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Abstract 

Crystallization is a common separation and purification process in various industries. 
Crystallization processes are dominated by complex dynamic interactions of 
crystallization phenomena like growth, nucleation, agglomeration and other physical 
phenomena like breakage and abrasion. These interactions are still not well understood. 
The present thesis deals with the influence of crystal shape on such interactions. 
Specifically, the interaction of crystal growth and damaging events was studied. This 
was done by continuing the development of three-dimensional imaging techniques for 
crystal shape and size analysis. In a first step, crystal populations were analyzed in three 
dimensions. The analysis showed that crystals underwent a shape transition from non-
symmetric shapes to symmetric shapes. This transition could be explained by face-
independent growth. However, at the time, it could not be explained how non-symmetric 
shapes could occur. The hypothesis was that damaged seed material did not grow 
according to established growth laws. The hypothesis motivated a second study in which 
growth of damaged crystals was studied. In crystallization processes, it is hard to avoid 
damage events like abrasion. Literature suggested that such crystals should grow at 
increased rates, but rates and mechanisms were not fully understood. In context of this 
work, three-dimensional imaging of abraded crystals enabled detailed analysis of their 
growth. The images were used to derive rates for a high-dimensional growth model that 
is able to describe the shape and size evolution of abraded crystals. The model was 
applied to describe how damaged seed material could lead to asymmetric crystals. In a 
broader picture, we have learnt that damage events in crystallization processes may not 
only affect processes by an increase of surface area for growth, but also render fast 
growing crystal surface. 



 

 

Zusammenfassung 

Kristallisation ist ein gängiges Trenn- und Reinigungsverfahren in verschiedenen 
Industriezweigen. Das Verhalten von Kristallisationsprozessen wird von komplexen 
dynamischen Wechselwirkungen der Kristallisationsphänomene beherrscht. Diese 
Wechselwirkungen sind noch nicht gut verstanden. Diese Arbeit befasst sich mit dem 
Einfluss der Kristallform auf solche Wechselwirkungen. Insbesondere wurde die 
Wechselwirkung von Kristallwachstum und schädigenden Ereignissen untersucht. Dazu 
wurde die Entwicklung von dreidimensionalen Bildgebungsverfahren für die 
Kristallanalyse fortgesetzt. In einem ersten Schritt wurden Kristallpopulationen in drei 
Dimensionen analysiert. Dabei zeigte sich, dass die Kristalle einen Formübergang von 
asymmetrischen Formen zu symmetrischen Formen durchlaufen. Dieser Übergang 
konnte durch flächenunabhängiges Wachstum erklärt werden. Damals konnte jedoch 
nicht erklärt werden, wie die asymmetrischen Formen entstanden. Die Hypothese war, 
dass das beschädigte Impfmaterial nicht entsprechend der etablierten 
Wachstumsgesetzen wuchs. Diese Hypothese motivierte eine zweite Studie, in der das 
Wachstum von beschädigten Kristallen untersucht wurde. Bei Kristallisationsprozessen 
lassen sich Beschädigungen wie Abrieb nur schwer vermeiden. Die Literatur legt nahe, 
dass solche Kristalle mit erhöhten Raten wachsen, aber die Raten und 
zugrundeliegenden Mechanismen waren nicht vollständig verstanden. Im Rahmen 
dieser Arbeit ermöglichte dreidimensionale Bildgebung von abgeriebenen Kristallen 
eine detaillierte Analyse ihres Wachstums. Aus den Bildern wurden Raten für ein 
hochdimensionales Wachstumsmodell abgeleitet, das die Form- und 
Größenentwicklung von abgeriebenen Kristallen beschreibt. Das Modell wurde 
angewandt, um zu beschreiben, wie beschädigtes Impfmaterial zu asymmetrischen 
Kristallen wächst. Im Großen und Ganzen haben wir gelernt, dass Beschädigungen in 
Kristallisationsprozessen nicht nur durch eine Vergrößerung der Wachstumsoberfläche 
Prozesse beeinflussen können, sondern auch zu schnell wachsenden 
Kristalloberflächen führen. 
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Chapter 1 

1. Introduction 

Crystallization is a common unit operation in chemical, pharmaceutical and food 
processes. It is used to separate substances from solutions or melt. The great potential 
of crystallization lies in separation with high selectivity and high purity. This potential is 
opposed to complex dynamic interactions in crystallization processes that make them 
hard to predict and control. Basic phenomena that occur during crystallization are 

 Nucleation –  The formation of new crystals 
 Growth –  Incorporation of molecules or atoms in existing     

  crystals 
 Dissolution – Disintegration of molecules or atoms from existing   

  crystals 
 Agglomeration  –  The formation of complex geometric structures out of 

  existing crystals 
 Breakage –  Shattering of crystals into pieces through intense   

  mechanical stress 
 Abrasion and Attrition –  Damage induced through milder mechanical stress  

  which leads to round crystal edges and corners 
With the exception of nucleation (Myerson and Trout 2013; Zhou et al. 2019), these 
phenomena are well understood individually. However, their interactions are often not 
well understood and subject of recent research activities (Ma et al. 2008; Kovačević and 
Briesen 2019; Bötschi 2019; Ahn et al. 2021a, 2021b; Bosetti et al. 2021). The main 
working hypothesis of this thesis is that the lack of understanding is because crystal 
shape is often insufficiently considered. Crystal shape is a general term that describes 
the appearance of crystals. One essential component of shape is that it describes the 
relation of surface area and volume. Crystal shape is particularly important because 
crystal growth is a surface reaction that increases crystalline volume. The rate of this 
surface reaction depends on how much material is solved. Therefore, surface and 
volume of crystals are coupled. In addition, different types of surfaces exist and influence 
rates in processes.  
In many crystallization processes, crystal growth is a dominating phenomenon. It is often 
the preferred separation phenomenon and many batch processes aim at maximizing 
growth while minimizing the other before mentioned phenomena. This is because 
growth leads to pure and large crystals. Purification is often a goal of crystallization and 
large crystals are easily handled in downstream processes. In order to describe crystal 
growth, one often assumes idealized crystal shapes that are described by perfectly 
facetted crystals (Briesen 2006; Ma and Wang 2008; Borchert and Sundmacher 2012; 
Borchert et al. 2014; Eisenschmidt et al. 2014; Reinhold and Briesen 2015; 
Eisenschmidt et al. 2016). The established growth model assumes that faces are 
displaced in a direction normal to their surface. Different faces lead to different growth 
behavior and hence different process behavior (Puel et al. 1997; Reinhold and Briesen 
2015). Therefore, crystal shape is long accepted as important process variable.  
However, in reality idealized growth behavior is seldom achieved. That is, crystals may 
significantly deviate from their idealized shapes depending on which other phenomena 
occur. For example, crystallization vessels are agitated in order to reduce temperature 
and concentration gradients. The corresponding fluid dynamical conditions impose 
mechanical stress on crystals and lead to their damage and secondary nucleation (i.e. 
production of fine material). In continuous crystallization processes (e.g. mixed 
suspension mixed product removal), particles would be washed out of the system over 
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time if no nucleation occurred. Nucleation is, therefore, needed to keep continuous 
processes running. In such cases, nucleation must be induced e.g. through abrasion or 
milling of suspended crystals. Nuclei are composed of only a few dozens of atoms or 
molecules. For such small numbers it is inherently hard to achieve facetted shapes and 
it may even be hard to define a distinct phase boundary (Zhou et al. 2019). On larger 
size scales, broken crystals may deviate from idealized facetted shapes (Hill and 
Reeves 2019; Ma and Roberts 2019), dissolution (Eisenschmidt et al. 2016; Elts et al. 
2016) or abrasion (Reinhold et al. 2015) yield rounded shapes, and agglomeration leads 
to complex geometric structures (Kovačević 2018). Such shape deviations make the 
common growth laws inapplicable. In consequence, it is likely that non-ideally shaped 
crystals affect behavior of crystallization processes differently as predicted by assuming 
ideal shapes. In addition, breakage (Hill 2004), abrasion (Briesen 2007) and dissolution 
(Snyder and Doherty 2007) not only affect shape, but are also affected by shape. It is 
hence evident that crystal shape is an important crystal property and process variable 
when describing dynamic interactions between crystallization phenomena and that it is 
important to consider non-ideal shapes. 
In addition to shape as process variable, the shape of crystals is an important quality 
criterion of a crystalline product as well (Buffham 2000; Tung 2012; Dandekar et al. 
2013). Shape has a decisive influence on the bioavailability of active pharmaceutical 
ingredients (APIs) (Blagden et al. 2007; Dandekar et al. 2013) and on the efficiency of 
further downstream processes like solid/liquid separation and drying (Variankaval et al. 
2008; Beck and Andreassen 2012; Cornehl et al. 2014). 
As mentioned earlier, crystal growth is often promoted and abundant in crystallization 
processes. Understanding growth is, therefore, an important engineering task in order 
to predict and control crystallization processes. In addition, growth of nuclei is 
considered an important topic that may help to understand crystal nucleation (Myerson 
and Trout 2013). However, growth of non-ideally shaped crystals (i.e. not faceted 
crystals) is not studied much in the literature. Ma and Roberts (2019) modeled growth 
of broken crystals. However, the shape of the crystals was highly simplified by the 
assumption that all broken crystals broke in the same way. The assumption was that all 
broken crystals had the same new face. They further assumed that this face would grow 
as any other face but at an arbitrarily higher rate. Their study showed that fast growth 
resulted in healing of broken regions within seconds. However, they discussed that the 
rates that were applied for the broken region should be experimentally determined. In 
addition, it is unknown whether growth laws of ideal faces can be applied to damaged 
regions. Increased growth rates are according to experimental studies that have shown 
that damaged crystals grow at increased rates in terms of increase of mass (Ulrich and 
Stepanski 1987). 
In consequence, the present thesis focuses on the influence of crystal shape on 
crystallization processes. Specifically, the interaction of crystal growth and damage 
events during crystallization from solution are studied. 

 Chapter 2 motivates this work and summarizes crystallization basics. 
 Chapter 3 defines the problem that is tackled in the present work. 
 Chapter 4 summarizes methods that have been developed and applied in 

context of this work and explains the preliminary work done by Reinhold (2015) 
and Kovačević (2018) within DFG priority program SPP 1697. That work laid the 
theoretical foundation of the methods developed and the results obtained in 
context of the present thesis. 

 Chapter 5 combines the results that advance towards a solution of the defined 
problems.  

 Chapter 6 discusses the progress of this work 
 Chapter 7 concludes the present thesis  
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Chapter 2 

2. Theoretical background 

2.1 The crystalline state 
In a crystalline phase, molecules or atoms are aligned according to a material specific 
lattice. The term crystal describes a crystalline particle. The term crystallization 
describes a phase transition into a crystalline state. Crystallization may occur in 
unordered phases (e.g. solutions, melts, amorphous solids) or in crystalline phases 
(Mullin 2001). In latter case, aligned molecules align according to another, more stable 
crystal lattice (polymorphism). The term crystallization is also used to describe a unit 
operation that uses the phase transition crystallization for material separation. Ideally, 
only molecules that fit into the crystal lattice are included in crystals, due to the ordered 
alignment of molecules in crystalline phases. This is why high purity and selectivity can 
be achieved and crystallization is used as purification technique. 

2.2 Crystallization as unit operation 
The present work focuses on crystallization from solution. In this case, a solution of a 
material is present. The solution consists of a solute (material to be crystallized), a 
solvent (liquid in which the solute is solved) and potentially other components that are 
dissolved, too. To induce crystallization, the thermodynamic potential of the solution is 
altered in such a way that the formation of a crystalline phase becomes 
thermodynamically favorable. This is expressed by the term supersaturation. 
Mathematically supersaturation can be expressed as relative supersaturation  

 1 

In equation 1,  is the load of solute in solution.  is the corresponding solubility. 
Instead of using concentration defined as amount of material solved per solution volume, 
it is common practice to use load  with the unit mass solute per mass solvent for 
crystallization. Using load makes calculations simpler because solution volume changes 
through crystallization. The mass of solvent, however, is easily calculated from mass 
balances and is constant in many cases. Conversion of solvent mass to volume of 
solution needs information on the density, which changes through crystallization as well 
and often needs experimental data. In the following, the term concentration is used as 
general term to describe how much of a certain material is dissolved. The mathematical 
formulation may be in form of a load or any type of concentration (e.g. mass or mole 
based concentration). 

Solubility  is generally a function of thermodynamic state variables (e.g. temperature, 
composition). For  a solution is super-saturated and thermodynamically unstable. 
But the state may be meta-stable at low supersaturation. Crystallization may occur. For 

 a solution is saturated i.e. the solution is in thermodynamic equilibrium. For  
a solution is under-saturated. The under-saturated state enables dissolution. The same 
relations apply for the absolute supersaturation  

 2 

Because supersaturation is the driving force in crystallization, measuring 
supersaturation is highly desirable. However, a direct and explicit sensor for it does not 
exist. In order to determine supersaturation, the concentration of solute has to be 
measured together with the state variables that define saturation. The saturation has to 
be measured as function of relevant state variables in laborious experiments if no data 
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is available in the literature. Then equations 1 or 2 can be used to calculate 
supersaturation. Calibration of concentration measurements may be altered by possibly 
unknown impurities. This makes concentration measurements for solubility 
measurements and process monitoring especially challenging. Concentrations are often 
measured using refractometry (Mullin 2001; Alvarez Rodrigo et al. 2004; Mimouni et al. 
2005), conductivity (Mullin 2001; Schiele et al. 2021a) or spectroscopy (Nagy et al. 2013; 
Eisenschmidt et al. 2016; Eder and Briesen 2019; Rao et al. 2020; Schiele et al. 2020b). 
For example, Schiele et al. (2020b) describe how lactose concentrations can be 
measured for its crystallization using attenuated total reflection fourier transformed 
infrared spectroscopy (ATR-FTIR)1. In lactose crystallization, two anomers of lactose 
are present in solution, and are in dynamic equilibrium. However, only one of them—

-lactose—crystallizes due to its lower solubility at common process conditions. Hence, 
the individual concentration and supersaturation of -lactose needs to be measured. 
The anomers have very similar physiochemical properties and are, therefore, hard to 
distinguish using classical calibration methods. ATR-FTIR spectra of the anomers are 
similar but can be distinguished using suitable calibration (Schiele et al. 2020b). This 
illustrates that supersaturation is not always easily accessible. Still it is the driving force 
of crystallization and hence an important process variable. 

 
Figure 1 | Schematic of an exemplary crystallization process.  

Figure 1 shows a crystallization process that starts in the top right of the schematic and 
follows the black line in direction of the arrow. The first step is to generate 
supersaturation by changing the state of the system. Independently of how (or if) 
supersaturation is measured, there are different ways how supersaturation can be 
achieved and/or maintained: 

 reducing solubility (decreasing  in eq. 1) 
o altering temperature (e.g. cooling crystallization2) 
o altering pH (pH-shift crystallization) 
o addition of antisolvent (antisolvent crystallization) 

 increasing concentration (increasing  in eq. 1) 
o removal of solvent (e.g. evaporation crystallization) 
o reactions (integrated crystallization) 

                                                
1 The work of Schiele et al. (2020b) was conducted in context of this PhD work. However, it is 
not included in the present thesis because it does not deal with the shape of crystals. 
2 Note that some material systems (e.g. Calcium Carbonate in water) have lower solubility at 
elevated temperatures and can be crystallized through an increase of temperature. 
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Which of these methods is used in technical applications depends on the material 
system and process requirements. However, all methods have in common that a 
supersaturation is induced and thermodynamics drive the system towards a saturated 
solution. Once supersaturation is generated, crystallization can occur. In principal, this 
can happen through two pathways: 

 Nucleation i.e. formation of new crystals and 
 Crystal growth i.e. deposition of molecules to present crystal surfaces. 

In Figure 1, initially, no change in load is achieved, because no crystalline phase is 
present. The phase can either be added (seeding, black star in Figure 1) or occurs 
spontaneously at high supersaturation (primary nucleation, white star in Figure 1) 
around the metastable limit. The metastable limit should be thought of a region rather 
than a strict limit. It depends on many factors including how fast the state is changing 
and is not fully understood, yet (see section 2.3). Once a crystalline phase is present, 
growth can occur in order to equilibrate the solution. If the state further changes, 
supersaturation is maintained and the process is driven towards a low final load until 
thermodynamic equilibrium is reached. The pathway that is taken by a process is 
dominated by complex dynamic interactions of the different crystallization phenomena 
that are discussed in the following sections. That is, this work aims to improve the 
understanding of these interactions by considering crystal shape.  

2.3 Nucleation 
Nucleation is a phenomenon in which a new phase is generated from a supersaturated 
initial phase. Nucleus (pl. Nuclei) is a term that refers to a new—initially small—particle 
of the new phase. Nucleation occurs in all phase transitions, including crystallization. In 
general, nucleation results in a change of density. However, nucleation of crystals is 
more complex because molecules need to align according to the crystal lattice in 
addition to the change in density. This interplay between change in density and 
alignment during nucleation is the reason why nucleation of crystals is not yet fully 
understood (Zhou et al. 2019). 
Nucleation is divided into two main groups. A) primary and B) secondary nucleation. 
Primary nucleation can again be divided into two subgroups: A.1) homogeneous and 
A.2) heterogeneous nucleation. 

2.3.1 Primary nucleation 
In primary nucleation, nuclei are generated from solutions where no crystals of the solute 
are present. 

Homogeneous nucleation 
One speaks of homogeneous nucleation when nuclei are generated from clear solutions 
and nuclei are made of only the solute. Today, homogeneous nucleation from solution 
is not fully understood. Research on primary nucleation is abundant. A comprehensive 
summary would be out of the scope of this text. In context of the present work, a 
summary of the most basic version of nucleation theory and a summary of some recent 
progress on the topic should suffice. 
Most theory is based on Gibbs’ classical nucleation theory (CNT) which was initially 
designed for vapor condensation but is also employed for liquid/solid phase transitions 
(e.g. Crystallization, (Fokin and Zanotto 2000; Ahn et al. 2021a)). 
According to the theory, molecules aggregate through local concentration fluctuations 
due to Brownian motion, to form vapor droplets. In a supersaturated environment it is 
energetically favorable to form a new phase. Hence a phase transformation energy is 
released (volume free energy ) when molecules aggregate. At the same time 
a new phase boundary is generated. The formation of a phase boundary costs energy 
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(surface free energy ). The sum of these two energies decides whether it is 
thermodynamically favorable to form a new phase or not and is a function of nuclei size. 

 3 

For small nuclei (small radius ) the surface energy is larger than the phase transition 
energy. With increasing size, the phase transition energy becomes larger than the 
surface energy. The total free energy  has a maximum and becomes negative for 
even larger nuclei. The size where the total energy has its maximum is called critical 
nuclei size . For nuclei that are smaller than , disintegration into the initial phase is 
thermodynamically more favorable. Nuclei larger than  favor growth and are hence 
stable. 
This model assumes that density and surface tension of a nucleus are size independent 
(i.e. capillary assumption), isotropic and that the nucleus is spherical. In addition, the 
growth of nuclei is assumed to entirely rely on addition of single molecules to a growing 
nucleus and ignores merging or division of nuclei. Further, for applications to 
crystallization, CNT ignores the fact that to form crystalline solids molecules do not only 
need to aggregate but also need to align according to the crystal lattice. In consequence, 
CNT yields poor results in crystallization and in some cases may not even qualitatively 
describe nucleation of crystals (Erdemir et al. 2009).  
Therefore, more advanced non-classical nucleation theories are developed (Vekilov 
2019). One family of such advanced theories are the so called two-step (Kashchiev et 
al. 2005; Erdemir et al. 2009) or multi-step nucleation mechanisms (Wang et al. 2014). 
Therein, one assumes that not only the density is a distinctive feature of a nuclei but 
also its structuredness. Erdemir et al. (2009) suggest that as an initial step in nucleation 
disordered clusters are formed. As further steps in the nucleation pathway molecules 
may pass several conformations until they reach their stable crystalline conformation 
and a crystal nucleus is generated. 
Zhou et al. (2019) were able to capture the solid-solid phase transition in three 
dimensional images of crystals on atomic level over time with electron atomic 
tomography. They induced phase transitions within the crystals through heating 
(annealing) and identified nucleation sites where the atoms in the crystals would start to 
rearrange to form different crystal polymorphs. They found that these nuclei grow, 
fluctuate in size or dissolve. For some of the nuclei, merging and division was observed. 
In a next step, they calculated a structuredness parameter for each atom in the crystal 
lattice and found that the overall structuredness of nuclei increased during the annealing 
process. They further showed that a gradient from an ordered center of the nuclei to its 
unordered outside was present. These experimental results show that indeed (A) 
structuredness plays an important role in nucleation, (B) nuclei are anisotropic and (C) 
that some nuclei would not only grow or dissolve, but could also divide, merge or 
fluctuate between growth and dissolution. All these three phenomena cannot be 
described by CNT (Zhou et al. 2019). In contrast to what is assumed in two-step 
nucleation theories, nucleation seems to be a continuous process where an increase in 
structuredness over time and space along with change of the size of a nucleus is 
observed rather than a two-step phenomenon where first aggregation and then 
rearranging of aggregated molecules occurs. 
While Zhou et al. (2019) studied a solid-solid phase transition experimentally, 
Wiedenbeck et al. (2019) studied the crystallization from solution of the API ibuprofen. 
They found that ibuprofen solutions first undergo a liquid-liquid phase separation. A 
dense liquid ibuprofen intermediate phase is kinetically stabilized due to high viscosity 
giving time for rearrangement of the molecules into a crystal lattice. Similar studies 
propose more complex nucleation pathways that may describe nucleation of certain 
materials. 
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In context of interpreting experimental data on nucleation, Ahn et al. (2021a) discuss 
that cluster formation reduces the concentration of molecules in solution. For material 
systems in which clusters are easily formed, the concentration of free molecules may 
be significantly lower than estimated with clusters neglected. Hence, different 
parameters may be identified from the same experiments depending on whether 
clusters are considered or not. The authors state that their work is discussed in context 
of two-step nucleation, however, calculations were done based on CNT. The results are, 
therefore, only qualitative. 
In conclusion, nucleation is not fully understood and research is ongoing. 

Heterogeneous nucleation 
In heterogeneous nucleation some sort of foreign surface is in contact with a 
supersaturated solution. Molecules need to overcome a smaller energy barrier to attach 
to such surfaces since less surface free energy is needed (Kelton and Greer 2010). In 
consequence, heterogeneous nucleation can accelerate nucleation processes. Such 
foreign surfaces may be provided by particles of a substance other than the solute or 
may even be a scratch in the reactor. 

2.3.2 Secondary nucleation 
Secondary nucleation occurs when crystals are already present in solution. In most 
crystallization processes slurries are somehow agitated and, therefore, crystals in a 
process have a momentum in the direction of the flow. Gahn and Mersmann explain 
secondary nucleation through impact of crystals on reactor internals like stirrer blades 
or baffles (Gahn and Mersmann 1999a, 1999b). Additionally, the presence of solute 
crystals may also decrease the energy barrier for nucleation in their vicinity (Bosetti et 
al. 2021; Ahn et al. 2021b). 

2.3.3 Seeding 
As discussed above, the exact mechanisms involved in primary nucleation are not yet 
well understood. It is hard to control and hence effort is made to avoid it in many 
processes. One concept to avoid primary nucleation in order to gain controllability of 
crystallization processes is seeding. Seeding describes the addition of crystals to a 
supersaturated solution. In some cases, seeding is used to define the starting point of 
crystallization by inducing secondary nucleation (Mullin 2001; Guu and Zall 1991). In 
other studies, the aim is to prevent nucleation and to predominantly grow the seed 
crystals (Aamir et al. 2010; Chung et al. 1999; Schiele et al. 2021a). Another important 
goal of seeding is to obtain a certain crystal polymorph that may not nucleate 
spontaneously (Beckmann 2000). Seeding is considered as the most favorable method 
to start crystallization processes (McLeod et al. 2011). 
Seeds have two important properties. (A) The amount of seeds that is added and (B) 
their appearance that is often described with a size distribution. It was mentioned before, 
and will be discussed in greater detail later in this text, that a description of the 
appearance by size alone is not sufficient. However, in the literature shapes of seed 
crystals are largely ignored.  
Chung et al. (1999) found that seeding has an immense effect on the course of 
crystallization. They found that seeding has a greater effect on the final size distribution 
in modeled batch cooling crystallization of potassium nitrate in water than the 
supersaturation trajectory. Aamir et al. (2010) defined multi modal target crystal size 
distributions and temperature profiles. They then used a crystallization model to 
calculate seed distributions that would produce the target size distributions by following 
the predefined temperature profile. These calculations were also validated by 
experiments (Aamir et al. 2010). Rachah and Noll (2015) studied the effect of seeding 
for modeled fed-batch lactose crystallizations. They optimized both seed size 
distribution and temperature profile of the cooling jacket to produce crystals with narrow 
particle size distributions and high mean diameter. In an experimental study Guu and 
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Zall (1991) found that seeding leads to higher yields in lactose crystallization. In a more 
recent study, Simone et al. (2019) experimentally determined the effect of seeding in 
batch cooling crystallization of lactose on size, morphology, yield, crystal structure and 
anomeric purity of the produced crystals. They found that seeding can produce very 
pure (97 % -lactose) crystals with unimodal size distribution. Only little agglomeration 
occurred. The yield of seeded cooling crystallization, however, was below 60 % while 
yields above 90 % could be achieved with antisolvent crystallization. 

2.4 Crystal growth 
Crystal growth occurs in supersaturated solutions at phase boundaries between solution 
and crystalline phase. Solute molecules align according to the crystal lattice and are 
built in the lattice. On the micro scale, faces grow in a direction normal to their surface. 
The rate of growth increases with increasing supersaturation and—usually to a lesser 
extend—with increasing temperature. The growth rate also depends on the orientation 
of a face in respect to the crystal lattice: faces grow at face specific rates. This is called 
face dependent growth. Growth rates ( ) are often expressed by an empirical 
exponential growth law (Mullin and Garside 1967a; Ma et al. 2012; Borchert et al. 2014) 

 4 

 is a face specific rate constant that may be temperature dependent. Its unit is unit 
length per unit time. The order n of the reaction is not necessarily an integer value. 
In theory, infinitive number of face directions are possible. However, in reality, only few 
faces are observed for a given crystal. Figure 2 illustrates that this is because faces 
disappear through fast growth. In the figure it is assumed that at  (dark grey) two kinds 
of faces are expressed: a horizontal one growing at a fast rate (indicated by long growth 
vectors with length ) and diagonal ones growing at a slower rate (indicated by short 
growth vectors with length ). Within a time , the faces are displaced by these 
vectors and the horizontal face becomes smaller. As growth continues, the horizontal 
face becomes even smaller and finally vanishes ( ).  

 
Figure 2 | Illustration of disappearing faces through fast growth 

Whether a face disappears or not depends on the relation of growth rates and the angle 
between the growth vectors. Mullin and Garside (1967a) derive that for 

 5 

the fast growing face disappears. Where  is the angle between the normal vectors (
, in Figure 2). Growth of a crystal in terms of mass is, therefore, often not affected by 

the growth of the fast growing faces, but of that of the slowly growing faces. 

t0
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This idealized model applies to facetted crystals. It is discussed in the introduction that 
other crystallization phenomena may yield crystal shapes that do not correspond do the 
ideally facetted model. Growth of non-facetted crystals has not been well studied in the 
literature. In one of the few studies that address growth of non-ideally shaped crystals 
Ma and Roberts (2019) consider growth of broken crystals by considering an additional 
face that grows at an arbitrarily chosen higher rate. The authors discuss that such a rate 
should be experimentally determined in order to quantitatively consider the dynamic 
interaction of crystal growth and breakage. This thesis aims at improving the 
understanding of the interaction of growth and damage events by considering shape as 
a variable. 

2.5 Breakage, attrition and abrasion 
Breakage, attrition and abrasion are terms that describe damage of particles. Breakage 
describes events through which a particle is shattered into numerous pieces such that 
the original particle (parent particle) cannot be easily identified. For attrition and 
abrasion, in contrast, the original crystal remains identifiable as such and only minor but 
relevant changes in size and shape occur. Attrition is caused by contacts of crystals with 
e.g. the stirrer of a reactor or impeller of a pump. Crystal-crystal contacts cause 
abrasion. 
Breakage, attrition and abrasion are phenomena that are not limited to crystallization 
and are discussed in the literature predominately for particles in general. A 
comprehensive study of attrition of crystals was conducted by Gahn and Mersmann 
(1999a; Gahn and Mersmann 1999b). They calculated a loss in volume in case of impact 
of a parent particle based on measurable material properties and crystal mass. In 
addition, they derived a formulation for the size distribution of the fragments (Gahn and 
Mersmann 1999a). These formulations were then used for process simulations (Gahn 
and Mersmann 1999b). Briesen (2007) extended the model to account for different 
geometries and considered the effect of shape on attrition in processes by means of 
population balance modelling in another study (Briesen 2009). Growth was considered 
but assumed to have no effect on crystal shape. That is, shapes that result from 
damaging events often do not correspond to the idealized facetted shape (Reinhold et 
al. 2015; Hill and Reeves 2019). It is currently not fully understood how such crystals 
would grow. 

2.6 Crystal size, shape and morphology 
Details on the importance of shape in crystallization are explained by Schiele et al. 
(2020a) (Chapter 4) and have been discussed in the previous sections. Here, the key 
facts are summarized. 
Form, shape, morphology and habit are terms that are used to describe the appearance 
of crystals. However, terminology is quite inconsistent. The quote “morphology and 
shape have been used interchangeably, and we do the same here.” (Dandekar et al. 
2013) shows that little effort is made towards consistent terminology. In this text, form 
describes the appearance of crystals in respect to which crystal faces are expressed 
(i.e. polymorphic form). Shape in contrast, describes the appearance in a more general 
context to describe whether a crystal is for example needle shaped, spherically or a 
cuboid. In the literature, morphology (Borchert and Sundmacher 2012) or habit (Mullin 
2001; Puel et al. 1997) are found as synonyms for shape. Habit is primarily used to refer 
to facetted shapes. 
For particles in general, it is common to assume a spherical shape when measuring 
their size. In such cases, the size can be conveniently described through a diameter. 
For spheres, this measure is exact and can be used to calculate particle properties such 
as volume and surface area. However, it is quite obvious that most particles—especially 
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crystals—are not spherical. Spherical particle models are often chosen because there 
is either no information on shape, or shapes are too complex to be described accurately. 
In some cases, the errors made through such assumptions are low. Describing crystals 
by spheres is usually not sufficiently accurate (Reinhold 2015; Kovačević 2018). 
Depending on the crystal lattice and resulting growth rates, a crystal has defined faces 
that may appear in a crystal. The form describes which of these faces are present. The 
shape of crystals is then defined by—among other factors to be discussed later—how 
large the faces are. In this respect it is important to know that fast growing surfaces tend 
to disappear and those faces that grow slower will dominate shape (see section 2.4). In 
context of this work, ideal shape describes facetted crystals that are symmetric 
according to their unit cell. Agglomeration (Kovačević and Briesen 2019), nucleation 
(section 2.3), and damage (section 2.5) may yield shapes that can usually not be 
described by faces. Such shapes are discussed in chapters 3, 4 and 5 and are referred 
to as non-ideal shapes. 
One reason for that shape has a decisive influence on crystallization processes is that 
crystal growth is a surface reaction. Growth rates depend on the surface itself and how 
much solute is solved (i.e. supersaturation). Therefore, the evolution of crystal surface 
and crystal volume are coupled. In order to describe a crystallization process, both 
crystal volume and surface area need to be accurately described. For example, face 
dependent growth may occur and hence different types of surface need to be considered 
(Zhang and Doherty 2004; Snyder and Doherty 2007; Reinhold and Briesen 2015; Puel 
et al. 2003). Face dependent growth can be considered using ideal shape models. 
However, matters become more complex when non-ideal crystal shapes occur. 
Section 2.5 discusses that damaging events render non-ideal shapes and section 2.3 
explains that nuclei are usually also not facetted. Agglomerates may be facetted but are 
concave and hence considered non-ideal as well (Kovačević and Briesen 2019). In 
consequence, assuming convex, facetted shapes is often inaccurate because damage, 
nucleation and agglomeration are common in crystallization processes. In addition, 
damaging events are themselves affected by shape (Hill and Reeves 2019; Briesen 
2007, 2009). In consequence, the commonly assumed growth laws for facetted shapes 
do often not apply. It is hence evident that crystal shape is an important crystal property 
and process variable when describing dynamic interactions between crystallization 
phenomena and that it is important to consider non-ideal shapes. 
Crystal shape may also be an important product quality criterion. It influences bulk 
properties like compressibility, filterability, tendency to cake, or flow ability of a powder 
(Buffham 2000; Tung 2012; Dandekar et al. 2013; Variankaval et al. 2008; Beck and 
Andreassen 2012; Cornehl et al. 2014). In the case of APIs, shape and polymorphic 
form affect bioavailability (Blagden et al. 2007; Dandekar et al. 2013).  

2.6.1 Geometric crystal descriptions 
Along with such findings, the framework of crystal shape engineering (Lovette et al. 
2008) has emerged. In consequence, the need for crystal shape analysis has 
developed.  
Instead of using only one size parameter (e.g. diameter or length), it is common to use 
additional geometric parameters to describe crystal shapes (Garside and Ristić 1983; 
Puel et al. 1997; Puel et al. 2003; Schorsch et al. 2014; Heisel et al. 2017; Ma and 
Roberts 2019; Bötschi et al. 2019). Shape factors such as an aspect ratio are one typical 
way of introducing a geometric property. Hill and Reeves (2019) used an aspect ratio to 
study the effect of breakage of cuboid crystals on their shape. In the case of needle 
shaped crystals one can measure the size of the needles as their length and describe 
their thickness using an aspect ratio (Ma and Roberts 2019). This is a very similar 
approach to those of Puel et al. (2003), Schorsch et al. (2014) and Bötschi et al. (2019) 
where two lengths are used to describe cuboid crystals. Other shape factors include the 
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roundness (Reinhold et al. 2015) or sphericity (Snyder et al. 2007) of crystals. It is 
possible to distinguish between fundamentally different shapes using shape factors 
(Heisel et al. 2017). However, such methods often oversimplify crystal shape and may 
only provide little understanding of the underlying crystallization phenomena.
Researchers have, therefore, tried to find more meaningful shape representations. For 
crystals, Miller indices have long been established (Mullin 2001). They are used to 
describe the orientation of crystal faces. The Miller index of a face is given as normal 
vector of a face that is multiplied with a scalar to produce a vector of the smallest 
possible integers. A two-dimensional (2D) example of this representation is given in 
Figure 3. Therein, a normal vector of the green line is . It is multiplied by 1 to 
yield the Miller index [0 1]. The normal vector of the blue line is . It is 
multiplied by 1.4 to yield the Miller index [1 1]. The normal vector of the orange line is 

. It is multiplied by 2.2 to yield the Miller index [1 2]. The same principle 
can be applied to three-dimensional (3D) cases.

Figure 3 | 2D Example of Miller indices (given in brackets) to describe the orientation of 
faces (represented as lines)

A disadvantage of this representation is that it describes only the form of crystals. There 
is no size and hence no shape information included. An extension of the representation 
through Miller indices is the mathematical concept of so called H- or V-representations
which are explained in chapter 4, in detail. These representations are used to describe 
ideal crystal shapes.
Non-ideal shapes can be accounted for by considering additional faces that would not 
occur according to the form of a crystal (Briesen 2009; Ma and Roberts 2019). Multiple 
H-representations can be used for the description of agglomerates (Kovačević et al. 
2017; Kovačević and Briesen 2019). Spheres can be added to V-representations 
according to Reinhold et al. (2015) for the description of abraded crystals. Chapter 4
summarizes how H- and V-representations are applied for non-ideal shape description.

2.6.2 Parametrization of geometric models
State of the art methods use 2D image analysis for shape analysis (Larsen et al. 2007; 
Borchert and Sundmacher 2012; Ma et al. 2012; Borchert et al. 2014; Eisenschmidt et 
al. 2014; Ochsenbein et al. 2015; Eisenschmidt et al. 2016; Heisel et al. 2017; Bötschi 
et al. 2019). One strategy for such crystal analysis is to detect crystal features such as 
edges and corners in order to parametrize a geometric crystal model that may be an H-
(Borchert and Sundmacher 2012; Borchert et al. 2014; Eisenschmidt et al. 2014; 
Eisenschmidt et al. 2016) or similar to a V-representation (Ma et al. 2012). However, the 
challenge of all 2D methods is that they are mostly able describe ideal crystal shapes
(Nagy et al. 2013). They are fundamentally not able to capture the shape of 3D particles 
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when asymmetrical or concave shapes occur. Such cases often occur when damaged 
or agglomerated crystals are present. 
Researchers, therefore, attempt to increase the information content of their 
measurements. Kempkes et al. (2008) and Agimelen et al. (2018) have combined 
focused beam reflectance measurements (FBRM) with 2D image analysis. However, 
due to the non-uniqueness of FBRM measurements it is hard to draw definitive 
conclusions from them (Kail et al. 2007) and such methods do not yield much additional 
information compared to traditional 2D image analysis methods (Puel et al. 2003). 
Another method is stereoscopy. Therein, two stereoscopic images are obtained of 
crystals at the same time. It was first introduced to crystallization by Schorsch et al. 
(2014) as on-line technique. Recently, also an in-line technique was proposed (Huo et 
al. 2020). Although these methods may improve shape analysis, they are still not able 
to overcome the inherent limitations that come with the restriction to two dimensions that 
are discussed by Nagy et al. (2013). Even with stereoscopic imaging it is challenging to 
parametrize the shape of flattened crystals (Jaeggi et al. 2021). 
To overcome such limitations Kovačević et al. (2014) and Kovačević et al. (2016) 
developed image analysis tools to extract crystal shape information from 3D micro-
computed tomography (μCT) data. A summary of this work is provided in chapter 4. 
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Chapter 3 

3. Problem definition 

Crystallization is dominated by dynamic interaction of the crystallization phenomena 
nucleation, crystal growth, agglomeration, and the damaging phenomena breakage, 
attrition and abrasion. Each of these phenomena are extensively studied individually. 
However, their dynamic interactions are understood to a lesser extent. Exploring the 
effect of crystal shape is key to improved understanding of dynamic interaction during 
crystallization. 
Above, it is described how facetted crystals can have different shapes. This work deals 
with how non-ideal crystals shapes can influence crystallization. Non-idealities can be 
described from two perspectives. (A) Crystals can be damaged through breakage, 
attrition or abrasion. Such crystals will then have features that cannot be described with 
the material specific crystal faces. (B) From another perspective, facetted crystals can 
also not fit the idealized shape that would be expected for them. Such non-idealities may 
be caused by agglomeration and are studied by Kovačević (2018). In that work, also 
facetted, not agglomerated but non-symmetric potash alum crystals were observed. 
Even though these non-idealities were not discussed in detail they were interesting, 
because only [111] faces occurred. These faces all grow at equal rates and should 
hence lead to symmetric, octahedral crystals. 
From these considerations, two main working hypotheses for the present work are 
derived: 
Application of 3D crystal shape analysis will improve the understanding of crystal 
growth and its interaction with damage events. State of the art shape analysis 
methods are based on 2D images. Even advanced methods based on stereoscopic 2D 
imaging struggle to detect rather simple crystal shapes such as flattened crystals 
(Jaeggi et al. 2021). In contrast, μCT can be used to obtain 3D images that contain full 
shape information of crystals. Therefore, methods based on 3D image analysis promise 
enhanced shape analysis and will provide an increased understanding of crystallization 
phenomena. Such 3D image analysis methods have been developed in previous work, 
but have not been applied to larger populations yet. This will allow in-depth analysis of 
the growth of crystal populations and the influence of damaged seed material. 
Damaged crystals do not grow according to established growth laws. Lower 
dimensional analysis methods must rely on simple shape models for crystal analysis. 
Most crystallization models assume perfectly facetted crystals. However, in reality, 
crystallization slurries are agitated to suspend crystals and to equilibrate temperature 
and concentration gradients. This imposes mechanical stress on crystals which yields 
damaged crystals. Damaged crystals are often asymmetrical and have features that 
cannot be described by classical shape models. Non-ideal shaped crystals make 
imaging and hence analysis of damaged crystals very challenging, especially if data is 
limited to one or two dimensions. In previous work (Reinhold et al. 2015), 3D shape 
modelling has proven itself as powerful tool for the analysis of the effect of abrasion on 
crystal shape. Such methods are also highly promising to study the effect of non-ideal 
crystal shape on growth. This will help to understand the dynamic interaction between 
damaging phenomena and crystal growth. 
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Chapter 4 

4. Methodology 

4.1 Crystal shape and size analysis 
It is discussed above that state of the art methods based on 2D imaging are only able 
to analyze crystal shape to a limited extend. In consequence, 3D imaging has emerged 
as tool for crystal shape analysis. Because 3D imaging for crystallization is a rather new 
field, the present work comprised considerable development of 3D imaging and 
modelling methods. This section provides a short summary of the developed methods. 
Details are found in chapter 5. 

4.1.1 Method for obtaining population data from 3D images 
3D image acquisition was achieved by μCT. The first hurdle to overcome was to 
increase the number of crystals that could be imaged by μCT. Kovačević (2018) was 
able to image about 10 crystals per μCT scan. In context of the work of Schiele et al. 
(2021a) this limit was increased to almost 800 crystals per μCT scan. This enabled the 
analysis of populations and their transient behavior instead of only the appearance of 
single crystals. Considering crystal mass in the binarization step enabled the extraction 
of accurate crystal volume distributions for the analysis of crystal populations. For more 
detailed crystal shape analysis the methods of Kovačević (2018) were used and are 
explained in detail in section 4.2. Further analysis of the shape models was enabled by 
the definition of two new shape factors that describe the symmetry of facetted crystals 
and the proportion of non-ideal surface. 

4.1.2 Method for tracking the growth of individual crystals 
Another goal of this work was to analyze the transient behavior of single crystals (Schiele 
et al. 2021b). For this, an imaging method was developed that prevents movement of 
crystals during experiments and provides reference points for image analysis. Crystals 
were glued to 3D-printed racks. The racks contained geometric features that could be 
recognized by appropriate image analysis. From the raw μCT images two images were 
generated. The first contained only the rack and was used to determine the orientation 
and location of the crystals in each measurement relative to the last measurement. The 
second image contained the crystals. This image was cut such that it yielded one image 
for each individual crystal. Images of the crystals at different states of their growth were 
superposed using the information from the rack images and an optimization procedure 
based on crystal symmetry. Surface displacement was calculated using a newly 
developed algorithm. The resulting data yielded growth rates for modelling. Growth rates 
were described using spherical harmonics functions. 

4.1.3 High dimensional Growth modelling 
Growth models were based on H-representations as described in section 4.2. The main 
contribution of this work in this regard was that the orientation of modeled face normals 
was not motivated by crystal form, but were sampled in such high accuracy (1200 faces) 
that they were able to describe non-facetted convex shapes with sufficient accuracy. 
This enabled the simulation of non-facetted shapes and showed convergence into 
facetted shapes that were expected from measured rates and literature data. The model 
describes the evolution of size and non-facetted shape of abraded crystals. 
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4.2 Paper I: Morphological Modelling and Simulation of 
Crystallization Processes (Schiele et al. 2020a) 

The methods and results of the present thesis built upon the methods developed by 
Reinhold (2015) and Kovačević (2018) in context of the DFG priority program SPP 1679.  

Summary 
This section reviews their work and thereby explains how convex geometry can be used 
to describe crystal shapes in 3D both experimentally and for modelling. This lays the 
theoretical foundation for the results section in chapter 5. 
In section 2 of the review, the mathematical concepts of H-representations and V-
representations are explained in context of convex crystal shape description. This 
section is most relevant for the present work as it summarizes the crystal shape analysis 
methods applied by Schiele et al. (2021a; 2021b). The work of Reinhold et al. (2015) is 
summarized and it is thereby explained how rounded (i.e. non-ideally shaped) crystals 
can be described using Minkowski addition based on 2D images. Most importantly, it is 
explained how single facetted shape models can be parametrized based on 3D images 
(Kovačević et al. 2014) and how the concept is extended to crystal agglomerates 
(Kovačević et al. 2016; Kovačević et al. 2017). 
Section 3 reviews the work of Heisel et al. (2017) who classified images into the 
categories single crystals, agglomerates and air bubbles. This work emphasizes that 
shape characterization based on 2D imaging is possible but leads to certain limitations. 
Such limitation motivates the application of 3D imaging techniques. 
Section 4 summarizes advances in crystallization modelling (Reinhold and Briesen 
2015; Kovačević and Briesen 2019). The concept of the 26-dimensional growth model 
of Reinhold and Briesen (2015) is the basis of the 1200-dimensional growth model 
proposed by Schiele et al. (2021b). However, there are conceptual differences 
discussed in sections 5 and 6 of this thesis. 
Section 5 of the review describes minor contributions to the DFG project in context of 
this thesis. A state of the art crystallization population balance model (Qamar et al. 2007) 
was implemented for the process simulation platform Dyssol (Skorych et al. 2017), used 
for integrated process simulations and compared to results from the literature (Kulikov 
et al. 2005). Section 6 summarizes the review. 
This article was not peer-reviewed. 
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Chapter 13
Morphological Modelling and Simulation
of Crystallization Processes

Simon Schiele, Tijana Kovačević, and Heiko Briesen

Abstract The shape of crystals is an important property that has a great impact on
their physical behavior. Examples are flowability, dissolution, and growth kinetics.
Still, crystals are often described by a single size parameter. One reason is, that
today shape information is still hard to measure. Additionally, only few modeling
techniques exist that are able to describe the shape of crystals. In this chapter, these
issues are addressed by accurately describing crystals with mathematical models,
making the full morphological structure of crystals and their agglomerates accessi-
ble by stereoscopic and three-dimensional (3D) imaging techniques and using these
methods to model crystallization while considering the complex shape of the crys-
tals. In addition, artificial neural networks (ANN) are used to classify whether pro-
jections of crystals show single crystals or agglomerates. As a final step, a case study
of a model of a mixed suspension mixed product removal (MSMPR) crystallizer
and a hydrocyclone are integrated into the software platform Dyssol and used to
dynamically simulate a crystallization process with recycling stream.

1 Introduction

Crystallization is an important process step in many pharmaceutical, chemical and
food processes. It is used to purify and formulate solid products. After crystallization
the products are initially suspended in the crystallization mother liquor. Subsequent
process steps then deal with the separation of the valuable solids from the rest of
the suspension. Such processes are typically centrifugation, filtration, and/or dry-
ing. All of the mentioned downstream processes and crystallization itself are highly
dependent on the morphology of the particles. The morphology also affects physical
properties such as dissolution rates that are particularly interesting for pharmaceutical
substances.
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Commonly, crystals are still described with only few size parameters (such as
a diameter or other characteristic lengths). Such descriptions neglect the complex
shape that crystals may express. It is not uncommon that crystals have e.g. needle-
like shapes or form even more complex structures through agglomeration that are
impossible to describe with only one or even a few size parameters.

Today, morphology of crystals is gaining increasing attention not only as a quality
criterion, but also as process parameter. Therefore, it is of great interest to describe
the morphology of crystals correctly in order to be able to model crystallization with
correct consideration of crystal morphology.

The aim of this article is to summarize the efforts that was made in context
of a collaborative research project (DFG SPP 1679) towards correct description of
crystals and crystallization modeling [1–9]. Such models could then be used in future
to optimize and control crystallization processes with respect to downstream process
performance and product quality.

2 Mathematical Description of Crystals

This section summarizes the basic mathematical crystal representation used in Rein-
hold et al. [9] and Kovačević et al. [1, 2, 4], which all used potash alum as an
exemplary substance. The crystal structure of potash alum is shown in Fig. 1 along
with the corresponding miller indices of their faces.

A common way to describe the form of facetted crystals is by Miller indices
of their specific faces. This description however, brings two major drawbacks for
morphological modeling. First of all, the Miller indices describe each face of a crystal
independently and they do not contain any size information. The second drawback

Fig. 1 Crystalline structure of potash alum crystals according to Ma et al. [10]. The crystals have
different morphologies depending on which faces are most expressed. (Reprinted with permission
from [8], Copyright (2015) Elsevier)
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is that only ideal crystals can be described. More complex crystal shapes that may
result from abrasion or agglomeration cannot be described. Therefore, alternative
descriptions are explained here.

In mathematical terms, facetted convex shapes consisting of points x in space can
be described by H-representations [11]:

C(h) = {x|Ax ≤ h} (1)

where A is a matrix with normal vectors of facets in space ai, and h is a vector with the
length of these vectors. The H-representation describes all points that are within the
facets defined by A and h. For crystals, rows of A can be interpreted as normal vectors
of the faces of such a crystal. A is therefore specific for each crystal morphology.
The vector h then describes the exact shape and size of an ideal crystal of form A.
Herein, the dimension of x is either two or three dimensional (2D/3D).

For crystals it is common that symmetry conditions apply. To reduce the dimension
of h, one can, therefore, introduce a crystal model-specific group mapping matrix
MhC→h [11]

h = MhC→h · hC (2)

This operation can also be formulated in a reverse way with the pseudo inverse
matrix M+

hC→h [11]

hC = M+
hC→h · h (3)

These constrained crystal models are called constrained HC-representations
[11–13].

Because H-representations only allow the description of ideal single crystals,
the representation is extended so that also more complex shapes can be described.
Abraded crystals, for instance, may not have sharp edges that would be described by
anH-representation, but may appear with round edges and corners. Agglomerates on
the other hand may be concave and can therefore also not be represented by simple
H-representations.

For the description of rounded particles, an ideal kernel crystal (index k) was
combined with a sphere. The combination of sets in general can be performed by the
so-called Minkowski addition [14]. The combination of i sets S1...i can be written as

S =
∑

Si =
{∑

xi|xi ∈ Si∀i
}
. (4)

The addition of an ideal kernel crystal C(hk) and a sphere B that has the radius
λr [11] is accordingly written as

C(hk , λr) = C(hk) + λrB. (5)
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Fig. 2 3D models with increasing roundness obtained by the addition of octahedral potash alum
kernel crystals with spheres. (Reprinted with permission from [9], Copyright (2015) Elsevier)

A graphical representation of Eq. (5) for six different radii and an octahedral
potash alum kernel crystal can be seen in Fig. 2.

The representation as a 3D body allows the calculation of the volume μvol, surface
area μsur, and mean width μmw from the corresponding measures μvol

k , μsur
k , and μmw

k
of the kernel crystal and the radius of the sphere λr [14]:

μvol = μvol
k + μsurλr + 2πμmw

k λ2
r + 4

3
πλ3

r (6)

μsur = μsur
k + 4πμmwλr + 4πλ2

r (7)

μmw = μmw
k + 2λr (8)

For 2D bodies only μsur
k , and μmw

k can be calculated.
Agglomerates can be described by an H-representation for each primary crystal.

Additionally, information on orientation and location of the center of mass of the
primary crystals is needed. Details are described in Sect. 2.3.

Another way to describe crystals is by a matrix V that contains vectors that point
to the vertices of a crystal.

V = [
v1, . . . , vnV

]T
(9)

Kovačević et al. call this a V-representation [1].
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2.1 Description of Crystal Projections and Roundness
Measurement

A fundamental question in crystal or particle representation is, how to deal with
roundness instead of sharp edges and corners. A framework in this respect was
introduced by Reinhold et al. [9]. The roundness of a crystal can be used as a parameter
that describes how much attrition occurs in a process. To achieve this, first 3D crystals
were modeled and then projections of these models were generated. They were used
to validate the experimental procedures that are described in the end of this section.
The comparison of the exact roundness obtained from 3D models and the roundness
obtained from 2D projections of the model crystals allowed an evaluation of how
well the roundness can be measured when only 2D information is available and how
non-ideal images affect the roundness measurement. This is particularly interesting
because it is currently not possible to obtain 3D images of crystals in real time and
on-line analysis of particulate systems is often done by 2D image analysis.

To define the roundness of a particle, several definitions exist in the literature [15–
18]. Here, a new descriptor for roundness μB was defined so that it can be calculated
from the geometric properties of the Minkowski addition [9]. A spherical crystal
which is by definition perfectly round, can be described by Eq. (5) with hk = 0
and hence μmw = 2λr results from Eq. (8). A crystal that has sharp edges and is
therefore as little round as possible for a given kernel crystal, is described by Eq. (5)
with λr = 0 and hence μmw = μmw

k results from Eq. (8). To reflect this concept of
roundness the roundness parameter μB is written as

μB = 1 − μmw
k

μmw
= 2λr

μmw
k + 2λr

(10)

Note that it can be calculated for a body of any dimension, in this case for 2D and
3D bodies equivalently.

3D crystals with roundness between 0 and 1 and defined mean width were sim-
ulated using Eq. (5). A potash alum model with 26 faces was used for the kernel
crystal model (see Fig. 3 left-hand side). This gained numerous crystal models with

Fig. 3 Rendered 3D model of a potash alum crystal model with 26 faces (left), a 2D projection of
this crystal (middle) and the same 2D projection to which blur was added (right). (Reprinted with
permission from [9], Copyright (2015) Elsevier)
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known, exact measure of their roundness and mean width (grey line in Fig. 2). From
each body, multiple 2D projections Πp were generated and blur was added to the
images, as described in [9] (see Fig. 3 middle and right-hand side). Finally, two addi-
tive roundness parameters were calculated for each particle from its 2D projections
with the sharp and blurred 2D images (black lines in Fig. 2). The additive roundness
estimates the roundness parameter of the real 3D particle from its nproj projections:

μB ≈ 1 −
μmw − ∑

p
1

nproj
λr,Πp

μmw
(11)

In the following, it is described how μmw and λr,Πp were obtained from nproj

projections of a particle in order to be able to calculate the roundness μB according
to Eq. (11). The first step was to find a 2D H-representation of each individual
projection. It was found by Hough transform [19] performed as follows. First, the
center of mass of a projection was determined and considered as the center of a
Cartesian coordinate system. Lines on the border of a projection can be described
by an angle ϕ and distance from the center of mass ρ. The vector (cos ϕ, sin ϕ)T

describes a normal vector of such a line. Then any point on the line x is described
by the scalar product

ρ =
〈
x,

(
cos ϕ

sin ϕ

)〉
(12)

The pixels on the outline of a projection Πp were considered as data points. ϕ and
ρ were discretized in pieces ϕj and ρ l . Each point x could be described by several
lines defined by Eq. (12) and a combination of ρ l and ϕj. A bin value was introduced
for each combination of ρ l and ϕj that represented how many data points x were
described by such a line. This yielded a grey scaled image with the coordinates
0 ≤ ϕi ≤ 2π and ρmin ≤ ρ l ≤ ρmax (see Fig. 4). High bin values (represented as
dark points in Fig. 4) indicate coordinates which describe many points of the outline

Fig. 4 Bin values of a
Hough transform. (Reprinted
with permission from [9],
Copyright (2015) Elsevier)
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of a projection. In other words, these lines represent long sections of the outline. The
corresponding distance ρ l and normal vector

(
cos ϕj, sin ϕj

)T
were hence potential

values for an H-representation.
To reduce the number of outlines, only local maximum bin values (index m) were

considered as detected lines. They were described by the vectors

ac,Πp,m = (cos ϕm, sin ϕm)T (13)

that make up the matrix A of a 2D H–representation. The face distances h were given
by all ρm. Like this, a 2D H–representation of a projection was found.

To describe not only the kernel crystal but also the roundness, a disc with radius λr

was added to theH-representation using the Minkowski addition. The size of this disc
was determined by solving a minimization problem: The experimental data contained
the outline of a projection. This outline was also described by the Minkowski addition
of the previously found H–representation and a disk of unknown radius λr (Eq. 5).
An appropriate disc radius was then found by minimizing the distance between these
two lines. A detailed description is given by Reinhold and Briesen [9].

From the Minkowski additions of each projection Πp, a mean width μmw
Πp

was
obtained according to Eq. (8) and used to calculate the additive roundness defined in
Eq. (11).

It can be seen in Fig. 5, that even for crystals that had perfect edges (set μB = 0)
a roundness of 0.17 was measured. This was caused by the discretization of the
boundary points during image analysis. This error was even more pronounced for
blurred images. As it can be seen in Fig. 3 that corners of the projections were not
as expressed as in the sharp images. For very round particles, 2D analysis yielded
lower roundness than one should expect (c.f. Fig. 5). This was caused by the fact
that small line segments fitted well to a hand-full of boundary points, hence faces

Fig. 5 Simulated roundness
(solid gray line) and the
roundness obtained based on
ideal (dashed black line) and
blurred (solid black line) 2D
images. (Reprinted with
permission from [9],
Copyright (2015) Elsevier)
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were found and the kernel crystal never fully disappeared. Overall, the roundness of
particles can be measured well for roundness values below 0.85.

Going one step further, stereoscopic 2D images of real abraded potash alum crys-
tals were obtained on-line from suspension with the stereoscopic imaging method
described by Schorsch et al. and Reinhold et al. [9, 20]. Stereoscopic images were
taken of potash alum crystals in a saturated, agitated solution at three points in time
(start of the experiment, two hours and five hours after the start). Both the mean width
and the additive roundness of the particles were calculated with Eqs. (14) and (11). A
high stirring rate (1800 rpm) was used so that excessive abrasion occurred. Because
the crystals were suspended in a saturated solution, neither growth nor dissolution
was expected. Stereoscopic imaging as performed here yielded two orthogonal pro-
jections of a particle. For each of these projections a Minkowski addition was found
by appropriate image analysis as described above.

The mean width of the real 3D particle was estimated by the weighted addition
of the mean widths of the two obtained stereoscopic projections Πp .

μmw ≈
∑

p

1

nproj
μmw

Πp
(14)

Figure 6 shows that at the beginning of the abrasion experiment the crystals were
large (mean width between 450 and 850 μm) and have sharp edges (roundness
around 0.3). With increasing experiment time, roundness increased (up to 0.7) and
the mean width decreased (250 μm). Following the theory of Gahn and Mersmann

Fig. 6 Measured roundness of real crystals over their measured mean width at different time of the
crystallization experiment. + indicate samples obtained at the start of the experiment, x after two
hours and o after 5 h. (Reprinted with permission from [9], Copyright (2015) Elsevier)
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[21], abrasion occurs through impact of crystals on the stirrer. This impact causes
breakage predominantly at corners and edges of the particles [22, 23]. This explains
that roundness increased and the mean width of the particles decreased through
intensive agitation.

In conclusion, limitations of the measurement of roundness from 2D projections
of particles were revealed and quantified. Further, a new method was demonstrated
that is able—under the previously mentioned limitations—to quantify the particle
roundness and mean width during crystallization by using stereoscopic imaging in
combination with appropriate image analysis.

2.2 Shape Identification of 3D Single Crystals

Similar image analysis concepts as described in the previous subsection can be
applied to 3D images of crystals. 3D images can be obtained by micro-computed
tomography (μCT) as described by Kovačević et al. [1]. This imaging technique
allows capturing the full shape information of particles. However, images are much
harder to obtain.

The goal here was to find faces of measured crystals and fit them to a pre-
defined crystal model. Here again, the image analysis involved face identification
using Hough transform. Subsequently face normals of the predefined crystal mod-
els—given by a crystal specific matrix A—were matched to the faces found in a
3D image. The main difference to the problem in Sect. 2.1—except for the higher
dimensionality—is that a crystal model was predefined and then fitted to the 3D
images. The goal was to find faces that appear in a measured crystal.

In a first step, it was assumed that a 3D image of a crystal is given as a set of regu-
larly distributed surface points. This data set was extracted from μCT measurements.
A 3D polar coordinate system was chosen so that it originated from the arithmetic
mean of these surface points. In this coordinate system face normal vectors were
described by an azimuthal angle θ and a polar angle φ. Distances from the origin
were described by ρ. Both angles θ and φ were then discretized using the HEALPix
algorithm [24].

Figure 7 visualizes the HEALPix discretization of a unit sphere with 12 principal
elements (solid outline), with N 2

side = 16 subelements of equal area (dashed outline).
For calculations in this work Nside was chosen as 20. Each of these 12 · N 2

side subele-
ments were represented by a potential face normal vector and face distance. The face
distance was also discretized. To apply the Hough transform, each grid point that
was defined by θi, φj and ρl was assigned a bin value b

(
θi, φj, ρl

)
that represented

the number of surface points within it. To obtain the directions of the face normals
it was sufficient to define one bin value b̃

(
θi, φj

)
per subelement:

b̃
(
θi, φj

) = max
ρ

b
(
θi, φj, ρl

)
(15)
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Fig. 7 HEALPix
discretization of a unit
sphere [25]. (Reprinted with
permission from [1],
Copyright (2014) American
Chemical Society)

Local maxima of this function represent orientations of face normals. A typical
function with its local maxima is shown in Fig. 8. Such local maxima were found by
a non-maximum suppression search [19, 26]. This algorithm was slightly adapted to
be used for points on a sphere as described by Kovačević et al. [1].

The points of the local maxima led to measured face normals that can be written
as

nF
(
θi, φj

) = [
cos(θi) sin

(
φj

)
, sin(θi) sin

(
φj

)
, cos(θi)

]
(16)

in a Cartesian coordinate system. All the measured face normals were summarized
in the matrix AF.

The next challenge was to match the face normals of a crystal model A to these
measured face normals. This task was subdivided into three individual problems.
First, the measured vectors may had different order in AF than their corresponding
model vectors in A, and A may contained faces that were not measured in a real
crystal because faces had disappeared e.g. due to fast growth. Second, the measured
matrix AF may contained faces that were not included in the crystal model. This may
had happened due to agglomeration of breakage of the real crystals. Third, measured
face normal vectors needed to be rotated to point in the directions of the model.

The first problem was solved by defining a mapping matrix SM that permuted the
vectors in A and excluded normal vectors which had no corresponding face in AF.
For the second problem, a filter matrix SD that excluded all faces in AF that had no
corresponding face in A was defined. For the rotation of the measured into the model
vectors a rotation matrix R was defined. With these definitions, a real crystal was
approximated by a crystal model with
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Fig. 8 Bin values of the Hough transform. Red dots mark local maxima. (Reprinted with permission
from [1], Copyright (2014) American Chemical Society)

SD · AF ≈ (SM · A) · RT (17)

The problem to rotate a set of vectors ri into the vectors bi was formulated by
Wahba [27] and solved by Markley [28] by minimizing the least-square cost function

L(R) = 1

2

∑
i

ωi‖bi − Rri‖2 (18)

We chose to use equal weights ωi that satisfy
∑

i ωi = 1. The rotation matrix R
was calculated from

R = UMW T (19)

Therein, U and W resulted from the singular value decomposition of the matrix
B

B =
∑

i

birT
i (20)
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into

B = UDW T (21)

and

M = diag(1, 1, det(U), det(W)) (22)

Provided SM and SD were known, one could solve Wahba’s problem given in
Eq. (18). However, SM and SD were unknown and one could have found a solution
to the problem by testing all possible combinations of SM, SD and R:

L(R, SD, SM ) = 1

2

∑
i

ωi

∥∥(SD · AF)i − [
(SM · A)RT]

i

∥∥ (23)

This had involved the optimization over a huge parameter space, which is compu-
tationally inefficient. Kovačević et al. [1] developed an algorithm to efficiently solve
this problem and described it in detail. Within the scope of this contribution it is
sufficient to understand that a numerically efficient solution exists that yields R, SD

and SM.
To obtain a description of a measured crystal by a crystal model so far a rotation

matrix, a mapping, and a filtering matrix has been found. The face distances remained
to be determined. This could have been done quite easily by finding the ρl that
maximize Eq. (15) for faces that have been measured. However, for faces that have
grown out of the crystal, and are hence not found in the measurement data, this
does not work. For these cases, the measured data was cut into planar slices that
are orthogonal on a face normal vector, and are therefore defined by ρn

(
θi, φj

)
. The

triangles in Fig. 9 show, that slices inside the measured data contain an outline of the
crystal at distance ρ from the center. The ratio between the number of pixels on the
outline and the area of the convex hull of the outline was then maximized by finding
an appropriate face distance ρ. This principle is illustrated in Fig. 9. Therein the arrow
indicates a normal vector of a face of a potash alum crystal that is not expressed in
the measured data. The triangles represent the outline for a face distance that is too
small, and squares indicate a slice where the mentioned ratio reaches its maximum.

In the last two steps towards a successful fit, it needed to be assured that all
identified faces lied within the crystal model and fulfilled the symmetry conditions
defined by the crystal model. The first issue is illustrated in Fig. 10: If a face distance
was identified to be too long, a face lied outside of the model.

To assure that all identified crystal faces lied within the fitted model, invalid entries
in the vector h were identified according to Reinhold and Briesen [11], and Borchert
and Sundmacher [12] and then modified according to

hi = max
1≤i≤nH ,1≤j≤nV

〈
ai, vj

〉
(24)
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Fig. 9 Measured hull of a potash alum crystal with a model normal vector of a face that is not
expressed in the measurement (arrow). Triangles indicate points in a slice that is orthogonal to the
vector and that has a distance that is too small to appropriately describe the face distance. Squares
indicate the length of the normal vector that describes a disappearing face of the crystal. (Reprinted
with permission from [1], Copyright (2014) American Chemical Society)

Fig. 10 Illustration of the problem of faces lying outside of a crystal model as discussed by Reinhold
and Briesen [11]. An invalid face vector is shown on the right-hand side of the figure. (Reprinted
with permission from [1], Copyright (2014) American Chemical Society)
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where the vector vj represents vertices in the crystal’s V-representation as defined in
Eq. (9).

Finally, symmetry conditions were applied to ensure that all faces belonging to
the same facet group had the same distance to the crystal center. The procedure is
described by Kovačević et al. [1].

As measures how well investigated crystals were fitted, the mean quadratic devia-
tion, dquad, a volume ratio, rvol, and the volume deviation, dvol were introduced. dquad

is a measure to determine how much measured points differ from their fit. Therein
long distances between model and measurement are weighted stronger. The volume
ratio is a measure how well the volume is conserved and the volume deviation is a
scaled measure of how much the fitted shape mismatches the measured shape. Details
on how these measures were calculated can be retrieved from Kovačević et al. [1].

The method described in this section enables to fit crystal models to 3D μCT
images obtained from regular potash alum crystals. Results of the fits are shown in
Fig. 11. Irregular particles that resulted from e.g. breakage or agglomeration were
identified by high volume deviations and high quadratic deviations.

In conclusion, the methods that were developed enable face identification in 3D
images. It was described how these faces can be matched to predefined particle
models. The method was applied to the model substance potash alum and it was
shown that single particles can be described with only few parameters by appropriate
crystal models.

2.3 Shape Identification of Crystal Agglomerates

Even more challenging than identifying single crystals is the identification of several
primary crystals constituting a crystal agglomerate. Kovačević et al. [2] presents an
approach how concepts of identification of single crystals can be transferred to the
identification of agglomerates.

Generally, one needs to find all primary particles in an agglomerate and then use
the methods described by Kovačević et al. [1] and in the previous section to model
their structure with individual H-representations. Thus, each agglomerate would be
described by a hand full of H–representations of its primary particles.

To separate agglomerates into their primary particles an algorithm based on
the seeded watershed segmentation and region recombination was developed (see
Fig. 12). The steps defined in Fig. 12 are illustrated with an example agglomerate in
Fig. 13. The first step of the agglomerate segmentation algorithm is to find concavity
points that are an indicator for contact points of primary particles. The 2D approach
of Fernandez et al. [29] and Indhumathi et al. [30] was used and transferred to the
presented 3D problem: A cubic mask was centered at each surface point of the mea-
surement and a concavity value cp was calculated. It was defined as the quotient of
the number of voxels that contain material Nforeground mask and the number of voxels
inside the mask Nmask.
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Fig. 11 Successful fits of regular potash alum crystals. (Reprinted with permission from [1],
Copyright (2014) American Chemical Society)

In measurements with infinite resolution a concave region is identified by a con-
cavity value higher than 0.5, meaning that more than half of the mask is filled.
However, this is not a reasonable threshold for real measurement data. Due to the
discretization of an image into voxels, surfaces appear rough even if they may be
flat in reality. The concavity value also depends on the orientation and size of the
mask. Therefore, the mask edge length was set to 2a +1 where a = 3

√
0.0013Nvoxels.

Nvoxels is the total number of voxels inside a measured agglomerate. The concavity
threshold was then calculated using

ct = 1.2
(2a + 1)2(a + 1)

(2a + 1)
(25)

The factor 1.2 was used to compensate for boundary roughness, different orien-
tations of the masks, and measurement inaccuracies. Finally, concavity points were
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Fig. 12 Algorithm to separate agglomerates into their primary particles. (Reprinted with permission
from [2], Copyright (2016) American Chemical Society)

identified by the local maxima of all points on the surface that satisfied cp > ct.
This was done by a non-maximum suppression peak search in cube shaped windows
with an edge length of a + 1 [19, 26]. These concavity points were then expanded
to prevent under-segmentation of the following distance transform-based watershed
segmentation. The expansion was done in a way that a hole was drilled into the mea-
sured structure at every concavity point perpendicular to the surface (c.f. Fig. 13b).
For details on the concavity expansion refer to Kovačević et al. [2]. Finally, watershed
transform was applied to segment the agglomerate into primary particles. A descrip-
tion of the watershed transform algorithm can be found in the work of Vincent and
Soille [31] and Gonzales et al. [32].

Although the concavity point expansion prevented under-segmentation by the
watershed algorithm (under-segmentation shown in Fig. 13a), it often led to over-
segmentation (Fig. 13c). Therefore, segments that belonged to the same primary
particle needed to be identified and subsequently merged. To achieve this, first neigh-
boring regions were identified. Then small regions that each made up less than 3% of
the total number of voxels were merged with an adjacent region so that the concavity
of the resulting larger region was minimized (Fig. 13e). The concavity of the merged
region was calculated from Eq. (26):
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Fig. 13 Segmentation of an exemplary potash alum agglomerate with the algorithm summarized in
Fig. 12. The images a and c show the difference of the result of the watershed transform when con-
cavities are (c) or are not (a) expanded. Concavities are marked as red stars with their corresponding
masks as black cubes. b shows the agglomerate with expanded concavity points. Image c shows the
result of the watershed transform. In d the boundary voxels that have been identified by the water
shed transform are merged into adjacent regions. In e the small, purple region in d is merged with
the yellow region, f, g show the first and second iteration of the large region merging, so that (g) is
the result of the segmentation algorithm. h shows the rendered measured crystal together with a
successful fit obtained with the methods described in Sect. 2.2. (Reprinted with permission from
[2], Copyright (2016) American Chemical Society)

cr =
∣∣∣∣1 − Ni + Nj

V

∣∣∣∣ (26)

Ni and Nj are the number of voxels of the two regions to be merged and V is the
volume of their convex hull. For details on the exact procedure refer to Kovačević
et al. [2].

After the small regions were merged, it was checked whether merging of large
regions also led to a smaller average concavity of a merged region. Examples are
the combination of the red and orange regions in Fig. 13e and the green and orange
regions in Fig. 13f. While this was done, concavity points were considered. If the
mask of a concavity point included exactly two regions, the merging of these two
regions was forbidden. Another case where merging was forbidden is when merging
would have been allowed according to the first condition, but the concavity value of
a concavity point was increased through merging over some threshold. This could
have been the case if a concavity point contained e.g. three regions. For details on
this procedure again refer to Kovačević et al. [2].

Once an agglomerate was divided into its primary particles, the methods described
in Sect. 2.2 could be adopted and applied to find H-representations for each primary
particle, as shown in Fig. 14h.
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Fig. 14 In both panels the theoretical probability density of disorientation angles according to
Mackenzie and Thomson [31] is shown as a blue line. Panel a shows the disorientation angles
obtained with exact rotation matrices of a simulated sample population. b shows the angles obtained
with rotation matrices that were identified with the algorithm summarized in [4] of the same
population as used for panel (a). (Reprinted with permission from [4], Copyright (2017) Elsevier)

Kovačević et al. [2] also describe how non-ideal cases in which the segmentation
algorithm produced regions that could not be fitted with the algorithm described in
Sect. 2.2 were treated.

In conclusion, this section describes how agglomerates can be represented in their
full geometric complexity. A seeded watershed algorithm was applied to separate a
measured particle into several segments. The segments were then merged under
consideration of certain criteria to yield primary particles inside an agglomerate.
Finally, the methods described in Sect. 2.2 were applied to describe each primary
particle separately.

2.4 Disorientation Angles in Potash Alum Agglomerates

The procedures described in Sects. 2.2 and 2.3 enable the mathematical description
of measured 3D crystal images. The mathematical description allows detailed anal-
ysis of the complex structures. One particular feature of crystal agglomerates which
is accessible with the presented tools is the angle between the primary particles. To
check whether there is a preferred orientation Kovačević et al. [4] used their tech-
niques to measure disorientation angles between primary crystals in potash alum
agglomerates comprising two primary particles. They compared the distribution of
measured disorientations with simulated agglomerates that have randomly orientated
primary particles. Agglomerates were represented usingH-representations as shown
in Eq. (1). The simulated agglomerates also provided the opportunity to validate the
algorithms described in Sects. 2.2 and 2.3.
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Two primary crystals A and B were considered and it was assumed that B could
be rotated into A by an arbitrary rotation matrix R̃. If the crystal model of A and B
has nS symmetry operations, then the rotation of B into A can also be performed by
additionally applying the ns rotation matrices R̃i that perform a symmetry operation.
This was possible because the symmetry operations do not change the appearance
of the shape and thus give ns identically-looking crystals. According to Mackenzie
and Thomson [33], a disorientation angle Θ is the smallest of angles Θi which can
be calculated for each rotation with

Θi = arccos

⎛
⎝ tr

(
R̃iR̃

)
− 1

2

⎞
⎠ (27)

In this work, potash alum crystals were considered to be octahedral. For an octa-
hedron, there are 24 symmetry operations. Thus, to compute the disorientation angle
between two primary particles, one must first find the rotation matrix R̃ between
these two primary crystals. This could be easily computed provided a shape fit for
each primary particle. Then, 24 symmetry operations were applied and the 24 angles
Θi were computed according to Eq. (27). The disorientation angle is the smallest of
these angles. A disorientation angle of 0° means that particles are oriented the same
way.

In order to validate the algorithm, agglomerates were first simulated. For the sim-
ulated agglomerates, it was possible to compute the distribution of the disorientation
angles because the rotation matrices of the simulated primary crystals were known
exactly. Figure 14a shows the probability density of the resulting angles together with
the theoretical distribution that would be expected to result from an infinite number
of samples. This theoretical distribution is given in the literature for cubes and also
holds for octahedra [33]. In the next step, simulated 3D images of these agglomer-
ates were created and the disorientation angle was computed based on the shapes
identified in the images. The result is shown in Fig. 14b. The comparison of Fig. 14a,
b shows that the proposed algorithms work well for simulated ideal agglomerates
and yield meaningful disorientation angles.

In a next step, a potash alum crystal population was grown in a lab scale reactor
and sampled at the end of the crystallization. The agglomerates of these samples were
visualized using μCT measurements. The 3D images were then processed with the
algorithms described in Sects. 2.2 and 2.3. The segmentation procedure was adapted
to include user-interaction steps which made the segmentation more accurate. The
shape identification procedure was also adapted to work with asymmetrical crystals
observed in the measurement. Then the disorientation angle of the agglomerates was
calculated. Details on the experimental procedures are provided by Kovačević et al.
[4]. Exemplary results are shown in Fig. 15. It was observed, that agglomeration of
potash alum crystals tends to show lower disorientation angles than it was expected if
randomly oriented particles form agglomerates. This expectation is shown by the blue
line in Fig. 15, obtained from theoretical considerations in the literature. Kovačević
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Fig. 15 Disorientation
angles of a population of 74
experimentally obtained
potash alum agglomerates.
(Reprinted with permission
from [4], Copyright (2017)
Elsevier)

et al. [4] further discriminate between two different types primary particle contact:
slightly touching and growth together.

In conclusion, the methods described in Sects. 2.2 and 2.3 were applied to potash
alum crystals to yield geometric representations of crystals. The main contribution of
this work was to use these models to analyze the particles. By measuring the disori-
entation angle of primary particles in agglomerates—a measure that is inaccessible
by traditional 2D imaging methods—it was demonstrated that 3D image analysis is
a powerful tool for particle characterization.

3 Classifiers for Agglomerates

The previous sections deal with the exact characterization of crystal populations. This
section follows a more basic approach where particles are only classified whether
they are agglomerates or not. It is common that particle populations are characterized
by a size distribution. A common way to measure particles size distributions is by
dynamic image analysis. Therein size information is retrieved from image analysis
of projections of a sample of particles from a bulk.

A bulk property that can be used to characterize the quality is the degree of agglom-
eration which represents the ratio of the number of particles that are agglomerates
to total number of particles. The aim here was to additionally retrieve the degree of
agglomeration from the same images used for particle size measurements.

The identification of the degree of agglomeration has been studied in Heisel et al.
[5] by comparing artificial neural networks (ANN) and discriminant factorial analysis
(DFA) with respect to their accuracy. Further a procedure to set up appropriate
training sets and to select appropriate discriminant variables was proposed. The
experimental work and the parts regarding DFA are conducted by the work group of
Prof. Schembecker whereas the work concerning ANN has been conducted in the
group of Prof. Briesen.

Projections of L-alanine and adipic acid crystals in suspension were obtained by
dynamic image analysis. Example images can be seen in Fig. 16. For the scope of
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Fig. 16 Example images of the three categories single crystals, agglomerates, and bubbles of both
material systems L-alanine and adipic acid. (Reprinted with permission from [5], Copyright (2017)
Elsevier)

this section it is important that the obtained images may contain images of crystals
that either were (1) agglomerates or (2) single crystals. The images also contained (3)
artefacts of measurements, specifically, gas bubbles (c.f. Fig. 16). For classification
19 image descriptors were studied. The image descriptors provided information about
particle size and shape such as the area, equivalent diameter, or number of concavity
points. A full list and description of how they can be calculated is provided by Heisel
et al. [5].

The quality of the descriptors in respect to their potential to distinguish between
the three classes was ranked using proportional similarity [34, 35]. This statistical
tool yields the PS value that is one for two identical distributions and zero for two
completely different distributions. One PS value that evaluates the potential to dis-
tinguish between single crystals and agglomerates was calculated (PSsa). Another PS
value that evaluates the potential to distinguish between crystals and bubbles (PScb)
was calculated for each descriptor. These two values were used to rank the descrip-
tors in respect to their potential in distinguishing between the classes. PSmn—the
mean of PSsa and PScb—was also used to rank the image descriptors. Only the latter
is considered in the present summary. For more results regarding the other two PS
values see Heisel et al. [5].

To obtain three training data sets per material system, six crystallization experi-
ments were conducted. From each experiment thousands of images were acquired of
which the first 600 images of single crystals and 600 images of agglomerates were
selected manually. These experiments produced only few images of gas bubbles.
This is why 600 images of gas bubbles were created by a separate experiment with
only water and extensive stirring. Using these 1800 images per experiment various
training (TR), test (TE) sets were created. The training sets were combined training
sets (C) if images of different experiments of one material system and gas bubbles
were used, or separate training sets (S) if images of only one experiment and gas
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bubbles were used. The training sets were also varied in total number of images
between 27 and 1800.

The training sets were then used to train DFA and ANN classifiers. For evalua-
tion of the performance of the classifiers, two quality criteria were introduced. The
first one was the performance index PIAll which represents the fraction of correctly
classified objects. The aim was to reach values above 0.9. The second value was the
error made in the degree of agglomeration Ag. Since the test sets were made of the
same number of agglomerated crystals and single crystals, the value for each test set
was known to be Ag = 0.5. The error in degree of agglomeration δAg made by the
classifier was therefore defined as:

δAg =
∣∣Agclassifier − 0.5

∣∣
0.5

(28)

This value should be below 0.1 for a well-trained classifier. Some exem-
plary results for the material system adipic acid/water and the ANN classifier are
summarized in Fig. 17.

Both ANN and DFA are able to accurately distinguish between the three classes.
Figure 17 shows that there are only three descriptors necessary to classify images
with ANN. For DFA 7 descriptors are necessary.

Heisel et al. [5] discuss that training a DFA classifier is easier than that of an ANN
classifier. However, DFA needs more descriptors. Which leads to the conclusion that
ANN is an attractive alternative if much effort needs to be put in the development
of calculation procedures of the image descriptors. It was further shown that PS is a
powerful tool to select appropriate image descriptors even for the classification into
three classes. It was also discussed that the classifiers could be used for different

Fig. 17 Results for a ANN classifier for different numbers of image descriptors (in order of their
PS rank) and number of samples in the training data sets (27, 90, 180, 360 or 1800). Gray areas
indicate the number of image descriptors necessary to reach the predefined classification quality
(horizontal black lines). Error bars indicate standard deviations compared between different test
sets. (Reprinted with permission from [5], Copyright (2017) Elsevier)
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experimental conditions. That is, provided the size of the particles remains similar to
the particles in the training set. It was proposed to optimize the developed procedure
so that it works for differently sized particles, too.

4 Modelling of Crystallization with Consideration
of Morphology

The previous sections explain how crystal morphology can be mathematically
described or classified into categories. This section focuses on the effects of complex
morphology on growth of single crystals and agglomerates.

For simulations of crystallization processes it is common to assume populations
of crystals that can be described with only one size parameter (e.g. diameter for
spherical particles) [36]. However, Fig. 11 shows that this a bad assumption for
complex crystalline structures and complex single crystals (Fig. 3 left-hand side).
The problem with this assumption is that one can often not correctly describe both the
volume and the surface area of crystals at the same time with only one size parameter.
Authors then often chose volume-equivalent diameters to model e.g. growth of the
crystals because so at least the mass is conserved. However, growth depends on
the surface area that is available for growth. Therefore, significant inaccuracies are
introduced by simplifying the morphology of crystals.

4.1 Modelling of the Growth of Faceted Crystals

Reinhold and Briesen [8] addressed the growth of potash alum crystals under con-
sideration of their morphology. The behavior of populations—such as crystals in
suspensions—is frequently modeled with population balance models [37]. A sim-
plified version that considers only growth of a constant number of particles can be
written as [8]:

∂n

∂t
+ ∇(gn) = 0 (29)

where n is the number density distribution of a population of, in this case, crystals and
g is the growth rate of crystal surfaces. Equation (29) describes the problem studied
by Reinhold and Briesen [8]: 26-faced potash alum crystals (as shown in Fig. 1)
were considered to grow in an ideally mixed batch crystallizer. A constrained HC-
representation was employed to reduce the dimension of the face distances to seven
entries in hC. This means that the growth rate g in Eq. (29) was actually a vector
with seven entries that each described the growth rate of one crystal face group.
Therefore, the number density distribution also features seven internal coordinates.
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Even though only growth was considered in this model equation, its solution is not
trivial.

Because growth rates depend on the supersaturation which is again dependent on
the volume of the crystals, a solution of the problem involved the evaluation of the
integral for the total volume of the population. The integral for the volume can be
generalized for any geometric property of the crystals μ and can be written as

Iμ(t) =
∫

μ(hC)n(hC, t)dhC (30)

Because of the high dimension of the problem the solution becomes numerically
challenging. It was solved using a Monte Carlo method that calculated solutions at
nsample random points hC,i. The probability functions w

(
hC,i, t

)
of these points were

assumed to be known. Then the integral in Eq. (30) was estimated by [38, 39]

Iμ(t) ≈ 1

nsample

∑
i

μ
(
hC,i

) n
(
hC,i, t

)
w

(
hC,i, t

) (31)

Based on a simplified model with only three faces, for which an analytical solution
is available, Reinhold and Briesen [8] describe which effect the choice of the initial
probability function w

(
hC,i, 0

)
and nsample has on the accuracy of the numerical

integration. They finally conclude that

w(hC, 0) = 1

2

(
μvolume(hC)

Ivolume(0)
+ 1

I1(0)

)
n0(hC) (32)

was a reasonable choice that balances between the relative errors for the volume and
surface area integration. nsample = 2 × 104 was determined to be a sufficient number
of samples for the Monte Carlo integration to achieve relative errors below 10−3 at
reasonable computational cost.

To be able to numerically solve the partial differential Eq. (29) it needed to be
transferred to a system of ordinary differential equations. This was done employing
the method of characteristics. For details refer to Reinhold and Briesen [8].

With these parameters the growth of a batch of 7.66 × 107 26-faced potash alum
crystals was simulated over a time span of 1 h. The initial distribution of the con-
strained face distances hC was chosen as a multivariate Gaussian normal distribution
with mean face distances of 10 μm and 1 μm standard deviation. The growth rates
were taken from the literature [40] and vary between 0.2 mm/s for the (100) and
(010) faces and 6 mm/s for the (111) faces. These different growth rates led to the
disappearance of the fast-growing crystal faces during growth (Fig. 18); which has
an influence on the growth of the particles—and, therefore, also on the course of
supersaturation—that could not be modeled with growth models that do not consider
each face separately.

To determine which faces were disappearing during simulation it was important
to detect face distances that would result in faces that were outside of a crystal. The
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Fig. 18 Visualization of the evolution of one hC,i vector over the course of the simulation.
(Reprinted with permission from [8], Copyright (2015) Elsevier)

concept is illustrated for a 2D case in Fig. 10 and is discussed by Reinhold and
Briesen [11]. In context of this work Reinhold and Briesen [8] described how they
detected that face distances became too large and limited their growth accordingly.

The evolution of the constrained face distances of a single crystal of the simulated
population is displayed in Fig. 19. The corresponding surface areas of the same
crystal are displayed in Fig. 20. It can be observed that the fast growing (111) face
was initially able to grow with its maximum growth rate until its surface area became
very small. Then its growth rate was limited by the growth of the (110), (101), and

Fig. 19 Evolution of the
face distances of a single
crystal over the course of the
simulation. (Reprinted with
permission from [8],
Copyright (2015) Elsevier)

Fig. 20 Evolution of the
surface areas of specific
crystal faces over the course
of the simulation. (Reprinted
with permission from [8],
Copyright (2015) Elsevier)
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Fig. 21 Evolution of the
total number, surface area
and volume relative to their
corresponding initial values.
(Reprinted with permission
from [8], Copyright (2015)
Elsevier)

(011) faces. Once also these areas became small due to the slow growth of the (100),
(010), and (001) faces the growth of all faces was limited through the growth rates
of these faces.

The population balance model also yielded the evolution of the total area and
volume of all crystals of the population. The evolution of the volume and area of
all crystals relative to the initial condition is displayed in Fig. 21. Note that the
number of crystals remained constant because neither agglomeration nor breakage
were modeled.

In conclusion, it was demonstrated how a population balance model for face-
specific growth of single crystals can be solved. For the solution it was necessary to
estimate integrals in a high dimensional space. This was achieved with a Monte Carlo
based scheme, that allows to determine the error of the integral estimate. To solve the
differential equations, the method of characteristics was applied. The accuracy of the
method was evaluated based on a lower dimensional problem for which an analytical
solution is available. It was further applied to solve a high dimensional population
balance model for the growth of single potash alum crystals under consideration
of their full morphology. It was thereby demonstrated that disappearing faces have
an impact on the growth of the crystals that could not be modeled by conventional
crystal models.

4.2 Modelling of the Growth of Crystal Agglomerates

While Reinhold an Briesen [8] focused on the growth of single crystals, Kovačević
and Briesen [3, 6] studied agglomeration and growth of crystals. The challenge
was that upon agglomeration of two primary particles the agglomerate should be
described in a way that preserves both the surface area and the volume of the primary
particles. In conventional models it is often assumed that upon agglomeration a new
particle is generated that has a single size parameter (e.g. a diameter or a face distance
as shown in Fig. 22) that preserves the volume of the two primary particles. The area
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Fig. 22 Agglomeration following the simple approach: When the blue and green crystal agglom-
erate the volume equivalent grey crystal is generated. The surface area is way too smaller than the
sum of the surface areas of the constituting primary particles. (Reprinted with permission from [6],
Copyright (2019) American Institute of Chemical Engineers)

is then calculated for the larger particle. This introduces a high error for the surface
area and therefore for subsequent growth of the agglomerate.

Kovačević and Briesen [6] studied three different modeling approaches: The first
one, the simple approach, represents the state of the art in which only the volume of
particles is conserved after agglomeration (Fig. 22). The second approach is called
the 2D approach where a 2D population balance equation that considers particle
volume and area as internal coordinates was set up. Therein both particle volume
and surface area are conserved upon agglomeration. However, modeling the growth
rate of the surface was not as straightforward as the increase of volume by additive
agglomeration. The third method they studied was a Monte Carlo based, highly accu-
rate, but also very computationally expensive method that was previously published
by Briesen [41] and adapted for the agglomeration of octahedral potash alum crystals
in Kovačević and Briesen [3]. It describes agglomerates with their full morphological
complexity and was therefore able to accurately describe both the volume and sur-
face area of agglomerates (Fig. 23). This was made possible by using the appropriate
functionality of the MATLAB framework of Reinhold [42] and the cdd library [43].
This complex method was also used to parametrize the 2D approach.

The complex approach considers a sample number of crystals that was assumed
to be representative for the whole population that was to be simulated. It was com-
putationally expensive to calculate the volume of the agglomerates, which makes the
method infeasible for simulations of long process times [3].

Fig. 23 Aggregation following the complex approach: The agglomerate is described with its full
geometric complexity. (Reprinted with permission from [6], Copyright (2019) American Institute
of Chemical Engineers)
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With the 2D approach a compromise was made between the complex and simple
approach. A 2D population balance is more complex to solve than a 1D one, but
still leads to a manageable computational effort. The corresponding 2D population
balance equation that describes growth and agglomeration can be written as [44–46]

∂f (V, A)

∂t
+ ∂(GV f (V, A))

∂V
+ ∂(GAf (V, A))

∂A

= 1

2

V∫
V ′=0

A∫
A′=0

βf
(
V − V ′, A − A′)f

(
V ′, A′)dA′d V ′

− f (V, A)

V∫
V ′=0

A∫
A′=0

βf
(
V ′, A′)dA′d V ′ (33)

f (V, A) is the 2D crystal size distribution with the volume V and surface area A as
internal coordinates. The growth terms GV and GA describe the increase of particle
volume and area through growth respectively. β is the agglomeration rate kernel.
Upon agglomeration it is easy to add the volume and surface area of the two primary
crystals to yield their respective values for the agglomerate. The increase of the
volume can easily be derived from face displacement rates. However, it was not as
straightforward to model the growth of the surface area.

All of the three approaches were solved with the same numerical scheme to ensure
that no numerical differences of the results could occur. The solver was an event-
driven Monte Carlo approach that determines time steps according to agglomeration
events. Between the time steps constant supersaturation was assumed and used to
calculate growth. The procedure is summarized in Fig. 24.

In the initialization step an initial crystal population that was assumed to be rep-
resentative for the population in the process was generated. Octahedral potash alum
crystals were described with one size parameter, the constrained face distance hC

(displayed in Fig. 22). A number of Npart crystals with normally distributed face
distances and uniformly distributed orientations was generated to be further simu-
lated. The respective orientations were held constant throughout the simulation. The
particles existed in a small control volume VMC that was chosen so that the number
density concentration in the control volume was the same as in the total suspension
volume.

Following the initialization, the main simulation loop was entered by evaluating
mass balances. This yielded the present supersaturation that is the driving force for
growth. Based on the supersaturation the face displacement rates were calculated
according to literature [47]. It was assumed to be constant in each time step.

The length of such a time step was determined based on agglomeration events.
It was assumed that all particles have the same probability to agglomerate (constant
β = β0) for some calculations. For others a shear rate and particle size dependent
agglomeration rate kernel was introduced according to Briesen [48]. For the constant
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Fig. 24 The numerical
solver of all three simulation
approaches. (Reprinted with
permission from [6],
Copyright (2019) American
Institute of Chemical
Engineers)

agglomeration kernel, the agglomeration rate was calculated from the agglomeration
kernel and was also dependent on the size of the control volume and the number of
crystals in it:

r = β0

(
Npart

VMC

)2

(34)

This means that, on average, in 1 s rVMC particles will agglomerate, which again
means that the average time step size is �t = (rVMC)−1. For the Monte Carlo solver,
the time step size was sampled from an exponential distribution according to [49]

�t = −�t · ln(x) (35)
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where x is a uniformly distributed random number between 0 and 1. The calculation
of the time steps for the shear rate dependent agglomeration kernel was more complex
and explained in detail by Briesen [48] and Kovačević and Briesen [6].

With the time step size at hand, growth of the particle population was calculated.
For the simple and complex approach this was done in a straightforward way with
hC,new = hC + �tGh for each particle in the simple approach or with hC,part new,i =
hC,part,i + �tGh for each face distance i of each primary particle for the complex
approach.

The population balance of the 2D approach did not directly contain the face
distances. The growth was modeled based on the growth of the volume and surface
area directly: Vnew = V + �tGV and Anew = A + �tGA . The growth rate of the
volume is given as GV = AGh. Until this point GA remained unknown. An empirical
relation with the parameters p1 and p2 was proposed:

GA = p1Ap2 V
1−2p2

3 Gh (36)

Kovačević and Briesen [6] derived that for single crystals p1 is in fact a function
of p2. For octahedral particles the following function was found:

p1 = 24
√

3(
12

√
3
)p2

(
4
√

3
) 1−2p2

3

(37)

p1 and p2 can be interpreted as geometric factors that are specific for certain geome-
tries and do not only differ depending on whether a particle is an agglomerate or not,
but also on the geometry of each individual agglomerate. Kovačević and Briesen
[6] studied various values for p1 and p2 and find that—even though the values
slightly vary for different simulation cases—reasonable average values can be found
to describe particles in a process. To study different parameters, they used the com-
plex method to generate 1000 isolated agglomerates. The term isolated stems from
the fact that they are not simulated within a reaction environment. p1 and p2 are only
dependent on the geometry. How a certain geometry is reached is not important for
their calculation. To produce a set of agglomerates, two particles were brought to
contact. Subsequently their face distances were displaced in several steps without
consideration of a supersaturation. Therefore, the time-consuming calculation of the
mass balances was not necessary. After each face displacement step, both volume and
area were calculated and then allowed a correlation between growth rate by means
of face displacement, and the change of the surface area. The procedure is illustrated
in Fig. 25.

With p2 = 1.135 a hypothetical crystallization process was simulated with the
scheme displayed in Fig. 24. The results are shown in Fig. 26. The agglomeration
kernel was chosen relatively high compared to a real crystallization problem to make
the effect of agglomeration clearer.
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Fig. 25 Illustration of the procedure to determine p2: First particles are brought to contact, then
their faces are displaced in several steps t which produces an increase in the surface area A of
their agglomerate. The growth rate of the surface area is determined and used to calculate p2 from
Eq. (37). (Reprinted with permission from [6], Copyright (2019) American Institute of Chemical
Engineers)

Fig. 26 Simulation results for the complex (blue line), simple (orange line), and 2D (green dashed
line) approaches with a constant agglomeration kernel. (Reprinted with permission from [6],
Copyright (2019) American Institute of Chemical Engineers)

Figure 26 shows the evolution of the volume of the crystals (top left), the total
surface area (top right), the supersaturation (bottom left) and the growth rate (bottom
right). It can be seen that the 2D approach is able to reproduce the results of the
complex approach, while it used much less computational recourses. It further strikes
that even though the simple approach makes a relative error of up to two compared
to the complex approach when calculating the surface area, the supersaturation, and
the growth rate, the total volume was calculated quite accurately. The reason for this
is that due to the underestimation of the surface area, less material was built into
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the crystals. This led to a higher supersaturation, which again led to higher growth
rates. These higher growth rates were therefore able to compensate for the error that
is made for the surface area.

In conclusion, a procedure to accurately model agglomeration and growth of
crystals with a 2D population balance was proposed. The population balance equation
considers the volume and surface area of the particles as internal coordinates and
was therefore able to conserve both of these values upon agglomeration. The growth
is also expressed with respect to growth of volume and area. The second subsection
summarizes how both of these rates can be determined. While the growth rate of the
volume was determined on a straightforward way, the growth rate of the surface area
needed to be estimated with a Monte Carlo based scheme. The scheme proposed
here was applied for potash alum crystals but is formulated in a way that it can be
applied to other material systems.

5 Integrated Crystallization Modelling in Dyssol

The crystallization models proposed in the previous sections are able to describe
the crystallization phenomena growth and agglomeration in an accurate way; how-
ever, they are computationally expensive. They are, therefore, with currently avail-
able hardware hardly suitable for process simulations that span long process times
and include complex flowsheets. There are, however, simpler crystallization models
available in the literature, that are able to describe several crystallization phenomena
simultaneously, and have less computational cost. A case study on the implementa-
tion of such a crystallization process within Dyssol was presented by Kulozik et al.
[7].

Kulikov et al. [50] study the performance of the dynamic flow sheet integra-
tion platform CHEOPS [51]—that is in some ways similar to Dyssol—based on an
integrated crystallization flowsheet. Therefore, a similar process was implemented
for Dyssol and compared to the results of Kulikov et al. [50]. The main difference
between CHEOPS and Dyssol is that CHEOPS is used to couple models that are
generated in different simulation environments. Dyssol now allows simulations in
one combined software package that can be used to model each unit operation and
couple different unit operations to form a flowsheet.

The flowsheet of Kulikov et al. [50] contains four units: (1) a mixed suspension
mixed product removal (MSMPR) crystallizer, (2) a hydrocyclone, (3) an evaporator
and (4) an ideal mixer. For all of the units a model was implemented in Dyssol. They
were then combined to an integrated flowsheet and Dyssol was used to simulate the
behavior of this exemplary process over a process time of 72 h. The first two of the
mentioned units will be briefly explained in the following sections. The mixer is
considered trivial and is not explained. It accepts two feed streams that are ideally
mixed to a product stream of the mixer. The evaporator is implemented in a way that
a constant ratio of pure solvent is withdrawn to concentrate its feed. It has a vapor
stream and a concentrate stream as outputs.
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5.1 MSMPR Crystallizer

The central equation of the mixed suspension mixed product removal (MSMPR)
crystallizer model is again a population balance equation. In this case growth of
spherical particles (diameter d ) with a growth rate G, and nucleation with a birth
rate B were considered. In addition, the crystallizer accepts a feed stream and has a
vapor and a product stream as output.

∂n(d)

∂t
+ ∂(G(d)n(d))

∂d
+ 1

V

nstreams∑
j

(
nj(d)V̇j

) + n(d)
d ln V

dt
= ∂B(d , n)

∂d
(38)

Growth and nucleation kinetics were as proposed by Jones and Mydlarz [52].
The discretization as done with the method of classes and a flux limiter was used as
proposed by Qamar [53]. Additionally, mass balances were introduced. The resulting
set of differential algebraic equations is then solved using Dyssol [54].

5.2 Hydrocyclone

The implementation of the hydrocyclone is based on the work of Braun [55] and the
descriptions of Kulikov et al. [50]. The static model proposed by Braun divides a
hydrocyclone into four zones (c.f. Fig. 27): Zone A is a tube-like inlet zone to which
a suspension is fed and forced onto a circular downward movement. The suspension
then enters an outer tube-like zone B where the fluid continues to move downward on

Fig. 27 Abstraction of the
hydrocyclone as proposed by
Braun [55]
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its circular path. Inside the outer zone B Braun considers a cylindrical inner zone C
where the fluid moves upwards towards the outlet where the overflow is withdrawn.

The model assumes material transport between the zones that is dependent on
particle sizes. Larger particles are drawn to the outer wall by centrifugal force and
are added to the underflow if they are large enough to touch the outer wall of the
zones A and B. Particles that reach the top of zone C are added to the overflow. The
reflux parameter Rf = V̇overflow

V̇feed
is used to define which proportion of a feed suspension

is leaving the cyclone through the overflow.

5.3 Flowsheet and Simulation Results

The units were combined to a flowsheet as shown in Fig. 28: Feed material is mixed
with a recycle stream and then concentrated in an evaporator. The concentrate is fed to
the crystallizer where vapor is withdrawn at a constant rate to induce crystallization.
The product suspension is then classified in the hydrocyclone. The fine fraction is
recycled and the coarse product leaves the process. For this study the material system
water/potash alum was used.

For a simulation scenario, a sieve or filter unit at the end of the process was
assumed but not included in the model. It is further assumed, that this unit should
not be fed with a product that is too fine to prevent blocking. This scenario is also
studied by Kulikov et al. [50]. The goal of the simulation is, therefore, to reduce the
mass stream of fine particles (d < 50 μm). Here, the effects of the reflux ratio Rf

(as also studied by Kulikov et al. [50]) and the feed stream were studied.
Figure 29 shows that after the start of the process, the mass stream of fines rapidly

raised, reached a maximum and finally approaches an equilibrium state. For higher

Fig. 28 Crystallization flowsheet with reflux. The sieve is not considered in the model but used in
the optimization discussion
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Fig. 29 Mass stream of fine
particles dependent on reflux
ratio. The feed mass stream
was 0.5 kg/s

reflux ratios less fine particles were contained in the product. This is also observed
by Kulikov et al. [50] for a different material system.

Figure 29 suggests that for all cases the highest mass flows of fine crystals can
be observed within one day after startup of the process. A further simulation goal
was to reduce the maximum mass flow by appropriate adaption of the feed stream.
For this case the reflux ratio was fixed to 0.5. The simulation result for this reflux
ratio and a feed mass stream of 1 kg/s was used as a benchmark (blue solid lines in
Figs. 29, 30, and 31). In a first attempt, the feed rate was kept at only 0.5 kg/s for the
first 18 h and was then rapidly increased to 1 kg/s.

Figure 30 shows that this procedure led to a slower increase of the mass stream
of fine particles. Once the feed rate was increased a sharp increase in the mass
stream of fine particles was observed. The peak was higher than in the benchmark
simulation. It rapidly decreased and converged towards the expected equilibrium. A
second simulation was done where the feed stream was gradually increased from
0.5 to 1 kg/s within 18 h (c.f. Fig. 31). In this case it was observed that the peak of

Fig. 30 Simulation result
for a rapidly increased feed
rate (orange dashed line) and
comparison to the
benchmark result (blue solid
line)
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Fig. 31 Simulation result
for a gradually increased
feed rate (orange dashed
line) and comparison to the
benchmark result (blue solid
line)

the mass flow of fine particles was delayed and was not as pronounced as for the
benchmark. The equilibrium was still reached at a similar time.

In conclusion, it was demonstrated that Dyssol can be used to dynamically sim-
ulate crystallization flowsheets. Even complex cases such as reflux streams can be
handled and Dyssol can be used for long process time calculations.

6 Conclusion

Sections 2 and 3 deal with the analysis of crystal morphology. Section 4 focuses on
the modelling of crystallization under consideration of morphology and discusses
errors that are made by the classical assumptions that neglect morphology. Finally, in
Sect. 5 a crystallization process was modeled using the dynamic flowsheet simulator
Dyssol and it was shown that it can be efficiently used to dynamically simulate
integrated flowsheets.

The analysis of crystal morphology is often done by 2D on-line image analysis
in both industry and science. It was demonstrated that certain errors with respect to
morphology have to be accepted when only 2D information is available. This concept
has been demonstrated for the measurement of a roundness parameter of abraded
crystals. It was further demonstrated that morphological bulk properties such as the
degree of agglomeration can be extracted from particle projections. Procedures for
the calibration of artificial neural networks were proposed.

To overcome the limitations of measurements where only 2D information is avail-
able, 3D particle images were acquired and analyzed. It was demonstrated that the full
morphological information that was provided by 3D particle description can be used
to measure properties that are inaccessible from 2D images—such as disorientation
angles in agglomerates. Even though 3D image acquisition and analysis are much
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more sophisticated than of 2D images, the proposed methods help to understand mor-
phological influences on important phenomena like crystal growth, agglomeration
and breakage.

Another aspect of the work was the modeling of crystallization under consider-
ation of the influence of morphology. Using a high dimensional population balance
model the important influence of multiple surfaces with different growth rates on crys-
tal growth was demonstrated. For the effective solution of such a model, novel numer-
ical methods have been developed. It is common practice to neglect the combined
influence of agglomeration and growth on the surface area of crystal populations. It
was herein demonstrated that this introduces high errors in such models. A method
was proposed to parametrize a population balance model that considers both the
evolution of crystal volume and area correctly. Because such models are still numer-
ically challenging and computationally expensive even if not included in a flowsheet,
they are currently not suitable for simulation of integrated flowsheets. Therefore, a
simpler model was included in the simulation platform Dyssol. It is demonstrated
that Dyssol can be used to efficiently calculate integrated crystallization processes.
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2. Kovačević, T., Schock, J., Pfeiffer, F., Briesen, H.: Shape identification of primary particles in
potash alum aggregates using three-dimensional tomography data. Cryst. Growth Des. 16(5),
2685–2699 (2016)
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4. Kovačević, T., et al.: Disorientation angle distribution of primary particles in potash alum
aggregates. J. Cryst. Growth 467, 93–106 (2017)
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Chapter 5 

5. Results 

5.1 Paper II: Analysis of Nonideal Shape Evolution during 
Potash Alum Crystallization Using Microcomputed 
Tomography and Three-Dimensional Image Analysis 
(Schiele et al. 2021a) 

Summary 
Today crystallization processes and crystalline bulk materials are analyzed using 2D 
image analysis. The advantage of such methods is that they are fast and can be applied 
in-line. However, a major drawback is that they are fundamentally not able the capture 
the exact shape of crystals. It has been discussed before in this text that crystal shape 
is, however, an important property. In consequence, previous work of the Briesen group 
focused on the development of 3D imaging and image analysis methods. 3D images 
contain full shape information. This study focuses for the first time on the 3D analysis of 
crystal populations and their evolution instead of the appearance of single crystals. 
While previously only roughly 100 crystals have been analyzed, in this study, 11 000 
crystals were analyzed in 3D. To achieve this, the experimental and image analysis 
methods had to be optimized. By sorting crystals into 3D-printed scaffolds, almost 800 
crystals could be included in a single μCT scan. This also lead to higher total crystal 
masses in each measurement and crystal mass could be considered for binarization. 
Statistical considerations based on 2D imaging revealed that for the present case 
roughly 1000 crystals should be analyzed to represent a population well. The high 
number of crystals per μCT scan then enabled analysis of the evolution of 3D crystal 
populations over the course of a batch cooling crystallization process. This yielded 
volume and surface distributions and their evolution without the need for any 
assumptions regarding crystal morphology. This is already a great achievement 
because volume and surface area are two important coupled process variables that are 
hard to determine using other analysis methods. Further analysis was enabled by the 
application of 3D crystal models. This analysis revealed an unexpected shape shifting 
phenomenon. Seed crystals were damaged and mostly not facetted. They grew to 
entirely facetted crystals within the first 30 min of the process. These crystals, however, 
were unexpectedly not fully symmetric according to their cubic unit cell. The shapes 
shifted towards the expected symmetry over the course of the experiment. However, 
most crystals never reached ideal symmetry. Shape shifting is explained by face 
independent growth in the study. However, the employed model did not explain the 
existence of the non-ideal shapes. The hypothesis was that the asymmetries resulted 
from the damaged and often asymmetric seed material. A further analysis of this 
hypothesis is conducted by Schiele et al. (2021b). 
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ABSTRACT: Nowadays, it is common to analyze crystallization processes
and crystalline products using two-dimensional image analysis. Various
techniques exist but they are not fundamentally capable of capturing the full
morphology of particles due to their limitation in two dimensions. This is
particularly true when complex shapes, e.g., through agglomeration or
broken crystals, occur. Here, an approach is presented in which potash alum
crystals are sampled from a laboratory-scale reactor at six time points over
the course of a crystallization process. Three-dimensional (3D) images of all
crystals in the samples were obtained by microcomputed tomography and
used for morphological characterization. The method directly yields volume
and surface area distributions without the need for any assumption regarding
particle morphology. Applying geometric crystal models allowed for a more detailed analysis of the crystals. In the example
considered, it was shown that most crystals assumed nonideal shapes over the course of the process. The supporting model provides
indication that the shapes approach ideality through face-independent crystal growth. Overall, more than 11 000 crystals were
analyzed. In general, this work aims at demonstrating the potential of crystal analysis by means of microcomputed tomography and
3D image analysis.

1. INTRODUCTION

Shape is an important quality feature of a crystalline product. It
not only affects the efficiency of downstream processes in
production1,2 but also has significant influence on the
bioavailability of pharmaceuticals.3,4 Also, in the case of
metal nanocrystals, crystal morphology has a considerable
influence on the material properties.5 In the framework of
crystal shape engineering,6,7 researchers have attempted to
design crystallization processes to produce specific crystal
shapes and sizes. Consequently, significant effort was also
made to experimentally analyze crystal shapes and sizes. In
most cases, size measurements build upon some kind of shape
assumption or shape measurement. It is, for example, common
to assume spherical shapes and then measure sizes of particles
as diameters. However, crystals express facetted shapes and are
usually not well represented by spheres. Some crystals may be
well described by cubes. In such cases, the side length is a good
measure for size. However, in many other examples, crystals
have more complex shapes that need more sophisticated shape
models. Consequently, methods for size and shape measure-
ments are closely related.
Focused beam reflectance measurement (FBRM) is a robust

method for inline particle analysis.8 It measures a chord length
using the time that a laser with known velocity needs to pass
over a particle. Such chord lengths can either be directly used
as size information or transformed into more meaningful size

measures by applying either geometric shape models9,10 or
empirical models.11 They can also be used to distinguish
between different crystal shapes.12 However, because of the
inherent nonuniqueness of the measured chord for a given
crystal, it is difficult to evaluate sizes of nonuniform
particles.9,10 Most methods yielding shape information rely
on two-dimensional (2D) image analysis.13,14 These techni-
ques allow for an estimation of the size and shape of particles.
Assumptions regarding morphology may help to make more
accurate measurements.15,16 However, because of the limi-
tation to two dimensions, exact results are still difficult to
achieve. Therefore, authors have attempted to increase the
information content and/or the dimensionality of their
measurements. For example, the combination of FBRM and
2D image analysis has been applied.17 Another method is
stereoscopic imaging that uses two orthogonal 2D images and
assumptions regarding morphology for online crystal anal-
ysis.18,19 A similar method where binocular inline imaging is
used for three-dimensional (3D) reconstruction of particles
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was developed by Huo et al.20 These advanced methods
provide a better understanding of the appearance of crystals.
However, they are still unable to capture their exact shapes.
Kovacěvic ́ et al.21 discuss that these limitations are particularly
challenging to overcome when concave particles, such as
agglomerates, occur. In the past few years, our group has
worked on the development of an inherently 3D method for
crystal analysis.21−24 The method uses microcomputed
tomography (μCT) to capture 3D images of crystals. These
images contain detailed size and shape information of the
particles. Assumptions regarding the morphology of the
crystals then allow for fitting geometric crystal models to
measured particles.21 This includes, but is not limited to,
agglomerates. On the basis of these models, analysis of the
crystals in ways that were impossible with only 2D information
became feasible. Kovacěvic ́ et al.23 studied the disorientation
angle distribution between primary particles in agglomerates.
In our previous studies,21−24 the number of crystals analyzed
by 3D imaging has been limited to the order of 102 crystals.
This was mainly because only few crystals could be included in
the time-consuming μCT measurements.
In the present study, we were able to increase the number of

crystals to be analyzed by μCT toward about 104 crystals
analyzed in total by improving the experimental procedure.
This for the first time allows for the study of crystal
populations instead of single crystals. It also enables the
analysis of a time evolution instead of a single end point. To
illustrate the potential of the availability of such population
information over time, the method is applied to comprehen-
sively analyze the evolution of the crystals’ shape over time in a
laboratory-scale crystallization process of potash alum (PA).
This study sheds light on the shape evolution of nonideal
crystals over time.

2. MATERIALS AND METHODS
All concentrations are expressed as loads with the unit gram PA
hydrate per gram water.
2.1. Materials. PA (≥99% Ph. Eur.), ethanol (≥99.8%), and

cellulose Rotilabo-round filter type 113A were purchased from Carl
Roth GmbH & Co. KG (Germany). For 50 vol % ethanol solutions,
ethanol was diluted with deionized water. PA seed material was
obtained by sieving (200−315 μm) the material that was bought.
Acetone (≥99.5% Ph. Eur.) was purchased from Sigma-Aldrich
Chemie GmbH (Germany).
2.2. Crystallization. All crystallization experiments were con-

ducted in an OptiMax 1001 Synthesis workstation (Mettler Toledo
Inc.) with 500 mL of reactor volume. For inline process analysis, an
FBRM probe (Mettler Toledo Inc.) and an inline microscope
(particle vision and measurement, PVM; Mettler Toledo Inc.) were
installed in the reactor. For sampling suspension, a stainless steel pipe
with an inner diameter of 7.5 mm was also installed.
A 300 g amount of deionized water was added to the reactor

together with 73.01 g of PA for each experiment. The corresponding
load was w = 0.2434 g/g, which is the amount soluble in water at 40
°C.23 Kovacěvic ́ et al.23 give the saturation concentration as a function
of temperature

= − +w T T T( ) 0.18
g

kg K
102.726

g
kg K

14 760.7
g

kgsat 2
2

(1)

Subsequently, the temperature was increased to 45 °C over the course
of approximately 20 min, and the stirrer (diameter 4.5 cm, four blades,
pitched down) was set to 300 rpm. The rationale behind this choice
of stirrer speed is given in Appendix I. After complete dissolution
(FBRM counts <10), the temperature was decreased to 39 °C (10.1
K/min) and 3 g of the seed material was manually added to the
reactor (within approximately 10 s). This marked the start of the

crystallization process to be monitored. The temperature was
decreased at a constant rate of 10 K/h until it reached 20 °C. The
temperature was held for another 30 min, after which the reactor was
turned off. This marked the end of the crystallization experiment.

2.3. Sampling. During crystallization, two kinds of samples were
taken from the reactor: (A) samples for concentration measurements
and (B) samples for the analysis of the crystal population. Each of
these samples was taken every 30 min (corresponding to every 5 K).
The concentration was additionally measured shortly before and after
seeds were added.

Samples for concentration measurements were retrieved through
an opening in the reactor lid with a syringe through a 0.8 × 120 mm2

needle (B. Braun Melsungen AG, Germany) with a volume of 2 mL.
Ideal mixing of the liquid was assumed. Directly after sampling, the
samples were filtered with 1 μm syringe filters (Chromafil GF 100/25,
Machery-Nagel GmbH & Co. KG, Germany) into sample tubes and
stored for later analysis. Filtering ensured that as few crystals as
possible were contained in these samples. In case solids precipitated
during storage, they could be dissolved at 45 °C before measuring the
concentration. Concentration measurements were performed by first
diluting the samples by a factor of 1:25 (mass) with deionized water.
Next, the conductivity was measured (703 Laboratory Conductivity
Meter, Knick GmbH & Co., Germany), and the concentration was
calculated according to our calibration (accuracy 0.9% for 95%
confidence).

Sampling suspensions is more complex and discussed in the
literature.25−28 The results of these studies suggest that fast sampling
velocities are beneficial and that for narrow particle size distributions,
classification of particles seems to be a minor issue. Even if in this
work the number of crystals to be analyzed at a single point could be
increased significantly over previous investigations, the number is still
limited. Significant effort has been put into development of a proper
sampling routine to provide the best representativeness possible. To
achieve comparability, all probes and the stainless steel pipe for
sampling were mounted at the same height inside the reactor. This
was the height of the 200 mL filling mark, which was the deepest the
FBRM probe could reach. The tips of the probes were aligned on the
same reference diameter (Figure 1). The probes and stainless steel
pipe were evenly mounted over the whole circumference, which
should result in similar flow conditions in their vicinity.

On the basis of the procedures proposed by Genck27 and Sha and
Palosaari,28 the suspension for crystal analysis was sampled using a
vacuum. A plastic tube (inner diameter 4 mm, outer diameter 6 mm)
to which a valve was attached was used. A syringe (25 mL, B. Braun)
was attached at the other side of the valve. The tube was inside the
aforementioned stainless steel pipe and filled with air during most of
the experiment. This minimized the dead volume inside the reactor.

Figure 1. Schematic of the position of the instruments in the
crystallization reactor. FBRM: focused beam reflectance method and
PVM: particle vision and measurement. Note that the probes are
mounted in an angle and therefore are displayed elliptically.
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For sampling, the tips of the stainless steel pipe and the sampling tube
were aligned inside the reactor. The valve was initially closed. The
syringe was then used to generate a vacuum inside it (V = 6 mL). The
valve was rapidly opened, which equalized the pressure by sucking in a
suspension sample. Next, the tube was withdrawn from the stainless
steel pipe, and its contents were emptied onto a Buchner funnel with
water-wetted cellulose filter paper on it. The liquid fraction of the
suspension was removed using the filter and discarded. When all
liquid was removed, the crystals were first washed with 50 vol %
ethanol and then with acetone (both nonsolvents for PA). Afterward,
the clean crystals were dried on the filter paper through natural
evaporation of the remaining acetone. During the whole sampling and
washing procedure, care was taken not to destroy any crystals and to
produce as little new crystals through antisolvent addition as possible.
This was achieved through careful removal of as much PA solution as
possible before washing with ethanol.
To verify that the sampling method produced representative

samples, a separate test crystallization process was conducted. After
crystallization was completed, five samples were retrieved from the
reactor and treated as described earlier (referred to as sample 1−5,
later). Finally, the whole content of the reactor was also filtered, and
the crystals were washed and dried (referred to as sample 6, later). All
samples were separately analyzed using dynamic image analysis (DIA;
QicPic, Sympatec GmbH, Germany). The analysis yielded projections
of individual crystals for which each the diameter of a circle of equal
projection area (dEQPC) was calculated by QicPic. Only particles with
dEQPC > 200 μm were considered because this was also the minimal
size we aimed to analyze using μCT. The analysis of the crystals of
sample 6 yielded about 59 000 diameters of individual particles and
was therefore considered to perfectly represent the population (left,
black curve in Figure 2). We chose a class size of Δx = 7.6 μm to

represent this population (500 equally sized classes in the size interval
of 0.2−4 mm). The other samples each yielded about 1000
projections and corresponding diameters. Note that the number of
particles was higher than the number of projections in all samples
because QicPic does not yield a projection for every particle. To
estimate how effectively a sample of 1000 crystals could represent the
whole population, a bootstrap method was applied.29 A total of 100
different populations of 1000 randomly chosen crystals were created
out of sample 6 (that contained about 59 000 crystals). These samples
are referred to as ideal samples later because experimental sampling
bias is excluded (i.e., the whole reactor content is considered). An
example of such a population with the same class size as that of
sample 6 is shown as a blue curve in Figure 2 (center). The ideal
samples of 1000 crystals each could not adequately represent the
population with the same class size as the much larger sample 6. To
find a suitable class size for the ideal samples, the class size was

increased to minimize the squared difference between sample 6 and
100 different ideal samples. This procedure revealed that the ideal
samples could represent sample 6 best with a class size of Δx = 39.2
μm (97 equally sized classes in the region of 0.2−4 mm). An example
of an optimized distribution of an ideal sample is shown as an orange
curve in Figure 2 (right).

The standard deviation and the mean of the ideal samples (blue
curves in Figure 3; dashed lines indicate 95% confidence) can now

also be used to evaluate the accuracy that can be expected from a
sample of 1000 crystals when perfectly sampled from the real reactor.
The orange curves in Figure 3 represent the five samples 1−5 that
were taken from the reactor. The comparison of the curves reveals
that most parts of the distributions of samples 1−5 lie within the 95%
confidence interval of the ideal samples. In one sample, the main peak
is slightly over-represented. Therefore, considering the sampling
challenges mentioned earlier, these results indicate that the proposed
sampling method produced good samples. The solid concentration
obtained from samples 1−5 was 0.11 ± 0.02 g solids per g solution
(±1 standard deviation). The solid concentration of sample 6 was
0.11 g/g.

2.4. μCT Measurements and Image Analysis. 3D images were
acquired using a custom-built X-ray microtomography system (XCT-
1600HR; Matrix Technology AG, Germany). A total of 1600
radiographic 2D projections were obtained from various angles. The
projections were used to reconstruct 3D images using a custom
software (Matrix Technology) based on CERA (Siemens AG,
Germany). These 3D images contained 2008 × 2008 × 1250 voxels
and had a voxel spacing of 8 μm. This means that the volume
captured by one image was approximately 16 × 16 × 10 mm3. The
time for obtaining one 3D image was approximately 1 h. Hence, a
fundamental challenge for our work was to visualize as many crystals
with one μCT image as possible. The method described by Kovacěvic ́
et al.21 was useful to examine about 20 large crystals; however, it was
infeasible for larger populations. The aim here was to examine all
crystals of each sample that was taken from the crystallization process.
The samples visualized by μCT each had between 1300 and 2800
crystals. In addition, the aim was to prevent particles from being in
contact during the μCT measurements. Thus, it would be assured that
in the 3D images, connected particles were actually agglomerates and
not particles that were in contact during measurement only. To
achieve this goal, crystals were manually sorted into measurement
scaffolds. Computer-aided design (CAD) models of the scaffolds are
shown in Figure 4A and B. The scaffolds comprised plates that had
cavities that were aligned in a grid. Each cavity had a squared cross
section that was either sized 2 × 2 or 1 × 1 mm2. Their depths were

Figure 2. Distribution of the whole reactor content with 500 classes
(left, black curve) and distributions of an ideal sample with 500
classes (center, blue curve) and 97 classes (right, orange curve).

Figure 3. Accuracy that can be expected from samples of 1000
particles as estimated from 100 ideal samples (blue curves). The
orange curves represent distributions of samples 1−5 that were
retrieved from the reactor with the sampling methods described in
this article. Dashed lines indicate 95% confidence.
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either 2 mm for the larger cross sections or 1 mm for the smaller ones.
Each scaffold contained either 32 (2 × 2 mm2 cross section) or 128 (1
× 1 mm2 cross section) cavities. The scaffolds were further designed
such that they could be stacked (Figure 4C). Six 1 mm thick scaffolds
could be fitted into one 3D image, resulting in 786 particles that could
be included in one 3D image. The thin scaffolds with small cross
sections were used as default, but the other ones had to be used for
large particles. The scaffolds with 2 × 2 mm2 cross section were 3D-
printed with an Ultimaker 3 (Ultimaker BV, the Netherlands using
Innofil3D PET filament, BASF AG, Germany). For finer scaffolds, a
more accurate Form 3 3D printer was used (Formlabs Inc., using clear
Formlabs photopolymer resin FLGPCL02). Thus, with this
procedure, only about four μCT measurements were necessary to
visualize a population of 2000 crystals. Note that because crystals have
to be manually sorted into the scaffolds using tweezers, this procedure
excludes small crystals (<200 μm) from the analysis.
After images were obtained by μCT, 3D images of single particles

were extracted from them. The procedure could be automatically
performed in Matlab (version 2019a, Mathworks Inc.). The image
analysis algorithm is summarized in Figure 5 and briefly described as
follows. The first step was to apply an anisotropic diffusion filter
(Matlab’s imdiffusefilt function) to reduce blur but preserve edges.
The next step was to find a global binarization threshold. It was
chosen such that the mass of the crystals was conserved. For details
on this step, check Appendix II. The threshold was then applied using
Matlab’s imbinarize function. An exemplary binary image is shown in
Figure 6. An animation that better visualizes the 3D character of the
images is provided in the Supporting Information.
To identify crystals in the binary images, connected regions were

determined using Matlab’s bwconncomp function (connectivity of
26). In a next step, all regions that had a volume less than the volume
of a sphere with a diameter of 200 μm were considered as blur and
excluded from the image. Note that very small crystals were not
included in the images because crystals were sorted manually using
tweezers. We chose 200 μm as the threshold for blur because the
seeds were sieved with this mesh size. In some cases, the removal of
blur resulted in a reduction of the volume greater than the volume
corresponding to 0.05 mg (accuracy of the scale). In these cases, the
threshold was recalculated using eq S1 (Appendix II) with the mass of
blur mblur that had previously been removed. Finally, the remaining
regions were saved as individual 3D images for later analysis.
2.5. Volume and Surface Area Determination. The analysis of

the 3D images of the crystals was performed in different levels of
complexity. Previous methods for evaluation of the detailed geometry
were based on geometric crystal models. Such an approach was also
considered here (see Section 2.6). However, when crystallization
processes are modeled, particle volume and surface area are already
two important particle properties.30 Using established particle analysis
techniques, one would need the crystal shape to determine the
volume and the surface area (Appendix III). However, at the same
time, the shape is hard to predict. Using μCT particle analysis, the
volume and the microscopic surface area can be directly extracted,
without the need of any shape assumption. The volume V of each
crystal was determined using eq 2

= ·V nres3
voxel (2)

where nvoxel is the number of voxels that describe the crystal and res is
the voxel spacing of the image (res = 8 μm). Note that in a previous
step, the mass of the crystals was used for binarization. Hence, the
mass of crystals is preserved in each 3D image. Assuming an equal
distribution of the error in mass over all crystals in an image, one can
also assume that the mass, and therefore also the volume, is accurately
determined for each individual crystal. The determination of the
surface area is more complex. The μCT measurements had a voxel
spacing of 8 μm. Therefore, as a rule of thumb, it captures features
that have a size of 16 × 16 × 16 μm3. The microscopic shape of the
particles is, therefore, captured. When the microscopic shape and
volume are assumed to be accurate, the microscopic surface is also
accurately captured. It must be noted that the features on the
nanoscale such as surface roughness, steps in the crystal lattice, and
dislocations are not captured but at the same time may have an
impact on the surface area. Such features can be visualized with
methods that offer sub-micrometer scale resolution, for example,
atomic force microscopy.31 However, such analysis is not the scope of

Figure 4. (A) CAD model of a μCT measurement scaffold with 32 2 × 2 × 2 mm3 cavities. (B) CAD model of a μCT measurement scaffold with
128 1 × 1 × 1 mm3 cavities. (C) Four stacked 2 × 2 × 2 mm3 scaffolds inside the μCT.

Figure 5. Algorithm to extract crystals from μCT images. eabs is
0.05 mg.
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this contribution. To determine the microscopic surface area of the
crystals, the surface of the crystals was triangulated using Matlab’s
isosurface function. The sum of the areas of all triangles could then be
used as the surface area. However, because of the description of the
crystals through discrete voxels, the surfaces are not flat. They have
steps that make the surfaces appear rough (Figure 10). This
roughness is also initially contained in the triangulation. Hence, the
surface area would be measured too high. Therefore, the triangulation
was smoothed according to Desbrun et al.32 using the smoothpatch
library obtained from Matlab’s central file exchange.33 The smoothing
was applied three times. This procedure was validated by determining
the surface areas of the first 10 crystals obtained from the first and last
samples using the commercial 3D image analysis software Modular
Algorithms for Volume Images (MAVI, Fraunhofer Institute for
Industrial Mathematics, Germany34). The first sample contained
mostly small crystals, whereas the last sample contained the largest
crystals. The mean relative deviation between the surface areas
obtained using MAVI and those obtained using the smoothing
method was 1% for the subset.
2.6. Geometric Crystal Models. A more detailed analysis of the

crystals is enabled by the tools described by Kovacěvic ́ et al.21−23 A
comprehensive summary of this work is provided by Schiele et al.24

The method uses H-representations to describe the geometry of each
crystal. In the case of crystal agglomerates, an H-representation is
found for each primary crystal of the agglomerate. H-representations
consist of a matrix A and a vector h. A is a set of vectors that describe
the direction of the face normals. In principle, PA crystals could
express faces with the Miller indices [111], [100], and [110].35

However, in the measurements presented here, only [111] faces were
observed. Hence, A consists of eight vectors that describe the eight
[111] faces. Kovacěvic ́ et al.22 show how the orientation of a crystal is
described by applying a rotation matrix to A. To describe the size and
shape of a crystal, h is used. It describes the distance of each face to a
reference point. An example of a 2D H-representation is shown in
Figure 7. Φn is a shape factor that is defined according to eq 3.

Φ =
|| ||

h
hn

max (3)

To describe agglomerates, Kovacěvic ́ et al.23 described how user
interactions can be used to improve the segmentation of agglomerates
into primary crystals. However, because of the large number of
crystals that were analyzed in the context of this work, manual
interaction became infeasible. Therefore, the interaction modules
were removed from the program, and the initial conditions of the
interaction modules were used. This may result in oversegmentation
(e.g., a single crystal is separated into several parts) or under-
segmentation (an agglomerate is not separated into correct primary

particles). It is very likely that for such badly separated particles,
fitting is not successful. Therefore, the number of successful fits is
expected to be lower compared to a procedure that includes user
interaction.

2.7. Modeling Crystal Growth. A crystal growth model is used
to interpret the experimentally observed shape evolution of crystals
through face-independent growth (Section 3.2). The model considers
the evolution of experimental sets of crystals that are characterized by
H-representations, as explained in Section 2.6. The 30 min sample is
used as the initial set because the fit accuracy for the 0 min sample
was insufficient (only 34 successful fits). We consider the index i to
represent the different sampling time points ti from t = (30 min, 60
min, 90 min, 120 min, 150 min). From the sets of H-representations,
volumes are calculated according to Kovacěvic ́ and Briesen.30 Using
these volumes, normalized number distributions with respect to
volume with 25 classes are created. These distributions are
represented by discrete vectors q0,exp,i. All matrices A of the H-
representations only differ in rotation and rotation has no influence
on volume. Therefore, an experimental normalized number
distribution with respect to volume can be calculated for any set of
face distance vectors h (i.e., at all sampling times ti, q0,exp,i = f h→v(hi)).
The resulting distributions are similar to those shown in Figure 9
because a low deviation of volume is considered as a quality criterion
in the fitting algorithm.22 However, in the context of this growth
model, the distributions that are calculated from the H-representa-
tions are used to ensure overall model consistency.

The growth of the sampled crystals at t1 = 30 min is modeled by
increasing all of the entries in h of its H-representations by the same
Δhi (time-dependent but face-independent growth). Thus, Δhi is used
to increase the size and hence the volume of the crystals. Using
different Δhi for different time steps results in differently sized crystal
populations at the time points ti. The number density distribution
resulting from the model can be formulated as a function of the initial
30 min h1 and the respective Δhi.

= + Δ→f hq h( )i h v i0,mod, 1 (4)

As the crystals sampled at the different time points are obviously not
the same ones, the determination of reasonable Δhi is not trivial. We
chose to demand consistency with the overall volume evolution
instead of evolution of individual crystals. To achieve this, Δhi are
chosen such that the distance between the distributions of the
numerically grown sample q0,mod,i and those of the actually measured
sample at the corresponding time point q0,exp,i becomes minimal. The
minimization problem formulated in eq 5 is solved using the simplex
method36 (Matlab’s fminsearch function).

Figure 6. Rendered 3D image of 128 PA crystals after binarization.
For this image, four 2 × 2 × 2 mm3 scaffolds had been stacked.

Figure 7. Illustration of the geometric crystal representation in 2D for
ideal and nonideal shapes.
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|| − ||
Δ

q qmin
h i i0,mod, 0,exp, 2
i (5)

The optimization is done separately for all i ∈ {2,3,4,5}. Results are
shown and discussed in Section 3.2.

3. RESULTS AND DISCUSSION
The crystallization conditions during the process are
summarized in Figure 8. The figure shows the linear

temperature profile (orange dashed line), the corresponding
saturation concentration as calculated from eq 1 (solid blue
line), and the measured concentrations (crosses−dotted line).

This shows that a slight supersaturation was maintained while
temperature was decreased. The supersaturation profile is
shown in Sup. 8. Once 20 °C was reached, the concentration
quickly approached saturation. Hence, no crystal growth
should be expected after 150 min.

3.1. Volume and Surface Area Distributions. To obtain
both the surface area and the volume of the crystals, DIA
(Appendix III) and the proposed μCT method were applied.
The crystal samples were first analyzed by μCT and
subsequently by DIA. During the experiment, inline FBRM
measurements were performed to determine the state of full
dissolution. DIA yields 2D projections of particles, and 3D
images of particles are obtained by μCT. The most detailed
information on the volume and the surface area of the crystals
can be extracted from 3D images (Section 2.5). The
normalized number density distributions with respect to
volume as measured by μCT are shown in the top row of
Figure 9. The corresponding distributions with respect to
surface areas are shown in the bottom row of Figure 9. Note
that at this point no geometric model was necessary to
determine these distributions.
In both cases, the seed crystal distribution (0 min) is narrow.

Over time, volumes and surface areas of the crystals increased.
The distributions became wider. Only little change of the
distributions between 120 and 150 min was observed. This is
in accordance with the small change in concentration within
this time window (Figure 8). Generally, the increase in volume
and surface area is due to the growth of the crystals. These
results are compared to those obtained by DIA in Appendix III
in the Supporting Information.

Figure 8. Course of temperature (orange dashed line) during the
crystallization experiment. The course of the saturation concentration
(blue solid line) results from the course of the temperature. The
measured concentrations are displayed as crosses that are connected
by dotted lines. Seeds were added at 0 min.

Figure 9. Normalized number density distributions with respect to volume (top left) and surface area (bottom left) as determined by μCT and the
corresponding box-plots (right column). Boxes indicate the 25th and 75th percentile and median. Outliers are shown as red crosses. Whiskers cover
approximately 99% of the data points.
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A more detailed understanding of the crystal population
evolution can be obtained by the following detailed shape
analysis.
3.2. Shape Analysis. As discussed in the Introduction

section, the shape of crystals is an important quality criterion
and process parameter. At the same time, crystal shape is very
hard to describe using established analysis methods. The 3D
images obtained by μCT, however, contain full shape
information. The method described by Kovacěvic ́ et al.23 was
used to fit geometric models of crystals to μCT data with some
adjustments as described in the Materials and Methods section.
These geometric models are herein used for a detailed shape
analysis.
Six exemplary crystals obtained from the proposed μCT

method are shown in Figure 10. The left column shows the raw
3D images as obtained by μCT, the middle column shows the
corresponding geometric crystal models that were fitted to the
3D images, and the right column shows a combination of both.
The number of crystals per sample and the corresponding

number of successful fits to single crystals and agglomerates are

summarized in Table 1. About 85% of all crystals of each
sample were successfully fitted with the exception of the seed

crystals where only 3% of the fits were successful (34 crystals).
The low success rate for the seed crystals is caused by the
highly nonideal, nonfacetted shape of these crystals. A larger
part of the seed material showed signs of abrasion and
breakage. Although in many cases, faces were identified and
potential fits were found, the quality constraints were not met
(Figure 10F). Out of the successful fits of the other samples,
about 85% were detected as single crystals (Figure 10A−D)
and 15% were agglomerates of two primary crystals (Figure
10E). Less than 1% of the particles were agglomerates that had
more than two primary crystals. It is interesting to see that
these percentages remained constant throughout the experi-
ment. This suggests that formation of agglomerates only
occurred before 30 min.
We have discussed before21,30 that nonidealities can be

introduced by agglomerates. The analysis of the agglomerates
corroborates our previous results23 with higher statistical
significance and is shown in Appendix IV. Moreover, the shape
of single crystals may deviate from an ideal shape. It is quite
common to assume ideal crystal shapes for modeling and other
calculations. In the case of PA, an octahedral shape is often
assumed (Figure 10A, here forth considered as the ideal
shape). When described by an H-representation, all entries in h
would then be the same. In the following, we study the shape
of single crystals and ignore agglomerates.
To evaluate how effectively the crystals of our crystallization

process are represented by this idealized shape (i.e., perfect
octahedron), the aspect ratio Φn within the h-vector of each
individual crystal was calculated (section 2.6, Φn = h/∥h∥max).
In an ideal octahedron, all entries in Φn would be 1. Nonideal
crystals would have some entries in Φn that are smaller than 1.
The number density distributions of all entries of Φn are
shown in Figure 11. It can be seen that there are lots of
nonideal faces and that the faces become more ideal over time
(distribution shifts toward Φn of 1).
2D examples of an ideal and nonideal shape are shown in

Figure 7. This figure also illustrates that because the center of a
crystal is used as the origin of A, opposing faces have the same
entries in h and Φn. In the geometric models of real measured
crystals, there may be some opposing faces with different face
distances due to inaccuracies in the μCT measurements and
fitting of the models. We define four different types of 3D
shapes for PA (Figure 12):

1. an ideal octahedron in which all entries in Φn are close
to 1; for example: Figure 10A withΦn = (0.92, 1, 1, 0.99,
0.97, 0.97, 0.97, 0.94),1

2. a flattened shape in which six entries in Φn are close to
1; for example: Figure 10B with Φn = (0.57, 0.92, 1,
0.89, 0.85, 0.95, 0.88, 0.58),

Figure 10. Examples of crystals that were analyzed. The left column
shows the raw 3D images as obtained by μCT, the middle column
shows a geometric crystal model that was fitted, and the right column
shows a combination of both. (A) A well-fitted single crystal that has
an almost ideal octahedral shape, (B) a well-fitted single crystal that
has a flattened shape, (C) a well-fitted crystal with an elongated shape,
(D) a well-fitted crystal with irregular shape, (E) a well-fitted
agglomerate, and (F) a seed crystal that shows signs of breakage and
abrasion, and the fit was classified as a bad fit.

Table 1. Summary of the Number of Crystals Analyzed by
μCT per Sample

sample time/min 0 30 60 90 120 150

number of crystals 1296 1696 2593 1300 1866 2758
number of fitted
single crystals

34a 1272 1861 970 1379 2028

number of fitted
agglomerates

3a 240 309 164 237 297

aLow number of successful fits is due to nonideal shapes.
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3. an elongated shape in which four entries in Φn are close
to 1; for example: Figure 10C with Φn = (0.67, 0.97, 1,
0.58, 0.57, 0.96, 0.93, 0.69),

4. and an irregular shape in which only two entries in Φn
are close to 1; for example: Figure 10D with Φn = (0.60,
1, 0.87, 0.89, 0.75, 0.74, 0.82, 0.67).

In the context of this work, 0.85 was chosen as the threshold
to define what is considered “close to 1”. The threshold was
applied to the mean face distance of two opposing faces. The
four types of shapes are illustrated in Figure 12.
The fractions of crystals of different shapes in the samples

are shown in Figure 13 as black lines. Note that the number of
successful fits in the seed population was too small for this
shape analysis. Therefore, only data from 30 min and later is
shown in Figure 13. Error bars result from a similar bootstrap
approach as explained in Section 2.3 and indicate 95%
confidence. Details are explained in Appendix V. It can be
seen that at 30 min, the fraction of elongated and irregular
crystals is 33 and 28%, respectively. In addition, 17% of the
crystals are ideal octahedrons and 22% are flattened. As the

experiment proceeds, the crystals become less elongated and
less irregular but more ideal and flattened. While particle shape
change is usually attributed to face-dependent growth rates, the
observed results here can be explained by face-independent
crystal growth: as growth proceeds, the absolute difference in
face distances remains constant. However, the relative
difference decreases because the face distances increase. This
relative difference is expressed in Φn. Hence, as growth
proceeds, face distances become more ideal. In an irregular
crystal, three pairs of face distances are nonideal. If such a
crystal grows, the two longest nonideal face distances become
ideal; the crystal is then classified as an elongated crystal. If this
crystal grows even further, again, its two longest nonideal face
distances become ideal. Thus, the crystal’s shape is classified as
flattened. This continues until all crystals have an ideal shape
or growth stops. The model shown below provides strong
indication that this mechanism based on face-independent
growth is the cause of the observed change of shape toward
ideal crystals. After 120 min, only little growth occurs.
Accordingly, little change in the shapes is observed. An
animation of this growth behavior is provided in the
Supporting Information.
To assess this growth behavior, the growth of the crystals

starting from the 30 min sample is modeled (Figure 13 orange
lines, according to Section 2.7). This is done by increasing the
h-vectors of the 30 min sample by time-variant face
displacements Δhi until the corresponding volume distribution
resembles that of a sample at a later time point. Details on the
numerical procedure are given in Section 2.7. The H-
representations of the 30 min sample were grown by Δhi ∈
{40.4, 55.7, 72.0, 76.8} μm to, respectively, reach the volume
distributions at ti ∈ {60, 90, 120, 150} min. For most times,
the results of the model lie within the error bars. This indicates

Figure 11. Normalized number density distribution of the aspect
ratios in single crystals. Note that due to the nonideal shape of the
seed material (0 min), only 34 crystals (corresponding to 272 entries
in Φn) were successfully fitted. This is opposed to at least 970
successful fits (7760 entries in Φn) for the other samples. Therefore,
the statistical relevance of the distribution of the seed material is much
lower.

Figure 12. Four different types of shapes that were observed in the
data set. In the nonideal shapes, all non-1 entries in Φn were chosen
to be 0.5 for illustration. Examples of real crystals of such shapes are
shown in Figure 10.

Figure 13. Fraction of crystals of different shapes over time. Error
bars indicate 95% confidence.
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that the observed shape-shifting process is due to face-
independent crystal growth. This discards an alternative
explanation where the face-dependent growth could govern
shape-shifting based on, e.g., different surface energies
originating from mechanical damage like abrasion of the
different faces.
Ideal crystal shapes may be preferable during production

(e.g., for easier solid−liquid separation). Using the same
model, it can be estimated as to how much the crystals of the
30 min sample would need to grow until most crystals have
reached ideal shapes. To do this, the H-representations of the
30 min sample are grown until 90% of its crystals have ideal
shapes. The results of this simulation are shown in Figure 14,

which shows the fractions of crystals over face displacement
and the corresponding relative increase in volume. To produce
a population of 90% ideal crystals, the crystals need to grow by
0.8 mm. This corresponds to an increase in volume by a factor
of roughly 120. This illustrates that on the one hand, ideal
crystal growth leads to more ideal shapes. However, on the
other hand, shape-shifting requires the crystals to grow to a
high manifold of their volume. From a process point of view,
nonideal shapes of very small crystals (e.g., nuclei) can become
ideal through ideal crystal growth. Larger seed crystals with
nonideal shapes or crystals resulting from breakage or
agglomeration events hardly assume a fully ideal shape.
The disadvantage of the μCT method is that it can only be

used as an offline technique; hence, sampling is a crucial and
complicated step. However, sampling is also complicated for
any other noninline technique. Currently, the greatest
disadvantage of μCT measurements is the highly work-
intensive sample preparation. As described in the Materials
and Methods section, each of the 11 000 crystals was
individually sorted into a measurement scaffold. Along with
the sorting problem comes the challenge that the particles need
a certain size to be handled by tweezers. Here, the minimum
particle size investigated was 200 μm. All smaller particles had
to be discarded. Great care must be taken to avoid damaging
the particles in the sorting process. Further, the 3D image
analysis tool described by Kovacěvic ́ et al.23 is highly hardware-
demanding. Only fitting of the crystals analyzed in the context
of this work took roughly 1 week on a standard desktop

computer (6 CPU kernels working at 3.2 GHz, 16 GB
memory). The segmentation of individual crystals (see Section
2.4) took overall about 1 day on a server-computer (6 CPU
kernels working at 3.7 GHz each, 128 GB memory).
On the other hand, μCT provides the potential of a very

detailed analysis of convex and concave particles. This
potential was only illustrated here by the application to a
specific crystallization process. The viability of particle
population analysis by μCT in general was demonstrated by
the visualization of 11 000 individual particles and a
subsequent 3D shape analysis.

4. CONCLUSIONS
A method for 3D particle population analysis using μCT was
proposed and applied to samples of a crystallization process.
The samples were retrieved at several time points during an
exemplary seeded cooling crystallization of PA. The sampling
was optimized to yield samples that were able to represent
particle populations as measured by DIA.
For the μCT analysis, sampled crystals were sorted into

scaffolds that ensured that the crystals were not in close
contact with each other but at the same time allowed up to 786
crystals to be included in each 3D image at a voxel spacing of 8
μm. Overall, 11 000 crystals were visualized and subsequently
analyzed. The binarization of the images was done in a way
that the mass of the crystals was conserved. It was discussed
that the method yielded accurate results of the volume and the
microscopic surface area without the need for geometric crystal
models.
Furthermore, 3D image analysis allowed a more detailed

analysis of the crystals. The focus of our present work was the
analysis of single crystals. Single crystals were classified into
four different shape categories according to the aspect ratios of
their faces that were calculated from their geometric models. It
became apparent that many crystals had nonideal shapes. It
was further interesting to see that the shapes of the crystals
somehow approached an ideal shape over time. Such changes
in shape are often attributed to face-dependent growth. To
evaluate this behavior, the growth of the crystals was modeled.
The simulation showed that indeed face-independent crystal
growth led to the observed shape-shifting effect for the crystals
in our data set. Through growth, relative differences in face
distances become smaller and hence the crystals in our data set
appeared more ideal. The growth model also demonstrated
that fully ideal shapes can only be expected for very small
crystals (e.g., nuclei). The larger crystals of our data set would
need to grow to a manifold of their volume to become ideal.
In summary, μCT is a viable method for particle population

analysis. Together with appropriate image analysis techniques,
it enables detailed shape analysis of crystals. Here, the effect of
ideal crystal growth on crystal shape was studied. In future
work, we aim to further apply this technique to gain deeper
insight into the morphological changes during crystallization
processes.
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*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.cgd.0c01644.

3D nature of our μCT measurements (MPG)
Illustrates how crystals approach an ideal shape through
face-independent growth; left panel shows a crystal and

Figure 14. Modeled growth of the 30 min sample. Thin black lines
show the fraction of crystals of different shapes with respect to the
absolute face displacement Δh. The thick blue line indicates the
resulting relative increase in volume. The region between 0 and
0.08 mm is the region that is displayed in Figure 13 and relevant for
the herein analyzed process.
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the corresponding vector h containing the face
distances; face-independent growth is applied to this
vector; only four entries of h are shown because
opposing faces have the same face distances; and right
panel contains a normalized version (according to eq 3)
of the same crystal and illustrates the evolution of shape
through face-independent growth (MPG)
Appendix I explains how the rotational speed of the
stirrer was chosen; Appendix II explains the binarization
method, including eq S1; Appendix III compares the
volume and surface area as obtained from DIA and μCT;
Appendix IV deals with the disorientation angles in
agglomerates; Appendix V explains how the error bars of
Figure 13 are estimated; and Appendix VI contains
additional figures (PDF)
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■ GLOSSARY
A (−) matrix with face normals for H-

representation
A (mm2) surface area
dEQPC (mm) diameter of a circle with equal

projected area
h, hi (−) histogram vector of an image, its

elements

h, hi (mm) vector of the face distances of a crystal
(at a time ti)

H (−) H-representation of a crystal
m (kg) mass
q0,exp,i, q0,mod,i (mm−3) discrete vector of experimentally de-

termined (index exp) and modeled
(index mod) normalized number dis-
tribution with respect to volume at
time point ti

res (μm/voxel) resolution of the μCT measurements
t (min) vector of sampling times
ti (min) sampling points
T (−) threshold for binarization
T (K) temperature in Kelvin
V (mm3) volume
w, wsat (g/g) load, saturation load
Δhi (μm) change of h within a time ti
Δx (μm) class size
ρ (g/cm3) density of potash alum (ρ = 1.75 g/

cm3)
ϑ (°C) temperature
Φn (mm) shape factor according to eq 3

■ ABBREVIATIONS

1D, one-dimensional; 2D, two-dimensional; 3D, three-dimen-
sional; CAD, computer-aided design; DIA, dynamic image
analysis; FBRM, focused beam reflectance measurements;
MAVI, Modular Algorithms for Volume Images; PA, potash
alum; PVM, particle vision and measurement; μCT, micro-
computed tomography

■ ADDITIONAL NOTE
1Entries in Φn correspond to opposing faces in the following
scheme: (a b c d d c b a).
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5.2 Paper III: Growth of abraded crystals tracked in three 
dimensions (Schiele et al. 2021b) 

Summary 
In the previously presented study (Schiele et al. 2021a), asymmetric crystals were 
observed but their existence could not be explained. The hypothesis was that their 
asymmetry was caused by damaged and asymmetric seed material. More generally, 
there is little literature on growth of damaged crystals even though e.g. abrasion is 
abundant in most crystallization processes. The goal of this study was, therefore, to 
better understand the growth of damaged crystals by studying growth of abraded potash 
alum crystals. 
In a first step, a new 3D imaging method was established. Potash alum crystals were 
adhered to racks for growth and μCT imaging. After an initial 3D image was obtained 
the crystals were placed in supersaturated, agitated solution for growth. Agitation was 
fast enough to prevent diffusion limitation. Subsequently, the crystals were imaged 
again. Imaging/growth-cycles were repeated until the crystals appeared fully facetted. 
This yielded a series of 3D images of crystals during different states of their growth. 
As a next step, a new image analysis method was developed that was used to determine 
the displacement of surface through growth in all directions. For 1200 directions 
corresponding growth rates were averaged and described using spherical harmonics 
functions. This analysis showed that the directions corresponding to the known crystal 
faces of potash alum grew at the slowest rates. In consequence, fast growing surface 
disappeared in favor of the known faces. The measurements were used to parametrize 
a growth model that is able to track the size and shape evolution of single abraded 
potash alum crystals through growth. The model was applied to seed crystals of the 
previous study (Schiele et al. 2021a) and simulations confirmed that asymmetric seeds 
grow to become facetted but remain asymmetric. Initially symmetric shapes remained 
symmetric. In conclusion, non-ideal crystal shape was shown to be an important process 
variable for growth-abrasion interaction and can be accurately tracked using μCT 
imaging. 
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S. Schiele came up with the idea for this work and developed the experimental and 
image analysis methods, conducted experiments, the evaluation of all experiments, the 
modelling, and the simulations. R. Hupfer helped developing the experimental and 
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ABSTRACT: The interaction between crystal growth and
abrasion is essential during crystallization. Although each of these
phenomena has been independently studied in the literature in
detail, their interaction is not well understood. Here, we present a
method to track the growth of abraded potash alum crystals in
three dimensions. The method is based on micro-computed
tomography. This technique distinguishes between different
growth domains in three dimensions and is used to track the
growth of crystal faces and abraded regions. We observed how
abraded regions grew faster than crystal faces. Therefore, growth
leads to ideally facetted crystals. Further, growth rates in all
directions were derived and used to parametrize a growth model.
The model is able to describe the size and shape evolution of
abraded potash alum crystals in three dimensions.

1. INTRODUCTION

Crystal size has long been known as an important variable in
crystallization processes. More recently, the shape of crystals has
attracted increasing attention. The shape of crystals is not only
important to yield certain product features,1,2 but it is also an
important process parameter.3−7 Crystal shape engineer-
ing4,8−10 has emerged from the need to control the shape of
crystals. Crystal shape is often described using a geometric
characteristic, which is often a shape factor, such as aspect
ratio.11−13 There are also approaches in which another
geometric measure, such as surface area, is used as a proxy for
shape.14 However, complex crystal shapes are usually not well
described by such representations.
In the past decade, researchers have developed several

methods to describe shapes of facetted crystals. For example,
polygonal shape models were set up and parametrized using
two-dimensional (2D),15−17 stereoscopic,18,19 or three-dimen-
sional (3D)20,21 imaging techniques. A common representation
of such shape models is the H-representation.22 Therein, each
face of a crystal is described by a normal vector and a distance to
a reference point. The reference point is often chosen as the
center of mass of a crystal. It is also convenient to use H-
representations to model crystallization processes3,4,23−27

because growth occurs in the normal direction of the faces.
Therefore, the growth of crystals can be described through an
increase in the face distances that are used in H-representations.
Such geometric models are well suited to describe ideally
facetted crystals.
However, not only growth occurs during crystallization

processes. Crystallizers are often agitated to suspend crystals
and to equalize concentration and temperature gradients.

Agitation imposes mechanical stress on crystals, leading to
attrition, abrasion, and breakage, which can result in nonideal
crystal shapes.6,12,13 We use the term attrition for damage events
that are caused by the impact of crystals with reactor
components, such as the stirrer. In contrast to breakage, the
size of a crystal is largely preserved during attrition. Abrasion is
similar to attrition. However, it is caused by crystal−crystal
contacts.
Attrition,28−30 abrasion,29−31 and breakage12,13 have been

quite well studied individually. In most studies, damage events
are only considered to reduce size. Additionally, it is often
assumed that damaged crystals grow at the same rates as
undamaged ones.30,31 However, Ulrich et al. show that crystal
fragments and abraded crystals grow at rates up to 90% higher
than undamaged crystals if their growth is integration limited.32

As the growth of crystal fragments and abraded crystals
proceeds, their growth rates approach those of undamaged
crystals. In these studies, crystal growth was described in terms
of mass change, and face-specific growth was not considered.
Briesen modeled the impact of crystal shape on attrition using
population balance modeling.11 In the model, damaged crystals
were assumed to be cubes with cutoff corners. The growth of the
resulting additional faces was modeled so that the shape was not
affected by growth: it was only affected by attrition. Additionally,
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Briesen did not use experimentally determined rates. More
recently, Ma and Roberts26 studied the effect of breakage on
crystal shape and growth using a similar concept. They assumed
that crystals would always break in the same direction. This
assumption yielded the same basic morphology that was
expressed as an additional face that would not be present in
an undamaged crystal. The growth rate was assumed to be 2
times higher than that of an undamaged face. Ma and Roberts26

emphasize that such a growth rate should be experimentally
determined for their model to yield quantitative results. It is
unknown whether a broken region would grow by face
displacement.
As an alternative approach, phase-field modeling has been

used to estimate the morphology of dissolving33 or growing34

3D crystalline systems in silico. The underlying concept is to
model energetic or kinetic anisotropies of interfaces using high-
order Taylor polynomials.35 Some parameters of these
polynomials can be set to zero based on crystal symmetry,
while values for others are derived from thermodynamic and
geometric considerations. Notably, all appearing faces need to
be known. Additionally, depending on what is modeled, the
relative difference of the face-specific growth or dissolution rates
are used as inputs. In summary, phase-field models require
experimental data as inputs.
In a recent study,27 we showed that asymmetric shapes of

potash alum (PA) occurred during seeded batch cooling
crystallization. This was surprising as PA crystals have a cubic
unit cell, and the observed [111] faces should all grow at the
same rates, leading to only symmetrical, octahedral crystals.
Instead, we observed many flattened, elongated, and irregularly
shaped crystals. We hypothesized that the nonideal shapes were
introduced through damaged seed material that did not grow
according to established growth laws.
In the present study, we aim to gain deeper insight into the

growth of abraded PA crystals using micro-computed
tomography (μCT) to track the growth of individual, abraded
crystals. Volume images of the crystals are used to determine
growth rates of abraded regions. The growth rates are used to
parametrize a crystal growth model. The model is employed to
simulate growth of abraded crystals under consideration of
crystal size and shape. Modeled crystals are compared to
experimentally crystallized ones.

2. MATERIALS AND METHODS
All concentrations are expressed as loads with the unit gram of PA
hydrate per gram water.

2.1. Materials. Ethanol (≥99.8%), PA (≥99% Ph. Eur.), and
cellulose Rotilabo-round filters type 113A were purchased from Carl
Roth GmbH +Co. KG (Germany). Ethanol was diluted with deionized
water to obtain 50% ethanol solutions. Acetone (≥99.5% Ph. Eur.) was
purchased from Sigma-Aldrich Chemie GmbH (Germany).

2.2. Reactor Setup. An OptiMax 1001 reactor (Mettler Toledo
Inc.) was used for all experiments. Temperature was controlled to±0.1
K. The reactor was equipped with a stirrer, with a diameter of 4.5 cm
and four blades, which were pitched down. A focused beam reflectance
method (FBRM) probe (Mettler Toledo Inc.) and a baffle were
installed during the production of abraded crystals.

2.3. Production of Abraded Crystals. Abraded crystals were
produced by sieving the bought PA (500−1000 μm). Then, 100 g of
this material was suspended in 373 g of saturated PA solution at 40 °C.
The saturation concentration was published previously.36 Then, the
stirrer was set to n = 1000 rpm, and the solution was cooled to 20 °C
within 2 h using a linear temperature profile. Then, a temperature of 20
°C and stirring at 1000 rpm was held for another 30 min. Subsequently,
the suspension was filtered, washed with 50% ethanol solution and
acetone, which are both antisolvents to PA, and finally dried using
natural evaporation of the remaining solvents. Then, the crystals were
sieved (500−1000 μm) to remove the fines. This procedure produced
104 g of abraded crystals.

The Reynolds number of the stirrer was estimated to be

= ≈ρ
η

· ·Re 10n d 42
using the density of a PA solution at 20°C (ρ =

1046 kg/m3), d = 4.5× 10−2 m, =n 16.7
s
1 , and the dynamic viscosity of

water at 20 °C (η = 10−3 Pa s). The density of the PA solution was
measured by producing a saturated PA solution at 20 °C and measuring
its volume using a graduated cylinder. The same density can be
calculated by neglecting excess volume. These conditions introduce
high mechanical stress to the suspension. Stress is considered the
primary cause of abrasion. Attrition may have also happened. However,
limited damage to the crystals was observed in preliminary experiments
at a lower solid concentration (results not shown), which indicates that
abrasion was the dominating phenomenon here.

2.4. Micro-Computed Tomography and Crystal Growth.
Three-dimensional images were acquired using a custom-built μCT
system (XCT-1600HR; Matrix Technology AG, Germany). For each
image, 1600 radiographic 2D projections were obtained. From these
projections, 3D images were constructed using custom software
(Matrix Technology, Germany), which is based on CERA software
(Siemens AG, Germany). Images were acquired so that the voxel
spacing was 8 μm. The volume of one 3D image was 16 × 16 × 10 mm3

(2000 × 2000 × 1225 voxel3), and the imaging procedure took 25 min
per 3D image.

Two growth experiments were conducted: in the first run, 17 single
abraded crystals were adhered to the tips of growth racks using super
glue with a gel-like consistency (UHU Sekundenkleber Gel, UHU
GmbH & Co. KG, Germany), and in the second run, 18 crystals were
used. The relative size of crystals compared to the rack structure can be
seen in Figure 1A,B. A sketch of a growth rack is shown in the

Figure 1. (A) Image of growth rack (blue) with adhered crystals and micro-computed tomography (μCT) sample holder. (B) Rendered three-
dimensional (3D) μCT image of a rack with crystals after 17 min of growth with the background removed. (C) Brightness histogram of a raw 3D μCT
image. The left dashed linemarks the peak from the rack structure, the center dashed red linemarks the binarization threshold that is used to extract the
crystals, and the right dashed line marks the peak from the crystals.
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Supporting Information (Sup. 6), and an image of a rack with crystals is
shown in Figure 1A. The crystals on the rack were visualized using μCT
before growth. Then, the whole rack was submerged in a supersaturated
PA solution (300 g water, 35.166 g PA,Δw = 2 mg/g, σ = 0.0174) at 20
°C close to the stirrer. The solution was stirred at 150 rpm, with a tip
velocity of 0.35 m/s. Under these conditions, no diffusion limitation is
expected for crystal growth below 11 μm/min.37 The highest growth
rates measured in this study were ∼5 μm/min (cf. Figure 12). After 1
min, the rack was removed from the reactor, washed with 50% ethanol,
and dried by applying pressurized air. Subsequently, another μCT
image was obtained. Such growth/imaging cycles were repeated until
the crystals appeared to be fully facetted in the μCT images. The
solution temperature in the reactor was ramped up to 25 °C, while μCT
images were acquired to prevent nucleation. The saturation temper-
ature at the concentration used was 20.7 °C. Supersaturation was
assumed to be constant during the growth phases. This assumption was
based on the 17 crystals adhering to the racks in the first run having an
initial mass of 9.2 mg and a mass of 13.0 mg after growth. Volume was
determined using μCT and a density of PA ρPA = 1750 g/cm

3 was used.
This corresponds to 3.8 mg of material that was crystallized and is
approximately what can be expected as the accuracy of the scale used for
weighing the reactor content with a resolution of e = 1mg. Additionally,
the mass of PA solved was 600 mg above the solubility before growth
started. Hence, the absolute supersaturation decreased by 0.63%, which
corroborates our assumption of constant supersaturation. The washing
procedure showed no significant effect on the volume of the crystals,
which was validated by repeating the cycle of washing a sample and
μCT imaging without growth 3 times and comparing the volumes of the
crystals in the images.
2.5. Basic Image Analysis. The brightness histograms of the raw

μCT images contained three peaks (Figure 1C): one peak contained
dark gray and black voxels (background), another peak contained the
rack structure in dark gray (left dashed line in Figure 1C), and the last
peak contained the crystals in light gray (right dashed line in Figure
1C). Images of individual crystals were extracted from the raw μCT
images by finding the individual peaks (Matlab’s findpeaks function). A
binarization threshold was then set in-between the second and third
peaks (center dashed line in Figure 1C), yielding an image that only
contained the crystals. An image that contained the rack structure was
generated by binarization between the first and second peaks using
Otsu’s method (Matlab’s imbinarize function).
The aim of the following image analysis steps is to overlay images of

each crystal at its different states of growth to calculate the displacement
of its surface through growth. To achieve this, a correction of the
position and orientation of the crystals in each μCT image is necessary
because it is impossible to reposition the sample holder at the exact
same position for different μCT measurements. For finding the
orientation and position of a growth rack in each μCT image, two
reference points in the images were used. One point was a dent in the
center pin of the rack (cf. Sup. 6), which provided the location of the
center of the rack. The second reference point was themissing pin of the
rack (cf. Sup. 6). Both points together provide a rotation around the
rack’s vertical axis. The μCT images were manually divided into images
containing one crystal each, which were saved together with the center
point of the rack and its rotation around the vertical axis. Using this
information, the images of crystals at different time points could be
overlaid. This was achieved by first converting each voxel-based image
of the crystals to a triangulated surface structure (Matlab’s isosurface
function). This mesh was smoothed by applying the function
smoothpatch38,39 three times (parameter itt = 3) to smoothen steps
in the surface caused by discretization into voxels by μCT. Previously,
we reported that this did not affect the volume or shape of similar
crystals.27 For the overlaying procedure, the rotation and center point
of the last μCT image served as reference. Hence, each triangulated
surface of the crystals was moved and rotated according to the
difference of its corresponding center point and rotation to those of the
last measurement. With this procedure, the crystals overlaid quite well.
However, the overlay was still not perfect. This was likely because of
small deformations of the racks over the course of the experiments.

Additional errors were introduced because the center point and
rotation of the racks could not be perfectly determined.

To correct for the small overlaying errors, the positions of the
crystals’ surfaces were numerically optimized to overlay better. The
procedure explained below is based on the idea that due to the cubic
unit cell of PA crystals, growth rates in all [111] directions should be
equal. To satisfy this condition and hence reach optimal overlay, a
correction vector was calculated for each crystal at each time point. The
correction vector moves each crystal surface such that the standard
deviation of displacements of its surface in all eight [111] directions
toward its final state becomes minimal.

To apply this concept, we determined the directions of the [111]
faces in each last measurement, which contains a facetted shape of each
crystal, using our previously published face detection algorithm20 and
the geometric crystal model that is shown in Figure 2. The algorithm
yields

• a rotation matrix that rotates the normals of the crystal model
such that it fits to an image of a crystal

• and distances of the crystal’s faces to its center of mass. The
procedure only assumes symmetry for opposing faces because
we have observed27 that PA crystals do not necessarily have an
octahedral shape.

Notably, this method is only able to determine the direction of face
normals of facetted crystals. However, because the crystals were glued
to the rack, their orientation with respect to the rack did not change
during the experiment. Therefore, if the orientation of the crystal is
known at one point in time during the experiment, then its orientation is
also known at all other times. It was, therefore, sufficient to find the
rotation matrix for the faceted version of each crystal (last point in
time).

In a next step, we calculated the distances between the surfaces of a
crystal at each of its states of growth to its final state in [111] directions
according to Section 2.6. We then numerically optimized a correction
vector for each state of growth of each crystal toward the corresponding
final state such that the standard deviation of the distances in [111]
directions became minimal at each point in time. The numerical
optimization was done using the interior point algorithm through
Matlab’s fmincon function. This yielded optimal overlap. We chose the
[111] faces for optimization because they were the largest faces of the
facetted crystals and they should all grow at the same rates because of
the cubic unit cell of PA. This optimization step resulted in corrections
between zero and three voxel lengths, with the mean length of the
correction vectors of all optimizations being about 0.6 voxel lengths. As
a rule of thumb, the resolution of the μCT is two voxel lengths. In
conclusion, the error of the overlaying procedure is less than the
measurement error of the μCT.

2.6. Calculation of Three-Dimensional Growth Rates. Growth
vectors were calculated from these overlaid meshes as displacements of
the crystal surface between time points (Figure 3). As a first step, the
regions where the crystals were glued to the racks were removed from

Figure 2.Geometric crystal model of potash alum with [111, 110, 100]
faces according to Ma et al.15 Opposing faces are assumed to be
symmetrical.
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themeshes. This was done bymanually determining three points within
the glued region of the last measurement of each crystal. From these
points, a plane was constructed. Then, two meshes were considered: a
smaller mesh from an earlier time point (ts and dark gray in Figure 3)
and a larger one from a later time point (tl > ts and light gray in Figure
3). The overlaying procedure (Section 2.5) ensured that the smaller
mesh was inside the larger one. Then, the plane was displaced in its
normal direction toward the crystal center by 10 voxel lengths (80 μm).
All points of the inner mesh that were on the opposite side of the plane
with respect to the crystal center were deleted from the mesh. This
ensured that the glued areas, where no growth could occur, would not
affect the measurements.
It is now described how growth vectors were calculated from these

cut meshes. For better visualization, the scheme is represented only in
2D in Figure 3. The conceptual extension to 3D is straightforward. For
each triangulation element of the small mesh, lines through their center
and in the normal direction were constructed (dashed blue lines in
Figure 3) and intersected with the outer surface. The results provided
direction-dependent distances (red arrows in Figure 3). Even though
the concept is quite simple, the calculations become numerically
expensive for the ∼105 surface elements per crystal. The algorithm is
explained in the Supporting Information. We applied the inverse
rotation obtained by the fitting algorithm (Section 2.5) such that all
crystals are orientated according to the shape model shown in Figure 2.
Like this, differently orientated crystals can be compared. We also
applied symmetry conditions corresponding to the cubic unit cell of PA.
Details for this are explained in the Supporting Information.
In this article, we present the distance vectors in spherical

coordinates with the polar angle 0 ≤ θ < π and azimuthal angle 0 ≤
φ < 2π. The length of the displacements was divided by the time of
growthΔt = tl− ts to gain displacement ratesGmeasured averaged over the
sampling time interval. An example is shown in Figure 4.
It is feasible to describe such data using a function to make it useful

for modeling purposes. Therefore, spherical harmonics (SH) functions
were fitted to the discretized displacement rates. The least-squares
fitting method of Zotkin et al.40 was used. For this, it is assumed that the
displacements can be described as a function of θ and φ
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where o is a parameter that determines the number (n = o2 + 2o + 1) of
SH Yn

m (Θ,φ), and corresponding weights Cn
m. Pn

|m|(x) are Legendre
polynomials. We chose o = 20, and hence n = 441. The rationale behind
this choice is explained in the Supporting Information. To determine
the weights, one may set up eq 1 for each measured displacement rate.
In each equation, Θ, φ, and Ynm are constants. This yields a linear set of
equations that can be solved for the weights using the least-squares
method40 (Matlab’s lsqr function). For assessment of the quality of the
fits to this linear model, we calculated the coefficient of determination
R2. An exemplary graphical representation of the fitted function to the
data in Figure 4 is shown in Figure 5.

2.7. Crystal GrowthModel.Crystal growth was modeled using H-
representations according to Reinhold et al.23 In 3D, H-representations
describe convex bodies through a set of confining planes. Each plane is
defined by a normal ai (face normal) and a corresponding distance to a
reference point hi (face distance). The normals ai are summarized in a
matrix A, and the distances hi are summarized in a vector h. This
representation is convenient for crystal growth models because growth
can be modeled by increasing the face distances. Notably,A contains no
size information. Therefore, it remains unchanged during simulations.

We defined matrix A using the HEALPix algorithm41 using a grid
resolution of 10 to model the growth of crystals. This resulted in 1200
face normals. The actual shape of a crystal is defined by the vector h. For
a sphere with radius r, h = r·(1 1 1...)T can be used. Other shapes are
little more complex and are explained below. The first step to produce
an initial H-representation (hinit andA) is to define a convex body that is
to be investigated. This can either be done through another H-
representation or a set of vertices (V-representation). Both
representations can be converted into each other using the software
package cddlib.42 As a 2D example, Figure 6 considers a square with the
vertices (1 1)T, (−1 1)T, (1 −1)T, and (−1 −1)T that can be
summarized in a matrix V.

Figure 3. Two-dimensional scheme of the distance calculation. Orange
dots indicate vertices of the inner mesh (dark gray, ts) and the outer
mesh (light gray, tl). Red arrows indicate the distance vectors that point
in the normal direction of the inner mesh’s border lines, representing
triangles in three dimensions.

Figure 4. Discretized displacement rates of crystal 1 of experiment 1
between 0 and 4 min with applied symmetry conditions.

Figure 5. Graphical representation of eq 1 as fitted to the surface
displacement rates of crystal 1 of experiment 1 between 0 and 4 min. R2

= 0.91.

Crystal Growth & Design pubs.acs.org/crystal Article

https://doi.org/10.1021/acs.cgd.1c00849
Cryst. Growth Des. 2021, 21, 6373−6384

6376



= − −
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V
1 1 1 1
1 1 1 1 (3)

This corresponds to an H-representation with the normals (1 0)T,
(−1 0)T, (0 1)T, and (0 −1)T (blue arrows in Figure 6) and a
corresponding face distance vector (1 1 1 1)T. This is the minimum
number of faces needed to describe this shape. However, the shape can
also be described using additional normal vectors ai (e.g., the orange
ones in Figure 6). These vectors represent the normals defined by
HEALPix in matrix A. The corresponding face distances hinit are then
chosen so that just no additional vertex is generated. This corresponds
to the scalar product hi,init = ∥aiT◦V∥max. Growth can now easily be
modeled by increasing the entries in h. The rates may vary for each hi
and can be chosen according to a function (i.e., eq 1) of the direction of
the normals in A. As an example, in Figure 6, the growth of the normals
in the direction of the axes (blue vectors) is considered to be much
faster than that of the two additional faces (orange vectors) to yield the
dotted shape. This illustrates how direction-dependent growth leads to
the appearance of slowly growing faces.23,25,43

We described initial shapes that resulted from μCT measurements
using 1200 HEALPix face normals to model their growth. For these
shapes, two challenges arose:

(1) The imaged crystals were not perfectly convex. However, H-
representations can only describe convex bodies. A convex hull
was calculated (Matlab’s convhull function) for each μCT image
to overcome this issue. This yielded a V-representation from
which an initial shape was created.

(2) The glued regions did not grow in the experiments. This was
considered in the growth model by adding a face with the same
normal as the previously described glued face and setting its
growth rate to 0.

The herein described growth model was compared to a benchmark
model as described in Section 3.2. For the benchmark model, an
octahedron was defined by [111] faces. Its volume was scaled to the
volume of the initial μCT shape. Then, the glued plane was added to
account for no growth in this direction. In both models, growth was
considered by applying the growth rates of eq 1 to the initial face
distances hinit, except for the glued plane where G = 0.
In Section 3.3, the calculations were conducted dimensionless. For

this, an initial dimensionless H-representation (hinit* and A) was defined
such that it had the same volume as a sphere with radius r = 1

* = ·h hsinit init (4)

The scale factor s was found by numerically finding the zero point of
the function

π= · −→ hf s f s( ) ( )
4
3h v init (5)

where f h→v is a function that calculates the volume of a H-
representation.14 The bisection method with 10−3 ≤ s ≤ 10 (Matlab’s
fzero function) was employed to find the zero point. The direction-
dependent growth rate defined in eq 1 is normalized by

φ φΘ Θ* =G
G
G

( , )
( , )

111 (6)

where G111 is the growth rate in the [111] direction. Growth is then
modeled by

φΘ* = * + · · *h h Gt t( ) 0.5 ( , )init (7)

where Θ and φ are the polar and azimuthal angles of A expressed in
spherical coordinates. The dimensionless time factor t describes the
increase of a crystal’s size in the [111] direction. The factor 0.5 stems
from the fact that there are two opposing [111] faces that grow in
opposing directions. By applying the factor 0.5, t = 0.1 can be
interpreted as an increase in size in the [111] direction by 10% and
h*(t) describes the shape of a crystal and its size relative to the initial
size. After each time step, it is checked whether h* is valid. In this
context, valid means that each of its entries hi* leads to a confinement
(i.e., hi* < ∥aiToV*∥max). Otherwise, it is set to hi* = ∥aiToV*∥max. Details
are explained by Reinhold et al.23

2.8. ShapeMeasurement.Crystal shape is hard to describe using a
single measure. We used a measure that describes the fraction of ideal
surface α, and a 3D aspect ratio Φn. However, we do not claim a
complete description of shape using these simple measures. The shape
factors are merely used for better visualization and easier interpret-
ability. Notably, the H-representations and μCT images contain much
more shape information.

For each analyzed crystal, the surface area Si of each surface element
was calculated. In addition, each element was classified into “ideal” or
“not ideal” depending on the minimal angle of its normal vector to the
normals of the geometric crystal model (Figure 2). An angle tolerance
of 5° was applied to satisfy ideality. Eq 8 is then used to calculate α.

α =
∑

∑
S

S
i

i

,ideal

(8)

For a perfect crystal that is described well by a geometric model, α
approaches 1. Otherwise, 0 ≤ α < 1.

To further evaluate the shape of the PA crystals, we applied a 3D
aspect ratio Φn before.

27 The vector Φn describes the symmetry of a
potash alum crystal

Φ =
|| ||

h
hn

111

111 max (9)

Therein, h111 are the face distances in the eight [111] directions. For
a fully symmetric crystal,Φn is a vector of eight ones. Because we chose
the center of mass of each crystal as a reference point of the H-
representations, opposing faces have the same entries inΦn. Therefore,
asymmetric crystals may have up to six entries smaller than 1. For better
readability and to avoid redundancy, we only give the four unique
entries of Φn in this text.

3. RESULTS AND DISCUSSION
In this section, first, the growth rates that are obtained from the
μCT images are presented. Then, these rates are used to
parametrize the growth model. Modeled crystals are compared
to experimentally obtained crystals for validation. Finally, we
used the model to simulate the growth of nonideal crystals.

3.1. Growth Rates. In the following, we first describe the
results of our analysis for one exemplary crystal from the first

Figure 6. Two-dimensional scheme of the growth model. The black
square indicates an initial shape that is defined by the blue face normals.
Additional orange face normals can be defined, and face distances can
be calculated so that they do not affect the initial shape. The initial
shape is grown by increasing the face distances and leads to the dotted
outline.
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measurement series (denoted as crystal 1) and then combine the
results of all successful analyses of the first series. The images of
the second measurement series are used for validation only
(Section 3.2).
Figure 7A,C shows images of a particular crystal in its initial

state, and Figure 7B,D shows the same crystal after 17 min of

growth in its final state. Visual inspection of the μCT images
indicated that they assumed a facetted shape after 17 min
(Figure 7B; except the glued area on the bottom). A geometric
shape model was fitted to this faceted shape (Figure 8). This
gave the crystal’s orientation. Because the crystals were adhered
to the rack, their orientation did not change during the
experiment.

Overlaying images of crystals (Figure 9) also showed that
growth was slow. The displacement rates in [111] directions,
which were the slowest rates, were only around 2 μm/min
(Figure 12). This is below the resolution of the μCT
measurements at a voxel spacing of 8 μm. As a rule of thumb,
the resolution is twice the voxel spacing (i.e., 16 μm). Therefore,
Figure 9A illustrates that overlaying images in 1 min intervals
would not generate reasonable results. In many regions, the
surface of the later point in time (red in Figure 9) is within the
surface at an earlier time (blue in Figure 9). This would lead to

unphysical negative measured displacements. Consequently, the
growth of the crystals was evaluated in 4 min steps (Figure 9B):
between 0 min and 4 min, 1 min and 5 min, ..., 13 min and 17
min. This procedure leads to displacements of at least 8 μm (4
min × 2 μm/min) in each direction, resulting in an increase in
size of at least 16 μm. There were occasional overlapping
inaccuracies that resulted from measurement artifacts, such as
the two small regions on the top of Figure 9B. However, most of
the surface overlaid well.
From these overlaying surfaces, displacement rates in all

directions were calculated and fitted to SH functions (Section
2.6). An example of the resulting fit of eq 1 to the surface
displacement rates is shown in Figure 10 together with the

orientation of the face groups that were considered for the
geometric crystal model (Figure 2; that is, the [111, 110], and
[100] face groups). These faces lie within the minima of the
surface displacement rates. This can be seen as a first indication
that our method yields reasonable results because slowly
growing faces dominate the shape of crystals.23,25

Further, it is interesting that there are additional minima at
orientations that are often not assumed as crystal faces of
PA.15,23 The Bravais−Friedel−Donnay−Harker (BFDH)meth-
od45 is used to predict crystal morphologies based on the lattice
geometry. According to the BFDH method, the six most
dominant face groups of PA are [111], [100], [210], [211],
[110], and [221]. According to experimental studies,15,37,44,46

the shape of PA crystals is dominated by [111], [110], and [100]
face groups. Additionally, fast-growing faces are the [221],
[211], and [210] faces.44 Their locations with respect to the
measured growth rates are shown in Figure 11. The [211] face
group lies within minima of the growth rates, while the [221]
and [210] faces lie on saddle points or maxima of growth rates.

Figure 7. Images of crystal 1 before growth (0 min, A, C): (A) raw
micro-computed tomography (μCT) image and (C) smoothed and
glued region cut. The same crystals after 17 min growth (B, D): (B) raw
μCT image and (D) smoothed and glued region cut. The glued spots
are on the bottom of the μCT images. The bottom row (C, D) shows
the surfaces that are used for distance calculations.

Figure 8. Left: micro-computed tomography image of crystal 1 after 17
min of growth; center: geometric crystal model (Figure 2) fitted to the
crystal; right: combination of crystal image and fitted model.

Figure 9.Overlaying surfaces of crystal 1 after (A) 0 and 1 min growth
and (B) 0 and 4 min growth. The 0 min surface is displayed in opaque
blue, and the other surface (1 or 4 min, respectively) is displayed in
transparent red.

Figure 10. Average surface displacement rates of crystal 1 between 0
and 4 min. Markers indicate the orientation of the shape dominating
faces of the same crystal after 17 min of growth. R2 = 0.91.
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Therefore, the [221] and [210] faces should not be expected to
contribute to the shape of the crystals here. Only the [211] face
is observed in some final shapes. However, it was very small and,
therefore, not included in the geometric crystal model (Figure
2).
Rates obtained from different times and different crystals may

be combined with a single data set (see Appendix III and Sup. 4
in the Supporting Information for more details). A fit of the
combined data set to eq 1 is shown in Figure 12. The

corresponding 441 parameters Cn
m for eq 1 are provided in the

Supporting Information. A fit of the displacement rates of all
analyzed time points of crystal 1 to eq 1 is shown in Sup. 7.
A comparison of the growth rates obtained in this study with

those in the literature can be seen in the Supporting Information.
Here, we want to focus on the 3D nature of our data. Data in the
literature are only available for certain faces.
3.2. Validation.The fittedG(Θ,φ) (eq 1) that resulted from

the combined data set (Figure 12) provides the growth rate in
any direction. The rates can now be applied to varying initial
shapes using our growth model (Section 2.7). As first
performance test for the growth model, the growth of the initial
shape of the measured crystals of measurement series one is
simulated. As a validation, the model is applied to the crystals of
measurement series two. Notably, the data of series two was not
used to determine G(Θ,φ).
Themodeled volumes are compared to themeasured volumes

in Figure 13 (left). The correct description of volume in
crystallization models is important for accurate mass balances.
Our new model slightly overestimates the growth of the crystals.
This could be explained by the initial shapes of the crystals being

converted to strictly convex bodies for their growth to be
modeled. The benchmark model (growth of octahedrons)
considers growth of the slowly growing [111] faces only. This
leads to an underestimation of the volume of about 20%. The
newmodel also considers the abraded, faster-growing regions. In
the literature,46,47 fast growth of damaged crystals is attributed to
strain and dislocations in the crystals. Our results demonstrate
that the presence of fast-growing surfaces may also contribute to
a faster increase in volume.
We are predominantly interested in the description of crystal

shape. Therefore, Figure 13 (right) compares the fractions of
ideal surface elements α. The benchmark model considers
growth of octahedrons. Therefore, it is not able to adequately
describe crystal shape (α = 1 for all crystals). The model that we
proposed here describes shape much better. However, quite low
coefficients of determination must still be accepted (R2 = 0.73).
The calculation of α is likely affected by conversion to convex
bodies to a greater extent than the calculation of volumes. Figure
14 graphically visualizes the modeled results for one exemplary
crystal and qualitatively illustrates the description of shape.
Overall, Figures 13 and 14 illustrate that the growth model is

able to describe the growth of nonfacetted crystals well. No
difference between the modeled crystals from the validation and
calibration experiments is observed (Figure 13). This finding
supports the reproducibility of the experiments and the validity
of the growth model. Most importantly, the model describes the
shape of nonfacetted crystals.

3.3. Effect on Crystal Shape. In the literature, the effect of
abrasion on crystal shape is studied.6 Here, the effect of crystal
growth on the shape of abraded crystals is studied, to advance
the understanding of the interaction of crystal growth and
abrasion.
In a previous study, we have examined the evolution of crystal

shapes during a seeded crystallization process of PA.27 The seed
material has been damaged such that no geometric crystal model
could be fitted to most of the crystals. This was because the
crystals did not express the typical habit of PA. The change in
shape has been most pronounced in the first 30 min of the
process. During this time, the damaged seed material has grown
and healed such that it could be described using [111] faces
only. The volume has increased by a factor of about 4 within
these first 30 min. Throughout the whole process, the seed
crystals have increased their volume by a factor of about 10. The
shape evolution after 30 min could be described using a classical
growth model that considered only the growth of the [111]
faces. However, we have shown that most crystals were
asymmetrical even though all crystals expressed the typical
habit of PA after 30 min. This was unexpected because PA
crystals should grow symmetrically due to their cubic unit cell.
Therefore, we have hypothesized that such crystals could only be
the result of asymmetrical seed material.
To evaluate this hypothesis, we here applied the growth

model (Section 2.7) to varying nonideal initial shapes (α < 0.9)
until their shape could be well described using the faces shown in
Figure 2 (α≥ 0.9). Results of our simulations are summarized in
Figure 15. Themodeled crystal shapes are displayed in gray. The
borders of their faces are displayed in dark gray lines. The best
representation of each shape using the geometric crystal model
of PA (Figure 2) is displayed with black lines. This shows that
the initial shapes did not express the typical habit of PA.
Through growth, they approached the typical habit.
First, the general applicability of the growth model was

demonstrated by the simulation of three exemplary shapes

Figure 11. Surface displacement rates of crystal 1 between 0 and 4 min
together with the orientation of fast-growing faces according to the
literature44 and the Bravais−Friedel−Donnay−Harker method. R2 =
0.91.

Figure 12. Surface displacement rates as calculated from all crystals
from measurement series one and averaged over all time points. R2 =
0.995.
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(Figure 15A−C). Then, the growth of three initial shapes that
resulted from 3D images of the seed material of the previous
study27 were simulated (Figure 15D−F). Note, that only seeds
could be considered that expressed some faces such that their
orientation with respect to the unit cell was known. Therefore,
this selection favored crystals that have been damaged to a lesser
extent.
In a first simulation, the growth of a sphere was studied

(Figure 15A). The size was increased by a factor of 1.56, and the
volume by a factor of 2.9 to reach the typical habit of PA. In
addition, it was initially perfectly symmetrical with respect to the
geometric crystal model of PA (all entries inΦn≥ 0.85). Growth
led to a symmetric PA crystal that expressed the [111], [110]
and [100] faces. This shape was similar to the shapes we studied
experimentally in Sections 3.1 and 3.2. As the second initial
shape (Figure 15B), a platelike cuboid was chosen. The cuboid
was rotated such that its faces did not have the same normals as
any PA crystal face. This led to an asymmetrical initial shape with

respect to the geometric crystal model of PA. An increase in size
by a factor of 3.16 and in volume by a factor of 18.8 led to an
asymmetrical shape of PA. Thirdly, the growth of a rod-shaped
cuboid was simulated (Figure 15C). It was oriented in the same
way as the platelike cuboid. Consequently, this initial shape was
asymmetrical with respect to the crystal model as well. The size
needed to be increased by a factor of 2.31 and the volume by a
factor of 9.3 such that the typical habit of PA was generated. The
crystal remained asymmetrical. These cuboid shapes could
resemble damaged particles (e.g., broken or abraded).
Figure 15D−F illustrates the growth of three seed crystals of

our previous study.27 The crystal sizes were increased by factors
of 1.78, 2.29, and 1.60, respectively, and the volumes were
increased by factors 3.7, 3.9, and 3.5. In these cases, growth of
the symmetric initial shape (Figure 15D) yielded a symmetric
crystal and correspondingly the asymmetric initial shapes
(Figure 15E,F) yielded asymmetric crystals. We have observed
similar shapes in our previous study.27

Our results illustrate that the initial shape shown in Figure
15A could be healed during the particular crystallization process
that we have studied previously. More extreme shapes as those
shown in Figure 15B,C would not have healed within the first 30
min of the process. However, these examples show that crystal
shapes that differ from the classical shapemodel heal and express
the typical crystal faces. Such asymmetrical shapes could result
from damaged seed material or breakage during a process. In
addition, growth of asymmetrical initial shapes, without typical
crystal faces, resulted in shapes with the typical habit of PA. The
final shape depends on the initial shape and may be
asymmetrical. We have observed similar asymmetric shapes in
a previous study and described how their shapes become more
symmetrical through crystal growth.27 Figure 15D−F illustrates
that such asymmetrical shapes could have been the result of
healing of damaged seed crystals. The increases in volumes were
comparable to those that we have observed in our previous
study. We mentioned before, that only [111] faces have been
observed in the previous study. Here, also [110] and [100] faces
were observed. In the previously studied process, super-
saturation has been higher than in this study. This causes

Figure 13. Validation of the growth model with respect to volume (left; Rcalibration
2 = 0.96, Rvalidation

2 = 0.95, Rbenchmark
2 = 0.75) and with respect to the

fraction of ideal surface area α (right; Rcalibration
2 = 0.73, Rvalidation

2 = 0.73, no reasonable R2 calculated for benchmark). Straight lines represent a perfect
model (V = Vexp). Data of crystal 1 of the calibration experiment (C1) are highlighted as black crosses.

Figure 14.Micro-computed tomography (μCT) images of crystal 1 of
the calibration experiment after 0 min of growth (A) and 17 min of
growth (D). Corresponding convex initial shape (B) and 17 min shape
(E) of the simulation. (C, F) Corresponding combinations of the μCT
image (light gray) and modeled shape (outlines). In (F), the overlaying
mesh shows that most regions of the crystals are described well. In some
regions, the mesh is inside the crystal, which indicates that growth was
faster at these regions in the experiments.
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different relations between the face-specific growth rates. The
rates of the [110] and [100] faces increase faster with increasing
supersaturation than that of the [111] faces.15 Therefore, [110]
and [100] faces have disappeared more quickly at higher
supersaturation.
From a more general perspective, our simulations show that

nonideal shapes heal by fast growth of damaged regions. This
results in faster growth with respect to the volume of abraded
crystals (Figure 13 left, gray data) than ideally facetted crystals
(Figure 13 left, orange benchmark). The results presented in
Figure 15 and discussed in this section show that the increase in
size (and hence volume) needed for crystals to heal strongly
depends on the initial shape of the crystals. The model was
designed such that it is independent of crystal size (Section 2.7)
and results can conveniently be interpreted as a relative increase
in size. When growth rates are assumed to be independent of
size, small crystals will need less time to heal than large crystals
even if they have the same shape. This is because an absolute
growth of, e.g., 10 μm of a crystal would result in an increase in
size by 100% of a 10 μm-sized crystal but only an increase in size
of 1% for a 1 mm-sized crystal. Our experimental method can so
far only be applied to crystals larger than roughly 500 μm.

Currently, the assumption of size-independent growth is only
plausible but not proven.

4. CONCLUSIONS
Crystal growth is commonly assumed to occur in the normal
direction of crystal faces and is primarily discussed with respect
to solution supersaturation. However, in crystallization
processes, agitation often induces damage to the crystals and
renders nonfacetted crystal shapes. Therefore, it is inaccurate to
describe such crystals using only the common faces. In this
contribution, μCT and 3D image analyses were used to track the
growth of abraded crystals. From these images, growth rates in
all directions of crystal surfaces were determined and described
using spherical harmonics functions. These growth rates were
used to parametrize a 3D crystal growth model. The model was
able to describe the growth of nonfacetted growth domains in
addition to the common crystal faces. Additionally, the shape of
convex crystals was accurately described in 3D. The model was
used to validate the measured growth rates and to simulate the
growth of nonfacetted shapes. The results show that for the
prediction of crystal shape evolution, thermodynamic properties
(i.e., supersaturation, corresponding facetted growth rates) are

Figure 15. Modeled crystal shapes resulting from different initial crystals.
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only one piece in the puzzle. The initial shape of crystals cannot
be ignored.
Our simulations showed that the observed growth behavior

led to accelerated growth in terms of volume compared to
models that only considered the growth of crystal faces. We
found that crystals heal and assume facetted shapes through fast
growth of damaged regions. This study provides a foundation for
detailed model-based analysis of the interaction of crystal
growth and abrasion.
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■ ROMAN LETTERS

A
matrix with face normals for H-
representations

ai face normal that is an element ofA
Cn
m [μm/min] weights of the spherical harmon-

ics functions
d [cm] diameter of stirrer
G, G111, Gmeasured [μm/min] displacement rate, displacement

rate in the [111] direction,
measured displacement rates

G* dimensionless growth rate
h, hi, h111, hinit, hi,init [μm] face distances of a H-representa-

tion, element of the latter, face
distances in the [111] direction,
initial values of the face distances
for the growth model, element of
the latter

hinit* , h*, hi* dimensionless initial face distance
vector, dimensionless face dis-
tance vector, element of the latter

m [kg], m mass, parameter of the spherical
harmonics function

Ns, Nl number of triangulations of small
and large crystals, respectively

n parameter of the spherical har-
monics function

n [1/s] rotational speed of the stirrer
o order parameter of the spherical

harmonics function
Pn
|m| Legendre polynomials

Si, Si,ideal [μm
2] surface area of a surface element,

surface area of an ideal surface
element

s scale factor
t time factor that describes the

increase in size of a modeled
crystal

v, V [μm] vertex of a polytope, all vertices of
a polytope

V* dimensionless vertices of a poly-
tope

Yn
m spherical harmonics

■ GREEK LETTERS

α fraction of surface area that is ideal
Δt [min] time of growth between two analyzed μCT

measurements
Δw [mg/g] absolute supersaturation
η [Pa s] dynamic viscosity
θ [rad] polar angle
ρPA, ρ [g/cm3] density of potash alum, solution density
σ relative supersaturation Δw/wsaturation
Φn symmetry shape factor
φ [rad] azimuthal angle
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(20) Kovacěvic,́ T.; Reinhold, A.; Briesen, H. Identifying Faceted
Crystal Shape from Three-Dimensional Tomography Data. Cryst.
Growth Des. 2014, 14, 1666−1675.
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Chapter 6 

6. Discussion 

Crystal shape analysis has emerged from crystal shape engineering. Research on 2D 
image analysis methods for crystallization analysis is ongoing. However, literature 
agrees (Nagy et al. 2013; Heisel et al. 2017) that there are inherent limitations to 2D 
imaging, even for quite simple geometries such as rounded (Reinhold et al. 2015), or 
plate-like crystals (Jaeggi et al. 2021). Therefore, the work of Reinhold (2015), 
Kovačević (2018) and the present thesis focus on the development of 3D methods. 
Challenges are that 3D imaging is much more complex and time consuming than 2D 
imaging. 3D images use memory in the order of gigabytes instead of megabytes in the 
case of 2D images. This makes 3D image analysis methods hardware demanding and 
time consuming. However, the great potential is that 3D images contain full shape 
information. 

6.1 3D methods for crystal population analysis 
One goal of the present work was, therefore, to optimize the experimental methods of 
Kovačević (2018) in such a way that they became feasible for larger populations of 
crystals. Kovačević (2018) analyzed roughly 100 crystals. It is discussed by Schiele et 
al. (2021a) that at least 1000 particles should be analyzed for a reasonable population 
analysis. This number was based on a statistical analysis of a mono-disperse population 
and crystal size was used as disperse characteristic. For different types of populations 
(e.g. poly-disperse) and different or even multiple disperse characteristics (multi-
dimensional populations) more or less particles may be necessary. For the presented 
study, this meant that the number of analyzed crystals had to be increased by a factor 
of at least 10 in order to analyze a single population. The aim was, to analyze the 
evolution of a population over time. Therefore, multiple samples had to be analyzed. In 
context of the present work, a method was developed that involved sorting crystals in 
3D printed scaffolds. Like this, about 800 crystals could be visualized with one single 
μCT measurement. Using the new method, in total about 11 000 crystals were analyzed. 
Their sizes ranged between 200 μm and 2 mm. Schiele et al. (2021a) showed that off-
line crystal population analysis is feasible using the image analysis tools of Kovačević 
(2018) in combination with optimized experimental procedures. For a broader 
application of the presented techniques, two challenges are discussed in the following. 
Challenge 1: Crystals are handled manually. This fact poses a few challenges. One 
is that user bias has to be taken into account and effort has to be taken to minimize it. 
In addition, the proposed sorting process is time consuming, tedious, and a steady hand 
of the user is essential. 
More importantly, manual handling leads to a limitation in size. Schiele et al. (2021a) 
studied only crystals larger than 200 μm. At the applied voxel spacing of 8 μm this is 
also roughly the size that one can expect to be well analyzed by the tools of Kovačević 
(2018). However, higher resolutions can be achieved when longer measurement times 
and smaller fields of view are accepted, or more advanced μCTs are used (see below). 
The limitation in size is especially limiting to the application in crystal population analysis, 
because small crystals dominate the behaviors of many crystallization processes. This 
is because, damage to crystals through agitation and secondary nucleation can usually 
not be avoided or are even intentionally introduced. Nucelation leads to a high number 
of small particles that all together provide a huge surface area for crystal growth. At the 
same time, larger crystals tend to have more ideal shapes because growth leads to 
healing of some non-idealities (Schiele et al. 2021a; Schiele et al. 2021b). The behavior 
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of ideally shaped crystals is quite well understood. Therefore, if the aim of crystal 
population analysis is to understand certain crystallization phenomena, the analysis of 
small, non-ideal crystals is most promising. 
Further development of the proposed methods should aim at avoiding manual handling 
of single crystals. In some preliminary experiments, it was tried to visualize crystals in 
bulk. However, unlike e.g. fungi pellets (Schmideder et al. 2021), most crystals touched 
such that their faces were in planar contact. This made segmentation even harder and 
agglomerates and single crystals could not be distinguished. It will hence be important 
to distribute populations in the measured volume such that they do not touch. 
Challenge 2: 3D imaging and 3D image analysis are time consuming. The time 
needed for population analysis can be divided in three parts 

1. Sample preparation; i.e. taking a sample, filtering, washing, sorting crystals into 
scaffolds 

2. μCT imaging 
3. Image analysis 

During sample preparation, the sorting step is the most time consuming. The other steps 
would also have to be applied in a similar way for other off-line analysis methods and 
are, therefore, not discussed here. Sorting 800 crystals for one μCT measurement took 
around one to two hours, depending on average crystal size. Small crystals are harder 
to handle and hence sorting needs more time for them. Other challenges of the manual 
handling have been discussed above. 
Using the described settings, μCT imaging needs about 25 min per 3D image and 
crystals may not change or move during this time. 2D imaging may take only a few 
milliseconds. This is much faster than most physical phenomena in crystallization. This 
means that changing and even moving particles can be tracked using 2D imaging 
techniques. In addition, 2D image analysis methods are often rapid as well. High-end 
μCT devices that have more powerful x-ray sources than the one used in context of the 
present work may significantly reduce the time needed for one 3D image. For example, 
3D imaging using synchrotron x-ray sources may take only half a second (Finegan et al. 
2015) and can be used to track batteries’ electrodes during operation (Finegan et al. 
2016). The authors tracked the combustion of batteries due to high currents and high 
temperatures (“thermal runaway”); a process that takes a few minutes. In these studies, 
similar resolutions and image sizes similar to those in the present work were achieved. 
Using such equipment, one could imagine μCT as in-line technique for crystallization, 
provided crystals do not move, or move slowly. Segmentation of solvent and crystals 
may be a challenge in such cases. Zhou et al. (2019) used electron tomography to track 
the shape, size and lattice structure of nuclei in solid-solid phase transition at atomic 
resolution. In that work, segmentation was possible due to the high resolution that 
enabled segmentation based on the lattice structure. Segmentation of crystals and 
solvent may also be feasible using neutron tomography. For example, Gruber et al. 
(2020) tracked freeze-drying of sugars using neutron tomography. The authors used 
deuterium (heavy water) as solvent. This led to good contrasts between solvent and 
sugars. However, neutron imaging takes a few hours and is hence even slower than x-
ray imaging. 
Using the current algorithms and data storages, analysis of a single crystal takes a few 
seconds. For high numbers of crystals to be analyzed, this may also become a limiting 
step. For example, the analysis of the crystals in the work of Schiele et al. (2021a) took 
several days on a standard desktop computer. The algorithms are not optimized for 
speed. Implementation in faster programming languages like C/C++ or Fortran and 
parallel computing could reduce calculation times. In addition, storage of the image files 
on fast drives (e.g. solid-state drives) instead of hard disk drives or even network drives 
would also increase the speed of 3D image analysis. However, in context of this work, 
calculation times did not limit the analysis. 
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In conclusion, the manual sample handling appears as the main challenge for a broader 
application of 3D imaging. However, 3D imaging has proven itself as a valuable tool for 
crystal population analysis and can be used for detailed shape analysis. In the studied 
process (Schiele et al. 2021a), symmetry of single crystals was tracked over time. In 
addition, the analysis of over 1000 crystal agglomerates corroborated the results of 
Kovačević et al. (2017) at higher statistical relevance. Both the single crystal symmetry 
and analysis of agglomerates would have been very hard—if not impossible—using 2D 
methods. We have learnt that 

 crystals undergo a shape transition, even if face independent growth occurs and 
 potash alum agglomerates have low disorientation angles 

6.2 Studying interaction of crystallization phenomena 
Using the discussed 3D population analysis, unexpected crystal shapes were observed. 
Schiele et al. (2021a) discuss that non-ideal shapes may be the result of damaged seed 
material. This motivated the work of Schiele et al. (2021b) who developed a method to 
track growth of individual crystals using μCT. The method was applied to study growth 
of abraded potash alum crystals. Even though the method was so far only applied to 
study the interaction of growth and abrasion, it is discussed below that it may also be 
promising for studying other crystallization phenomena as well. 

6.2.1 Abrasion and Growth 
Abraded crystals were fixed to racks for crystal growth and μCT imaging. Alternating 
growth and imaging yielded 3D images of the same crystals during different states of 
their growth. Like this, it was tracked how the initially round abraded crystals became 
facetted. Using the 3D images, growth rates were derived and used to parametrize a 
high dimensional crystal growth model. The growth model describes the shape and size 
evolution of abraded crystals through growth. It was shown that the initial shapes were 
decisive for the shape and volume evolution. Simulations confirmed that the non-ideal 
shapes observed by Schiele et al. (2021a) could result from damaged seed material. 
From a more general perspective, depletion of supersaturation can be increased 
through abrasion in a process. The established theory explains fast depletion of 
supersaturation through an increased surface area for crystal growth through the 
creation of numerous small fragments (Bosetti and Mazzotti 2019). However, literature 
agrees that crystalline surface area alone is not sufficient to describe depletion of 
supersaturation. For example, growth rate dispersion (GRD) describes the observation 
that similar crystals grow at different rates. This may even apply to the same crystal that 
grows at a varying rate. GRD is often attributed to increased strain and number of 
defects in the lattice caused by damage or inclusion of impurities (Ristic et al. 1996; 
McDonald et al. 2019). Hence, e.g. damaged crystals may grow at increased rates until 
defects are healed. In addition, there is size dependent growth (SDG), which describes 
different apparent growth rates for differently sized crystals. This effect may be 
explained by size dependent hydrodynamic conditions. Mullin (2001) describes that 
crystals smaller than 10 μm may follow turbulent eddies. Therefore, they may be growing 
in stagnant solution even if the suspension is well agitated. In consequence, small 
crystals may grow slowly under diffusion limited conditions, while growth of large ones 
may be integration limited and faster (Mullin and Garside 1967b). SDG may also be 
caused by size dependent damage to crystals. It is generally accepted that large crystals 
are rather subject to abrasion than small crystals (Gahn and Mersmann 1999a). Hence 
large crystals would rather suffer from GRD leading to SDG (Mullin 2001). 
While these effects will most certainly play an important role, the work of Schiele et al. 
(2021b) shows that the magnitude of surface area, GRD and SDG are still not sufficient 
to accurately describe depletion of supersaturation. Schiele et al. (2021b) measured that 
abraded surfaces grow much faster than ideal crystal faces. It is explained that through 
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abrasion highly indexed faces—that are known to generally grow faster (Mullin 2001)—
are exposed. This leads to faster increase in volume that has been observed in other 
studies (Ulrich and Stepanski 1987). Traditional analysis methods are usually not able 
to detect non-ideal shapes and such shapes were hence not considered in the past. In 
conclusion, instead of GRD or SDG, variations in growth rates may in fact be shape-
dependent growth in some cases. Even though the herein developed methods were only 
applied to large crystals (diameter >0.5 mm), it is likely that smaller fragments would 
grow at increased rates too. That is, provided no diffusion limitation occurs. These 
results further emphasize that non-ideal crystal shape is an important process variable 
that can be tracked using 3D imaging.  
So far, the measurements and simulations were only applied to single crystals. In order 
to evaluate the effect of non-ideal crystal surfaces on processes, a modelling approach 
may be chosen. Population balance modelling has emerged as a powerful tool for 
crystallization process modelling (Marchisio et al. 2003; Qamar et al. 2007; Aamir et al. 
2009; Borchert et al. 2014; Bosetti and Mazzotti 2019; Kovačević and Briesen 2019; Ma 
and Roberts 2019). In such models, crystal shape has to be simplified in order to 
describe crystals by one or two measures. Higher dimensional models are possible but 
compromises at complexity of a modeled process have to accepted in such cases 
(Reinhold and Briesen 2015; Ma and Roberts 2019). Briesen (2009) studied the effect 
of crystal shape on crystal attrition using population balance modelling. In that study, 
growth was considered but was assumed to have no effect of crystal shape. Schiele et 
al. (2021b) have shown that this is inaccurate. 
In future work, one could use the rates determined by Schiele et al. (2021b) to evaluate 
the effect of growth on crystal shape using a multi-scale approach. Similar to the work 
of Kovačević and Briesen (2019), one could simulate the growth of multiple differently 
shaped crystals and derive rates for PBM modelling that account for the effect of shape 
on growth and vice versa. These rates could be included in the model of Briesen (2009). 
This would yield a model that considers interaction between crystal growth and abrasion 
under full consideration of crystal shape. That is, the effects of  

 crystal growth on shape, 
 shape on crystal growth, 
 shape on abrasion, 
 and abrasion on shape  

would be considered. This concept is also similar to the work of Ma and Roberts (2019) 
who studied the effect of breakage on crystallization under consideration of crystal 
shape. However, the rates used for simulations were neither experimentally determined 
nor validated. In addition, similarly to Briesen (2009), shape was not considered to affect 
all phenomena. Ma and Roberts (2019) only considered the effect of growth on shape 
and shape on growth. For breakage, no shape influence was considered. 

6.2.2 Breakage and Growth 
Considering crystal breakage, it would be highly interesting to apply the methods of 
Schiele et al. (2021b) to broken or ground crystals. Breakage is a phenomenon that may 
be deliberately introduced in processes in order to control crystal size (Salvatori and 
Mazzotti 2018; Hill and Reeves 2019) or may unintentionally occur during e.g. agitation. 
In addition, seed crystals may be broken from pre-processing (e.g. conveying, sieving, 
grinding). Broken crystals may be concave. For studying growth of concave crystals 
using μCT, some challenges must be overcome. The method of Schiele et al. (2021b) 
is based on convex geometry. Kovačević and Briesen (2019) developed methods to 
apply similar geometric methods to agglomerates (i.e. concave particles). However, in 
that case, agglomerates could be described through small numbers of convex crystal 
models. Broken crystals would likely be less regular and not so easily approximated by 
small numbers of convex crystals. In addition, breakage may yield many small fragments 
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of a crystal. Therefore, the size limitation of the measurements (>0.5 mm) that is 
discussed by Schiele et al. (2021b) must be tackled.  

6.2.3 Dissolution and Growth 
Models usually consider dissolution as inverse growth. That is, expressed faces are 
modeled to be displaced towards the crystals’ center of mass. Inverse growth 
corresponds to the assumption that crystals remain facetted during dissolution. Snyder 
and Doherty (2007) consider that other faces may appear. This results from the idea 
that these faces are observed to grow faster and are, therefore, assumed to have lower 
solubility.  However, the images presented by Eisenschmidt et al. (2016) and simulation 
results (Elts et al. 2016, 2017) suggest that crystals become round through dissolution. 
Still, rounding was not considered by Eisenschmidt et al. (2016). In the literature, 
dissolution of crystals is discussed from three perspectives 

 In context of controlled drug release it is discussed that different polymorphs 
have different dissolution behavior and lead to different bioavailability (Blagden 
et al. 2007; Tung 2012; Reischl et al. 2015; Amrutha et al. 2020). 

 Partial dissolution can be applied to reduce the fraction of fines in a process 
(Schmalenberg et al. 2021; Binel and Mazzotti 2021). 

 Dissolution is applied in combination with growth for shape control (Snyder et al. 
2007; Eisenschmidt et al. 2016). 

For controlled drug release, a change in concentration in the dissolving solvent, which 
can be calculated from the change in overall crystal volume, is of importance. For shape 
control and reduction of fines, the shape of crystals would also have to be tracked in 
order to describe an initial condition for subsequent growth (Schiele et al. 2021b). Both, 
a change in volume and shape could be well modeled with a similar model as the one 
proposed by Schiele et al. (2021b). Corresponding simulations could quantify how 
edges and corners dissolve faster than faces to yield round crystals. For parametrization 
of the model the same experiments could be conducted. A challenge may be that 
crystals could detach from the racks through dissolution. Detachment may be fought by 
adhering crystals to racks, growing them to a certain size and then performing 
dissolution experiments until they reached their original size. 
Besides dissolution behavior, growth behavior of crystals that previously partially 
dissolved would be essential for shape control and reduction of fines, too. Consequently, 
growth of partially dissolved crystals could be studied in the same way as it was done 
for abraded crystals. This would then give information on how such round crystals grow. 
A comparison of growth of round crystals that were produced through abrasion and such 
ones that were produced through partial dissolution would be highly interesting. Some 
experiments suggest that internal strain leads to increased growth rates (Ristic et al. 
1996; McDonald et al. 2019). It is plausible that abraded crystals would have more 
internal stain than partially dissolved ones. 

6.2.4 Ostwald ripening 
Another interesting effect related to the present work is discussed by Garside and Davey 
(1980): Ostwald ripening. It was initially described for vapor droplets. Due to surface 
tension, small droplets have a higher pressure inside (Laplace pressure, described by 
Kelvin equation) and, therefore, solubility of droplets is size dependent. Diffusion leads 
to shrinkage of small droplets and growth of larger droplets. Ostwald ripening is well 
understood for isotropic, spherical droplets. Also an extension to facetted crystals is 
quite straightforward but leads to the conclusion that it should only be relevant for very 
small (<1 μm) crystals (Garside and Davey 1980). This contradicts experimental 
observations (Mullin 1976). More recently, Bosetti and Mazzotti (2019) have studied 
which effect Ostwald ripening would have on crystal populations. In context of the 
present work, crystal growth was measured for anisotropic surfaces of crystals. Such 
direction dependent crystal growth can also be connected to anisotropic surface energy. 
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It is, therefore, plausible that nuclei—that are usually not facetted (Zhou et al. 2019)—
and non-ideal small crystals would have increased and anisotropic surface energies 
compared to those assumed by Garside and Davey (1980). This would again lead to a 
more pronounced Ostwald ripening even for crystals larger than 1 μm. Spinning the 
wheel even further, anisotropic surface energy might even lead to anisotropic solubility 
of a crystal (i.e. face-dependent growth). In order to converge towards minimal surface 
energy, it would be plausible if crystals would undergo a shape transition such that 
damaged regions with high surface energy would disappear in favor of more stable 
surfaces. In precipitation processes for pigments, crystals are left in saturated 
suspension for so called annealing, aging or ripening phases (Myerson et al. 2019, 
476ff). During this time, such effects may play a role. In addition, pigment quality 
depends on crystal shape. In order to study crystal shape and shape transition, 
tomography seems like the ideal tool. It is able to track crystal shape accurately and in 
three dimensions. Also relatively long imaging times would not be a problem because 
ripening is described to take many hours. High resolutions would be needed in order to 
image particles around 1 μm in size. Using suitable tomography methods crystals can 
be tracked even at atomic resolution (Zhou et al. 2019). 
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Chapter 7 

7. Conclusion 

It is long accepted that crystal shape is an important process variable and crystal 
property. In the literature, ideal shapes are usually assumed. Crystals are then often 
inaccurately described by their faces only. One reason for that may be the lack of 
appropriate quantitative analysis methods. State of the art shape analysis is done using 
2D imaging. It is discussed above that 2D imaging is not able to capture the exact shape 
of crystals due to its low dimensionality. Facetted shape models are used to extract 
meaningful information from 2D images. Therefore, non-ideal shapes are exceptionally 
hard to analyze. 
Crystals approach ideal shapes through growth. However, in most applications not only 
growth occurs. Crystals nucleate, agglomerate and are damaged. These effects lead to 
non-ideal shapes that do not grow according to established growth laws. Accurate shape 
description under consideration of non-ideal shapes is, therefore, key to understanding 
the dynamic interactions of these crystallization phenomena. In recent work (Kovačević 
2018), 3D imaging was established as new tool for more accurate crystal shape 
analysis. It was applied to understand the interaction of growth and agglomeration 
(Kovačević et al. 2017; Kovačević and Briesen 2019). The present work further explored 
the application of 3D imaging as a tool for crystal shape analysis. The aim was to 
understand the interaction of crystal growth and damaging events. 
In a first step, 3D imaging was applied to analyze the evolution of crystal populations 
during a crystallization process. This analysis was enabled by developing new 3D 
imaging methods. The number of crystals that can be imaged was increased by a factor 
of about 100. Using this new method, it was tracked how non-ideally shaped (i.e. 
damaged and asymmetrical) seed material quickly grew to facetted but still 
unexpectedly asymmetric crystals. Crystals became more symmetric over time but still 
mostly remained asymmetric. It was discussed that the shape of seed material has 
decisive influence on the shape of the product crystals. However, the mechanisms 
remained in the dark. This motivated the second study in which new 3D imaging and 3D 
image analysis methods were developed and enabled to track growth of abraded 
crystals. The results were used to parametrize a growth model that describes the shape 
and size evolution of abraded crystals. In conclusion, in order to describe crystal growth 
accurate shape description is important in processes where either non-ideal seed 
material is used or abrasion occurs.  
From a broader perspective, it was demonstrated that 3D imaging is an invaluable tool 
for detailed crystal shape analysis. Methods to analyze crystal populations and single 
crystals were presented and yielded detailed size and shape information. The new 
methods were applied to study the interaction of growth and abrasion. It is discussed 
that such methods are also highly promising for understanding the role of non-ideal 
shape in other interacting crystallization phenomena. For example, the application to the 
interactions of dissolution or breakage and growth would be highly interesting and fairly 
straightforward using the new methods. The main challenge for even further application 
of the methods lies in the manual handling of crystals, which leads to a limitation in 
crystal size to roughly 200 μm. Many interesting phenomena happen at nanometer and 
molecular/atomic size scales. Therefore, lowering the 200 μm barrier would enable 
interesting insights in further crystallization phenomena and their interactions. Modern 
3D imaging methods are able to visualize crystals on molecular level and in 3D. 
Another valuable tool to understanding process behavior and the interaction of 
crystallization phenomena is population balance modelling. Such models track the 
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evolution of disperse particle properties. This work has demonstrated that the classical 
crystal faces cannot describe crystal shape when considering growth and abrasion. A 
population balance modelling approach may be chosen to explore the influence of non-
ideal crystal shapes on process behavior. The results of this study will help in choosing 
appropriate crystal description and to parametrize a corresponding model. 
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