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ABSTRACT: Screening combinatorial space for novel materials, such as perovskite-like ones for
photovoltaics, has resulted in a high amount of simulated high-throughput data and analysis
thereof. This study proposes a comprehensive comparison of structural fingerprint-based
machine learning models on seven open-source databases of perovskite-like materials to predict
band gaps and energies. It shows that none of the given methods, including graph neural
networks, are able to capture arbitrary databases evenly, while underlining that commonly used
metrics are highly database-dependent in typical workflows. In addition, the applicability of
variance selection and autoencoders to significantly reduce fingerprint size indicates that models
built with common fingerprints only rely on a submanifold of the available fingerprint space.

B INTRODUCTION

Perovskite-like materials are of paramount interest in the
creation of novel photovoltaic devices. While existing perov-
skite materials, such as CH;NH;Pbl;, are unstable and/or
contain toxic lead,"” the available, combinatorial space of
possible candidate compounds is extensive.” This is especially
interesting when considering mixtures and different structural
phases, which might have widely varying properties.”* Notably
for binary mixtures of selected ions, it is already well
established that the relation between an experimentally
measured property (e.g, band gap) and material concen-
trations can be fit with simple, analytic functions.”® With the
industry-led rise of machine learning (ML) methods, there has
been growing interest to predict such a relationship in the
high-dimensional space of all possible compounds using ML
techniques.”*

While these approaches have been used for years in
engineering and science in general,” the widespread application
in computational materials science is relatively new and
accompanied by the (re-)development of a wide range of
“fingerprinting functions”.'~*" These are necessary to encode
the typical atomic and structural information describing
materials of interest into a numerical vector format necessary
for common ML techniques. Notably even more recently, the
usage of graph representations also allows us to skip the
explicit fingerprinting step, allowing dynamic learning of
numerical representations for atomic neighborhoods from
structural graphs.”'~>* For modeling computationally heavy
quantum-chemistry calculations, two major approaches can be
discriminated. In the first, one tries to replace certain parts of
already established frameworks with ML models, e.g., the
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parameterization of molecular forcefields*>*® or the density

functional in density-functional theory (DFT).”” The second
approach tries to create a surrogate model for prediction of
materials properties given only the fingerprints as an input;
typical properties for prediction with such a surrogate model
are stability/formation energy terms,'”'”?°7*' band
gaps,7’l9’32_37 or even specific medication properties.38 Recent
efforts also focus on the prospects of creating “new” materials
from generative models or directly feeding the structural graph
to a neural-network approximator.”***~*

This study focuses on the surrogate model approach applied
to crystalline, perovskite-like materials. In this field, most new
methods or supposed performance improvements are only
demonstrated with proprietary or novel datasets, severely
limiting comparability to preexisting approaches and effectively
hindering objective assessment of method performance across
the field.*>*>** This is a direct result of the lack—to the
author’s knowledge—of a generally accepted, consistently
annotated, and high-quality benchmark database for crystalline
materials, which could be used for benchmarking of new
methods, such as GDB-17 and its offspring QM9 for organic
systems.””**“ 1t should also be noted here that diverse
databases—inevitably necessary for a complete surrogate
model—tend to generate very large fingerprint vectors,
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Figure 1. Typical materials prediction workflow for building a surrogate using structural fingerprints. The cost of DFT is typically magnitudes

higher than for model evaluation or fingerprinting.

which pose a theoretical and practical problem, when the size
of the fingerprint is larger than the number of datapoints
available for model building, possibly deteriorating perform-
ance.”’

Most studies seem to implicitly employ both the regularizing
properties of ridge regression, as well as the (arbitrary)
“metric” induced by a kernel function and do not warrant
further attention to this problem.'”'*?

Herein, a typical materials science surrogate modeling
approach (compare Figure 1) employing the Kernel ridge
regression (KRR) method is used on a variety of preexisting
high-throughput databases of various crystalline, perovskite-
like materials.'”****™>" A host of different fingerprinting
functions are compared,n’lé’17 including an improved,
competitive version of the property density distribution
function (PDDF)."”” In addition, the graph neural network
(GNN) architecture from Xie™ is employed as a reference for
a competing approach to the problem.

To assess the influence of KRR in squashing the
dimensionality of the problem, this study employs a statistical
feature selection process using variance thresholding and
dimensionality reduction with neural-network autoen-
coders."”** Tt should be noted that this application of the
autoencoder is really just for nonlinear dimensionality
reduction (similar to PCA), while, for example, studies
focusing on molecules have picked up generative models
from text processing to create new SMILES-strings—an
approach that can not be adopted to crystalline solids, which
lack any canonical textual description.*’

The results underline that actual model accuracy as
commonly published depends strongly on the dataset. Intra-
dataset even varying methodologies does yield comparable
results within the estimated errors for band gap predictions,
while no single fingerprinting method is facilitating the
creation of equally accurate models for all datasets. Analysis
of the fingerprints reveals that models only rely on a subset of
the available information in each at the given dataset scales.

B METHODS

A typical property-predicting ML surrogate model for materials
science is created in a supervised-learning setting on a
sufficiently large set of (atomic structure, property)-tuples.
The arguably most simple way to do this is to take basic
compositional information, such as the fractional occurence of
constituents, and then either fit a classic (non)-parametric
model or train an artificial neural network (ANN). A natural
next step is to use means and higher moments of the property
distribution over all atoms in a given structure as a numerical
input vector, which yields surprisingly good results although it
is completely insensitive to any structural differences.”” For a
constrained space of the input structures, which follow a given
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chemical structure (such as the perovskite-like ABX; one), one
can also do this in a fine-grained “per-site” way and include
basic structural information.”>”

Although this could be used for structurally diverse
perovskites like those encountered in the work of Kim et
al’' as well, it would entail a significant systematic and
nonreducible error, as evidenced in Table 2. Countering the
argument that the features used therein are far from exhausting
the realm of possibilities, any resulting n-to-1 mapping still
would have an error of the same magnitude as evidenced by
calculating the mean absolute error (MAE) across all
datapoints to 0.33 eV, assuming all n possibilities for each
stoichiometry map to the mean band gap of each. While one
can certainly try to find a way to incorporate different
structural motifs, this runs counter to the designated goal of
this study to provide an equal comparison across varying
databases.

Thus, the remainder of this study will focus on fingerprints,
which allow incorporation of structural information independ-
ent of a Gpredetermined system. Notably, this includes the sine
matrix,'® the Smooth Overlap of Atomic Positions fingerprint
(SOAP),">™ the many-body tensor representation (MBTR),"”
and the property density distribution function (PDDF),"”
leaving out approaches only commonly employed with
molecules and various adapations of local atomic symmetry
functions.' 07" >!518

Except for the Coulomb-matrix-derived sine matrix,'* all
employed descriptors are derived from a shared basis, where
for a given atom j, the environment is described by the atomic
density of its neighbors i (see refs 13, 45)?

(7) = ) 6(IF — 7I)
f Z (1)

Also, as this formalism is “atom-centered”, any derived,
numerical fingerprint is atom-local first and it is necessary to
transform it to a “global” fingerprint to be used for predicting
system-total properties for systems of varying compositions.
This transformation is done using special kernel functions with
kernel-based ML techniques™ or by averaging the output over
all atoms.'**>*

While the SOAP fingerprint consists of the coefficients for
expansion of the atomic density with radial and spherical basis
functions, both MBTR and PDDF extend upon classic radial
distribution functions. Within the MBTR approach, both
partial radial and angular distribution functions can be
parameterized on different scales. On the contrary, the
PDDF weights contributions to a global RDF with atomic
properties. A thorough review of all used methods can be
found in the Supporting Information (SI).

A common problem with SOAP and partial RDF-based
fingerprints is that they tend to generate large (O(1000))
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Figure 2. Network architecture of a two-layer autoencoder. The input is a numerical vector, and the output tries to reconstruct the input, passing
through a bottleneck, the so-called “latent space” (blue). Surrogate models are then either built on top of the input or the intermediate

representation.

fingerprint vectors, which—when combined with a non-
regularizing regression method—could lead to model over-
fitting if the dataset is also in the lower O(1000) range and
require large amounts of computational resources for kernel
computation. While sparsity of the individual fingerprints and
the regularization part of KRR seem to alleviate this concern in
a nonexplicit way in most previous studies, this study employs
variance selection to methodologically shrink the input feature
vector and observe the influence on surrogate modeling.

Additionally, dimensionality reduction techniques are
employed to shrink the fingerprint vector, reducing the risk
of overfitting and computational cost as well.”> The underlying
assumption is that for most small-scale datasets, the structural
and compositional variation within certain restrictions (such as
“only pervoskite-like” materials) is changing fingerprints in
such a way that this change can be projected onto a lower-
dimensional manifold.

For this purpose, this work proposes to use autoencoders,
which are an unsupervised learning method using neural
networks, passing the fingerprint as an input through an
“encoder” network, leading up to a “latent” layer (which is
smaller than the original) and then up again through a
mirrored network (the “decoder”) such that the original input
is recreated (see Figure 2). For building a regression model,
the encoder then creates a compressed representation of all of
the fingerprints in question, and these are fed to classical
Kernel ridge regression. Furthermore, one could—depending
on the design of the study—feed all candidate compounds to
the autoencoder including the ones, where one would like to
do ML-based predictions (because training it is much cheaper
than running full DFT for all). Also, the reduced and ideally
nonsparse feature vector could allow us to optimize for
fingerprints (and subsequent structures) with a desired

property within the restricted compositional and structural
space of a numerical experiment.*’

As a contender to these classic approaches, GNNs are
nowadays widely considered the state of the art for structural
surrogate models. However, they have shown inferior perform-
ance at small database sizes,® and even the initial paper from
Xie and Grossman® applied on the Materials Project
database®” was later shown to be performing worse than a
classic SOAP approach.”* In the context of the classic
fingerprinting functions, it is also interesting to note that the
graph-convolutional operation could itself be seen as
dynamically learning a neighborhood fingerprint per atom.”'
Notably, this approach also inherits a certain “blindness” to
three-dimensional environments as the graph topology only
includes two-point distance information. As a comparison
point for the fixed fingerprint parameterizations, this study
employs the network architecture and graph construction
demonstrated by Xie.”*

B DATA

The availability of consistent, high-quality data is crucial for
building an ML model and eventual benchmarking of different
modeling approaches. Due to the lack of a shared, reproducible
benchmark with a lot of common materials properties in the
“solid-state” community, authors tend to create their own
datasets, when publishing new methods or researching new
problems.””*%** This process introduces the danger of the data
being biased in an inadvertented way and thus giving
unrealistic, nongeneralizable results. In addition, creating a
suitable, high-quality DFT database of crystalline solids is a
challenging task itself: one would like to have a high fraction of
“physical” systems, e.g., at their minimal energy, which requires
extensive structural relaxations or even metadynamics to
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Table 1. Overview of the Used Databases”

total compounds

unique species

size

max cell vector [A] avg. cell vector [A] band gap [eV]

Kim®' 1346 11 15.1 [9-21] 7.4 [44-11.7] 6.0 [4.3-7.6] 3.8 [1.52—6.63] (HSE06)
Pandey*’ 1341 25 19.8 [16-32] 119 [7.0-21.5] 7.7 [6.4-10.5] 2.1 [0.01—4.28] (GLLB-SC)
Stanley"’ 344 9 20 [20-20] 11.6 [10.9-13.9] 9.2 [8.7-9.9] 1.4 [0.35—3.08] (LCAO, PBE)
Castelli*’ 1984 47 209 [14—44]  10.6 [7.3—24.0] 6.6 [5.5—9.4] 3.5 [0-8.44] (GLLB-SC)
Castelli*® 18 928 [735 nonzero gaps] 56 5 [5-5] 4.1 [3.3-5.7] 4.1 [3.3-5.7] 0.1 [0—7.90] (GLLB-SC)
Marchenko®® 445 16 48.8 [4—452]  27.7 [9.4—102.0] 13.2 [6.4—22.9] 2.4 [1.65-3.53] (LCAO, n/a)
Sutton™® 3000 4 [4-4] 61.7 [10—80] 15.1 [9.0—28.0] 9.0 [4.8—10.8] 2.1 [0.0—5.84] (PBE)

“Size (number of atoms), length of the maximal/geometrical average cell vector (A), and band gap are all given in the format: “mean [minimum —
maximum]”. For the band gap, the chosen exchange functional is given within parentheses.

Table 2. Results for Predicting the Calculated Band Gaps for Different Methods®

Kim®' Pandey*’ Stanley'” Castelli** Castelli*’ Marchenko®® Sutton*®
handpicked 381 £ 11
dummy 884 + 34 730 + 19 323 +23 1270 + 73 1530 + 46 332+ 15 845 + 16
sine matrix, eigenspectrum 368 + 15 538 + 39 212 + 1§ 1088 + 77 1102 + 60 298 + 22 141 £ 8
GNN, Xie 185 + 13 154 £ 10 130 + 18 655 + 71 262 + 21 107 + 9 922 +9
PDDF, basic 172 + 11 199 + 13 134 £ 11 930 + 80 551 + 16 179 + 11 101 + 4
PDDEF, fine 141 £ 8 139 + 14 114 + 12 888 + 57 481 + 19 176 + 20 90 + 4
PDDF, fine + AE 142 + 6 143 + 7 110 + 12 879 + 61 490 + 28 170 + 19 91 + 4
PZDDF, basic 159 + 12 172 + 14 136 + 19 888 + 69 521 + 19 207 + 32 96 + 3
P?DDF, fine 118 + 12 116 + 9 109 + 7 834 + SS 436 + 22 176 + 29 85 +3
P’DDF, fine + AE 120 + 7 113 £ 8 109 + 6 806 + 48 421 + 27 178 + 31 91 +2
MBTR, k2-inv 124 + 7 159 + 12 120 + 11 709 + S0 260 + 15 143 + 11 90 +S
MBTR, k2-rdf 128 £ 7 144 + 13 126 + 10 786 + 57 305 + 18 140 + 18 93 +6
SOAP, Marchenko 100 + 8 85+9 109 = 7 1067 + 75 349 £ 27 494 + 90 70+ S
SOAP, De 107 + 6 97 £9 108 + 8 1071 + 74 329 + 2§ 442 + 95 78 + 4
SOAP, Nomad 106 + 7 90 + 8 104 + 10 926 + 64 352 + 27 339 + 112 72 + 4
SOAP, Marchenko, LR 110 + 11 96 + 7 122 + 10 1288 + 130 645 + S8 939 + 330 75+ 3
SOAP, Marchenko + varsel 101 + 6 111 + 10 123 + 8 738 + 52 309 + 24 132 + 17 77 £ 6
SOAP, De + varsel 106 + 9 112 + 10 116 + 7 777 £ S0 339 + 23 135 + 20 78 + 4
SOAP, Nomad + varsel 105 + 6 114 + 11 110 + 9 734 + 45 327 + 18 125 + 18 76 + 2
SOAP, Marchenko, LR + varsel 99 + 8 90 + S 104 £ 8 745 £ 48 324 + 27 129 £ 25 76 + 3

“All results in meV for the mean absolute error (MAE). The parameters for specific identifiers are listed in the Supporting Information. Note here
that P’DDF is used as a shorthand for the product-weighting proposed in ref 66; varsel indicates that the machine learning was trained on the

variance-selected features of the specified fingerprint function.

sample different likely substructures.”" Calculations should also
use a shared set of sufficiently exact parameters for all
calculations to converge, which is hard to achieve with varying
cell sizes and some of the proposed inputs exhibiting metallic
behavior without human intervention even in advanced
computational workflows.”” Once a suitable amount of
structures is relaxed, it still has to be assured that the model
relates to physical reality, e.g.,, in the case of band gap as a
property by incorporating spin—orbit coupling and hybrid
DFT, which generally seems to give band gaps in good
agreement with experiments compared to the underestimation
by generalized gradient approximation (GGA).>>*’

While creating a high-quality database, taking into account
all of these considerations is necessary to create a useful,
physically exact surrogate model, and for methodological
development, the usage of datasets of lower methodological
complexity is definitely possible. Although a Perdew—Burke—
Ernzerhof (PBE)-trained model might not yield accurate
property values, it can be expected that model accuracy will not
get worse than the PBE baseline—which is still used for
screening today—when trained on hybrid training data, while
possibly leading to a significant performance increase. Thus,
herein, the choice fell on existing datasets of varying
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provenance and methodological backgrounds to assess whether
the given methods are able to build effective surrogate models
across different databases—a mutual theme is the inclusion of
perovskite-like structures.'”*%*$~%!

A large (~19k samples) dataset of cubic perovskites is used
from Castelli et al."*® It consists of cubic oxide perovskite
scaffolds, featuring a wide range of cations and fractional
replacement of the oxygen with flour, nitrogen, and sulfur.
Optimized cubic structures were found by scanning a range of
lattice parameters and relaxing the resulting structure using
DFT with the RPBE functional. For all nonmetals, direct and
indirect band gaps were subsequently calculated with the
GLLB-SC functional, which yields good agreement with
experiments. A subselection of these compounds (only with
O and N anion) and the same methodology were employed to
derive a database of Ruddlesden—Popper layered perov-
skites.*

Compared to these basic databases mainly varying the
composition, the “A hybrid organic—inorganic perovskite
dataset” by Kim et al.’" includes molecular cations A in a
“classic” ABX, halide perovskite scaffolds (with B = Ge/Sn/Pb
and a halide X). Basic scaffold structures and cells were
selected by running a minima-hopping simulation for initial
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ASnl; compounds, resulting in a large number of different
structural motifs, replacing the other sites, and running a
structural relaxation with the rPW86 functional. Band gaps
were then evaluated with the final structures at the position of
both the direct and indirect gaps in the relaxation calculation
using hybrid DFT (HSEO06).

In addition, a database of A,BCX,-type materials was
selected,”” which are similar in size and scope to typical double
perovskites. Structures are based on six different prototypes
with the composition determined by empirical rules. Structures
were optimized using PBEsol, with meta-GGA then used for
energy calculations and GLLB-SC for accurate band gaps.

Two smaller databases based on plain GGA and simple
relaxation of base structures are also included: first, a recently
published dataset based on experimentalléy available two-
dimensional (2D)-perovskite compounds.”® The structures
therein generally resemble surfaces and thus exhibit widely
varying cell sizes”. Second, the database used by the authors in
the introduction of the PDDF consisting of relaxed, lead-free,
inorganic mixed 2 X 1 X 2 cubic cell perovskites calculated at
the GGA level using an LCAO approach even for band gaps is
included.”

As all of these databases incorporate a wide variety of
species, fingerprints treating each pair of possible species
separately (SOAP, MBTR) might be at a disadvantage and
thus the crystalline dataset used in the Nomad-2018-Kaggle-
competition consisting of a wide variety of (AleayInl_x_y)ZO3
compounds was included as a further reference.”

A basic overview of core properties of all used databases is
found in Table 1, including summary statistics over all
datapoints for structure size and the type of the band gap/
energy property. Note that these properties are not comparable
between different databases.

H ML EXPERIMENTS

To facilitate the comparison objective, the property prediction
workflow is standardized across all databases and no dataset-
tailored parameters or methods beyond the statistical model
fitting/training procedure are used (see Figure 1). First, each
randomly shuffled dataset is split into an 80% set for training
and validation, while the remaining 20% is set aside for testing.
Then, the chosen fingerprinting (or graphing) function is
applied to the structures, either feeding the output to an
intermediate step reducing the fingerprint with an autoencoder
or variance selection, or directly building the model using the
fingerprints (or graph) and a selected global property as a
target. For all fingerprint models, S-fold cross-validation was
used to tune hyperparameters of a Kernel ridge regression
model using radial basis functions. Finally, the resulting model
is evaluated on the test set, resulting in an estimation of
prediction accuracy in Table 2 for direct band gaps and for per-
atom (formation) energies for each compound (in the SI).
Each model is evaluated using the mean absolute error (MAE)
metric to estimate the error of the prediction and the R*-score
(coefficient of determination) to classify the adherence to the
ideal (prediction = ground truth) relation, as the MAE alone
depends strongly on the dataset. The MAE metric was
deliberately chosen over the root-mean-square error (RMSE)
used in similar works®>®" because it de-emphasizes outliers in
predictions and is independent of the sample size.”> Also for a
materials prediction workflow, where the end result will be
validated with high-level calculations or experiments from a
relatively large array of surrogate-qualified candidates, singular

predictions which are off by a large amount are less relevant.
The results shown in Table 2 are the average of 10 different
train test splits with the standard deviation used as an error
estimate. In face of the small datasets and nonstandardized
train test splits, this method was chosen to avoid sampling a
pathological, nongeneralizable split.'”*"

While nothing precludes the use of neural networks or other
regression methods, Kernel ridge regression was used
throughout all experiments using fingerprint representations
due to its low number of tunable parameters and its popularity
within previous work.'”~'?*%**%" The “meta” kernel approach
was evaluated as well, specifically for the SOAP descriptor, but
ultimately discarded, as it requires an enormous amount of
computational time for kernel evaluation, while only marginally
improving results.*>*

Although there is a magnitude of global, macroscopic
properties available,”® the employed databases only include
band gap and energy measures. While the band gap can be
used “as is” as a global property and is comparable except for
intrinsic differences in the method’s accuracy between
databases, energy measures vary, with the availability ranging
from bare total DFT energies to formation energies within
different, noncomparable frameworks. Remedying this would
require recalculating all compounds in a shared framework,
which is beyond the scope of this study. Thus, the focus lies on
the band gap prediction models, with performance of
prediction models for different kinds of formation energies
and intensive “per-atom” DFT energies shown in the SL

To assess a baseline performance level for the more
advanced methods, this study includes the results of a
dummy regressor, returning the mean of the training dataset
for all “predictions” on the test set. Only on the hybrid
perovskite database,”’ some handpicked features (eight
features: avg, site-specific properties for the ions’>”*) were
considered and show a relatively good model (R* ~ 0.79) with
an MAE of =380 meV for the band gap. At this point, it
becomes apparent that the MAE alone gives no real indication
for the quality of a surrogate model. For example, the dummy
regressor on the Marchenko database®® achieves “perform-
ance” similar to the primitive predictor on the Kim database,’
which already improves significantly on the dummy prediction
there, both with the MAE and the R? score. With the band gap
prediction, creation of a decent (R* ~ 1) model for the full
dataset of cubic perovskites™ was not possible and thus the
subset of perovskites with nonzero band gaps was selected for
modeling.”

For the SOAP fingerprint, the sparse, single-constituent
fingerprints of a crystal were taken and averaged to create a
global descriptor;*** readers should take note that the original
authors of SOAP publicly endorse” using a “fingerprint-
informed” way to create an average for structures, which has
not seen broad adoption and thus was not used in this
publication.””®* The other parameters used in fingerprint
creation © were picked from the existing literature, where
widely varying numbers for the modeled cutoff radius and the
number of radial and spherical basis functions are §iven
without any reasoning (see the SI for a listing).'*****
Assuming that large systems (such as in refs 36 and 49) might
benefit from modeling a larger cutoff radius around individual
atoms, the parameters from ref 36 were also included with a
radius of 16 A/

Kernel calculation for the full fingerprints is very compute-
intensive with fingerprint size in the five-digit range depending
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Figure 3. Band gap prediction error visualized for selected fingerprint models across all databases.

on the number of species included in the data. Thus individual
features were min-max-scaled to the [0, 1]-interval and
variance selection with a 0.01 threshold was employed to
significantly reduce the fingerprint size before scaling the data
to unit variance and feeding the data to a KRR model using
radial basis functions. The resulting models match or exceed
the performance of the usage of the full fingerprint, where a
simple linear kernel and no scaling were used as the radial basis
function kernel required more computational time and did not
improve accuracy.

For the MBTR, only the k2 part was used, as this already
results in a sizable fingerprint of size s>-b, where s is the number
of species in the database and b is the number of discrete bins,
used to discretize the fingerprint on the given cutoff radius of
16 A%. b = 10 was chosen and worked well with both the partial
rdf equivalent representation and discretization over the
inverse radius and no scaling applied before feeding the data
to the radial basis KRR model. Using both the full MBTR
including the angular parts and setting b = 100 for the k2
version' " did not produce improved results consistently and
significantly increased computational time. Applying the same
variance selection process used with SOAP did not provide
improved results either.

For the PDDF, different discretizations were explored for a
radius of 16 A and a total of eight properties. Discretized with
0.8 A bins and a gaussian spreading of 1 A, thus resulting in
160 features, the PDDF already works in building a band gap
model for all datasets—except the cubic perovskites—when
scaled to standard variance. A finer discretization with 0.1 A
bins for the PDDF results in markedly improved results, while
increasing the number of features 8-fold (1280). Using a
simple, one-layer linear-activation autoencoder architecture
trained on the [0, 1]-scaled PDDF representation of the
training data alone, allows encoding the fingerprint into a 160-
feature representation again. Using this representation with
KRR consistently reaches the performance of the full
representation hinting that the PDDF fingerprint indeed
represents a low-dimensional manifold describing the data.
Further studies could be conducted to explore whether and
how the latent space is actually a representation of this
manifold and how it relates to basic input structural data. In a

similar vein, Schrier® explored the eigenspectrum of the

Coulomb matrix fingerprint for molecular data and found that
even this already shrunken representation can be further
reduced.

Finally, the GNN architecture and graph construction were
implemented from Xie and Grossman,” which proposed to
use the same, manually tuned architecture for a wide array of
problem sets. This seems valid, as a cursory screening of
different graphing parameters and slightly modified neural
network architectures did not result in any improvement.

Detailed results can be found in Table 2 for the band gap
and the SI for energy predictions and the remaining SOAP and
MBTR-related experiments.

B RESULTS AND DISCUSSION

In refs 19, 46, 50, 51, both the PDDF approach and SOAP
yield comparable prediction accuracy below 120 meV MAE
with a slight lead for the SOAP fingerprint. In the case of the
PDDF, both increasing the number of discretization steps and
using the weighting proposed by Hemmer® considerably
improve results compared to the original rediscovered
approach.'” In contrast, the results of the SOAP method
seem relatively independent of parameterization in spherical
and radial basis functions. Prediction is not changed by
decreasing the smearing of the atomic positions (“+fine”-
attribute), but for refs 19 and 50 increasing the radius
expanded in the fingerprint results in a marked improval. The
sine matrix approach is only significantly improving on the
dummy predictions in the case of constant system size*® or
with the hybrid perovskite dataset incorporating a large
number of atoms for all systems.”’ Except for ref 46, all
MBTR parameterizations lag behind, regardless of the specific
setup. The same holds true for the GNN, which consistently
only reaches the performance of the “worst” fingerprinting
method. While all best-performing prediction MAEs are of
similar magnitude, it is notable that the baseline differs: in refs
46, 50, 51, the error of educated guessing is ~#800 meV, while
it is only ~300 meV in ref 19.

Conversely, in ref 49, the MBTR representation discretized
on the inverse radius grid shows the best results, albeit model
quality measured with the R* coefficient does not reach the
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best results of the previously discussed datasets and the best
MAE is nearly doubled to 250 meV. Interestingly, it is trailed
only slightly by the GNN, while both SOAP and the PDDF are
performing worse for this dataset.

Similarly, for the large-cell data from ref 36 the PDDF
approach performs worst, independent of parameterization.
With errors of 130 and 140 meV respectively, SOAP and
MBTR are leading the fingerprint-based approaches, while the
GNN is actually reaching the cherry-picked results from the
original publication, which we could not reproduce with the
SOAP fingerprint given. Compared to the other databases with
comparable model MAEs, this is a considerably smaller
improvement on random guessing!

Finally, for the cubic perovskites,” no model reaches a
satisfactory R* even with the dataset reduced to nonmetallic
compounds only. MBTR leads the field for fingerprint
approaches with an MAE of 700 meV followed by SOAP
and the PDDF in 50 meV increments. Again, the GNN shows
the best result, improving by around 50 meV upon the best
MBTR-based predictions, which is however still of a
comparable magnitude and well within the margin of error
of the MBTR-based approach. Here, the proposed methods for
building a surrogate model seem to fail, possibly a result of the
discontinuous nature of the input structures just being the
results of simple combinatorics. Thus, for the sparse SOAP and
MBTR fingerprints, most features just are incomparable with
some parts being nonzero only in singular samples. In this case,
the integrated approach of the GNN, dynamically building a
fingerprint of the neighborhood based on properties alone
seems to be at an advantage, even leading to a significantly
improved R* of 0.68 + 0.08.

Opverall, as visualized in Figure 3 and further shown for all
parameterizations in the SI, the exact choice of specific
fingerprinting parameters or even the basic method, as
indicated by the inclusion of GNN-based results, has a much
less pronounced effect on resulting errors than the choice of
the database. Even for technically very pathological parameter-
izations, e.g, smoothing distributions with Gaussians of a
similar width to the distribution range or the opposite for
SOAP, the errors do not change on the order of magnitudes.
While this study did not perform any large-scale fingerprint
hyperparameter tuning’' —instead choosing to replicate
previous studies’ methodology, spanning a wide range of
parameters—this indicates that for most practical screening
applications, the choice of method is less important than
having a “suitable” database. “Suitable” in this case goes far
beyond the addition of new datapoints, as the failure of
building a very good model for the data from refs 48 and 49
shows. While one might attribute this to the large amount of
unique species in these datasets (see Table 1), a comparison
between the similar results for the data from refs 19, 46, S0,
and 51, shows that this is not the only deciding factor. This
becomes especially apparent in the direct comparison of the
databases from ref 51 and ref 50 where the number of available
compounds is similar, yet the number of unique species is
much higher in ref 50.

To provide further insight into model quality and
limitations, Figures 4 and S provide learning curves and error
distributions for the band gap prediction on the data from ref
50. The curves plot the average MAE of models evaluated on a
20% test set versus the fraction of the respective training set
used for creating the model. All fingerprint methods and
feature extraction techniques show a consistent improvement
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Figure 4. Learning curves for the data from ref 50. The test MAE for
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with increasing training data with no sign of flattening out,
indicating that more training data could be used to further
improve model quality. In the low-data regime, MAEs are
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Figure 6. t-SNE reduced PDDF fingerprint and its encoding in 2D. Band gap overlayed and color-coded to relate to physical realities.

exceeding 250 meV and the models based on the autoencoded
PDDF as well as the variance-selected SOAP significantly trail
the pure, small-bin PDDF. By increasing the amount of data
used for model creation, both SOAP and Autoencoder-model
performance reach parity with usage of the full PDDF in model
creation. The autoencoder results could be related to a biased
sampling, which is not able to fully capture all structural
features available in the dataset. In a real prediction setting,
one might thus include a larger array of prospective
compounds, including the finally predicted datapoints for
training the autoencoder.

Checking the error distributions for different best-case
results with an 80/20-train/test split shows gaussian-like
distributions, so there is no inherent bias of any of the tested
modeling procedures (compare Figure ).

Additionally, in a first effort to understand the effects of the
autoencoder on the PDDF fingerprint vectors used as input in
the KRR model, t-SNE embeddings are used to create a two-
dimensional map of the relative “neighborhoods” accessible in
the fingerprint (see Figure 6).% The dataset from ref 51 was
used because it has a clear ABX; perovskite structure and a
relatively well working model, so a relation to physical
quantities is relatively easy. When overlaying the band gap
on a plot of the first two t-SNE dimensions, it is evident that
the autoencoder preserves information about the physical
characteristics of the system and the resulting models are no
statistical artifact compared to using the PDDF. In the
example, it even seems like the autoencoded representation
is able to capture the band-gap-landscape in a much more
continuous way than the original fingerprint, where a large
number of singular high band-gap values are interspersed in the
t-SNE-map. This observation can be related to the fact that the
autoencoded representation clusters depending on A and X
sites (see the SI for the t-SNE-plots for A-, B-, and X-site
occupation), with the B site not clearly distinguishable as
separate clusters in 2D. Conversely, the raw fingerprint does
cluster mainly by the B and X occupation, while the molecular
ions at the A site are not distinguishable in 2D clusters. As
previous studies have shown that the B ion is not very relevant
for the band gap,'”® this hints that the autoencoder might
actually be able to extract a “chemically informed”
representation from the fingerprints. Obviously, the realizable
advantage of this in building ML surrogates may be limited, as
these are generally built on a space with a much higher

12729

dimension and the model can exploit more complicated
relations than visualizable in a 2D map.

B CONCLUSIONS

The key finding of this study is that all currently competitive
methods to create surrogate models for the prediction of
materials properties are not able to capture arbitrary databases
evenly yet. While a fraction of this might be attributed to
varying complexity of the databases, the utter failure to capture
a “good” band gap model in the conceptually very simple, large
database of cubic perovskites™ hints that these methods in
their commonly used form are not fit to replace DFT to model
“discontinuous” relationships, where one just replaces a single
atom with another compound-unique species (a finding
evident already in a previous work'”). However, for varying
“alloys” and superstructures in a more or less continuous way,
such as it happens in the other databases, as well as in Sutton
et al,* the outlined methods seem to be able to perform quite
well; an MAE of around 100 meV is great, comparing the
inherent inaccuracies of experiments and DFT (GGA vs
hybrids).”® For the latter databases, the GNN performs worse
than all classic fingerprint approaches.

Additionally, for all studied descriptors, this study could not
establish a strong, order-of-magnitude variation in per-dataset
model performance for varying fingerprint parameters within
the boundaries of previously published work, hinting that for
all practical applications, a fine-grained hyperparameter
search®! might be inefficient. Across all datasets, no method
consistently reached the best performance, though SOAP is
leading for several datasets. Setting aside different modeling
techniques for the raw data, the available results for the band-
gap models also indicate that choosing a method, much less
choosing appropriate parameters for it, has much less influence
than choosing a dataset. Thus, these findings question the
significance of performing studies on isolated, proprietary
datasets aiming for ever better numerical results without
establishing baseline performance metrics and a comparison
framework.”> ™’

From a technical perspective, the fact that fingerprinting
functions creating input vectors of length several times the
sample size work so well is quite unclear. Normally one would
expect a strong overfitting to the test set, as the models have
more free parameters than fitted samples. While that is exactly
the reason for using a regularizing ML method, such as Kernel
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ridge regression (KRR), the high sparsity of both the SOAP
and MBTR fingerprint for highly diverse databases could as
well mean that the model only learns from a fraction of the
supplied input data.”' The results of this study, which show
SOAP with simple variance-based filtering of input features
leading the field, underline this problem. This should warrant
further investigation, as it also means that the given model will
never be able to achieve full DFT accuracy just learning the
substructure of, e.g.,, O, F, and N atoms, which incidentally are
the shared building blocks of the cubic perovskite set, where
MBTR excels but has accuracy in a range comparable to
compounds swapping the A and B ions.”’

It should also be noted that original authors open-sourcing
their data or even publishing ML models should include a
recommended training/test split so that results between
methods can be compared across different publications.*’
This is especially important, as the usage of neural networks in
innovative ways slowly reaches the materials science field and
thus the relatively simple and easily comparable fingerprinting
approaches will be subject to an onslaught of “novel”
approaches.””**** To date and in light of this study, these
seem to achieve the performance improvement desired by the
community for a novel contribution mostly through careful
data or target selection” and profit from the intransparency of
most documented uses of fingerprinting approaches.’® In the
short term, averaging over multiple train/test splits and
validating against established methodology seem a good
stop-gap measure advocated also beyond this paper.’®°" As a
long-term goal, the creation of larger, better verified datasets
including all quantities of interest for the whole set and
allowing us to break out large subsets of interesting structures
is desirable. With the aim of the Materials Project and OQMD
project,”””* their current focus seems to lie on “verified”
materials compared to a structured exploration of conforma-
tional space, which is necessary for effective surrogates. This
might also be necessary to escape the fact that actual model
performance is more tied to the data than to the model, which
looks eerily similar to the state of natural-language processing
20 years ago.75

The availability of large-scale databases could also facilitate a
more detailed examination of dimensionality reduction and its
workings. While this study shows that the PDDF fingerprint
seems to incorporate information on a low-dimensional
manifold for the given datasets and this information in fact
allows us to construct models of equivalent quality, it is not
clear whether this approach can be further improved and yield
extended insights. t-SNE-analysis hints that the encoding
preserves “chemical information” while significantly reducing
the feature size. Thus, it eases the systematical optimization of
the resulting surrogate model in search of new compounds, but
it is unclear whether it is thus possible for the model to actually
relate to properties of physically realizable compounds.

Bl TOOLS AND DATA AVAILABILITY

All calculations were done in a PYTHON environment using the
NUMPY, PANDAS, and ASE packages for basic data manipulation
and structure file handling; plotting was done with MATPLOTLIB.
Machine learning procedures were used/implemented with
SKLEARN, TENSORFLOW, and (for the GNN) PYTORCH-GEO-
METRIC,”® while the fingerprints were generated with Dscrise**
and our own implementation of the PDDF. Code to reproduce
all numerical experiments is available upon request from the
authors. This includes tools to convert the various proprietary

formats, with which the data used are distributed by original
authors, into a unified format.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c00991.

Tabular overview of all fingerprint parameters for
numerical experiments; MAEs, R? scores, and RMSEs
for the subpar-performing fingerprints on the band gap
prediction and for all energy prediction models;
additional experiments on the data from ref 50 are
included to show that for the PDDF, published
performance of the fine-grained approach can not be
reached with single-property PDDFs alone (PDF)
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B ADDITIONAL NOTES

“This might also be correlated to the prevalence of Kernel
ridge regression (KRR)-based methods,”®***® which scale
badly with very large (>100k samples) databases, such as from
the OQMD project.

PNOTE: even for this very simple fingerprint formalism, one
could replace the O-function with a more continuous,
Gaussian-like one, add specific weights for specific neighbor
atoms i, and add a cutoff function f,, which limits the range,
where p > 0.

“The reader should be aware that this database is apparently
being updated. Thus, the shown statistics only show a snapshot
prior to publication of this paper (2020-07-28).

9Gee the github-repo of the DScriBE-software (https: //github.
com/SINGROUP/dscribe/issues/44).

“These could be thought and optimized as hyperparameters of
the whole “machine”—though this hinders general applic-
ability and requires expensive remodeling for new data.
/Note that the dataset in ref 36 is proprietary and based on a
subset of the available database, so the results are not directly
comparable.

£This specific radius was chosen so it captures the environment
of the maximum “whole cell” for most compounds (compared
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with the cell vector geometrical average and maximum unit-cell
vector lengths in 1). Also, it could be discretized conveniently
for numerical experiments as a multiple of 2.

"Xie and Grossman®® published their work shortly before the
last public dump of the MP database,”” and while it works fair
enough on the whole dump (~80k entries), the results are only
really good with the given subselection (~47k). While the MP
database has moved to deprecate entries, this started only in
20197* and does, as well as the additions to the previous

iteration, not account for the huge difference.”
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