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Abstract— Contact-rich manipulation tasks are commonly
found in modern manufacturing settings. However, manually
designing a robot controller is considered hard for traditional
control methods as the controller requires an effective com-
bination of modalities and vastly different characteristics. In
this paper, we first consider incorporating operational space
visual and haptic information into a reinforcement learning
(RL) method to solve the target uncertainty problems in
unstructured environments. Moreover, we propose a novel idea
of introducing a proactive action to solve a partially observable
Markov decision process (POMDP) problem. With these two
ideas, our method can either adapt to reasonable variations
in unstructured environments or improve the sample efficiency
of policy learning. We evaluated our method on a task that
involved inserting a random-access memory (RAM) using a
torque-controlled robot and tested the success rates of different
baselines used in the traditional methods. We proved that our
method is robust and can tolerate environmental variations.

I. INTRODUCTION

For high-precision assembly tasks, a robot needs to com-
bine high positioning accuracy with high flexibility. Design-
ing a robot for these tasks is very challenging although such
tasks can be easily performed by humans. Several torque-
controlled robots have been designed to perform coopera-
tive tasks in industrial environments [1], [2]. These torque-
controlled robots have seven revolute joints with torque sen-
sors, and similar control algorithms [3], [4], [5]. Currently,
torque-controlled robots are safe enough when collisions
occur with environments or humans [1], [6]. However, their
effectiveness in real-life and production scenarios is still
unsatisfactory.

Torque-controlled robots often serve computers, commu-
nication, and consumer electronics (3C) product lines, which
usually involve small but complex assembly tasks, and need
to be adjusted quickly and frequently. Currently, there are
a few 3C assembly factory lines [7], but they require a
long time to build and set up with high precision, which
is unsuitable for small- and medium-sized enterprises who
have automation needs but cannot afford to upgrade the
entire production line. Position uncertainties are quite normal
in human-based traditional production lines. Some studies
used simple fixed curves for exploring [8], [9], but they
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Fig. 1. A contact-rich task scenario: RAM insertion. Such tasks always
have stuck problems due to tight clearance and narrow space.

have low robustness against positional and angular errors
for insertion tasks, especially when targets are not fixed
accurately. Schimmels and Peshkin [10], [11] designed an
admittance matrix for force-guided assembly in the absence
of friction, and after two years, they improved the admittance
control law. However, there still existed a maximum limit
requirement of friction value [12]. Stemmer et al. [13]
proposed the region of attraction method using vision and
force perception to assemble specified-shape objects, while
the geometry of the parts is required.

In this paper we equip a robot with a visual residual policy
that combines multimodal feedback from vision and touch,
two modalities with different frequencies, dimensionality and
value range. Our primary contributions are as follows:
1) We propose a visual RL method by combining a visual-
based fixed policy with a contact-based parametric policy,
this method greatly enhances the robustness and efficiency
of the RL algorithm.
2) We propose a proactive action in the visual residual RL
policy to solve a POMDP problem, which could ensure the
task success rate and the ability to tolerate environmental
variations.
3) We implement ablative and comparative studies to assess
each modality on task success rate and prove the robustness
of our method via experiment.

II. BACKGROUND AND RELATED WORK

A. Torque-controlled Robot Concepts

Torque-controlled robots have been developed for unstruc-
tured environments that are fundamentally different from
the environments where classical industrial robots have been
used. The torque sensor in each joint plays a key role in robot
controller. The basic controller consists of a torque feedback

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

765

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
11

62

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:41:09 UTC from IEEE Xplore.  Restrictions apply. 



loop, which can be interpreted as the scaling of the motor
inertia B to the desired value Bθ [4]:

τm = BB−1
θ τu + (I −BB−1

θ )τ (1)
Where τu is an intermediate control input that could shape
the Cartesian or joint impedance behavior [3], and τ is the
joint torque data measured by the torque sensor. τm is the
torque on demand of the motor controller. For Cartesian
impedance behavior, we have

τu = −J(θ)T (Kxx̃(θ) +Dxẋ(θ)) + g(θ)

x̃(θ) = f(θ)− xdes
ẋ(θ) = J(θ)θ̇

(2)

Kx and Dx are the permutation and diagonal matrices
of desired stiffness and damping; xdes is the desired end-
effector (EE) pose, and x(θ) = f(θ) is the EE pose
computed based on the motor position. J(θ) = ∂f(θ)/θ is
the manipulator Jacobian; θ is the measured motor positions;
g(θ) is the gravity vector.

B. Visual Servo Control in Manufacturing Application

A vision sensor allows a robot to measure the environment
with a noncontact method. Shirai and Inoue [14] described
an idea on how to use visual feedback to correct the position
of a robot to increase assembly task accuracy. Position-based
visual servo (PBVS) systems and image-based visual servo
(IBVS) systems are the two major classes of visual servo
control systems. The typical control structure of PBVS can
be found in [15].

An EE mounted camera could acquire the target depth and
orientation information that can be used directly for PBVS
[16], [17]. However, the lens and imaging sensors, calibra-
tion of intrinsic/extrinsic parameters, reflection, shadow and
occlusion will exert a strong influence on the precision of
the visual guidance [18].

C. RL for Assembly Tasks

RL offers a set of tools for the design of sophisticated
robotic behaviors that are difficult to engineer. RL has been
applied previously and has gained great success in solving
various of problems in robotic manipulations [19], [20], [21],
[22], [23]. Newman et al. [24] inverted the mapping from
relative positions to observed moments and trained a neural
network to guide a robotic assembly. Inoue et al. [22] used
long short-term memory to learn algorithms with two threads
(an action and a learning thread) for searching and inserting a
peg into a tight hole; however, their methods required several
pre-defined heuristics and flat searching surfaces.

Residual RL could exploit the efficiency of conventional
controllers and the flexibility of RL [25]. The idea is to try
injecting prior information into an RL algorithm to speed
up the training process instead of randomly exploring from
scratch. Specifying goals via images makes it possible to
specify goals with minimal manual effort such as imaging
[21]. Combining the sense of vision and touch could endow
robots with a similar ability as humans to complete the
assembly tasks [19], which could provide robustness to sen-
sor and actuator noises [21] as well as position uncertainty.

(a) (b)

Fig. 2. Inside the computer host, there is no sliding surface for insertion
tasks. (a) RAM slot. (b) Solid State Disk (SSD) slot.

However, only a few studies have focused on real industrial
production contact-rich tasks, and they also require a sliding
surface for the algorithms to search [19], [22], [26].

III. PROBLEM STATEMENT AND METHOD
OVERVIEW

A. Problem Statement

1) Position Uncertainty in Unstructured Environments:
As mentioned in Section II-A, position uncertainties are quite
normal in human-based production lines as the operation
objects are not fixed. Workers could perform high-precision
robotic assembly tasks with their strong intelligence, ex-
cellent visual ability, and dexterous hands. Whereas these
tasks are challenging to robots, especially in the unstructured
production environments.

In addition, the friction and obstruction in contact-rich
tasks introduce large positional errors due to the low stiffness
design concepts of torque-controlled robots, as described in
Section II-A. The limited control stiffness combined with
the friction and obstruction in contact-rich tasks give the
position control error at a millimeter level. Torque-controlled
robots are expected to achieve a desired dynamic relationship
between environmental forces and robot movements to avoid
breaking the environments or targets, thus the desired posi-
tion and contact force cannot be satisfied in the same degree
of freedom (DoF) simultaneously. Moreover, the location of
the targets is uncertain sometimes due to the insufficient
accuracy of industrial assembly lines.

Using visual method to correct the positions of the targets
is an intuitive solution, while we still have position control
problems when robot contacts with targets due to the reason
as we explained in Section II-B, even we have implemented
some explore actions (e.g., the spiral explore method [8]).

In 3C production lines, the insertion scenarios are different
from the typical simplification settings of peg-in-hole [19],
[22]. For example, the random-access memory (RAM) inser-
tion task has the following problems:
1) The RAM slot or other slots do not have proper surfaces
for the sliding behavior of a robot in the alignment stage
[19], [20] ( Figure 2), which makes sliding-type algorithms
not to work anymore.
2) The objects (like the RAM or hard disk) would be easily
stuck by the structure near the slot or the slot itself in the
explore/alignment stage (Figure 2).
3) Compared with previous studies, the slot has a long and
narrow shape with tight clearance, which is difficult to insert
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by random and traditional search algorithm [8], [27].
2) Uncertainty of POMDP States: The main challenge

of the traditional policy is to design adaptable, yet robust
algorithms when faced with inherent difficulties for modeling
all possible interaction behaviors. RL enabled us to find
new control policies automatically for contact-rich problems
where traditional heuristics had been used, but the results
were unsatisfactory.

Contact states are hard to estimate due to the sensor noise
and robot modeling error, changing the Markov decision
process (MDP) to POMDP, making it significantly harder
to find an optimal policy [28], and it requires more training
time. Belief state tracking is one way to handle the POMDP
problem [29], [30], [31], but this method takes too much
time to find an optimal policy.

B. Method Overview

An eye-in-hand camera helps solve the problem of po-
sition uncertainty in unstructured environments in contact-
rich tasks. The camera could try to align the characters
of the target and compensate for the position error of
the robot. Visual feedback control could provide geometric
object properties for the pre-reaching target phase, whereas
the camera aligning accuracy would always be disturbed by
the target material or light. Force feedback control is quite
helpful for providing contact information between the object
and environment for accurate localization and control under
occlusions or bad vision conditions, and force information
could be obtained easily from the proprioceptive data in the
torque-controlled robot controller. Visual feedback and force
feedback are complementary and sometimes concurrent dur-
ing contact-rich manipulation. In this paper, we implemented
the visual-based fixed policy combined with contact-based
parametric policy (see Figure 3) as follow:
1) For roughly locating the slot, we use one global image take
from the teach mode with the RGB-D camera and rely only
on the PBVS method [15] (i.e., the visual-based fixed policy)
control in this phase, because in free space, the contact-based
parametric policy cannot receive proper contact information.
2) After the rough location phase, the robot will move to the
target slot according to the prerecorded transformation gxd
from global image pose to detailed image pose, where gxd is
recorded in the teaching phase. When the RAM contact with
the target slot, the detailed image that has more accuracy for
locating a slot, will be used to insert the RAM into the slot
according to our method described in Section IV.

IV. POLICY AND CONTROLLER DESIGN

A. Policy Design

1) Visual Residual RL: To exploit the high flexibility
of RL and high efficiency of conventional controllers, we
introduce an idea of residual RL from [25] with vision
information; the proposed method is expected to outperform
original residual RL in a variable environment due to the
position uncertainty problem in Section III-A.1. In residual
RL, the policy are chosen by additively combining a fixed
policy πH(sv) with a parametric RL policy πθ(st). The fixed
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Fig. 3. Representation of policies and controller scheme. The blue region
is the real-time controller, and the wheat region is the non-real-time trained
policy.

policy can help the agent move to the target, but prevent the
agent from exploring more states. To balance the exploration
and exploitation between the fixed policy and parametric RL
policy, we design the weighted residual RL as follows:

ut = (1− α)πH(sv) + α ∗ πθ(st). (3)
Here, α is the action weight between the fixed policy and
the parametric RL policy; the parametric policy is learned
in the RL process to maximize the expected returns on the
task. We use a P-controller as the hand-designed controller
πH(sv) in the experiments for the visual-based fixed policy.

First, we explain the detailed design of πH(sv). sv rep-
resents a geometric relationship of robot states which is a
Euclidean distance calculated by visual and estimated depth
information. We introduce the method from [32] that used
depth information in PBVS. Combined feature extraction
with depth information ZN , we could obtain estimated target
feature set cP ∗ = (X∗

1 , Y
∗
1 , Z

∗
1 , ..., X

∗
N , Y

∗
N , Z

∗
N ) and cur-

rent feature set cP = (X1, Y1, Z1, ..., XN , YN , ZN ) whose
coordinates are expressed with respect to the camera coor-
dinate frame c following the perspective projection method
[15]: [

XN

YN

]
=
ZN
f

[
uN
vN

]
. (4)

Here, f is the focal length of the camera lens. [uN , vN ]T

represents the coordinates of the image feature set expressed
in pixel units. Iterative closest point (ICP) [33] could be used
to get the coordinate transformation c∗xc by the feature set
cP and cP ∗.

c∗xc =

(
c∗Rc

c∗tc
0 1

)
(5)

Here, we set sv = (c∗tc, θu) depending on Equation (5),
where c∗tc is the translation error vector, and θu gives the
angle/axis representation for the rotation error [34]. Then a
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Fig. 4. Investigative action idea for solving POMDP problem. SE: state
estimator. The states will be estimated by SE function, then the policy
receives the clear states and output an action.

velocity control scheme is designed by using an exponential
and decoupled decrease of the error (i.e., ė = −λe) as:

vc = −λ(c∗Rc)
T c∗tc

wc = −λθu
(6)

Equation (6) is used in the rough location phase in Sec-
tion III-B. [vc,wc]

T is the camera frame velocity command
under current camera frame Fc, which could be transferred to
robot EE frame Fe easily. In this paper, we calculate robot
movement commands under robot EE frame Fe first and
then transfer them to the base frame before inputting them
to Equation (2).

Second, we directly use sv = (c∗tc, θu) as the states of
fixed policy in accurate location phase,

πH(sv) = −kp · sv, (7)
which is quite convenient to implement.

In this paper, we use a value-based RL called Q-learning
algorithm as the contact-based parametric RL policy πθ(st),
the Q-function is implemented as a table with states as rows
and actions as columns, then we can update the table by
using the Bellman equation:
Qπ(st, ut) = Ert,st+1∼E [rt + γEut+1∼π[Q

π(st+1, ut+1)]].
(8)

2) Proactive Action: Most studies [19], [23], and [25]
have modeled the robot manipulation task as a finite-horizon
discounted Markov Decision Process (MDP) M in an en-
vironment E, with a state space S, an action space A,
state transition dynamics T : S × A → S, a discount
factor γ ∈ (0, 1], and a reward function r : S × A → R
to determine an optimal stochastic policy π. In practice,
many contact states st cannot be observed directly in the
manipulation tasks that are close to a POMDP problem.
However, the POMDP problem is confined to the modeling
error of the torque-controlled robot, which makes it difficult
to detect the contact states. Inspired by wild gorillas, who
tried crossing a pool of water using a walking stick to test
the water depth [35], we improved our RL process by adding
a proactively investigative action (aI ) that could detect the
clear states (est) involved in the RL process (Figure 4),
which is different with [22] that continues to push the target
to obtain a detectable moment; the investigative action space
T I is a smooth m-manifold, where m = 6 and T I =

Contact start

Contact start

(a) (b)

(c) (d)

Fig. 5. (a) RAM contacts with one slot side in movement action with 5
N force feedback in the Z direction. (b) External moment data My which
is difficult to detect the torque contact status (goes up first and then down
during the contact force increase). (c) RAM contacts with the same side of
(a) using investigative action with 25 N press force. (d): External moment
My reaches -1 Nm which could clearly detect contact status

SE3 = R3 × SO3.
We use the investigative action aI combined with ut to

construct a new policy uIt (st) instead of the original ut(st),
which can be written as aI , ut → E → sIt+1, where sIt+1

is determined by adding an investigative action aI of the
torque-controlled robot to the environment. Consequently,
the heuristic design of the investigative action prevents the
learning process from falling into multiple unclear states.

In particular, the torque-controlled robot outputs either the
movements or the forces. In our experiments, the movements
are considered as the actions in the action space A, and the
forces are considered as the investigative actions. Instead of
using 20 N force continuously to detect the values of the
moments in the search phase [22], we only command the
controller to exert a force (10–25 N) in some directions in a
short time (0.5–1 s) as the investigative action, whereas the
feedback movements or force/moments are used to verify the
contact states when the states are vague. Our investigative ac-
tion method can markedly reduce the friction and probability
of being stuck when the robot performs movement actions.

B. Controller Design:

We use the increment equation xdes = xt + ut to avoid
the potential “far away” problem for safety concerns; xdes
is the desired EE pose, and xt is the current EE pose; ut is
the increment action command from the agent. The Cartesian
impedance controller takes the Cartesian EE movement ut
from an agent at 0.5 to 2 Hz, and the output joint torque gives
the command τu to the robot at 1000 Hz. We calculate the
desired EE pose xdes by combining ut with the current EE
pose xt. The trajectory generator bridges the low frequency
output xdes of the agent and high-frequency impedance
control of the robot and outputs ξt = xs to the Cartesian
impedance controller in Equation (2). xk is the position and
qk is the quaternion representation of the orientation given
by a simple linear interpolator:

ξt = {xk, qk}t+Tk=t . (9)
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Algorithm 1 Visual Residual RL with Investigative Action
Require: RL policy πθ, fixed policy πH .

1: for iteration=1 to M episodes do
2: Copy latest policy πθ from learning thread
3: Sample initial state s0
4: for step=1 to N do
5: Get action uRL by greedily picking from πθ(st)
6: Get action uH from πH(sv)
7: Output policy action: ut = (1−α)uH +α ∗uRL
8: if belief ==true then
9: Get next state ut → st+1

10: else
11: Get next state aI , ut → st+1

12: end if
13: Optimize πθ with Equation (8)
14: if EpisodeEnd == true then
15: break
16: end if
17: end for
18: end for

V. EXPERIMENTS: DESIGN AND SETUP

We consider the experiment for the insertion task here. The
task can be described as moving the already-grasped parts to
their goal pose (Figure 1). This is the most common setting in
manufacturing. The success of such tasks can be measured
by minimizing the distance between the objects and their
goal pose especially in the Z direction (see Figure 1).

A. Experiment Algorithm Design

In our weighted residual RL, actions ut are designed by
adding the fixed policy uH = πH(sv) with the parametric
policy uRL ∼ πθ(st):

ut = (1− α)uH + α ∗ uRL. (10)
The fixed policy output uH is calculated by a hand-designed
controller as given in Equation (7); α helps to adjust the
balance between exploration and exploitation. We set kp to
(1,1,0.3,0,0,0) when calculating the fixed policy. To identify a
reasonable weight between the two components, we initially
experimented with the weighted residual RL by introducing
a group of action weight parameters, such as 0.3, 0.5, and
0.7. The training experiments suggested an optimum policy
output with a weight of 0.5, whereas the weight could
increase or decrease around 0.5 according to the visual con-
dition in the implementation phase. We used the algorithm to
detect states and implemented its slightly-modified version,
where the trained policies were constructed by the two
aforementioned components. Here the flag belief is set to 0
or 1, according to the moment threshold settings, a detectable
moment (over threshold) always gives the true belief state.
Combined with the investigative action mentioned in Section
IV-A.2, the modified Q-learning algorithm was trained at a
high speed, and it easily resulted in optimization.

1) Action Design: We design Cartesian movement actions
for this experiment. Each Cartesian movement dimension

was set to +1 for a positive movement and −1 for a negative
movement; therefore, we had 6∗2 = 12 discrete actions. We
set λ as the scale parameter to adjust the amplitude of the
discrete actions similar to [22] as

a = λ[P dσx, P
d
σy, P

d
σz, R

d
σx, R

d
σy, R

d
σz]. (11)

Here, P and R are positional and orientational movements
under EE frame, respectively. λ is easy to choose because it
is closely related to assembly clearance and visual accuracy,
normally we set λ = 0.002, then we have movement
resolution at 0.002 mm and 0.002 rad level. We found that
orientational movement accuracy were enough by using the
fixed policy uH , so we only output positional movement
actions in our RL idea, this is a normal setting because
the visual feedback and force feedback are complementary
during contact-rich manipulation.

The investigative action was designed as the force action
eFz = 25N under robot EE frame Fe for 1 s. The robot will
try adding force but will stop moving if the force is greater
than 25 N or the movement is greater than 3 mm. Then, the
agent will obtain clear state feedback because of the large
contact force and torque amplitude (Figure 5).

2) Reward Design: Depending on the pose error between
the current and the target pictures, the reward function was
set as follows:

r =


1, (success)
−2, (failed).
1− 150‖sxy‖2 − s/smax, (otherwise).

Here, sxy is the norm of the x and y errors of the images,
s is the number of steps in one episode, and smax is the
maximum steps in one episode.

3) State Design: We get the estimated 6-DoF external
force and moments along the X, Y, and Z axis under the EE
frame from Franka controller. We consider the contact force
and the moments between the robot’s EE (i.e., the RAM)
and the slot as the MDP states as follows:

s = [Fx, Fy, Fz,Mx,My,Mz] (12)
We assume that the EE contacts the slot when the external
force |F | > 4 N or the external moments |M | > 0.4 Nm, a
value of ±1 means that a contact is made, whereas 0 means
that there is no contact with the encoding states.

B. Experiment Environment and Task Setup

1) Environment Setup: We used the Franka robot [2]
for real robot experiments and set the translational Carte-
sian stiffness as 3000 N/m and stiffness for the rotations
as 300 Nm/rad (Recommended upper limit). Two sensor
modalities were available in the real hardware, including
proprioception and redgreenblue (RGB) depth camera. The
RGB and depth information were recorded using the eye-in-
hand Intel RealSense Depth Camera D435i. The policy ran
on a Dell Precision 5510 laptop and sent the updated position
to the real-time controller, which calculated the joint torque
command and sent it to the robot controller at 1000 Hz. We
used a CORSAIR DDR3 RAM and a motherboard as the
training and testing environment.
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TABLE I
ABLATION STUDY OF POLICY EVALUATION STATISTICS

Baselines Result(success/total) Total Time Cost

No vision 92/200 1.09 h
No RL policy 112/200 0.65 h
Random RL policy 77/200 2.59 h
No investigative action 66/200 0.85 h
Our method 179/200 1.18 h

2) Tasks Setup: In the ablation study experiment, we
evaluated our trained policy by masking different modalities
as four baselines given below:
1) No vision: masks out the visual part action; we set α = 1.
2) No RL policy: masks out the RL part action; we set α = 0.
3) Random policy: generates a random Q table.
4) No investigative action: masks out the investigative action
and chooses random action when the state is not clear.

We set maximum steps as 10 and add initial random
errors(|error| ∈ [2, 3]mm) in the x and y directions for each
baseline only in the ablation study experiment.

In comparison study experiment, we compared the task
success rates of our method with the other four baselines
in the real scenarios (no maximum steps limit and no initial
random errors for each baseline) by moving the motherboard,
which are as follows:
1) Baseline 1: For normal teaching and direct insertion
2) Baseline 2: For normal teaching with spiral exploration
3) Baseline 3: For teaching with vision and direct insertion
4) Baseline 4: For teaching with vision and spiral exploration

VI. EXPERIMENTS: RESULTS AND DISCUSSION

We trained our policy with 500 episodes, and each episode
lasted a maximum of 50 steps. The training time for the
exploration was approximately 150 min, which is much less
than [19]. We specified discrete actions in this experiment,
and the action execution had errors. Our policy can increase
the probability of success and decrease the cost steps but
cannot guarantee success every time. We set random errors
for the initial pose of the robot; sometimes, the robot will
successfully insert by chance and obtain a high reward in the
early stage of training.

Table I shows the ablation study result of the policy
evaluation statistics. Random RL policy and No investigative
action had poor performances with success rates of 38.5%
and 33%, respectively. No vision had a 46% success rate
because of discrete overshooting actions whereas No RL
policy had a 56% success rate because the RAM was always
stuck by the short side of the slot. The proposed method
had a success rate of 89.5%. Notably, the success rate of our
method is limited by the maximum steps in the experiment.

We observed that the absence of either visual or correct
forces/moments information negatively affected the task suc-
cess rate, and wrong policy performance was even worse than
without RL policy. Therefore, the Random RL policy and
No investigative action had similar performances because
the RL policy is always in conflict with the visual output
action. None of the four baselines reached the same level

TABLE II
COMPARISON OF SUCCESS RATES FOR DIFFERENT BASELINES

Baselines Fix motherboard Move motherboard

Baseline 1 97/100 0/20
Baseline 2 100/100 0/20
Baseline 3 98/100 81/100
Baseline 4 100/100 88/100
Our method 100/100 100/100

of performance as the final method. With visual input alone,
the robot sometimes cannot overcome the last small distance
because of either the limited movement accuracy of the robot
or contact friction, whereas the RL policy is capable of
recovering from such issues, which could be proven in our
method. Without the visual input, the robot will require more
steps to find the proper pose for insertion and will always
overshoot for some actions (i.e., drop out of the slot).

Table II shows a comparison of the success rates of dif-
ferent traditional method baselines. To simulate an industrial
scenario, the additional random error and maximum step
limit in the ablation study are removed. Obviously, baselines
1&2 work well only when the motherboard is fixed in the
same position as in the teaching phase, so we only test 20
times in the “move motherboard” case for baselines 1&2 for
saving time. The success rates for baselines 3&4 increased
with vision correction, but still have failure cases due to the
visual error. Our method shows a strong ability to tolerate
environmental variations and resilience from stuck with full
success, which really meets the requirements of industrial
scenarios. Notably, in the comparison study, the increase of
success rates is also related to the removal of initial errors
and removal of the limit of the maximum steps.

VII. CONCLUSION AND FUTURE WORK

In this paper, we combined RL with an operational space
visual controller to solve position uncertainty problems in
high-precision assembly tasks, and we proposed a proactive
action idea to solve the POMDP problem using an investiga-
tive action.

The proposed method could solve the shortage of tradi-
tional visual servoing method by using our visual residual
RL algorithm, which inherits some traditional controller
parameters that make the setting up not fast enough; we
will extend our method to be trained toward an end-to-end
approach in the next step.

Unfortunately, space does not permit a more generalized
test in this paper, whereas we test the SSD insertion scenario
as in Figure 2 with our policy and achieve full success with
100 episodes. We will continue to generalize the model and
policy so that they could handle different parts and robot
manipulators. Then, the skill could be packaged as a service
that will be delivered to robots in new factory lines with
a short setup time. The proposed method uses a discrete
number of actions to perform the insertion task, as a future
work, we will analyze the difference between this method
and continuous space learning techniques.
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