatment policies. We utilize randomized environment dynamics combined with a
reinforcement-learning-based approach to learn a policy that increases garden cov-
erage and diversity in simulation. We add a network architecture with a memory
layer to the utilized Proximal Policy Optimization algorithm to overcome garden
configurations that are only partially observable due to occlusion. In simulation
experiments, the policy outperforms the previous state-of-the-art heuristic policy.
Our simulation experiments serve as a groundwork for real-world application.

CONTENTS 3
Contents

1__Introduction| 5

(.1 _Problem Statement|o 6

(1.2 Related Worksl. oo 7

2 Technical Approach| 11

2.1 AlphaGardenSim|o 11

[2.1.1 Simulator Quantities| 11

[2.1.2 Garden Dynamics|. L. 12

[2.2 Policy Search| 16

[2.2.1 Principle of Operation| 16

[2.2.2 Policy Gradient Methods| 17

[2.2.3 Policy Search in AlphaGardenSim|. 20

224 Baselinel 24

B Evaluah) T o7

[3.1 Adapted Simulator| oo 27

[3.1.1 Growth Analysis|, 27

BI2 Discussionl« . o 30

[3.2 PPO Policy Search| 30

[3.2.1 Performance Analysis|. 33

322 Discussionlo 38

4 Conclusion| 41

[A Environment Configuration| 43

[List of Figures| 49

51

(Bibliography| 53

CONTENTS

Chapter 1

Introduction

For many centuries cultivation of plants has been essential to feeding humanity.
Modern farming made use of industrialized means of production. This industrial
form of agriculture has been a significant factor in feeding an ever-growing pop-
ulation. Innovation in agricultural machinery and farming methods supports this.
Today, however, about 7.2 billion inhabitants live on earth, and nearly 8.9% of them
are affected by hunger [FAO20]. To address this problem, the United Nations state
in their Sustainable Development Goal Zero Hunger [[] that

[...] a profound change of the global food and agriculture system is needed
if we are to nourish the more than 690 million people who are hungry
today - and the additional 2 billion people the world will have by 2050.
Increasing agricultural productivity and sustainable food production are
crucial to help alleviate the perils of hunger.

Today industrial farming is often growing monocultures. The aim is to maximize
yield. However, cultivation of a single crop type requires substantial pest control,
high use of fertilizer, and water resources [RLD™14].

Alternative forms of agricultural cultivation that have been used for centuries are
polycultures. It can serve as a more sustainable method where multiple crop types
that support each other are grown next to each other. Thereby they imitate the
diversity of natural ecosystems [GA82]. A typical example is the intercropping of
maize, beans, and squash plants [MP16]. Polyculture farming, on the one hand, ben-
efits from resistance to pests and weeds, reduced soil erosion, and increased resource
efficiency for water and nutrients [Ris83, [Lie87, [CCOI§|. On the other hand, it is
more difficult to service than monoculture. It requires specific farming methods for
each plant type, such as individual maintenance and plant treatments. Hence, poly-
culture farming with plant types with different irrigation and fertilization schedules,
varying germination times, and growth rates requires more labor than large-scale
monoculture farming.

1See https://www.un.org/sustainabledevelopment /hunger/, accessed 2021-11-18

6 CHAPTER 1. INTRODUCTION

To address these issues, we recently presented AlphaGarden, a robotic system for
autonomous polyculture cultivation [PATT21]. It serves as a research platform to
identify sustainable control policies. These aim towards maximizing plant coverage
while maintaining diversity and minimizing resource usage. Control of a polyculture
system requires a multitude of cues from both plants and their dynamic environ-
ment. The process is complicated by model errors and partial observability of the
garden environment. For example, soil sensors may have noisy readings, and an
overgrowing garden cause parts of the environment to be occluded. Learning treat-
ment policies in nature may require many growth cycles and a high amount of
resources. These constraints motivate the use of simulation to speed up the process.
Simulators allow making the policy robust before tackling any physical environ-
ment [RVRT16, [PAZA1S].

Like in many real-world applications, there is no perfect simulation available to
search for effective cultivation policies. Despite that, AlphaGardenSim [AGW™20] -
an parametric, first-order simulator - serves as a first step towards i) approximating
the problem setting and i) researching automation control policies that at some
point may tend to the physical AlphaGarden. The simulator is limited by its ability
to model the environment accurately. For example, the simulation depends on real-
istic parameters for the plant growth and soil water models. Furthermore, it has to
account for natural perturbations.

Prior work [AGW™20| presented a heuristic policy that sought to achieve high
plant coverage and garden diversity. However, in simulation, this policy struggles
to care for plants with substantial differences in plant characteristics. In recent
years, research has shown that reinforcement learning agents are able to perform
complex tasks better than humans, such as controlling robots [KBP13|, playing
video games|MKS™13] and treating monoculture or single plant setups [TKBLO5,
CCWT21,[HBDV™21]. Agents show impressive results even without complete knowl-
edge about the underlying environment dynamics or in a partial observable set-
ting [HS15]. In a plant caring scenario, imperfect state information is a challeng-
ing problem. Partial state information could arise from occlusion in overgrowing
environments or soil moisture information only available for a specific region. Fur-
thermore, past research has shown that reinforcement learning agents trained in
simulation on a range of randomized environment dynamics generalize to out-of-
range (unseen) dynamics [LKJ0I, [TS10]. Reinforcement learning in a polyculture
farming domain has not received much attention, while it bears the potential to find
robust policies that generalize to unseen garden environments.

1.1 Problem Statement

In our recent work [PATT21|, we present the AlphaGarden Autonomous Pipeline,
depicted in Fig. [I.1 It shows a pipeline for autonomous decision-making to treat a

1.2. RELATED WORKS 7

polyculture garden bed. At its core, it utilizes AlphaGardenSim to simulate future
environments and to decide on beneficial treatment actions. The simulator and
control policy plays a vital role in succeeding in this domain.

é Action Plannin i A
(" Sensors State Estimation } [2<tenrTiEanmn & . - Execution _
N [it . ! Seed . ! Irrigation .
1 Phenotyping | 1 AlphaGardenSim o Manoin : ! ! i
: TEROS-10 Network : J—)' pP g > A.Ctlf)n '
| | 1 <o 1 1 =
N | SRS Analytic Policy : : - ' "’I]
1 T 1 1 f

: * 2 o0 ° ... 1] 1 — I/

| e — <

i = [)
! [Sony Bounding Disk - < Prune Point | [Servoing+ |} [Pruning 1
: SNCVBT70 Tracking Identification || PruningAlg. |t Action '
R o T \ 1y ™

: g @og = 'r i M —:
' $0%.¢ ﬁ a2 |
f 1

_______________________________________)

Figure 1.1: AlphaGarden Autonomous Pipeline. Data from soil moisture sensors and
an overhead camera is processed to estimate the garden state. The state estimate is
passed to AlphaGardenSim to simulate future evolution and determine appropriate
treatments with the analytic policy. Afterward a control sequence is planned and
executed in the real garden. Source [PATT21].

Given the previous motivation, this work is focused to i) improve AlphaGardenSim’s
dynamics model and i) identify suitable reinforcement learning agents and validate
them in a simulated polyculture garden environment.

Therefore, we propose the following research hypotheses:

A reinforcement learning agent can outperform the state-of-the-art policy for poly-
culture plant treatment within AlphaGardenSim. Furthermore, such an agent can
generalize to garden configurations with altered dynamics on which they have not
been trained. The performance in these new garden configurations serves as a proxy
to assess transferability to reality.

This report is structured as follows: in the next section, we give an overview of
the related work for simulations and reinforcement-learning-based approaches for
polyculture farming. Chapter 2 introduces the polyculture farming simulator Al-
phaGardenSim and our policy-gradient-based method with a memory layer PPOygp,
for plant care. In Chapter 3, we present our experiments to validate the adapted sim-
ulator and our proposed method. Additionally, we discuss the results with respect
to our research goal. Finally, we draw our conclusions in Chapter 4.

1.2 Related Works

This section gives an overview of related work in plant and treatment simulations,
followed by an analysis of ongoing research in reinforcement learning that applies to
the agricultural setup.

8 CHAPTER 1. INTRODUCTION

Plant and Treatment Simulation Plant simulations aim to accurately model a
plant’s life cycle or specific characteristics. They are beneficial to speed up research
of farming strategies. In practice, they require a lot of time and resources. Histor-
ically plant growth simulations have been grouped into three types: process-based
models, structural plant models, and functional, structural plant models [VMEQT].
Process-based models [Heu99] seek to predict plant growth according to endogenous
plant properties. Biomass production is shared from a shared pool. Predominant
environmental conditions influence this process. These conditions impact struc-
tural plant models as well. This type of model aims to simulate a plant’s morphol-
ogy [DLO5]. Functional, structural plant models represent a hybrid combination of
the two prior models. They incorporate relationships between underlying endoge-
nous processes and a plant’s morphology [VMEQT]. Applications of models that
integrate detailed structural information have mainly been on individual plants.
This is due to the high number of parameters needed to model plant growth and
the surrounding ecosystems, which coincides with computational complexity.

Plants models for single plant types are often tailored towards monoculture farming.
They simulate a crop’s response to soil and water conditions. AquaCrop [RSHEFQ9)
and DSSAT [JHPT03] are widely used in this setting. However, they are not well-
suited for a polyculture garden with many plant species as inter-plant competition
has a profound impact. In this domain, few simulators have the necessary ability to
model the growth of multiple species [SDB¥20).

AlphaGardenSim [AGWT20] simulates a polyculture garden using first-order mod-
els of individual plant growth. It is a process-based model that incorporates basic
structural information - i.e., each plant’s height and radius. It simulates each plant
with a circular zone-of-influence model [CB90] that is discretized on a coarse grid
to reduce computational cost. Plants with overlapping zones compete for water
and light. This setup allows to research treatment policies that aim to optimize
leaf canopy coverage and diversity at garden level. However, the simulator is not
tuned with real-world measurements in this work. The authors intend to do so in
future work. Doing so is, on the one hand, a common approach in botany and agri-
culture [FZST08, PMV™12|, as parameter tuning with actual plants would require
a substantial amount of time, possibly years, and resources. On the other hand,
the plant growth and irrigation model in AlphagardenSim rely on multiple approx-
imations. They are making it uncertain whether a policy learned in simulation is
successful in reality.

In order to identify real-world treatment policies in simulation, its model param-
eters are usually grounded to the local environmental conditions. Training data
is collected by observing the treatment responses of individual plants. Wiggert et
al. IWABT19| presents a garden bed for monitoring water stress of a batch of plants
(same type) to automate and optimize plant-level irrigation. Water stress has a

1.2. RELATED WORKS 9

profound impact on plant development [Jon(07]. Important quantities for water
management are the specific Permanent Wilting Point (PWP)) [LEL™18] and spe-
cific maximal Volumetric Water Content (VW) [Kel05]. PWP| and maximal VWC
represent lower and upper bounds of available soil water to the plant, respectively.
AlphaGardenSim does not model the latter in JAGW™20] . Agostini et al. [AAFT17]
presents an automated robot platform for learning and executing plant treatments.
They demonstrate this framework to treat a single plant type with water and nutri-
ents. Furthermore, they used a simulator and cognitive decision-making framework
for efficient training data generation. This data is used to extract cause-effects tu-
ples for treatment planning [ATW14]. Plant treatments occur multiple times a day
in their simulation. However, observable effects in growth response may vary in
time and strength. Their system is designed to learn detrecting past events that
impact plant evolution. The simulator adopts a non-linear growth model assuming
an asymptotic final plant size proposed by Paine et al. [PMV™12]. The model is
validated on multiple plant species.

Reinforcement Learning Policies Recent work aims to overcome challenges
- like long delays - in the agricultural domain with reinforcement learning using
deep neural networks. Ban & Kim[BKI17] and Wang et al. [WHL20] demonstrate
superior green-house control in simulation with the Deep Deterministic Policy Gra-
dient (DDPQ]) algorithm [LHP™15] compared to realistic baselines. [DDPGl combines
the actor-critic method [SB18] and deterministic policy gradient [SLH™14] method.
CropGym [OBA2]1] is a reinforcement learning environment with a process-based
crop model to research fertilization treatments. Like AlphaGardenSim it is imple-
mented with Open AI’s common reinforcement learning interface Gym [BCP716]. In
CropGym they demonstrate learning an efficient policy with the Proximal Policy Op-
timization (PPQO)) [SWD™17] algorithm. again belongs to the policy gradients
methods. It incorporates small policy updates inside a Trust Region [SLAT15] that
aims to avoid catastrophic outcome when doing Stochastic Gradient Decent (SGDI).
Chen et al. [CCW™21] present a simulator and Deep Q-Network [IMKS™15]
agent for irrigation management of rice fields. The previous approaches consider
different types of treatments for monoculture farming. Each of these problems is set
up as a Markov Decision Process (MDP]). They rely on full state knowledge, i.e.,
states encapsulate all aspects of the past that impact the future. Hence, they fulfill
the Markov property.

For AlphagardenSim, not all aspects of the environment’s state are directly observ-
able. Sutton & Barto [SB18] describe multiple approaches to solve Partially Observ-
able Markov Decision Processes with reinforcement learning. As with
deep neural networks, function approximation has the potential to work in partial
observable cases. They have a limited ability to substitute non-present state vari-
ables. However, this requires that enough information is embedded in the training
data. The problem setup can be rearranged to overcome this issue as an alternative.

10 CHAPTER 1. INTRODUCTION

A compact, logical sequence of past environment observations and control, called
history, can restore the Markov property. A history is used in combination with a
state-update function to perform state estimates incrementally. A simple and effec-
tive approach is the kth-order history approach, where the last k observations and
controls are used for state estimation. As an extension to the previous approach,
agents have been enhanced with recurrent neural networks that function as mem-
ory. Long Short Term Memory (LSTM]) networks [HS97] have been used to solve
with policy gradient methods [WFPS07], in combination with for
drone navigation [HHA2I], and in combination with a[DQN|agent to play computer
games [HS15].

It is a challenge to transfer reinforcement learning policies that have been learned
in simulation to unseen, realistic environments [TS10]. A technique that deals with
this problem is Sim2Real. LaValle & Kuffner [LKJ01, [PAZA1S8] demonstrate an
approach known as dynamics randomization. Agents are trained with different en-
vironment configurations on each episode. These parameters are treated as a random
variable, and instances get sampled from feasible intervals. AlphaGardenSim has
an interface to randomize some of the environment dynamics. In the same work,
the authors present a heuristic analytic automation policy to control the polyculture
setup. However, the policy could not handle plants with significant differences in
germination times and growth rates.

11

Chapter 2

Technical Approach

The first section of this chapter introduces the polyculture simulator AlphaGarden-
Sim [AGW™20]. Furthermore, we present our contributions towards model exten-
sions and runtime optimization. Section describes the principle of operation
for the agent-environment interaction and our reinforcement learning algorithm for
plant treatments in a polyculture setup.

2.1 AlphaGardenSim

The original AlphaGardenSim can approximate plant growth at 9000 times the
natural growth speedh [AGW™20]. However, many reinforcement learning algo-
rithms need to interact with the environment for many iterations to learn a (near)
optimal policy while being limited in computational capacity. Model extensions
require additional computation steps, and this affects performance. An increase
in simulation efficiency allows expanding the search space, which is beneficial for
optimization problems. Therefore, we reimplement AlphaGardenSim. For efficient
tensor computations, we use the NumPy programming library for the Python lan-
guage [HMvdW™20]. Furthermore, we expand the randomization interface of the
simulator.

Some of the original notation from AlphaGardenSim [AGW 20| is changed to allow
framing the problem in common reinforcement learning notation [SB18]. Parts of
the simulator extensions in this section have been published at [ADW™21], as a
contribution by the author of this thesis. We state our previous contributions and
new changes to the simulator in the following section.

2.1.1 Simulator Quantities

AlphaGardenSim is introduces as a framework to find treatment policies for efficient
cultivation of a polyculture garden space in a finite time horizon 7. The simulation
is updated at each discrete time step t € {1, ..., T}, which is specified in units of days.
The environment is represented as a discrete X x Y grid with cell o, ,, where and y

12 CHAPTER 2. TECHNICAL APPROACH

are the row and column coordinates, respectively. For this thesis we set the grid cells
to size 0.01lm x 0.01m. The garden grid consists of soil and contains I plants of K
plant species. The soil grid holds at time ¢ a specific VW w, , ; in each cell. Each
plant i =€ {1, ..., 1} of plant type k € {1,..., K'} has a cylindrical structure. The
plant structures are defined by three I-tuples, these are, the seed locations (u;);—1,. s
in the garden, the current plant radii (r;);—;..; and the current plant heights
(hti)iz1..1. Their current leaf areas L;; are calculated for each plant as the sum
of the cell area inside its cylinder base. Furthermore, each plant ¢ at time step ¢ is
in a growth stage G;; € {germination, vegetative, reproductive, senescence, death},
we note the details on the individual stages in the next section. An other plant
attribute that is modeled is the plant health level h,, . at cell o, at time ¢. The
plant health level is determined by water stress, i.e, normal, under or overwatered,
which we further define in the next section. With sufficient resources plants will
grow over a period of time, which might cause plants to overlap. Hence, multiple
plant types or soil could be present in a cell. Therefore, the simulator approximates
the canopy cover at each cell o,, at time ¢, as d,,, a vector of length K + 1.
It represents a distribution over possible vegetation and soil in a cell visible to an
overhead observer. In this work, the plant type is certain, which makes d, , ; a 1-hot
vector.

2.1.2 Garden Dynamics

The simulator executes three major updates in each update step: lighting, water
use, and plant growth. Nearby plants compete for these resources. We depict this

process in Fig. [2.1(a)|

Light model. The light model remains the same as in the original paper. The
garden receives a fixed amount of light at each cell o,, per simulation step. Only
the (n — 1)th tallest plants at each grid cell transmit light. With each layer, the
available light decays exponentially with (%)”, with n € {0,1,2}. Otherwise, no
light is available.

Plants seek to allocate light with their current leaf area L;; to conduct photosyn-
thesis. L;, of plant ¢ at time ¢ is the total area of cells which are less than distance
rei € (Tes)iz1,..1 away from its seed location w; € (u;);—1.._ 7. A plant’s total amount
of accumulated light luoci¢ at time ¢ is the sum of light it is able allocate with its
current leaf area.

Water model. As described in [AGW™20], the simulator uses a discrete-time
linear approximation of Richards equation [TWCT18]| for soil water dynamics. The
soil water model is defined as:

wx,y,t = max(wx,y,t—l — Wipss + awater,x,y,t - wup,x,y,b 0) (21)

2.1. ALPHAGARDENSIM 13

Light
Competition:
- Light allocation

Plants Bl PlantA B PlantB 3 Soil

CCC—

0.2 04 06 0.8

(a) Simulator Model (b) Simulator observation

Figure 2.1: Example of AlphaGardenSim at intermediate simulation time step t.
Left: Schematic representation of simulator and inter-plant competition for light
and water resources. Plants have a circular zone of influence, which is discretized by
a grid. Each grid cell where plants overlap has to split water resources equally while
taller plants allocate more light. Right: Top: Canopy coverage with two plants
(types: A, B) and soil. Bottom: Soil grid with present [VIWC|

AlphaGardenSim uses the previous soil moisture content w,,;—1, water flux from
irrigation Gwater,z,y,¢; Plant water uptake wyp .4+, and local water loss wiess to calcu-
late the current soil moisture value for each discrete cell o, , at time ¢. Fig.
depicts the canopy view of a simulation with two plants and the accompanying water
grid for an intermediate time step .

In our previous work [ADW¥21], we report on experiments in a physical testbed to
refine the water model. Irrigation is modeled as a fixed amount of water (in m?)
that is applied to a circular zone with radius 0.09m around some center coordinate
inside the soil grid. The amount of water applied to each grid cell is uniform inside
a 0.04m radius and decays exponentially as it approaches the edges of the irrigation
circle. We incorporate the experiment results into the simulator. In this thesis, the
irrigation amount ayater i set to 0.0002m?, and it can only be applied at plant center
coordinates.

The local water loss parameter, wi.s, and the maximal [VWC| are also tuned for
our findings in [ADWT21]. Water loss is treated as a random variable of univari-
ate Gaussian distribution with mean of 0.042m?® m~2 and a standard deviation of
0.0048m3 m~3. In this work, wiess is sampled once for each growth episode of length

14 CHAPTER 2. TECHNICAL APPROACH

T. The maximal VW indicates the water storage capacity of the soil. Based on
the experiments from before, we estimate max Volumetric Water Content, wyay, to
be 0.3m* m~?. This value depends on the soil properties. Thus, we clip both w; ;1
and w, , ¢ at this value, Eq. is then transformed to:

wm,y,t - Chp(wz,y,t—l — Wioss + awater,m,y,t - wup,x,y,t; 07 wmaX)H (22)

Each plant has access to the soil water. The accessible area is constrained to the
plant’s circular base. In general, allocation of water depends on a plant’s available

light resources at time ¢, lajoc,i¢, Water competition in cells where plants overlap,
and the specific PWPL

In AlphaGardenSim the current available light defines the maximal amount of water

required by a plant:
€1
Wypmax,i,t — fight \V/ lalloc,i,t (23)

Ewater
Where eyater and ejigne correspond to water use efficiency and light use efficiency,
respectively, they are plant-specific quantities.
Plants have to compete for resources in cells where they overlap. In this work,
available water in these cells is uniformly distributed among competing plants. The
water amount plants desired for growth from the soil cells bellow is defined on a per
plant basis as:

wupmax it

Jupmax,t,t 2.4
L., (2.4)

where Wypmax,i¢ i @ plant’s desired water amount and L,; is a plant’s leaf area at

time t. The actual current water uptake wact 445+ from plant ¢ cell o, ,, and time ¢ is

than limited by the currently available water w, ,; and a soil-specific PWPL, wpyp,
as defined by:

Wdes,i,t =

Wact,x,y,i,t = min (wdes,i,ta Wy oyt — wpwp) (25)

Finally, the total actual water uptake of plant 7 at time ¢, wyptot,i ¢, is the sum of all
water uptake from individual cells that belong to the current leaf area L; ;.

Plant growth The amount of allocated light and the water uptake define the
biomass pool available for growth. In our previous work [ADWT21], we adopt a
logistic growth profile assuming an asymptotic final size of the plant. [PMV™12].
The growth potential g;; of plant ¢ at time step ¢ is modeled as:

. 1 Tt
Git = Ewater * Wuptot,i,t * -
Tmax,i

where 7, is the plant’s current radius and rpa.y; is the plant’s growth potential,
which controls how large the plant will grow.

'We clip values outside the range [min, max] to the closest value inside the range:
clip(value, min, max).

2.1. ALPHAGARDENSIM 15

As in the original work, the growth potential is strategically distributed to vertical
and radial growth to ensure maximum unoccluded leaf area. Avigal et al. [AGW™20)
define l,;+ and [, as the current number of points where plant 7 is occluded and
unoccluded, respectively. They then model this dynamic as:

Lujit
Lyt + 1oz
bir = max(ky, min(l,, k2)) (2.6)
Gradial ,i,t = bi,tgi,t
Gvertical it = (1 - bz‘,t)gz‘,t
Here, k; and ko are plant-specific parameters that control the ratio of g;; plants
dedicate to radial growth. After executing the three update steps, lighting, water

use, and plant growth, the radius and height are incremented according to the
computed ratio.

lp7t -

Plant Stages In AlphaGardenSim the plant life cycle consists of five consecutive
growth stages: gG,;: germination, vegetative, reproductive, senescence and death.
Each stage lasts a number of time steps. Stage duration are treated as random
variable sampled from a plant-specific truncated discritized normal distribution, as-
suming that plants of the same type share transition times between stages. In our
work, we truncate the distribution and thereby limit sampling range to a feasible
interval. The truncated normal distribution allows to reconfigure the parameter
interval before evaluating policies. This configuration allows to assess the policies
ability to generalize to unseen garden setups. Details on randomizing the garden
environment follow in Sec. 2.2.3

In AlphaGardenSim the stages are modeled as follows. Germination starts when
the seeds are planted. In this stage, the plants have no current radius and height.
At the end of the stage, plants germinate with a specific height and radius. During
the vegetative stage, the plants allocate resources and grow according to the growth
model specified above, unless it experiences water stress, as detailed in the next
paragraph. The plants do not change in radii or heights during the reproductive
stage unless they experience water stress, as detailed in the paragraph below. Oth-
erwise, the plants behave similarly to the vegetative stage. During the senescence
stage, the plants start to wilt. The plants allocate less water than before, and their
radii shrink exponentially. However, their heights remain the same. The desired
water amount wqes;+ of plant 7 is adjusted throughout the senescence stage. The
adjusted desired water amount wqes ;; decreases linearly to 0 over time:

. 1-7
Wles it = t—wdes,i,t (27)

where ' is the amount of time the plant has spent in the senescence stage, and t; is

16 CHAPTER 2. TECHNICAL APPROACH

the total duration of the senescence stage. In our work, the plant is removed from
the garden, whereas it continues to occupy garden space in the original simulator.

Water Stress Another part that remains unchanged from the original work is
the model for water stress. AlphaGardenSim models water stress during the vege-
tative and reproductive stages. A plant receives sufficient irrigation if the following
conditions are satisfied:

Wit Z To * Wdes, it (28)

Wuptot,i,t S Tu * Wdes, it (29)

Where T, and 7T), are over and underwatering threshold parameters, wr;; and
Wyptot,i,t are the total amount of soil moisture within the current radius of plant
¢ and its actual total water uptake, respectively. Otherwise, the plant enters into
a state of water stress. At every time step, the plant experiences stress, the radius
decays exponentially. Once the plant is wilted, it dies.

2.2 Policy Search

In the previous section, we give a complete description of AlphaGardenSim and our
changes for this thesis. We intend to use AlphaGardenSim to search for an effi-
cient control policy that outperforms the current state-of-the-art analytical policy.
The algorithm performs comparable or better than state-of-the-art approaches
for reinforcement learning problems [SWDT17]. The research community has re-
ceived the method well and found its way into the agricultural domain. Overweg
et al. [OBA21] use to learn efficient fertilization management policies. There-
fore, we use to find efficient treatments for our policy culture setup. This
section presents fundamentals of reinforcement learning with policy gradient meth-
ods, especially [PPO| and extensions that we utilize to learn a treatment policy for
AlphaGardenSim.

2.2.1 Principle of Operation

Reinforcement learning algorithms are developed for sequential decision-making.
Sutton & Barto [SBI§| formulate the sequential decision-making as an [MDP] as
depicted in Fig. 2.2

At time step ¢, the environment receives an action a; € A and produces a state vector
sy € S, where A and S are the action and state spaces, respectively. The state is
updated according to transition dynamics P(syy1 | St,a;). It denotes the probability
of transitioning from state s; to state s;,; by taking an action a,. After the transition
to state s;11, the agent observes a reward R;. The Markov property implies that the
probability of transition only depends on the current state. Repeating the previous

2.2. POLICY SEARCH 17

State St
Reward Rt

Environment Agent
Action At

Figure 2.2: Interaction of reinforcement learning agent with environment in a[MDP]

interaction leads to a trajectory 7: (s, ay, S¢v1, 141, ---), & sequence of states and
actions. For episodic problems a trajectory is called an episode when a terminal
state is reached at time 7. Here the environment is reset to initial conditions. The
cumulative reward of an episode that the agent observes is referred to as return. The
objective of a reinforcement learning agent is to find an optimal policy 7*(a; | s¢)
that maximizes the expected return J:

J=E[R] =) E 3'[R(s;.)] (2.10)

St,at)

E denotes the expectation, R, = ZtT:o 7' Ry is the finite-horizon discounted return,
with v € [0,1), R(-,-) is the reward function, and actions come from the stochastic
policy 7(a; | s¢). An agent faces the dilemma of either exploring new decisions that
might lead to higher rewards or exploiting decisions expected to return high rewards.
To make decisions, an agent needs to be able to assess expected return (value) of a
state or state-action pair. The value function

V™(s)= E [R,] so=s] (2.11)

T~

measures the expected return of a trajectory 7 starting in some state s, which is
generated with policy m. The action-value Function

Q"(s,a) = E [R; | so=s,a0 = al, (2.12)

serves as an alternative. It measures the expected return of a trajectory 7 generated
with policy 7, starting in some state s and taking action a from there.

2.2.2 Policy Gradient Methods

Policy-based methods [SB18] are often used to maximize the expected returns by
training a parameterized stochastic policy my. For policy gradient methods, we
define the objective as

Jo= E [R,] (2.13)

T~TQ

18 CHAPTER 2. TECHNICAL APPROACH

We seek to find the optimal parameters 6* that maximizes the objective, i.e.,

0" = argmax Jy (2.14)
0

Policy gradient methods use different methods to find the 6*. These methods opti-
mize the parameters 0 either indirectly, by maximizing local estimates of J.,, like

the [PPO] algorithm, or directly by gradient ascent on the objective J;,, like the
REINFORCE algorithm [Wil92], e

9j+1 = 0j + OZVQJWG (215)

where 0,1 are the updated parameters, « is the step size, and VyJ;, is the policy
gradient.

We seek an analytical expression for J,, as we need to calculate the policy gradient
to do an update step. With the probability of a trajectory 7 = (so, ag, ..., ar—1, S1)
given that actions come from my as

T

p(T]8) = po(so) Hp (St41 | S, ar)mg(ar | s¢) (2.16)
=0

and Eq. [2.13] we can reformulate the policy gradient:

VoJr, = Vo E [R;]

T~

_ / p(r | 0)Vslog p(r | O)R 217

T

= E [Vylogp(r |)R]

TVTH

Z Vologmy (a; | s¢) R

TN7T0

This analytical expression for the pohcy gradient with an expectation can now be
estimated with a sample mean. An agent that interacts with the environment for
N episodes, using the policy 7y, generates a set of trajectories D = {711, 72, ..., Tn }-
Given D, we can transform the policy gradient to a computable expression; we can
estimate the policy gradient with

Von = szglogm ar | s) R (2.18)

TE’Dt 0

2.2. POLICY SEARCH 19

Alternative versions of Eq. exist that replace R, with a cumulative reward

T
R, = Z ARy (2.19)
t'=t

With the cumulative reward, we can transform the policy gradient from Eq. to

T~VTH

T T
VQJWG = E Z VQ IOg 7T9<Clt|8t) Z ’)/t/_th/
L t=0 t'=t

(2.20)

T
= E Z Vg log We(at|3t)Pw,t

T~
L t=0

The cumulative reward does not change the expected value but reduces the variance
in the policy update. The same holds when subtracting a baseline function from the
equation above, that further reduces the variance. A common choice for the baseline
is the value function V™ (s;), which can be approximated, e.g., with a neural network,
Vi(s¢). In addition, we note that in an MDP, the future only depends on the most
current state and action due to the Markov property. This allows to replace the
return in above equation with Q™ (s, a;). With these changes Eq. is transformed
to:

[T
Voo, = E | Valogm(ails) (Q (51, a1) = Vo(s1)) (2.21)
Lt=0
T
- TEG Z Vg log mg(ay|ss) A™ (st at)] (2.22)
Lt=0

where A™ (s, a;) is the advantage function [SMLT15].

A problem that might arise from this vanilla policy gradient method is that extensive
gradient updates might change 7y so that the agent performance collapses. Schulman
et al. [SLAT15] aim to overcome this problem and propose the Trust-Region Policy
Optimization (TRPQ)) algorithm. Shortly afterwards the PPOl [SWD™17] algorithm
is introduced. Both algorithms prohibit large deviations of my from the previous
policy, m,,,, and aim to do the parameter optimization inside a relatively small
Trust Region. However, offers a more straightforward implementation. Here
the Trust Region is controlled by probability ratio

mo(a | s)

514 (a | S)' (2'23)

Ot =

For similar policies oy ¢ is close to 1.
Policy optimization in [PPQOlis performed on-policy [SB18], which means that each
policy update uses data generated by the most recent version of the policy. [PPO

20 CHAPTER 2. TECHNICAL APPROACH

executes multiple epochs of Stochastic Gradient Ascent (SGAJ) to perform each pol-
icy update.

As stated at the beginning of this section, [PPOl updates the policy indirectly. The
main part for optimization is a clipped surrogate objective function, L (), which
is defined as

LM (9) = I&‘Z [min (oy g A™td (54, ar), clip (0r 9,1 — €, 1 4+ €) A™ta (s, a0))] . (2.24)

Here € is a parameter that determines how far away the new policy deviates from
the old, as it discourages for o; 4 from going outside the interval [1 —¢, 1+¢]. Taking
the minimum in this expression forces the objective to take a conservative lower
bound on the unclipped objective.

It is possible to approximate the value function with a neural network. This is done
by minimizing the mean-squared-error £Y¥(6) between value function estimate and
the observed cumulative rewards, £F(8) = (Va(s;) — R,)*.

However, when using a neural network architecture that shares parameters between
the policy and value function, the objective function also needs to account for the
error from the value function estimate. Schulman et al. [SWD™17] propose such a
combined objective that they maximize:

LEVPHVESS () = B, [LEYP(0) — 1L (0) + 2] (54)] (2.25)

where ¢; and ¢y are coefficients and S [my] (s;) denotes the entropy of mp. The en-
tropy term encourages exploration, and ¢y can be annealed throughout training to
reduce exploration.

The PPO algorithm with £LEMP+FVF5(9) can be decomposed into two main parts:
i) parallel data collection and ii) optimization. For each iteration, N agents can
generate data in parallel. They each interact for T time steps with their environment.
Afterward, we calculate the surrogate loss £ on these N - T time steps of data, and
optimize the policy parameters with minibatch SGAl for F' epochs. A version of the
PPO-Clip algorithm with a shared neuronal network is summarized in Algo. [1}

2.2.3 Policy Search in AlphaGardenSim

In previous work [AGW™20|, the analytic policy could not handle plants with signifi-
cant differences in germination times and growth rates. Invasive plant types serve as
an example as they grow pretty quickly. They tend to dominate the garden which
causes a low diversity v;. The analytic policy can irrigate and prune plants. We
describe the analytic policy in Sec. but essentially it is a deterministic policy
that acts based on threshold values. These threshold values are only tuned for a
small range of environment configurations, causing the policy to fail in challenging

2.2. POLICY SEARCH 21

conditions. Real-world dynamics often differ from simulated environment dynamics.
Therefore, it is uncertain whether the analytic policy will make robust decisions in
a real-world environment.

To enable transfer of policies from simulation to reality for robotic control, Peng
et al. [PAZATS§| train deep reinforcement learning agents in simulation and vary
the environment dynamics during training. They parameterize the dynamics of the
simulation p (s;11 | ¢, at, tha), where pg is a set of dynamics parameters.By training
on a range of dynamics, they can generalize to realistic dynamics. For domain
randomization, they modify the objective to maximize the expected return over a
distribution of environment dynamics:

E LNP(E [RT]} , (2.26)

Hd~Pu 7|7 1)

where g4 is the set of parameters that parameterize the environment dynamics,
pu is the distribution of dynamics, and p(7|m, pg) is the likelihood of a trajectory
T = (S0, G0, S1, ---, 7_1, ST) given a certain policy 7 and parameters py. We utilize
this technique by extending the [PPOFClip algorithm with dynamics randomization.
We summarize this modified training procedure in Algo. [I] and visualize in Fig.
how an agent interacts with multiple randomized environments.

N randomized Envs | Observations (Ot,i)z':l,Z,,..,N l
Hd™~Pu

Rewards (Rti)_15 n Agent

h

T Actions (at;)i=12,. N

Figure 2.3: Interaction of agent with a set of N AlphaGardenSim environments,
where each environment ¢ as randomized simulation parameters g.

Partial Observability In Section [[.2] we note that in a realistic setup for Al-
phaGardenSim, the agent does not have access to all state information. Instead,
the agent observes present state variables while parts of the underlying system state
remain unknown. For example, when plants grow luxuriantly, they occlude the
underlying environment. A stationary overhead observer - or even from other per-
spectives - cannot visually monitor the whole state. Therefore, we frame the general
problem as a Partially Observable Markov Decision Process (POMDP). Formally a
[POMDPI is defined by the tuple (S,A, T, R,Q,0). The state space, action space,
transition dynamics, and reward function remain the same as for the MDPl How-
ever, the true system state is no longer exposed to the agent. Instead, the agent

22 CHAPTER 2. TECHNICAL APPROACH

Algorithm 1 PPO-Clip [SWD™17] with random dynamics.
1: Input: initial parameters 0, for shared network
2: for iteration j =0, 1, 2,... do
3: Collect set of trajectories D; = {7;}i=1.. N

4: for actor = 1,2,....N do
5: ftq ~ p,, sample dynamics
6: Run policy 7y, in environment with dynamics p4 for 7" time steps
7 Compute advantage estimates A™ (s, ag),...A™% (s, ar)
8: end for
9: Update the policy by maximizing the surrogate £ wrt 6, with F epochs and
minibatch size M < N via [SGA
9j+1 = arg IIlgiX % Z EtCLIP+VF+S(9)
€Dy CD;
10: end for

receives an observation o; € €2 at each time step. This observation is generated from
the underlying system state o, ~ O(s;), where the probability distribution for the
next observation p(o;41 | Siv1,a:) depends on the previous action a; and the next
state s;11. We don’t access the true state to model realistic behavior, rather treat
the simulator as a blackbox.

Network Architecture and System The original PPOlalgorithm has no explicit
mechanisms to extract the underlying state of the POMDPL is only effective
if the observations are representative of the underlying system states. Hausknecht
et al. [HS15] use a recurrent agent [MBMT™16| as an alternative to stacking a his-
tory as input to overcome partial observability. An [LSTM] is a recurrent neural
network [HS97] capable of learning longer-term dependencies between the inputs.
It serves as a memory layer for the agent to remember a sequence of information.
Hodge et al. [HHA21] extend [PPOls policy network with an [LSTM] layer to apply
the agent to a partially observable environment. The previous approaches rely on
automatic differentiation software to train these recurrent policy networks.

We use a agent implemented with the RLIlib library[LLN"17] and Tensor-
Flow [AABT16] in the Python language for our work. RLIlib can vectorize the
simulation environments and enable high performant, scalable training.

To study the effect of partial observability in AlphaGardenSim, we use two
agents with different network architectures. Both versions use a fully-connected
two-layer perceptron with 128 nodes per layer, with a tanh activation function. For
one network, the resulting activations are processed through time by an additional
LSTM layer with 64 cells with a sequence length of 20. This output is then passed
through another hidden layer with a linear activation function. In both cases, the
network layers are shared, and two heads are used to output the value function

2.2. POLICY SEARCH 23

approximation and the action logits for the policy. We refer to these agents as
PPOgy and PPOyy,. To apply these [PPOI agents to AlphaGardenSim we specify
the POMDPI components in the following paragraphs.

Action Space At each time step t, two types of actions can be executed, namely
watering and pruning, for each plant ¢ in the garden space.

Watering ay,;; is a binary decision. Either no water or an irrigation circle with
a fixed amount of water, ayater = 0.0002m?, is applied at the plant center. This
process follows the irrigation model described in Section [2.1.2l The water action
a, ; consists of the individual watering decisions for each plant ¢:

Ayt = [aw,l,ta e aw,],t]T (2-27)

Additionally, the agent decides at each time step ¢ to prune or not. Pruning, denoted
as ayp.; ¢, reduces the radius of a plant ¢ by a defined pruning level. Within the scope
of this work, the pruning level is set to Pq € {0%, 15%}. The prune action a,,
consists of the individual pruning decisions for each plant i:

Apt = [a’p,l,ta ey ap,Lt]T (228)

State Space We describe the simulator quantities that influence the state s; of
the environment in Section [2.1.1] These include the health level A, , ;, growth stage
G+, and structural information from each plant 4, i.e., their seed locations (u;)i=1,.. 1,
radii (ry;);=1,. s and heights (hy;)i=1,. ;. Furthermore, the state includes informa-
tion on the soil water content w,,, for each cell o, and the current time step ¢
from the environment.

Observations (O). The observation space consists of two vectors. The first one is
the global garden population z;, at time step ¢, with elements z;; as a distribution
over the K plant types. The second vector holds soil water readings Weensor,¢, With
elements Wgensor,i+ from each plant ¢ at time step ¢. Each sensor reading represents
the mean VW] for a 0.09m x 0.09m window centered around each plants seed lo-
cation.

Transitions (7). At each time step ¢, AlphaGardenSim executes a sequence of up-
dates across the garden: irrigation, lighting, water use, and plant growth according

to the models described in Section [2.1.2

Reward Function The objective is to achieve a diverse garden with maximal
canopy coverage while minimizing water usage. Avigal et al. [AGW™20] formalize
these metrics. They introduces the global garden population vector z;, at time step
t, with elements z;; as a distribution over the K plant types. This vector defines

24 CHAPTER 2. TECHNICAL APPROACH

the global canopy coverage ¢; at time step ¢ as the total coverage of plants over the
garden area,
K

“T XY
and the garden diversity v, at time t is defined as the normalized entropy H of the
global garden population:

(2.29)

_ H(z) _ - S zkelog 2y
log K log K

(2.30)

Vg

The diversity is maximized (v; = 1) for a uniform global population vector z;. The
entropy is minimized (v; = 0) in an unbalanced garden, with one predominant plant

type.

In our research [AWPT22|, we propose an advanced metric to access both coverage
and diversity, called Multi-Modal Entropy (MME). In this work, we define K as
the total of the K plant types plus an additional type for soil. With K the global
garden population vector z; is updated to account the soil coverage. The IMME] is
defined as:

H (Zt) _ Zle 5k,t log 5k,t
log K log K
Finally, to model the reward for this problem, we combine the mme; metric with the

term that accounts for the irrigation amount. Therefore, AlphaGardenSim emits at
time step t a reward R; € [0, 1]:

mme; = (2.31)

1
Rt = max <mmet - %Water Zl Qw it O> (232)

The motivation for this reward function is as follows. The agent’s primary goal is
to achieve a high [MMELI We add the coefficient 8 € (0,1) to control the negative
influence of irrigation.

2.2.4 Baseline

Avigal et al. [AGW™20)], introduce among other policies, an analytic automation
policy, analytic policy, with hand-tuned parameters. The analytic policy has shown
the highest performance. Therefore, we use the policy as a baseline to compare it
with our agent. The policy observes the local canopy coverage, plant health levels,
and soil moisture contents within a masked 0.30m x 0.15m sector around each plant
center within the garden. Additionally, the policy observes the global population z;.
It applies one of four actions at each plant: prune, irrigate, prune and irrigate, or
null. The policy waits 20 days before first pruning to allow plants to initiate growth.

2.2. POLICY SEARCH 25

Then the policy decides to prune each plant ¢ that contributes to surpassing a higher
than uniform threshold in the global population. Before taking an irrigation action,
the policy first creates a 0.09mx0.09m window centered around a target plant. The
policy irrigates should any plants be underwatered inside the window. Otherwise,
the policy irrigates should the total amount of soil moisture inside the sector be less
than half of the overwater threshold.

26

CHAPTER 2. TECHNICAL APPROACH

27

Chapter 3

Evaluation and Discussion

We reimplement the simulator to account for the adaptations described in the previ-
ous chapter. Along with these adaptations, we aim to increase simulation through-
put. In the first part of this chapter, we evaluate generated growth profiles of the
adapted version. We then use the simulator to search for control policies. We aspire
that our [PPOlbased reinforcement learning agents outperform the analytic policy
for polyculture plant treatments within AlphaGardenSim. Additionally, we aim to
show that a [PPOlbased agent can efficiently control garden configurations with al-
tered dynamics, on which it has not been trained. We assume that the performance
in these new garden configurations serves as a proxy to assess transferability to
reality.

3.1 Adapted Simulator

In this section, we analyze and validate our implementation of the AlphaGarden-
Sim. We compare the simulator throughput of the previous and current versions.
We compare how long the simulation needs to grow a polyculture garden with the
analytic policy for our evaluation. The environment consists of 60 plants that are
treated for 100 days in a 1.5m x 1.5m garden space. As stated in Section [2.1] the
original AlphaGardenSim can approximate plant growth at 9000 times the speed
of natural growth. The adapted version simulates this garden 454000 times faster
than the real world. To assess the validity of this result, we analyze the simulation
output of the adapted simulator in the following section.

3.1.1 Growth Analysis

In our previous work [ADW™21], we evaluate the radial growth of 120 plants, twelve
plants per type, planted on 16-Nov.-2020 inside a garden bed at a greenhouse of UC
Berkeley for 46 days. The average radial growth per plant type k at each time step ¢
is used to search for plausible growth parameters.

28 CHAPTER 3. EVALUATION AND DISCUSSION

tg Tmax Cwater e(35)
Plant Type old new old new old new old new
Borage 7 4 60 34 0.09 0.16 6.61 1.11
Kale 7 6 65 42 0.10 0.16 541 0.87
Swiss Chard 7 4 47 33 0.11 0.17 9.93 0.95
Turnip 7 5 53 35 0.11 0.19 10.04 1.24
Green Lettuce 9 8 27 25 0.08 0.14 746 0.69
Cilantro 10 8 20 20 0.09 0.13 10.76 4.49
Red Lettuce 12 20 10 28 0.09 0.14 11.61 0.25
Radicchio 9 7 53 22 0.09 0.14 9.28 4.31

Table 3.1: Growth analysis of original and adapted simulations, where ¢, ;14 (days) is
germination time of the old simulator, ¢, yew (days) is tuned germination time for the
new simulator, rmaxo1da is original growth potential, 7max new 18 the growth potential
for the updated simulator, eya¢er is the water use efficiency parameter, e(35) (cm) is
the mean absolute error on day 35 between simulated and average real world radius.
Original values were taken from published growth analysis [ADW™21].

For the scope of this thesis, we use data from eight plant types to identify param-
eters for our adapted simulator. We conduct a grid search to minimize the mean
absolute error between the simulated and observed plant radii on day 35. After day
35, parts of the plants start to occlude each other, and precise data is not available
anymore. As part of the grid search, we vary the germination time, water use ef-
ficiency, and maximal radius parameters to influence the growth profiles. For our
experiments, the irrigation amount is fixed to 0.0002m®. The water demand of each
plant is met by irrigating daily. During the parameter search pruning actions are
deactivated and stochastic plant parameters are set to deterministic values. The
simulator configuration is listed in Appendix [A.T]

We plot the growth curves, radius (cm) over time (days), for the simulated and real-
world plants to validate the adapted simulator. Figure [3.1{shows the growth curves
for two plant types. The remaining plots for the other six plant types are depicted
in Figure The blue curve shows the real-world radius. The red logistic curve is
a simulated radius from AlphaGardenSim. All figures show that the logistic growth
profiles of the simulated plants match up with the observed data for the specified
time horizon. We observe that the measurements for germination coincide.

Table compares parameters settings for the old and new simulators. These listed
parameters are the germination times, maximal radii, and water use efficiencies. Fur-
thermore, the table shows the mean absolute error on day 35 between the simulated
and the real-world plant radii. For all plants, the mean absolute error is lower for
the adapted simulator than the original one.

3.1. ADAPTED SIMULATOR

29

Turnip Radius over Time

40

35 A

30 A

25 1

20 1

Radius (cm)

15 -

10 -

0 T T T

—— Real world plant
—— Simulated plant

5 10 15 20 25
Time (day)

30 35 40

(a) Growth analysis of turnip.

Red Lettuce Radius over Time

40

45

35 A

30 A

25 1

20 A

Radius (cm)

15 4

10 -

—— Real world plant
—— Simulated plant

0 T T T T T
3 10 15 20 25

Time (day)

30 35 40

(b) Growth analysis of red lettuce.

45

Figure 3.1: Radial growth profile for two plant types. Green curve shows the sim-
ulated plant with the re-implemented simulator. Blue curve shows the real world

mean radii from our previous work [ADW™21].

30 CHAPTER 3. EVALUATION AND DISCUSSION

3.1.2 Discussion

Our reimplemented simulator has a higher throughput compared to the original
work. Due to the improved performance of factor 50, the adapted simulator can
conduct experiments in larger problem spaces when given the same amount of com-
putation resources as the original simulator. The improved simulation time is ben-
eficial for optimization problems like reinforcement learning. While we do not have
new data to tune other simulator parameters, the restricted growth analysis shows
that growth curves for unoccluded growth stages match the logistic biological model.
The analysis shows that the modeling capability of the reimplemented simulator is
on par with the original AlphaGardenSim.

Nevertheless, the simulator remains limited by the expressiveness of the implemented
models. Additional data and more extensive experiment trials are needed to assess
the simulator for different growth stages or environmental conditions. For example,
to determine the maximal radial growth potential for plants that grow in competition
and are subject to occlusion. Therefore the real-world validity of the simulation
output remains limited. However, it is a common approach in botany and agriculture
to use these approximations. Hence, we assume that the simulator can generate
realistic enough data to learn treatment policies.

3.2 PPO Policy Search

In this section, we use the adapted simulator to search for treatment policies. We
aim to find a policy that can outperform the analytic policy in a set of environments.
Additionally, we examine how the agents perform in environment configurations that
they have not been trained on. To validate our research hypothesis, we train and
evaluate the [PPOlbased policies on different garden configurations. For these ex-
periments, we generate versatile environments with randomization dynamics. We
control this process through a subset of the plant parameters modeled as random
variables. Plant parameters are sampled according to the distributions listed in
Table We fix the random seeds for Numpy’s random number generator to re-
produce the simulation outputs for all policies within an experiment. For validation
experiments the generator is reseeded with new values. With the help of the RLIib
package, we concurrently collect experience from each randomized garden environ-
ment. Our simulation experiments are split into two general garden configurations,

A and B.

In all experiments, plants germinate at fixed locations (u;);—1,.. 7. As in previous
research [AGW™20, [PATT21, [AWP™22|, all simulation episodes are grown for a
100-day horizon. Within this period, the entire plant life cycle is simulated. We
configure the simulator according to the models and settings we state in Section [2.1]
Furthermore, we set the overwatering threshold to 7, = 10. Hence, plants are

3.2. PPO POLICY SEARCH 31

overwatered should they get more than ten times the water amount they desire.
The underwatering threshold is set to 7, = 0.1. We randomize each cell’s initial
VW (%) in the water grid. Instances are sampled from a normal distribution with
mean of 0.2 and a standard deviation of 0.04. The PWP] and max VW are set to
0% and 30%, respectively. A fixed value for evaporation (%) is sampled for each
episode. Evaporation is modeled as a normal distribution with a mean of 0.04 and
a standard deviation of 0.0054.

Garden Environment Configuration A The first set of experiments run in
Im x 1m garden spaces, each with / = 3 plants, as depicted in Figure |3.2 The
policies are trained on three plant types, i.e., green lettuce, red lettuce, and an
invasive model plant. On average, this invasive model plant germinates earlier and
occupies a larger space than other plant types used in this project. Invasive model
plants have the potential to inflict substantial occlusion. The other two plants
are modeled with the tuned growth parameters described in Section [3.1.1} After
training an agent, it is validated in two setups. One setup consists of the same plant
types. The other validation is with an altered garden environment. To create a new
garden environment for the agent, we replace the invasive plant type with turnip.
The policy has not been trained on such a plant. We adapt the truncated normal
distributions for germination time and radial growth potential such that they are
out of range from the parameter interval that was used for training. We want to
evaluate whether the policy generalizes to unseen garden setups with this garden
configuration.

0 16 33 49 66 82 99 0 16 33 49 66 82 99

0 0

16 16

33 33

I green_lettuce turnip

49 49 . red lettuce . Soil

66 66

82 82

99 99
Figure 3.2: Canopy view of the plant setup for experiment configuration A. Green
lettuce seed coordinate is (28,28), red lettuce is located at (72,28) and turnip or
invasive grow at (50, 66). Left: Canopy view shortly after germination. Right:
Canopy coverage without occlusion.

Garden Environment Configuration B In our second set of experiments, we
scale the problem to 1.5m x 1.5m garden spaces, each with I = 16 plants, as de-
picted in Figure 3.3 The training and evaluation procedure does not differ from

32 CHAPTER 3. EVALUATION AND DISCUSSION

the smaller setup. Two invasive model plants and two of each plant types listed in
Table are used in this experiment configuration. The agents are trained on all
plant types, excluding turnip. The search space of this problem setup is considerably
larger. Furthermore, these many plants in a limited space generate garden config-
urations with a dense canopy cover. Here, vital information about the underlying
plants might not be directly observable. Hence, an agent is likely to act based on
partial state information in many environment steps.

0 24 49 74 99 124 149 0 24 49 74 99 124 149
0 0

24 24
mmm borage radicchio

49 49 B dlantro lEd_|E‘L'ﬁJCE

74 74 BN green lettuce W swiss_chard
Bl invasive Hl Soil

99 g9 kale

124 124

149 149

Figure 3.3: Canopy view of the plant setup for experiment configuration B. The
present plant types and seed coordinates are: borage at (65, 120), (121, 73), cilantro
at (137 36), (14 31), radicchio at (90 24), (24 84), kale at (56 35), (94 97), green
lettuce at (24, 16), (116, 18), red lettuce at (90 135), (134 22), swiss chard at (27 55),
(121 121) and invasive or turnip at (84 58), (34 116). Left: Canopy view shortly
after germination. Right: Canopy view of dense garden with partial occlusion.

Agent Configuration We evaluate the learning capacity of the PPOg,y and
PPOjgm agents described in Section [2.2] For experiment setup A, the agents are
trained for 240000 time steps. The episodes are generated from 2400 environment
configurations. As the search space for the sixteen plant setup is much larger, we
train our agents for over 5 million time steps in experiment setup B. The episodes
are generated from 50064 environment configurations. We manually tune the hy-
perparameters of the algorithm to increase the learning capacity of the agents.
The hyperparameters of the algorithm used for training are listed in Table[A.2]
Multiple instances of an agent (actors) concurrently collect experience within a train-
ing batch. We adapt the number of actors and the batch size for training, considering
the search space for both environment configurations. All agents trained in exper-
iment setup A are allocated one virtual core per actor from a 2.8 GHz Quad-Core
Intel Core i7 CPU with 16 GB RAM. Furthermore, allocate one virtual core per
actor for experiment setup B from a 2.2GHz Intel Xeon CPU E5-2698 v4 with 256
GB RAM. An Nvidia Tesla V100 GPU with 32GB RAM is used only in setup B to

train an agent’s neural network parameters.

3.2. PPO POLICY SEARCH 33

3.2.1 Performance Analysis

For our experiments we use our reward function (Eq. . We set g = 0.2, to
reduce the negative impact of watering. During training we analyze the agent per-
formance with the average episode reward across the batch collected at each time
step. For environment configuration A, each batch is generated from twelve unique
environment configurations. For environment configuration B, the data is generated
by 82 environments.

Figure shows the training performance of the two agents against the baseline
in environment configuration A. Solid lines are the average episode returns of the
agents across the batches collected at each epoch and their 99%-confidence band
(shaded area). The analytic policy is shown as a green dashed line. The figure
indicates that both agents perform better than the baseline policy. However, our
PPOym, agent converges with fewer training iterations and reaches the highest per-
formance.

Figure [3.5[shows the training performance of the PPOgy and PPOyg,, agents in en-
vironment configuration B. Solid lines represent the average episode returns across
collected batches. The shaded areas depict the accompanying 99%-confidence band
for the reward observed in the environments the agent acts in parallel. The analytic
policy is shown as a green dashed line. In this configuration, only the PPOy,, agent
is able to outperform the baseline. After about 1.8 million environment interactions
it surpasses the baseline policy. The PPOyg,; shows worse performance than the
baseline.

34

CHAPTER 3. EVALUATION AND DISCUSSION

40

35 A

30 fomm e e e

25 A

20 A

15 A

10 A

—— PPO_Full
—— PPO_LSTM
---- Analytic Policy

Average return + 99%-conf. band

0 40 80 lZIO 16|0 2[|)0 240
Total environment interactions (x 10%)

Figure 3.4: Training performance of policies in Environment Configuration A.

10 4

—— PPO_Full
—— PPO_LSTM
---- Analytic Policy

Average return + 99%-conf. band

0 8;34 16l68 25;33 331"3? 41I?2 5006
Total environment interactions (x10%)

Figure 3.5: Training performance of policies in Environment Configuration B.

3.2. PPO POLICY SEARCH 35

Policy Validation After the training procedure, we validate the agents with a
set of metrics. Policy performance is validated over days 20 to 70, with a growing
period T' = 50, using the same metrics from our previous work [AWPT22]:

1. Average total plant coverage - We average the total canopy coverage ¢; for the
growing period per experiment:

Mc = % (3.1)

2. Average diversity - We average the garden diversity v; at time t for the growing
period per experiment:
v
Mp = % (3.2)

3. Water usage (m?) - We sum the water used in a single experiment over the
entire growing period (100 days):

My =) —ay, (3.3)

t

Before and after the growing period, the diversity measurements do not accurately
reflect the policy’s performance. This is due to the small plant sizes at these time
steps. Therefore, we exclude these data points from the M¢ and Mp metrics.

In the first set of validation experiments, we analyze the performance of the trained
agents in the environment they have been trained. Table |3.2] gives an overview on
the experiment outcome. The PPOy,, agent revives the most reward for both con-
figurations. However, no agent has an outstanding overall performance for the other
metrics. Both[PPOlbased agents use less water than the baseline for irrigation. The
analytic policy grows gardens with a higher diversity than our agents. In experi-
ment configuration A the reinforcement-learning-based agents grow gardens with a
significantly higher canopy coverage.

We replace all invasive plant types with turnip plants for the second part of the
validation experiments. Table [3.3] gives an overview of the agents’ performance in
this altered environment. For experiment configuration A, no agent receives signifi-
cantly more rewards than the others. Our PPOgy agent grows gardens with a high
canopy coverage. Both the [PPOlbased agents have lower water consumption than
the analytic policy. For experiment configuration B, do not beat the baseline. The
analytic policy achieves a higher reward than our proposed methods. Furthermore,
the baseline has a higher canopy coverage and diversity.

CHAPTER 3. EVALUATION AND DISCUSSION

36

Experiment configuration A

Experiment configuration B

Metrics PPOgn £ o PPOtm £ 0 Baseline +o PPO¢yy £ o PPOwtm £ 0 Baseline o
Total reward 34.15 4+ 1.98 38.54 +1.62 31.44 +1.92 30.08 £ 0.69 39.06 +1.46 35.28 +£0.72
Mc¢ 0.39 +0.03 0.41 +0.04 0.28 £ 0.02 0.61 +0.02 0.60 = 0.02 0.60 + 0.02
Mp 0.55 £ 0.05 0.69 £ 0.05 0.86 = 0.02 0.70 £ 0.01 0.75 +0.01 0.90 +0.01
My (m?) —0.05 £0.00 —0.06 £ 0.00 —0.06 4+ 0.00 —0.27 £ 0.00 —0.07£0.0 —0.32 £ 0.00

Table 3.2: Results of validation experiments with original plant configurations.

37

3.2. PPO POLICY SEARCH

0dAy querd mou)M sjyuowILIddXO UOIJRPI[RA JO SYNSOY ¢ d[(R],

000 F €0~ GOOFOTO0— 00F950— 000F900— 000F S00— 000 F S00— (gur) Mpy
000F %60 €00TF 10 200 F 120 ZO0TFE60 SO0TFLLO LO0FFS0 any
T00F 650 £00F G0 00T 620 £00F0£0 200 F £€°0 €00 F 070 oW
99°0 T €8¢ ISTTFC'SE 80 F LT'6¢ OFZTFPP9e FLITLGSE 9TCTTEOSE PIemoy [ejo]
oF outpseg O F "MIodd 0 F ™MOdd oF outpseg O F "MIodd 0 F ™MOdd SOOI\

g uoIRINSHuUOod JuowLIodxy

/. uo1yeInsyuod juoutedxsy

38 CHAPTER 3. EVALUATION AND DISCUSSION

3.2.2 Discussion

Training performance Our proposed reinforcement-learning-based agents all learn
to care for plants in a randomized polyculture environment. The PPOy, agent
shows state-of-the-art performance, beating the analytic policy in both training en-
vironments. The [LSTM] memory layer improves the learning capacity of the
algorithm for this domain. The PPOyg,; performance falls short of the analytic policy
for the sixteen plant environment but is able to outperform the baseline in the three
plant setup.

We observe in Figure that the average reward of PPOyy is below 20 for the first
100000 training iterations. The PPOyg, agent lets the invasive plant grows larger
than the baseline and PPO\g,,, agent. The causes invasive plants occlude other plants
in the environment. This has a negative effect on diversity and therefore on the over-
all performance. The invasive plant has the characteristic to germinate earlier than
the other present plant types. The PPOy,, agent learns to time the pruning actions
in a way that the invasive plants is allowed to grow just large enough to not hinder
the other plants during their development. The memory layer of the PPOy,, agent
helps to understand the temporal correlations within the environment. The plain
fully connected network does not have this ability. It needs more training iterations
to improve learning in the small setup. However, for experiment configuration B
the PPOy, agent falls short of the baseline, while the PPOy,, agent seems to also
generalize to larger environments. We see in Figure that it outperforms the
analytic policy. In this garden environment many plants occlude each other. Hence,
the agent has to act based on partial state information. The PPOg, agent lacks an
memory layer to keep track of the temporal correlations.

We observe for both agents that a larger search space slows down the learning
process. In this setup, the PPO\g,, agent needs about factor 10 more environment
interactions are to surpass the baseline than for experiment configuration A. Along
with the manual hyperparameter search tuning such a model requires a significant
amount of computation resources and energy. To further scale the experiment might
be intractable. However, the small scale configurations show good performance and
do not require as many resources. Future research could analyze whether learning
to treat local plants can be utilized to control large scale environments.

Sim2Real Transfer We observe in Table that our trained PPOy,, agent can
deliver better performance than the baseline when tested with new data from the
same configuration it has been trained on. However, this might not be enough to
evaluate how the agent performs in a real-world garden. We test whether our agents
can generalize to new garden configurations with the validation experiments. This
configuration represents a scenario in which an agent has to control a plant with very

different growth characteristics. As shown in Table the PPO-based agents are

3.2. PPO POLICY SEARCH 39

able to outperform on par the baseline for the experiment configuration A. However,
the performance drops in the validation experiments with configuration B. Hence,
we are not able to show that a PPO-based agent generalizes to treating plants
with different growth characteristics. In our recent work [PATT21], we present the
AlphaGarden Autonomous Pipeline, as depicted in Fig. [I.1 For this pipeline, we
use the analytic policy to determine appropriate treatments with AlphaGardenSim
that are executed in a real physical garden. It was not possible to validate the
performance of our PPO-based agents in reality within the scope of this work. We
leave this for future work.

Our analysis to assess transferability to reality is limited as we only randomize a
subset of environment parameters. It is uncertain how the agent behaves when
changing other simulator parameters. In a physical garden, even in a controlled
environment like a green house, an agent is likely to observe a even more versatile
environment and plant behavior. For future work it is of interest to analyze the
policy behavior in a real garden space.

40

CHAPTER 3. EVALUATION AND DISCUSSION

41

Chapter 4

Conclusion

Several ideas for learning to treat polyculture garden environments have been pre-
sented in this work. We identify whether a reinforcement learning agent can outper-
form the state-of-the-art policy for polyculture plant treatment within AlphaGar-
denSim. Furthermore, we analyze whether such an agent can generalize to garden
configurations with altered dynamics that have not been present during training.
We give an overview of AlphaGardenSim and introduce extensions we add to improve
the simulator’s modeling capabilities. We reimplement the simulator and add an
interface to apply domain randomization to the environment. In experiments, we
demonstrate that the simulation throughput is increased significantly.

We recapitulate the fundamentals for reinforcement learning and policy gradient
methods. Furthermore, we assess methods to overcome the challenges posed to
an agent by partial observability. We combine the algorithm with a model
architecture that uses a [LSTMI network. This setup is tested in two stochastic
environments, one with three plants and the other with sixteen plants. We observe
for both configurations that a PPOy,,, agent grows environments with higher garden
coverage, diversity and has a lower water usage than the previous state-of-the-art
policy. A fully connected network architecture without a memory layer was only
successful in the small garden setup. The PPOy,, agent’s memory layer is beneficial
to control environments with many occluded plants. Furthermore, we observe that
both PPO-based agents are not able to beat the baseline when they are deployed in
a new garden environment that they did not interact with during training.

42

CHAPTER 4. CONCLUSION

43

Appendix A

Environment Configuration

Listing A.1: Simulator configuration file for tuning growth curves in the human-
readable data-serialization language YAML.

Garden Parameters
amount_plants:
default_value: 8
amount _plant _types:
default_value: 8
garden_length:
default_value: 150 # cm
garden_width:
default_value: 150 # cm
garden _days:
default_value: 100
max_water_content:
default_value: 0.3
permanent_wilting point:
default_value: 0.0
init_water_mean:
default_value: 0.2
init _water_scale:
default_value: 0.04
evaporation_percent_mean:
default_value: 0.04
evaporation_percent_scale:
default_value: 0.0054
irrigation_amount:
default_value: 0.0002

Policy Parameters

44 APPENDIX A. ENVIRONMENT CONFIGURATION

water_threshold:
default_value: 1.0
irr _health_window_width:
default_value: 9 # cm
prune _window_rows:
default_value: 5
prune_window _cols:
default_value: 5
prune_rate:
default _value: 0.0 # disable pruning
prune_delay:
default_value: 20
sector_rows:
default_value: 15 # cm
sector_cols:
default_value: 30 # cm

Plant Parameters
reference_outer_radii: # cm
default_value: [25, 20, 34, 33, 42, 20, 22, 35]
dtype: np.int
common_names:
default_value:
- Green Lettuce
- Red_Lettuce
Borage
- Swiss Chard
- Kale
- Cilantro
- Radicchio
- Turnip
Xx_coordinates:
default_value: [37, 37, 37, 75, 75, 75, 113, 113]
dtype: np.int
y_coordinates:
default_value: [75, 112, 37, 75, 112, 37, 75, 112]
dtype: np.int
current_outer_radii: # germination radius (cm)
default_value: [1, 1, 1, 1, 1, 1, 1, 1]
dtype: np.int
germination_times:
default_value: [8, 10, 4, 4, 6, 8, 7, 5]
dtype: np.int

45

vegetative stage = maturation - germination (time)
maturation_times:
default_value: [60, 70, 60, 60, 70, 70, 55, 70]
dtype: np.int
reproductive stage
waiting _times:
default_value: [5, 3, 5, 8, 3, 3, 10, 3]
dtype: np.int
senescence stage
wilting times:
default_value: [18, 16, 18, 18, 16, 16, 18, 16]
dtype: np.int
light _use_efficiencies:
default _value: [1, 1, 1, 1, 1, 1, 1, 1]
dtype: np. float3?2
water_use_efficiencies:
default_value:
- 0.14
.145
.165
.1699
.165
.13
.145
- 0.195
dtype: np. float32
overwatered_time_threshold:
default_value: 5
underwatered_time_threshold:
default_value: 5
overwatered_threshold:
default_value: 10
underwaterd_threshold:
default_value: 0.01

]
SO OO Qoo

46

APPENDIX A. ENVIRONMENT CONFIGURATION

Cilantro Radius over Time

s
=}

—— Real world plant
—— simulated plant

Radius (cm)
= N N w w
w o w [=] ()]
1 !) L L

,_.
o
L

w
L

o

T T
5 10 15 20 25 30 35 40 45
Time (day)

(a) Growth analysis of cilantro.

Green Lettuce Radius over Time

Y
=}

—— Real world plant
—— Simulated plant

Radius (cm)
[¥ [w w
wn [=] w [=] ()]
L ! | L L

,_.
o
L

w
L

=}

T T
5 10 15 20 25 30 35 40 45
Time (day)

(¢) Growth analysis of green lettuce.

0 Swiss Chard Radius over Time

—— Real world plant
35 J —— Simulated plant

30 1

251

201

Radius (cm)

15

10

T T
5 10 15 20 25 30 35 40 45
Time (day)

(e) Growth analysis of Swiss chard.

Figure A.1:
lated plant.
work [ADW™21].

Growth profile for six plant types.
Blue curve shows the real world measurements from our previous

Borage Radius over Time

s
=}

—— Real world plant
—— Simulated plant

Radius (cm)
= o r w w
w o w o o
1 ! L L L

=
5]
L

w
L

o

T T
5 10 15 20 25 30 35 40 45
Time (day)

(b) Growth analysis of borage.

Kale Radius over Time

o
=}

—— Real world plant
—— Simulated plant

Radius (cm)
= o Iy w w
w (=1 w o o
L ! | L L

=
5]
L

w
L

=}

T T T
5 10 15 20 25 30 35 40 45
Time (day)

(d) Growth analysis of kale.

Radicchio Radius over Time

s
=}

—— Real world plant
—— Simulated plant

Radius (cm)
= o Iy w w
w o w (=] w
1 ! | ! !

=
5}
L

w
L

=}

T T T T
5 10 15 20 25 30 35 40 45
Time (day)

(f) Growth analysis of radicchio.

Green curve shows the simu-

47

"M goryeInp o8e)s SUIIM o) pur "™ uorjeinp surjrem o) ‘™7 owr) uoryeInyeut
o) ‘%1 owry woryeurmiIod oy} *X*y rerpuejod [YIMoIS WX oY) dIe sIvjoureled paziIopuel oY], ‘[q‘p| TeAlejul pue o
OOURLIRA ‘7] URSOWL [[JIM ‘SUOTINLIISIP [RULIOU PIJROUNI} Sk PO[Ppow WiGuaprenyeyd[y woyj siojouwered jue[d 1y o[qe],

[c1'1] T o1 [00T'T] @ ¢ [8¢'1] ¢ o [21] 1 z l6s1¢l ¢ GG OAISRAU]
811 T 91 [00T'T] @ ¢ ler1] ¢ oL [o11] 1 ¢ [lee‘1re] ¢ Ge drumy,
0z'1] ¢ 8T [o0T'1] € 8 le91] ¢ 09 61 1 v oLe'6e] ¢ e pIeTd SSImg
STT] ¢ 91 [o0T'1] € ¢ leL1] ¢ 0L [er't] 1 01 [Fzo1] ¢ 0g 00n}19] oy
0z'1] @ 8T [00T'T] @ ¢ [e91] ¢ 09 [eT7] T 8 [6z°18] ¢ G 9ON1I9] USDIY)
[¢1] ¢ ¢ loor't] ¢ e leL1] ¢ oL [117] 1 9 [ov‘se] ¢ v orey]
0z'1] ¢ 8T [00T'T)] @ 01 [8¢‘1] ¢ o [e11] 1 L loz‘s1] @ e orpOIPRY
8T'1] ¢ 91 [001‘1] T ¢ lertl ¢ 0oL ler't] 1 8 [pzio1] ¢ 0% OIIRTLD)
0z'1] ¢ 8T [ooT'1] € ¢ le91] ¢ 09 1l 1 voseogl ¢ 7 ogeIog
9] o " o] o A fg'] o A o' o A g'] o 4

(shep) 'y (shep) "™y (shep) " (skep) b7 (wo) *ewy odAy yuerg

48 APPENDIX A. ENVIRONMENT CONFIGURATION

Environment configuration

Hyperparameters A B
Train batch size 1200 7600
Entropy coeff. ¢y 0.001 0.001
Discount 0.99 0.9
GAE parameter A 0.95 0.95
Learning rate 0.001 0.001
minibatch size 300 513
VF coeff. ¢; 1.0 1.0
Number of actors 3 14
Clipping € 0.3 0.3

Table A.2: Hyperparameters for PPO algorithm for each environment configuration.

LIST OF FIGURES 49

List of Figures

[I.1 ~AlphaGarden Autonomous Pipelinel 7
2.1 Simulator model and observation| 13
[2.2 The Agent interacts with environment.| 17
[2.3 Agent interacts with randomized environments.| 21
[3.1 Growth analysis of adapted simulator.| 29
[3.2 'Training setup for three plants.| 31
[3.3 Training setup for sixteen plants.| 32
[3.4 Training performance in Environment Configuration A.| 34
[3.5 Training performance in Environment Configuration 5. 34

[A.1 Growth analysis of adapted simulator.| 46

20

LIST OF FIGURES

LIST OF FIGURES

51

Acronyms

[DDPGI [Deep Deterministic Policy Gradient]
[DQN] Deep Q-Network]
[LSTMI [Long Short Term Memory]|

MDP] Markov Decision Procesd
MME| Multi-Modal Entropy|

POMDPI |Partially Observable Markov Decision Process|

PP OI [Proximal Policy Optimization|

[PWP| [Permanent Wilting Poinf]
Rochastic Cradi | l
Riodiastic Cradient D l
[Trust-Region Policy Optimization]

VWC] Volumetric Water Contentl

52

LIST OF FIGURES

BIBLIOGRAPHY

23

Bibliography

[AAB*+16]

[AAF*17]

[ADW*21]

[AGW*20]

[ATW14]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, and Matthieu Devin. Tensorflow: Large-scale ma-
chine learning on heterogeneous distributed systems. arXiv preprint
arXiw:1605.04467, 2016.

Alejandro Agostini, Guillem Alenya, Andreas Fischbach, Hanno
Scharr, Florentin Worgotter, and Carme Torras. A cognitive archi-
tecture for automatic gardening. Computers and Electronics in Agri-
culture, 138:69-79, June 2017. URL: http://www.sciencedirect.
com/science/article/pii/S0168169916304768, doi:10.1016/j.
compag.2017.04.015.

Yahav Avigal, Anna Deza, William Wong, Sebastian Oehme, Mark
Presten, Mark Theis, Jackson Chui, Paul Shao, Huang Huang, At-
sunobu Kotani, Satvik Sharma, Rishi Parikh, Michael Luo, Sandeep
Mukherjee, Stefano Carpin, Joshua H. Viers, Stavros Vougioukas, and
Ken Goldberg. Learning Seed Placements and Automation Policies
for Polyculture Farming with Companion Plants. In 2021 IEEFE In-
ternational Conference on Robotics and Automation (ICRA), pages
902-908, May 2021. ISSN: 2577-087X. doi:10.1109/ICRA48506.
2021.9561431.

Yahav Avigal, Jensen Gao, William Wong, Kevin Li, Grady Pierroz,
Fang Shuo Deng, Mark Theis, Mark Presten, and Ken Goldberg. Sim-
ulating Polyculture Farming to Tune Automation Policies for Plant
Diversity and Precision Irrigation. In 2020 IEEE 16th International
Conference on Automation Science and Engineering (CASE), pages
238-245. IEEE, 2020.

Alejandro Agostini, Carme Torras, and Florentin Worgdtter. Learn-
ing weakly correlated cause-effects for gardening with a cog-
nitive system. Engineering Applications of Artificial Intelli-
gence, 36:178-194, November 2014. URL: https://linkinghub.

http://www.sciencedirect.com/science/article/pii/S0168169916304768
http://www.sciencedirect.com/science/article/pii/S0168169916304768
https://doi.org/10.1016/j.compag.2017.04.015
https://doi.org/10.1016/j.compag.2017.04.015
https://doi.org/10.1109/ICRA48506.2021.9561431
https://doi.org/10.1109/ICRA48506.2021.9561431
https://linkinghub.elsevier.com/retrieve/pii/S0952197614001857
https://linkinghub.elsevier.com/retrieve/pii/S0952197614001857
https://linkinghub.elsevier.com/retrieve/pii/S0952197614001857

04

BIBLIOGRAPHY

[AWP+22]

[BCP*16]

[BK17]

[CBYO]

[CCO18]

[CCW*21]

[DLO5)

[FAO20)

elsevier.com/retrieve/pii/S0952197614001857, doi:10.1016/
j.engappai.2014.07.017.

Yahav Avigal, William Wong, Mark Presten, Mark Theis, Shrey
Aeron, Anna Deza, Satvik Sharma, Rishi Parikh, Sebastian Oehme,
Stefano Carpin, Joshua H. Viers, Stavros Vougioukas, and Ken Gold-
berg. Simulating Polyculture Farming to Learn Automation Poli-
ciesfor Plant Diversity and Precision Irrigation. Submitted to: IEEE
Transactions on Automation Science and Engineering, 2022. Con-
ference Name: IEEE Transactions on Automation Science and Engi-
neering.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiw:1606.01540, 2016.

Byunghyun Ban and Soobin Kim. Control of nonlinear, complex
and black-boxed greenhouse system with reinforcement learning. In
2017 International Conference on Information and Communication
Technology Convergence (ICTC), pages 913-918. IEEE, 2017.

T. Czaran and S. Bartha. The effect of spatial pattern on community
dynamics; a comparison of simulated and field data. In Progress in
theoretical vegetation science, pages 229-239. Springer, 1990.

Timothy E. Crews, Wim Carton, and Lennart Olsson. Is the fu-
ture of agriculture perennial? Imperatives and opportunities to rein-
vent agriculture by shifting from annual monocultures to perennial
polycultures. Global Sustainability, 1, 2018. Publisher: Cambridge
University Press.

Mengting Chen, Yuanlai Cui, Xiaonan Wang, Hengwang Xie, Fang-
ping Liu, Tongyuan Luo, Shizong Zheng, and Yufeng Luo. A rein-
forcement learning approach to irrigation decision-making for rice us-
ing weather forecasts. Agricultural Water Management, 250:106838,
2021. Publisher: Elsevier.

Oliver Deussen and Bernd Lintermann. Digital design of nature: com-
puter generated plants and organics. Springer Science & Business
Media, 2005.

IFAD FAO. The State of Food Security and Nutrition in the
World 2020: Transforming food systems for affordable healthy di-
ets. Number 2020 in The State of Food Security and Nutrition in
the World (SOFI). FAO, IFAD, UNICEF, WFP and WHO, Rome,

https://linkinghub.elsevier.com/retrieve/pii/S0952197614001857
https://linkinghub.elsevier.com/retrieve/pii/S0952197614001857
https://linkinghub.elsevier.com/retrieve/pii/S0952197614001857
https://linkinghub.elsevier.com/retrieve/pii/S0952197614001857
https://doi.org/10.1016/j.engappai.2014.07.017
https://doi.org/10.1016/j.engappai.2014.07.017

BIBLIOGRAPHY

95

[FZS108]

[GA82)

[HBDV+21]

[Heu99]

[HHA21]

[HMvdW+20]

[HS97]

[HS15]

[JHP*03]

Italy, 2020. URL: https://www.fao.org/documents/card/en/c/
ca9692en, doi:10.4060/ca9692en.

Thierry Fourcaud, Xiaopeng Zhang, Alexia Stokes, Hans Lambers,
and Christian Korner. Plant growth modelling and applications: the
increasing importance of plant architecture in growth models. Annals
of Botany, 101(8):1053-1063, 2008. Publisher: Oxford University
Press.

S. Gliessman and M. Altieri. Polyculture cropping has advantages.
California Agriculture, 36(7):14-16, 1982. Publisher: University of
California, Agriculture and Natural Resources.

Yasmeen Hitti, Ionelia Buzatu, Manuel Del Verme, Mark Lefsrud,
Florian Golemo, and Audrey Durand. GrowSpace: Learning How to
Shape Plants. 2021.

E. Heuvelink. Evaluation of a dynamic simulation model for tomato
crop growth and development. Annals of Botany, 83(4):413-422,
1999. Publisher: Elsevier.

Victoria J. Hodge, Richard Hawkins, and Rob Alexander. Deep re-
inforcement learning for drone navigation using sensor data. Neu-
ral Computing and Applications, 33(6):2015-2033, 2021. Publisher:
Springer.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, and Nathaniel J. Smith. Array programming
with NumPy. Nature, 585(7825):357-362, 2020. Publisher: Nature
Publishing Group.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term
Memory. Neural Comput., 9(8):1735-1780, November 1997.
URL: http://dx.doi.org/10.1162/neco.1997.9.8.1735, doi:
10.1162/neco.1997.9.8.1735.

Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning
for Partially Observable MDPs. In 2015 AAAI Fall Symposium Se-
ries, Arlington, November 2015.

James W. Jones, Gerrit Hoogenboom, Cheryl H. Porter, Ken J.
Boote, William D. Batchelor, L. A. Hunt, Paul W. Wilkens, Upendra
Singh, Arjan J. Gijsman, and Joe T. Ritchie. The DSSAT cropping
system model. European journal of agronomy, 18(3-4):235-265, 2003.
Publisher: Elsevier.

https://www.fao.org/documents/card/en/c/ca9692en
https://www.fao.org/documents/card/en/c/ca9692en
https://doi.org/10.4060/ca9692en
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

26

BIBLIOGRAPHY

[Jon07]

[KBP13]

[Kel05)

[LEL*18]

[LHP*15]

[Lie87]

[LKJO1]

[LLN*17]

[MBM™*16]

IMKS*13]

Hamlyn G. Jones. Monitoring plant and soil water status: established
and novel methods revisited and their relevance to studies of drought
tolerance. Journal of Experimental Botany, 58(2):119-130, January
2007. Publisher: Oxford Academic. URL: https://academic.oup.
com/jxb/article/58/2/119/531950, doi:10.1093/jxb/erl1118.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement Learn-
ing in Robotics: A Survey. page 38, 2013.

Andrew Keller. Evapotranspiration and crop water productivity:
making sense of the yield-ET relationship. In Impacts of Global Cli-
mate Change, pages 1-11. 2005.

Brenda B. Lin, Monika H. Egerer, Heidi Liere, Shalene Jha, and
Stacy M. Philpott. Soil management is key to maintaining soil mois-
ture in urban gardens facing changing climatic conditions. Scien-
tific Reports, 8(1):17565, December 2018. Number: 1 Publisher: Na-
ture Publishing Group. URL: https://www.nature.com/articles/
s41598-018-35731-7, doi:10.1038/s41598-018-35731-7.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiw:1509.02971, 2015.

Matt Liebman. Polyculture Cropping Systems. In Agroecology. CRC
Press, 2 edition, 1987. Num Pages: 14.

Steven M. LaValle and James J. Kuffner Jr. Randomized kino-
dynamic planning. The international journal of robotics research,
20(5):378-400, 2001. Publisher: SAGE Publications.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy
Fox, Joseph Gonzalez, Ken Goldberg, and Ion Stoica. Ray rllib:

A composable and scalable reinforcement learning library. arXiw
preprint arXiw:1712.09381, page 85, 2017.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learn-

ing. In International conference on machine learning, pages 1928—
1937. PMLR, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
loannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiw preprint
arXiv:1812.5602, 2013.

https://academic.oup.com/jxb/article/58/2/119/531950
https://academic.oup.com/jxb/article/58/2/119/531950
https://doi.org/10.1093/jxb/erl118
https://www.nature.com/articles/s41598-018-35731-7
https://www.nature.com/articles/s41598-018-35731-7
https://doi.org/10.1038/s41598-018-35731-7

BIBLIOGRAPHY

o7

[MKS+15]

[MP16]

[OBA21]

[PAT+21]

[PAZA1S]

[PMV+12]

[Ris83]

[RLD*14]

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 518(7540):529—
533, February 2015. Bandiera_abtest: a Cg_type: Nature Re-
search Journals Number: 7540 Primary_atype: Research Publisher:
Nature Publishing Group Subject_term: Computer science Sub-
ject_term_id: computer-science. URL: https://www.nature.com/
articles/nature14236, doi:10.1038/nature14236.

Jane Mt. Pleasant. Food yields and nutrient analyses of the Three
Sisters: A Haudenosaunee cropping system. FEthnobiology Letters,
7(1):87-98, 2016. Publisher: JSTOR.

Hiske Overweg, Herman NC Berghuijs, and Ioannis N. Athanasiadis.
CropGym: a Reinforcement Learning Environment for Crop Man-
agement. arXiv preprint arXiww:2104.04326, 2021.

Mark Presten, Yahav Avigal, Mark Theis, Satvik Sharma, Rishi
Parikh, Shrey Aeron, Sandeep Mukherjee, Sebastian Oehme,
Simeon Adebola, and Walter Teitelbaum. AlphaGarden: Learn-

ing to Autonomously Tend a Polyculture Garden. arXiv preprint
arXiw:2111.06014, 2021.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Sim-to-real transfer of robotic control with dynamics ran-
domization. In 2018 IEEFE international conference on robotics and
automation (ICRA), pages 1-8. IEEE, 2018.

CE Timothy Paine, Toby R. Marthews, Deborah R. Vogt, Drew
Purves, Mark Rees, Andy Hector, and Lindsay A. Turnbull. How
to fit nonlinear plant growth models and calculate growth rates: an

update for ecologists. Methods in Ecology and Evolution, 3(2):245—
256, 2012. Publisher: Wiley Online Library.

Stephen J. Risch. Intercropping as cultural pest control: Prospects
and limitations. FEnvironmental Management, 7(1):9-14, January
1983. doi:10.1007/BF01867035.

Todd S. Rosenstock, Daniel Liptzin, Kristin Dzurella, Anna Fryjoff-
Hung, Allan Hollander, Vivian Jensen, Aaron King, George
Kourakos, Alison McNally, G. Stuart Pettygrove, Jim Quinn,

https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/BF01867035

o8

BIBLIOGRAPHY

[RSHFO09]

[RVR*+16]

[SB18]

[SDB*20]

[SLA*15]

[SLH*14]

[SML*15]

[SWD*17]

[TKBLO5]

Joshua H. Viers, Thomas P. Tomich, and Thomas Harter. Agricul-
ture’s Contribution to Nitrate Contamination of Californian Ground-
water (1945-2005). Journal of Environmental Quality, 43(3):895-907,
May 2014. doi:10.2134/jeq2013.10.0411.

Dirk Raes, Pasquale Steduto, Theodore C. Hsiao, and Elias Fereres.
AquaCrop—the FAO crop model to simulate yield response to water:

II. Main algorithms and software description. Agronomy Journal,
101(3):438-447, 2009. Publisher: Wiley Online Library.

Andrei A. Rusu, Mel Vecerik, Thomas Rothorl, Nicolas Heess, Raz-
van Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels
with progressive nets. arXiw preprint arXiv:1610.04286, 2016.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning:
An introduction. MIT press, 2018.

TjeerdJan Stomph, Christos Dordas, Alain Baranger, Joshua de Rijk,
Bei Dong, Jochem Evers, Chunfeng Gu, Long Li, Johan Simon, and
Erik Steen Jensen. Designing intercrops for high yield, yield stability
and efficient use of resources: are there principles? Advances in
Agronomy, 160(1):1-50, 2020. Publisher: Elsevier.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
conference on machine learning, pages 1889-1897. PMLR, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wier-
stra, and Martin Riedmiller. Deterministic policy gradient algo-

rithms. In International conference on machine learning, pages 387—
395. PMLR, 2014.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel. High-Dimensional Continuous Control Using General-
ized Advantage Estimation. arXiv:1506.02438 [cs], June 2015. arXiv:
1506.02438 version: 1. URL: http://arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs], August 2017. arXiv: 1707.06347. URL:
http://arxiv.org/abs/1707.06347.

Marc Tchamitchian, Constantin Kittas, Thomas Bartzanas, and
Christos Lykas. Daily temperature optimisation in greenhouse by
reinforcement learning. [FAC Proceedings Volumes, 38(1):131-136,
2005. Publisher: Elsevier.

https://doi.org/10.2134/jeq2013.10.0411
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347

BIBLIOGRAPHY

29

[TS10]

[TWC*18]

[VMEO7]

[WAB*19]

[WFPS07]

[WHL20]

[Wil92]

Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of
research on machine learning applications and trends: algorithms,
methods, and techniques, pages 242-264. IGI Global, 2010.

David Tseng, David Wang, Carolyn Chen, Lauren Miller, William
Song, Joshua Viers, Stavros Vougioukas, Stefano Carpin, Juan Apari-
cio Ojea, and Ken Goldberg. Towards automating precision irriga-
tion: Deep learning to infer local soil moisture conditions from syn-
thetic aerial agricultural images. In 2018 IEEE 14th International
Conference on Automation Science and Engineering (CASE), pages
284-291. IEEE, 2018.

J. Vos, L. F. M. Marcelis, and J. B. Evers. Functional-Structural
plant modelling in crop production: adding a dimension. Frontis,
pages 1-12, February 2007. URL: https://library.wur.nl/ojs/
index.php/frontis/article/view/1367.

Marius Wiggert, Leela Amladi, Ron Berenstein, Stefano Carpin,
Joshua Viers, Stavros Vougioukas, and Ken Goldberg. RAPID-
MOLT: A Meso-scale, Open-source, Low-cost Testbed for Robot As-
sisted Precision Irrigation and Delivery. In 2019 IEEE 15th Interna-
tional Conference on Automation Science and Engineering (CASE),
pages 1489-1496, August 2019. ISSN: 2161-8089. doi:10.1109/
COASE.2019.8842877.

Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmid-
huber. Solving deep memory POMDPs with recurrent policy gradi-
ents. In International conference on artificial neural networks, pages
697-706. Springer, 2007.

Lu Wang, Xiaofeng He, and Dijun Luo. Deep reinforcement learning
for greenhouse climate control. In 2020 IEEE International Confer-
ence on Knowledge Graph (ICKG), pages 474-480. IEEE, 2020.

Ronald J. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine learning, 8(3):229-
256, 1992. Publisher: Springer.

https://library.wur.nl/ojs/index.php/frontis/article/view/1367
https://library.wur.nl/ojs/index.php/frontis/article/view/1367
https://doi.org/10.1109/COASE.2019.8842877
https://doi.org/10.1109/COASE.2019.8842877

60

BIBLIOGRAPHY

LICENSE 61

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Introduction
	Problem Statement
	Related Works

	Technical Approach
	AlphaGardenSim
	Simulator Quantities
	Garden Dynamics

	Policy Search
	Principle of Operation
	Policy Gradient Methods
	Policy Search in AlphaGardenSim
	Baseline

	Evaluation and Discussion
	Adapted Simulator
	Growth Analysis
	Discussion

	PPO Policy Search
	Performance Analysis
	Discussion

	Conclusion
	Environment Configuration
	List of Figures
	Acronyms
	Bibliography

