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Abstract

Population-scale single-cell RNA sequencing (scRNA-seq) is now viable, enabling finer
resolution functional genomics studies and leading to a rush to adapt bulk methods
and develop new single-cell-specific methods to perform these studies. Simulations are
useful for developing, testing, and benchmarking methods but current scRNA-seq
simulation frameworks do not simulate population-scale data with genetic effects.
Here, we present splatPop, a model for flexible, reproducible, and well-documented
simulation of population-scale scRNA-seq data with known expression quantitative
trait loci. splatPop can also simulate complex batch, cell group, and conditional effects
between individuals from different cohorts as well as genetically-driven co-expression.
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Background
Single-cell RNA-sequencing (scRNA-seq) has enabled the high-throughput quantifica-
tion of gene expression at the level of the individual cell, making it possible to characterize
cells in heterogeneous tissues by their cell-type and cell-state. As gene expression is an
intermediate between DNA sequence and traits like response to stimuli and disease sta-
tus, scRNA-seq can provide insights into the cellular context in which stimuli or diseases
have an effect. Today, with decreases in costs and improvements in protocols for multi-
plexing and demultiplexing samples [1–3], scRNA-seq is being performed at larger and
larger scales, including across population-scale cohorts.
An early focus for many scRNA-seq studies was to identify differentially expressed

genes (DEGs) between cell types or cell states. Now, with population-scale scRNA-seq,
cell-type/state specific DEGs can also be identified between individuals from different
cohorts. For example, Lawlor et al. [4] identified 638 DEGs across eight different cell-
types from the pancreatic tissue of non-diabetes and type 2 diabetes donors. Many of the
DEGs were unique to a single cell-type and over half were not discovered when the com-
parisons were performed without accounting for cell-type, highlighting the importance
of single-cell level resolution in deciphering the molecular basis of diseases [4].
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Beyond characterizing the cellular context for DEGs, population-scale scRNA-seq data
promises to improve our ability to study the regulatory basis for these differences. In
recent efforts by the GTEx Consortium to map genetic regulatory effects in human
tissues, only 43% of disease-associated genetic variants (i.e., hits from genome wide
association studies; GWAS) co-localized with expression-associated genetic variants (i.e.
expression quantitative trait loci; eQTL) [5]. It was further estimated that, across tissues,
only an average of 11% of trait heritability could be explained by GTEX cis-eQTL [6]. One
reason for the lack of disease-associated eQTL is that cellular context is critical for genetic
regulation and that disease-associated eQTL are missed when eQTL are mapped using
data from bulk tissue [7]. Pioneering efforts to use scRNA-seq data for single-cell eQTL
(sc-eQTL) mapping have discovered novel cell-type and dynamic-state specific eQTL
[8, 9], suggesting population-scale scRNA-seq data could help uncover context-specific
regulatory effects.
When scRNA-seq technologies were first becoming available, there was a rush to

adapt bulk RNA-seq analysis methods and to develop new single-cell specific analysis
methods to address challenges associated with single-cell expression data (e.g., noise,
sparsity, high dimensionality). By September 2021, there were over 1050 software pack-
ages available for scRNA-seq analysis [10]. Many of these new and old methods have
been benchmarked to critically assess their performance on a wide variety of data types
and conditions, including benchmarks focused on batch-effect correction [11], nor-
malization [12], differential expression [13], and trajectory inference [14]. While the
gold standard for assessing performance of different methods is how well they per-
form on real datasets, such an assessment can be difficult for scRNA-seq because the
ground truth is typically not known. One solution is to use simulated datasets where
the ground truth is known. Splatter, a software package that implements a number
of methods to simulate scRNA-seq data (including its own model, splat), has become
a popular option for generating realistic simulated scRNA-seq data since its release
in 2017 [15]. Splatter is flexible, fast, reproducible, and well maintained and, while
all simulation frameworks have limitations, was considered one of the top perform-
ing models for simulating single-cell RNA-seq data in a recent independent benchmark
[16]. However, Splatter simulates data for cells from a single individual, precluding its
use for population-scale studies. Further, existing multi-sample single-cell simulation
frameworks, such as Muscat [17], do not incorporate genetic effects (i.e., eQTL) into
their simulations and therefore are limited in their downstream applications. Indeed,
we are not aware of any existing scRNA-seq simulation tools that incorporate genetic
effects.
Here, we present splatPop, an extension of splat for the simulation of population-scale

scRNA-seq data with realistic population structure and known eQTL effects. The splat-
Pop model utilizes the flexible framework of Splatter to simulate data with complex
experimental designs, including designs with batch effects, multiple cell groups (e.g., cell-
types), and individuals with conditional effects (e.g., disease status or treatment effects).
These group and conditional effects are simulated by including both DEGs and eQTL
effects, making these simulations a powerful tool for assessing downstream single-cell
analysis methods. We first present the splatPop model, then demonstrate how splatPop
can simulate data with similar properties to simple and complex empirical data sets.
Finally, we demonstrate how these simulations can be used to assess single-cell analysis
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methods. The splatPopmodel is implemented and available for use in the Splatter package
(version 1.19+) available in Bioconductor.

Results
The splatPopmodel

The splatPop framework consists of three steps: (1) estimating parameters from empiri-
cal data, (2) simulating population-wide gene means, and (3) simulating counts for each
cell for each individual, where steps 2 and 3 represent the gamma-Poisson hierarchical
modeling approach used in splat.
Three types of splatPop parameters are estimated from empirical data: single-cell,

population-scale, and eQTL effects (Additional file 1: Table S1; Fig. 1, bottom right).
Single-cell parameters (e.g., library size) have previously been described [15] and should
be estimated from scRNA-seq data from a homogeneous cell population from one indi-
vidual. Population-scale parameters (e.g., population-wide expression variance) can be
estimated from population-scale bulk RNA-seq or aggregated scRNA-seq data. Finally,
eQTL effect size parameters are estimated from real eQTL mapping results. Sensible
default parameter values are provided (see the “Methods” section); however, custom val-
ues can be estimated from user-provided data or set manually. All parameters are stored

Fig. 1 The splatPop model. Input parameters that can be estimated from real data are indicated with double
borders and are colored according to type. Steps in gray boxes are optional, with the condition shown in red.
(cv, coefficient of variation; BCV, biological coefficient of variation; Ber, Bernoulli; Med, median; LN,
log-normal; Poi, Poisson)
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in a convenient object that, together with the genotype data, is sufficient to recreate the
simulated population.
To simulate mean expression levels for every gene for every individual (Fig. 1, left

panel), first population-wide means and variance levels are sampled for each gene. To
account for the mean-variance trend (Additional file 1: Fig. S1), variance levels are sam-
pled from gamma distributions parameterized from empirical genes in the same gene
mean bin, with an option to manually tune the variance between individuals using the
similarity.scale parameter. Baseline genemeans for each individual are then sampled from
a normal distribution using the mean and variance assigned to each gene. If population-
scale parameters were estimated from bulk data, the baseline means for each individual
are quantile normalized to match the desired single-cell distribution. Finally, eQTL and
differential expression effects are added to the baseline gene means (see the “Methods”
section). Flexible controls for defining the frequency, size, and context of eQTL and DE
effects allow for the simulation of a wide range of complex datasets.
The final step is to simulate realistic expression counts for single-cells for each individ-

ual. This task is essentially done using the splat model, where counts are sampled from
a Poisson distribution after adjusting means based on the expected library size and bio-
logical coefficient of variation (BCV) (Fig. 1, right panel). The splatPop model also uses
the batch effect function from splat to simulate population-scale data from multiplexed
experimental designs with technical replicates (i.e., where all or some individuals are
simulated in more than one batch).

Simple splatPop simulations

Three empirical datasets are used as reference data throughout our study: induced
pluripotent stem cells (iPSCs) captured on the SmartSeq2 platform (ss2-iPSC; [9]), floor
plate progenitor and dopaminergic neuron cells from a panel of iPSCs differentiating
toward a midbrain neural fate captured on the 10x platform (10x-Neuro; [18]), and
fibroblasts from models of idiopathic pulmonary fibrosis (IPF) captured on the 10x plat-
form (10x-IPF; [19]; see the “Methods”). For each reference, single-cell parameters were
estimated using the individual with the most cells, and population parameters were esti-
mated from mean aggregated counts, excluding individuals with less than 100 cells and
individuals from the disease cohort for 10x-IPF.
First, using the ss2-iPSC data as a reference, we simulated scRNA-seq counts for genes

on chromosome 22 (504 genes) for six individuals from the 1000 Genomes Project. This
example simulation took less than 30 seconds to generate, but splatPop can be effi-
ciently scaled up. For example, simulating 1000 genes for 500 individuals takes just 2 min
(Additional file 1: Table S2). The similarity.scale parameter and the percentage of genes
assigned with eQTL effects were manually adjusted to match data from six individuals
from the reference that were sequenced in the same batch.
Since Zappia et al. and the independent benchmark by Cao et al. demonstrate splat’s

performance compared to other scRNA-seq simulation models in terms of various met-
rics at the individual-level [15, 16], here we focus on population-level characteristics
between splatPop simulations and empirical data. For example, visualizing the global
relationship between cells in a lower-dimensional space (Fig. 2a), we see that both the
empirical and simulated cells loosely cluster by individual, but with significant overlap.
We can quantify the degree of clustering by individual by calculating the silhouette width
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Fig. 2 Simulated data compared to ss2-iPSC empirical scRNA-seq data. (a) PCA plots of cells colored by
individual (max 50 cells shown per individual). (b) The distribution of cell silhouette widths using the
individual as the cluster. The distributions are shown for cells grouped by type (left) and by type and
individual (right), with the point and whisker showing the mean and standard deviation. (c) The percentage
of genes (y-axis) with a given percentage of variance explained by individual. (d) The mean-variance
relationship. The counts per gene were mean-aggregated (a.counts) across nCells from each individual and
logged before calculating the population wide mean and variance. All cells were used from the empirical
data (average = 52), while simulated data was down-sampled to nCells per individual

of each cell, a measure of its similarity to other cells from the same individual com-
pared to cells from its nearest neighbor individual. While simulations from a parametric
model cannot perfectly replicate empirical data, we find a similar distribution of silhou-
ette widths across simulated compared to empirical cells (Fig. 2b, left). Separating the
silhouette widths by individual, we see that cells from some individuals cluster more
distinctly than others (Fig. 2b, right). As the simulated individuals are not the same geno-
types as the reference individuals and as the base gene means are sampled randomly for
each individual, we do not expect the same inter-individual relationship pattern to be
observed between simulated and empirical cells. However, splatPop can be used to repli-
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cate more exactly an empirical dataset (see the “Replicating empirical data with splatPop”
section).
In addition to these cell-level comparisons, we can also compare our simulated data

with the reference data in terms of gene-level characteristics. By calculating the per-
centage of variance in gene expression across cells explained by an experimental factor,
such as individual, we see that for both the reference and simulated data, nearly 2% of
genes have between 10–30% of their variance explained by individual (Fig. 2c). Another
key aspect of scRNA-seq data is the mean-variance relationship. Here we compare the
mean-variance relationship for each gene across individuals, with the counts per gene
per individual calculated by mean aggregating counts across cells (see the “Methods”
section; Fig. 2d. From left to right, the plots show that the mean variance relationship
stabilizes as more cells are simulated per individual. We also demonstrate that splat-
Pop can simulate a simple data set with the cell-level and gene-level properties of data
generated on the 10x sequencing platform (Additional file 1: Fig. S2). This example bet-
ter shows the stabilization of the mean variance trend as the number of simulated cells
increases (Additional file 1: Fig. S2d). Together, these comparisons demonstrate that splat-
Pop can approximate the cell and gene level characteristics of single-cell RNA-sequencing
data.

Complex simulations

The simulations above demonstrate how splatPop can provide population scale scRNA-
seq data for a homogeneous cell population where the expression differences between
individuals are only due to random sampling and genetic effects. Next, we demonstrate
how splatPop can be used to simulate data with more complex effects (Fig. 3).

Simulating batch effects

Unwanted sources of variation due to technical differences during sample collection, pro-
cessing, and sequencing are known as batch effects. Batch effects are especially important
to consider for population-scale scRNA-seq simulations because these data are often gen-
erated by combining multiple individuals together by pooling or multiplexing. The splat
model simulates batch effects by sampling a multiplicative effect for each gene for each
batch and applying it to all cells in the batch. In splatPop, we use this same approach, but
expand the function to allow the user to design complex multiplexing schemes.
We demonstrate this function by simulating five individuals in two batches using the

ss2-iPSC data as a reference. Batch effect sizes are sampled from a log-normal distribu-
tion for each gene. Here, we adjust the location and scale parameters to simulate a data
set where the batch effects are larger than the individual effects. Because we specified for
three individuals to be included in each batch, splatPop randomly selected one individ-
ual (sample 4) to be simulated in both batches (Fig. 3a). As with the simple simulations,
we can also tune the similarity.scale parameter, percentage of genes assigned as eQTL,
and the location and scale parameter for the batch effects to simulate data that closely
resembles empirical data. For example, Additional file 1: Fig. S3 shows a full compari-
son between ss2-iPSC reference data from 10 individuals sequenced across 3 batches. In
this example, the batch effect parameters were set individually for each batch so that one
batch (batch 3) had larger batch effects than the other batches, highlighting the flexibility
of splatPop.
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Fig. 3 Examples of complex splatPop simulations. A principal component analysis (PCA; top) plot of the
simulations with each individual designated by color and each complex effect denoted by shape and the
distribution of the degree of variance in gene expression across cells explained by the experimental factor
(bottom) for simulations with a batch effects using ss2-iPSC as a reference, b cell group effects using
10x-Neuro as a reference, and c conditional effects using 10x-IPF as a reference. Note, no variance in gene
expression is explained by individual using the 10x-Neuro reference

The modular and reproducible nature of splatPop simulations also allows for the simu-
lation of multiple populations of cells that share “biological” signals (i.e., the same DE and
eQTL effects) but differ in their single-cell properties. This feature can be useful to gen-
erate datasets made up of cells sequenced using different chemistries for different batches
(Additional file 1: Fig. S4).

Simulating cell groups

Multiple cell groups can be simulated to mimic heterogeneous cell populations (i.e., cell
types) for each individual or to mimic treated versus untreated cells from the same indi-
vidual. The splat model simulates cell groups by assigning group-specific multiplicative
DE factors, sampled from a log-normal distribution, to a subset of genes. In splatPop, in
addition to the DE factors, we also randomly designate a proportion of eQTL effects as cell
group specific. In this way, different cell groups are defined by genetic and non-genetic
DE. The proportions of genes with group-specific eQTL and DE and the level of DE can
be set for each group, allowing for the simulation of highly complex cell populations.
We demonstrate this function by simulating two cell groups for six individuals using the

10x-Neuro data as a reference. Because the 10x-Neuro data had weak individual effects
(i.e., cells from different individuals all clustered together), the group effects dominate
this simulation (Fig. 3b). We can tune the splatPop parameters to simulate a dataset with
cell group effects that closely resembles empirical data (Additional file 1: Fig. S5).

Simulating conditional effects

Another desirable feature for a population-scale scRNA-seq simulation framework is the
ability to simulate differences between individuals that are due to different treatments or
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conditions (e.g., disease status). The splatPop model allows the user to define the number
of conditional groups and the proportional of individuals assigned to each group, and
then applies condition-specific DE and eQTL effects. This approach is similar to how cell
groups are simulated, but effects are applied to all cells for all individuals in the condition
group. For example, group effects can be used to simulate both treated and untreated
cells for all individuals in the population, while conditional effects can be used to simulate
cells for treated and untreated individuals. Again, the proportion of condition-specific-
eQTL and the proportion of genes with condition-specific DE and the level of DE can be
specified separately for each conditional group.
We demonstrate this function by simulating six individuals, three in each conditional

group, using the 10x-IPF data as a reference. We adjust the location and scale parameters
defining the DE effect sizes and proportion of condition-specific eQTL to simulate a data
set where the conditional effects are larger than the individual effects (Fig. 3c). Again,
we can tune these parameters to simulate datasets with conditional effects that closely
resemble empirical data (Additional file 1: Fig. S6).

Simulating genetically-driven co-expression

By default, splatPop randomly pairs eSNPs with eGenes (within the designated win-
dow); however, splatPop can also be instructed to assign pairs of eGenes the same eSNP.
This results in simulated scRNA-seq data with genetically-driven co-expression (i.e., co-
regulation) relationships between genes. This can be done by providing eQTL data either
as summary statistics or as a formatted splatPop key with the desired eQTL associ-
ations. Alternatively, the eqtl.coreg parameter can be set to the desired proportion of
co-regulated eGenes. For example, in a simulation using the 10x-Neuro data as reference,
setting eqtl.coreg to 0.2 means that 20% of eGenes will be paired and assigned the same
eSNP. These co-regulated eGenes have higher expression correlation across individuals
than random pairs of eGenes (Fig. 4a).

Replicating empirical data with splatPop

Without the addition of co-regulation effects, the expression correlation between genes
is centered around zero (Fig. 4a). This phenomenon occurs because the mean expression
value for each gene for each individual is sampled randomly from a distribution. This sam-
pling approach is fast, flexible (e.g., allowing for the simulation of any number of genes),
and it maintains the population-level characteristics of empirical scRNA-seq data, all
useful properties for many simulation studies. However, splatPop can also be used to sim-
ulate scRNA-seq data that more closely replicates the gene expression correlations seen in
empirical data. As described above, splatPop estimates population-wide parameters from
user provided population-scale bulk RNA-seq or aggregated scRNA-seq data. However,
if this empirical data is provided directly to the splatPopSimulate function, it will be used
as the base gene means (i.e., the “Gene mean per sample” Fig. 1, left panel). Used in this
way, splatPop will generate simulated scRNA-seq data for the individuals and genes in the
empirical data that replicates empirical inter-individual relationships (Fig. 4b, Additional
file 1: Fig. S7a) and patterns of gene expression across individuals (Fig. 4c, Additional
file 1: Fig. S7b) from the empirical data. We note that while cell-group, conditional, and
batch effects can still be applied to simulations generated this way, adding simulated eQTL
effects may compound with eQTL effects already present in the empirical gene mean
data, inflating their effect size.
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Fig. 4 Co-regulation and replicating empirical 10x-Neuro data. a Pearson’s correlation between mean
aggregated expression of randomly paired (gray, n = 1000) and co-regulated (blue, n = 54) eGenes across 100
individuals. The average correlation for each type designated by the large point. b, c Comparison of
10x-Neuro and splatPop simulated data using the replication approach. Eight individuals in the same batch
and 358 genes meeting a minimum expression threshold (> 10 counts across all cells) were included. b
Pairwise Pearson’s correlation between individuals across genes, with expression for each gene for each
individual calculated as the mean aggregated log counts across cells. Individuals are ordered by hierarchical
clustering of the empirical data. c Relationship between mean aggregated log counts across cells for each
individual for each gene from empirical (x-axis) and simulated (y-axis) data, colored by individual. The
diagonal is shown with the black line, the linear regression line is dashed blue, and the Pearson’s correlation
between empirical and simulated aggregated logcounts across all genes and all individuals is shown in blue

Using splatPop to evaluate downstream analysis tools

The simulations from splatPop can be used to evaluate new and existing scRNA-seq
analysis methods [20]. They can also be used to assess power to detect known effects
across experimental variables, such as number of cells sequenced per individual. Here, we
demonstrate splatPop’s capabilities with example evaluations of approaches to differential
expression analysis and eQTL mapping.
For DE analysis, we simulated 500 cells for each of 12 individuals divided into two con-

ditional groups (6 per group) using 10x-IPF as a reference. Conditional DE effects were
assigned randomly to 40% of genes, with scaling factors sampled from a log normal dis-
tribution (location = 0.2, scale = 0.2). We then tested for DE genes between the two
conditional groups by fitting zero inflated regression models to log normalized counts
for each gene using MAST (see the “Methods” section) for down-sampled subsets of the
cells ranging from 10 to 500 cells per individual. As we know which genes were simulated
with conditional DE effects, we can calculate performance metrics such as true positive
rate (TPR) and false discovery rate (FDR) (Fig. 5a) and assess the relationship between
the estimated and simulated DE effect sizes. We can also look at the properties of sim-
ulated genes that were correctly identified as DE (true positives; TP) compared to genes
that were missed (false negative; FN) or incorrectly identified as DE (false positives; FP).
For example, with 80 cells simulated per individual, the correlation between the estimated
and simulated DE effect sizes for TP genes was 0.64 (delta, Fig. 5b), and these TP genes
tended to have higher mean expression and tended to have larger DE effect sizes (Fig. 5c).
We note that this same approach could be used to test for DE genes between cell groups.
For eQTL analysis, we simulated 500 cells for each of 100 individuals in 10 batches with

10 individuals per batch using ss2-iPSC as a reference. We assigned eQTL effects to 70%
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Fig. 5 Example applications of splatPop simulations. Differential expression (DE) analysis: a The true positive
rate (TPR: TP/(TP+FN)) and false discovery rate (FDR: FP/(TP+FP)) of DE genes (MAST q value < 0.05) between
two conditional groups across a range of number of simulated cells per individual using 10x-IPF as a
reference. b The relationship between simulated and MAST estimated DE effect sizes (delta) using 80 cells
per individual for all genes colored by the DE analysis result (TP, FN, FP, TN). The Pearson’s correlation
between simulated and estimated deltas for true positive (TP) genes is shown in blue. c The simulated gene
mean and coefficient of variation (cv), eQTL effect size (beta, if applicable to that gene), and DE effect size (DE
delta) for TP, FN, and FP DE genes using 80 cells per individual. d The performance of eQTL mapping (q value
< 0.05) across a range of number of simulated cells per individual. e The relationship between simulated and
estimated eQTL effect sizes (beta) for all genes colored by the eQTL mapping result (TP, FN, FP, TN). The
Pearson’s correlation between simulated and estimated betas for TP genes is shown in blue. f The simulated
gene mean and coefficient of variation, eQTL effect size (beta), and eSNP minor allele frequency (MAF) for TP,
FN, and FP eGenes using 80 cells per individual. Statistical significance is reported for t tests testing for
difference between TP and FN or FP categories (ns: p > 0.05, *: p <= 0.05, **: p <=, 0.01, ***: p <= 0.001,
****: p <= 0.0001)

of simulated genes. Because splatPop samples eQTL effect sizes from a distribution esti-
mated from empirical eQTL mapping data, many of these associations will have small
effects that could only be successfully discovered if a large number of donors are simu-
lated and used for mapping. We used the optimized single-cell eQTL mapping workflow
defined by Cuomo, Alvari, Azodi, et al. [20] to map eQTL (see the “Methods” section) and
assessed performance across a range of 10 to 500 cells simulated per individual (Fig. 5d).
Focusing on eQTL mapping results with 80 cells simulated per individual, the correla-
tion between estimated and simulated eQTL effect sizes was 0.95 (Fig. 5e) and eQTL
tended to be missed for genes with higher coefficient of variation and for eQTL with
small effect sizes and when the variant assigned to the gene had a low minor allele fre-
quency (Fig. 5f). While a thorough benchmarking of approaches for DE analysis or eQTL
mapping is beyond the scope of this paper, these examples demonstrate the utility of splat-
Pop for assessing population-scale single-cell analysis methods and experimental design
considerations.

Discussion
The expansion of single-cell RNA sequencing to population-scale cohorts has powerful
implications for studies of functional genomics. New tools andmethods need to be rapidly
developed and rigorously tested to ensure researchers are able to make important new
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discoveries from these data. Independent simulation frameworks are a critical resource
to this end.
Here, we present splatPop, a flexible framework for simulating population-scale single-

cell RNA-sequencing data using the splat model. splatPop is implemented and available
in the Splatter R package from Bioconductor, under a GPL-3 license. Because the splat-
Pop model simulates genetic effects on gene expression (i.e., eQTL), realistic population
structure can be achieved by providing real genotype data to the model. The simulation of
genetic effects also means splatPop can be used to simulate eQTL mapping populations,
greatly expanding the usefulness of this model. In addition to being able to simulate com-
plex batch effects and cell group effects, splatPop allows for the simulation of conditional
(e.g., treatment or disease status) effects for different cohorts of individuals. The modu-
lar framework of splatPop enables these functions to be combined to generate synthetic
data with complex experimental designs. For example, splatPop could be used to simu-
late data for multiple cell-types for individuals from healthy, diseased, and disease-treated
individuals, sequenced using a multiplex design with technical replicates.

Conclusions
We demonstrate that by estimating splatPop parameters from real data and manually
adjusting control parameters, synthetic data can be generated that has properties resem-
bling a wide range of real data sets. As a parametric simulation framework, splatPop
cannot perfectly reproduce all aspects of empirical scRNA-sequencing data, but it has
the benefits of flexibility, speed, and parameter interpretability. The simulation functions
available in splatPop are well documented and reproducible. Code used to generate all
simulations shown here and to generate the plots comparing the simulated to reference
data are also available. Further, as improvements are made to the splat model, they will be
adopted by splatPop.

Methods
Reference data

Empirical scRNA-seq data sets used as references are all previously described and
available for download as processed, post-quality control counts per cell per gene (see
Availability of data and materials).
Additional cell-level and gene-level filtering was performed as follows. For ss2-iPSC,

only cells sequenced at day 0 were included (i.e., iPSCs). For 10x-Neuro, only cells
from day 30 that were annotated as floor plate progenitors or dopaminergic neurons
and were sequenced in the largest pool (pool 7) were included. Gene filtering was
also done to remove genes with zero variance or a mean across cells equal to zero.
For 10x-IPF, only fibroblast annotated cells from control and bleomycin 1.7 mg/kg
fibrosis-induced mice were included. Annotation was done using SingleR v1.4.1 with the
MouseRNAseqData cell type reference from CellDex v1.2.0 [21]. splatPop was estimat-
ing very large variance parameters (biological coefficient of variation common dispersion
greater than 10) from 10x-IPF. This behavior was driven by the unusually deep sequenc-
ing of the libraries for this study, resulting in counts per gene values across cells
that often reached into the hundreds while also exhibiting a considerable number of
observed zeros. Filtering out genes with zero variance and zero mean as was done for
the 10x-Neuro reference was not sufficient to remove this effect. Therefore, we per-
formed additional filtering whereby cells were removed if they had zero counts for over



Azodi et al. Genome Biology          (2021) 22:341 Page 12 of 16

95% of genes and genes were removed if they had zero counts for over 60% of the
remaining cells.
For each reference, the genes included were randomly down-sampled to n = 504 (after

other gene filtering steps for the two 10x references) to match the number of genes being
simulated (i.e., number of genes on chromosome 22). Single-cell parameters were esti-
mated using the individual with the most cells (ss2-iPSC: joxm n = 383, 10x-Neuro: wihj
n = 2268, 947170: n = 399) and population parameters were estimated from mean aggre-
gated counts (i.e., taking the mean of the count values across the cells for each gene from
each individual), excluding individuals with less than 100 cells and individuals from the
disease cohort for 10x-IPF. The eQTL effect size parameters were estimated from eQTL
mapping beta estimates for the top eQTL hit for each gene (for SNPs with MAF greater
than 10%) from GTEx v7 using thyroid tissue [22]. These are the default splatPop eQTL
effect size parameters.
Genotype data from the 1000 Genomes project for chromosome 22 was used for the

simulations (hg19, phase3 [23]). The genotype data was filtered to include biallelic SNPs
with no missing data, with minor allele frequency greater than 5%, Hardy-Weinberg equi-
librium exact test p value greater than 0.00001, and to remove SNPs in high linkage
disequilibrium (independent pairwise r2 less than 0.75, 1600 kb window).

splatPop simulation framework

The splatPop framework (Fig. 1) consists of (i) estimating key parameters from empirical
data, (ii) simulating gene means for the population, and (iii) simulating single-cell counts
for the population.

Step 1. Parameter estimation

The estimation of single-cell parameters is described in detail in the original Splatter
manuscript [15]. Population parameters are estimated from population scale bulk RNA-
seq or aggregated scRNA-seq data, provided as a matrix of expression levels for each gene
(rows) for each individual (column). The parameters that control population-wide mean
expression of each gene (αm and βm) are estimated by fitting a gamma distribution to
the gene means across the population. Lowly expressed genes (expression less than 0.1 in
greater than 50% of individuals) are excluded. To account for the mean-variance relation-
ship (Additional file 1: Fig. S1), parameters that control expression variance across the
population (αv and βv) are estimated by fitting a gamma distribution to the coefficient of
variation (cv) from genes in each expression bin (default n.bins=10). The parameters that
control the eQTL effect sizes (αe and βe) are estimated by fitting a gamma distribution to
effect sizes from an empirical eQTL mapping study (bulk or single-cell).
The default values for the population and eQTL parameters were estimated from bulk

data from GTEx (v7, thyroid tissue) [22]. The effect sizes from the top eSNP for each gene
were used, after removing top eSNPs with a MAF less than 0.05.

Step 2. Simulating genemeans for individuals

Population-wide expression means are modeled as λi ∼ gamma(αm,βm) for genes
i = {i1, ..., in.genes}. If specified by the single-cell parameters, expression outlier effects are
added to the sampled values as described in Zappia et al. [15]. A variance is sampled for
each gene as σi ∼ gamma(αv,βv), where αv and βv are specific to the gene mean bin.
The variance can be manually adjusted with the similarity.scale sv parameter, which gets
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multiplied with the βv parameter. The baseline gene means per individual are then mod-
eled as λi,j ∼ N(λi, λi ∗ σi) for every individual j = {j1, ..., jn.individuals}. We note, that if
empirical gene mean data is provided directly to the splatPopSimulate function, the gene
mean and variance sampling steps will be ignored, and the empirical gene means will be
used directly. If the population-scale parameters were estimated from bulk RNA-seq data
(or bulk RNA-seq data is provided directly to splatPopSimulate), for each individual j, the
sampled means λi are quantile normalized to match the distribution estimated from the
single-cell data (i.e., gamma(αsc,βsc)).
The simulation of eQTL effects requires genotype information as input. Providing real

genotype data or genotype information simulated using tools like HAPGEN2 [24] will
ensure the simulated data reflects realistic population structure. Various control param-
eters can also be adjusted, including how many or what proportion of genes are assigned
eQTL effects (i.e. eGenes), the minimum and maximum minor allele frequency (MAF)
of the SNP assigned to each eGene (i.e. eSNP), the maximum distance between eGenes
and eSNPs, and the percent of eGenes to have the same eSNP as another eGene (i.e., per-
cent of genes with genetic co-regulation). For each eGene, an effect size is sampled as
ωi ∼ gamma(αe,βe). The eQTL effects are incorporated into the baseline means as in
[25] using the equation:

λi,j = λi,j + (λi,j ∗ Gi,j ∗ ωi)

where Gi,j is the minor allele dosage of the eSNP assigned to eGene i, coded as 0, 1, or 2,
for individual j. To account for cell-group differences, a portion of eQTL effects (specified
by eqtl.group.specific) are applied to the baseline means for the cells simulated as belong-
ing to a specific cell group. To account for cohort differences, a portion of eQTL effects
(specified by eqtl.condition.specific) are only applied to the baseline means for individuals
assigned to a specific conditional cohort.
DE effects between cell-groups or between conditional cohorts are simulated as in [15].

Briefly, DE scaling factors are sampled as ωde
i ∼ logNorm(μde, σde) for the genes assigned

DE effects (proportion specified by de.prob and cde.prob), where μde and σde can be
adjusted separately for cell groups and cohorts to change the relative impact of these
effects. A portion of DE effects can be randomly assigned as negative effects (specified by
de.downProb and cde.downProb).

Step 3. Simulating genemeans for individuals

Single-cell level expression counts are simulated using the splat model [15], with minor
modifications to account for splatPop having sampled gene means and incorporated
expression outliers in step 2. Batch effects are also incorporated into the simulations dur-
ing this step, where multiplicative factors are added to genes for cells from the same batch.
In splatPop, the batch effect function from splat is expanded to allow for the simulation
of complex multiplexed experimental designs, where individuals are pooled where the
multiplicative factors are applied to all cells from all individuals in that batch. The user
can specify the number of batches (length of list provided to batchCells) and the number
of individuals-per-batch (batch.size). By adjusting these parameters, splatPop can simu-
late populations where there are no batches, where all individuals are present in multiple
batches, or where a subset of individuals are present in multiple batches as technical
replicates.
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Comparing simulated and empirical data

Principal component analysis was performed and plotted using functions from scater
v1.18.6 [26]. Empirical and simulated data was also compared with tSNE dimension
reduction and plotting functions from scater (see Additional file 1: Fig. S8). Silhouette
widths for each cell were calculated using the silhouette function from R package cluster
v2.1.0 [27], using the Euclidean distance between normalized log counts. For each cell, the
silhouette width was calculated using the individual as the cluster and when applicable
with the batch, cell group, or conditional group as the clustering factor(s). The percentage
of gene expression variance explained and aggregated count values were also calculated
using functions from scater.

Differential expression and eQTL mapping analyses

For DE analysis, scRNA-seq data was simulated using 10x-IPF as a reference for 12 indi-
viduals in two conditional groups (six per group), with 500 cells per individual. For a
number of cells per individual ranging from 10 to 500, the simulated dataset was ran-
domly down-sampled, library size normalization was applied, and zero inflated regression
models were fit to logcounts for each gene to find DE between conditions using MAST
v1.16 [28]. Bulk DE analysis was also performed using Wilcoxon rank sum tests on
pseudo-bulked counts (i.e., sum aggregation of counts across cells for each individual)
(see Additional file 1: Fig. S9). Results fromMAST and theWilcoxon rank sum tests were
corrected for multiple testing using Benjamini-Hochberg FDR [29].
The eQTL mapping was performed following the optimized single-cell eQTL mapping

workflow defined by Cuomo, Alvari, Azodi et al. [20]. Briefly, single-cell level normaliza-
tion is performed on the simulated counts using scran v1.20 [30], and then counts are
mean aggregated by individual and quantile normalized to a standard normal distribu-
tion. All SNPs within 100kb up- and down-stream of the gene are tested using a linear
mixed model fit using LIMIX [31]. In addition to the SNP fixed effect, the LMM includes
the top 15 principal components from a PCA on the expression data as fixed effects to
account for unwanted variation and the kinship (realized relationship matrix calculated
using plink v1.90 [32]) as a random effect to account for population structure. Gene-level
p values are controlled for multiple testing using the empirical null distribution from 100
permutations of the genotype data. Then, across-gene multiple testing correction is per-
formed on the top SNP per gene using the Storey Q value procedure and the p value
corresponding to the q< 0.05 threshold is determined. All eQTL associations with p value
below this level are then considered significant.
To evaluate DE and eQTL mapping, we calculated the number of true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN) and summarize these
into true positive rate (TPR: TP/(TP+FN)) and false discovery rate (FDR: FP/(TP+FP)).
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