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Abstract

Biopolymers such as DNA or RNA are typically con�ned to a certain volume, like that of
a cell or a nucleus, while a multitude of proteins interacting with DNA and RNA reside in
the surrounding membrane. For several cellular processes it is hence of vital importance
that a binding site on a biopolymer coincides with a particular molecule at the surface of
the con�ning domain. Prime examples are mRNA molecules or DNA double-strand breaks
relocating to nuclear pore complexes in eukaryotic cells and one-component signalling
systems binding to a speci�c site on the DNA from the bacterial membrane. While the
biological examples demonstrate that locating a speci�c binding site on a long polymer from
the surface of the con�ning volume is feasible, the dynamics of these search processes are still
highly uncharacterised. The striking question is how the speci�c polymer-protein contact is
kinetically established. In contrast, the target search dynamics of two-component signalling
systems featuring a sensor kinase and a separate cytoplasmic transcription factor are a well
studied problem. The so-called facilitated di�usion model identi�ed a combination of 3d
di�usion in the cytoplasm and 1d sliding along the polymer as the underlying mechanism. To
which extent is such an elaborate strategy required to locate a binding site on a polymer in
con�nement from the surface of the con�ning volume?

In this thesis we employ kinetic Monte Carlo simulations and mathematical modelling to
analyse the search process between a con�ned polymer and a protein moving on the surface
of the con�ning volume. After establishing a coarse-grained cubic lattice model that allows us
to simulate the substantial time and length scales of the process, the kinetics are extensively
analysed. For high densities of ideal polymers the numerical simulations reveal that due to
the con�nement the search process becomes independent of the polymer length, making the
search feasible even for very long chains. In the opposite domain of low polymer densities
transient tethering due to non-speci�c binding of the protein to the polymer emerges as a
way to speed up the process. In contrast to the facilitated di�usion model for cytoplasmic
transcription factors, sliding is less e�ective for proteins at the surface since the sliding
range is largely limited to polymer segments close to the surface. The process is therefore
mainly limited by di�usion of the protein and the polymer, respectively. When both di�usion
rates are of similar order of magnitude, the underlying stochastic process can be described
by a sequential two-step process. It reduces to a Poisson process with a single exponential
distribution when either the polymer or the protein is approximately immobile. Overall, our
�ndings reveal that elaborate strategies to speed up the procedure are mainly relevant at low
polymer densities, while at high densities the decorrelation of polymer subchains due to the
con�nement facilitates the search process even for very long polymers.

In the last part of this dissertation we use a simpli�ed model to simulate the target search of
a membrane-integrated transcription factor in Escherichia coli. We focus on the case of CadC,
the pH receptor of the acid stress response Cad system in E. coli. CadC is a prime example
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of a one-component signalling protein that directly binds to its cognate target site on the
chromosome to regulate transcription. Fluorescence microscopy experiments were combined
with mathematical analysis and kinetic Monte Carlo simulations to probe this target search
process. The time from activation of CadC until successful binding to the DNA in single cells
was measured by labelling CadC with a �uorescent marker, which forms visible �uorescent
spots as stable receptor-DNA complexes are formed. The experimental data suggest CadC to
be highly mobile in the membrane, �nding its target by a 2d di�usion and capture mechanism.
The mean search time of CadC for its cognate binding site was measured between four and
�ve minutes, una�ected by relocating the DNA binding site to a distant position on the
chromosome. Using a mutant strain with two binding sites reduced the search time by about a
factor of two. This behaviour is consistent with our numerical simulations of a coarse-grained
lattice model for the coupled dynamics of DNA within a cell volume and proteins on its surface.
Moreover, quantitative agreement between the numerically simulated and experimentally
established distribution of search times was found. Overall, our �ndings reveal that the DNA
target search does not present a much bigger kinetic challenge for membrane-integrated
proteins than for cytoplasmic proteins. CadC di�usion in the membrane is pivotal for this
search process, while the DNA binding site is just mobile enough to randomly reach the
membrane.
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Zusammenfassung

Biopolymere wie DNA und RNA sind typischerweise räumlich begrenzt auf ein bestimmtes
Volumen, wie das einer Zelle oder eines Nukleus, während mit DNA und RNA interagie-
rende Proteine häu�g in der umschließenden Membran angesiedelt sind. Für viele zelluläre
Prozesse ist es demnach unerlässlich, dass eine Bindestelle auf einem Polymer auf ein be-
stimmtes Molekül auf der Ober�äche des begrenzenden Volumens tri�t. Zentrale Beispiele
sind mRNA-Moleküle oder DNA-Doppelstrangbrüche, die sich in Eukaryoten zu Kernporen
hin verlagern, sowie Einkomponenten-Signalmoleküle, die von der bakteriellen Membran
aus an eine spezi�sche Bindestelle auf der DNA binden. Während die biologischen Beispiele
demonstrieren, dass die Lokalisierung einer spezi�schen Bindstelle auf einem langen Poly-
mer von der Ober�äche des begrenzenden Volumens aus möglich ist, ist die Dynamik eines
solchen Prozesses weitgehend unbekannt. Die zentrale Frage ist, wie der spezi�sche Kontakt
zwischen Polymer und Protein kinetisch abläuft. Der Suchprozess von Zweikomponenten-
Signalsystemen hingegen, die aus einer Sensorkinase und einem separaten zytoplasmischen
Transkriptionsfaktor bestehen, wurde in der Vergangenheit eingehend untersucht. Das Mo-
dell der sogenannten erleichterten Di�usion (facilitated di�usion) konnte zeigen, dass der
zugrundeliegende Mechanismus aus einer Kombination von dreidimensionaler Di�usion im
Zytoplasma und eindimensionalem Gleiten entlang des Polymers besteht. Inwiefern bedarf
es im Falle eines räumlich begrenzten Polymers einer solchen besonderen Strategie, um
eine Bindestelle auf dem Polymer von der Ober�äche des begrenzenden Volumens aus zu
lokalisieren?

Wir verwenden kinetische Monte Carlo Simulationen und mathematische Modellierung,
um den Suchprozess zwischen räumlich begrenzten Polymeren und beweglichen Proteinen
auf der Ober�äche des begrenzenden Volumens zu analysieren. Nach der Einführung eines
grobkörnigen kubischen Gittermodells, das es uns erlaubt, die enormen Längen- und Zeitska-
len des Prozesses zu simulieren, wird die Kinetik des Suchprozesses eingehend analysiert.
Die Simulationen zeigen, dass für hohe Polymerdichten eines idealen Polymers die räumliche
Begrenzung zu einer Unabhängigkeit des Suchprozesses von der Polymerlänge führt, sodass
er auch für sehr lange Ketten realisierbar ist. Bei geringen Polymerdichten hingegen kann ein
durch unspezi�sches Binden des Proteins erzeugtes, vorübergehendes Anhaften des Polymers
an der Ober�äche zu einer Beschleunigung des Verfahrens führen. Im Gegensatz zum Modell
der erleichterten Di�usion für zytoplasmische Transkriptionsfaktoren spielt Gleiten entlang
des Polymers für Proteine auf der Ober�äche eine untergeordnete Rolle, da die Distanz, die
durch Gleiten zurückgelegt werden kann, durch die Polymersegmente nahe der Ober�äche
stark begrenzt ist. Der Prozess wird daher hauptsächlich durch Di�usion des Proteins und
des Polymers bestimmt. Wenn beide Di�usionsraten von gleicher Größenordnung sind, kann
der zugrunde liegende stochastische Prozess durch einen sequentiellen Zweistufenprozess
beschrieben werden. Dieser vereinfacht sich zu einem Poisson-Prozess mit exponentieller
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Verteilung, wenn das Polymer oder das Protein statisch ist. Zusammenfassend zeigt unsere
Analyse, dass besondere Strategien zur Beschleunigung des Suchprozesses hauptsächlich für
geringe Polymerdichten relevant sind. Bei hohen Polymerdichten führt die Dekorrelation
verschiedener Abschnitte des Polymers aufgrund der räumlichen Begrenzung dazu, dass der
Prozess unabhängig von der Polymerlänge abläuft und damit auch für sehr lange Polymere
durchführbar ist.

Im letzten Teil der Dissertation nutzen wir eine vereinfachte Version des Gittermodells, um
den Suchprozess eines membranintegralen Transkriptionsfaktors in Escherichia coli zu simu-
lieren. Das betre�ende Protein ist CadC, der pH-Rezeptor des säureinduzierten Cad Systems in
E. coli. CadC ist ein Einkomponenten-Signalprotein, das direkt an seine spezi�sche Bindestelle
auf der DNA bindet, um Transkription zu regulieren. Wir nutzen �uoreszenzmikroskopische
Experimente, mathematische Analyse und kinetische Monte Carlo Simulationen, um diesen
Suchprozess zu erforschen. Durch Markieren von CadC mit einem �uoreszierenden Protein
konnte die Zeit von seiner Aktivierung bis zum erfolgreichen Binden an die DNA in einzelnen
Zellen gemessen werden, da das Bilden stabiler Rezeptor-DNA-Komplexe zu sichtbaren Fluo-
reszenzpunkten führt. Die experimentellen Daten demonstrieren die Beweglichkeit von CadC
in der Membran, welches seine Bindestelle auf der DNA durch einen zweidimensionalen
Suchmechanismus lokalisiert. Eine mittlere Suchzeit zwischen vier und fünf Minuten wurde
gemessen, unabhängig von der Verschiebung der Bindestelle auf der DNA auf eine entfernte
Position entlang des Chromosoms. Verwendung einer Mutante mit zwei Bindestellen hingegen
führt zu einer Halbierung der mittleren Suchzeit. Dieses Verhalten ist konsistent mit unseren
numerischen Simulationen zur gekoppelten Dynamik der DNA im Zellinneren und CadC
auf der Ober�äche. Darüber hinaus konnte eine quantitative Übereinstimmung zwischen
numerisch simulierten und experimentell bestimmten Verteilungen der Suchzeit gefunden
werden. Zusammenfassend zeigen unsere Ergebnisse, dass der Suchprozess nach einer Binde-
stelle auf der DNA keine signi�kant größere Herausforderung für membranintegrale Proteine
darstellt als für zytoplasmische. Die Di�usion von CadC in der Membran ist ausschlaggebend
für den Suchprozess, wohingegen die Bindestelle auf der DNA gerade mobil genug ist, um
der Membran zufällig nahezukommen.
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Introduction I
Life on earth, ranging from micron-sized bacteria and viruses over plants and fungi to highly
complex organisms like animals and humans, is of overwhelming diversity and complexity.
To this day, scientists have not even agreed on a coherent de�nition of life [1]. Despite the
diversity of life on earth, there are some common principles and components that are highly
conserved among all living systems. The basic unit of all known organisms is the cell, either
constituting a unicellular organism of its own or forming a multicellular organism with up to
4 × 1013 highly specialised cells [2]. While di�erent cells vary greatly in their shape, function
and size, all cellular processes depend on the interplay of two basic families of biopolymers:
polynucleotides, such as DNA and RNA, and proteins.

Proteins are involved in almost all tasks that ensure the proper functioning of living or-
ganisms: RNA polymerases transcribe DNA into RNA, DNA polymerases duplicate DNA,
ribosomes function to synthesise proteins, enzymes act as catalysts and alter the rates of
biochemical reactions. Moreover, proteins participate in the perception and transduction of
extracellular signals, in light and sound detection, in the exertion of mechanical forces in
muscles and much more [3]. While proteins are the workers of the cell, DNA is a macro-
molecule that stores all information relevant for the cell. Somewhere in between resides RNA,
which can store information but also acts as an enzyme [4].

One of the most central forms of collaboration between polynucleotides and proteins
emerges in transcriptional regulation and gene expression. Often triggered by proteins
sensing a change in the environment, like nutrient concentrations or the acidity of the
surrounding medium, proteins called transcription factors (TFs) can bind to speci�c sites on
the DNA and either prevent or provoke transcription of a certain gene [4]. When transcription
is induced, the concerning gene is copied into a strand of RNA (mRNA). In the nuclei of
eukaryotes, the cells of plants, fungi and animals, the mRNA molecule again needs to interact
with a protein, as it has to locate a so-called nuclear pore in order to exit the nucleus. In
the cytoplasm of both eukaryotes and prokaryotes, the latter being the cells of bacteria and
archaea, a ribosome, which in itself is a construct of RNA (rRNA) and proteins, translates
mRNA into new proteins.

Besides the action of TFs, there exist many processes involving the interaction between
polynucleotides and proteins that require the colocalisation of speci�c binding sites on the
respective molecules with one another. In particular for proteins that are membrane-integrated
and therefore highly constrained in their motion it seems like a challenging task to locate
such a small strategic target on a polymer. Nevertheless, as there are many examples where
cellular functions rely on these search mechanisms to succeed within reasonably short time,
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it seems to be possible. An open question therefore is to which extent elaborate strategies
are required in order to speed up the dynamics of these search processes. As for cytoplasmic
proteins a mechanism called “facilitated di�usion” has been shown to be essential to achieve
su�ciently short search times.

The objective of this thesis is to study the kinetics of target search processes in the cell.
In particular, we are concerned with the question how a protein moving on the surface of
a volume �nds a binding site on a polymer inside the volume. We start in chapter II by
developing an appropriate model that allows us to numerically simulate the search procedure.
Chapter III covers an extensive analysis of the simulations, identifying various strategies
to speed up the search process. In chapter IV the simulations are applied to compare to
experiments on the target search of a membrane-integrated transcription factor in Escherichia
coli to analyse the kinetics of this particular search mechanism.

The following sections of this introductory chapter cover some aspects that are related or
prerequisite to our work. First, we include a short discussion of the basics of transcriptional
regulation, which is relevant to the main application of our simulations. Moreover, we give
an overview of relevant search processes in the cell and a summary of previous studies
investigating their kinetics. We conclude with a short introduction into polymer physics,
covering some of the most relevant polymer models.

1 Gene Expression and Transcriptional Regulation

Most search processes considered in this thesis are connected to the mechanisms of gene
expression and transcriptional regulation. We therefore start with a short introduction to
how information is stored and processed in the cell. A more detailed introduction on this can
be found in standard textbooks [4].

1.1 DNA and RNA

Deoxyribonucleic acid (DNA) is a linear polymer composed of four di�erent monomeric
groups, called nucleotides. Each nucleotide consists of a sugar called deoxyribose, a phosphate
group and a base. There are two bases with a single aromatic ring (pyrimidines) called thymine
(T) and cytosine (C) and two two-ring bases (purines) called adenine (A) and guanine (G). The
nucleotides are connected by covalent bonds between the sugar of one nucleotide and the
phosphate group of the next nucleotide, forming a sugar-phosphate backbone. The phosphate
groups form phosphodiester bonds between the third (3′ end) and the �fth (5′ end) carbon
atoms of two subsequent sugar groups. The backbone therefore has a directionality, starting
with a deoxyribose at the 3′ end and ending with a phosphate group at the 5′ end. The bases
of two such polynucleotide strands can bind via Watson-Crick base-pairing: adenine and
thymine can bind via hydrogen bonds as well as guanine and cytosine. This means that
DNA is constructed of two complementary strands, connected in an antiparallel fashion via
hydrogen bonds. Since the bases are hydrophobic and the backbone is hydrophilic, the bases
attract each other to exclude water molecules, while the distance between the sugar groups is
�xed. The most e�cient packing is therefore achieved by twisting the double-strand, leading
to a double-helical structure of the DNA. Information is stored in the DNA in terms of a
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Figure I.1: Hierarchical DNA organisation in E. coli. The bacterial chromosome is organised in a
hierarchical way. (a) On the largest scale the chromosome is organised into macrodomains
with a de�ned localisation within the cell. For example in E. coli, the four macrodomains
are Ori, surrounding the origin of replication, Ter, surrounding the terminus-binding
site, and Left and Right, which are on either side of the Ter macrodomain. On either
side of the Ori macrodomain are the two unstructured domains NS-left and NS-right. (b)
Negative supercoiling of the DNA leads to the formation of plectonemic loops, each of
them forming a topological domain. (c) At the smallest scale, nucleoid associated proteins
(NAPs) organise the chromosome by inducing bends, bridging of the DNA or wrapping
the DNA similar to histones in eukaryotes. Examples in E. coli are the histone-like proteins
IHF and H-NS that lead to DNA bending and bridging respectively [5].

four letter alphabet given by the four bases A, T, G and C. To access this information, the
two strands have to open up, which is possible because the hydrogen bonds are less stable
than the covalent bonds connecting the backbone. Once the double-strand is opened up, a
protein called DNA polymerase can recreate the complementary sequence of each strand by
Watson-Crick base-pairing. This process is called replication and yields two identical copies
of double-stranded DNA (dsDNA) which are distributed among the two daughter cells during
cell division.

Ribonucleic acid (RNA) has a similar structure as single-stranded DNA (ssDNA). The only
di�erences are the sugar group, which consists of ribose instead of deoxyribose, and the base
thymine, which is replaced by uracil (U) in the case of RNA.

1.2 Genetic Code

The sequence of bases in the DNA stores all information relevant for the cell. It contains
sections (genes) that code for certain proteins or regulatory RNA molecules, as well as
regulatory sequences that control where, when and how many proteins or RNA molecules
are produced. Especially in prokaryotes genes are often organised in so-called operons, a
cluster of genes under the control of a single promoter. How the four letter alphabet of the
DNA (or RNA) is translated into a sequence of 20 (22) di�erent amino acids is determined by
the genetic code. Three bases form a so-called codon which codes for a speci�c amino acid.

The process of producing proteins from a certain DNA sequence starts with transcription.
The DNA double-strand is opened up, such that a protein called RNA polymerase can bind
to the promoter, directly upstream of the gene. It moves towards the 3′ end and copies
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one DNA strand into a messenger RNA (mRNA) molecule. In a process called translation
the mRNA sequence is used by a ribosome, a large complex of proteins and ribosomal
RNA (rRNA), to create a chain of amino acids. The mRNA molecule is pulled through the
ribosome, three nucleotides at a time, and �tted to an anticodon (triplet of complementary
nucleotides), to which the respective amino acid is bound. When the “stop” codon is reached,
the newly synthesised polypeptide, i.e. a chain of amino acids is released. One or multiple
polypeptides fold into a speci�c 3d structure, forming a protein, the structure being an
important determinant for its function.

1.3 DNA Organisation and Replication

Both in eukaryotes and in prokaryotes the spatial organisation of the genome is a highly
complex subject. DNA has to be compacted by a factor of 1000–7000, while still ensuring its
accessibility for processes like replication, transcription and DNA repair.

In eukaryotes the DNA is contained in a compartment called the nucleus, surrounded by
a membrane. The eukaryotic genome is divided into multiple chromosomes, each of them
containing a very long DNA molecule. When stretched out, for example the 46 chromosomes
of the human genome have a total length of about 2 m, which need to be compacted heavily
to �t into the nucleus with a diameter of 6 µm. On the lowest level the DNA composing each
chromosome is wrapped 1.7 times around octamers of proteins called histones, forming a
nucleosome. The complex of DNA and histones is called chromatin, which forms a “bead on
a string” structure with linker DNA in between the nucleosomes. The nucleosomes are then
tightly packed, forming a �bre of about 30 nm in diameter. Supercoiling of the 30 nm �bre
leads to a bottlebrush structure, the most compact form of eukaryotic DNA. The packing of
DNA is highly dynamic, which is important for the accessibility of the stored information
and dependent on the stage in the cell cycle.

Prokaryotes have no speci�c internal structure like eukaryotes. The circular bacterial
chromosome replicates bidirectionally starting from the origin of replication (ori) and ending
at the terminus-binding site (ter). The position of a chromosomal locus along the bacterial
DNA is commonly described in units of minutes, ranging from zero to 100 in case of E. coli.
This refers to the time it takes until the concerning locus is transferred from a donor cell
to a recipient cell in a conjugation process, which was used to obtain this mapping, such
that in E. coli ori is located at 84.2′ and ter is located at 33.7′ [6]. E. coli is a rod shaped
bacillus, that is about 1 µm long and 0.35 µm wide and is a constituent of the mammalian gut
microbiome, where it produces vitamin K and vitamin B12 and excludes pathogens from its
niche in the gut [7]. Since it can be grown and cultured easily E. coli has become the most
commonly studied prokaryotic model organism. Pathogenic strains however are a major
cause of diarrheal diseases, urinary tract infections, meningitis, Crohn’s disease and many
more [8]. The prokaryotic genome, consisting mostly of a single circular chromosome, was
long thought to be completely unstructured. However, recent studies have shown that it
is organised in a hierarchical fashion inside a nucleus-like body, called the nucleoid [9, 10].
As the nucleoid is not surrounded by a membrane, the bacterial chromosome is compacted
solely due to interactions with organising proteins, as depicted in �g. I.1c. On the smallest
scale, negative supercoiling of the DNA leads to the formation of plectonemic loops, each of
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Figure I.2: Chromosome organisation in E. coli. The cell cycle dependent organisation of the
chromosome in E. coli is shown. The origin of replication (ori) is depicted as a black circle,
the terminus (ter) is represented by a �lled black circle. The long axis of the cell stretches
from left to right. (a) At slowest growth conditions the E. coli chromosome obtains a
Left-ori-Right con�guration. (b) At faster growth conditions the cell cycles overlap and
the multifork chromosome in E. coli is in ori-ter-ori con�guration.

them forming a topological domain [9, 10], shown in �g. I.1b. The loops are thought to be
held together by small proteins, called domainins, that are concentrated at the nucleoid core,
thus leading to a bottlebrush structure of the chromosome. A large variety of DNA-binding
proteins have been identi�ed to be involved in compacting the bacterial DNA by inducing
bends, bridging of the DNA or wrapping the DNA similar to histones in eukaryotes [11, 10].
On a larger scale the bacterial chromosome is organised into macrodomains, characterised
by chromosomal loci that frequently co-occupy the same cytoplasmic space, as depicted in
�g. I.1a. For example in E. coli, two of the four macrodomains that have been identi�ed are
surrounding the origin of replication and the terminus-binding site, respectively, called the Ori
and Ter macrodomains. Next to the Ter macrodomain are the Left and Right macrodomains,
while the Ori macrodomain is surrounded by two unstructured domains NS-left and NS-right.

There are two general ways of spatial organisation of bacterial chromosomes [12]. The
most common organisation is the longitudinal ori-ter con�guration, with the origin at the old
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pole and the terminus at the new pole of the cell. However, some bacteria, like E. coli at slowest
growth conditions, are organised in a transverse fashion, in the Left-ori-Right con�guration
with the origin and the terminus at the centre along the long axis of the cell, as shown in
�g. I.2a. After replication the origins are segregated to the cell quarter positions and the newly
replicated Left and Right arms segregate to either side to recreate the transverse con�guration
in the next generation. In contrast to eukaryotes, where replication and segregation are
clearly separated in time, it has been shown that in E. coli the cell cycles overlap for all
but the slowest growth conditions [6]. At faster growth conditions the so-called multifork
chromosome adopts a di�erent organisation with the origin at the cell poles and the terminus
at the centre, as demonstrated in �g. I.2b.

1.4 Proteins

Proteins are the molecules that are the most prevalent in all cells and are involved in all types
of cellular functions. Examples include enzymes like DNA polymerase, transport proteins like
haemoglobin, e�ector proteins like insulin, receptor proteins, transcription factors and many
more. Proteins are large biomolecules, that are constructed from one or multiple polypeptide
chains. Polypeptides are linear polymers composed of 20 di�erent amino acids (22 including
selenocysteine and pyrrolysine that are included in certain organisms), connected by peptide
bonds between the amino group of one and the hydroxyl group of the next amino acid.
A polypeptide therefore starts with an amino group at the N-terminal end and ends with
a hydroxyl group at the C-terminal end. Polypeptide chains fold in a very speci�c way,
determining the function and binding properties of the respective protein. Ligands binding to
a protein can change its conformation reversibly, thereby in�uencing its binding properties,
leading to activation or inactivation of the protein. The two main folding motifs are β-sheets
and α-helices, the latter being a common structure of transmembrane proteins, stretching
through the membrane in a helical shape.

1.5 Transcription Factors

There are many ways how a cell can control and regulate its proteome. Transcriptional
regulation being the most important for most genes, control of protein lifetime and translation
can play a role, as well as the regulation of splicing and mRNA localisation in eukaryotes.

Transcription factors play a central part in gene regulation and are among the largest
protein classes in cells. They are proteins that directly bind to a speci�c site on the DNA to
either activate or repress transcription of a certain gene. In bacteria, most transcription factors
bind close to the promoter and either interact with RNA polymerase to activate transcription
or occupy the promoter to repress transcription. Some bind further away and in�uence
transcription by inducing loops in the DNA that either bring the RNA polymerase closer to
the promoter or hide the promoter and therefore suppress transcription.

Many transcription factors are controlled by other proteins. A common mechanism in
bacteria are signalling systems, where a membrane-integrated sensor kinase registers a change
in the environment and either activates or deactivates a response regulator. A well-known
example concerns the control of the lac gene. When the surrounding medium provides a
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su�cient amount of glucose, it is the only food source of E. coli [13]. A lack of glucose in
the environment however leads to the metabolism of other sugars like lactose. The switch
in the metabolic pathway is controlled by the catabolite activator protein (CAP) and the
Lac repressor. The CAP activator is a universal transcriptional activator, that binds to the
DNA and facilitates binding of RNA polymerase to increase the level of transcription of the
lactose metabolising proteins when the glucose supplies become exhausted [14]. The Lac
repressor however binds two distal sites on the chromosome and induces bending of the
DNA in between to prevent transcription [13]. It is only deactivated when lactose is available,
leading to the desired result that lactose metabolising proteins are only expressed when they
are required to keep the cell alive, i.e. when there is no glucose but enough lactose to be taken
up in the environment.

1.6 Binding Kinetics of TFs

As stated above, transcription factors function in gene regulation by directly binding to the
DNA. Fast and reliable regulation of gene expression requires fast search and recognition of
the speci�c binding site by the transcription factor, as well as stable binding of the protein-
DNA complex. In E. coli the genome contains about 3.60 × 106 bp (basepairs), whereas a
speci�c binding site is about 5–10 nucleotides long. For a protein % to bind reversibly to a
speci�c site on the DNA therefore requires that the protein �rst locates this binding site by
di�usion. Especially for low copy number transcription factors like the Lac repressor, with a
very limited number of molecules per cell, this can constitute the main limiting step in the
binding process. The second step is to bind to the cognate binding site via chemical reaction.

The chemical reaction scheme is given by

% + DNA
:on−−⇀↽−−
:o�

% |DNA ,

where % |DNA is the protein-DNA complex, :on is the e�ective binding rate and :o� is the
e�ective unbinding rate. In steady-state, the concentration [·] of the protein-DNA complex
changes with time according to the steady-state rate equation

d
dC [% |DNA] = :on [%] [DNA] − :o� [% |DNA] .

At equilibrium the concentrations are constant and it follows

[%] [DNA]
[% |DNA] =

:o�
:on

,

which is known as the law of mass action [15] and de�nes the equilibrium constant  eq =
:o�/:on. The law of mass action is widely used to treat chemical reactions as it provides a
way to compute the equilibrium constant by measuring particle concentrations in a test tube.
From such experiments it can be directly shown how binding of a protein to DNA depends
on whether the DNA strand contains a speci�c binding site or not. The standard free energy
change for speci�c binding is of the order of 20–25:B) and for non-speci�c binding 5–10:B)
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[3]. Note that 10:B) is the energy delivered by hydrolysis of an ATP molecule, which is the
energy currency of the cell.

The steady-state reaction rates depend both on di�usion and on the intrinsic reaction rates
:̃on and :̃o� and are given by

:on =
:D:̃on

:D + :̃on
,

:o� =
:D:̃o�

:D + :̃on
,

with the Smoluchowski rate :D = 4c (�DNA + �% )', the di�usion constants of the two
molecules �DNA and �% and the contact radius ', i.e. the sum of the radii of the two reactants.
The Smoluchowski rate is obtained by solving the steady-state di�usion equation for the
concentration of % with the absorbing boundary condition [%] (') = 0 and assuming that the
protein concentration reaches its bulk value for ' →∞ [16]. This means that the two species
are treated as spherical Brownian particles that react as soon as they come into close contact.

The e�ective steady-state reaction rates depend on the di�usion constants of the two species
via the Smoluchowski rate and on the intrinsic reaction rates. For large intrinsic association
rates :̃on � :D the reaction is said to be “di�usion limited”. In this regime perfect reaction
is assumed and the e�ective association rate reduces to the Smoluchowski rate :on = :D.
No bimolecular rate constant in 3d involving a di�usive encounter without attractive forces
can exceed this di�usion-controlled reaction rate. The opposite regime :on � :D is called
“reaction limited”. In this case, di�usion is so fast that it perfectly mixes the two species and
the e�ective association rate becomes :on = :̃on [17].

In order to bind to the DNA and function in gene regulation a transcription factor therefore
faces a search process to locate the cognate binding site by di�usion. There are many other
examples of similar search processes in eukaryotic and prokaryotic cells, some of which will
be introduced in the next section.

2 Search Processes in the Cell

Many processes in the cell are based on the encounter of a protein with a speci�c binding
site on a polymer. These search processes include the initiation of DNA replication, RNA
polymerase binding to the promoter during gene expression, ribosomes searching for mRNA
and much more. In the context of gene delivery, DNA fragments have to locate nuclear
pores to enter the nucleus and the repair process of DNA double-strand breaks requires the
colocalisation of the two free ends.

It is of vital importance to bacteria to be able to rapidly adapt to changing environmental
conditions like nutrient composition, environmental stresses and antibiotics. This is enabled
by sophisticated signalling schemes, primarily based on one- and two-component systems
[18, 19]. Two-component signalling systems feature a sensor kinase and a separate response
regulator, where the former is typically membrane-integrated while the latter di�uses through
the cytoplasm to reach its regulatory target [19]. The majority of response regulators are
transcription factors that bind to speci�c target sites on the genomic DNA to activate or repress
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(a) Cytoplasmic transcription factor (b) Membrane-integrated transcription factor

Figure I.3: DNA target search of cytoplasmic vs. membrane proteins. (a) A cytoplasmic tran-
scription factor (blue) locates its speci�c binding site (green) on the DNA (red) through
a combination of 3d di�usion in the cytoplasm and 1d sliding along the polymer. While
the DNA itself is not static during this target search, DNA motion does not signi�cantly
contribute to its completion, since the search by the di�using protein is faster and more
e�cient. (b) In contrast, a membrane-integrated transcription factor (blue) can only per-
form 2d di�usion in the membrane (grey), so that DNA motion (red) becomes essential. At
a minimum, the speci�c DNA binding site (green) has to move close to the membrane to
enable target recognition.

transcription. Hence, a key step in the signal transduction pathway of these two-component
systems is a DNA target search by a cytoplasmic protein, shown in �g. I.3a.

In one-component signalling systems however, a single protein combines both sensory
function and response regulation [18]. These one-component systems that are both membrane-
integrated sensors and DNA-binding response regulators therefore face an extraordinary
DNA target search problem: They must locate and bind to a speci�c site on the bacterial
chromosome from the membrane, depicted in Figure I.3b. The ToxR receptor family is an
example of such one-component systems. They comprise a periplasmic sensory domain
and a single transmembrane helix that is connected via a linker to a cytoplasmic DNA-
binding domain [20]. ToxR in Vibrio cholerae is a transcriptional activator that controls
transcription of cholera toxin, a major virulence factor for this pathogen [20]. Besides ToxR in
V. cholerae, members of this receptor family include TcpP and TfoS in V. cholerae [21], PsaE in
Yersinia tuberculosis [22], WmpR in Pseudoalteromonas tunicata [23] and the pH-stress-sensing
receptor CadC in E. coli [24] and V. cholerae [25]. Also in eukaryotes there are membrane-
located proteins that interact with the DNA. An example is the membrane protein Yhm2p in
Saccharomyces cerevisiae, which is integrated in the mitochondrial membrane and directly
binds to the mitochondrial DNA [26]. Yhm2p is a mitochondrial carrier that exports citrate
from and imports oxoglutarate into the mitochondrion. Oxoglutarate and citrate are two key
intermediates in the citric acid cycle [27] (tricarboxylic acid cycle, Krebs cycle) and the major
source of cellular ATP production [28].

In eukaryotes, a prime example of a membrane protein interacting with DNA and RNA is
the nuclear pore complex (NPC), a large assembly constructed from about 30 di�erent proteins
(nucleoporins) [29]. In order to be translated, mRNA molecules have to locate nuclear pores
and exit from the nucleus [30], as shown in Figure I.4a. Besides their role in macromolecular
transport in and out of the nucleus, recent experiments have shown nuclear pores to be
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(a) mRNA escape (b) Double-strand break

Figure I.4: Polynucleotides migrating towards NPCs. A prime example of a membrane protein
interacting with polynucleotides such as DNA and RNA are nuclear pore complexes (NPCs),
shown in blue. (a) In order to be translated in the cytoplasm, mRNA molecules (red) �rst
have to exit the nucleus through a nuclear pore. (b) Persistent double-strand breaks in
the DNA (red) are recruited towards NPCs, which has been shown to facilitate the repair
process.

targeted by sites on the chromosomal DNA. While many forms of spontaneous DNA damage
can be repaired within minutes, others appear to be particularly di�cult and persist for
hours. For some of those persistent lesions, relocation to NPCs, depicted in �g. I.4b, has
been shown to facilitate the repair process [31]. Real-time imaging of live yeast cells has
demonstrated recruitment of a �uorescently tagged double-strand break to nuclear pores
[32]. Binding of genes at nuclear pores has also been shown to play a role in transcriptional
regulation. According to the gene gating hypothesis [33], transcriptionally active genes
are brought next to NPCs to direct export of transcripts through the pore and facilitate
transcriptional regulation. Evidence for the gene gating hypothesis has been found for S.
cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and mammalian model systems
[34]. Indeed, some active genes interact with components of NPCs and binding to the NPC can
be induced by environmental stimuli such as nutrient shifts or heat shock [35]. In yeast, NPC
interaction has been shown to be required for proper activation of certain genes, as tethering
to NPCs promotes stronger expression and blocking NPC interaction reduces expression.
NPC association appears to be guided by promoter DNA elements and requires speci�c DNA
sequences, termed DNA zip codes [35].

Depending on spatial constraints and kinetic properties of searcher and target the cellular
search processes can be described by di�erent models, some of which will be introduced in
the following paragraphs.

2.1 Cytoplasmic TFs

The target search dynamics of cytoplasmic transcription factors �rst started to raise attention
in 1970, when Riggs et al. measured an in vitro association rate of the Lac repressor in E. coli
of :a = 7 × 109 M−1 s−1 [36]. Computation of the Smoluchowski rate for the Lac repressor
locating its binding site on the DNA yields a value that is two orders of magnitude smaller
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2 Search Processes in the Cell

than the experimental measurement [37]. The Smoluchowski rate de�ning the upper limit
for di�usion-controlled reactions, it could be concluded that the respective search process
cannot proceed by pure 3d search of the protein. To resolve this discrepancy, a mechanism
called “facilitated di�usion” was assumed to speed up the process. Inspired by the idea that
a reduction of dimensionality can lead to enhanced reaction rates [38], Richter and Eigen
suggested that the transcription factors combine 3d di�usion in the cytoplasm with 1d sliding
along the DNA molecule, while being non-speci�cally bound. As non-speci�c binding was
shown to be driven mainly by screened electrostatic interactions between charged DNA
and protein molecules [39], it is highly dependent on salt concentration. The combination
of 3d search and sliding along the polymer could therefore successfully explain both the
high association rates and the dependence on the ionic strength measured in experiments
[40]. This idea was extended to a comprehensive kinetic theory for the search process of
cytoplasmic proteins by Berg, Winter and von Hippel [41, 42, 43], setting the basis of ongoing
theoretical studies on facilitated di�usion until today. The corresponding in vitro experiments
identi�ed an optimum in the association rate depending on the salt concentration, arising
due to the redundancy of the 1d search [44]. When the protein spends too little time sliding,
very few sites are scanned and a large number of such rounds is needed to locate the target.
When it spends a long time sliding however it scans the same sites multiple times and the
search becomes very ine�cient.

An intuitive approach to facilitated di�usion is presented in [37]. We assume a single
protein that locates a single target site on the polymer of length # by alternating rounds
of 3d di�usion and 1d sliding along the polymer. With g3d and g1d the average time spent
in the respective search modes and :̄ the mean number of rounds needed until the target
site is found, the mean search time is g = :̄ (g3d + g1d). When the protein scans on average
=̄ � # sites on the polymer, the probability to locate the target in a single round of sliding
is ? = =̄/# . When the intervals of 3d di�usion lead the protein to reassociate at a random
position along the polymer, the sliding events are independent. The probability that the �rst
encounter with the target requires : trials is therefore given by the geometric distribution

P(- = :) = (1 − ?):−1? ,

for : ∈ {1, 2, . . . }. The expectation value of the geometric distribution is :̄ = 1/? = # /=̄. For
normal di�usion of the protein along the polymer it follows that =̄ ∝ √�1dg1d, which can be
used to rewrite the mean search time and compute the derivative

dg
dg1d

=
d

dg1d

#√
�1dg1d

(g3d + g1d)

=
#

2
√
�1dg1d

(
1 − g3d

g1d

)
.

At the minimum search time dg/dg1d = 0 we obtain g3d = g1d. The theoretical interpretation of
the experimentally measured optimal association rate in dependence on the ion concentration
is therefore, that the search is optimal when the protein spends the same time in both search
modes. The speed-up by facilitated di�usion is hence achieved by e�ectively enlarging
the target size to =̄ sites on the polymer (“antenna” e�ect) [45, 37] as compared to pure 3d
di�usion.
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Besides one-dimensional sliding along the polymer, the theory of facilitated di�usion
includes several other mechanisms of how a protein locates its binding site on the DNA [41,
42, 43]. One of them is called hopping or jumping along the polymer, where either microscopic
dissociation leads to reassociation at a nearby DNA site or macroscopic dissociation leads
to rebinding at a distal location. Another mechanism is intersegment transfer, where DNA
looping enables the protein to transiently bind the two DNA strands at the intersection of
the loop and move to the remote position. However, most �uorescence and microscopy
based experiments could not distinguish between these processes and facilitated di�usion
was therefore mainly ascribed to one-dimensional sliding along the polymer. Recent in
vitro experiments on the restriction enzyme BbvCI showed that 1d di�usion is limited to
short distances, while dissociation and reassociation was identi�ed as the main mode of
translocation [46]. A direct observation of sliding and jumping has been reported using
�uorescence microscopy of the EcoRV restriction enzyme [47]. Furthermore, the impact
of intersegment transfers on the association rate of EcoRV was shown by optical tweezers
experiments, that show the e�ect the DNA conformation has on the search process [48].
In eukaryotes, single-molecule microscopy of the S. cerevisiae protein complex Mlh1-Pms1
could demonstrate how disruption of sliding along the DNA by hopping is used to bypass
nucleosomes [49]. Moreover, the advancement of single-molecule techniques enabled the
demonstration of sliding and 3d translocation also in living bacteria [50, 51].

The most controversial observation related to the facilitated di�usion model is called
the “speed-selectivity paradox” [44]. It states that while the experimentally measured fast
association rates suggest a smooth protein-DNA binding potential, the stability of the speci�c
protein-DNA complex requires a large energy gap. However, recent analytical considerations
together with Monte Carlo simulations resolve this paradox, which might arise due to the
usage of continuum theoretical models beyond their range of validity [52]. An alternative
solution is a two-state process, where the conformation of the protein switches between
a search state and a recognition state [44, 53], supported by in vitro experiments of TALE
protein dynamics [54].

The advancement of modern computers enabled the investigation of facilitated di�usion in
molecular dynamics [55] and Brownian dynamics simulations [56], thereby bridging the gap
between the mesoscopic picture and microscopic rates. Further studies continued to add to
the detailed understanding of this target search process, e.g. with respect to e�ects of DNA
conformation [57], DNA dynamics [58], and macromolecular crowding [59, 60].

2.2 Narrow Escape

Besides the search dynamics of proteins di�using in the cytoplasm discussed above, a well
studied problem is the mean �rst passage time (MFPT) of a Brownian particle to reach a small
absorbing window in the otherwise re�ecting boundary of a bounded domain. This so-called
narrow escape problem has originated in the theory of sound [61, 62], but there has been
renewed interest due to its relevance to many biological problems. Examples include ions
di�using inside a biological cell escaping through a protein channel in the membrane and
mRNA molecules exiting the nucleus.
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Figure I.5: Localisation models of membrane-integrated proteins. (a) The transertion mecha-
nism describes simultaneous transcription, translation and membrane-insertion of the
membrane protein. The DNA is shown in red, with the transcribed gene represented by
the blue arrow. RNA polymerase (RNAP) transcribes the gene into mRNA (green), which
is translated by a ribosome (yellow) into a polypeptide chain (blue). (b) The DNA-binding
domain (DBD) of a membrane protein is proteolytically cleaved to search for its speci�c
binding site (green) on the DNA as a regular cytoplasmic transcription factor. (c) In the
di�usion and capture mechanism the whole protein stays membrane bound and locates its
speci�c binding site (green) by two-dimensional di�usion in the membrane.

For a Brownian particle with di�usion constant � , the mean search time (narrow escape
time, NET) to reach a circular target of radius 0t at the boundary of a spherical domain with
volume + and radius ' is given by the approximate expansion [63]

g =
+

40t�

(
1 + 0t

'
log

[
'

0t

]
+ O

(0t
'

))
. (I.1)

In �rst order, i.e. ' � 0t it reduces to Lord Rayleigh’s formula g ≈ + /(4�0t) [62, 64], which
is valid for a circular target in a general 3d volume [63].

A similar estimate can be established for membrane proteins performing 2d di�usion
towards a target, like the membrane-integrated proteins CadC in E. coli moving towards each
other to form a homodimer [65]. For a Brownian particle with uniform initial distribution
moving on the surface of a spherical domain of radius ', the mean �rst passage time to reach
a circular target of radius 0t is approximately given by [66]

g =
'2

�

(
2 log

[
'

0t

]
+ 2 log 2 − 1 + O

(
'2

02
t

log
[
'

0t

] ))
. (I.2)
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More asymptotic approximations of the MFPT are available in 2d [67, 68] and in 3d for
elliptical and circular holes [64] and inside a sphere [69], which correspond to other biological
scenarios of interest.

2.3 Membrane Proteins Locating a Binding Site on a Polymer

While the search dynamics of freely di�using particles for a speci�c binding site on a polymer
or a target at the surface of the con�ning volume have been extensively studied, little is
known about how surface bound proteins locate a binding site on a polymer di�using in the
volume. Nevertheless, as stated above, many processes in bacterial and eukaryotic cells rely
on such a search to proceed within reasonable time.

Three general pathways of membrane proteins localising a speci�c binding site in bacterial
cells or eukaryotic nuclei are depicted in �g. I.5. Simultaneous transcription, translation
and membrane-insertion of the protein (“transertion” [70, 71]), shown in �g. I.5a, lead to a
tethering of the DNA locus of the one-component signalling system to the membrane. Since
the speci�c binding site is typically close to the gene encoding the one-component system,
this would bring the membrane protein close to its binding site on the DNA. Proteolytic
cleavage of the DNA-binding domain of the membrane protein, demonstrated in �g. I.5b,
leads to a separation from the rest of the molecule, such that it can search for its speci�c
binding site as a regular cytoplasmic transcription factor. The third option is a di�usion and
capture mechanism [72], demonstrated in �g. I.5c, where the membrane protein locates its
cognate binding site by di�usion within the membrane and conformational �uctuations of
the chromosome, bringing the binding site closer to the membrane.

There has been experimental evidence for all three mechanisms of localisation in bacterial
cells. Transertion has been suggested to play a role in chromosome segregation in bacteria
[73] and is regarded the main cause of large-scale heterogeneity in bacterial membranes [74].
Experimental evidence of the transertion mechanism is mainly based on the observation
of genes of membrane proteins being drawn towards the membrane upon activation of
expression [75] and that drugs inhibiting translation elongation lead to contraction of the
nucleoid [76]. Proteolytic cleavage is a very common mechanism in both generating and
receiving signals, that is found in eukaryotes and prokaryotes [77]. For example the acid-
sensing membrane-integrated transcription factor CadC in Salmonella enterica was shown to
be activated by proteolytic cleavage of the cytoplasmic domain under acid stress conditions
[78]. Di�usion and capture is a widespread mechanism in all bacterial cells [79]. It was directly
observed in Bacillus subtilis by �uorescence microscopy of a membrane protein (SpoIVFB)
fused to a green �uorescent protein (GFP). SpoIVFB was found to be randomly positioned in
the cytoplasmic membrane and to accumulate at the septum during initiation of sporulation,
suggesting a mechanism of random membrane insertion followed by 2d di�usion and capture
at the target location [80].

For the ToxR-like one-component receptor CadC in E. coli, experimental evidence has led to
discard both proteolytic cleavage of the DNA-binding domain and a transertion mechanism in
favour of the di�usion and capture model [81, 82, 83]. However, to the best of our knowledge
there has not been any direct measurement of the dynamics of membrane-integrated proteins
locating their binding site on the chromosome.
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Figure I.6: Polymer models. DNA can be modelled by a multitude of di�erent polymer models,
depending on the desired amount of detail. (a) At the highest resolution DNA is represented
by an atomistic model. (b) Grouping multiple atoms together to form a monomer, DNA
can be described on a coarser level by a united atom model. (c) At lower resolution the
polymer is represented by a linear chain (blue) with arbitrary bond length 1, which can be
approximated by a freely jointed chain (red) with Kuhn segments of length ;K. (d) Many
(# ) Kuhn segments can be approximated by a Gaussian bead-spring chain with mean
segment length #;K.

Also from the theoretical and computational side, previous work studying the encounter
dynamics of a surface located particle with a target on the enclosed polymer is rare. Math-
ematical analysis and Langevin dynamics simulations of the end monomers of a polymer
con�ned in a spherical domain have been used to compute the MFPT of reaching a nanopore
at the boundary [84]. The main result is the scaling of the MFPT (“attempt time”) g with
the con�nement radius ' of g ∝ '3.67 for �exible chains and g ∝ '2.67 for sti� chains. In
a similar approach Brownian dynamics simulations have been used to simulate a polymer
in a spherical volume where either one or all monomers can bind to a nuclear pore at the
surface [85]. When only one monomer was allowed to bind to the target a strong dependence
of the MFPT on its location along the polymer and on polymer length was found. In [86]
pruned-enriched-Rosenbluth (PERM) simulations, i.e. a Monte Carlo method with importance
sampling has been used to estimate the change in the internal conformational free energy
upon localisation of an end monomer to either an in�nite hard wall or the corner of an
in�nitely large cube.

While these previous studies focus on the encounter of a polymer site with a static molecule
at the boundary, membrane proteins like channels, receptors and transporters are known to
be highly mobile in the membrane [87]. In this thesis we aim at extending the discussion of
the search dynamics to include proteins di�using on the surface of the con�nement. Moreover
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we incorporate e�ects that might be relevant to speed up the procedure, like non-speci�c
binding and sliding of the protein on the polymer.

3 Static Properties of Polymers

Since the scope of this dissertation is to study the search dynamics of proteins moving on the
surface of a volume for a speci�c binding site on an enclosed polymer, the �nal two parts of
this chapter focus on a short introduction to polymer physics, which can be found in standard
textbooks [88, 89, 90]. After covering some of the most relevant static properties of polymers,
an introduction to polymer dynamics will be given.

Polymers are macromolecules composed of many repeat units, called monomers. The
term monomer refers to single atoms, but also to groups of atoms or even larger structures,
as demonstrated in �g. I.6. DNA for example can be described as a linear heteropolymer
with four distinct monomers, given by the four nucleotides. Depending on the degree of
polymerisation polymers can be very large, highly complex structures. While the chemical
properties of a polymer are strongly dependent on every microscopic detail, so that a slight
variation in the bond length or angles can for example lead to drastically di�erent features,
these details are irrelevant for its physical properties and di�erent polymers exhibit universal
behaviour.

On such a scale, where the microscopic properties might be neglected, polymers can be
described as linear chains. They exhibit di�erent shapes, from linear, ring shaped and star
shaped polymers to bottlebrush structures and polymer networks. We restrict our discussion
to linear homopolymers, i.e. polymers composed of a single type of monomer, in contrast to a
copolymer or a heteropolymer.

The description of a real polymer by a physical model is not unique. As mentioned above,
DNA can be represented by a linear heteropolymer composed of four di�erent nucleotides.
However, even bacterial chromosomes contain millions of base pairs and describing every
single nucleotide is likely to exceed the desired amount of detail. A coarser description of
DNA can therefore be achieved by grouping multiple nucleotides together to a monomer or
segment of arbitrary length 1, as shown in �g. I.6c. How large this segment length is chosen
again depends on the desired amount of detail and signi�cantly determines the appropriate
physical model by which to describe the polymer.

On very small scales, where a segment 1 equals the covalent bonds between atoms, the
rigidity of the covalent bonds leads the polymer to appear rather in�exible. On larger scales
however, where a segment corresponds to summing up a large number of covalent bonds with
di�erent bond angles, the same polymer exhibits some degree of �exibility. As demonstrated
in �g. I.7, the same polymer can therefore be described as a rigid rod or as a �exible chain,
depending on the resolution of the model. To quantify the appropriate description of a
polymer, a measure of its bending rigidity is required.

We de�ne a curvilinear coordinate ; which goes from one polymer end ; = 0 to the contour
length ; = 'max, and tangent unit vectors e(;) describing the changing orientation of the
chain. The orientational correlation function is given by  or(Δ;) = 〈e(;)e(; + Δ;)〉, where 〈·〉
denotes the ensemble average over all chain conformations. Due to the �exibility of the chain,
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Figure I.7: Bending rigidity. Bending rigidity of a polymer depending on the contour length 'max
and the persistence length ;p. (a) For very short chains compared to the persistence length
thermal �uctuations become negligible and the polymer can be described by a rigid rod.
(b) When the contour length is of the same order of magnitude as the persistence length,
thermal �uctuations become relevant and the appropriate description of the polymer is a
semi�exible chain. (c) In the limit of very long chains compared to the persistence length
the thermal energy dominates and any polymer behaves like a �exible chain.

the orientational correlation vanishes for large distances Δ; , so that a measure for the chain
sti�ness is given by the integral width of  or, which is called the persistence length ;p [91]

;p =
∫ ∞

0
 or(Δ;)d(Δ;) .

The persistence length is therefore the correlation length for orientational �uctuations, such
that polymer segments shorter than the persistence length essentially appear as a rigid
rod, while polymer segments much longer than the persistence length are orientationally
uncorrelated and appear as a �exible chain. When a polymer is divided into segments of
length 1, the bending rigidity between segments has to be considered for 1 < ;p, whereas
for 1 > ;p the segments are orientationally uncorrelated. In terms of the bending rigidity ^,
temperature ) and spatial dimension 3 the persistence length is also given by [92]

;p =
2^

(3 − 1)) .

With increasing temperature the thermal energy exceeds the bending energy and the polymer
becomes more �exible.

Besides the bending rigidity of a polymer, the impact of excluded volume interactions plays
a role to determine an appropriate physical polymer model. Excluded volume interactions are
highly dependent on the type and the temperature of the surrounding solvent, as demonstrated
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Figure I.8: Excluded volume e�ects. Excluded volume e�ects depending on the type and tem-
perature of the surrounding solvent. (a) At low temperature (poor solvent) long-range
attractive forces between monomers dominate and the polymer adopts a densely packed,
globular state. (b) At intermediate temperature () = \ ) attractive and repulsive forces
balance out and the polymer behaves like an ideal chain. (c) At high temperature (good
solvent) short-range repulsive forces between monomers dominate and the polymer adopts
a swollen coil structure.

in �g. I.8. The di�erent regimes arise due to a competition between enthalpic and entropic
e�ects. At low temperature or in a poor solvent interactions between monomers and solvent
molecules are repulsive, leading the solvent to be excluded from the polymer coil and therefore
to an e�ective attraction between monomers. The polymer therefore adopts a densely packed
globular state, shown in �g. I.8a. At high temperature or in a good solvent however monomers
and solvent mix due to mixing entropy e�ects, yielding an e�ective repulsion between
monomers. The polymer is in a swollen coil state, as depicted in �g. I.8c. This can be described
by the excluded volume parameter a , which takes into account the e�ective interaction
potential between monomers due to monomer-monomer interactions, monomer-solvent
interactions and entropic e�ects. It is de�ned as a = 1/2

∫
(1 − exp[*e�(A )/(:B) )])dA , with

an e�ective interaction potential between monomers *e�(A ) at position A . The interaction
potential accounts for the short-range repulsion due to the Pauli exclusion principle and for
long-range attraction due to electric dipoles (van der Waals interaction). One of the model
potentials to mimic this behaviour is the Lennard-Jones potential, which takes the form

* (A ) = 4n
[(f
A

)12
−

(f
A

)6
]
,

with monomer distance A , interaction energy n and monomer diameter f . The excluded
volume parameter is negative when the e�ective interaction between monomers is attractive
and positive when they are repulsive. It therefore de�nes the spatial volume where a monomer
excludes other monomers. At intermediate temperature, the so-called \ -temperature, attrac-
tive and repulsive forces cancel each other and the polymer can be well described by an ideal
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chain (phantom chain) without excluded volume interactions between monomers (*e�(A ) = 0)
[88], shown in �g. I.8b.

Overall, the same polymer can be described by a multitude of models, depending on the
desired temporal and spatial resolution, the solvent properties and the relation between
sti�ness and length of the chain. We review some polymer models that are the most relevant
to this thesis to �nd a suitable conformational and dynamical model for DNA.

3.1 Freely Jointed Chain Model

As shown above, when a polymer is partitioned into segments of length 1 > ;p, neighbouring
segments are orientationally uncorrelated. One of the simplest descriptions of such a polymer
is the freely jointed chain (FJC), also known as the random �ight model, which was initially
proposed by Kuhn in 1934 [93].

The polymer is described as a chain of # + 1 beads connected by # bonds of �xed length 1
with independent orientation of neighbouring segments. We denote the position vectors of the
beads as r = (r0, . . . , r# ) and the bond vectors asR = (R1, . . . ,R# ), withR= = r= − r=−1
for = = 1, . . . , # . To characterise the size of a polymer, the end-to-end vector of the chain is
de�ned as [94]

Ree = r# − r0 =
#∑
==1
R= .

Due to the independent orientations of the segments the average of the end-to-end vector
vanishes (〈Ree〉 = 0). The �rst non-vanishing moment is the mean of the squared end-to-end
distance, given by [89]

〈R2
ee〉 =

〈(
#∑
8=1
R8

)2〉
=

〈
#∑

8, 9=1
R8R9

〉
= #12 , (I.3)

where we used 〈R8R9 〉 = X8 912, again due to the independently oriented segments. When
the segment length is not �xed, but the average segment length is given by 〈|R|〉 = 1, the
shown relation for the average end-to-end distance is still valid.

Another measure for the size of a polymer is the radius of gyration 'g. It is de�ned as the
mean squared distance between monomers and the centre of mass of the polymer rcm

'2
g =

1
# + 1

#∑
8=0
(r8 − rcm)2

=
1

(# + 1)2
#∑

8, 9=0
(r8 − r9 )2 ,
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where in the second step the de�nition of the centre of mass rcm = 1/(# + 1)∑#
8=0 r8 was

inserted. For ideal chains like the FJC and # � 1 the mean squared radius of gyration is
given by [88]

〈'2
g〉 ≈

#12

6 .

A real polymer with contour length 'max = #1 and end-to-end distance 'ee can be mapped
to an equivalent FJC with bond length

1 =
〈R2

ee〉
'max

=: ;K .

This de�nes the so-called Kuhn length ;K, which characterises the sti�ness of the chain and
can be related to the persistence length by ;K = 2;p.

3.2 Simple RandomWalk

The FJC model can be further simpli�ed by discretising the polymer segments to lie on a
periodic lattice. This can be useful to derive some general properties of this polymer model.
We therefore describe the polymer as a random walk of # statistically independent and
unbiased steps of length 1 on a periodic lattice. The microcanonical entropy of such a chain
with end-to-end vector Ree is related to the number Ω(#,Ree) of distinct random walks
with # segments and end-to-end vectorRee and given by [89]

( (Ree) = :B log [Ω(#,Ree)] , (I.4)

with :B being the Boltzmann constant.
Now we consider a one-dimensional random walk of length # with< steps to the right,

that ends at position G . There are
(#
<

)
ways to choose those< steps and hence Ω(#,<) =(#

<

)
= # !/(<!(# −<)!) di�erent chain arrangements of length # with the same end-to-end

distance G . The total number of walks with # steps is 2# and therefore the probability to
have an end-to-end distance of G for a walk of length # is P(G) = Ω(#,<)/2# . For G � #
this binomial distribution can be approximated by a Gaussian, as demonstrated in [90]. This
leads to

P(G) ≈ 1
2#

# !
(# /2)!(# /2)! exp

[
− G

2

2#

]
.

Using the Stirling approximation for long chains # ! ≈ √2c# (# /4)# to approximate the
prefactors yields

P(G) ≈
√

2
c#

exp
[
− G

2

2#

]
.

Since Ω(#,<) is only nonzero for either even or odd G , depending whether # is even or odd,
the probability distribution function of G di�ers by a factor of 2 and reads

Ψ(G) =
√

1
2c 〈G2〉 exp

[
− G2

2〈G2〉

]
,
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where we also inserted the mean squared average 〈G2〉 =
∫ ∞

0 G2Ψ(G)dG = # .
Consider again a random walk with step size 1 in three dimensions. Due to isotropy of

the walk the three dimensions are independent and the probability distribution function for
the end-to-end distance is simply given by the product of the one-dimensional distribution
functions. In three dimensions this yields [90]

Ψ(Ree) =
√

1
(2c)3〈'2

G 〉〈'2
~〉〈'2

I〉
exp

[
− '2

G

2〈'2
G 〉

]
exp

[
−

'2
~

2〈'2
~〉

]
exp

[
− '2

I

2〈'2
I〉

]
=

(
3

2c#12

) 3
2

exp
[
− 3R2

ee
2#12

]
, (I.5)

where we inserted 〈R2
ee〉 = #12 and 〈'2

G 〉 = 〈'2
~〉 = 〈'2

I〉 = #12/3, which follows from
〈R2

ee〉 = 〈'2
G 〉 + 〈'2

~〉 + 〈'2
I〉.

Using Ψ(Ree) = Ω(#,Ree)/
∫
Ω(#,Ree)dRee the entropy de�ned in eq. (I.4) can be

written as

( (Ree) = −
3:BR

2
ee

2#12 +
3
2:B log

[
3

2c#12

]
+ :B log

[∫
Ω(#,Ree)dRee

]
.

Since the last two terms are independent of the end-to-end distance, this can be simpli�ed to

( (Ree) = ( (0) −
3:BR

2
ee

2#12 .

Inserting the entropy into the free energy � = � −)( leads to

� (Ree) = � (0) +
3:B)R

2
ee

2#12 ,

where we used that the energy does not depend on the chain con�guration for an ideal chain
and is therefore independent of the end-to-end vector. The free energy � (0) then corresponds
to a polymer with both ends at the same point. The free energy is therefore minimised for
the zero end-to-end vector, as this leads to the largest number of chain con�gurations and
the highest entropy.

Despite the energy being independent of the chain conformations, an ideal chain exhibits
elastic behaviour due to the entropic e�ects demonstrated above. In comparison with the
energy of a Hookean spring (* = :BG2/2), we can de�ne the entropic spring constant by

:B =
3:B)

#12 . (I.6)

Note that since for the Gaussian approximation we required that |'ee | � 'max, the linear
entropic spring looses validity when the chain is stretched close to its maximum extension.
However for small forces, experiments have shown that the FJC model describes the measured
force-extension curves quite well [95].
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3.3 Gaussian Chain Model

As shown in the previous sections, a real chain can be mapped to an equivalent freely jointed
chain with segment length ;K and end-to-end vector that follows a Gaussian distribution.
Further coarse-graining the model, the FJC can be divided into groups of segments of total
length 1 large enough so that the segment vectorsR are normally distributed [94]

Ψ(R) =
(

3
2c12

) 3
2

exp
[
−3R2

212

]
. (I.7)

To account for the entropic elasticity of the segments, such a Gaussian chain is typically
represented by beads connected by springs, as demonstrated in �g. I.6d.

3.4 Persistent Chain Model

So far, increasingly coarse-grained polymer models have been considered that are valid for
segments of length 1 > ;p or even 1 � ;p. However, for smaller segments 1 ≤ ;p, the bending
rigidity between segments cannot be neglected and the previously discussed models loose
their validity. This can be relevant for very sti� polymers or when considering short sections
of dsDNA with rather high resolution.

A widely used model for semi�exible chains is the persistent chain model, also called the
wormlike chain (WLC) model or Kratky-Porod chain [96]. The polymer is described as a
continuous chain with position r(;) along the chain and constant contour length 'max. The
simplest model to allow for elastic bending of a continuous rod is to assume a quadratic
bending energy. This leads to the Hamiltonian of the WLC of the form

H =
^

2

∫ 'max

0

(
m2r(;)
m;2

)2
d; ,

with the bending sti�ness ^ [94]. The bending energy de�ned above leads to an exponential
form of the orientational correlation function [97]

 or(Δ;) = exp
[
−Δ;
;p

]
.

Using the end-to-end vectorRee =
∫ 'max

0 e(; ′)d; ′, the mean squared end-to-end distance can
be obtained by [97]

〈R2
ee〉 =

∫ 'max

; ′=0

∫ 'max

; ′′=0
〈e(; ′)e(; ′′)〉d; ′d; ′′

= 2
∫ 'max

Δ;=0
 or(Δ;) ('max − Δ;)dΔ;

= 2
∫ 'max

Δ;=0
exp

[
−Δ;
;p

]
('max − Δ;)dΔ;

= 2;p'max − 2;2p
(
1 − exp

[
−'max

;p

] )
. (I.8)
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First, consider the limiting case for long chains 'max � ;p, which yields 〈R2
ee〉 = 2;p'max.

Using 2;p = ;K and 'max = #;K this corresponds to the well-known result for an ideal FJC
with segment length ;K, computed in eq. (I.3). For short chains 'max � ;p a Taylor expansion
of the exponential function in eq. (I.8) to second order yields 〈R2〉 ≈ '2

max, i.e. the chain is
fully extended, which is the expected result for a rigid rod. The mean squared end-to-end
distance of the WLC therefore demonstrates the transition from the rigid rod description of
very short chains to a FJC for very long chains compared to the persistence length.

4 Polymer Dynamics

After the short introduction to polymer physics and discussing the most relevant models
describing the static properties, we will now focus on polymer dynamics. Since we are
concerned with the motion of polymers in a solvent, which is the natural environment of
biopolymers in the cell, we start with a general introduction to the di�usive motion of particles
in solution.

4.1 Brownian Motion

As �rst observed by the botanist Robert Brown in 1828 [98], small colloidal particles in liquids
exhibit a di�usive motion due to random collisions with the solvent particles, later called
Brownian motion. First quantitative explanations were developed by Einstein in 1905 [99] and
Smoluchowski [100], both approaching the problem based on partial di�erential equations
which are equivalent to the Fokker-Planck equation.

Given the concentration of particles 2 (G, C) at position G and time C , the process of di�usion
is described by Fick’s �rst law [101], which in one dimension reads

9 (G, C) = −� m2 (G, C)
mG

, (I.9)

thus relating the �ux 9 (G, C) to the concentration gradient with the di�usion constant � [102].
Fick’s law shows that when the concentration is not uniform, there is a particle �ux towards
regions of lower concentration. Inserting the continuity equation m2/mC = −m 9/mG eq. (I.9)
becomes Fick’s second law, the di�usion equation

m2 (G, C)
mC

= �
m22 (G, C)
mG2 .

With an external potential * (G) the di�usion equation is turned into the so-called Smolu-
chowski equation [102]

m2 (G, C)
mC

=
m

mG

1
Z

(
:B)

m2 (G, C)
mG

+ 2 (G, C) m* (G)
mG

)
. (I.10)

The friction coe�cient Z is related to the di�usion coe�cient via the Einstein relation � =
:B) /Z , an early example of the �uctuation-dissipation theorem [103], relating a dissipative
force (friction) to thermal �uctuations.
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4.2 Langevin Equation

Brownian motion can alternatively be treated by the Langevin description [104], which
historically is a �rst example of a stochastic di�erential equation. In the Langevin picture
the force acting on the Brownian particle due to the small solvent particles is described by a
stochastic force, which �uctuates around its average value. Integrating this random force
into Newton’s equation of motion then yields the Langevin equation. Aside from the random
force due to interactions with the �uid, the force acting on a Brownian particle is composed
of a friction force and external forces. For a single Brownian particle in one dimension the
time evolution of its position G (C) is given by

<
d2G (C)

dC2 = −Z dG (C)
dC −

d* (G)
dG + 5 (C) .

Here,< is the mass of the particle, Z is the friction coe�cient,* (G) is an external interaction
potential and 5 (C) is the random force due to interactions with the solvent. In the limit of
low Reynold’s number Z /< � 1, i.e. for very high viscosity of the solvent or very small
particles, inertial forces become negligibly small and the Langevin equation reduces to the
“overdamped” Langevin equation [88]

Z
dG (C)

dC = − m* (G)
mG

+ 5 (C) . (I.11)

It can be shown [102] that the distribution of G (C) de�ned by eq. (I.11) satis�es the Smolu-
chowski equation (I.10) if the distribution of the random force 5 (C) is a Gaussian with the
moments

〈5 (C)〉 = 0 ,
〈5 (C) 5 (C ′)〉 = 2Z:B)X (C − C ′) .

The mean value vanishes due to isotropy of the solvent and the collisions are assumed to
be independent, such that the time correlation is also zero. The variance of the stochastic
force follows from the equipartition theorem. For a single particle di�using in one dimension
eq. (I.11) can be easily solved for* (G) = 0 (see appendix A1) to show that the mean squared
displacement (MSD) ful�ls

〈(G (C) − G (0))2〉 = 2:B)

Z
C

= 2�C ,

where the Einstein relation was used in the second step. For a Brownian particle di�using in
3 dimensions the mean squared displacement is 〈(r(C) − r(0))2〉 = 23�C [88].

For multiple particles at position r8 (C) with mass<8 , friction tensor ζ8 9 and interaction
potential* ({r8 (C)}) the Langevin equation becomes

<8
d2r8 (C)

dC2 = −
∑
8

ζ8 9
dr8 (C)

dC −∇r8 (C )* ({r8 (C)}) + f8 (C) , (I.12)
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and the overdamped Langevin equation∑
8

ζ8 9
dr8 (C)

dC = −∇r8 (C )* ({r8 (C)}) + f8 (C) . (I.13)

For hydrodynamically noninteracting particles ζ8 9 = X8 9Z mean value and correlation function
of the random force are given by

〈58U (C)〉 = 0 ,
〈58U (C) 59V (C ′)〉 = 2Z:B)X8 9XUVX (C − C ′) ,

with U and V referring to the spatial components.

4.3 Rouse Model

Based on the Langevin description of a bead-spring polymer model, the �rst model to suc-
cessfully describe the dynamics of ideal polymers was developed by Rouse in 1953 [105]. The
Rouse model is considered to be valid in a dense melt, where hydrodynamic interactions are
screened, provided entanglement e�ects between chains do not play a role. The polymer is
described based on the Gaussian chain model as a chain of # + 1 beads connected by springs
of average length 1. The interaction potential between neighbouring beads [102]

* ({r= (C)}) = :B
2

#∑
==0
(r= (C) − r=−1(C))2 , (I.14)

with the entropic spring constant :B = 3:B) /12 ensures the Gaussian distribution of the
segment vectors derived earlier in this chapter. With the given interaction potential eq. (I.14)
and the random force f8 (C) acting on bead 8 at position r8 (C) the overdamped Langevin
equation eq. (I.13) becomes

Z
dr= (C)

dC = −:s(2r= (C) − r=+1(C) − r=−1(C)) + f= (C) for = = 1, . . . , # − 1

Z
dr0(C)

dC = −:s(r0(C) − r1(C)) + f0(C)

Z
dr# (C)

dC = −:s(r# (C) − r#−1(C)) + f# (C)

and the random force follows a Gaussian distribution with moments

〈f= (C)〉 = 0
〈5=U (C) 5<V (C ′)〉 = 2Z:B)X=<XUVX (C − C ′) .

Approximating = by a continuous variable, the Langevin equation describing a Rouse chain
becomes [88]

Z
mr= (C)
mC

= :s
m2r= (C)
m=2 + f= (C) ,
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with the boundary conditions mr= (C)/m= = 0 at = = 0 and = = # .
One of the major features of the Rouse model is its simplicity, which allows for an analytical

solution of both the continuous and the discrete equations (see appendices A2.1 and A2.2).
Using Fourier transformation the Rouse model is decomposed into independent normal modes
X? (C) (Rouse modes), which are de�ned by [94]

X? (C) = 1
#

∫ #

0
r= (C) cos

[?c=
#

]
d= ,

with the inverse transform given by

r= (C) =X0(C) + 2
∞∑
?=1
X? (C) cos

[?c=
#

]
.

The normal modes linearise the continuous Langevin equation of the Rouse model, which
can be integrated and takes the form

Z?
mX? (C)
mC

= −:?X? (C) + f? (C) ,

with Z0 = #Z , Z? = 2#Z and :? = 2c2:s?
2/# and the random forces f? (C) which satisfy

〈5?U (C)〉 = 0 and 〈5?U (C) 5@V (C ′)〉 = 2Z?:B)X?@XUVX (C − C ′).
The Rouse modes decompose the dynamics of the polymer into independent modes with a

certain relaxation rate g . For all but the zeroth Rouse mode, the correlation function decays
exponentially, taking the form [106]

〈-?U-@V〉 =
:B)

:?
X?@XUV exp

[
− C
g

]
.

The �rst mode ? = 1 has the slowest relaxation time, called the Rouse time gR and describes
the elongation of the polymer chain. The Rouse time is given by

gR =
(# + 1)2Z
c2:s

=
(# + 1)212Z

3c2:B)
, (I.15)

and complies with the time it takes the polymer to di�use a distance of the order of its own
size. The mode with the shortest relaxation time g# on the other hand is identi�ed with
the relaxation of a monomer. In general, the Rouse mode X? (C) describes vibrations of a
wavelength corresponding to a subchain of # /? segments. The translational motion of the
centre of mass is therefore described by the zeroth Rouse mode (? = 0) and we identify
X0(C) = 1/#

∫ #

0 r= (C)d= = Rcm(C) [90].
The dynamics of a polymer within the Rouse model are most commonly characterised

by computing the motion of the centre of mass and of single beads respectively. The mean
squared displacement of the centre of mass can be easily derived to follow (see appendix A3)

63 := 〈|rcm(C) − rcm(0) |2〉 = 6:B)

(# + 1)Z C = 6�cmC , (I.16)
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where we have used the de�nition of the di�usion constant of the centre of mass �cm =
limC→∞ 1/(6C)〈|rcm(C)−rcm(0) |2〉 to obtain�cm = :B) /((# +1)Z ) = �/(# +1). The centre of
mass therefore behaves like a Brownian particle, moving di�usively with a reduced di�usion
constant �cm = �/(# + 1). The mean squared displacement of a typical segment is [107]

6̃1(C) = 1
# + 1

#∑
==0

〈(r= (C) − r= (0))2〉
= 6�cmC + 4

#∑
?=1
〈X2

?〉
(
1 − exp

[
− C
g?

] )
≈ 6�cmC +

(
12:B)1

2

cZ

) 1
2 √
C ,

where the approximation in the last step is valid for # � 1. At small times up to the
Rouse time viscoelastic modes lead to subdi�usion of the monomers with the mean squared
displacement scaling as ∝ √C . For times larger than the Rouse time however the polymer
moves as a whole and the mean squared displacement shows normal di�usive behaviour
with a scaling ∝ C . For the mean squared displacement of a single bead we choose the central
monomer to avoid unwanted deviations at the edges of the chain. The two di�erent scaling
regimes are therefore

61(C) := 〈|r# /2(C) − r# /2(0) |2〉 ∝
{
C0.5 if C � gR

C if C � gR
. (I.17)

This scaling behaviour will be used in the next chapter to test whether our polymer dynamics
simulations agree with the Rouse model.

4.4 ZimmModel

While the Rouse model provides a good approximation in polymer melts, in dilute solutions
the force acting on a certain particle causes �uid motion around it, in�uencing the velocity of
other particles [90]. Introducing these hydrodynamic interactions into the Rouse model leads
to the Zimm model [108], as the nondiagonal elements in the mobility matrix µ8 9 become
nonzero. The overdamped Langevin equation becomes [109]

mr8 (C)
mC

=
∑
9

µ8 9
(−∇r8* ({r8}) + f9 (C)

)
,

with the mobility tensor given by the nonlinear Oseen tensor

µ88 = I/Z
µ8 9 =

1
6c[B |R8 9 (C) | [R̂8 9 (C)R̂8 9 (C) + I] for 8 ≠ 9 ,
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withR8 9 (C) = r8 (C) − r9 (C) and R̂8 9 (C) the unit vector. The centre of mass di�usion constant
becomes �cm ∝ :B)#

−a/([1) with the Flory exponent a = 1/2 for an ideal chain and a = 3/5
for an excluded volume chain. The slowest relaxation time, the Zimm time is given by [88]

gZ ∝ [13

:B)
# 3a ,

with the viscosity of the solvent [. Introducing hydrodynamic interactions into the Rouse
model therefore leads the di�usion to become faster as the slowest relaxation time becomes
shorter.
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Design and Testing of a Kinetic
Monte Carlo Model II

In order to study the encounter dynamics of surface proteins with a binding site on an
enclosed polymer, a cubic lattice model is established in this chapter, that allows the numerical
simulation of the respective search process.

1 Introduction

Despite their novelty, computer simulations have evolved into being a widely recognised
complementary approach to research, that bridges the gap between theory and experiment.
While the computationally feasible spatial and temporal scale was highly restricted in early
computer experiments, advances in computer software, development of multiscale modelling
and powerful computers have led to enormous improvements.

After an early paper on Monte Carlo simulations [110], the �rst computer simulations
were reported in 1953 [111], introducing the Metropolis Monte Carlo method to simulate a
liquid represented by two-dimensional rigid spheres. Shortly afterwards, molecular dynamics
simulations were proposed for the �rst time and applied to the assembly of hard spheres
with an attractive square well potential [112]. Further advancements led to the simulation
of a diatomic liquid [113], and water molecules [114, 115], to polymers [116] and other
biomolecules [117].

Molecular dynamics (MD) describes a physical simulation method, where particles are
moved according to Newton’s equations of motion. The interaction potentials between parti-
cles are implemented in form of a functional force �eld, that may be developed from mechan-
ical calculations or empirical knowledge. After the �rst application of MD simulations to the
dynamics of a small globular protein in 1977 [118], improvements in the simulation software,
the accuracy of biomolecular force �elds and computational power enabled the simulation of
increasingly large and complex biomolecules, like the aggregation of dodecylphosphocholine
surfactant molecules into a micelle [119]. The use of modern supercomputers extends the
time scale accessible to atomistic molecular dynamics simulations to the millisecond scale
[120], enabling the direct simulation of fast folding proteins of up to 80 amino acid residues
[121].

Despite the increasingly large range of applications for MD simulations, depending on
the system of interest there are still limitations. Especially regarding the simulation of
solutions, the number of solvent molecules usually outnumbers the number of solutes by
far, complicating the task to obtain meaningful and statistically signi�cant simulations.
This problem has been solved by numerically integrating the Langevin equation instead of
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II Design and Testing of a Kinetic Monte Carlo Model

Newton’s equation of motion [122, 123], which was later termed Brownian dynamics (BD)
simulations [124]. After successfully simulating the dynamics of small molecules [125], BD
simulations were soon applied to polymers [126, 127] and even the self-di�usion [128] and
cyclisation kinetics [129] of DNA.

Monte Carlo (MC) methods are stochastic simulations to sample the con�guration space
under speci�c thermodynamic conditions. Unlike MD and BD, there is no intrinsic temporal
scale in MC simulations. However, in the 1960s MC algorithms started being used to evolve
systems also dynamically, e.g. to simulate the self-di�usion of vacancies in binary ordered
alloys [130]. The �rst thorough description of such a kinetic Monte Carlo (kMC) simulation
is called the n-fold way [131], providing a self-consistent dynamical interpretation of MC
simulations. A very similar approach was developed by Gillespie to simulate chemical
reactions [132]. Kinetic Monte Carlo simulations have been successfully applied to the
dynamics of biomolecules like the folding of nucleic acid hairpins [133], crystal growth [134],
protein folding [135, 136] and the dynamics of �exible polymers [137].

From atomistic MD simulations to Brownian dynamics and coarse-grained kMC simulations,
all mentioned simulation procedures have been successfully used to simulate DNA of varying
resolution. From the �rst application to DNA [138], MD simulations have helped to understand
force-extension curves [139] and the appearance of kinks and bubbles in supercoiled DNA
[140]. While in molecular dynamics DNA molecules of not more than 20 bp length are
commonly used, BD simulations have e�ectively simulated longer DNA strands to investigate
the dynamics of DNA supercoiling [141], loop formation [129] and transport processes of short
DNA segments [85]. In a recent study we successfully used BD simulations of a discretised
WLC model to simulate the dynamics of the buckling transition of dsDNA and RNA [142].
On even larger scales kinetic Monte Carlo simulations can be applied. They have been used
to investigate DNA hairpin folding [133], large-scale chromosomal dynamics [143] and DNA
hybridisation [144].

Our aim is to simulate a long DNA molecule, representing the genome in a bacterial cell or
a chromosome in the nucleus of a eukaryotic cell. Since we want to investigate the dynamics
of encounter with a protein on the surface of the surrounding volume, the challenge lies
not only in the required length scale but also in the time scale of this process. To be able to
achieve this within reasonable computation time, we aim at �nding a suitable lattice model
for the polymer dynamics. To ensure that the model behaves as expected, we verify that it
reproduces Rouse dynamics and compare its results to the ones from o�-lattice BD simulations
for validation. We describe our choice of modelling and implementing the DNA simulations
in the following section before discussing the complete lattice model of the target search
dynamics at the end of this chapter.

2 DNA Simulations

2.1 Model

As outlined in the introductory chapter, a polymer like DNA can be represented by a mul-
titude of di�erent models, depending on the type of solvent, the polymer density and the
desired resolution of the description. To simulate a long DNA molecule for a time span long
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Figure II.1: Discrete wormlike chain. Discrete wormlike chain model of a semi�exible polymer,
de�ning the bending angle \ 9 between segments connecting the beads at positions r9−1,
r9 and r9+1.

enough to capture the target search process in the nucleus or bacterial cell is computationally
challenging. We are therefore looking for a coarse-grained representation of the DNA. Since
bead-spring models that use an entropic spring like the Rouse model loose their validity
in strong con�nement [145], we choose to model the DNA as a freely jointed chain. More-
over, as will be presented in the following sections, there are multiple widely used lattice
representations of a FJC, that allow for an e�cient and fast implementation of the polymer
dynamics.

When modelling for example the DNA in E. coli with around 3.60 × 106 bp inside the cell
with volume ∝ 1 µm3 [4] by a FJC with Kuhn segments of length ;K = 2;p ≈ 100 nm [146] on
a cubic lattice, there are 1000 lattice points for 15773 polymer beads. It is therefore natural to
model the DNA as a phantom chain, where multiple occupation of a lattice point does not
necessarily mean that the polymer has no spatial extension, but it re�ects that our choice
of lattice is so coarse that many polymer segments can easily �t next to each other on a
single lattice site. Moreover, as we intend to simulate the search dynamics in live bacterial
cells or eukaryotic nuclei, the presence of topoisomerases that can cut DNA and allow for
crossings of the polymer is another argument to favour a phantom chain over excluded
volume interactions.

2.2 Brownian Dynamics Simulations

We �rst de�ne Brownian dynamics simulations of the Rouse model that are used to test the
validity of di�erent lattice models for the polymer dynamics. BD simulations make use of the
overdamped Langevin equation to advance the system in time. They provide an e�cient way
of simulating the dynamics of polymers like DNA on length and time scales where inertia
does not play a role. The polymers are therefore typically represented by a coarse-grained
structure like a bead-spring model. When a spring corresponds to a segment shorter than
the persistence length, the polymer can be modelled as a discretised WLC as in our previous
study [142]. A bead-spring representation can also be used to model a FJC by using very sti�
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springs [147] with an equilibrium length equal to the Kuhn length. On an even coarser scale
a spring can correspond to a large number of Kuhn segments that exhibit Gaussian statistics
and would therefore be modelled as an entropic spring.

The overdamped Langevin equation (I.13) for hydrodynamically non-interacting particles
(ζ8 9 = ZX8 9 ) and the bead mobility `1 = 1/Z can be written as

dr8 (C)
dC = −`1∇r8* ({r8 (C)}) + `1f8 (C) ,

with the random force f8 (C) as de�ned before. Using the forward (explicit) Euler scheme
[148] the discrete time Langevin equation becomes [149]

r8 (C + ΔC) = r8 (C) − `1ΔC∇r8* ({r8 (C)}) +
√

2`1:B)ΔCη8 (C) , (II.1)

which provides a way to forward the system in time in the BD simulations. We have de�ned
`1f8 (C) =

√
2`1:B)ΔCη8 (C), such that 〈η8 (C)〉 = 0 and 〈η8 (C)η9 (C ′)〉 = 3X8 9XCC ′ .

2.2.1 Interaction potentials

The polymer is modelled as an ideal chain of # beads connected by springs with a harmonic
potential between nearest neighbours of the form

*s({r8 (C)}) = :s
2

∑
8

( |r8 (C) − r8+1(C) | − ;0)2 , (II.2)

with a spring constant :s and equilibrium distance between neighbouring beads ;0. This
Gaussian chain model can be extended to the discrete wormlike chain by adding a second
potential for bending. Assuming a harmonic bending potential it follows [150]

*b({\8}) =
:B);p

;0

∑
8

(1 − cos\8) ,

with the persistence length ;p and the local bending angle \8 as de�ned in �g. II.1. The total
potential is obtained by* = *s +*b.

In order to validate the dynamics of the lattice polymer models demonstrated later on in
this chapter, we run BD simulations of a Rouse chain by using an entropic spring constant
:s = 3:B) /;2K with zero equilibrium length (;0 = 0) and setting the bending potential to zero
(*b = 0). The discrete time Langevin equation is made dimensionless by measuring lengths in
terms of the Kuhn length G ′ = G/;K and energies in units of :B) (see appendix B1), the time
scale being given by the di�usional time scale ΔC ′ = ΔC`1:B) /;2K = ΔC�/;2K. This leads to the
dimensionless discrete Langevin equation

r′8 (C ′ + ΔC ′) = r′8 (C ′) + ΔC ′F ′8 (C ′) +
√

2ΔC ′η8 (C ′) ,

with F8 (C) = −∇r8* ({r8 (C)}) and dimensionless variables marked by a prime.
The time stepΔC ′ in BD simulations has to be chosen carefully to �nd a compromise between

accuracy and speed of the simulations. It was chosen such that the polymer segments are
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(a) Random walk (b) Linear initialisation (c) Random walk (ssBFM)

Figure II.2: Initial chain con�gurations. (a) Random walk on the 3d cubic lattice without diagonal
bonds. (b) Linear initialisation with segment length equal to the lattice constant 1 = 0.
(c) Random walk on the cubic lattice with allowed bond lengths 1 ∈ {1,√2,

√
3}.

normally distributed, as expected from the Gaussian chain model. Moreover we veri�ed that
the simulated polymer dynamics agree well with the Rouse model (see appendix B1). To
analyse the polymer dynamics of the lattice models, di�erent initial polymer con�gurations
are used, de�ned in �g. II.2. For a random initial con�guration the chain is initialised as a
random walk on the cubic lattice, as shown in �g. II.2a. To test the relaxation of the polymer
also from unusual initial con�gurations, we introduce a linear initial polymer con�guration
with segment lengths equal to the lattice constant 0, depicted in �g. II.2b. Although this
con�guration is rather unlikely especially for a polymer in con�nement, part of the polymer
could be in a stretched out con�guration in our target search simulations due to binding of
polymer segments to the molecule moving on the surface. Both for a polymer initialised as a
random walk and for an initially linear polymer con�guration the mean squared deviation of
the centre of mass and the mean squared deviation of the central polymer bead obtained from
BD simulations of the Rouse model exhibit the expected Rouse scaling (see �g. B.3) according
to eq. (I.16) and eq. (I.17). The simulation results with initially linear chain con�guration are
also shown in �g. II.4. Note that for very small times another regime with linear scaling is
observed. This corresponds to so small bead vibrations that the constraints due to nearest
neighbour interactions do not play a role yet and the bead moves di�usively.

2.3 Kinetic Monte Carlo Simulations

For a system with a discrete range of states, the time evolution of the probability that the
system occupies a certain state can be described by a master equation. A master equation is a
set of �rst-order di�erential equations of the form

d? (x, C)
dC =

∑
x′
[Fxx′? (x′, C) −Fx′x? (x, C)] , (II.3)

with ? (x, C) the probability that the system is in a state x at time C and transition ratesFx′x to
go from state x to state x′ [151]. The probability ? (x, C) is increased by the �ux from all other
states into state x, described by the �rst term in the sum and decreased by the transition out
of state x, determined by the second term. To propagate the system in time, we are interested
in the probability distribution function Ψ(g) for the time of the �rst escape from state x. We
de�ne the survival function � (x, C) = P{g ≥ C |x(0) = x}, i.e. the conditional probability
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that the system is in state x at time C given that it was in the same state at time C ′, which we
set without loss of generality to C ′ = 0. Since the left sum in the master equation vanishes for
the survival function, the time propagation simpli�es to

m� (x, C)
mC

= −'(x)� (x, C) .

We have de�ned the total rate of change '(x) = ∑
x′≠xFx′x. For time independent transition

rates, i.e. a Markov process, the solution of this di�erential equation with initial condition
� (x, C) = 1 is � (x, C) = exp[−'(x)C]. The survival probability is in general related to the
probability distribution function of the �rst escape via

∫ C

0 Ψ(C ′)dC ′ = 1 −� (x, C). Hence the
waiting time distribution can be obtained by

Ψ(g) = m

mC
(1 −� (x, C)) |C=g = '(x) exp[−'(x)g] .

To propagate the system in time and space and numerically simulate the master equation (II.3)
we are interested in the probability density 6(g,x′ |x) that the next event will be a transition
from state x to state x′ and will occur after a waiting time g . It can be conditioned on the
waiting time distribution Ψ(g) and the probabilityFx′x/'(x) to move from state x to state
x′, yielding [151, 152]

6(g,x′ |x) = Fx′x

'(x)'(x) exp [−'(x)g] . (II.4)

To propagate the system between states, di�erent stochastic algorithms have been described,
as summarised in [153]. The most instructive method is the so-called �rst reaction method
introduced in [152]. It makes use of the fact that also for each pathway in the system to
transition from state x to x′ the waiting time is exponentially distributed with Ψx′x(C) =
Fx′x exp[−Fx′xCx′]. In the �rst reaction method the reaction times are computed for all
pathways to obtain the smallest time Cx9 ,min = minx9 Cx9 . The clock is then advanced by
Cx9 ,min and the system is moved to state x9 . Since the �rst reaction method requires the
computation of many random numbers per single time step, it does not provide the most
e�cient implementation of a kinetic Monte Carlo simulation.

The most commonly used method has been introduced by Bortz, Kalos and Lebowitz [131]
and is often referred to as the BKL-algorithm or the n-fold way, but was also introduced by
Gillespie as the direct method [152]. In this algorithm the distribution in eq. (II.4) is directly
sampled. To this end all transition rates in the system have to be computed to choose the
next move with probability Fx′x/'(x). Then a time step is calculated from the waiting
time distribution Ψ(g) = '(x) exp[−'(x)g]. A properly distributed time step is obtained by
choosing a random number A from the unit interval (0, 1) and computing Cexp = − log[A ]/'(x)
[154]. The most challenging step in implementing the direct method is to select and update
all possible events and transition rates. When global search and update methods are used, the
CPU requirements per kMC event increase linearly with the number of processes and the
lattice size [155]. However, our approach of storing events and rates in a container internally
using a hash table, allows insertion and removal of elements with constant time complexity
on average.
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(a) Verdier-Stockmayer move set (b) Generalised Verdier-Stockmayer move set

Figure II.3: (Generalised) Verdier-Stockmayer move set. (a) The Verdier-Stockmayer move set
includes a kink of the end beads by 90° into one of the four possible directions preserving
the connectivity of the chain (end-move) and a kink-jump, where a bead is �ipped into
the opposite corner if the two connected segments are perpendicular to each other. (b)
In the generalised Verdier-Stockmayer model a crankshaft move is added. When four
subsequent polymer beads occupy the four corners of a unit length square on the lattice,
the two beads in the middle can �ip by 90° in either of the two directions.

Another method is the null event algorithm �rst introduced in [156]. For # particles in the
system and a total rate A8 (x) of particle 8 , an upper bound for the total rate of a particle is
de�ned as Amax ≥ max8 [A8]. The system is then advanced in time using

6(g,x′ |x) = Fx′x

A8 (x)
A8 (x)
Amax

1
#
#Amax exp [−#Amaxg] .

This allows to �rst select a particle with probability 1/# , compute its total rate to accept
the choice with A8 (x)/Amax and then choose a move fromFx′x/A8 (x). While the previously
mentioned methods are rejection-free algorithms, not every event in the null event algorithm
is successful. When the total rate of di�erent particles is of the same order of magnitude and
does not change considerably during the course of the simulation, the null event algorithm
can be advantageous since not all transition rates have to be computed at every time step.

We have implemented both the null event algorithm and the direct method in our sim-
ulation framework. As the di�erence in speed of the two methods depends on the exact
con�guration of the simulated system and the parameters, we have used both implemen-
tations interchangeably. Simulation results shown in this thesis however have been solely
obtained using the direct method.

Kinetic Monte Carlo simulations are commonly used with both o�-lattice and on-lattice
models. Since our aim is to �nd an appropriate model for the polymer dynamics on a
cubic lattice, we will restrict our discussion to some of the most commonly used on-lattice
representations.

2.3.1 Verdier-Stockmayer model

The �rst cubic lattice model to study polymer dynamics using Monte Carlo methods was
introduced in 1962 [157] and is nowadays called the Verdier-Stockmayer model. For a cubic
lattice with lattice constant 0 the polymer is represented by a sequence of segments of �xed
length 0 on the grid. The polymer dynamics are implemented by introducing a set of two
distinct local moves, as depicted in �g. II.3a. The two end beads can �ip by 90° into one
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(a) Monomer displacement
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(b) Centre of mass displacement

Figure II.4: Verdier-Stockmayer move set with linear initial con�guration. (a) The mean
squared displacement of the central monomer 61 as a function of time for a polymer with
linear initial con�guration simulated with the Verdier-Stockmayer move set (red). The
MSD is rescaled using the centre of mass di�usion constant �cm, which is obtained by
�tting 63 (C) = 6�cmC . To validate the simulations, the results from BD simulations of
the Rouse model are shown in blue. The dashed lines show the scaling of the monomer
displacement as expected from the Rouse model, i.e. subdi�usive motion at short times
(red) and di�usive motion at long times (blue). (b) The corresponding MSD of the centre
of mass 63. The dashed line shows the scaling of the centre of mass displacement as
expected from the Rouse model, i.e. di�usive motion with di�usion constant �cm.

of the four possible directions while preserving the connectivity of the chain. In this end-
move, if (r# − r#−1) × eG 9 ≠ 0 for 9 ∈ {1, 2, 3} holds, the last bead could be moved to
r′# = r#−1 ± (r# − r#−1) × eG 9 , where we have introduced the unit vectors eG 9 . The second
local move is called a kink-jump, which allows an inner bead to move if the two connected
segments are perpendicular to each other. The bead is then moved to the opposite corner
r′8 = r8+1 + r8−1 − r8 .

Despite its simplicity the Verdier-Stockmayer model without excluded volume interactions
was shown to agree remarkably well with the predictions of the Rouse model [158]. In our
attempt to �nd a lattice model of a FJC that successfully reproduces stable Rouse dynamics, we
therefore started with the implementation of the original Verdier-Stockmayer model. When
the polymer is randomly initialised, both the mean squared displacement of the centre of
mass 63 and the mean squared displacement of the central bead 61 show the scaling behaviour
that is expected from the Rouse model (see �g. B.4). However, when the polymer is initialised
in a linear con�guration, strong deviations from the Rouse model arise at short times, shown
in �g. II.4. The results from corresponding BD simulations of the Rouse model are shown
in comparison, demonstrating that also starting from a linear initial con�guration normal
Rouse scaling is expected.
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(a) Slithering snake move (b) Pivot move

Figure II.5: Global moves. (a) In the slithering snake move an end monomer is removed and reat-
tached in a randomly chosen orientation at the opposite chain end, leading to a reptating
motion of the polymer. (b) In the pivot algorithm a monomer is randomly chosen and
either the left or the right portion of the chain is rotated in a random way around this
monomer.

A common extension to the Verdier-Stockmayer model to avoid pure reptation-like motion
is to add a so-called crankshaft move [159]. As shown in �g. II.3b, if four subsequent polymer
beads occupy the four corners of a unit length square on the lattice, the two beads in the
middle can �ip by 90° in either of the two directions r′8 = r8−1±(r8+1−r8−1)×(r8−r8−1), r′8+1 =
r8+2± (r8+1−r8−1) × (r8 −r8−1). This set of moves is called the generalised Verdier-Stockmayer
move set. While starting with a random initial polymer con�guration the generalised Verdier-
Stockmayer move set still reproduces Rouse dynamics (see �g. B.5), the dynamics of an
initially linear chain are still too slow (see �g. B.6). Although adding the crankshaft move
allows the polymer to move out of the plane, it does not resolve the problem that for a chain
in linear con�guration any motion has to di�use from the polymer ends towards the inner
segments.

A possible solution is to add a so-called slithering snake (reptation) move [160]. As depicted
in �g. II.5a a polymer bead is removed from one of the chain ends and reattached in a random
orientation at the opposite end. When starting with a linear chain con�guration the slithering
snake move would enable also inner polymer beads to move. This is also re�ected in the mean
squared displacement of the central monomer when starting from a linear initial con�guration
(see �g. B.8), which agrees much better with the Rouse model. However, the slithering snake
move leads only to Rouse dynamics in the direction in which the chain can reptate, while the
dynamics in the other directions are still drastically slowed down (see �g. B.9), which also
leads to an unexpected scaling of the centre of mass displacement.

To extend the move options of the polymer further and obtain better agreement with the
Rouse model, more local and global moves can be added. In the pivot (wiggle) algorithm
[161] depicted in �g. II.5b, a monomer is randomly selected and one of the chain ends is then
rotated in a random fashion around this monomer. Another way to improve the mobility of
a polymer chain in linear con�guration is to de�ne a generalised slithering snake move, as
demonstrated in �g. II.6. When the two segments connecting a bead to its neighbours are in
a linear con�guration, the bead can form a kink into one of the four free directions, while
the remaining polymer chain to the right and to the left performs a reptating motion. The
reverse move is then to unfold a con�guration where the next and the last neighbour of a
bead are at the same position by a reptating motion of both sides of the chain and placing
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(a) Generalised slithering snake, inwards (b) Generalised slithering snake, outwards

Figure II.6: Generalised slithering snakemove. (a) The inwards move of the generalised slithering
snake move is allowed when two segments connecting a bead to its neighbours are in
a linear con�guration. The bead then forms a kink into a randomly chosen direction
and both the left and the right half of the chain perform a reptating motion along their
contour. (b) The reverse move is the outwards move of the generalised slithering snake
move. When the last and the next neighbour of a bead are at the same lattice point, the
kink can unfold by a reptating motion of both sides of the chain, placing the end beads in
a randomly chosen orientation.

the end beads randomly. Adding the generalised slithering snake move to the generalised
Verdier-Stockmayer move set leads to a better agreement of the centre of mass displacement
and the monomer displacement with the Rouse model, even when the chain is initially in a
linear con�guration (see �g. B.10). However, the reptating motion still leads to a fast relaxation
in the direction in which the chain is stretched out, while there is too little movement in the
perpendicular directions (see �g. B.11).

While adding more moves led to an overall better agreement between the polymer dynamics
simulations and the Rouse model, the results were still not satisfactory. In the expectation
that relaxing the constraint on the segment length of the chain would yield more realistic
polymer dynamics, we therefore turned to a di�erent model, described in the next section.

2.3.2 Single-site Bond-Fluctuation model with Fraenkel spring

Besides the segment length preserving algorithms introduced in the previous section, a
widely used model to simulate the dynamics of �exible polymers con�ned to a lattice is the
Bond-Fluctuation model (BFM) [162]. In the original Bond-Fluctuation model a monomer is
represented by a unit cube of eight lattice sites, as demonstrated in �g. II.7a. The bond length
connecting the monomers is allowed to �uctuate but is restricted to certain bond vectors
[163] such that chain crossings are not possible and the model represents a self-avoiding walk
(SAW). Monomers are moved by randomly chosen displacements to one of the neighbouring
lattice sites. A move is only accepted if it does not result in an overlap of monomers and if
the segment vector belongs to the allowed set.

Along with the well-known Bond-Fluctuation model discussed above, Carmesin and Kremer
also introduced a so-called single-site Bond-Fluctuation model (ssBFM), which is depicted
in �g. II.7b [162]. Here a monomer occupies only a single lattice site and bonds are free to
occupy also diagonal con�gurations with allowed bond lengths 1 ∈ {1,√2,

√
3}. While the

ssBFM is not as frequently used as the original BFM mostly because of ergodicity problems
when simulating a SAW, this does not apply to simulating a phantom chain.
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Since the allowed bond lengths in the ssBFM are chosen so as to prevent any chain crossings,
we can relax this constraint when simulating a phantom chain, as long as the connectivity
of the chain is ensured by some other measure that still leads to a valid model of a FJC. In
BD simulations a common approach is to approximate a FJC by a bead-spring model. In
fact, when Brownian e�ects are present, a bead-spring model with sti� springs is the more
appropriate model compared to a bead-rod model with rigid constraints (Kramers chain), for
which the random walk is not an equilibrium con�guration, as �rst pointed out in [164]. A
possible way to model a FJC is to use a bead-spring model with sti� Fraenkel springs [147],
i.e. Hookean springs with minimum energy at nonzero extension. In the limit of in�nitely
sti� springs the minimum extension would then correspond to the Kuhn length. Since a
sti� Fraenkel spring requires very small time steps in the BD simulation to resolve the fast
�uctuations of the spring, a more e�cient approach is to use �nitely extensible nonlinear
elastic Fraenkel (FENE-Fraenkel) springs [145]. Inspired by this common practice in BD
simulations, we replace the upper and lower bound of the bond length in the ssBFM by a
Fraenkel spring potential

* ({r= (C)}) =
#−1∑
==1

:s( |r=+1(C) − r= (C) | − ;0)2 , (II.5)

with spring constant :s and equilibrium bond length ;0. As in the Bond-Fluctuation model, the
polymer moves by displacements of single beads, which can hop to one of the nearest lattice
points. The rate of moving a polymer bead then depends on the spring potential as in the
Metropolis algorithm [111], i.e. as :p ·min(1, exp[−* ({r= (C)})/:B) ]), where * ({r= (C)}) is
the con�guration-dependent potential energy according to eq. (II.5) and :p is the simulation
parameter for the polymer move rate. To ensure that this model leads to the correct polymer
conformations and dynamics, the spring constant is adjusted such that it is sti� enough to
represent a FJC and soft enough to reproduce Rouse dynamics (see appendix B3). We chose
a spring constant of :s = 10, which yields a mean segment length of 〈1〉 ≈ 1.13 and was
found to reliably reproduce Rouse dynamics even when the polymer is initialised in a linear
con�guration, demonstrated in �gs. II.8a and B.17. The slight initial deviation from the BD
simulations should not have a major e�ect on our target search simulations, especially since
the Rouse scaling is preserved. This implementation of the polymer dynamics has been
used to simulate the target search dynamics of a one-component receptor in E. coli, which is
described in chapter IV.

2.3.3 Single-site Bond-Fluctuation model

While using a spring potential to ensure the connectivity of the polymer chain leads to the
largest possible con�guration space while still being restricted to the cubic lattice, other lattice
models are far more computationally e�cient. In order to speed up the polymer dynamics
we therefore use a phantom chain implementation of the original ssBFM with segments of
length 1 ∈ {1,√2,

√
3}. As long as the initial chain con�guration is not chosen such that

each segment is at its maximum extension (see �g. B.18), the ssBFM of a phantom chain
agrees very well with the Rouse model (see �gs. B.20 and B.21), shown for a linear initial
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(a) Bond-Fluctuation model (b) Single-site Bond-Fluctuation model

Figure II.7: Bond-Fluctuation models. (a) In the Bond-Fluctuation model a monomer occupies a
unit cube of eight lattice sites. Monomers are connected by bonds of variable length
constrained to a certain bond set to avoid chain crossings. Monomers move by random
displacement of a single lattice spacing, ensuring that they do not overlap and the segment
length restrictions are ful�lled. (b) In the single-site Bond-Fluctuation model a monomer
occupies a single lattice site. Monomers are connected by bonds of variable length
1 ∈ {1,√2,

√
3}, chosen to avoid chain crossings. While the original single-site Bond-

Fluctuation model was intended to simulate a SAW, we are simulating a phantom chain
and therefore also allow moves as shown on the right, where monomers overlap.

con�guration in �g. II.8b. We therefore chose this faster implementation of the polymer
dynamics to thoroughly study the encounter dynamics of a con�ned polymer with a protein
at the surface of the con�nement, described in chapter III. For this model a random polymer
con�guration is obtained by a random walk with lattice bond types 1 ∈ {1,√2,

√
3}, chosen

with probabilities {3/13, 6/13, 4/13} respectively, as depicted in �g. II.2c [165]. This ensures
that given the position of the previously placed polymer bead r8 , the position of the next
bead r8+1 is drawn uniformly from all 13 possibilities. The average squared segment length in
the ssBFM is 〈12〉 = 2.08 (see appendix B4).

Alongside with a phantom chain implementation of the ssBFM, where a lattice site is
allowed to be occupied by multiple beads and bonds, we also implemented a self-avoiding
chain and partial self-avoidance. Self-exclusion of beads and bonds is ensured by forbidding
the overlap of beads and bond midpoints, the latter can be shown to lie on a cubic lattice with
constant 0/2 [165]. For partial self-exclusion the overlap of two beads or bonds is penalised
by an energy cost n , such that for #ov overlaps the total energy is � = #ovn [166]. With the
energy di�erence Δ� between the �nal and the initial con�guration, the polymer move rate
is adjusted by the Metropolis rate min (1, exp [−Δ�/:B) ]) [111].

3 Target Search Simulations

After establishing a way to simulate a �exible polymer as a FJC on a cubic lattice, a simulation
framework was built to numerically simulate the target search of a protein moving on the
surface of a volume for a binding site on a polymer inside the volume. Since we are interested
in the search times, i.e. long time scales that involve many steps on the grid, the discrete
description is a good approximation.
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(a) ssBFM with Fraenkel spring
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Figure II.8: Rouse scaling of the ssBFM and ssBFMwith Fraenkel spring. (a) The mean squared
displacement of the central monomer 61 as a function of time for a polymer with linear
initial con�guration simulated with the ssBFM with Fraenkel spring constant : ′s = 10
(red). The MSD is rescaled using the centre of mass di�usion constant �cm, which is
obtained by �tting 63 (C) = 6�cmC . To validate the simulations, the results from BD
simulations of the Rouse model are shown in blue. The dashed lines show the scaling of
the monomer displacement as expected from the Rouse model, i.e. subdi�usive motion at
short times (red) and di�usive motion at long times (blue). (b) The corresponding MSD
of the central monomer simulated with a phantom chain implementation of the ssBFM
(red) in comparison to results from BD simulations of the Rouse model (blue).

3.1 Con�guration Space

Our model is based on a simple cubic lattice with constant 0, forming either a cube of length
! or the approximation of a sphere of radius ' and volume + , depicted in �g. II.9. The
polymer is represented by # beads with coordinates r = (r1, . . . , r# ) placed on the grid
points, connected by # − 1 bonds for which also diagonal conformations are allowed. From
all polymer beads, =b beads are de�ned as the speci�c binding sites. Each of the =p proteins
occupies a single lattice point on the surface of the volume. Since the polymer is modelled as a
FJC, the mean segment length is chosen to be equal to the Kuhn length ;K. For the ssBFM with
Fraenkel spring constant : ′s = 10 this yields

√
〈12〉0 = ;K with 〈12〉 = 1.32, for the original

ssBFM we obtained 〈12〉 = 2.08 (see appendix B4).

3.2 Dynamics

The polymer dynamics are implemented by random displacements of single monomers
with a rate :p, as described in the previous section, but con�ned to the volume + . The
polymer moves are demonstrated in �g. II.10b, with an example con�guration on the right
that would be restricted by an energy penalty n for a partially self-avoiding chain or forbidden
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Figure II.9: Latticemodel. Model for the kinetic Monte Carlo simulations of the encounter dynamics
of a con�ned polymer with a moving protein at the surface of the con�ning volume. The
volume represents a cell, nucleus or vesicle with the polymer (red) of length # inside
and =p proteins (blue) on the surface. The =b speci�c binding sites on the polymer are
shown in green (a) Cubic lattice of length ! with lattice constant 0. (b) Approximation of
a sphere of radius ' on the cubic lattice.

for full excluded volume interactions of the polymer. The proteins are moving by random
displacements to one of the nearest lattice sites on the surface, i.e. performing a 2d random
walk. The transition rate for moving a protein is connected to the 2d di�usion coe�cient
of the protein �2d and the lattice constant 0 via :2d = �2d/02. Inspired by the ability of
membrane-integrated transcription factors to bind non-speci�cally to DNA, the proteins are
allowed to bind to any polymer bead occupying the same grid point with a rate :on and unbind
with :o�. Bound proteins move with a rate :1d = �1d/02 to a neighbouring polymer bead that
is at the surface (sliding), while bound polymer beads are restricted to move along the surface
with the usual rate :p, thereby dragging the protein. The di�erent moves of the protein are
depicted in �g. II.10a. The rate of moving a polymer bead :p is adjusted numerically such
that the free polymer (on an in�nite lattice) displays a centre of mass di�usion coe�cient of
�0/# , where �0 is the di�usion coe�cient of a monomer. This is necessary because reduced
move opportunities of beads due to excluded volume interactions, a limited move set or
segment length restrictions lead in general to a chain length dependence of the bead di�usion
constant �0 [157, 167]. The di�erent move rates are summarised together with other system
parameters in Table II.1.

3.3 Simulation Process

The simulation is started with initialising the desired simulation volume and de�ning an initial
con�guration of all particles. Most simulations are initialised with a random con�guration
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:2d :on :o�
:1d

(a) Protein movement

:p

(b) Polymer movement

Figure II.10: Protein andpolymermovement. (a) Proteins di�use on the surface with rate:2d, bind
unspeci�cally to the polymer with rate :on, slide along the polymer when bound with
rate :1d and unbind again with rate :o�. (b) The polymer moves by random displacement
of single beads with rate :p, without excluded volume interactions between beads or
bonds. For a (partially) self-avoiding chain, the occupancy of a lattice site by multiple
beads and the crossing of bonds is forbidden (or reduced by an energy penalty n), an
example con�guration being demonstrated on the right.

of the polymer inside the volume, =b beads being de�ned as speci�c binding sites and =p
proteins being placed either randomly onto the surface or at a �xed position as de�ned in a
con�guration �le. While in most of the shown results the simulated polymer is a linear chain,
we also implemented the option to simulate a circular polymer.

With the dynamics as described above, the system is then evolved in time until a binding
site hits a protein at a search time g , thus ending the search process. When both the polymer
and the proteins are placed randomly, a speci�c binding site and a protein can be placed at
the same lattice site, leading to a measured search time of g = 0. We perform ≥ 103 such
simulations for each parameter set and compute the search time distribution Ψ(g) and the
mean search time 〈g〉 to analyse the search process.

4 Discussion

With the aim to construct a simple cubic lattice model to e�ciently simulate the target search
dynamics of a protein moving on the surface of a volume for a binding site on an enclosed
polymer, various polymer models have been tested and evaluated. As a measure for the
correct dynamics, we compared to the Rouse model and to o�-lattice Brownian dynamics
simulations of a Rouse chain.

Since bead-spring models using an entropic spring loose their validity in strong con�nement
[145], the polymer was chosen to be modelled as a FJC. While we have added the option of
(partial) self-avoidance of the polymer, both the coarseness of our model and the presence
of topoisomerases that can cut DNA and allow for crossings of the chain led us to choose a
phantom chain implementation to simulate the polymer.

While the Verdier-Stockmayer move set led to polymer dynamics that were in good agree-
ment with the Rouse model when the polymer was initialised in a random con�guration,
starting from a linear polymer con�guration led to a considerable slow down of the polymer
relaxation and deviations from the expected Rouse dynamics. Adding further moves to the
set, like the crankshaft move and a slithering-snake move, led to some improvement of the
dynamics, however the result was still not satisfactory.
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# number of polymer beads
=p number of proteins
=b number of binding sites
0 lattice constant
! grid size in direction G,~, I (cube)
' radius of spherical grid
:p move rate of the polymer
:2d 2d move rate of the protein
:1d sliding rate of the protein
:on non-speci�c binding rate
:o� non-speci�c unbinding rate
n energy penalty for partial self-exclusion
�0 monomer di�usion constant

Table II.1: System parameters. Parameters de�ning the dimensions of the simulation volume, the
polymer and the proteins, as well as kinetic and binding constants of the target search
simulations.

The rigid constraint on the segment length was therefore relaxed and a single-site Bond-
Fluctuation model [162] was employed, where also diagonal con�gurations are allowed for
the bonds connecting the polymer beads. Inspired by the common practice in BD simulations
to replace the rigid bonds in a FJC by sti� springs, we developed a ssBFM with sti� Fraenkel
springs connecting the beads. As in the ssBFM the polymer is moved by random displacement
of single beads, the move rate being dependent on the spring potential as in the Metropolis
algorithm. When the spring constant is chosen sti� enough to represent a FJC and soft enough
to exhibit Rouse dynamics, this implementation yielded a very good agreement with the
Rouse model, even when the polymer was initialised in a linear con�guration.

While the ssBFM with Fraenkel springs leads to the largest con�guration space of the
polymer, while still being constrained to the lattice, it does not provide the most e�cient
implementation of a lattice polymer model. Implementing a phantom chain version of the
original ssBFM resolves this problem but with the drawback that there are con�gurations
where the segments are at their maximum extension, leading to slower relaxation dynamics
than expected from the Rouse model. However, since also a linear chain con�guration with
segment length 0 led to a very good agreement with the Rouse model, we considered the
dynamics still stable enough for our purpose.

Using either the ssBFM with Fraenkel springs or the original ssBFM with optional (partial)
self-avoidance of the chain we constructed a simulation framework for the target search
of a protein on the surface of a volume for a binding site on an enclosed polymer. Besides
2d di�usion of the proteins on the surface we implemented non-speci�c binding to the
polymer as well as 1d sliding along polymer segments that are at the surface. The simulation
framework allows a thorough investigation of the respective search process. Varying the
di�erent simulation parameters their impact on the dynamics can be studied separately to
identify strategies to speed up the procedure. Moreover, adjusting the parameters to a certain
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4 Discussion

biological process the simulations can be compared to experiments on membrane-integrated
transcription factors or mRNA molecules searching for a nuclear pore complex.
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Search Dynamics of a Polymer
in Con�nement III

Having established a cubic lattice model that allows us to numerically simulate the search
dynamics of a protein moving on the surface of a volume for a binding site on a polymer
inside the volume, we extensively study this process in order to identify possible pathways to
speed up the procedure. The following chapter is adapted from the manuscript that will be
published in [168].

1 Introduction

For many cellular functions it is of vital importance that a binding site on a biopolymer and a
protein on the surface of a con�ning domain encounter each other. It has therefore become
of increasing interest to biological physics to characterise these search processes.

As discussed in chapter I, the dynamics of a cytoplasmic transcription factor searching for
a target on the polymer have been thoroughly studied in the past decades. Also the narrow
escape problem, concerning the mean �rst passage time of a Brownian particle to reach a
small absorbing window in the otherwise re�ecting boundary of a bounded domain is a well
studied problem. While the narrow escape problem is also applicable to small polymers, like
mRNA molecules that have to locate nuclear pores and exit from the nucleus in order to be
translated [30], it does not apply to longer polymers. However, many biological processes
require the colocalisation of a speci�c binding site on a large polymer with a protein located
at the boundary of the con�ning domain. Examples are DNA double-strand breaks that
are relocating to nuclear pore complexes, which has been shown to facilitate the repair
process [31] and recruitment of active genes towards NPCs [35]. An example of boundary-
located proteins binding to the chromosomal DNA in prokaryotes are membrane-integrated
transcription factors like members of the ToxR receptor family.

While the biological examples demonstrate that locating a speci�c binding site on a long
polymer from the surface of a con�ning volume is feasible, the dynamics of these processes
are still highly uncharacterised. In analogy to the facilitated di�usion model for cytoplasmic
transcription factors the main question is to which extent elaborate strategies are required
in order to facilitate the search process. We employ kinetic Monte Carlo simulations of
our coarse-grained cubic lattice model to analyse how a protein moving on the surface of a
con�ning volume locates a binding site on an enclosed polymer.

We �nd that re�ecting boundaries of the con�ning volume lead the search process to
become independent of polymer length in the limit of large polymer densities for ideal chains.
An optimal relative binding rate is identi�ed, showing that the search is facilitated by transient
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III Search Dynamics of a Polymer in Confinement

tethering of the protein to the polymer, as well as an optimal sliding rate for permanently
bound proteins. We explain the stochastic processes leading to the search time distributions
observed depending on the protein di�usion rate, which dominates the search process for
intermediate di�usion rates. Moreover, the slowdown of the search due to exclusion of the
polymer from the corners of the cubic lattice is discussed.

2 Results

Before discussing the results of our numerical simulations in more detail, a brief overview of
the phenomenology that we observe based on the search process is given, as summarised
in �g. III.1. In the results presented in this chapter, distance is measured in units of the
lattice constant 0 and time in units 02/�0, with the monomer di�usion constant �0. Unless
otherwise stated a linear ideal polymer (phantom chain) with the speci�c binding site at the
centre of the polymer was simulated inside a cubic volume. Moreover, we used a random
initialisation of the polymer and the protein.

The dependence of the mean search time 〈g〉 on polymer length # is depicted in �g. III.1a
for simulations of a single static protein initially placed at the face centre of the cubic volume.
The respective simulations did not include non-speci�c binding and unbinding and a single
binding site was placed at the centre of the polymer. The search time increases with polymer
length for short chains but saturates quickly and reaches a plateau as the chain length increases
further.

When a single moving protein is allowed to non-speci�cally bind and unbind to the polymer,
an optimal relative binding rate :on/:o� is observed, shown in �g. III.1b. For decreasing
polymer density (i.e. increasing box size ! or decreasing polymer length # ) the minimum is
shifted towards larger values of :on/:o�.

Varying the surface di�usion rate of a single protein that is not allowed to non-speci�cally
bind and unbind to the polymer, the mean search time is a monotonically decreasing sigmoidal
function with increasing protein di�usion :2d. As depicted in �g. III.1c, the search time varies
between a high plateau for slow protein di�usion and a low plateau for fast protein di�usion
with an intermediate regime where the search is largely dominated by the protein di�usion
rate.

Varying the sliding rate of a moving protein that is approximately permanently bound, i.e.
for high non-speci�c binding rates and low unbinding rates reveals an optimum at around
:1d ≈ 1, shown in �g. III.1d. The position of the optimum is highly conserved, depending
solely on the polymer di�usion rate.

To evaluate the e�ect of the geometry of the cubic volume on the search time a single
static protein is placed either at the corner or at the face centre of the cube. �g. III.1e shows
the ratio of the mean search time to reach the protein at the corner or at the face centre
respectively, where non-speci�c binding and unbinding was not included. The ratio increases
dramatically with polymer length # until it reaches a plateau.

When excluded volume interactions of the polymer are considered, varying the polymer
length in simulations of a single static protein without non-speci�c binding and unbinding
leads to a very di�erent behaviour than for a phantom chain. After an initial strong increase

48



2 Results

0 50 100

2,000

4,000

6,000

polymer length #

se
ar
ch

tim
e
〈g〉
[0

2

�
0
]

(a) Polymer length

100 1010

100

relative rate :on/:o�

se
ar

ch
tim

e
〈g〉
/〈g

0〉 ! = 10 ! = 15

(b) Tethering e�ect

10−10 100

102

104

di�usion rate :2d [�0
02 ]

se
ar

ch
tim

e
〈g〉
[0

2

�
0
]

(c) Protein di�usion

10−7 100 107

0.5

1

sliding rate :1d [�0
02 ]

se
ar
ch

tim
e
〈g〉
/〈g

0〉 # = 100 # = 10

(d) Sliding rate

100 101 102

101

102

polymer length #

〈g c
or
ne
r〉/
〈g c

en
tre
〉

(e) Corner e�ect

0 50 100

200
400
600

polymer length #

se
ar
ch

tim
e
〈g〉
[0

2

�
0
]

(f) Excluded volume

Figure III.1: Phenomenology of the search process. (a) Mean search time 〈g〉 as a function of
polymer length # for simulations of a single static protein placed at the face centre of the
cubic volume without including non-speci�c binding and unbinding. A single binding
site was placed at the middle of the polymer. (b) Mean search time 〈g〉 normalised by
the mean search time 〈g0〉 for :on = 0 as a function of :on/:o� for di�erent box sizes !.
For decreasing polymer density the minimum is shifted towards larger values of the
relative binding rate. (c) Mean search time 〈g〉 as a function of protein di�usion rate :2d
without non-speci�c binding and unbinding to the polymer. (d) Mean search time 〈g〉
normalised by the mean search time 〈g0〉 for :1d = 0 for di�erent polymer lengths and a
moving protein that is approximately permanently bound, i.e. with high binding rate
and low unbinding rate. (e) Ratio of the mean search time to reach the protein at the
corner 〈gcorner〉 and the mean search time to reach the protein at the face centre of the
cube 〈gcentre〉 as a function of # . A single static protein was placed either at the corner or
at the face centre of the cubic box without including non-speci�c binding and unbinding.
(f) Mean search time 〈g〉 as a function of polymer length # for a polymer with excluded
volume interactions. A single static protein was placed at the face centre of the cube
without including non-speci�c binding and unbinding.
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III Search Dynamics of a Polymer in Confinement

the mean search time reaches a small plateau but then it diverges as the polymer density in
the volume increases, demonstrated in �g. III.1f.

2.1 Polymer Length

To investigate the impact of polymer length and the size of the con�ning volume on the
target search problem we �rst consider simulations of a single binding site and a single static
surface protein without non-speci�c binding and sliding.

2.1.1 Search time becomes independent of polymer length

Placing the static protein at the face centre of the cubic box we measure the mean search
time 〈g〉 as a function of polymer length # for di�erent sizes of the con�ning volume !.
Figure III.2a shows the mean search time normalised by 〈g1〉, the mean search time of a
monomer. The search time �rst increases with # , before it reaches a plateau and becomes
independent of polymer length. As apparent from the plot, both the height of the plateau
〈gplateau〉 and the crossover polymer length #cross, i.e. the polymer length for which the initial
increase transitions into a plateau, depend on the volume of the con�nement.

2.1.2 Slow down of linear increase due to compact search

When the polymer is small compared to the con�ning volume, i.e. for the initial increase of
the search time in �g. III.2a, two di�erent regimes can be observed. As stated before, for a
Brownian particle, the mean search time (NET) to reach a circular target of radius 0t at the
boundary of a volume + is given in �rst order approximation by Lord Rayleigh’s formula
[62, 64]

〈g〉 ≈ +

4c�00t
, (III.1)

which agrees well with our simulations (see �g. D.1a). For very small polymers # ≥ 1 the
whole polymer has to move close to the surface to enable the binding site to encounter with
the protein and end the search process. Hence the dynamics are largely dominated by the
centre of mass dynamics of the polymer, which behave like a particle with a reduced di�usion
constant �cm = �0/# , where �0 is the monomer di�usion constant. For very small polymers
we expect 〈g〉 ∝ +# /(4�00t). Therefore the mean search time in �g. III.2a increases linearly
with polymer length for very small polymers, as demonstrated by the red dashed line.

In a recent study [169] the general theory to evaluate the MFPT for regular random walks
in bounded domains has been extended to non-Markovian processes and applied to a reactive
monomer of a Rouse chain looking for a target in a con�ned domain. By computing the
distribution of the positions of all monomers at the instant of reaction the MFPT is calculated,
as well as asymptotic relations for the scaling dependence with the volume. In the large
volume limit the scaling relations for di�erent sizes of the target 0t compared to the polymer
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Figure III.2: Polymer length dependence. (a) Mean target search time 〈g〉 as a function of polymer
length # for di�erent box sizes, normalised with the NET 〈g1〉. The red dashed line is
∝ # . The static protein is placed at a the face centre of the cubic volume, the polymer
is initialised with a random walk and the mean search time is taken over ≥ 103 runs.
After an initially strong increase the mean search time saturates at a certain, box size
dependent level. In the limit of small polymer length, polymers behave much like
Brownian particles, leading to the initial linear increase. (b) E�ective protein size
0e� for di�erent polymer sizes # obtained by �tting the search time normalised to the
polymer length to 〈g〉/# = + /(4�00e�) (blue). The e�ective protein size is approximately
constant, in agreement with eq. (III.4). The e�ective protein size according to eq. (III.3)
is shown for comparison (red dashed line).

are given by

〈g〉 ∝



+

4c�00t
if 0t � ;0√

#
, (III.2)

+

4c�cm0e�
if ;0√

#
� 0t � ;0

√
# , (III.3)

+

4c�cm0t
if 0t � ;0

√
# , (III.4)

where 0e� ≈ 0.711
√
# is an e�ective target radius and ;0 the equilibrium bond length. The

three domains re�ect the di�erent scaling regimes of the mean squared displacement of a
monomer in a Rouse chain. At small length scales < ;0 it moves di�usively with di�usion
constant�0, at intermediate length scales between ;0 and the radius of gyration ;0

√
# it moves

subdi�usively and at large scales > ;0
√
# it again moves di�usively with a reduced di�usion

constant �cm = �0/# . For very small polymers our simulations are in agreement with eq.
(III.4), which can be seen by the initial linear increase of the mean search time, because in
this case the protein is relatively large compared to the radius of gyration.
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III Search Dynamics of a Polymer in Confinement

For longer polymers, # � 1, but still small compared to the con�nement, we observe for
the mean search time 〈g〉 ∝ √# , in accordance with eq. (III.3). In this regime, the movement
of the binding site is not dominated by the centre of mass di�usion of the polymer anymore.
Instead, the subdi�usive motion of a monomer with a mean squared displacement 〈Δr2〉 ∝ √C
(in contrast to the di�usive motion of a Brownian particle 〈Δr2〉 ∝ C ) leads to a compact
search [170]. This means, that the searcher site densely explores the space around the protein
and hits it on average faster than a Brownian particle with the same di�usion constant.
Characteristic for the compact search is that the search time is independent of the actual
protein size [169].

We compute the e�ective protein size 0e� by �tting the search time normalised to the
polymer length to 〈g〉/# = + /(4�00e�) (see �g. D.1b and table D.1) in the limit of large
volume, leading to an approximately constant value for the e�ective protein size independent
of polymer length, shown in �g. III.2b. This is in accordance with eq. (III.4). When we plot
〈g〉/# as a function of ! for e.g. # = 20, we �rst observe an increase steeper than ∝ !3,
because the polymer is large compared to the volume, corresponding to the plateau regime in
�g. III.2a. The transition to ∝ !3 happens when the ∝ √# regime in �g. III.2a is reached and
persists for the linear regime. Therefore, in order to compute the polymer length dependent
e�ective protein size according to eq. (III.3) would require the �t to an intermediate range of
+ , which is di�cult to de�ne.

2.1.3 Decorrelation of subchains leads to search time plateau

After the increase of the mean target search time with polymer length, the curve �attens and
reaches a plateau. In this regime the large volume asymptotics in eqs. (III.2–III.4) is not valid
anymore, instead the search time becomes independent of # . The plateau arises due to the
con�nement of the polymer, which is no longer small compared to the box size.

To quantify this, we de�ne a crossover polymer length #cross when the plateau is reached
for di�erent con�ning volumes, shown in �g. III.3a in red. Since the linear increase in �g. III.2a
is very short, we compute the crossover polymer length by �tting the initial increase of the
search time with polymer length to 5 (# ) = 2

√
# with a �t parameter 2 and taking the

intersect with the plateau value (see �g. D.3a). We compare the crossover polymer length to
the length of a polymer that has a radius of gyration of half the box size #'g = 3!2/(212),
i.e. a polymer that just �ts inside the volume, which is shown by the green dashed line in
�g. III.3a. While the scaling (∝ !2) agrees approximately with #cross, the estimate from the
radius of gyration is much higher than the computed crossover polymer length. If we take
e.g. the curve for ! = 8 in �g. III.2a and compute the number of beads of a polymer with a
radius of gyration of half the box size ('g = 4), this gives #'g = 6'2

g/12 ≈ 47 (for the ssBFM
〈12〉 ≈ 2.08). However, the plot shows that the plateau is already well established for # < 20.
This observation, that considering the radius of gyration the search time plateau would be
expected to be shifted towards longer polymers has been reported before [85]. In this previous
study Brownian dynamics simulations of a polymer inside a spherical con�nement were
used to investigate the time it takes a single monomer to locate a single static protein at the
boundary of the con�nement. For a polymer with gyration radius 'g ≈ 150 they obtained a
crossover polymer length of #cross ≈ 10–15, in good agreement with our simulations. We go
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Figure III.3: Saturation search time and crossover polymer length. (a) Crossover polymer
length #cross when the plateau is reached as a function of box size. The crossover
is computed by �tting the initial increase (from # = 1 to !) of the search time with
polymer length to 5 (# ) = 2√# and taking the intersect with the plateau value as the
crossover polymer length. In comparison the length of the polymer with a radius of
gyration of half the box size #'g = 3!2/(212) is shown by the green dashed line. The
blue data show the average segment length for the binding site between two encounters
with the boundary. (b) Saturation search time as a function of box size for the binding
site at the middle of the polymer (blue) and the end of the polymer (red) respectively.
The dashed lines show the best �t to the data.

beyond what was stated previously and use the possibility to vary the con�nement size in
our simulations to �nd a quanti�cation for the crossover polymer length.

Due to the re�ecting boundaries, polymer segments far apart along the polymer become
uncorrelated in their motion when the polymer in between touches the boundary. Therefore
the con�nement leads polymer subchains to become independent when the polymer is long
enough compared to the simulated cell to frequently encounter the boundary. To quantify
this, we compute how many polymer beads lie on average between two encounters with the
boundary. For a given box size we construct random con�gurations of very long polymers.
Polymers are chosen long enough so that the measured quantities are independent of polymer
length. There are two di�erent quantities that can be computed. First, the average length
of polymer subchains can be computed, if every encounter with the boundary would cut
the chain. On the other hand, we can select a few binding sites along the polymer and
compute the average length of the subchains with a binding site, which we call #boundary.
This means that starting from the selected binding site, we move to the left and to the right
along the polymer and count the number of beads, until a monomer lies at the boundary.
Interestingly, the two quantities di�er considerably (see �g. D.3b), which can be explained
by the waiting time paradox [171], whenever the distribution of subchain lengths does not
follow a Poisson distribution. When selecting a subchain by choosing the position of the
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III Search Dynamics of a Polymer in Confinement

binding site, a subchain is not chosen randomly but with a probability proportional to its size
and therefore the average size of the subchain with the binding site is larger than the mean
subchain size. The average subchain length of the binding site is shown in �g. III.3a by the
blue data. We observe quite a good agreement of the crossover chain length with #boundary.
For polymers larger than #boundary, the average correlated length is still #boundary, so that
additional beads do not in�uence the search time, thus leading to the observed plateau.

2.1.4 Saturation search time

For very long polymers compared to the con�nement it can be assumed that the binding
site movement is dominated by subdi�usive motion, because there is no net displacement of
the polymer centre of mass. The scaling of the mean �rst passage time of a subdi�usively
moving random walker to reach a target inside a domain + with re�ecting boundaries has
been computed in a previous study [170]. In particular, the MFPT averaged over the initial
position has been obtained in the large volume limit to scale as 〈g〉 ∝ + 3w/3f in the case of
compact exploration 3w > 3f. Here, 3w is the walk dimension, de�ned by the mean squared
displacement 〈r2(C)〉 ∝ C2/3w and 3f is the fractal dimension, such that the linear size of the
medium scales as ! ∝ + 1/3f , i. e. 3f = 3 in our case. For the subdi�usive motion of the binding
site it follows that 3w = 4 and we expect the saturation search time to scale as 〈gplateau〉 ∝ !4.
For non compact exploration 3w < 3f it was found that 〈g〉 ∝ + , which is the well-known
result for normal di�usion (3w = 2, 3f = 3). Since for non compact exploration the number of
visited sites grows linearly with the number of steps, the MFPT is proportional to the volume.
For compact exploration however each site is on average oversampled and the mean number
of sites visited grows slower than linearly with the number of steps, leading the MFPT to
increase faster than linearly with the volume.

As demonstrated in �g. III.3b in red, the scaling 〈gplateau〉 ∝ !4 is obtained when the binding
site is placed at one end of the polymer. However, for the binding site at the middle of the
polymer, the saturation search time increases even steeper with box size, as shown in blue.
Deviations could arise because the scaling argument assumes a Markovian random walker,
whereas a monomer inside a polymer has non-Markovian properties [172], because it depends
on the interactions of the other monomers in the chain. Moreover, the protein is assumed
to lie within the con�nement + , whilst it is placed at the boundary in our simulations. This
could have a larger e�ect when the binding site is a mid monomer, because it is kept away
from the boundary by the two polymer strands it is connected to, while an end monomer is
less restricted in its movement.

2.2 Non-Speci�c Binding

So far, the target search of a single binding site at the middle of the polymer for a single static
protein at the surface has been discussed. Now we allow the protein to move with a constant
rate :2d and vary the rates :on and :o� for non-speci�c binding and unbinding of the protein
to the polymer independently to analyse the e�ect on the mean search time.
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Figure III.4: Non-speci�c binding and unbinding. Mean search time 〈g〉 as a function of the
relative binding rate :on/:o� for di�erent values of :o� without sliding. (a) For high
polymer density (! = 5, # = 100) the search time increases for increasing binding rate
and reaches a higher plateau. (b) For intermediate polymer density (! = 10, # = 100) the
search time forms a minimum for large unbinding rates. The search time minimum is at
:on/:o� ≈ 100. (c) For low polymer density (! = 15, # = 100) the search time minimum
is shifted to :on/:o� ≈ 1000 and for very fast unbinding a lower search time plateau is
formed.

2.2.1 Optimum of the relative binding rate

In �g. III.4 the mean search time is shown as a function of the relative binding rate :on/:o�
for varying unbinding rates. Sliding is not included in the shown simulations but we will
comment on its e�ect later. The behaviour depends on the box size !, the polymer length #
and the protein di�usion rate :2d, the latter being discussed below. Hence the mean search
time is shown for constant protein di�usion and di�erent polymer densities, i.e. increasing
box size or decreasing polymer length respectively.

Figure III.4a shows the mean search time as a function of the relative binding rate for very
high polymer density (very small boxes or long polymers). Due to the crowded environment
for high polymer density it is very likely that the binding site is on a polymer segment that is
uncorrelated from the bound segment. Therefore transient binding does not speed up the
search process. Instead, it only hinders 2d di�usion of the protein and therefore slows down
the search. The search time is una�ected for very small binding rates and then increases
monotonically with :on/:o� and reaches a higher plateau. While the initial behaviour is
independent of the unbinding rate, because the binding rate is so small that it does not have
an e�ect and therefore also no unbinding occurs, it a�ects the following course. Especially
for very small unbinding rates the search time increase is very steep and the second plateau
is high. Binding is approximately permanent in this regime of very small unbinding rates
and therefore it dramatically slows down the search process when sliding is disabled, as it
hinders polymer motion without bringing the speci�c binding site closer to the protein.

For medium polymer density, depicted in �g. III.4b, the transition towards a higher plateau
exists only for approximately permanent binding (small unbinding rates). For fast unbinding
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Figure III.5: Protein di�usion rate dependence of non-speci�c binding and unbinding. Mean
search time 〈g〉 as a function of the relative binding rate :on/:o� for di�erent values of
the protein di�usion rate :2d. Sliding was not included in the shown simulations. (a) For
fast protein di�usion (:2d = 100) the search time increases for increasing binding rate and
reaches a higher plateau. (b) For intermediate protein di�usion rate (:2d = 10) the search
time forms a minimum for large unbinding rates at :on/:o� ≈ 100. For smaller unbinding
rates the mean search time increases monotonously with the relative binding rate and
transitions from a lower to a higher plateau. (c) For an immobile protein (:2d = 0) the
search time minimum is shifted to :on/:o� ≈ 100000. For very fast unbinding rates the
mean search time decreases monotonously with the relative binding rate and transitions
from a higher plateau to a lower plateau.

a shallow minimum is formed at :on/:o� ≈ 100, before the curve increases again to reach the
higher plateau. In this regime of larger unbinding rates, where binding is not permanent,
even without sliding of the protein along the polymer it is favourable for the search process
that the protein binds non-speci�cally to the polymer, as demonstrated by the search time
minimum. Transient binding tethers the polymer to the surface for some time so that the
binding site, when it is close by, might reach the protein faster. However, there is an optimal
time the protein spends being bound to reach the smallest target search times.

As shown in �g. III.4c, for very low polymer density a third regime appears. For very
fast unbinding rates no minimum is formed, but a lower search time plateau. Since the
polymer is small compared to the box size, transient binding always brings the binding site
close to the protein. Therefore the search time minimum is shifted towards larger values of
:on/:o� ≈ 1000 and especially very short binding periods speed up the process. The higher
search time plateau now appears only for very small unbinding rates, i.e. approximately
permanent binding.

Enabling sliding of the protein along the polymer does not a�ect the location of the search
time minimum (see �g. D.4). However it has a major e�ect on the two plateaus: instead
of increasing with the binding rate, the search time always decreases and reaches a lower
plateau, showing that binding in general is favourable when sliding is enabled.

Decreasing the protein di�usion rate :2d yields a very similar behaviour as for decreasing
polymer density, shown in �g. III.5. When the protein is di�using very fast on the surface, the
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e�cient search of the protein is only slowed down by non-speci�c binding and increasing the
relative binding rate leads the mean search time to reach a higher plateau. For intermediate
protein di�usion, transient binding leads to the formation of a minimum. While transient
tethering of the protein to the polymer speeds up the procedure in this domain, the duration
of the binding events has to be limited to a certain value. For very slow protein di�usion
or static proteins, binding that is not permanent leads to a lower plateau for larger relative
binding rate, because the protein cannot be slowed down by tethering and therefore the
chance of bringing the binding site closer to the protein speeds up the process.

2.3 Protein Di�usion

We consider the e�ect of protein di�usion on the surface of the enclosing volume and along
the polymer. To this end, the mean search time is computed for varying di�usion rate :2d
and sliding rate :1d respectively.

2.3.1 For intermediate protein di�usion rates the search process is limited by
protein movement

To focus on the e�ect of 2d di�usion along the surface, we simulated a target search without
non-speci�c binding and sliding. In �g. III.6a the mean search time is shown for varying
protein di�usion on the surface and di�erent polymer lengths. When the protein is di�using
very slowly, it has almost no impact on the search time and we observe a plateau. The larger
the polymer, the earlier starts a visible e�ect on the search time, because once the binding
site is relatively close to the protein, it spends more time in the compact search mode if it is
part of a longer polymer and therefore even a slowly di�using protein appears larger than an
immobile protein. At around :2d = 1, independent of polymer length, the mean search time
starts to decrease inversely proportional to :2d, showing that the search process is strongly
limited by the protein di�usion. At around :2d = 103 a lower plateau is reached. In this regime
the protein is so fast that it covers the whole surface, leading to the same result as if the
whole surface was the target. This is shown by the agreement with the mean search times for
:2d →∞ in �g. III.6a, which were obtained by placing a static protein at each lattice point on
the surface.

2.3.2 Sliding rate optimum

The mean search time as a function of the sliding rate is depicted in �g. III.6b for di�erent
values of the unbinding rate and constant binding rate. The behaviour can be separated into
two regimes, depending on the unbinding rate. For very small unbinding rates :o� ≤ 0.1
unbinding events are rather unlikely and we call this domain the “permanent binding” regime.
In contrast, for larger unbinding rates :o� ≥ 1, binding is only temporary and we refer to this
regime as “transient binding”.

For transient binding (:o� ≥ 1) we observe a similar behaviour as for the 2d di�usion rate
in �g. III.6a. After an initial regime, where the sliding rate is too slow to a�ect the search time,
an intermediate domain is reached where the mean search time decreases with the sliding
rate, before a lower plateau is formed. When the intermediate area is reached depends on the
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Figure III.6: Protein di�usion. (a) Mean search time 〈g〉 as a function of the protein di�usion rate
:2d for di�erent polymer sizes # . Between a higher plateau for slow protein di�usion and
a lower plateau for fast protein di�usion the search time varies inversely proportional
with :2d. The data points for :2d →∞ were obtained by placing a protein at each lattice
site on the surface. (b) Mean search time 〈g〉 as a function of the protein sliding rate
:1d for di�erent values of the unbinding rate and constant :on = 100. While for large
unbinding rates the search time varies only slightly between a higher plateau for slow
sliding and a lower plateau for fast sliding, for small unbinding rates the search time
reaches a minimum at around :1d ≈ 1.

unbinding rate. The smaller it is the earlier starts the search time decrease because the protein
spends more time being bound and therefore the sliding rate has a larger e�ect. Since the
protein can only slide along polymer segments that are at the surface, the average distance
that it travels while sliding is not very large. Between the two search time plateaus there is
only a factor of 1.66, meaning that an in�nitely fast sliding protein appears less than twice as
big as a protein that is not sliding. Assuming one polymer bead is located at a �at surface, the
probability that the neighbouring bead is at the surface is ? = 8/17 for a random walk with
diagonal bonds. This leads to a mean number of segments at the boundary of 〈=〉 ≈ 1.68, in
good agreement with the factor between the two plateaus. This factor is highly conserved for
varying polymer length and protein di�usion rate (see �gs. D.5 and D.7). It only increases for
very small boxes (2.33 for ! = 5, see �g. D.6) because at corners and edges the probability for
a neighbouring bead to stay at the surface is larger than assuming a �at surface, as was done
for the estimate above.

The almost constant sliding range, independent of most parameters di�ers from the sliding
range (“antenna length”) in the facilitated di�usion model for cytoplasmic proteins, which
was found to scale with the square root of the di�usion constant of sliding�1d and the average
time of a sliding event g1d, yielding =̄ = 2

√
�1dg1d [37]. However, experimentally obtained
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di�usion coe�cients suggest, that a protein can slide over a range of 100–1000bp [37]. The
length of 1.66 Kuhn segments of DNA (;K ≈ 100 nm = 300 bp) corresponds to 498 bp, which
agrees well with the experimentally calculated sliding range.

For approximately permanent binding (:o� ≤ 0.1) the behaviour changes and we observe
an optimal sliding rate, where the mean search time reaches a minimum. As before, very small
sliding rates lead to a higher plateau, then a minimum is formed before the lower plateau is
reached. The minimum appears only for even smaller unbinding rates if the binding rate is
smaller (see �g. D.8a) because the relative rate :on/:o� determines how much time the protein
spends being bound and there is only an optimum for approximately permanent binding.

This behaviour is similar to what is observed for cytoplasmic proteins reaching a binding
site on a polymer: since the 1d search is more redundant than 3d di�usion, there is an optimum
how much time the protein spends in each mode. In an optimal search the protein spends
half of its time sliding along the polymer and half of its time di�using in free space [44].

However, it is not clear what leads to the search time minimum in our case. Since the
minimum is also observed for :2d = 0 it is most likely not a competition between 2d di�usion
and sliding. Moreover the minimum is only present for approximately permanent binding,
i.e. 2d di�usion cannot play a major role. The position of the minimum at around :1d ≈ 1 is
independent of all parameters and therefore solely depends on the polymer di�usion rate.
When a permanently bound protein slides very fast, it might tether a large fraction of the
polymer to the surface and prevent free di�usion of the polymer. While this also happens
for transient binding, for permanent binding more or less the same portion of polymer stays
tethered to the surface. Also dragging of the protein is reduced when the polymer moves
much slower than the protein moves by sliding. However, this is also the case for shorter
binding periods, where very fast sliding does not lead to a search time increase.

There is no search time minimum for small boxes or small polymers, i.e. when the binding
site is close in space to the bound polymer bead. In this domain it is more likely for the
target search to be successful even when polymer motion is impeded. For short polymers
the binding site is close to the bound site along the polymer contour, making it more likely
for the protein to locate the binding site by sliding. For small boxes the binding site is close
to the bound site in space and more likely to be at the surface, also increasing the chance of
being found by sliding.

2.4 Geometry of the Search Volume

All simulations shown so far have been performed inside a cubic box. We now consider
the e�ect that this geometry has on the target search and compare to simulations inside an
approximately spherical volume.

2.4.1 Polymer length dependent corner e�ect

When a polymer is con�ned such that it is smaller than its natural mean size, i.e. its radius of
gyration 'g, the reduction of the number of accessible conformations leads to a reduction of
the conformational entropy and an increase in the free energy of the polymer. We therefore
expect a certain exclusion e�ect of the polymer from the corners of the cubic box. To quantify
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Figure III.7: Corner e�ect. (a) Ratio of the mean search time to reach a static protein at the corner
〈gcorner〉 and the mean search time to reach a static protein at the face centre 〈gcentre〉 of
the cubic volume as a function of polymer length and for di�erent box sizes. (b) Ratio of
the longest and the shortest mean search time to reach a static protein as a function of
polymer length and for di�erent sizes of the spherical volume.

this, we plot the ratio of the mean search time to reach a static protein at the corner 〈gcorner〉
and the mean search time to reach a static protein at the face centre 〈gcentre〉 as a function
of polymer length and for di�erent sizes of the cubic box in �g. III.7a. The binding site was
placed at the middle of the polymer. While for monomers the corner e�ect is very small, it
increases dramatically with polymer length and independent of the box size. The polymer
length dependence arises because the longer the polymer is, the stronger it is con�ned by
the corner. Only for long polymers compared to the box size the ratio stops increasing and
reaches a plateau, which is the same e�ect that was discussed before. Figure III.7b shows the
corresponding plot for an approximately spherical con�nement of di�erent volume. Since it
is not obvious which of the possible locations of the static protein is most easily reachable
and the least reachable respectively, corresponding to the the face centre and the corner of
the cube, we plot the ratio between the longest and the shortest mean search time. While
di�erent locations of the static protein still lead to di�erent mean search times even for an
approximately spherical volume, the e�ect is considerably smaller than for the cube. The
ratio of search times is still increasing with polymer length, but much less steep compared to
the cubic volume.

2.4.2 Quanti�cation of the corner e�ect

Since the corner e�ect arises due to a reduction of the conformational entropy and therefore
an increase in the free energy of the polymer compared to a free polymer, we attempt to
explain its extent by approximating the free energy of localising a certain monomer at a
certain position inside the cubic box. The probability that the binding site lies in a subvolume
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X+ is given by

P(X+ ) =
(
X+

+

)
exp[−VΔ�loc] ,

with the localisation free energy Δ�loc and the inverse temperature V = 1/:B) . If we consider
the free energy of localising an end monomer at the corner of a cubic box, it can be approxi-
mated by the free energy di�erence between a free polymer (0) and a polymer with the end
tethered to a corner (c) of an in�nitely large box [86]

Δ�loc ≈ Δ�0c = �0 − �c

= V−1 lnZc − V−1 lnZ0 ,

where the equality holds in the limit + →∞. It is well known, that the partition functionZ
of a random walk and a self-avoiding walk can be written as

Z = I##W−1 ,

where I depends on the particular lattice and the critical exponent W depends only on the
dimensionality and the topology of the polymer. With this we arrive at

Δ�loc ≈ V−1U0c ln#

with U0c = Wc−W0. If we assume that the mean �rst passage time of a certain monomer to reach
a certain point in the box is inversely proportional to the probability of this con�guration,
we obtain

〈g〉 ∝ P(X+ )−1 ∝ #U .

Approximate values for the scaling exponents U have been obtained by Monte Carlo
simulations estimating the change in the internal conformational free energy upon localisation
of an end monomer to either an in�nite hard wall or the corner of an in�nitely large cube [86].
The exponents obtained for a 3d self-avoiding walk are summarised in table III.1. Here, “c”
stands for localising a monomer at the corner, “f” stands for localising a monomer at the face
centre, “s” stands for localising a monomer at a sphere and “mid” refers to the mid monomer
being localised instead of the end monomer.

In the same study Monte Carlo simulations of an o�-lattice hard sphere bead-spring model
were used to estimate the exponents for �nite con�nement sizes. While smaller volumes
in general led to smaller exponents, they found already a good agreement with the in�nite
volume exponents for !/'g ≈ 15. Those simulations were also used to estimate the exponent
for the localisation of the mid monomer at the boundary of a sphere, which is shown for
!/'g ≈ 10 in table III.1. The localisation of an end monomer at a sphere for !/'g ≈ 10 is
given by U0s ≈ 0.54, close enough to U0f so that we use Umid

0s as an estimate for the localisation
of the mid monomer at the face centre of the cube.

While the critical exponents W may di�er between 3d random walks and self-avoiding
walks, it was found [173] that their di�erence U is in general very similar. We therefore use
the exponents obtained for self-avoiding walks to compare to our simulation results.
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Figure III.8: Scaling exponents. The red dashed lines show the best �t for the largest simulated
box size, while the black dashed lines show the expected critical exponents according
to table III.1. (a) Mean search time of the end of the polymer to reach the corner of the
box as a function of polymer length for di�erent box sizes. (b) Mean search time of the
middle of the polymer to reach the corner of the box as a function of polymer length
for di�erent box sizes. (c) Mean search time of the end of the polymer to reach the face
centre of the box as a function of polymer length for di�erent box sizes. (d) Mean search
time of the middle of the polymer to reach the face centre of the box as a function of
polymer length for di�erent box sizes.
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In �g. III.8 the mean search time of an end monomer or a mid monomer respectively to
reach the corner or the face centre of the cubic box is shown. The search time is normalised
by the mean search time of a free monomer and plotted as a function of polymer length and
for di�erent sizes of the cubic volume. The red dashed lines show the best �t to 〈g〉(# ) = # 2

with the �t parameter 2 (see table D.2), the black dashed lines show 〈g〉(# ) = #U with the
exponents from table III.1. 〈g〉 ∝ # G indeed holds for the regime before the search time
reaches a plateau. For the end monomer reaching the face centre in �g. III.8c there is quite a
good agreement with the expected exponent for the largest simulated volume ! = 100. For
the end monomer reaching the corner in �g. III.8a we �nd a smaller exponent than expected,
which might be due to the fact that the simulations for ! = 100 were too slow to �nish. The
largest deviations are observed for the mid monomer reaching the face centre of the cube in
�g. III.8d. Since to our knowledge there is no previous data on this exponent, we compared it
to the exponent for the mid monomer reaching a sphere. Although for the end monomer the
exponents for reaching the face centre of a cube and for reaching a sphere are very similar,
it might be that this is not the case for the mid monomer, therefore leading to the large
deviations. In a previous study [86] a good agreement with the in�nite volume estimates has
been found for !/'g ≈ 15. For ! = 60 and # = 100 we obtain !/'g ≈ 21, which is why we do
not expect �nite size e�ects to play a major role. However, in the previous study o�-lattice
simulations have been used, which could lead to an earlier convergence of the exponents.

Random walk: α0f
0.5

Self-avoiding walk: α0f α0c αmid
0s

0.47 1.45 1.01

Table III.1: Scaling exponents. Exponents for the 3d random walk and self-avoiding walk are taken
from [86] and references therein.

2.5 Excluded Volume Interactions

So far, all shown simulations have used a phantom chain implementation of the polymer.
We now investigate the e�ect of excluded volume interactions of the polymer on the target
search process. Moreover, partial self-exclusion of polymer beads and bonds is considered to
transition between a phantom chain and a self-avoiding chain.

2.5.1 Search time diverges after reaching the plateau

The mean search time as a function of polymer length is shown in �g. III.9a for di�erent values
of the energy penalty n , from n = 0 (phantom chain) to n = ∞ (self-avoiding chain). Excluded
volume interactions of the polymer prevent both beads and bonds to occupy any lattice site
more than once. For partial excluded volume this constraint is softened but penalised with an
energy penalty n . With excluded volume interactions between polymer beads and bonds the
mean search time �rst increases linearly, and then reaches a plateau for a small range of #
before it diverges. For partial self-exclusion we observe the same e�ect but the increase for
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Figure III.9: Excluded volume e�ect. (a) Mean target search time 〈g〉 as a function of polymer
length # for di�erent values of the energy penalty n , ranging from n = 0 (phantom chain)
to n = ∞ (self-avoiding chain). The static protein is placed at the face centre of the cubic
volume, the polymer is initialised with a random walk and the mean search time is taken
over ≥ 103 runs. With excluded volume interactions, the search time increases further
and diverges after reaching the plateau, the increase being faster the larger the energy
penalty is. (b) Fraction between the search time with the static protein at the corner
and the search time with the protein at the face centre of the cubic box for a phantom
chain (blue) and a self-avoiding chain (red). The corner e�ect is slightly stronger with
self-exclusion than for a phantom chain.

long polymers becomes less steep the smaller the energy penalty. It therefore transitions into
the curve for phantom chains where the increase for long polymers is replaced by a plateau.
The same plot for larger volumes is shown in �g. D.8b.

Figure III.9b shows the ratio of the mean search time to reach a static protein at the corner
of the cubic box and the mean search time to reach a static protein at the face centre as a
function of polymer length for a phantom chain (blue) and a self-avoiding chain (red). The
ratio increases a bit faster with self-exclusion, showing that the corner e�ect is stronger
than for a phantom chain. This behaviour is expected because the mean size of the swollen
self-avoiding chain is larger than the size of a phantom chain with the same chain length and
therefore it experiences a stronger exclusion from the corners.

2.6 Number of Proteins and Binding Sites

While so far we have only covered target search processes with a single protein on the surface
and a single binding site on the polymer, we shortly comment on the e�ect of increasing the
number of either of the two.
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2.6.1 Linear dependence on the number of proteins and binding sites

The mean search time is inversely proportional to the number of binding sites when the
number of proteins is kept constant and the binding sites are placed far from each other along
a circular polymer, shown in �g. III.10a. This is the expected behaviour when the di�erent
binding sites can be considered as independent searchers. When the number of binding sites
becomes so large that more than one is located on one of the independent polymer segments,
the search time decreases less steep than inversely proportional with the number of searchers.
The same can be observed when the binding sites are placed next to each other along the
polymer.

When multiple static proteins are placed randomly on the surface of the con�nement,
with a single binding site on the polymer, the mean search time �rst decreases steeper than
inversely proportional to the number of proteins, as shown in �g. III.10b in blue. This is an
e�ect that arises because the corners are more di�cult to reach for the polymer than for
example the face centre. The more proteins are placed randomly, the more likely there is
one that is not at a corner and thus easily reachable. Therefore the mean search time �rst
decreases steeper and then inversely proportional with the number of proteins. The decrease
slows down dramatically when a large fraction of the surface is covered with proteins. This
is underpinned by placing the static proteins next to each other at the face centre of the cube,
corresponding to the red data in �g. III.10b. Now the dependence on the number of proteins
is initially linear but becomes less steep as the proteins approach the corners of the cube.

2.7 Search Time Distribution

After extensively discussing the target search process in terms of the mean search times, we
will now consider the search time distribution and what determines its shape. To this end the
probability density function of the search time Ψ(g) is computed from ≥ 103 simulation runs
with varying protein di�usion rate without non-speci�c binding and sliding. Plots of the
cumulative distribution function (CDF) Φ(g) =

∫ g

0 Ψ(C ′)dC ′ for a randomly placed protein are
depicted in �g. III.11 together with the best �t to a single exponential distribution, shown in
red. Depending on the protein di�usion rate di�erent distributions are observed. As we will
see in the following section, the distribution also depends on whether the protein is placed at
a �xed or randomly chosen position on the surface.

2.7.1 Static protein leads to single exponential distribution

For a static protein, placed at a �xed position e.g. at the face centre of the box, the distribution
agrees well with a single exponential (see �g. D.10a), which is the well-known behaviour for
a Brownian particle reaching a small target [174] and has also been reported for polymers
searching for a static target in con�nement [85]. Since the protein is immobile, the search
process depends solely on the di�using polymer and can be described by a single transition
rate :+1 . It therefore can be explained by a two state process

(1
:+1−→ (2 ,
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Figure III.10: Multiple binding sites and proteins. (a) Mean search time 〈g〉 rescaled with the
search time for a single binding site 〈g (1)〉 as a function of the number of binding sites.
The binding sites are either placed next to each other (blue) or as far apart from each
other as possible (red) along the circular polymer. (b) Mean search time 〈g〉 rescaled
with the search time for a single static protein 〈g (1)〉 as a function of the number of
proteins. The proteins are placed either randomly on the surface (blue) or next to each
other on the face centre of the cube (red).

where (1 corresponds to the initial, unbound state and (2 is the state where the binding site
is bound to the static protein. The probability density function Ψ(g) and the cumulative
distribution function Φ(g) are given by (see appendix C1)

Ψ(g) = :+1 4−g:
+
1 ,

Φ(g) = 1 − 4−g:+1 .

with the mean �rst passage time

〈g〉 = 1
:+1

.

However, when the protein is immobile or very slowly di�using (�g. III.11a and
�g. III.11b), and randomly placed on the box surface, the geometry of the cubic simula-
tion box leads to a deviation from the single exponential distribution. As we have seen above,
the process is well described by a single exponential search time distribution with a certain
rate when the static protein is placed at a �xed position. However, since this rate depends on
the speci�c position of the protein on the surface, placing the protein randomly and averaging
over several simulations leads to an overlay of multiple single exponential processes with
di�erent rates. It therefore requires multiple exponentials to describe the process, which we
call a simultaneous multi step process.
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In the case of two di�erent positions of the static protein, it can be described by a three
state process with mixed initial condition, where a fraction G starts in state (3 and a fraction
1 − G starts in state (1,

(1
:+1−→ (2

:−3←− (3 .

(1 and (3 correspond to the unbound state with the two possible positions of the protein and
(2 is the �nal bound state. This leads to a probability distribution (see appendix C2)

Ψ(g) = G:−3 4−:
−
3 g + (G − 1):+1 4−:

+
1 g ,

Φ(g) = 1 − G4−:−3 g + (G − 1)4−:+1 g ,

with a mean �rst passage time

〈g〉 = G

:−3
+ 1 − G

:+1
.

While a weak form of this e�ect is also visible for approximately spherical cells, for the cubic
box it arises mainly due to exclusion of the polymer from the corners.

That the deviation from the single exponential distribution indeed arises due to the corner
e�ect can be shown by simulating a polymer of length # = 1, where the corner e�ect is so
weak that for slowly di�using proteins the distribution is always a single exponential (see
�g. D.9).

When the protein is di�using still slowly, such that the polymer movement dominates, but
fast enough to escape the corners (�g. III.11c and �g. III.11d), the corner e�ect is reduced and
the distribution can be well �tted by a single exponential.

2.7.2 Moving protein leads to sequential two step process

For faster di�using, randomly initialised proteins (�g. III.11e and �g. III.11f), a di�erent e�ect
leads again to a deviation from the single exponential distribution. That the corner e�ect
is not responsible for the deviation can again be shown by simulating a polymer of length
# = 1, where the corner e�ect is so weak that for slowly di�using proteins the distribution
is always a single exponential but for faster protein di�usion the deviation from the single
exponential still persists (see �g. D.9). Since both polymer movement and protein di�usion
signi�cantly contribute to the search process, there are two relevant rates in the system and
we observe the distribution of a reversible sequential two step process

(1
:+1−−⇀↽−−
:−2

(2
:+2−→ (3 .

State (1 corresponds to the initial unbound state and state (3 to the �nal state where the binding
site is bound to the protein. The intermediate state (2 could correspond to con�gurations
where the binding site is already close to the surface, but not yet bound to the protein.
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Figure III.11: Cumulative distribution. (a)-(f) Cumulative distribution function Φ(g) of the �rst
passage time for varying di�usion rate of the protein. The red dashed lines show the
best �t to an exponential distribution. Three regimes can be observed: while for a very
slow and very fast protein the CDF deviates from an exponential distribution, they
agree very well for :2d = 0.01–1.

Assuming the system to be initially in state (1, this leads to the �rst passage time distribution
(see appendix C1)

Ψ(g) = 4−
g
U − 4− g

V

U − V

Φ(g) = 1 − U4
− g

U − V4− g
V

U − V ,

with

U = 2
(
:+1 + :+2 + :−2 −

√
(:+1 + :+2 + :−2 )2 − 4:+1:+2

)−1
,

V = 2
(
:+1 + :+2 + :−2 +

√
(:+1 + :+2 + :−2 )2 − 4:+1:+2

)−1
,

and the mean �rst passage time is given by

〈g〉 = U + V =

(
1 + :

−
2
:+2

)
1
:+1
+ 1
:+2

.
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The above distribution assumes that the system is initially in state (1. However, for random
initialisation it could also be that for some realisations of the search process the system starts
already from state (2, e.g. with the binding site being already at the surface of the con�ning
volume. When a mixed initial condition is assumed, with a fraction G starting from state (2
and a fraction 1 − G starting from state (1, the probability distribution has the form

Ψ(g) =
4−

g
U − 4− g

V + 2
(
U4−

g
V − V4− g

U

)
U − V ,

Φ(g) = 1 −
U4−

g
U − V4− g

V − UV2
(
4−

g
U − 4− g

V

)
U − V ,

where the new parameter 2 corresponds to 2 = G:+2 and the mean �rst passage time is

〈g〉 = U + V − UV2 .

As expected, we �nd a much better agreement of the cumulative distribution function with
randomly placed moving protein with a �t to the sequential two step process with mixed
initial condition (see �g. D.10b) than with a single exponential distribution.

When the binding site on the polymer is placed initially at the surface such that it can be
reached by the protein, we again observe a single exponential distribution when the protein
di�uses so fast that it dominates the search process (see �g. D.11). Since only the protein is
moving the process is again dominated by a single transition rate and can be described by a
two state process.

With self-exclusion of the polymer we expect the search time distribution to show heavy
tails when the polymer density is high. This is because some of the conformations of the
densely packed self-avoiding polymer allow for very few movement, therefore leading to
extremely large search times, much larger than expected from an exponential distribution.
Due to the massive slowdown of the simulations in this regime, we can only observe the
onset of the formation of heavy tails (see �g. D.12), whereas higher polymer densities are not
feasible anymore.

3 Discussion

Kinetic Monte Carlo simulations have been used to characterise the target search kinetics
of a polymer in con�nement and a protein at the surface of the con�ning volume. Di�erent
strategies of speeding up the search process can be identi�ed depending on the polymer
density in the volume.

In accordance with asymptotic calculations of the MFPT for non-Markovian processes [169]
we observe a linear dependence of the search time on the polymer length at lowest polymer
densities, where the search is dominated by the centre of mass di�usion of the polymer. At
intermediate densities the subdi�usive motion of the binding site leads to a compact search
and the search time increases only with the square root of the polymer length, as predicted
by non-Markovian theory.
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While at low polymer densities the size of the polymer plays a major role, the re�ecting
boundaries lead to a saturation of the search time when polymer density becomes high, in
accordance with previous simulations [85]. This is an important e�ect contradicting our
intuition of the search process being complicated by the enormous length of e.g. a bacterial or
eukaryotic chromosome. When an ideal polymer is long enough to frequently encounter the
boundary, polymer segments become uncorrelated in their motion. Therefore the search time
saturates at the value for a polymer that has the length of the correlated segment around the
binding site. For a self-avoiding polymer only a short search time plateau is reached. Then
the increasing polymer length leads to a slowdown of polymer motion and the mean search
time diverges.

The e�ect of non-speci�c binding on the search process also depends on the polymer
density in the volume. Without sliding of the protein non-speci�c binding at very high
polymer densities slows down the search process because the binding site is very likely
uncorrelated in its motion from the bound polymer bead and therefore not brought closer to
the protein by non-speci�c binding. For lower polymer densities however an optimal relative
binding rate can be identi�ed, which increases as the polymer density drops further. Transient
binding tethers the polymer to the surface and since the polymer is small compared to the
volume, it brings the binding site closer to the protein. The lower the polymer density the
more important becomes this e�ect and the optimal binding rate is replaced by a lower plateau
when non-speci�c binding becomes so e�ective that even its negative e�ect of hindering
protein di�usion becomes unimportant.

A similar e�ect of non-speci�c binding is found in dependence on the protein di�usion
rate. While fast di�using proteins are very e�cient in their search and only hindered by non-
speci�c binding, an optimal relative binding rate is found as the protein di�usion decreases to
intermediate values. This optimal relative binding rate increases as the protein slows down
further, since hindering protein di�usion becomes less important and the e�ect of bringing
the polymer closer to the protein dominates.

In contrast to the target search of cytoplasmic transcription factors, where facilitated
di�usion, i.e. the interplay of 1d sliding and 3d di�usion of the protein was shown to be an
important tool to speed up the process, sliding of the protein along the polymer does not play
a central role in our case of surface-located proteins. Since the possible sliding range is greatly
limited by the polymer segments that are at the surface, even in�nitely fast sliding speeds up
the process by only a factor smaller than two. An optimal sliding rate is only identi�ed for
approximately permanent binding of the protein, because a large fraction of always the same
polymer segments is tethered to the surface for very high sliding rates, therefore inhibiting
polymer di�usion. When the binding site is likely to be close to the bound segments, i.e. for
small volumes or small polymers, this does not hinder the search process and the minimum
disappears.

When a static protein is placed at the corner of a cubic box, we observe dramatically larger
search times than placing it at a face centre. This e�ect grows with increasing polymer length
because the polymer is increasingly excluded from the corners. A polymer at a corner has a
reduced number of accessible conformations, leading to a reduction of the conformational
entropy and an increase in the free energy. In the limit of large volumes the change in free
energy can be estimated by the free energy di�erence of a free polymer and a polymer with a
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monomer tethered to the corner of an in�nitely large cube. The estimated exponents for the
scaling with polymer length are in partially good agreement with our simulations. Larger
deviations are observed for a mid monomer reaching the face centre of the cube, however
previous estimates of the exponent are only available for the mid monomer reaching the
surface of a sphere, which might cause the observed deviations.

Cumulative distribution functions of the target search time have been analysed to study
the underlying stochastic process of the search. When either protein di�usion or polymer
movement dominates the search, good agreement with a single exponential distribution is
found. This is the expected distribution for a Brownian particle reaching a target [174] and
has also been reported for polymers searching for a static target in con�nement [85]. When
an approximately static protein is placed randomly at the surface, exclusion from the corners
leads the cumulative distribution function to agree with a simultaneous multi step process,
i.e. an overlay of multiple exponential processes with di�erent rates depending on the initial
condition (the location of the protein). When both protein di�usion and polymer motion
are limiting for the process, we �nd a good agreement with a reversible sequential two step
process. The intermediate state of this process could correspond to con�gurations where the
binding site is already at the surface but not yet bound to the protein.

While the copy number of membrane-integrated transcription factors is typically tightly
controlled and low (for CadC in E. coli on average 1–3 molecules per cell [81]), the number
of nuclear pore complexes per nucleus was found to vary between 1–621 [175, 176], with
varying density among cell types [175]. As we observe an inverse proportionality between
the number of proteins and the mean search time for low protein densities, increasing the
number of proteins could be a way to speed up the process of mRNA molecules locating
nuclear pores to exit the nucleus. Moreover, for small polymers like mRNA molecules, our
simulations predict that transient binding to the protein could facilitate the search. This is
in accordance with the gene gating hypothesis [33], where active genes are brought next to
NPCs, therefore bringing the mRNA close to the protein. As the search is much faster than
for longer polymers and the binding sites are at the ends of the polymer, which are more
mobile than other monomers, the process could also be fast enough without this additional
speedup.

Taken together, our simulations reveal that elaborate strategies to speed up the target
search process, like transient tethering of the polymer to the surface, are mainly relevant at
low polymer densities, while at high densities a decorrelation of polymer subchains due to
the con�nement facilitates the search process even for very long polymers.
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Search Dynamics of a
Membrane-Integrated

One-Component Receptor IV
After the extensive study of the numerical target search simulations in the previous chapter,
the application to a speci�c one-component receptor in E. coli will be discussed. The following
chapter is adapted from the manuscript published in [177] and contains results obtained in
collaboration with Sophie Brameyer and Elisabeth Hoyer from the group of Prof. Dr. Kirsten
Jung, who carried out all experiments.

1 Introduction

In order to adapt to �uctuating environments with frequent changes in nutrient conditions and
communication signals, but also life-threatening conditions such as environmental stresses
and antibiotics [178], bacteria have evolved sophisticated signalling frameworks, primarily
based on one- and two-component systems [18, 19]. While the target search dynamics of
two-component systems, featuring a sensor kinase and a separate cytoplasmic transcription
factor have been thoroughly studied, as discussed in chapter II, the kinetics of one-component
systems with a membrane-integrated sensor that directly binds to the chromosomal DNA
still harbour many open questions.

In one-component signalling systems, a single protein functions both as a sensor of envi-
ronmental conditions and as a response regulator [18]. For those of them that are membrane-
integrated sensors and DNA-binding transcription factors the open question is how they locate
their speci�c binding site on the chromosomal DNA from the membrane. This is the case
for one-component systems of the ToxR receptor family, for example the pH stress-sensing
receptor CadC in E. coli [24].

CadC is a particularly well studied membrane-integrated one-component receptor. It is
part of the Cad system in E. coli, which is a pH stress response system that also depends on
signalling input from the lysine-speci�c permease LysP [82]. The Cad system alleviates acidic
stress by activating the synthesis of the lysine/cadaverine antiporter CadB and the lysine
decarboxylase CadA. CadA catabolises the decarboxylation of lysine to cadaverine and CO2,
which counteracts acid stress through consumption of cytosolic protons. Cadaverine is then
exported by CadB in exchange for lysine. CadA and CadB are encoded by the cadBA operon,
which is transcriptionally upregulated by speci�c binding of CadC upstream of the promoter
[179], shown in �g. IV.1. Activation of CadC is caused by an acidic pH in the presence of
external lysine and inhibited by the presence of cadaverine. The transient response of CadC
leads to tightly controlled cadBA transcription and is required because under stress conditions
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Figure IV.1: Cad system in E. coli. The Cad system is a pH stress response system in E. coli. The
one-component receptor CadC (blue) is a membrane protein with a periplasmic (PP)
domain, a transmembrane (CM) helix and a cytoplasmic (CP) DNA-binding domain. It
is activated by acidic pH in the presence of external lysine (red) and inhibited by the
presence of cadaverine (dark blue). Upon activation CadC homodimerises and binds
to the two CadC binding sites within the cadBA promoter, inducing the expression of
CadA and CadB. The lysine decarboxylase CadA (yellow) converts lysine to cadaverine,
which is exported by the lysine/cadaverine antiporter CadB (green). While the external
pH and the presence of cadaverine are both sensed by the periplasmic domain of CadC,
the availability of external lysine is transduced to CadC via the co-sensor and inhibitor
LysP (orange) by inhibiting homodimerisation of CadC. The elongation factor P (EF-P) is
shown in grey.

CadA quickly increases to up to 2 % of cellular protein [83]. Both sensing changes in the
external pH and binding to cadaverine was found to proceed within the periplasmic domain
of CadC [180, 83], whereas the availability of external lysine is transduced to CadC via the
co-sensor and inhibitor LysP by inhibiting homodimerisation of CadC [181, 182]. A drop in
external pH induces dimerisation of the periplasmic sensory domain of CadC, leading to a
structural rearrangement of the cytoplasmic linker and homodimerisation of the DNA-binding
domain [180, 183, 24]. The CadC protein number is extremely low (on average 1–3 molecules
per cell [81]), mainly due to a low translation rate caused by polyproline stalling, which is
only partially relieved by elongation factor P (EF-P) [184].

The three models of how membrane proteins can be localised in bacterial cells, described
earlier and depicted in �g. I.5, have been experimentally evaluated for CadC, leading to
the best agreement with the di�usion and capture mechanism [81, 82, 83]. An observation
arguing against proteolytic cleavage is that extracellular cadaverine rapidly deactivates the
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CadC response after the original stimulus, which would not be feasible if the DNA-binding
domain was separated from the rest of the molecule [82]. As for the transertion mechanism,
moving the cadC gene to a locus far from its native position, which is close to the CadC
target site on the DNA would be expected to reduce CadC activity. However, relocating cadC
to the lac operon did not show any e�ect. The di�usion and capture mechanism however
appeared consistent with experiments that imaged �uorophore-labelled CadC in vivo [81].
The experiments showed that after cells were shifted to a medium providing acid stress and a
lysine-rich environment, localised CadC spots appeared in �uorescent microscopic images
and disappeared again upon removal of the input signals. Moreover, the number of CadC
spots was positively correlated with the number of DNA binding sites, indicating that the
spots correspond to CadC-DNA complexes with a much lower mobility than freely di�using
CadC in the membrane.

Therefore, the existing data suggest that the one-component system CadC establishes the
protein-DNA contact required for transcription regulation not by a conventional target search
akin to cytoplasmic transcription factors, but instead by 2d di�usion of the protein in the
membrane and �uctuations of the DNA conformation that occasionally bring the DNA region
of the target site close enough to the membrane to be captured by the protein. Intuitively,
a successful di�usion and capture event seems highly unlikely. However, that such events
occur was independently demonstrated in an experiment that arti�cially tethered the Lac
repressor to the cell membrane [185], which was still able to inducibly repress transcription
from a chromosomal reporter. Hence, the striking questions are how this type of target search
is kinetically feasible and on which time scale.

Here, we address these questions using E. coli CadC as a model system. We measure the
search time of CadC to its target DNA binding site in single cells by probing the formation
of �uorescent CadC spots at di�erent times after a medium shift to low pH and rich lysine
conditions. This yields experimental search time distributions that we compare against �rst
passage time distributions obtained from stochastic models [186]. We also measure the mobil-
ity of a chromosomal locus in our experimental setup using a �uorescent repressor/operator
system to inform our kinetic Monte Carlo simulations of the target search dynamics. These
simulations are able to reproduce the experimental behaviour and to elucidate properties of
the search process that we cannot obtain experimentally.

2 Results

2.1 Experimental Search Time Distribution

Before summarising the main results of investigating the target search of CadC for its speci�c
binding site on the DNA, we discuss the experimental measurements and data analysis leading
to search time distributions that are comparable to our simulations.

2.1.1 Experimental model system

In the present study, CadC serves as an experimental model system to investigate the DNA
target search of a membrane-integrated transcription factor, depicted in �g. IV.2. To probe
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Figure IV.2: Target search by CadC. The target search of membrane-integrated transcription factors
is investigated by experimentally measuring the response time of CadC. The molecular
model on the right shows CadC in blue, di�using in the membrane and forming two
dimers to bind to the two CadC binding sites within the cadBA promoter (CadC1 and
CadC2), displayed in green. The cadC gene is located upstream of the cadBA operon.

the kinetics of this search process in individual cells, it is crucial to have a well-de�ned initial
state and clear “start” and “stop” events. When cells are initially grown in a medium with
neutral pH, CadC is inactive and homogeneously distributed in the membrane [81]. A sudden
medium shift to low pH and rich lysine conditions then serves as a suitable “start” trigger,
which activates CadC via the signal transduction mechanism described above and starts
the target search process. Dimerisation of CadC is expected to occur on a much faster time
scale than the protein-DNA search process, as discussed below. Detecting the successful
termination of the target search is challenging. Here, we exploit the previous �nding that
the formation of stable CadC-DNA complexes is visible as distinct spots in �uorescence
microscopy images [81]. The study excluded that spot formation occurs solely due to low pH,
using a pH-independent CadC variant that showed spots at both neutral and low pH. The
connection between spot formation and CadC DNA-binding was derived from the observation
that no spots were formed when CadC was rendered unable to bind DNA, and the number of
spots per cell correlated with the number of DNA binding sites for CadC. When the DNA
binding site was deleted, only 20 % of cells formed spots, possibly due to non-speci�c binding
to the DNA. We take this into account in our quantitative analysis below.

2.1.2 Experimental measurement of CadC target search times

Three E. coli strains were used with di�erent binding site con�gurations on the chromosome
(see appendix E1): (i) N-PcadBA (wild type), with the native DNA binding site at 93.9′, relatively
close to the origin of replication (ori) [187], (ii) T-PcadBA, with the binding site relocated to
the terminus, and (iii) N+T-PcadBA, with both binding sites, illustrated in �g. IV.3. To visualise
the temporal and spatial localisation of CadC in vivo, each of the strains was transformed
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with plasmid-encoded mCherry-tagged CadC, which slightly increases the average number
of CadC molecules per cell to 3–5 [81]. After the medium shift at C = 0 min, �uorescence and
phase contrast microscopy images of di�erent cells sampled from the same culture every
minute were taken (see appendix E2).

Image analysis tools were used to detect �uorescent spots within the cells, evaluating
between 859 and 2506 cells per time step. To analyse the �uorescence microscopy images for
CadC or ParB spots within the cells, we used Oufti [188], an open-source software designed
for the analysis of microscopy data for cell segmentation of the phase contrast microscopy
images. The resulting cell outlines were used in a custom-written software implemented in
Matlab to detect �uorescent spots. Brie�y, a graphical user interface (GUI) was implemented
that allows testing the parameters in a test mode before running the actual detection (see
�g. E.3). In detection mode a function SpotDetection.m is called, that iterates through all
frames and all cells. For each cell, from pixels in the �uorescence microscopy images the
intensity of which is above a threshold de�ned by the parameters and dependent on the
mean and variance of the �uorescence signal within the cell the connected components are
computed. The components are checked for minimum and maximum size and minimum
distance to other spots before being added to the list of spots. For further computations,
information on all cells and spots were saved for all frames corresponding to a certain time
after receptor activation.

Based on these data, we determined the fraction of cells with at least one �uorescent spot,
a (C) = #cells with spot(C)/#cells(C) at each time C after CadC activation. To take into account the
initial fraction of spots attributed to non-speci�c DNA binding (see above), we de�ned the
response function

A (C) = a (C) − a (0)
a (∞) − a (0) , (IV.1)

which rises from zero to one. Here, the asymptotic value a (∞) accounts for the fact that
�uorescent spots are never detected in all cells (see the raw data in �g. E.1). This is likely due
to the heterogeneous distribution of CadC [81]: Given the low average copy number, some
cells are expected to have less than the two molecules required for dimerisation. Additionally,
some spots may have been missed by the spot detection algorithm, in particular for cells
that were not perfectly in focus. The time-dependent response A (C) for our three strains is
shown in �g. IV.3, with examples of �uorescence microscopy images of cells at C = 0 min
and the last time point. Before analysing the experimental response functions, we discuss
the description of the target search as a stochastic process and derive theoretical response
functions for comparison with the experimental data.

2.1.3 The target search as a stochastic process

To conceptualise the CadC target search process and the experimental response function,
eq. (IV.1), we turn to a coarse-grained model, in which the CadC search for a speci�c binding
site on the DNA can be described by a stochastic process with a small number of discrete
states. Since both CadC and the DNA must move in order to establish a speci�c protein-DNA
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Figure IV.3: Experimentally measured target search by CadC. (a) Three E. coli strains with
di�erent positions of the cadBA promoter: N-PcadBA with the native DNA binding site
close to ori, T-PcadBA with the binding site at the terminus and N+T-PcadBA with both
binding sites. (b) Experimental results from CadC spot detection. Fluorescent microscopic
images were taken every minute after receptor activation and analysed for CadC spots for
the strains de�ned in panel B. The plot shows the response A (C), de�ned as the normalised
fraction of cells with �uorescent spots as a function of time C after exposure to acid
stress. Error bars correspond to the propagated standard deviation of a (C) from averaging
over multiple data sets. The dashed lines in the plot show a �t of the response function
to the CDF of a sequential reversible two-step model with mixed initial condition for
N-PcadBA, shown in blue dots and with �xed initial condition for T-PcadBA (red squares)
and N+T-PcadBA (green diamonds). (c) The �uorescence microscopy images demonstrate
how �uorescent spots appear after receptor activation.
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contact, it is reasonable to assume a reversible sequential process with an intermediate state,

(1
:+1−−⇀↽−−
:−2

(2
:+2−→ (3 .

Here, state (1 corresponds to con�gurations where the DNA target site is not in direct vicinity
of the membrane, while CadC is delocalised on the membrane, unbound to the DNA. State
(3 corresponds to the �nal state where CadC is bound to a speci�c target site on the DNA.
The intermediate state (2 could then correspond to con�gurations where the DNA segment
containing the target site is close to the membrane, but CadC is not bound to this segment.
The transition rates between these states are denoted as :+1 , :+2 , and :−2 .

We are interested in the �rst passage time g to reach the �nal state (3, which corresponds
to the target search time within this coarse-grained description. The probability distribution
Ψ(g) for this time is calculated by making the �nal state absorbing, using standard techniques
[186] (see appendix C1). Assuming that the system is initially in state (1, the �rst passage
time distribution is

Ψ(g) = 4−
g
U − 4− g

V

U − V , (IV.2)

where the two time scales U and V of the exponential functions are related to the transition
rates via

U = 2
(
:+1 + :+2 + :−2 −

√
(:+1 + :+2 + :−2 )2 − 4:+1:+2

)−1
,

V = 2
(
:+1 + :+2 + :−2 +

√
(:+1 + :+2 + :−2 )2 − 4:+1:+2

)−1
,

implying that U > V . At large times, the distribution Ψ(g) decays exponentially (decay time
U), whereas the time scale V corresponds to a delay at short times. Hence, increasing U leads
to a slower decay and increasing V to a longer delay.

To relate the �rst passage time distribution to our experimental response function, eq. (IV.1),
we consider the cumulative distribution function (CDF) de�ned by

Φ(g) =
∫ g

0
Ψ(C)dC ,

which is the probability that the �rst passage time is less than or equal to g . Experimentally,
Φ(g) corresponds to the fraction of cells in which the target search was successful by time g .
The response function in eq. (IV.1) is our best proxy for this fraction of cells, and hence we
identify

Φ(g) =̂ A (g) ,
such that one can use the CDF of the reversible sequential process as a �tting function for
our data. The cumulative distribution function for Ψ(g) of eq. (IV.2) is

Φ(g) = 1 − U4
− g

U − V4− g
V

U − V . (IV.3)
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However, using eq. (IV.3) amounts to the assumption that all cells are initially in state (1.
If we allow for the possibility that some cells are in state (2 when CadC is activated, we
have a mixed initial condition, where the process starts either from state (1 or from state (2.
Denoting the fraction of cells that are initially in state (2 by G , such that a fraction 1−G starts
in state (1, we obtain a �rst passage time distribution and associated cumulative distribution
function of the form

Ψ(g) =
4−

g
U − 4− g

V + 2
(
U4−

g
V − V4− g

U

)
U − V ,

Φ(g) = 1 −
U4−

g
U − V4− g

V − UV2
(
4−

g
U − 4− g

V

)
U − V ,

(IV.4)

where the new parameter 2 corresponds to 2 = G:+2 .
We use eq. (IV.3) and eq. (IV.4) as �t functions to describe our experimental response

functions. We obtain the average and the variance of the search times analytically from the �t
parameters U , V and 2 , including the statistical errors for both of these quantities (table IV.1),
using error propagation and the full statistical covariance matrix for the parameters, see
tables E.2 and E.3 and appendix C1. For instance, the average value of the distribution eq. (IV.2),
referred to as the mean �rst passage time, is

〈g〉 = U + V =

(
1 + :

−
2
:+2

)
1
:+1
+ 1
:+2

.

This corresponds to the average time for the �rst step (1/:+1 ) multiplied by the average number
of trials needed to reach the second step, plus the average time for the second reaction step
(1/:+2 ). In cases where one of the reaction steps is rate limiting, the mean �rst passage time is
simply the inverse of the limiting rate, and the process simpli�es to a two-state process with
an exponentially distributed �rst passage time. Similarly, for eq. (IV.4), the mean �rst passage
time is

〈g〉 = U + V − UV2 . (IV.5)

2.2 Mean Search Time

After computing the response function A (C) for all three strains, we �t the data to the CDF of
the theoretical models described above using the curve_�t function of the scipy module in
Python, choosing a trust region re�ective algorithm, which is an evolution of the Levenberg-
Marquardt method that can handle bounds.

2.2.1 The mean search time is less than 5min and not a�ected by relocation of the
target site

We �rst analysed the experimental response A (C) in the wild type strain. The wild type data
(N-PcadBA) in �g. IV.3 (blue dots) show an initially fast increase, followed by a more gradual
saturation. This behaviour is not well described by eq. (IV.3), but captured by eq. (IV.4) with
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Figure IV.4: Fluorescent spots of ParB. A sequence of �uorescence microscopy images of the same
cells showing ParB as �uorescent spots. The position of ori at low pH is estimated by
inserting a parS gene close to it and letting ParB-yGFP bind to it.

the mixed initial condition, as can be seen by the �t to the data represented by the blue
dashed line in �g. IV.3. From the �t parameters U , V , and 2 , we computed the mean search
time according to eq. (IV.5), �nding 〈g〉 ≈ 4.84 ± 0.19 min. This result is consistent with the
transcriptional response of the target genes cadBA, which was previously probed by Northern
blot analysis, �nding that the cell-averaged cadBA mRNA level starts to increase about 5 min
after receptor activation [82].

In order to assess whether the position of the DNA binding site along the chromosome
a�ects the target search, we analysed the behaviour of strain T-PcadBA, which has the CadC
DNA binding site at the terminus instead of the native position. The corresponding response
function shown in �g. IV.3 (red squares) features a less pronounced initial increase than
observed for N-PcadBA, and the dashed red line shows an adequate �t using the sequential
model with �xed initial condition in eq. (IV.3). The calculated mean �rst passage time of
〈g〉 ≈ 4.20 ± 0.15 min is comparable to that for the wild type strain. The slower initial increase
is compensated by a faster increase at later times to yield a slightly smaller mean search
time. To characterise the shape of the mean �rst passage time distributions, we calculated the
variance f2 of Ψ(g), see table IV.1, which is smaller for strain T-PcadBA than for the wild type.

2.2.2 Search time is decreased with two chromosomal CadC binding sites

After observing essentially the same mean search time for two very distant locations of CadC
target sites on the chromosome, we wondered how a strain harbouring both target sites
would behave. We therefore repeated the measurements for E. coli strain N+T-PcadBA, which
has the native DNA binding site and additionally the binding site at the terminus. As shown
in �g. IV.3 (green diamonds), the response function of this strain saturates much earlier than

Strain 〈τ 〉[min] σ2 [min2]
N-PcadBA 4.84 ± 0.19 49.6 ± 8.8
T-PcadBA 4.20 ± 0.15 17.6 ± 2.0
N+T-PcadBA 2.02 ± 0.12 4.09 ± 0.66

Table IV.1: Means and variances of the search time distributions. Results from �tting the exper-
imentally computed CDFs to the sequential reversible model with mixed initial condition
(N-PcadBA) and �xed initial condition (T-PcadBA and N+T-PcadBA). The �t parameters U , V
and 2 were used to compute the mean �rst passage time 〈g〉 and the variance f2 with
statistical errors obtained from error propagation using the full covariance matrix, see
tables E.2 and E.3 and appendix C1.
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for the other two strains. Fitting the response data to the sequential model with �xed initial
condition (eq. (IV.3)), we obtained a mean �rst passage time of 〈g〉 ≈ 2.02 ± 0.12 min, which
is only around half of the time than for a single chromosomal binding site.

2.2.3 Colocalisation of CadC spots with the DNA binding site

We also wondered whether the �uorescence spots indicating the position of stable CadC-DNA
complexes in single cells would show a similar spatial distribution as the cadBA locus. We
therefore analysed the localisation of CadC spots along the long axis of the cell in E. coli wild
type. As an estimate for the position of the cadBA locus along the cell, we tracked the position
of ori at low pH. Towards this end we inserted a parS gene close to ori and let ParB-yGFP bind
to it, making the ori region visible as a �uorescent spot in microscopy images, demonstrated
in �g. IV.4. The results from the image analysis were used to compute trajectories of ParB
spots in a custom-written Matlab script by selecting the closest spots in subsequent image
frames.

As the position of chromosomal loci depends on the progression of the cell cycle [6],
we grouped cells according to their length into three classes. Figure IV.5 shows the spatial
distribution of the relative spot positions along the half long axis for these three length classes,
comparing ParB spots (blue) to CadC spots (orange). The large overlap of the distributions
implies a similar cell age dependent localisation of ori and CadC spots along the long cell
axis, suggesting that CadC spots indeed form close to the DNA binding site.

2.3 Numerical Simulations

To gain more insight into the dynamics of the target search, we turned to a coarse-grained
biophysical model for the coupled dynamics of CadC and the DNA. We simulated the search
of a CadC dimer for its target DNA binding site using a lattice model and a kinetic Monte
Carlo approach.

2.3.1 Biophysical model

Since the target search of CadC for its DNA binding site(s) has been experimentally shown
to succeed within a few minutes, we were aiming at �nding the simplest coarse-grained
model that can rationalise this fast response. We constrained our simulations to the main
components of the target search: DNA with one or two speci�c binding sites moving inside
an E. coli cell represented by a cubic lattice and one CadC bead di�using in the cell membrane,
depicted in �g. IV.6. Starting from a random initial con�guration, the DNA molecule moves in
the cytoplasm and the CadC dimer di�uses in the membrane until it reaches the speci�c DNA
binding site to end the search process. This reduced model does not account for non-speci�c
binding and sliding of the dimer on the DNA. As we take the average over di�erent initial
conditions, the small fraction of initial states that are already close to the target state and for
which the search time is overestimated by the approximation should be negligible given our
typical lattice sizes.
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Figure IV.5: Localisation of ori andCadC spots. Localisation probability of CadC spots in N-PcadBA
cells (orange) and ParB localisation marking ori (blue) along the half long axis of cells.
The half long axis is normalised such that mid-cell is at G = 0 and the poles are at G = 1.
Overlaps of the two distributions are shown in darker orange. Cell age is taken into
account by splitting all occurring cell lengths into ten equally spaced steps Δ; and pooling
the cells according to their size. From the ten di�erent age classes we observed similar
localisation probabilities for ; = (1 to 2)Δ; (a), ; = (2 to 6)Δ; (b) and ; = (6 to 10)Δ; (c),
which are therefore grouped together in this plot.

2.3.2 CadC dimerisation

CadC dimerisation was not simulated explicitly, instead the CadC beads on the cell surface
correspond to already formed dimers. To justify this, we estimate the time of dimerisation for
two CadC monomers using the approximate formula eq. (I.2) for the mean time for a particle
moving with di�usion constant � on the surface of a sphere of radius ' to �rst encounter a
trap of radius 0t. To estimate the time of dimerisation for two moving CadC monomers with
di�usion constant �1 and radius A1, we insert the relative di�usion constant � = 2�1 and
the contact radius 0t = 2A1. Using a sphere of the same typical surface area as a cell, 4.40 µm2

[189], we obtain ' = 0.59 µm. For the radius of a CadC monomer we use A1 = 2.40 nm [190]
and for the CadC monomer di�usion constant �1 = 0.34 µm2 s−1, which is a typical value for
a membrane protein with a single transmembrane domain [191]. We then obtain a mean �rst
encounter time of 5.1s, much faster than the total observed response time of several minutes
and therefore allowing us to omit this step in our biophysical model of the target search.

2.3.3 Realistic simulation parameters

To compare our target search simulations to our experiments we used parameter values based
on experimental estimates, summarised in table IV.2. In the following, we refer to these
parameter values as the “realistic parameter set”. Since the move rates for CadC dimers and
the DNA molecule are based on in vivo measurements, they implicitly take into account
e�ects due to crowding in the cytoplasm and in the membrane.

The E. coli cell volume of ∝ 1 µm3 is approximated by a simulation box of volume !3

with ! = 120 and lattice constant 0 = 88.42 nm, yielding a cell volume of + ≈ 1.20 µm3.
The E. coli chromosome with 4 639 221 bp [192], which measures 1.58 mm corresponds to a
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:2d

:p

Figure IV.6: Simpli�ed lattice model. The target search of membrane-integrated transcription
factors is studied by kinetic Monte Carlo simulations of a lattice model. The movement
of a CadC dimer (blue) is restricted to the surface of the lattice, whereas the segments
of the DNA contour (red) can be anywhere within the lattice. Proteins di�use on the
surface with rate :2d, the polymer moves by random displacement of single beads with
rate :p, without excluded volume interactions between beads or bonds.

length of 157730. Compared to our discussion in the previous chapter we are therefore in
a regime of very high polymer density. Since our simulations have shown that the target
search dynamics are independent of polymer length once it has reached a cell size dependent
critical length (see �g. III.2a), we save computation time by choosing the polymer length well
above this threshold at 1000. It has been reported that the di�usion coe�cient for protein
di�usion within the cell membrane depends primarily on the size of the transmembrane
domain [193, 194]. A CadC dimer has two transmembrane helices like the membrane protein
WALP-KcsA, for which the di�usion constant was measured in multiple studies, yielding
values between 0.21 µm2 s−1 [194] and 0.25 µm2 s−1 [195]. In a recent study the relevant CadC
di�usion coe�cient was also measured, albeit with a di�erent �uorophore (mNG) than in
the present study [81]. Those measurements yielded values ranging from 0.07 µm2 s−1 to
0.19 µm2 s−1. For our estimate of the model parameter values, we used the rounded value of
�2d = 0.20 µm2 s−1, which lies in the range of the quoted �gures.

Parameter Symbol Value
lattice constant 0 88 nm
cell volume + 1.2 µm3

DNA length [beads] # 100
number of CadC dimers =p 1
number of binding sites =b 1
CadC di�usion coe�. �2d 0.20 µm2 s−1

DNA di�usion coe�. �0 0.0060 µm2 s−1

Table IV.2: Simulation parameters matching the experiments.
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2.3.4 Mobility measurements of the DNA molecule

To complete our parameter set, we estimated the di�usion constant �0 of a DNA segment
in our simulations by experimentally tracking a chromosomal locus. The origin was tagged
using a parS/ParB �uorescent operator/repressor system (FROS) as discussed above. For
N-PcadBA-parS_ori and ∆cadC-parS_ori, a wild type and a mutant E. coli strain lacking cadC,
each containing parS_ori, �uorescence and phase contrast microscopy time-lapse videos were
taken of the same cells every 30 s for activating and inactivating conditions, respectively.

The results from the image analysis were used to compute trajectories of ParB spots in
a custom-written Matlab script by selecting the closest spots in subsequent image frames.
From the trajectories of ParB spots the ensemble averaged mean squared displacement (MSD)
was computed as a function of time lag g : MSD(g) = 〈(®A (C) − ®A (C + g))2〉, where the mean
was taken over di�erent spots and g = =30 s with = ∈ {1, . . . , # } and the number of time
steps # . The resulting MSD curves (see �g. E.2) are in semi-quantitative agreement with
other tracking experiments of chromosomal loci in E. coli [196, 197]. Previous experiments
showed that DNA di�usion in E. coli agrees well with the Rouse model [105], with di�usion
exponents in the range 0.40–0.60 [196, 198, 197]. The Rouse model predicts the MSD in 2d
[199]:

MSD(g) =
√

16;2K:B)

3cZ g0.5

=

√
16;2K
3c �0.5

0 g0.5 ,

with Boltzmann’s constant :B, absolute temperature ) , Kuhn length ;K, friction constant
Z and bead di�usion constant �0, where we have used �0 = :B) /Z [102]. We �tted the
experimentally determined MSD to MSD(g) = Γg0.5 and determined the di�usion constant
from �0 = Γ23c/(16;2K).

We obtained Γ = 0.0111 ± 0.0001 µm2 s−0.5 for E. coli wild type under activating conditions
and Γ = 0.0091 ± 0.0001 µm2 s−0.5 for ∆cadC under inactivating conditions. The DNA mobility
seems to be independent of the probed conditions, since the two values do not di�er a lot.
Hence we used the average value 〈Γ〉 to compute the di�usion constant�0 of a Kuhn segment,
yielding �0 ≈ 0.0060 µm2 s−1, which is the value chosen for the realistic parameter set. To
convert the dimensionless search times g ′ from the simulations into seconds we computed
g ′02/�0 ≈ 1.30g ′.

2.4 Simulation Results

After having de�ned a realistic parameter set, we discuss the main results of the numerical
simulations of the reduced target search model and how they quantitatively compare to the
experimental �ndings.
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Figure IV.7: Characterisation of the target search by computer simulation. (a) Dependence
of the mean search time 〈g〉, normalised by the search time with a single binding site
〈g1〉, on the number of DNA binding sites =b. Realistic parameters are used for binding
sites placed either uniformly (blue dots) or next to each other (red squares) along the
circular chromosome. Red crosses correspond to the experimental results for one (N-
PcadBA) and two (N+T-PcadBA) DNA binding sites. (b) Mean target search time as a
function of the CadC di�usion coe�cient. The leftmost data point corresponds to
:2d = 0 and the rightmost data point corresponds to :2d → ∞, simulated by covering
the whole cell surface by proteins. The estimated di�usion coe�cient of a CadC dimer,
�2d = 0.20 µm2 s−1 is marked (grey dashed line), as well as the experimentally measured
search time for N-PcadBA (red cross). (c) Mean target search time as a function of the
DNA di�usion coe�cient. The dashed grey line marks �0 = 0.0060 µm2 s−1, used in the
realistic parameter set, and the red cross marks the experimentally measured search time
for N-PcadBA.

2.4.1 Simulating multiple DNA binding sites

Motivated by the experiments with the N+T-PcadBA strain, we performed simulations with
varying number of DNA binding sites. In �g. IV.7a the mean search time 〈g〉 normalised
by the mean search time with a single DNA binding site 〈g1〉 is shown as a function of the
number of binding sites =b. Placing the binding sites as far apart as possible on the circular
chromosome, simulations with realistic parameters show a halving in search time when
increasing the number of binding sites from one to two. This is the expected result for
two binding sites moving independently of each other due to the decorrelation of polymer
subchains in spatial con�nement. How far two binding sites have to be apart along the DNA
to behave as independent targets therefore depends on the size of the simulated cell. The
initial inverse-=b scaling of 〈g〉 �attens progressively as the binding sites come closer to one
another and are more correlated in their movement. Placing the binding sites next to each
other (red squares) has an expectedly smaller e�ect for small =b, since it only increases the size
of the binding site. The curve becomes steeper as the binding sites occupy a larger fraction of
the polymer.

Given that the two DNA binding sites in N+T-PcadBA are on opposite sides of the chro-
mosome, we expect them to behave as two independent binding sites. The experimentally
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measured reduction of the search time by roughly a factor of two (red crosses in �g. IV.7a)
is therefore in good agreement with our model. Also, by construction, the position of the
binding site along the chromosome has no e�ect on the simulated search times.

2.4.2 Target search time is sensitive to CadC di�usion

To address the question whether the search process is more sensitive to changes in DNA
mobility or CadC di�usion, we performed simulations with varying di�usion rates. Plotting
the mean search time as a function of the CadC di�usion coe�cient, �2d, in �g. IV.7b,
we observe three di�erent regimes. For slow protein di�usion, the search time is almost
independent of �2d, followed by a range where the search process is entirely dominated
by CadC di�usion (g ∝ �−1

2d ), while for very fast CadC di�usion the search becomes less
sensitive to �2d again. The data point for in�nitely fast CadC di�usion was obtained by
making CadC cover the whole cell surface. The realistic value for the di�usion constant of
CadC (�2d = 0.20 µm2 s−1) is marked by a grey dashed line and lies in the regime where the
search time strongly depends on �2d. The red cross marks the experimentally measured
mean search time for a single binding site, which is in surprisingly good agreement with
the simulation data, given the simplicity of our biophysical model. Figure IV.7c shows the
counterpart of �g. IV.7b for DNA di�usion, with�0 = 0.0060 µm2 s−1 marked by a grey dashed
line. While the mean search time is strongly dependent on DNA di�usion for small and large
�0, it is less sensitive to �0 in the experimentally relevant intermediate regime.

To further analyse this observation, we used our simulations to approximate a target search
exclusively due to CadC di�usion in the membrane. We used the realistic parameters but
placed the DNA binding site at the membrane and set the DNA di�usion rate to zero, such
that only CadC was moving, yielding a mean search time of 〈g〉 ≈ 20 s. This is consistent
with an estimate based on the previously reported [64] approximate formula eq. (I.2) for the
mean �rst encounter time of a particle moving with di�usion constant � on the surface of a
sphere with radius ' with a trap of radius 0t. Approximating the cubic cell by a sphere of
radius ' = 0.69 µm and CadC with 0t = 0.050 µm, yields g ≈ 13 s. This estimate also validates
our simulations by showing that the dependence of the search time on the size of CadC is
weak, rendering a correction for overestimating the size of CadC dimers in the simulations
unnecessary.

While the DNA molecule is likely to be the less mobile part in the target search, it has to
move at least close to the membrane to enable binding to CadC. The data point on the very
right of �g. IV.7b corresponds to the time it takes the DNA binding site to bind anywhere to the
membrane. It corresponds to g ≈ 16 s, similar to the time it takes CadC to locate the binding
site at the membrane. Therefore, a scenario where the DNA binding site randomly reaches
the membrane and CadC searches the membrane to bind to it seems to lead to reasonable
search times according to our simulations.

For comparison we also simulated a target search process where CadC is immobile in the
membrane and DNA di�usion has to account for the whole search. When only the DNA
molecule is moving and all other rates are set to zero, with realistic values for DNA length and
cell size a mean search time of 〈g〉 ≈ 560 min was calculated from the simulations, a response
time that would not allow E. coli cells to survive the transition to acidic environments.
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2.4.3 Quantitative comparison of simulated and experimental search time
distributions

As shown above, the numerical simulations of the target search using our experimentally
estimated parameter set yield mean search times that are fairly close to what we measured
experimentally. To test whether the biophysical model can also quantitatively capture the
experimental behaviour, we attempted to �nd simulations with time distributions closely
matching the experimentally computed CDFs. In �g. IV.8a the experimental CDF of N-PcadBA
together with the best �t to the sequential model with mixed initial condition is shown in
red. In order to �nd a simulation with agreeing time distributions, we simulated the target
search process using the estimated parameter set. As shown by the blue dots in �g. IV.8a this
yields a very good accordance between experimental data and simulations. In �g. IV.8b the
experimental CDF of N+T-PcadBA and the corresponding �t to the sequential model with �xed
initial condition is shown in red. Our attempt to �nd a matching simulation by using the same
parameters as for the simulations in �g. IV.8a but increasing the DNA binding sites to =b = 2
leads to quite a good agreement with the experiment, as shown by the blue dots. Despite the
simplicity of the simulations, neglecting in particular constraints of DNA movement due to
its speci�c organisation in the cell, the results agree surprisingly well with the experimental
�ndings when using experimentally realistic parameters.

To further investigate the simulated �rst passage time distributions, we computed them
for di�erent parameter settings and �tted to the sequential model with �xed initial condition
(eq. (IV.3)) and with mixed initial condition (eq. (IV.4)) respectively. While the shape of the
�rst passage time distribution is independent of the system size parameters, the dynamic
parameters have a big e�ect. For most parameter settings, including the realistic parameters,
we found the best agreement of simulated CDFs with the sequential model with mixed initial
condition. However, for simulations with an immobile polymer or slowly di�using CadC, the
search time distribution agrees rather with the sequential model with �xed initial condition.
Since both in the experimental and simulated CDFs the delay V is very small compared to
U , a �t to the �xed initial model gives virtually the same result as a single exponential CDF.
When either movement of the DNA or of CadC accounts for most of the search there is only
one limiting rate in the process, which can therefore be described by a single exponential
distribution.

3 Discussion

We combined �uorescence microscopy experiments, quantitative analysis, and kinetic Monte
Carlo simulations to characterise the target search kinetics of membrane-integrated transcrip-
tion factors for a speci�c binding site on the chromosomal DNA. We were able to measure the
time between the environmental stimulus and stable DNA-binding of a membrane-integrated
one-component receptor, using the pH stress-sensing receptor CadC in E. coli as a model
system. The measured mean search time of on average 4.5 min for a single DNA binding site
is consistent with the time scale of the earliest transcriptional response [82]. Given the severe
constraint of a membrane-anchored target search, it seems surprising that the search time is
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Figure IV.8: Matching simulations to the experimental results. Numerical simulations are di-
rectly compared to the experimental distributions. Experimental data are shown in red
squares, the red dashed line corresponds to the best �t. Blue dots correspond to the simu-
lations that agree most with the experimental data. Insets depict the corresponding �rst
passage time distributions. (a) The experimental CDF of N-PcadBA is shown together with
the best �t and simulations using the realistic parameter set, summarised in table IV.2. A
single binding site was placed at the centre of the polymer. (b) The experimental CDF of
N+T-PcadBA is shown together with the best �t and simulations using the parameter set
matching the experimental values with two binding sites on the polymer. The binding
sites were placed far apart from each other and from the polymer ends. All simulations
were started from a random initial con�guration.

only about 5-fold slower than the search time of the cytosolic Lac repressor for its operator,
which takes around one minute at a similarly low protein level [51].

As the position of the DNA binding site along the chromosome has no in�uence on the
mean search time, the target search process appears to be quite robust. Given that the
chromosome is highly organised within the cell, we believe this e�ect to arise mostly due to
the mobility of CadC. While we do not have new evidence against proteolytic processing, this
leads us to favour a di�usion and capture mechanism over transertion. Di�usion and capture
mechanisms are well established for the localisation of membrane-integrated proteins like
SpoIVB in B. subtilis [79, 80]. As the search time is independent of the position of the DNA
binding site, transertion of CadC is at least not a requirement for fast response, in agreement
with a previous evaluation of the three models [81]. Our �nding that the mean search time
decreases by a factor of two in a mutant with two DNA binding sites is also consistent with
the di�usion and capture mechanism. Our simulations show that this is the expected result
for two independent and equally accessible binding sites, where distant parts of the polymer
become uncorrelated in their motion due to the con�nement in the cell.

Despite the simplicity of our biophysical model of the target search, we simulated search
times that match the experimental measurements surprisingly well. Our simulations with
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a �xed protein number (one CadC dimer) produced search time distributions that were
compatible with the experimental ones both in terms of their mean values and their width,
suggesting that cell-to-cell heterogeneity in the number of CadC dimers does not signi�cantly
broaden the search time distribution. The constraint of chromosomal loci to macrodomains,
which is neglected by our model, likely does not play a major role on the relatively short
time scale of the search process, given that lateral motion of the CadC locus into the vicinity
of the membrane is su�cient. Although we did not explicitly model crowding e�ects in
the cytoplasm and at the membrane, the general slowdown of the kinetics due to crowding
should be accounted for by our in vivo di�usion coe�cients. Another open question is the
lifetime of CadC dimers in the membrane. Active degradation should be negligible compared
to the time scale of the search process. The majority of proteins in E. coli are not subject to
rapid degradation [200] and individual membrane proteins that have been studied in detail
displayed life-times as long as 6 days [201]. Spontaneous separation of CadC dimers from the
membrane (or proteolytic cleavage) also do not appear to play a role, since CadC is deactivated
by external cadaverine [82].

While it is di�cult to experimentally answer the question whether the time scale of DNA
motion or CadC di�usion limits the search process, the consistency between our simulations
and experimental �ndings allows to draw some conclusions from an analysis of the simu-
lations. In the experimentally relevant regime, the simulated mean search time is inversely
proportional to the di�usion coe�cient of the CadC dimer, but is relatively insensitive to
the DNA di�usion speed. The search process therefore seems to be predominantly limited
by the mobility of the transcription factors in the membrane. Since within the typical range
of di�usion coe�cients of membrane-integrated proteins [193, 194], the mean search time
varies inversely proportional with the di�usion coe�cient, this result is expected to hold for
DNA-binding membrane proteins in general.

Beyond mean values the experimental data allowed the extraction of the cumulative
distribution functions (CDF) for the target search time. Describing them by the distribution
obtained from a reversible sequential two-step process resulted in a good �t for the wild
type data assuming a mixed initial condition. The same was true for our simulations of the
target search process with most parameter settings. Using a parameter set estimated for the
experimental conditions led to a distribution that matched the experimental CDF of E. coli
wild type. Attempting to �nd a matching simulation for the mutant with two DNA binding
sites by using the same parameters with two DNA binding sites also yielded a good agreement.
In contrast to the simulations, however, the experimental CDF of the mutant with two binding
sites and the mutant with the binding site at ter show a better agreement with the sequential
model with �xed initial condition (or a single-exponential CDF). How exactly the position
of the DNA binding site a�ects the initial condition of the search process is not clear at this
point. In the simulations, distributions agreeing with the sequential model with �xed initial
conditions are obtained when either only CadC is moving, or it is moving very slowly.

Taken together, our experiments and simulations indicate that CadC is highly mobile in
the membrane, while the cadBA promoter on the E. coli chromosome is mobile enough to
randomly reach the membrane, enabling CadC to locate the DNA binding site within about
�ve minutes, independent of its position along the chromosome. While di�usion and capture
mechanisms are established for the polar localisation of membrane proteins [79, 80, 202],
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our study indicates a broader relevance of di�usion and capture mechanisms for the largely
uncharacterised interactions of membrane-integrated proteins with chromosomal DNA [71].
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Summary and OutlookV
Despite the enormous diversity of life on earth, there are some principles that are common
to all living systems. One of them is the interaction between polynucleotides and proteins,
which is of vital importance to a vast number of cellular processes. Since biopolymers such
as DNA and RNA are typically spatially constrained to a certain volume (cell, nucleus), this
interplay often amounts to a protein moving on the surface of a volume having to locate a
speci�c binding site on a polymer inside the con�ning volume. Despite its prevalence, the
dynamics of this target search problem have remained largely uncharacterised.

We employed kinetic Monte Carlo simulations and mathematical analysis to study the
search kinetics of a surface protein for a binding site on a polymer inside the con�ning volume.
Simulating a polymer representing a chromosome in the eukaryotic nucleus or DNA in a
bacterial cell for a time long enough to capture the target search dynamics is computationally
challenging. We therefore started by establishing a coarse-grained lattice model that allowed
us to e�ciently probe the dynamics. Evaluating di�erent cubic lattice models for the polymer
dynamics, a phantom chain single-site Bond-Fluctuation model and a ssBFM with Fraenkel
springs connecting the beads were found to reproduce stable dynamics in agreement with
the Rouse model. Based on these two models a simulation framework was implemented that
enables us to simulate the encounter dynamics of con�ned polymers with moving proteins at
the surface of the con�nement. Motivated by the ability of membrane-integrated response
regulators to bind non-speci�cally to DNA, non-speci�c binding and unbinding as well as
one-dimensional sliding of the protein along the polymer was included in our simulations.

Extensive analysis of the numerical target search simulations led us to identify various
strategies of speeding up the procedure mainly depending on the polymer density in the
volume. For dense systems, the re�ecting boundaries result in subchains of the ideal polymer
becoming uncorrelated in their motion. Therefore the mean search time saturates and becomes
independent of polymer length, contradicting our intuition that the search is complicated by
the enormous length of most biopolymers. Transient tethering of the polymer to the surface
by non-speci�c binding of the protein only slows down the process when polymer density is
high, since the bound polymer segment is likely to be uncorrelated from the cognate binding
site and therefore the binding site is not brought closer to the protein.

In the opposite regime of lower polymer densities, transient tethering due to non-speci�c
binding of the protein to the polymer emerges as a way to speed up the process, leading
to an optimal relative binding rate. With decreasing polymer density the optimal binding
rate increases, since the e�ect of bringing the polymer closer to the protein increasingly
dominates the negative e�ect of hindering protein di�usion. Whether transient tethering
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is favourable also depends on the surface di�usion of the protein. When the protein is very
fast, transient binding leads to a deceleration of the search process. With decreasing protein
di�usion however the e�ect of bringing the polymer closer to the protein starts to dominate
and transient tethering gains importance.

In contrast to the facilitated di�usion model for cytoplasmic proteins, where sliding along
the polymer was shown to play a central role to explain the experimentally measured fast
response times, our simulations revealed a very limited e�ect of sliding for surface located
proteins. Mainly because the sliding range is greatly limited to a few polymer segments at
the surface, sliding rarely has an e�ect on the mean search time by more than a factor of two.

Studying the cumulative distribution functions of the target search time we found that
the procedure can be well described by either a two state or a three state stochastic process,
depending on the di�usion rate of protein and polymer. When either protein di�usion or
polymer movement dominates the search, agreement with a single exponential distribution
is found and the process is well described by a single rate. When both protein di�usion and
polymer motion are limiting factors of the process, a sequential two step process is required
to describe the procedure.

Since for high polymer densities the search dynamics have been shown to be dominated
by protein di�usion on the surface and conformational changes of the polymer without the
necessity of non-speci�c binding or sliding to speed up the procedure, the target search of the
membrane-integrated transcription factor CadC in E. coli was simulated with a reduced lattice
model. Despite the simplicity of the model, considering only the DNA molecule moving in
the cell with either one or two speci�c binding sites and a single CadC dimer moving in
the membrane, quantitative agreement with the predictions from �uorescence microscopy
experiments was found. Using a parameter set based on previous measurements as well
as our own computations to match the experimental situation led to a good agreement of
the simulated cumulative distribution functions of the search time with the experimentally
computed equivalent.

The experimentally measured mean search time of CadC for its DNA binding site was found
to be independent of the position of the binding site along the chromosome. Adding a second
binding site however led to a reduction of the search time by a factor of two. Both observations
are in agreement with our numerical simulations, which shows that the reduction of search
time is a result of the existence of two independent and equally accessible binding sites, where
distant parts of the polymer become uncorrelated in their motion due to the con�nement
in the cell. While in the case of CadC there is only a single speci�c binding site and the
number of proteins is highly controlled to 1–3 molecules [184], i.e. a single dimer, the inverse
proportionality of the mean search time to the number of independent binding sites and
proteins provides another way to speed up the process.

Varying the di�usion of the protein and the polymer in our simulations showed that in
the experimentally relevant regime for membrane-integrated proteins the search time is
inversely proportional to the di�usion coe�cient of the protein, but relatively insensitive
to the polymer di�usion speed. The search process therefore seems to be limited by the
mobility of the protein, while the polymer has to be just mobile enough for the binding
site to randomly come close to the membrane. Having a very fast di�using polymer like a
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small mRNA molecule however could lead to a di�erent search mechanism as the polymer
movement could play a more central role.

While the experiments on the target search of CadC in E. coli are in excellent agreement
with our simulations, it could still be of interest to extend the �uorescence microscopy protocol
to simultaneously label CadC and its cognate binding site on the DNA. Especially if it would
be conceivable to obtain time-lapse videos of the search process, the relative motion of CadC
and its binding site could be observed directly. Time-lapse videos could also answer the
question how far apart CadC and its binding site are at the onset of activating conditions and
where the CadC foci move at cell division. To test the results from our numerical simulations
concerning the dependence on polymer density in vivo is not easily conceivable, as placing
the cadBA promoter on a plasmid of varying size has little in�uence on the total polymer
density in the cell. What could be tested easily however is the e�ect of more than two binding
sites on the chromosome, as well as varying the number of CadC molecules in the membrane.

As our simulations are in very good agreement with the �uorescence microscopy ex-
periments of the E. coli CadC target search dynamics, they could provide a way to better
understand the kinetics of similar search processes. A well suited example is CadC in Vibrio
campbellii, which shows signi�cant homology to CadC in E. coli. As the copy number of
CadC molecules per cell in V. campbellii is about 11 under normal conditions and increases by
a factor of �ve under acid stress conditions [203], this provides an interesting target search
problem to study. Since our simulations have shown that the target search becomes inde-
pendent of polymer length at high polymer densities, it could also be conceivable to extend
the polymer model to consider the viscoelasticity of the cytoplasm like in the Brownian
dynamics simulations with a memory kernel established in a recent study [204]. Moreover,
the simulated model could be extended to include cell growth and chromosome segregation.
An example of a target search process where this plays a central role is the lysogeny pathway
of λ bacteriophage infection. After injection of its DNA into the cell, integration of the viral
DNA by site-speci�c recombination requires the encounter of the two attachment sites attB
and attP in the bacterial and the phage genome respectively. Measurements of integration
frequencies in dependence on the location of attB in E. coli have revealed an interesting search
strategy of the bacteriophage [205]. The λ DNA remains close to its entry point at the pole
or at midcell of the host and uses the directed motion of the chromosome during segregation
to locate its speci�c insertion sequence, thus providing a prime example of coevolution of λ
with its host.

Besides CadC in E. coli members of the ToxR receptor family also include its homologue in
V. cholerae [25]. The epidemic diarrheal disease cholera is caused by V. cholerae, which enters
orally and passes the low-pH environment of the stomach to colonise in the intestine. Since
reducing the ability to survive acid exposure can lead to decreased virulence, a thorough
understanding of the functioning of CadC can be of interest to drug design, all the more as the
major virulence gene regulator ToxR is also a one-component receptor. The ability of bacteria
to sense an extracellular signal and transduce it into a cellular response also harbours the
potential of reprogramming bacteria as biosensors [206]. Programming bacterial biosensors
to monitor the concentration of toxins or to detect an infection and produce a toxin to kill
the pathogen requires the detailed understanding of existing signalling pathways like the
one-component receptors studied in this dissertation.
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Taken together, our �ndings predict that for a search process in a low polymer den-
sity environment, like mRNA molecules searching for nuclear pore complexes, transient
non-speci�c binding could be relevant to speed up the process. Moreover, both the large
number of NPCs and the small size of mRNA molecules lead to a considerable speed-up. For
membrane-integrated transcription factors in bacteria however, where polymer density is
high, a decorrelation of polymer subchains due to the con�nement facilitates the search pro-
cess, rendering elaborate search strategies unnecessary even for low copy number receptors
like CadC in E. coli, that have to locate a single cognate binding site on the chromosome.
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Polymer Dynamics and Di�usionA
A1 Di�usion Equation

We solve the Langevin equation in eq. (I.11) for * (G) = 0, i.e. for the di�usion of a single
particle in one dimension, giving

Z
dG (C)

dC = 5 (C) .
we integrate ∫ G (C )

G (0)
ZdG (C) =

∫ C

0
5 (C)dC ,

and obtain

G (C) − G (0) = 1
Z

∫ C

0
5 (C ′)dC ′ .

Computing the mean squared average yields

〈(G (C) − G (0))2〉 = 1
Z 2

〈∫ C

0
5 (C ′)dC ′

∫ C

0
5 (B)dB

〉
=

1
Z 2

∫ C

0
dC ′

∫ C

0
dB 〈5 (C ′) 5 (B)〉

=
1
Z 2

∫ C

0
dC ′

∫ C

0
dB2Z:B)X (C ′ − B)

=
2:B)

Z
C .

A2 Rouse Mode Analysis

A2.1 Solving the continuous Rouse model

We follow the derivation of the normal modes shown in [102]. In the continuous limit of = it
holds

r= (C) − r=−1(C) → mr= (C)
m=

r=+1(C) + r=−1(C) − 2r= (C) → m2r= (C)
m=2 ,
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and the Langevin equations describing a Rouse chain become

Z
mr= (C)
mC

= :s
m2r= (C)
m=2 + f= (C) , (A.1)

with the boundary conditions

mr=
m=

����
==0

=
mr=
m=

����
==#

= 0 ,

and the random force

〈f= (C)〉 = 0
〈5=U (C) 5<V (C ′)〉 = 2Z:B)X (= −<)XUVX (C − C ′) .

For the linear transformation of r= (C) we make the ansatz X? (C) :=
∫ #

0 d=q?=r= (C) and
choose q?= such that the Langevin equation becomes linear and reads

Z?
mX? (C)
mC

= −:?X? (C) + f? (C) ,

i.e. such that X? (C) are the normal modes, each capable of independent motion. Inserting
the ansatz into the new Langevin equation the left hand side reads

Z?
mX? (C)
mC

= Z?
m

mC

∫ #

0
d=q?=r= (C)

= Z?

∫ #

0
d= mr= (C)

mC
q?=

= Z?

∫ #

0
d=q?=

(
:s
Z

m2r= (C)
m=2 + 1

Z
f= (C)

)
,

where in the last step we have inserted the equation of motion eq. (A.1). Using integration by
parts yields

Z?
mX? (C)
mC

=
:sZ?

Z
q?=

mr= (C)
m=

����#
0
− :sZ?

Z

∫ #

0
d=
mq?=

m=

mr= (C)
m=

+ Z?
Z

∫ #

0
d=q?=f= (C) .

The �rst term vanishes according to the boundary conditions and integration by parts of the
second term leads to

Z?
mX? (C)
mC

= −:sZ?

Z

mq?=

m=
r= (C)

����#
0
+ :sZ?

Z

∫ #

0
d=
m2q?=

m=2 r= (C) +
Z?

Z

∫ #

0
d=q?=f= (C) .

Using the right hand side of the new Langevin equation it follows

−:sZ?

Z

mq?=

m=
r= (C)

����#
0
+ :sZ?

Z

∫ #

0
d=
m2q?=

m=2 r= (C) +
Z?

Z

∫ #

0
d=q?=f= (C) !

= −:?X? (C) + f? (C)

= −:?
∫ #

0
d=q?=r= (C) + f? (C) ,
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A2 Rouse Mode Analysis

where in the second step we again inserted the ansatz. For the equality to hold, q?= has to
ful�l the following equations

:sZ?

Z

m2q?=

m=2 = −:?q?= (A.2)

mq?=

m=

����
==0

=
mq?=

m=

����
==#

= 0 (A.3)

Z?

Z

∫ #

0
d=q?=f= (C) = f? (C) . (A.4)

Equation (A.2) is the standard equation for oscillators with von Neumann boundary conditions
eq. (A.3). From eq. (A.2) we make the ansatz q?= = � cos(0=+1). Using eq. (A.3) it follows 1 =

0# +1 !
= c? and therefore0 = ?c/# and1 = 0, leading toq?= = � cos(?c=/# ). From eq. (A.2)

it follows :? = :sZ?/Z (?c/# )2. The factor � is obtained from the normalisation condition
[106] at ? = 0, i.e.

∫ #

0 d=� cos(?c=/# ) |?=0 = �#
!
= 1 and therefore q?= = 1/# cos(?c=/# ).

With this it follows

X? (C) = 1
#

∫ #

0
d= cos

(?c=
#

)
r= (C) ,

with the inverse transform

r= (C) =X0(C) + 2
∞∑
?=1
X? (C) cos

(?c=
#

)
.

The mean of the new random force vanishes by construction

〈f? (C)〉 =
Z?

Z

∫ #

0
d=q?= 〈f= (C)〉

= 0 ,

and the second moment yields

〈5U? (C) 5V@ (C ′)〉 =
〈
Z?

Z

∫ #

0
d=q?= 5U= (C)

Z@

Z

∫ #

0
d<q@< 5V< (C ′)

〉
=
Z?Z@

Z 2

∫ #

0
d=

∫ #

0
d<q?=q@< 〈5U= (C) 5V< (C ′)〉

=
Z?Z@

Z 2

∫ #

0
d=

∫ #

0
d<q?=q@<2Z:B)X (= −<)XUVX (C − C ′)

=
Z?Z@

# 2Z
2:B)XUVX (C − C ′)

∫ #

0
d= cos

(?c=
#

)
cos

(@c=
#

)
=
Z?Z@

# 2Z
2:B)XUVX (C − C ′)

#

2c
©«

sin
(
c= (?−@)

#

)
? − @ +

sin
(
c= (?+@)

#

)
? + @

ª®®¬
�����#
0

115



A Polymer Dynamics and Diffusion

=
Z?Z@

# 2Z
2:B)XUVX (C − C ′)

#

2c X (? − @)c (1 + X?0)

=
Z 2
?

#Z
:B)XUVX (C − C ′) (1 + X?0) .

Here we have used sin(cG)/G |G=0 = c . We choose Z? such that the new random force ful�ls
the same equations as f= , i.e. 〈5U? (C) 5V@ (C ′)〉 = 2Z?:B)XUVX (? − @)X (C − C ′), from which we
obtain

2Z?:B) =
Z 2
?

#Z
:B) (1 + X?0) .

Hence it follows Z? = 2#Z for ? > 0 and Z? = #Z fpr ? = 0 and :? = :sZ?/Z (?c/# )2 =
2:s/# (?c)2.

A2.2 Solving the discrete Rouse model

We follow the derivation of the normal modes shown in [107]. We aim at solving the Langevin
equations describing the dynamics of a Rouse chain with � := :s/Z

dr= (C)
dC = −�(2r= (C) − r=+1(C) − r=−1(C)) for = = 1, . . . , # − 1

dr0(C)
dC = −�(r0(C) − r1(C))

dr# (C)
dC = −�(r# (C) − r#−1(C)) ,

by making the ansatz r= (C) = X (C) cos(0= + 1) and attempting to solve the di�erential
equations without the random forces. Inserting the ansatz yields

cos(1) dX (C)dC = −�X (C) (cos(1) − cos(0 + 1)) (A.5)

cos(0# + 1) dX (C)dC = −�X (C) (cos(0# + 1) − cos(0(# − 1) + 1)) (A.6)

cos(0= + 1) dX (C)dC = −�X (C) (2 cos(0= + 1) − cos(0(= − 1) + 1) − cos(0(= + 1) + 1))
= −�X (C) (cos(0= + 1) (2 − 2 cos(0))
= −�X (C) cos(0= + 1)4 sin2

(0
2

)
. (A.7)

The boundaries are consistent, when eq. (A.5) equals eq. (A.7) with = = 0:

cos(1) − cos(0 + 1) = cos(1)4 sin2
(0
2

)
= cos(1) (2 − 2 cos(0))
= 2 cos(1) − cos(0 + 1) − cos(0 − 1)

0 = cos(1) − cos(0 − 1) .
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From cos(1) = cos(0 − 1) it follows 0 = 21. Moreover, eq. (A.6) has to equal eq. (A.7) with
= = # :

cos(0# + 1) − cos(0(# − 1) + 1) = cos(0# + 1)4 sin2
(0
2

)
= 2 cos(0# + 1) − cos(0(# − 1) + 1) − cos(0(# + 1) + 1)

0 = cos(0# + 1) − cos(0(# + 1) + 1)
= cos(0# + 1) − cos(−0(# + 1) − 1) .

From cos(0# +1) = cos(−0(# + 1) −1) it follows 0# +1 = 2c? − 0(# + 1) −1 and therefore
2c? = (2# +1)0+21 = (2# +1)0+0 = 2(# +1)0 so that 0 = c?/(# +1) and1 = c?/(2(# +1)).
The solution is the linear combination of all independent solutions, where the factor two is
inserted for convenience [107]

r= (C) =X0 + 2
#∑
?=1
X? cos

(
?c

# + 1

(
= + 1

2

))
.

This is a discrete cosine transform (DCT-3), the inverse of which is [207]

X? =
1

# + 1

#∑
==0
r= cos

(
?c

# + 1

(
= + 1

2

))
,

which is obtained using [107]

1
# + 1

#∑
==0

cos
(
?c

# + 1

(
= + 1

2

))
= X?0 for 0 ≥ ? < 2(# + 1) .

The equations of motion then read

dX?

dC = −:s
Z

4 sin2
(

?c

2(# + 1)

)
X? + f? ,

with the new random force ful�lling

〈f? (C)〉 = 0

〈f0(C)f0(C ′)〉 = 2�
# + 1X (C − C

′)

〈f? (C)f@ (C ′)〉 = �

# + 1X?@X (C − C
′) for ? + @ > 0 .

A3 Centre of Mass Di�usion within the Rouse Model

To calculate the mean squared end-to-end distance of the centre of mass 63 = 〈(Rcm(C) −
Rcm(0))2〉, we insert the de�nition of the centre of mass Rcm(C) = 1

(#+1)
∑#

==0 r= (C) for a
Rouse chain of # + 1 beads into the Langevin equation of the Rouse model:

Z
dRcm(C)

dC = − :s
# + 1

(
r0 − r1 +

#−1∑
==1
(2r= − r=+1 − r=−1) + r# − r#−1

)
+ 1
# + 1

#∑
==0
f= (C)
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=
1

# + 1

#∑
==0
f= (C) ,

since the �rst sum vanishes. Integrating both sides gives∫
dRcm(C) = 1

Z (# + 1)
∫ #∑

==0
f= (C)dC ′

Rcm(C) −Rcm(0) = 1
Z (# + 1)

∫ C

0

#∑
==0
f= (C)dC ′ ,

and therefore the mean squared end-to-end distance of the centre of mass is

〈(Rcm(C) −Rcm(0))2〉 =
〈(

1
Z (# + 1)

∫ C

0

#∑
==0
f= (C)dC ′

)2〉
=

1
Z 2(# + 1)2

〈∫ C

0

#∑
==0
f= (C ′)dC ′

∫ C

0

#∑
<=0

f< (B ′)dB ′
〉

=
1

Z 2(# + 1)2
∫ C

0
dC ′

∫ C

0
dB ′

#∑
=,<=0
〈f= (C ′)f< (B ′)〉

=
1

Z 2(# + 1)2
∫ C

0
dC ′

∫ C

0
dB ′

#∑
=,<=0

6Z:B)X=<X (C ′ − B ′)

=
1

Z (# + 1)2
∫ C

0
dC ′

#∑
==0

6:B)

=
1

Z (# + 1) 6:B)C = 6�cmC .

We used the known relations 〈5=U (C) 5<V (C ′)〉 = 2Z:B)X=<XUVX (C − C ′) as well as �cm =
:B) /((# + 1)Z ).
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Testing and Validation of Di�erent
Polymer Dynamics ModelsB

B1 Evaluation of Brownian Dynamics Simulations of the
Rouse Model

For the BD simulations of a Rouse chain the spring potential eq. (II.2) is used with an entropic
spring constant :s = 3:B) /;2K, with equilibrium distance ;0 = 0 and no bending potential
*b = 0. Lengths are measured in terms of the Kuhn length and energies in units of :B) . The
dimensionless parameters are r′ = r/;K, * ′ = * /(:B) ), : ′s = :s;

2
K/(:B) ), F ′ = F ;K/(:B) )

and ΔC ′ = ΔC`1:B) /;2K. With this the dimensionless form of the discretised Langevin equation
eq. (II.1) becomes, using F8 (C) = −∇r8*

r′8 (C + ΔC) =
r8 (C + ΔC)

;K

=
1
;K

(
r8 (C) + `1ΔCF8 (C) +

√
2`1:B)ΔCη8 (C)

)
= r′8 (C) +

`1ΔCF8 (C)
;K

:B);K
:B);K

+
√

2`1:B)ΔC

;2K
η8 (C)

= r′8 (C) + ΔC ′F ′8 (C) +
√

2ΔC ′η8 (C) .
With :B = 1.38 × 10−23 J K−1, ) = 298 K and ;K = 100 nm for dsDNA the spring constant is

computed. Setting ` ′
1
= 1 yields � ′ = 1, such that the simulations can be rescaled afterwards

with an appropriate bead di�usion constant of the respective polymer. The parameters are
summarised in table B.1.

Parameter Real value Simulation
:s 1.2300 × 10−6 N m−1 3
*b 0 N m 0
;k 100 nm 1
;0 0 nm 0

Table B.1: Parameter set for the Rouse model.

The time step ΔC ′ has to be chosen with care, since large values may lead to inaccurate
results, while unnecessarily small values waste CPU time. We therefore vary the time step
and verify that the simulated chain exhibits the properties of a Gaussian chain and reproduces
Rouse dynamics.
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Figure B.1: Gaussian distribution of the segment vectors and the end-to-end vector. Results
from BD simulations of a free Rouse chain. (a) Probability distribution of the G-component
of the end-to-end vectorRee (blue) in comparison to the Gaussian distribution with mean
` = 0 and variance f2 = # /3 (red). (b) Probability distribution of the G-component of the
segment vectorR (blue) in comparison to the Gaussian distribution with mean ` = 0 and
variance f2 = 1/3 (red).

In the Gaussian chain model the segmentsR are normally distributed according to eq. (I.7).
Inserting the average segment length ;K this yields

Ψ(R) =
(

3
2c;2K

) 3
2

exp
[
−3R2

2;2K

]
,

with the mean squared segment length 〈R2〉 = ;2K. Therefore the G-components 'G of the
segment vectors are distributed according to

Ψ('G ) =
(

3
2c;2K

) 1
2

exp
[
−3'2

G

2;2K

]
,

with ; ′K = 1 in the simulations, so that the G-component is normally distributed with mean
` = 0 and variance f2 = 1/3. From the distribution of the end-to-end vector in eq. (I.5) the
distribution of the G-component yields

Ψ('ee,G ) =
(

3
2c#;2K

) 1
2

exp
[
−3'2

ee,G

2#;2K

]
.

In table B.2 the mean and variance of the segment length are shown for varying the size of
the time step in the simulation. The correct values are obtained for time steps ΔC ′ = 0.001
and smaller. We choose a time step of ΔC ′ = 0.00001 in order to obtain the dynamics of the
polymer even at very small times. In �g. B.1 the distribution of the G-value of the polymer
segments and of the end-to-end vector is depicted for the chosen time step and a polymer of
length # = 10. Both are shown to agree very well with the expected normal distribution.
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Figure B.2: Correlation functions. Results from BD simulations of a free Rouse chain. (a) Correla-
tion function of the �rst Rouse mode q1 as a function of time. The dashed line represents
q1 (gR) ≈ 0.367. (b) Correlation function of the end-to-end vector qee. The dashed line
represents qee (gR) ≈ 0.298221.

�t′ 〈R′
x〉 〈(R′

x− 〈R′
x〉)2〉

0.1 −0.0012 0.5229
0.01 0.0008 0.3429
0.001 0.0020 0.3347
0.0001 −0.0066 0.3319
0.00001 0.0140 0.3310
0.000001 0.0044 0.3361
0 (exact) 0.0000 0.3333

Table B.2: Varying the time step for the Rouse model.

To validate the dynamics, we compute the dimensionless Rouse time. From eq. (I.15) with
the average bond length ;K we obtain for a chain of # beads

gR =
Z# 2;2K
:B) 3c2

=
Z# 2;2K
�3c2 .

Using ΔC ′ = ΔC�/;2K yields

g ′R =
Z# 2;2K
�3c2

�

ΔC ′;2K

=
# 2

3c2ΔC ′
.

With the number of beads # = 10 and ΔC ′ = 0.00001 this yields g ′R ≈ 337737. For comparison
with our simulations we compute the correlation functions. The correlation function of the
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Figure B.3: BD simulations of the Rouse model. The MSD of the centre of mass di�usion 63 and
the MSD of the central monomer 61 are shown as a function of time C for BD simulations
of a free Rouse polymer. (a) The polymer is initialised with a random walk. (b) The initial
polymer con�guration is a straight line. The dashed lines show the scaling of 61 and 63 as
expected from the Rouse model.

?th Rouse mode is given by [208]

q? (C) =
〈X? (C)X? (0)〉
〈X? (0)2〉

= exp
[−C?2

gR

]
,

The dimensionless Rouse time can therefore be obtained from q1(g ′R) = 4−1 ≈ 0.367. The
correlation function of the �rst Rouse mode, depicted in �g. B.2a �rst reaches a value of
q1 = 0.367 for C ′ ≈ 320649 which is in quite good agreement with g ′R = 337737. The correlation
function of the end-to-end vector is [208]

qee(C) = 〈Ree(C)Ree(0)〉
〈Ree(0)2〉

=
∞∑

?=1 odd

8
?2c2 exp

[−C?2

gR

]
,

such that qee(gR) ≈ 0.298221. The correlation function of the end-to-end vector, depicted
in �g. B.2b �rst reaches a value of qee = 0.298221 for C ′ ≈ 337683 which is in very good
agreement with g ′R = 337737. Moreover, we compute the mean squared displacement of the
centre of mass 63(C), as well as the mean squared displacement of the central monomer 61(C)
and compare it to the scaling expected from the Rouse model shown in eq. (I.16) and eq. (I.17).
In �g. B.3 the results are shown for simulations of a free polymer chain with random initial
con�guration (�g. B.3a) and with linear initial con�guration (�g. B.3b) respectively. Both
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B2 Evaluation of the Verdier-Stockmayer Move Set

plots show the expected linear scaling with time of the centre of mass displacement and
the two scaling regimes of the monomer displacement. Our parameter choice for the BD
simulations of the Rouse model therefore reproduces successfully both static and dynamic
properties of the model.

B2 Evaluation of the Verdier-Stockmayer Move Set
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Figure B.4: Verdier-Stockmayer move set with random initial con�guration. (a) The MSD of
the central monomer 61 as a function of time for a randomly initialised polymer simulated
with the Verdier-Stockmayer move set (red). The MSD is rescaled using the centre of mass
di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . To validate the simulations
the results from BD simulations of the Rouse model are shown in blue. The dashed lines
show the scaling of 61 as expected from the Rouse model. (b) The corresponding MSD of
the centre of mass 63.

To validate the dynamics of a polymer simulated with the Verdier-Stockmayer move set
consisting of an end-move and a kink-jump, the di�usion of a free polymer is simulated and
compared to the BD simulations of the Rouse model. In �g. B.4 the resulting mean squared
displacement of the central monomer 61 and the mean squared displacement of the centre of
mass 63 are compared to the BD simulations and the expected scaling according to the Rouse
model. The chain in the concerning plots has been initialised as a random walk on the lattice
and the scaling of 61 and 63 agrees very well with the Rouse model.

Figure II.4 shows the corresponding plots for a polymer that was initialised in a linear
con�guration on the lattice. Since for such a con�guration the inner chain segments are
essentially immobile until the movement has di�used from the chain ends towards the inner
segments, the computed displacement of the central monomer deviates strongly from the
expected Rouse scaling at short times.

In �g. B.5 the mean squared displacement of the centre of mass and the mean squared
displacement of the central monomer computed from simulations of a free polymer with the
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Figure B.5: Generalised Verdier-Stockmayer move set with random initial con�guration.
The MSD of the central monomer 61 as a function of time for a randomly initialised
polymer simulated with the generalised Verdier-Stockmayer move set (red). The MSD is
rescaled using the centre of mass di�usion�cm, which is obtained by �tting 63 (C) = 6�cmC .
To validate the simulations the results from BD simulations of the Rouse model are shown
in blue. (b) The corresponding MSD of the centre of mass 63.

10−3 10−2 10−1 100 101

10−2

100

102

time C�cm

m
on

om
er

M
SD

6 1

BD GVS
∝ G ∝ √G

(a) Monomer displacement

10−3 10−2 10−1 100 101

10−2

100

102

time C�cm

ce
nt
re

of
m
as
sM

SD
6 3

BD GVS
∝ G

(b) Centre of mass displacement

Figure B.6: Generalised Verdier-Stockmayer move set with linear initial con�guration. The
MSD of the central monomer 61 as a function of time for a polymer with linear initial
con�guration simulated with the generalised Verdier-Stockmayer move set (red). The
MSD is rescaled using the centre of mass di�usion �cm, which is obtained by �tting
63 (C) = 6�cmC . To validate the simulations the results from BD simulations of the Rouse
model are shown in blue. (b) The corresponding MSD of the centre of mass 63.

generalised Verdier-Stockmayer move set are shown in comparison to BD simulations of the
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Figure B.7: Generalised Verdier-Stockmayermove set and slithering snakewith random ini-
tial con�guration. The MSD of the central monomer 61 as a function of time for a poly-
mer with random initial con�guration simulated with the generalised Verdier-Stockmayer
move set and the slithering snake move (red). The MSD is rescaled using the centre of mass
di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . To validate the simulations the
results from BD simulations of the Rouse model are shown in blue. (b) The corresponding
MSD of the centre of mass 63.

Rouse model. The chain was initialised as a random walk and shows very good agreement
with the Rouse model, as expected.

Adding the crankshaft move to the Verdier-Stockmayer move set however does not resolve
the slow relaxation of an initially linear chain, as demonstrated in �g. B.6. The crankshaft
move allows the chain to move out of the plane but starting from a linear con�guration the
movement still has to di�use from the chain ends towards the inner segments.

Adding a slithering snake move to the generalised Verdier-Stockmayer move set still
reproduces Rouse dynamics when the polymer is initialised as a random walk, as demonstrated
in �g. B.7. Also for an initially linear chain the dynamics of the MSD of the central monomer
show a better agreement with the Rouse model than without the slithering snake move,
shown in �g. B.8a. However, the MSD of the centre of mass displays some deviation from
the expected scaling, see �g. B.8b. This is because the slithering snake move leads to faster
relaxation of the central monomer displacement only in the direction in which the chain can
reptate. This is demonstrated in �g. B.9, where the di�erent components 61,G8 of the MSD
of the central monomer in direction G8 for 8 ∈ {1, 2, 3} are shown as a function of time. BD
simulations of the Rouse model with an initially linear chain, depicted in �g. B.9a, show
that for all three components the usual Rouse scaling is expected. From simulations of the
Verdier-Stockmayer move set with the slithering snake move however, shown in �g. B.9b, the
MSD in the G−direction in which the chain can reptate the relaxation is much faster, while the
dynamics of the two other directions are still as slow as without the slithering snake move.
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Figure B.8: Generalised Verdier-Stockmayer move set and slithering snake with linear ini-
tial con�guration. The MSD of the central monomer 61 as a function of time for a poly-
mer with linear initial con�guration simulated with the generalised Verdier-Stockmayer
move set and the slithering snake move (red). The MSD is rescaled using the centre of mass
di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . To validate the simulations the
results from BD simulations of the Rouse model are shown in blue. (b) The corresponding
MSD of the centre of mass 63.
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(b) Generalised Verdier-Stockmayer with slither-
ing snake

Figure B.9: Components of the monomer displacement. (a) The MSD of the central monomer
61,G8 in spatial direction G8 is shown as a function of time for a polymer with linear
initial con�guration from BD simulations of the Rouse model. The MSD is rescaled using
the centre of mass di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . (b) The
corresponding plot simulated with the generalised Verdier-Stockmayer move set and the
slithering snake move.
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Figure B.10: Generalised Verdier-Stockmayer move set and generalised slithering snake
with linear initial con�guration. The MSD of the central monomer 61 as a function
of time for a polymer with linear initial con�guration simulated with the generalised
Verdier-Stockmayer move set and the generalised slithering snake move (red). The
MSD is rescaled using the centre of mass di�usion �cm, which is obtained by �tting
63 (C) = 6�cmC . To validate the simulations the results from BD simulations of the Rouse
model are shown in blue. (b) The corresponding MSD of the centre of mass 63.

10−3 10−2 10−1 100 101

10−2

100

102

time C�cm

m
on

om
er

M
SD

6 1
,G
8

61,G1 61,G2
61,G3 ∝ G
∝ √G

(a) BD simulations

10−3 10−2 10−1 100 101

10−2

100

102

time C�cm

m
on

om
er

M
SD

6 1
,G
8

61,G1 61,G2
61,G3 ∝ G
∝ √G

(b) Generalised Verdier-Stockmayer and gener-
alised slithering snake

Figure B.11: Components of the monomer displacement. (a) The MSD of the central monomer
61,G8 in spatial direction G8 is shown as a function of time for a polymer with linear initial
con�guration from BD simulations of the Rouse model. The MSD is rescaled using
the centre of mass di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . (b) The
corresponding plot simulated with the generalised Verdier-Stockmayer move set and
the generalised slithering snake move.
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To yield robust Rouse dynamics independent of the initial con�guration of the chain even
more moves would have to be added. As mentioned in the main text a generalised slithering
snake move was constructed to resolve the problem that a linear chain can only reptate in
one direction. As shown in �g. B.10 both the monomer displacement and the centre of mass
displacement of an initially linear polymer simulated with the generalised Verdier-Stockmayer
move set and the generalised slithering snake move agree quite well with the Rouse model.
However, as demonstrated in �g. B.11 the generalised slithering snake move still leads to
strong deviations of the spatial components of the monomer displacement from the Rouse
model. For an initially linear chain the relaxation in G−direction is still too fast, while there
is too little movement in the two other directions.

B3 Evaluation of the Single-Site Bond-Fluctuation Model with
Fraenkel Spring

To simulate a FJC on a cubic lattice using a ssBFM with Fraenkel springs connecting the
beads, the spring has to be chosen sti� enough to reproduce the properties of a FJC but soft
enough to exhibit Rouse dynamics. For di�erent spring constants : ′s the average values of the
segment length ', the end-to-end vectorRee and the angle between neighbouring segments
are computed, as shown in table B.3. For all shown spring constants a good agreement with
the FJC model is obtained. To further investigate the properties of the lattice simulations, the
distribution of the end-to-end vector and of the segment vector are analysed. For a spring
constant of : ′s = 10 the distribution of the G-component of the end-to-end vector and of the
segment vector are shown in �g. B.12 and compared to the expected Gaussian distribution,
yielding quite a good agreement.

k′s 〈R′〉 〈(R′− 〈R′〉)2〉 〈R2
ee〉 〈cos〉 〈(cos−〈cos〉)2〉

10 1.1310 0.0386 11.3520 −0.0095 0.3279
20 1.0593 0.0211 10.3944 0.0056 0.3270
30 1.0426 0.0158 9.9682 −0.0006 0.3280
50 1.0390 0.0146 10.0593 0.0005 0.3238
100 1.0388 0.0146 10.1190 0.0025 0.3261
exact 1 0 9 0 0.3300

Table B.3: Varying the spring constant for the FJC lattice model.

For a spring constant : ′s = 30 the mean squared displacement of the centre of mass and of
the central monomer are computed and compared to BD simulations of a Rouse chain. As
depicted in �g. B.13 a randomly initialised polymer exhibits some deviations for small times
but still shows the expected Rouse scaling at larger times. For a polymer that is initially in a
linear con�guration however there is no subdi�usive regime of the monomer displacement
61 as expected from the Rouse model. A spring constant of : ′s = 30 being apparently too
sti� to reproduce stable Rouse dynamics, we therefore soften the spring until we obtain a
satisfactory result.
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B3 Evaluation of the Single-Site Bond-Fluctuation Model with Fraenkel Spring
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Figure B.12: Gaussian distribution of the segment vectors and the end-to-end vector. (a) Prob-
ability distribution of the G-component of the end-to-end vectorRee (blue) in comparison
to the Gaussian distribution with mean ` = 0 and variance f2 = 〈12〉# /3 (red). (b) Prob-
ability distribution of the G-component of the segment vectorR (blue) in comparison
to the Gaussian distribution with mean ` = 0 and variance f2 = 〈12〉/3 (red) with
〈12〉 = 1.32. The Fraenkel spring constant is : ′s = 10.
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Figure B.13: Fraenkel-ssBFM with random initial con�guration. (a) The MSD of the central
monomer 61 as a function of time for a randomly initialised polymer simulated with the
ssBFM with Fraenkel spring : ′s = 30 (red). The MSD is rescaled using the centre of mass
di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . To validate the simulations the
results from BD simulations of the Rouse model are shown in blue. (b) The corresponding
MSD of the centre of mass 63.

Figure B.15 and �g. B.16 show the same simulations with a spring constant : ′s = 10, which
shows a quite stable Rouse scaling even when the polymer is initially in a linear con�guration.
We therefore choose a spring constant of : ′s = 10, which yields polymer con�gurations that
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Figure B.14: Fraenkel-ssBFM with linear initial con�guration. (a) The MSD of the central
monomer 61 as a function of time for a polymer with linear initial con�guration simu-
lated with the ssBFM with Fraenkel spring : ′s = 30 (red). The MSD is rescaled using the
centre of mass di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . To validate the
simulations the results from BD simulations of the Rouse model are shown in blue. (b)
The corresponding MSD of the centre of mass 63.
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Figure B.15: Fraenkel-ssBFM with random initial con�guration. (a) The MSD of the central
monomer 61 as a function of time for a randomly initialised polymer simulated with the
ssBFM with Fraenkel spring : ′s = 10 (red). The MSD is rescaled using the centre of mass
di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . To validate the simulations the
results from BD simulations of the Rouse model are shown in blue. (b) The corresponding
MSD of the centre of mass 63.

agree with the FJC su�ciently well but is also soft enough to reproduce stable Rouse dynamics
even when starting from a linear initial chain con�guration.
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Figure B.16: Fraenkel-ssBFM with linear initial con�guration. (a) The MSD of the central
monomer 61 as a function of time for a polymer with linear initial con�guration simu-
lated with the ssBFM with Fraenkel spring : ′s = 10 (red). The MSD is rescaled using the
centre of mass di�usion �cm, which is obtained by �tting 63 (C) = 6�cmC . To validate the
simulations the results from BD simulations of the Rouse model are shown in blue. (b)
The corresponding MSD of the centre of mass 63.
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Figure B.17: Fraenkel-ssBFM with stretched linear initial con�guration. (a) The MSD of the
central monomer 61 as a function of time for a polymer with stretched linear initial
con�guration (bead distance

√
3) simulated with the ssBFM with Fraenkel spring : ′s = 10

(red). The MSD is rescaled using the centre of mass di�usion �cm, which is obtained by
�tting 63 (C) = 6�cmC . To validate the simulations the results from BD simulations of the
Rouse model are shown in blue. (b) The corresponding MSD of the centre of mass 63.
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B4 Evaluation of the Phantom Chain Single-Site
Bond-Fluctuation Model

10−3 10−2 10−1 100 101
10−3

10−1

101

time C�cm

m
on

om
er

M
SD

6 1
BD ssBFM
∝ G ∝ √G

(a) Monomer displacement

10−3 10−2 10−1 100 101

10−2

100

102

time C�cm

ce
nt
re

of
m
as
sM

SD
6 3

BD ssBFM
∝ G

(b) Centre of mass displacement

Figure B.18: Phantom chain ssBFM with with stretched linear initial con�guration. (a) The
MSD of the central monomer 61 as a function of time for a polymer with stretched
linear initial con�guration (bead distance

√
3) simulated with the ssBFM (red). The

MSD is rescaled using the centre of mass di�usion �cm, which is obtained by �tting
63 (C) = 6�cmC . To validate the simulations the results from BD simulations of the Rouse
model are shown in blue. (b) The corresponding MSD of the centre of mass 63.

To evaluate the phantom chain implementation of the single-site Bond-Fluctuation model,
we �rst compute some expectation values of the model. From the three di�erent lengths of
the segments 1 ∈ {1,√2,

√
3} with probabilities {3/13, 6/13, 4/13} the average segment length

yields

〈'〉 =
∑
8

'8?8

=
1
13 (3 + 6

√
2 + 4
√

3) ≈ 1.416 ,

and the average squared segment length

〈'2〉 = 1
13 (3 + 12 + 12) ≈ 2.0769 .

In table B.4 the average values of the segment length, the end-to-end vector and the angle
between neighbouring segments are compared to the expected values for the FJC. The
computed values are in very good agreement. To further investigate the lattice model the
end-to-end vector and the segment vectors are analysed. The distribution of the G-component
of the end-to-end vector and the segment vector are depicted in �g. B.19 and compared to the
Gaussian distribution expected from the FJC model, yielding quite a good agreement.
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Figure B.19: Gaussian distribution of the segment vectors and the end-to-end vector. (a) Prob-
ability distribution of the G-component of the end-to-end vectorRee (blue) in comparison
to the Gaussian distribution with mean ` = 0 and variance f2 = 〈12〉# /3 (red). (b) Prob-
ability distribution of the G-component of the segment vectorR (blue) in comparison
to the Gaussian distribution with mean ` = 0 and variance f2 = 〈12〉/3 (red) with
〈12〉 = 2.08.
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Figure B.20: Phantom chain ssBFM with random initial con�guration. (a) The MSD of the
central monomer 61 as a function of time for a randomly initialised polymer simulated
with the ssBFM (red). The MSD is rescaled using the centre of mass di�usion �cm, which
is obtained by �tting 63 (C) = 6�cmC . To validate the simulations the results from BD
simulations of the Rouse model are shown in blue. (b) The corresponding MSD of the
centre of mass 63.

Furthermore, the Rouse scaling of the phantom chain ssBFM is analysed. In �gs. B.20
and B.21 the mean squared displacement of the centre of mass and of the central monomer
are compared to BD simulations of the Rouse model for a random initial con�guration and
a linear initial chain con�guration respectively. Both plots show a very good agreement,
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Figure B.21: Phantom chain ssBFMwith linear initial con�guration. (a) The MSD of the central
monomer61 as a function of time for a polymer with linear initial con�guration simulated
with the ssBFM (red). The MSD is rescaled using the centre of mass di�usion �cm, which
is obtained by �tting 63 (C) = 6�cmC . To validate the simulations the results from BD
simulations of the Rouse model are shown in blue. (b) The corresponding MSD of the
centre of mass 63.

con�rming that the ssBFM both shows the properties of a FJC and successfully reproduces
Rouse dynamics even when starting from a linear chain con�guration.

Initialising the chain such that all segments are at their maximum extension we obviously
expect deviations from the Rouse model, since the relaxation of the chain would be consider-
ably slowed down again. This is con�rmed by our simulations, as shown in �g. B.18. Since the
con�guration space is larger for the ssBFM with a spring potential, this model is expected to
be more robust to di�erent initial chain con�gurations. As shown in �g. B.17 however there
is still a major slow down of the chain relaxation compared to the Rouse model. Nevertheless,
as we do not intentionally initialise the polymer in a stretched out con�guration during our
target search simulations, the phantom chain implementation of the ssBFM yields an adequate
compromise between fast and robust polymer dynamics. Also a linear con�guration is not
used to initialise the polymer chain in the target search simulations, but tethering of chain
segments to the surface due to non-speci�c binding might lead to linear con�gurations of
chain segments in the course of the simulation.

〈R′〉 〈(R′− 〈R′〉)2〉 〈R2
ee〉 〈cos〉 〈(cos−〈cos〉)2〉

1.4092 0.0711 18.6498 −0.0046 0.3341
exact 1.4160 0 18.6923 0 0.3300

Table B.4: Comparing the ssBFM to the FJC model.
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B5 Numerical Correction of the Polymer Diffusion Constant

B5 Numerical Correction of the Polymer Di�usion Constant

It is well known [157, 167], that excluded volume interactions, a limited move set or segment
length restrictions in a polymer model lead to a chain length dependence of the bead di�usion
constant �0. For the ssBFM of a phantom chain this leads to a dependence as shown in
�g. B.22. While this is usually circumvented by rescaling the simulation results with the
desired di�usion constant of a real polymer, this is not possible when the polymer is not the
only moving part in the system. We therefore compute the monomer di�usion constant of a
free polymer of varying length by �tting the centre of mass displacement 63(C) = 6�0C/#
and include a numerical correction in our target search simulations to ensure a constant rate
�0.
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Figure B.22: Chain length dependent monomer di�usion. The monomer di�usion constant �0
is shown as a function of chain length for the ssBFM of a phantom chain. It is obtained
by �tting the centre of mass displacement 63 (C) = 6�0C/# .
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Stochastic ProcessesC
C1 Sequential Reversible Process

We consider a sequential reversible two-step process

(1
:+1−−⇀↽−−
:−2

(2
:+2→ (3 .

First we consider the general case of # states = = {1, . . . , # }. The master equation for the
transition probability ? (=, C |=′, C ′) from state =′ at time C ′ to state = at time C reads
m

mC
? (=, C |=′, C ′) = :+=−1? (= − 1, C |=′, C ′) + :−=+1? (= + 1, C |=′, C ′) − (:+= + :−= )? (=, C |=′, C ′) . (C.1)

Since we are interested in the time g to reach the �nal state (# , we set :−# = 0, such that (#
becomes an absorbing state. De�ne � (<, C), the probability that at time C state (# is not yet
reached when starting from state< at time C = 0:

� (<, C) := P{g ≥ C |=(0) =<} =
#∑
==1

? (=, C |<, 0) .

The distribution of �rst passage times is obtained from � (<, C), since

1 −� (<, C) = P{g < C |=(0) =<} .
1−� (1, C) is the cumulative distribution functionΦ(g) (CDF) of the �rst passage time, therefore

Ψ(g) = − m
mC
� (1, C) |C=g , (C.2)

is the �rst passage time distribution. We exploit that the transition rates do not depend on
time to write

� (<, C) =
#∑
==1

? (=, 0|<,−C) .

Therefore � (<, C) follows from the evolution of ? in the coordinate of the initial state, de-
scribed by the backward master Equation
m

mC ′
? (=, C |=′, C ′) = :+=′ (? (=, C |=′, C ′) − ? (=, C |=′ + 1, C ′)) + :−=′ (? (=, C |=′, C ′) − ? (=, C |=′ − 1, C ′)) ,
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which leads to

− m
mC
� (<, C) = :+< (� (<, C) −� (< + 1, C)) + :−< (� (<, C) −� (< − 1, C)) , (C.3)

with initial condition � (<, 0) = 1 for< < # and � (#, 0) = 0.
We now go back to the two-step process # = 3. Since � (3, C) = 0 we have two equations:

− m
mC
� (1, C) = :+1 (� (1, C) −� (2, C)) + :−1� (1, C)

= :+1 (� (1, C) −� (2, C))
− m
mC
� (2, C) = :+2 (� (1, C) −� (3, C)) + :−2 (� (2, C) −� (1, C))

= :+2� (1, C) + :−2 (� (2, C) −� (1, C)) .

To solve this initial value problem, we use the Laplace transform

� (B) =
∫ ∞

0
5 (C)4−BCdC

5 (C) = 1
2c8 lim

)→∞

∫ W+8)

W−8)
4BC� (B)dB .

Using L(5 ′) = B� (B) − 5 (0) we obtain

−B6(1, B) +� (1, 0) = :+1 (6(1, B) − 6(2, B))
−B6(1, B) + 1 = :+1 (6(1, B) − 6(2, B))

−B6(2, B) +� (2, 0) = :+26(2, B) + :−2 (6(2, B) − 6(1, B))
−B6(2, B) + 1 = :+26(2, B) + :−2 (6(2, B) − 6(1, B)) .

We solve for 6(1, B) and 6(2, B) and obtain

6(1, B) = :−2 + :+1 + :+2 + B
:−2 B + (:+1 + B) (:+2 + B)

,

as well as

6(2, B) = :−2 + :+1 + B
:−2 B + (:+1 + B) (:+2 + B)

,

and after back transformation

� (1, C) = 4−(0+1)C (−21 + 420C21 + 20 + 420C20)
40 , (C.4)

and

� (2, C) = 4−(0+1)C (−2(1 − :+2 ) + 420C2(1 − :+2 ) + 20 + 420C20)
40 , (C.5)
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C1 Seqential Reversible Process

with 0 = 1
2
√(:−2 + :+1 + :+2 )2 − 4:+1:+2 and 1 = 1

2 (:−2 + :+1 + :+2 ). Using eq. (C.2) we obtain

Ψ(g) = :+1:
+
2

20

(
4 (0−1)g − 4−(0+1)g

)
=
12 − 02

20

(
4 (0−1)g − 4−(0+1)g

)
,

and for the CDF

Φ(g) = (1 −� (1, C)) |C=g = 1 − (0 − 1)4
−(0+1)g + (0 + 1)4 (0−1)g

20 .

De�ning U = 1
0+1 and V = 1

1−0 , the CDF reads

Φ(g) = 1 − U4
− g

U − V4− g
V

U − V , (C.6)

and the probability density function

Ψ(g) = 4−
g
U − 4− g

V

U − V . (C.7)

When we assume that :−2 = 0, it reduces to

Φ(g) = 1 + :
+
2 4
−:+1 g − :+1 4−:

+
2 g

:+1 − :+2
. (C.8)

When we assume that :+2 is rate limiting, it reduces to

Φ(g) = 1 − 4−:+2 g . (C.9)

Mixed initial condition

The above �rst passage time distribution is based on a system that starts initially in state (1.
When we allow a mixed initial state, with a fraction G in state (2 and a fraction 1 − G in state
(1, we obtain

Φ(g) = P{g < C |=(0) = GB2 + (1 − G)B1}
= GP{g < C |=(0) = B2} + (1 − G)P{g < C |=(0) = B1}
= (1 − G� (2, C) − (1 − G)� (1, C)) |C=g ,

and

Ψ(g) = − m
mC
(G� (2, C) + (1 − G)� (1, C)) |C=g .

With � (1, C) and � (2, C) given in eqs. (C.4) and (C.5) this yields

Φ(g) = 1 −
U4−

g
U − V4− g

V − UV2
(
4−

g
U − 4− g

V

)
U − V , (C.10)
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C Stochastic Processes

and

Ψ(g) =
4−

g
U − 4− g

V + 2
(
U4−

g
V − V4− g

U

)
U − V ,

with 2 = G:+2 and

U = 2
(
:+1 + :+2 + :−2 −

√
(:+1 + :+2 + :−2 )2 − 4:+1:+2

)−1
,

V = 2
(
:−2 + :+1 + :+2 +

√
(:−2 + :+1 + :+2 )2 − 4:+1:+2

)−1
.

Moments

For the sequential reversible process with �xed initial condition we use the moments of the
probability density function eq. (C.7) to compute the mean �rst passage time and the variance
as functions of U and V . Since U and V are not independent, we propagate the uncertainty
with the whole covariance matrix f8 9 = cov[-8 , - 9 ] = E[(-8 − E[-8]) (- 9 − E[- 9 ]))], such
that the uncertainty of a function ~ (U, V) reads

Δ~ =

√√√ <∑
8=1

(
m~

mf88

)2
+ 2

<−1∑
8=1

<∑
9=8+1

m~

mf88

m~

mG 9
f8 9

=

√(
m~

mU
fU

)2
+

(
mD

mV
fV

)2
+ 2 m~

mU

m~

mV
fUV .

We compute the mean (�rst moment ` = E[- ])

` = U + V
Δ` =

√
f2
U + f2

V
+ fUV ,

and the variance (second central moment f2 = E[(- − `)2])

f2 = U2 + V2

Δf2 = 2
√
U2f2

U + V2f2
V
+ UVfUV .

For the sequential reversible model with mixed initial condition, we proceed as above using
the probability density function in eq. (C.10). The uncertainty of a function ~ (U, V, 2) now
reads

Δ~ =

√(
m~

mU
fU

)2
+

(
mD

mV
fV

)2
+

(
m~

m2
f2

)2
+ 2 m~

mU

m~

mV
fUV + 2 m~

mU

m~

m2
fU2 + 2 m~

mV

m~

m2
fV2 .
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C2 Simultaneous Two Step Process

We again compute the mean

` = U + V − UV2
Δ` =

√
f2
U (1 − V2)2 + f2

V
(1 − U2)2 + f2

2U2V2 + 2fUV (1 − U2) (1 − V2) − 2UV (fU2 (1 − V2) + fV2 (1 − U2)) ,

and the variance

f2 =U2 + V2 − U2V222

Δf2 =
{
4f2

UU
2(V222 − 1)2 + 4f2

VV
2(U222 − 1)2 + f2

2 (V2 + U22 (1 − V222))2 + 8fUVUV (U222 − 1) (V222 − 1)

+8fU2U3V22 (V222 − 1) + 8fV2U2V32 (U222 − 1)} 1
2 .

C2 Simultaneous Two Step Process

We consider a two channel process

(1
:+1−−⇀↽−−
:−2

(2
:+2−−⇀↽−−
:−3

(3 ,

Where the end state (3 can be reached via two di�erent pathways. For the general case of
# states = = {1, . . . , # } we therefore have the same master equation as shown in eq. (C.1).
With the mixed initial condition

Φ(g) = (1 − G� (3, C) − (1 − G)� (1, C)) |C=g ,
and

Ψ(g) = − m
mC
(G� (3, C) + (1 − G)� (1, C)) |C=g .

with eq. (C.3) and initial condition � (1, 0) = � (3, 0) = 1 and � (2, 0) = 0, :−1 = :+2 = 0
(absorbing state) and � (2, C) = 0 (absorbing state) we obtain

− m
mC
� (1, C) = :+1 (� (1, C) −� (2, C)) + :−1 (� (1, C) −� (0, C))

= :+1� (1, C)
− m
mC
� (2, C) = :+2 (� (2, C) −� (3, C)) + :−2 (� (2, C) −� (1, C))

= 0

− m
mC
� (3, C) = :+3 (� (3, C) −� (4, C)) + :−3 (� (3, C) −� (2, C))

= :−3� (3, C) .
To solve this initial value problem, we use the Laplace transform. Using L(5 ′) = B� (B) − 5 (0)
we obtain

−B6(1, B) +� (1, 0) = :+16(1, B)
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C Stochastic Processes

−B6(1, B) + 1 = :+16(1, B)
6(1, B) = 1

B + :+1
−B6(3, B) + 1 = :−3 6(3, B)

6(3, B) = 1
B + :−3

.

And after back transform

� (1, C) = 4−:+1 C
� (3, C) = 4−:−3 C .

And the probability density function is

Ψ(g) = (G − 1):+1 4−:
+
1 g + G:−3 4−:

−
3 g ,

with the cumulative distribution

Φ(g) = (1 − G� (3, C) − (1 − G)� (1, C)) |C=g
= 1 − G4−:−3 g + (G − 1)4−:+1 g ,

and the mean

` =
:−3 − G:−3 + G:+1

:−3 :
+
1

=
G

:−3
+ 1 − G

:+1
.
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Search Dynamics of a Polymer in
Con�nementD

We show additional plots and tables investigating the target search process of surface proteins
for a binding site on a polymer inside the volume by kinetic Monte Carlo simulations.

N ae� N ae� N ae�
1 0.738 956 ± 0.000 010 6 0.8652 ± 0.0019 15 1.1093 ± 0.0062
2 0.772 22 ± 0.000 28 7 0.829 80 ± 0.000 39 20 1.0137 ± 0.0077
3 0.6642 ± 0.0018 8 0.7670 ± 0.0028 25 1.1364 ± 0.0043
4 0.710 99 ± 0.000 88 9 0.8362 ± 0.0014 30 0.9820 ± 0.0018
5 0.6796 ± 0.0029 10 0.9368 ± 0.0025 35 1.397 ± 0.012

Table D.1: Fit results. Results from �tting the search time normalised to the polymer length to
〈g〉/# = + /(4�00e�) in order to obtain the e�ective target size0e�. Fits were obtained using
the curve_�t function of the scipy module in Python, choosing a Levenberg-Marquardt
method.
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Figure D.1: Search time of monomers and polymers. (a) Mean search time 〈g〉 of a polymer of
length # = 1 for varying the box size !. The search time of a monomer, i.e. the narrow
escape time (NET) of a Brownian particle is given by 〈g〉 ≈ + /(4�00t), with the volume
+ , the di�usion constant �0 and the target size 0t. (b) Mean search time 〈g〉 of a polymer
of length # for varying the box size !. The search time of a small polymer (compared to
the con�ning volume) is given by 〈g〉 ≈ + /(4�00e�), with the volume + , the di�usion
constant �0 and the e�ective target size 0e�.
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Figure D.2: Polymer length dependence of non-speci�c binding. Mean search time 〈g〉 as a
function of the relative binding rate :on/:o� for varying unbinding rate and di�erent
lengths of the polymer # . Increasing the polymer length has a similar e�ect as decreasing
the size of the simulation box, since the behaviour essentially depends on the polymer
density in the volume.
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Figure D.3: Fitting the crossover length and average segment length. (a) Fitting the initial
increase (the range # = 1 to !) of the mean search time 〈g〉 to 5 (# ) = 2√# (red dashed
line) and taking the intersect with the �t to the plateau value (green dashed line) as the
crossover polymer length. (b) The blue data show the average segment size between
two encounters with the boundary. The red data show the average segment size for a
few binding sites along the polymer if each encounter with the boundary would cut the
polymer. The dashed lines correspond to the best �t to the data.
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Figure D.4: Non-speci�c binding and unbinding with sliding. (a) Mean search time 〈g〉 as a
function of the binding rate :on for di�erent values of :o� and constant sliding rate
:1d = 10. Sliding has the e�ect that binding is always favourable, such that the search
time plateau for small binding rates is higher than the plateau for large binding rates.
(b) Mean search time as a function of the relative binding rate :on/:o�. The minimum at
:on/:o� ≈ 100 is unchanged.
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Figure D.5: Protein rate dependence of sliding. Mean search time 〈g〉 as a function of the sliding
rate :1d for varying unbinding rate and di�erent values of the 2d di�usion rate of the
protein :2d. The position of the minimum is not a�ected by the protein di�usion rate
and also the factor between the plateaus is conserved. Only the absolute height of the
plateaus is a�ected due to the speedup of the process by faster protein di�usion.
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Figure D.6: Volume size dependence of sliding. Mean search time 〈g〉 as a function of the sliding
rate:1d for varying unbinding rate and di�erent volume sizes of the cubic grid. The volume
size does in general not a�ect the position of the minimum or the factor between the
two plateaus. Only for very small boxes the minimum disappears and the factor between
the plateaus is larger, because at edges and corners the probability for a neighbouring
bead to stay at the surface is larger than at a face centre, leading to a larger fraction of
polymer beads at the surface, along which the bound protein can slide. The minimum
for approximately permanent binding disappears for very small boxes probably because
a large fraction of the polymer is at the surface anyways and therefore it does not slow
down polymer di�usion if it is tethered to the surface by the sliding protein.
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Figure D.7: Polymer length dependence of sliding. Mean search time 〈g〉 as a function of the
sliding rate :1d for varying unbinding rate and di�erent lengths of the polymer # . Varying
the polymer length does not a�ect the position of the minimum or the factor between
the plateaus. Only for very short polymers the minimum for approximately permanent
binding disappears, likely because the positive e�ect of bringing the binding site close to
the surface due to tethering dominates over the slowdown of polymer di�usion.
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Figure D.8: E�ect of sliding and self-exclusion. (a) The mean search time 〈g〉 is shown as a
function of the protein sliding rate :1d for di�erent values of the unbinding rate and
constant binding rate :on = 1. Choosing a di�erent binding rate does not a�ect the
position of the minimum or the factor between the plateaus. (b) Search time 〈g〉 for
varying polymer length # and di�erent values of the energy penalty n , ranging from
n = 0 (phantom chain) to n = ∞ (self-avoiding chain). The con�ning volume is a cube of
size ! = 10.
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Figure D.9: CDF for a monomer. (a)-(f) Cumulative distribution Φ(g) of the �rst passage time for
varying mobility of the protein and a polymer of length # = 1. The red dashed lines
show the best �t to an exponential distribution. We observe two regimes: while for a
very fast protein the CDF deviates from an exponential distribution, they agree very well
for :2d ≤ 100. As expected, since for a monomer the corner e�ect is almost negligible,
there is no deviation from the single exponential distribution for an immobile or very
slowly di�using protein.

exponent �tted value literature value
U0,c 1.161 ± 0.014 1.45
Umid

0,c 1.959 ± 0.016
U0,f 0.493 ± 0.012 0.5
Umid

0,f 0.7931 ± 0.0082 1.01

Table D.2: Fit results. Results from �tting the mean search time of an end monomer or a mid monomer
respectively to reach the corner or the face centre of the cubic box to 〈g〉(# ) = #U8 . Fits
were obtained using the curve_�t function of the scipy module in Python, choosing a
Levenberg-Marquardt method.
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Figure D.10: CDF of a static protein and �t to a sequential process. (a) Cumulative distribution
Φ(g) of the �rst passage time for a static protein placed at the face centre of the cubic box.
The red dashed line shows the best �t to a single exponential distribution. As expected,
the search process for a static protein can be well described by a single exponential
(Poisson process). (b) Cumulative distribution Φ(g) of the �rst passage time for a moving
protein (:2d = 1000). The green dashed line shows the best �t to the CDF of a sequential
two-step process with mixed initial condition, the red dashed line shows the best �t to a
single exponential distribution. As expected, the agreement with the sequential two-step
process is much better than the accordance with the single exponential distribution.
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Figure D.11: Binding site at the surface. Cumulative distribution Φ(g) of the �rst passage time for
varying mobility of the protein. The red dashed lines show the best �t to an exponential
distribution. (a) For intermediate protein di�usion rates a deviation from the exponential
distribution arises because both the polymer and the protein contribute to the search.
(b) As expected, when the binding site on the polymer is placed at the surface, the
distribution agrees well with a single exponential for a very fast di�using protein.
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Figure D.12: E�ect of self-exclusion on the distribution. The cumulative distribution function
is shown for ! = 4 and # = 50 with self-exclusion ((a), (c)) and without self-exclusion
((b), (d)). The distribution with self-exclusion shows the onset of heavy tails, because
some of the conformations of the densely packed self-avoiding polymer allow for very
few movement. Due to the massive slowdown of the simulations in this regime, higher
polymer densities could not be simulated with excluded volume interactions.
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Search Dynamics of a
Membrane-Integrated

One-Component ReceptorE
E1 Construction of Strains and Plasmids

Molecular methods were carried out according to standard protocols or according to the
manufacturer’s instructions. Kits for the isolation of plasmids and the puri�cation of PCR
products were purchased from Süd-Laborbedarf (SLG; Gauting, Germany). Enzymes were
purchased from New England BioLabs (Frankfurt, Germany). Bacterial strains and plasmids
used in this study are summarised in table E.1.
E. coli strains were cultivated in LB medium (10 g l−1 NaCl, 10 g l−1 tryptone, 5 g l−1 yeast

extract) or in Kim Epstein (KE) medium [209] adjusted to pH 5.8 or pH 7.6, using the cor-
responding phosphate-bu�er. E. coli strains were always incubated aerobically in a rotary
shaker at 37 ◦C. KE medium was always supplemented with 0.2000 %(w/v) glucose. Generally,
lysine was added to a �nal concentration of 10 mM unless otherwise stated. If necessary,
media were supplemented with 100 µg ml−1 ampicillin or 50 µg ml−1 kanamycin sulfate. To
allow the growth of the conjugation strain E. coli WM3064, we added meso-diamino-pimelic
acid (DAP) to a �nal concentration of 200 µM.

In order to gain strain E. coli MG1655-parS_ori, the parS site of Yersinia pestis was inserted
close to the ori, at 84.3′ in E. coli MG1655. Brie�y, the parS region was inserted between pstS
and glmS. Therefore, DNA fragments comprising 650 bp of pstS and glmS and the parS region
were ampli�ed by PCR using MG1655 genomic DNA as template and the plasmid pFH3228,
respectively. After puri�cation, these fragments were assembled via Gibson assembly [210]
into EcoRV-digested pNPTS138-R6KT plasmid, resulting in the pNTPS138-R6KT-parS_ori
plasmid. The resulting plasmid was introduced into E. coli MG1655 by conjugative mating
using E. coli WM3064 as a donor on LB medium containing DAP. Single-crossover integration
mutants were selected on LB plates containing kanamycin but lacking DAP. Single colonies
were then streaked out on LB plates containing 10 %(w/v) sucrose but no NaCl to select for
plasmid excision. Kanamycin-sensitive colonies were then checked for targeted insertion by
colony PCR and sequencing of the respective PCR fragment. In order to gain strain E. coli
MG1655∆cadC-parS_ori, the parS site of Y. pestis was inserted close to the ori, at 84.3′ in E.
coli MG1655∆cadC, as described above.

In order to gain strain E. coli MG1655_PcadBA_terminus, the cadBA promoter region was
inserted at the terminus (33.7′) in E. coli MG1655. Construction of this strain was achieved
via double homologous recombination using the pNTPS138-R6KT-PcadBA_terminus plasmid
[81] as described above. Correct colonies were then checked for targeted insertion by colony
PCR and sequencing of the respective PCR fragment.
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Details of the strains and plasmids used in this study are summarised in table E.1.

Strains Relevant genotype or description Reference
E. coli DH5αλpir endA1 hsdR17 glnV44 (= supE44) thi-1 recA1

gyrA96 relA1 ψ80’lac∆ (lacZ )M15 ∆( (lacZYA-
argF )U169 zdg-232::Tn10 uidA::pir+

[211]

E. coli WM3064 thrB1004 pro thi rpsL hsdS lacZ∆M15 RP4-1360
∆(araBAD)567 ∆dapA1341::[erm pir]

[212]

E. coli MG1655 (N-
PcadBA)

K-12 F– λ– ilvG– rfb-50 rph-1 [192]

E. coli MG1655_
PcadBA_terminus
(N+T-PcadBA)

Additional cadBA promoter region at the ter-
minus (33.7′) in MG1655

This work

E. coli MG1655
∆PcadBA_
PcadBA_terminus
(T-PcadBA)

Clean deletion of cadBA promoter region in
MG1655 with relocated cadBA promoter region
at the terminus (33.7′)

[81]

E. coli MG1655-
parS_ori

Insertion of the Yersinia pestis pMT1parS site
at the ori (84.3′) in MG1655

This work

E. coli MG1655
∆cadC

Deletion of cadC gene in MG1655, KmR [213]

E. coli MG1655
∆cadC-parS_ori

Insertion of the Yersinia pestis pMT1parS site
at the ori (84.3′) in MG1655∆cadC, KmR

This work

Plasmids Relevant genotype or description Reference
pET-mCherry-
cadC

N-terminal fusion of cadC with mCherry, con-
nected with a 22 amino acid long linker con-
taining a 10His tag in pET16b, AmpR

[81]

pNTPS138-R6KT-
PcadBA_terminus

pNPTS-138-R6KT-derived suicide plasmid for
insertion of cadBA promoter region at terminus
in E. coli MG1655, KmR

[81]

pNTPS138-R6KT-
parS_ori

pNPTS-138-R6KT-derived suicide plasmid for
insertion of the Yersinia pestis pMT1parS site
at the ori in E. coli MG1655, KmR

This work

pFHC2973 N-terminal fusion of parB with ygfp, AmpR [214]
pFH3228 Plasmid carrying the pMT1-parS of Yersinia

pestis, AmpR
[214]

Table E.1: Strains and plasmids used in this study.

E2 In Vivo Fluorescence Microscopy

To analyse search response of mCherry-CadC to its binding site(s), overnight cultures of E.
coli MG1655 (one CadC binding site close to ori, N-PcadBA),
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E. coli MG1655∆PcadBA_PcadBA_terminus (one CadC binding site at terminus, T-PcadBA) and
E. coli MG1655_PcadBA_terminus (two CadC binding sites, N+T-PcadBA), each carrying pET-
mCherry-cadC, were prepared in KE medium pH 7.6 and aerobically cultivated at 37 ◦C. The
overnight cultures were used to inoculate day cultures (OD600 of 0.1) in fresh medium at pH
7.6. At an OD600 of 0.5, cells were gently centrifuged and resuspended, thereby exposing them
to low pH (KE medium pH 5.8 + lysine). Then the cultures were aerobically cultivated at
37 ◦C and every 1 min after the shift to low pH, 2 µl of the culture was spotted on 1 %(w/v)
agarose pads (prepared with KE medium pH 5.8 + lysine), placed onto microscope slides
and covered with a coverslip. Subsequently, images were taken on a Leica DMi8 inverted
microscope equipped with a Leica DFC365 FX camera (Wetzlar, Germany). An excitation
wavelength of 546 nm and a 605 nm emission �lter with a 75 nm bandwidth was used for
mCherry �uorescence with an exposure of 500 ms, gain 5, and 100 % intensity. Before shifting
the cells to low pH, 2 µl of the cultures in KE medium pH 7.6 were spotted on 1 %(w/v) agarose
pads (prepared with KE medium pH 7.6) and imaged as a control.

To analyse the spatiotemporal localisation of a chromosomal locus, the parS site was
inserted close to the ori. The localisation of the parS site was visualised via the binding of
ParB-yGFP [214]. E. coli MG1655-parS_ori cells carrying plasmid pFH3228 were cultivated in
KE medium pH 7.6 as described above. At an OD600 of 0.5, 2 µl of the culture were shifted on
1 %(w/v) agarose pads (prepared with KE medium pH 7.6 or pH 5.8 + lysine) and placed onto
microscope slides and covered with a coverslip. Subsequently, every 30 s time-lapse images
of the same cells were taken on a Leica DMi8 inverted microscope equipped with a Leica
DFC365 FX camera (Wetzlar, Germany) of the same positions. An excitation wavelength
of 485 nm and a 510 nm emission �lter with a 75 nm bandwidth were used for ParB-yGFP
�uorescence with an exposure of 350 ms, gain 3, and 100 % intensity.

E3 Fitting the Experimental Data

The results from �tting the experimentally computed CDF to the theoretical models are
shown. Moreover, in �g. E.1 we show the data of the fraction of cells with clusters a (C) for
the three E. coli strains, from which the response function is computed.

Strain α[min] β[min] c[min−1] 〈τ 〉[min] σ2 [min2]
N-PcadBA 7.87 ± 0.60 0.52 ± 0.13 0.87 ± 0.15 4.84 ± 0.19 49.6 ± 8.8
T-PcadBA 4.20 ± 0.26 6 × 10−15±0.1800 4.20 ± 0.15 17.6 ± 2.0
N+T-PcadBA 2.02 ± 0.16 1.1000 × 10−14±0.2200 2.02 ± 0.12 4.09 ± 0.66

Table E.2: Fit results. Results from �tting the experimentally computed CDF to the sequential
reversible model with mixed initial condition (N-PcadBA) and �xed initial condition (T-
PcadBA and N+T-PcadBA). The �t parameters U , V and 2 were used to compute the mean �rst
passage time and the variance with uncertainties obtained from error propagation using
the full covariance matrix.
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Figure E.1: Dynamics of the target search by CadC. Fluorescent microscopy images were taken
every minute after receptor activation and analysed for CadC clusters for all three E. coli
strains. The plot shows the fraction of cells with clusters a (C) as a function of time C after
the medium shift to low pH and lysine.
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Figure E.2: Mean squared displacement of ParB foci. The MSD of ParB foci was calculated
by selecting the closest foci in subsequent image frames and calculating the ensemble
averaged mean squared displacement as a function of time lag g . The dashed lines show
the �t to MSD(g) = Γg

1
2 . For each time lag the mean was taken over 234 to 936 values.
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Strain σ2
" [min2] σ2

# [min2] σ2
c [min2] σ"# [min2] σ"c [min2] σ#c [min2]

N-PcadBA 0.3600 0.0160 0.0230 0.0500 −0.0190 −0.0500
T-PcadBA 0.0590 0.0320 −0.0330
N+T-PcadBA 0.0260 0.0500 −0.0300

Table E.3: Covariance matrix. Covariance matrix of the parameters U , V and 2 from �tting the ex-
perimentally computed CDF to the sequential reversible model with mixed initial condition
(N-PcadBA) and �xed initial condition (T-PcadBA and N+T-PcadBA).

E4 Spot Detection

After both the greyscale images and the �uorescence images were saved in tag image �le
format (ti�), the greyscale images were used to segment the cells with Oufti. The resulting
Matlab �les can be loaded together with the �uorescence microscopy images into our custom
Matlab software SpotDetection.m. After testing the parameters and optionally adjusting the
G and ~ values of the shift if the �uorescence images are shifted relative to the greyscale
images, running the analysis saves the data of all detected �uorescence spots in all frames.
An example image of the GUI of SpotDetection.m is shown in �g. E.3.

Figure E.3: SpotDetection.m software. Example image of the GUI of our custom Matlab software
SpotDetection.m showing the test mode. To adjust the parameter settings the spot detection
algorithm can be tested on a certain frame for a prede�ned number of cells. The graphical
output shows the �uorescence image with detected spots of a certain size given in pixels,
the cell outline, the position of the cell poles and the position of the cell centre. The
values for the G~-shift can be adjusted if the �uorescence images are shifted relative to
the greyscale images, which would be visible as a shift of the drawn cell outline relative
to the cell in the �uorescence image.
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