
Information Systems 100 (2021) 101766

J
a

b

c

d

e

p
s
d
m
G
(
m
o
f
m

n
(
(

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Scalable generalizedmedian graph estimation and itsmanifold use in
bioinformatics, clustering, classification, and indexing
David B. Blumenthal a,∗,1, Nicolas Boria b,c,1, Sébastien Bougleux b, Luc Brun b,
ohann Gamper d,∗, Benoit Gaüzère e

Technical University of Munich, TUM School of Life Sciences, Chair of Experimental Bioinformatics, Freising, Germany
Normandie Université, ENSICAEN, UNICAEN, CNRS, GREYC, Caen, France
Université Paris-Dauphine, CNRS, LAMSADE, Paris, France
Free University of Bozen-Bolzano, Faculty of Computer Science, Bolzano, Italy
Normandie Université, INSA Rouen Normandie, LITIS, Rouen, France

a r t i c l e i n f o

Article history:
Received 25 May 2020
Received in revised form 19 January 2021
Accepted 15 March 2021
Available online 27 March 2021
Recommended by Limsoon Wong

MSC:
68R01
05C85
90C59

Keywords:
Generalized median graphs
Graph edit distance
Graph similarity search
Clustering
Classification
Indexing

a b s t r a c t

In this paper, we present GMG-BCU—a local search algorithm based on block coordinate update for
estimating a generalized median graph for a given collection of labeled or unlabeled input graphs.
Unlike all competitors, GMG-BCU is designed for both discrete and continuous label spaces and
can be configured to run in linear time w. r. t. the size of the graph collection whenever median
node and edge labels are computable in linear time. These properties make GMG-BCU usable for
applications such as differential microbiome data analysis, graph classification, clustering, and indexing.
We also prove theoretical properties of generalized median graphs, namely, that they exist under
reasonable assumptions which are met in almost all application scenarios, that they are in general
non-unique, that they are NP-hard to compute and APX-hard to approximate, and that no polynomial
α-approximation exists for any α unless the graph isomorphism problem is in P . Extensive experiments
on six different datasets show that our heuristic GMG-BCU always outperforms the state of the art in
terms of runtime or quality (on most datasets, both w. r. t. runtime and quality), that it is the only
available heuristic which can cope with collections containing several thousands of graphs, and that
it shows very promising potential when used for the aforementioned applications. GMG-BCU is freely
available on GitHub: https://github.com/dbblumenthal/gedlib/.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Labeled graphs provide a powerful structure to represent,
rocess, and analyze data in a wide variety of scientific domains
uch as cancer detection [1], keyword spotting in handwritten
ocuments [2], and many more [3]. However, determining funda-
ental tools such as a distance or an average graph is non-trivial.
iven a space G of labeled simple graphs, the graph edit distance
GED) is a natural choice for comparing two graphs [4,5]. It
easures the minimal amount of distortion needed to transform
ne graph into another by means of edit operations. Given cost
unctions for the edit operations, GED can be defined as the
inimum cost of a node map (i. e., a relation between the nodes

∗ Corresponding authors.
E-mail addresses: david.blumenthal@wzw.tum.de (D.B. Blumenthal),

icolas.boria@dauphine.fr (N. Boria), sebastien.bougleux@unicaen.fr
S. Bougleux), luc.brun@ensicaen.fr (L. Brun), johann.gamper@unibz.it
J. Gamper), benoit.gauzere@insa-rouen.fr (B. Gaüzère).
1 D.B.B. and N.B. contributed equally to this work.
https://doi.org/10.1016/j.is.2021.101766
0306-4379/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
of the source and the target graph) that specifies for each node
whether it should be substituted, inserted, or deleted. Computing
GED is NP-hard [6] and still cannot be solved in a reasonable
time for graphs exceeding a dozen of vertices, even for simple
cost functions [7]. Therefore, in practice, various heuristics are
employed that provide tight lower or upper bounds in polynomial
time [5,8–13].

In this paper, we consider the even more difficult problem
to compute a generalized median graph for a given collection
of graphs. Intuitively, a generalized median graph is a graph
that, among all graphs contained in the (infinitely large) space
of graphs, minimizes the overall GED to the graphs contained
in the collection. Generalized median graphs can be viewed as
representatives or prototypes of the graphs contained in the
collection and can hence be employed in all application scenarios
that build upon the computation of representatives. Formally,
they are defined as follows [14]:

Definition 1 (Generalized Median Graph). A graph G⋆
∈ G is a

generalized median graph for a finite collection of graphs G ⊆ G
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.is.2021.101766
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2021.101766&domain=pdf
https://github.com/dbblumenthal/gedlib/
http://creativecommons.org/licenses/by/4.0/
mailto:david.blumenthal@wzw.tum.de
mailto:nicolas.boria@dauphine.fr
mailto:sebastien.bougleux@unicaen.fr
mailto:luc.brun@ensicaen.fr
mailto:johann.gamper@unibz.it
mailto:benoit.gauzere@insa-rouen.fr
https://doi.org/10.1016/j.is.2021.101766
http://creativecommons.org/licenses/by/4.0/

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

i∑
t

k
g
a
r
1

t
a
2
g
e
a
s
t
t
t
m
t
t
e
d
i
c
e
b
a
f
a
g
n
t

t
u
d
u
(
a
t
w
o
m
b
u
G
o
c
t
l
o

p
g
p
t
t
W
n
t
a
P
s

m
f
s
b
g
t
s
t
w
p

t
p
t
B
w
t
a
p
o
p

2

m
(
o
t
g
t

2

o
r

f and only if G⋆
∈ argminG∈GSOD(G, G), where SOD(G, G) :=

Gp∈G GED(G,Gp) is the sum of distances from a graph G ∈ G
o all graphs Gp

∈ G.

Computing generalized medians is a difficult task for most
inds of objects—even for strings, it is NP-hard [15,16]. For
raphs, the situation is even worse, because here already evalu-
ting the underlying distance measure is a hard problem. For this
eason, exact algorithms have to explore a huge search space [17–
9] and their application is very limited.
To estimate median graphs in a reasonable computational

ime, several methods estimate the optimal SOD via a local search
round an initial candidate graph, using genetic search [14,18,
0], greedy search based on partitioning vertices of different
raphs [21], local search [22], or linear programming [23]. How-
ver, these methods are restricted to finite node and edge label
lphabets [14], are designed for very small graphs [21], require
pecial constant edit costs [22], or have a very high computa-
ional cost [23]. A second family of heuristics [24,25] exploits
echniques from spectral graph theory [26] to construct an es-
imated generalized median graph as a combination of the modal
atrices of the graphs contained in G. The main drawbacks of

hese approaches are that they expect all input graphs to be of
he same order, that they only support real-valued node and
dge labels, and that they do not support node insertions and
eletions. Yet another strategy is based on graph embedding
nto vector spaces [27,28] with the distances between graphs as
oordinates [18,29–32]. Then a representative is computed in the
mbedding space, and an estimated median graph is constructed
y going back to the original space of graphs. Embedding based
pproaches overcome the limitations of the ones mentioned be-
ore, but have to compute all pairwise distances at initialization
nd hence run in at least quadratic time w. r. t. the size of the
raph collection. Moreover, just as for all other existing heuristics,
o formal link between the employed algorithmic techniques and
he definition of a generalized median graph is provided.

This paper introduces a new local search algorithm GMG-BCU
hat estimates a generalized median graph via a block coordinate
pdate (BCU). Given an initial candidate or a set of initial can-
idates, GMG-BCU iterates through the following three steps: (1)
pdate the node maps, keeping the current median graph fixed;
2) update the median graph, keeping the current node maps
nd the current order of the median graph fixed; (3) update
he order of the median graph. Each step decreases the SOD,
hich implies that the obtained estimated median graph is a local
ptimum. Moreover, GMG-BCU is generic as it makes only very
ild assumptions on the labels and the edit costs which, to the
est of our knowledge, are met in all applications where GED is
sed to solve real-world problems [3]. Unlike existing approaches,
MG-BCU can be configured to run in linear time w. r. t. the size
f the graph collection G whenever median node and edge labels
an be computed in linear time. For instance, this is the case if
he labels are symbolic, if they are real-valued vectors, or if the
abel spaces are of constant size. In most application scenarios,
ur algorithm hence scales to large graph collections.
We also prove theoretical properties of the problem of com-

uting generalized median graphs that are implicitly taken for
ranted in previous works but are nonetheless non-trivial. More
recisely, we show that generalized median graphs exist under
he mild assumptions that median node and edge labels exist and
hat the insertion and deletion costs are constant (cf. Theorem 1).
e also prove that generalized median graphs are in general
ot unique, that they are NP-hard to compute and APX-hard
o approximate, and that no polynomial time α-approximation
lgorithm exists for any α unless the graph isomorphism is in
. As an outlook, we discuss potential applications. Here, we
how to use GMG-BCU for computing representative graphs for
 b

2

icrobiome data, which can then be used for downstream dif-
erential data analysis. We also point out to the fact that, once
calable estimators are available, generalized median graphs can
e used beneficially for tackling higher-level problems such as
raph clustering, classification, and indexing. Finally, we report
he results of an extensive empirical evaluation. The evaluation
hows that our algorithm clearly outperforms existing competi-
ors, and that it yields extremely promising results when used
ithin the aforementioned applications scenarios. In sum, the
aper contains the following contributions:

• We show that generalized median graphs exist under mild
assumptions, that they are in general non-unique, and that
they are hard to compute and approximate.

• We present GMG-BCU, a scalable and efficient local search
algorithm based on BCU that produces locally optimal es-
timated generalized median graphs and can be configured
to run in linear time w. r. t. the size of the graph collection
whenever median node and edge labels are computable in
linear time.

• We point out to the fact that, thanks to our new effi-
cient algorithm, generalized median graphs can be ben-
eficially applied in an application from bioinformatics as
well as for higher-level problems such as graph clustering,
classification, and indexing.

• We report the results of extensive experiments, showing
that GMG-BCU clearly outperforms the state of the art.

• A well-documented, ready-to-use C++ implementation of
GMG-BCU is freely available at https://github.com/dbblume
nthal/gedlib/.

The remainder of this paper is organized as follows: In Sec-
ion 2, we discuss related work. In Section 3, we introduce im-
ortant concepts and notations. In Section 4, we present our
heoretical results. In Section 5, we introduce the algorithm GMG-
CU. In Section 6, we discuss potential applications. In Section 7,
e report the results of the experiments. Section 8 concludes
he paper. The proofs of all presented theorems and propositions
re contained in the appendix. The paper builds upon the results
ublished in [33], where a preliminary version of GMG-BCU with-
ut order update, theoretical contributions, and applications was
resented.

. Related work

In this section, we provide an extensive overview of existing
ethods for heuristically estimating generalized median graphs

Sections 2.1 to 2.3). We also discuss some state of the art meth-
ds for closely related problems (Section 2.4). While many heuris-
ics for estimating generalized median graphs have been sug-
ested during the past years, to the best of our knowledge, all of
hem exhibit one or several of the following major shortcomings:

• There is no clear theoretical link between the algorithmic
techniques employed by existing heuristics and the defini-
tion of a generalized median graph.

• Existing heuristics only support very restricted types of
graphs and edit costs.

• Existing heuristics do not scale to large collections of graphs.

.1. Spectral methods

Spectral methods [24,25] only apply to graphs of the same
rder with real-valued node and edges values. They are also
estricted to the weighted graph matching problem, which can
e viewed as a particular form of GED where node deletions and

https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

i
t
l
b
t
i
p
t
o
o
m

o
p
t
f
a
i
o
o
a
i
t
m
f
w
g
t
t
p

w
t
r
o
g
d
m

2

d
v
r
g
d
t
T
a
a
h
e
G
g
b
s

s
c

d
f
c

nsertions are forbidden and the costs of all other edit opera-
ions are defined as the squared Euclidean distances between the
abels. If these restrictions are met, graphs can be represented
y modal matrices that are constructed as the concatenation of
he adjacency matrices’ eigenvectors, which are sorted in non-
ncreasing order w. r. t. the eigenvalues. If two graphs are isomor-
hic or nearly isomorphic and there are no multiple eigenvalues,
he graph matching problem is then equivalent to an instance
f the linear sum assignment problem that aligns the two sets
f nodes such that the absolute correlation between the graphs’
odal matrices is maximized [26].
This equivalence is used in [24] to formulate spectral versions

f the medoid graph problem and the generalized median graph
roblem. While spectral medoids can be computed in polynomial
ime, the spectral median problem is indeed a median problem
or multisets of real-valued vectors and hence no polynomial
lgorithm is available [34]. Also, when graphs are not nearly
somorphic, the spectral alignment of their nodes induces a sub-
ptimal alignment of the graphs, and thus the link to the medoid
r to the generalized median graph is broken. Within this context,
n iterative algorithm for estimating generalized median graphs
s presented in [24]. Given two initial graphs from the collection,
he algorithm computes the average aligned eigenvalues and
odal matrices and constructs an intermediate median graph

rom the average eigendecomposition. This process is repeated
ith the intermediate median and an unselected graph until all
raphs have been used. However, the resulting graph depends on
he order in which the graphs are selected, and the links to both
he spectral median problem and the generalized median graph
roblem are unclear.
An improved version of this approach is presented in [25],

here median graphs are defined from a weighted average of
he aligned eigenvalues and modal matrices. While this enables to
econstruct several candidate medians by mixing different scales
f the structure of the graphs, there is still no formal link to the
eneralized median graph problem. Moreover, also this method
oes not overcome the strong restrictions shared by all spectral
ethods mentioned above.

.2. Methods based on graph embedding into vector spaces

Another family of algorithms for estimating generalized me-
ian graphs builds upon an embedding of the input graphs into
ector spaces [18,29–32]. All heuristics that fall into this category
ely on the same embedding technique described in [28,35]: Each
raph G of the collection G is encoded as a vector xG ∈ R|G|,
efined as xG := (GED(G,G′))G′∈G . The embedding preserves dis-
ance ratios, and the encoding vectors are linearly independent.
he geometric median of the embeddings is then considered as
representative for the collection in the embedding space, and
median graph estimate in the graph space is constructed by
euristically solving the pre-image problem to find a graph whose
mbedding is close to the representative of the embeddings. Let
⋆ be a generalized median graph or weighted mean of two
raphs G and G′. To tackle the pre-image problem, embedding
ased heuristics assume that the embedding xG⋆ of G⋆ lies on the
egment that joins the embeddings xG and xG′ of, respectively,
G and G′ [36]. Since weighted means can be constructed from
optimal edit paths, this allows to interpolate G⋆ in the graph
pace. Note that, in practice, only suboptimal edit paths can be
omputed.
How exactly this pre-image problem is addressed is where

ifferent embedding based methods vary from each other. Two
ast heuristics are proposed in [18,29]. The first one (LINEAR),
onstructs G⋆ from the projection of the geometric median on
the segment joining its two nearest graphs w. r. t. the Euclidean
3

distance between their embeddings. The second heuristic
(TRIANGULAR) starts by selecting the three closest embeddings
to the geometric median, and constructs an intermediate median
graph by projecting one of these three embeddings on the seg-
ment joining the other two. G⋆ is then constructed by projecting
the median of the three embeddings on the segment joining the
embeddings of intermediate median and the first graph. Inspired
by these heuristics, in [30], it is suggested to recursively construct
G⋆ by projections onto hyperplanes of decreasing dimensionality
until dimension 3 or 2 is reached. A version that returns the
best intermediate median is also reported. While it improves the
previous heuristics in terms of quality, it is more time consuming
due to the computation of the SOD at each step.

Extensions of this approach are presented in [32]. The first
extension groups the graphs into pairs (BEST-LINEAR) or triplets
(BEST-TRIANGULAR) in non-decreasing order w. r. t. the
Euclidean distance to the geometric median in the embedding
space. Then, intermediate medians are constructed by applying
LINEAR or TRIANGULAR to each pair or each triplet, and the
process is repeated using these latter graphs only until one
graph remains. Finally, the intermediate median with the smallest
SOD is returned. The second extension searches for a better
intermediate by considering the weighted means between the
current intermediate median and its nearest neighbors in the
embedding space. This process is then repeated with the new
intermediate median until the improvement in the SOD is suffi-
ciently small. Due to the huge number of SOD computations, this
second extension is far too time consuming for large graphs or
collections.

Constructing a median graph with embedding based methods
has three severe drawbacks. Firstly, the link between the geomet-
ric median and the generalized median graph is unclear. Secondly,
GED has to be solved many times— for all pairs of graphs in
the collection for constructing the embeddings, and eventually
several times for computing the SODs. Thirdly, the labels of the
obtained estimated median are always drawn from the labels
present in the collection, which leads to a loose SOD if the node
or edge label space is continuous. Despite these drawbacks, these
methods are more flexible than those described in the previous
sections and are generic w. r. t. the spaces of labels, the edit
operations, and the edit costs. Also, the experimental evaluation
reported in [18] shows that, in comparison to spectral methods
and genetic search, embedding based methods exhibit a good
tradeoff between runtime and quality. For these reasons, they are
actually the most competitive methods. A comparison with our
algorithm is reported in Section 7.3.

2.3. Methods based on genetic and linear programming and greedy
and local search

To estimate median graphs in a reasonable computational
time, several methods compute suboptimal generalized median
graphs using heuristics. In [14], a genetic algorithm is proposed.
This method is restricted to real-valued node and edge labels
and assumes that the squared Euclidean distance is used for the
edit costs. In [18,20], this approach has been improved via new
bounding techniques that reduce the size of the search space.

In [21], a greedy heuristic is proposed that splits the objective
function into node and edge costs and optimizes both of them
separately. Its main drawback is that it yields highly suboptimal
median graph estimates, because it ignores the dependencies
between node and edge edit operations. Also, its effectiveness has
empirically been demonstrated only on very small graphs with up
to 9 nodes.

In [23], a linear programming based algorithm is suggested.
In a first step, the problem of computing a generalized median

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

g
t
m
t
l
t
b
t
e

f
o
t
t
i
d
u
n

2

a
h

e
s
e
t
f
a
o
g

l
b
e
b
m
f
o
a
t
p
t

G

raph is formulated as an integer linear program. Subsequently,
he continuous relaxation is solved via standard linear program-
ing solvers, and the continuous solution is projected back to

he discrete space. A disadvantage of this method is that the
oss of the final projection step is hard to control. Moreover,
he linear programming model is computationally very expensive
ecause it has a huge number of variables and constraints, and
he practical efficiency of the method critically depends on the
mployed solver.
In [22], two heuristics based on local search are proposed. The

irst one starts the search with the minimum common supergraph
f the graph collection whose median should be computed. Then,
he current candidate graph is iteratively improved in the direc-
ion of the node deletion that yields the largest improvement
n terms of SOD. The second heuristic explores more search
irections by randomly deleting nodes. Both heuristics can be
sed only in very restricted scenarios, as they allow neither node
or edge substitutions.

.4. Other approaches for closely related problems

There are also several works that address problems which
re slightly different from but closely related to the problem of
euristically computing generalized median graphs.
In [37], an algorithm for heuristically computing fuzzy gen-

ralized median graphs is proposed. Like the approaches pre-
ented in the previous section, the algorithm is based upon graph
mbedding into vector spaces, but uses a different embedding
echnique that is designed for the special case of graphs with
uzzy node and edge labels such as ‘‘small’’ or ‘‘big’’. Moreover, the
lgorithm does not employ GED for computing the embeddings
r the median, which implies that there is no direct link to
eneralized median graphs as introduced in Definition 1.
Another closely related problem is the common labeling prob-

em [38–40]. This problem asks to find a multiple assignment
etween the nodes of the graphs in the collection and the el-
ments of a virtual set of nodes such that the sum of costs
etween all pairs of graphs aligned by the assignment is mini-
ized. An approximate median graph can then be constructed

rom the multiple assignment. If the edit costs are metric, the
ptimal SOD can be upper bounded in terms of the multiple
ssignment [41]. Moreover, if graphs have real-valued labels and
he squared Euclidean distance is used for the edit costs, the ap-
roximate median corresponds to the generalized median. Since
he common labeling problem is NP-hard, several heuristics have
been proposed in [39,40].

Finally, several recent works study the closely related problem
to heuristically compute a graph that minimizes the Fréchet
mean for graphs with real-valued labels, where the Fréchet mean
is either defined based on the squared GED with specific edit
costs [42], or in terms of the Gromov–Wasserstein distance for
complete graphs [43,44]. Like the algorithm presented in this pa-
per, these works employ block coordinate update from an initial
candidate. While the obtained results are promising, the main
drawback of these approaches is that the order of the computed
representative is fixed by the order of the initial candidate.

3. Preliminaries

In this section, we introduce important concepts and nota-
tions. Table 1 provides a concise overview of the most frequent
notations. The precise definitions are contained in the following
subsections.
4

Table 1
Notation table.
Syntax Semantics

LV Set of node labels
LE Set of edge labels
A ∈ An Adjacency matrix for graph of order n
ϕ ∈ Ln

V Vector of node labels for graph of order n
Φ ∈ Ln×n

E Matrix of edge labels for graph of order n
G All simple graphs with labels from LV and LE
G ⊂ G Finite collection of graphs
π ∈ Πn,n′ Node map from graph of order n to graph of order n′

π ∈ ΠG
n Node maps from graph of order n to all graphs in G

Table 2
Edit operations and edit cost functions.
Edit operation type Edit cost function

Substituting nodes cns : LV × LV → R≥0
Deleting nodes cnd : LV → R≥0
Inserting nodes cni : LV → R≥0
Substituting edges ces : LE × LE → R≥0
Deleting edges ced : LE → R≥0
Inserting edges cei : LE → R≥0

3.1. Labeled graphs

In this paper, we consider simple graphs (directed or undi-
rected) which may or may not have labels on the nodes and
on the edges. Let LV and LE be sets of node and edge labels,
respectively. There is no restriction on the label types; the labels
might be symbols, numbers, multi-dimensional vectors, strings,
or anything else. Then, a graph G of order n is defined as a triplet

:= (A, ϕ, Φ):

• A := (Ai,j)ni,j=1 ∈ An is a graph’s adjacency matrix, where
An := {A ∈ {0, 1}n×n

| diag(A) = 0} is the set of all adjacency
matrices for simple graphs of order n.

• Nodes correspond to integers i ∈ [n] := {1, . . . , n}.
• Edges correspond to pairs (i, j) ∈ [n] × [n] with Ai,j = 1.
• ϕ := (ϕi)ni=1 ∈ Ln

V is the vector of node labels.
• Φ := (Φi,j)ni,j=1 ∈ Ln×n

E is the matrix of edge labels.

For all n ∈ N, Gn[LV ,LE] := {(A, ϕ, Φ) ∈ An × Ln
V ×

Ln×n
E } denotes the set all the graphs of order n generated from

LV and LE . The set of all graphs for LV and LE is defined as
G[LV ,LE] :=

⋃
n∈N Gn[LV ,LE]. Since LV and LE are arbitrary but

fixed, we usually use the short-hand notations Gn := Gn[LV ,LE]

and G := G[LV ,LE]. Note that A and Φ are symmetric for undi-
rected graphs. Therefore, whenever undirected graphs are being
studied, An and Ln×n

E denote the sets of symmetric adjacency and
edge label matrices, respectively. Also, ϕ and Φ are by definition
independent from each others.

3.2. Graph edit distance and node maps

The graph edit distance (GED) is classically defined as the
minimum cost of an edit path P from a source graph G to a target
graph G′ [4,45]. An edit path from a graph G of order n to a graph
G′ of order n′ is a sequence of edit operations that transforms
G into a graph isomorphic to G′. There are six edit operations:
Substituting a node or and edge from G by a node or an edge
from G′, deleting an isolated node or an edge from G, and inserting
an isolated node or an edge between two existing nodes into G′.
As specified in Table 2, each type of edit operations comes with
its own edit cost function. Note that the substitution functions
respect cns(x, x) = 0 and ces(y, y) = 0, for all x ∈ LV and all

y ∈ LE .

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

o
a
D
t
p
a
a
f
a
m

D

t
f

T
o

e
t
a
i
i
s
A
i

c

w
A

c

Intuitively, GED(G,G,′) can be defined as the minimum cost
f an edit from G to G′, where the cost of an edit path is defined
s the sum of the costs of its contained edit operations (cf.
efinition 10 in Appendix A for the formal definition). Although
his path based definition is conceptually very simple, it is im-
ractical for algorithmic purposes. This is because, firstly, there
re infinitely many edit paths from a source to a target graph,
nd, secondly, one has to solve the graph isomorphism problem
or recognizing an edit path as such. Thus, algorithms for GED use
n alternative definition based on the concept of error-correcting
atchings [4], also called node maps [7,46].

efinition 2 (Node Map). Let ϵ be a special symbol that denotes
dummy nodes, and G and G′ be graphs of order n and n′, respec-
ively. A relation π ⊆ ([n] ∪ {ϵ}) × ([n′

] ∪ {ϵ}) is called node map
rom G to G′, if and only if the following conditions hold:

• For each i ∈ [n], there is exactly one k ∈ [n′
] ∪ {ϵ} with

(i, k) ∈ π . We denote this node by π (i).
• For each k ∈ [n′

], there is exactly one i ∈ [n] ∪ {ϵ} with
(i, k) ∈ π . We denote this node by π−1(k).

he set of all node maps from a graph of order n to a graph of
rder n′ is denoted by Πn,n′ .

A node map π ∈ Πn,n′ can be used to define for all nodes and
dges of graphs G and G′ of order n and n′ whether they have
o be substituted, deleted, or inserted. Let i, j ∈ [n], k, l ∈ [n′

],
nd Ai,j = A′

k,l = 1. If π (i) = k, i has to be substituted by k;
f π (i) = ϵ, i has to be deleted; and if π−1(k) = ϵ, k has to be
nserted. Similarly for the edges: If (π (i), π (j)) = (k, l), (i, j) is
ubstituted by (k, l); if A′

π (i),π (j) = 0, (i, j) has to be deleted; and if
π−1(k),π−1(l) = 0, (k, l) has to be inserted. The node map π hence
nduces the edit cost

(π,G,G′) := cV (π, ϕ, ϕ′) + cE(π, A, Φ, A′, Φ ′),

ith node edit costs cV (π, ϕ, ϕ′) and edge costs cE(π, A, Φ,
′, Φ ′). The node costs are defined as

V (π, ϕ, ϕ′) :=

∑
i∈[n]

δπ (i)cns(ϕi, ϕ
′

π (i))

+ (1 − δπ (i))cnd(ϕi)

+

∑
k∈[n′]

(1 − δπ−1(k))cni(ϕ
′

k),

where δl equals 1 just in case l ̸= ϵ, and 0, otherwise [33].
Similarly, the edge costs are defined as

cE(π, A, Φ, A′, Φ ′) :=

α·

[∑
i∈[n]

∑
j∈[n]

[
δπ (i)δπ (j)

[
Ai,jA′

π (i),π (j)ces(Φi,j, Φ ′

π (i),π (j))

+ Ai,j(1 − A′

π (i),π (j))ced(Φi,j)

+ (1 − Ai,j)A′

π (i),π (j)cei(Φ
′

π (i),π (j))
]

+ (1 − δπ (i)δπ (j))Ai,jced(Φi,j)
]

+

∑
k∈[n′]

∑
l∈[n′]

(1 − δπ−1(k)δπ−1(l))A
′

k,lcei(Φ
′

k,l)
]
,

where α := 1/2, if the graphs are undirected, and α := 1,
otherwise [33].

It has been shown that, under mild constraints that can be
assumed to hold w. l. o. g. [4,5,7,46], the following node map
based definition of GED is equivalent to the intuitive, edit path
based definition:
5

Definition 3 (GED—Operational Definition). The graph edit dis-
tance from a graph G of order n to a graph G′ of order n′ is defined
as GED(G,H) := minπ∈Πn,n′

c(π,G,G′).

Definition 3 renders GED algorithmically accessible, because
node maps can be handled more easily than edit paths. In par-
ticular, it implies that each node map yields an upper bound for
GED.

3.3. Generalized median graphs and sum of distances

Definition 1 given above provides a very intuitive understand-
ing of the generalized median graph problem, but does not pro-
vide us with a starting point for an efficient heuristic. Let G ∈ G
be a graph of order n and G := {Gp

| p ∈ [|G|]} ⊆ G be a
finite collection of graphs. To come up with an alternative for
Definition 1, we use the node map based definition of GED to
re-write SOD(G, G) as a sum of independent minimizations. To
this purpose, we define the sum of distances from a graph G to a
collection of graphs G given fixed node maps from G to all graphs
contained in G as

SOD(π,G, G) :=

∑
p∈[|G|]

c(πp,G,Gp),

where π ∈ ΠG
n := Πn,n1 × · · ·×Πn,n|G| is a vector that contains a

node map πp from G to each graph Gp
∈ G. We can then express

SOD(G, G) as

SOD(G, G) = min
π∈Π

G
n

SOD(π,G, G),

which immediately implies that G⋆
∈ G is a generalized median

for G if and only if we have

SOD(G⋆, G) = min
n∈N

min
π∈Π

G
n

min
G∈Gn

SOD(π,G, G),

Recalling that the constituents A, ϕ, and Φ of a graph G =

(A, ϕ, Φ) are defined independently, we eventually obtain the
following alternative characterization of a generalized median
graph:

Corollary 1. A graph G⋆
∈ G is a generalized median graph for a

finite collection of graphs G ∈ G in the sense of Definition 1, if and
only if the following equation holds:

SOD(G⋆, G) = min
n∈N

min
π∈Π

G
n

min
A∈An

ϕ∈Ln
V Φ∈Ln×n

E

SOD(π,G, G)

4. Theoretical results

In this section, we prove several theoretical properties of the
problem of computing generalized median graphs. All proofs of
the presented theorems and propositions are contained in the
appendix.

First, we show that generalized median graphs exist if median
node and edge labels exist and the insertion and deletion costs
are constant. More precisely, we prove the following Theorem 1:

Theorem 1. If the conditions (C1) and (C2) hold, then the gener-
alized median graph problem has a solution.

(C1) The deletion and insertion costs cnd, cni, ced, and cei are
constant.

(C2) The problem minx∈L
∑

y∈L c(x, y) has a solution for any non-
empty multiset L ⊆ L and each (L, c) ∈ {(LV , cns), (LE, ces)}.

The following Proposition 1 states that (C2) is also necessary
for the existence of generalized median graphs. If it does not hold,
we can construct instances that do not have a solution.

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

P
a
c

roposition 1. If (C2) is not guaranteed to hold, then there is
space of graphs G, edit costs cns, cnd, cni, ces, ced, and cei, and a
ollection of graphs G ⊂ G, such that the generalized median graph
problem does not have a solution.

Next, we show that generalized median graphs are in gen-
eral non-unique. More precisely, we prove that it is possible to
construct arbitrarily large instances of the generalized median
graph problem such that each graph in the collection solves the
problem.

Proposition 2. There is a space of graphs G, edit costs cns, cnd, cni,
ces, ced, and cei, such that, for each n ∈ N, there is a collection G ⊂ G
with |G| = 2(

n
2), such that each graph G ∈ G is a generalized median

graph for G.

We also provide a formal proof of the NP-hardness of the
problem of computing generalized median graphs. In [14], it is
claimed that this result follows from the NP-hardness of GED.
This, however, is not the case. The reason for this is that, while
the NP-hardness of GED indeed immediately implies that the
problem of computing the optimal SOD is NP-hard (see proof of
Proposition 3 in Appendix D), it could in principle be the case
that the generalized median graph which yields the optimal SOD
can be found in polynomial time. Since computing SOD(G, G) is
NP-hard even for fixed G ∈ G, this would not contradict the
NP-hardness of the problem of computing the optimal SOD. The
following Theorem 2 states that this is not the case, i. e., that
computing a generalized median graph is NP-hard even if we are
not interested in its SOD.

Theorem 2. Even for unlabeled graphs and uniform edit costs, the
problem of computing a generalized median graph is NP-hard.

Finally, we show that the closely related problem of comput-
ing the optimal SOD is not only hard to solve exactly, but also
hard to approximate.

Proposition 3. Even for unlabeled graphs and constant edit costs,
the problem of computing the optimal SOD is APX-hard and there
is no polynomial time α-approximation algorithm for any α, unless
the graph isomorphism problem is in P.

The question whether the graph isomorphism problem is in
P has been open for decades; the fastest currently available
algorithm runs in quasi-polynomial time [47]. In fact, it is a prime
candidate for an NP-intermediate problem that is neither in P
nor NP-complete. In view of this and because of Proposition 3,
it is hence unrealistic to aim at polynomial time algorithms
that compute approximate median graphs whose SODs can be
bounded w. r. t. the optimum. All one can reasonably strive for
are heuristics that yield tight SODs in practice.

5. GMG-BCU: A scalable algorithm for estimating generalized
median graphs

In this section, we present the main contribution of this paper:
the local search based generalized median graph estimator GMG-
BCU. We first give an overview of the algorithm (Section 5.1),
then provide detailed explanations for the most important sub-
routines (Sections 5.2 to 5.3), and eventually discuss initialization
strategies, termination criteria, convergence, and runtime com-
plexity (Sections 5.4 to 5.6). GMG-BCU extends and improves the
algorithm presented in [33] by introducing an extra optimization
step w. r. t. the order of the median graph instead of optimizing
only within a fixed order, and by considering the initialization as
an input of the algorithm (the algorithm presented in [33] always
uses medoid initialization).
6

5.1. Overview and decomposition into subproblems

Block coordinate update (BCU) is a standard optimization tech-
nique that considers blocks of variables, each representing a
subproblem. Starting with initial values for at least one block, it
alternately optimizes w. r. t. each block and repeats the process
until stability. In our setting, the reformulation of the general-
ized median problem given in Corollary 1 naturally yields the
following three blocks of variables:

• The order n ∈ N of the median graph.
• The vector of node maps π ∈ ΠG

n from the median to the
graphs in the collection.

• The median graph’s adjacency matrix A ∈ An, node labels
ϕ ∈ Ln

V , and edge labels Φ ∈ Ln×n
E .

Starting from an initial estimated median graph G⋆, our algo-
rithm GMG-BCU hence minimizes the SOD by sequentially solving
the following subproblems until a termination criterion is met:

(P1) Update the node maps π := (πp)p∈[|G|] ∈ ΠG
n , keeping

the median and the order fixed. That is, for all p ∈ [|G|],
compute πp

:= argminπ∈Πnc(π,G⋆,Gp).
(P2) Update the median graph G⋆

:= (A⋆, ϕ⋆, Φ⋆) ∈ Gn, keep-
ing the order and the node maps fixed. That is, compute
ϕ⋆

:= argminϕ∈Ln
V

∑
p∈[|G|]

cV (πp, ϕ, ϕp) and (A⋆, Φ⋆) :=

argmin(A,Φ)∈An×Ln×n
E

∑
p∈[|G|]

cE(πp, A, Φ, Ap, Φp).

(P3) Update the order n ∈ N.

Each step decreases the SOD, which ensures that GMG-BCU
converges to a local optimum. To solve (P2), we have to assume
that the constraints (C1) (insertion and deletion costs are con-
stant) and (C2) (median node and edge labels exist) hold; and that
we have access to an algorithm median-label that computes
optimal or close-to-optimal median labels. How this can be done
depends on the label domains LV and LE and on the substitution
cost functions cns and ces. In Section 5.2, we discuss how to
implement median-label for standard choices of LV , LE , cns, and
ces.

Note that (C2) is really only a technical constraint, as violating
it requires to choose the label domains and substitution costs
in a very unnatural way (cf. Proof of Proposition 1 in D). More-
over, Proposition 1 implies that the entire problem of computing
generalized median graphs is ill-posed if (C2) does not hold. In
contrast to that, (C1) is a real constraint. If it does not hold,
generalized median graphs might still exist, but GMG-BCU is not
guaranteed to converge and hence should not be used. However,
to the best of our knowledge, (C1) is respected in all application
scenarios where GED is used to solve real-world problems [3].
Moreover, as pointed out in Section 2 above, most existing com-
petitors make far more demanding assumptions (all graphs of the
same order, real-valued scalars as node and edge labels, constant
substitution costs). Under the assumption that the constraints are
met, the three subproblems can be solved as follows:

Subproblem (P1). This subproblem is equivalent to |G| indepen-
dent GED problems. Solving it is hence straightforward. Since ex-
act GED algorithms are unusable even for relatively small graphs
and collections, (P1) is relaxed by using a heuristic ⌈GED⌉ that
computes a node map with induced upper bound for GED. The
choice of this heuristic has a huge effect on the scalability of
the method w. r. t. the size of the collection and the order of the
contained graphs. In Section 7, we evaluate this effect empirically.
Cf. [10] for an extensive survey on GED heuristics. Implemen-
tations of around 30 different heuristics are available in the
open-source C++ library GEDLIB [48]. Note that it is mandatory

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

t
q
m
u

S
c
S
t
p
h
m

S
t
m
t
e
t
a
i

M
r
i
t
t
(
l
h
b
A
u
G
i
T
B
c
m
m
t
u
w
i

d
F
t
a
t
(
p

5
o

a
n
s
L

x

w
i
{

l

hat the employed GED heuristic computes a node map. Conse-
uently, approaches such as the recently proposed GNN based
ethods [11,12] that only compute estimates for GED cannot be
sed.

ubproblem (P2). This subproblem is usually computationally
heaper but more interesting from an algorithmic point of view.
ince (C1) holds, Lemma 2 tells us that (P2) corresponds to finding
he median label of a multiset of labels, for each node and each
air of nodes of the current median. By (C2), these problems
ave a solution, which we compute by calling the algorithm
edian-label described in Section 5.2.

ubproblem (P3). This subproblem is even trickier. Contrary to
he other problems, it is not possible to update the order without
odifying the node maps and the current median graph. We

herefore propose to either remove nodes and their incident
dges or add isolated nodes, together with their labels, such that
he SOD is reduced and the other variables are impacted as little
s possible. The proposed algorithm, denoted by update-order,
s detailed in Section 5.3.

acrostructure of the proposed algorithm. Algorithm 1 summa-
izes the main steps of the proposed algorithm GMG-BCU. After
nitializing the current median G⋆, the vector of distances d, and
he vector of node maps π (lines 1 to 2), it iteratively updates
he node maps (subproblem (P1), lines 4 to 6), then the median
subproblem (P2), lines 7 to 23), and finally the order (subprob-
em (P3), lines 24 to 25). Note that, due to the suboptimality of the
euristic ⌈GED⌉, the node maps are updated only if they provide
etter distances than the best previously computed node maps.
lso note that, due to its high computational cost, the procedure
pdate-order is conditionally called only if the median graph
⋆ has not undergone any modification in the current iteration,
. e., if a local optimum has been reached for the current order.
he only exception is the very first iteration, where the GMG-
CU always calls update-order. This ensures that the algorithm
onverges towards a reasonable order in an early stage, which
akes the algorithm a lot faster when the initial median is
uch smaller or larger than the optimum. Without this special

reatment of the first iteration, it can happen that the algorithm
nnecessarily spends a lot time to optimize the current median
ithin the initial order, which can be far from optimal (especially

f random initialization is chosen).
The computation of the median terminates once a suitably

efined termination criterion is met (cf. Section 5.4 for details).
inally, the node maps and distances from the obtained median
o the graphs in the collection G can optionally be tightened via
second heuristic ⌈GED⌉

′ that produces tighter upper bounds
han the heuristic ⌈GED⌉ employed during the main while-loop
lines 27 to 30). An analysis of GMG-BCU’s runtime complexity is
rovided in Section 5.6.

.2. Subproblem (P2): Updating the median graph within the current
rder

This section details subproblem (P2) for specific types of labels
nd substitution cost functions. For each node i and each pair of
odes (i, j), this problem asks to find a label which minimizes the
um of substitution costs to all the labels of a multiset M (Li or
i,j). That is, we have to solve

⋆
:= argmin

x∈L

∑
y∈M

cls(x, y) (1)

with (M,L, cls) = (Li,LV , cns) or (Li,j,LE, ces). We assume that
we have access to an algorithm median-label that computes

either the real median element of a multiset of labels or a good

7

Algorithm 1: GMG-BCU
In: Set G ⊂ G of graphs, an initial graph G0 ∈ Gn.
Out: Graph G⋆

∈ G with SOD(G⋆, G) ≤ SOD(G0, G), vector of
distances d, vector of node maps π.

1 G⋆
:= (A⋆, ϕ⋆, Φ⋆) := G0; n := order of G⋆;

2 d := (dp)p∈[|G|]; π := (πp)p∈[|G|]; it := 1;
3 while termination criterion not met do
4 for p ∈ [|G|] do
5 π := ⌈GED⌉(G⋆,Gp);
6 if c(π) < dp then dp := c(π); πp

:= π ;
7 if nodes are labeled then
8 for i ∈ [n] do
9 L := ∅;

10 for p ∈ [|G|] do
11 if πp(i) ̸= ϵ then append ϕ

p
πp(i) to L;

12 ϕ⋆
i := median-label(L, cns);

13 for (i, j) ∈ [n]2 do
14 L := ∅;
15 for p ∈ [|G|] do
16 if πp(i) ̸= ϵ and πp(j) ̸= ϵ then
17 if Ap

πp(i),πp(j) = 1 then
18 append Φ

p
πp(i),πp(j) to L

19 if edges are labeled then
20 Φ⋆

i,j := median-label(L, ces);
21 s :=

∑
φ∈L ces(Φ

⋆
i,j, φ);

22 A⋆
i,j := (cei + cer)|L|−cer|G|> s;

23 else A⋆
i,j := (cei + cer)|L|−cer|G|> 0;

24 if G⋆ unchanged in current iteration or it = 1 then
25 (G⋆, π, d) := update-order(G⋆, π, d, G, it);
26 it := it + 1;
27 if tightening required by user then
28 for p ∈ [|G|] do
29 π := ⌈GED⌉

′(G⋆,Gp);
30 if c(π) < dp then dp := c(π); πp

:= π ;

31 return G⋆, d, π;

approximation of it. For updating the topology of the current
median, let x⋆

:= median-label(Li,j, cls) for a pair of nodes
(i, j) ∈ [n]2. Lemma 2 tells us that by updating the adjacency
matrix A⋆ as

A⋆
i,j :=

[
(cei + ced)|Li,j| − ced|G| >

∑
y∈Li,j

ces(x⋆, y)
]
, (2)

we obtain a new candidate median graph which is optimal for the
current order and the current node maps. This implies that the
SOD decreases whenever solving subproblem (P2) leads to mod-
ifications of the current median. In the remainder of this section,
we present six examples of how to implement median-label for
some specific label types and cost functions.

Symbolic labels with constant edit costs. If cls(x, y) = cs · (1−δx=y),
here cs > 0 is a constant, any mode of M solves Eq. (1). That

s, we can set x⋆
:= argmaxx∈L[M]hM(x), where hM : M →

0, . . . , |M|}, hM(x) :=
∑

y∈M δx=y is the histogram of all the
abels in M, and L[M] is the restriction of L to the elements
appearing in M. This case corresponds to the standard constant
costs associated with graphs that represent chemical compounds.
Since the size of M never exceeds the size of G, the histograms

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

c
o
w
A

A

an be computed in O(|G|) time for each node i and for each pair
f nodes (i, j). For each pair of nodes (i, j), we also have to decide
hether or not to include the respective edge in the median G⋆.
lso note that Eq. (2) simplifies to
⋆
i,j :=

[
(cei + ced)|Li,j| − ced|G| > ces

(
|Li,j| − hLi,j (x

⋆)
)]

,

which implies that updating ϕ⋆ and (Φ⋆, A⋆) requires O(n|G|) and
O(n2

|G|) time, respectively.

Unlabeled edges. This case can viewed as a special case of the
previous one with a unique label for all the edges, e. g., with
LE = {1}. In this case, we have hLi,j (1) = |Li,j|, for each pair
of nodes (i, j). Therefore, Eq. (2) can be further simplified to

A⋆
i,j :=

[
(cei + ced)|Li,j| − ced|G| > 0

]
.

Real scalar-valued labels with absolute differences as edit costs.
Assume that L ⊆ R and that the substitution costs are given
as cls(x, y) = |x − y|. Then any x⋆

∈ [y⌊(n+1)/2⌋, y⌈(n+1)/2⌉] ∩ L ⊇

{y⌊(n+1)/2⌋, y⌈(n+1)/2⌉} solves Eq. (1), where (ys)
|M|

s=1 is an ordering
of M. If L is a closed interval, x⋆ can be set to the median x⋆

:=

(y⌊(n+1)/2⌋ + y⌈(n+1)/2⌉)/2.

Real vector-valued labels with (squared) euclidean distances as edit
costs. If L is a compact subset of Rm, the Euclidean norm ∥x − y∥2
or its square ∥x − y∥2

2 are typical choices for the substitutions
costs cls(x, y). For cls(x, y) = ∥x − y∥2

2, the optimal label x⋆ cor-
responds to the geometric mean x⋆

:= (
∑

y∈M y)/|M| of M.
For cls(x, y) = ∥x − y∥2, x⋆ is M’s geometric median. While
there is no closed-form solution for the geometric median, several
numerical algorithms exist. In our experiments (Section 7), we
used a modified version of Weiszfeld’s algorithm [49,50].

Label sets of constant size. If |L| is finite and constant w. r. t. the
size |G| of the graph collection, Eq. (2) can be solved exactly by
computing

∑
y∈M cls(x, y) for each x ∈ L.

String labels with levenshtein distances as edit costs. If L is the set
of all strings over a finite alphabet Σ and cls is the Levenshtein
distance, solving Eq. (1) is NP-hard even if |Σ | = 2 [51]. However,
several heuristics exist that compute close-to-optimal solutions
in polynomial time [52,53].

5.3. Subproblem (P3): Updating the order

Once the current median G⋆
∈ Gn and the node maps π :=

(πp)p∈[|G|] have been updated as described in the previous sec-
tions, the algorithm update-order aims at reducing the SOD by
incrementally decreasing or increasing the order of G⋆. It does so
by deleting one node and all its incident edges at a time, or by
inserting an isolated node with a given label at a time. In other
words, update-order iteratively performs a local search around
(G⋆, π) w. r. t. a minimal variation of the order. Hence, the SOD
again decreases whenever update-order modifies the current
median.

Algorithm 2 gives an overview of the algorithm. In a first step,
update-order incrementally deletes nodes from the current
median whose deletions lead to a reduced SOD (lines 2 to 6). In
a second step, nodes are inserted incrementally as long as doing
so decreases the SOD (lines 8 to 12). Note that the second step
is carried out only in the first iteration of the main BCU or if no
node was deleted in the first step. The reason for this specification
is that, in the first iteration, the current median and the current
node maps are still far from optimal and it might hence happen
that is beneficial to both delete and insert nodes. In later iter-
ations, this happens very rarely. Therefore, the computationally
expensive insertion routine should be called only if the cheaper
deletion routine did not find a node to delete. In the following
Sections 5.3.1 and 5.3.2 , we give detailed descriptions of the

deletion and insertion routines.

8

Algorithm 2: update-order
In: Set G ⊂ G of graphs, initial graph G⋆

∈ Gn, list of node
maps π, list of distances d, iterator it .

Ensures: Updates G⋆, π, and d.
1 n := order of G⋆;
2 while ∃i ∈ [n] with ∆−

i < 0 do
3 i⋆ := argmini∆

−

i ;
4 delete i⋆ from G⋆;
5 update π and d;
6 n := n − 1;
7 if a node was deleted and it > 1 then return;
8 while ∃(z, ϕ) ∈ Z × LV with ∆+

z,ϕ < 0 do
9 (z⋆, ϕ⋆) := argmin(z,ϕ)∆

+
z,ϕ;

10 add node with label ϕ⋆ to G⋆;
11 use z⋆ to update π and d;
12 n := n + 1;

5.3.1. Decreasing the order
Let i ∈ [n] be any node of G⋆, and let G⋆−i

∈ Gn−1 be the graph
obtained from G⋆ by deleting i and its incident edges. For each
candidate median G⋆−i, we consider the collection of updated
node maps π̃i := (π̃p

i)p∈[|G|]. The variation of the SOD induced
by removing node i from G⋆ is hence given by

∆−

i := SOD(π̃i,G⋆−i, G) − SOD(π,G⋆, G).

Note that ∆−

i can be obtained without computing the entire
induced cost of each mapping π̃

p
i ∈ π̃i. A much more efficient

way to compute this value consists in analyzing the local mod-
ifications of the edit operations induced by removing i from G⋆

and shifting from node maps π to π̃i. Each node map πp that
substitutes i results in a node map π̃

p
i that inserts it instead, and

each node map πp that deletes i results in a node map π̃
p
i which

ignore index i. The same holds for the edges that are incident to
i. All these local modifications are summed up by the following
formula:

∆−

i :=

∑
p∈[|G|]

[
δπp(i)

(
cni − cns(ϕ⋆

i , ϕ
p
πp(i))

)
− (1 − δπp(i))cnd

+

∑
j∈[n]

A⋆
i,j

[
δπp(i)δπp(j)A

p
πp(i),πp(j)

(
cei

− ces(φi,j, φ
p
πp(i)πp(j))

)
− ced

(
1 − δπp(i)δπp(j) A

p
πp(i),πp(j)

)]]
5.3.2. Increasing the order

Checking whether augmenting the order of the current median
might yield a lower SOD proves a more complex task. We allow
the algorithm to add a single isolated node to the median, and
the objective is to infer both the label and the assignments of the
new node that minimize the variation of the SOD. If the minimal
variation is negative, a new node will be added to the current
median. For each graph Gp

∈ G and its current node map πp, we
define Ip as the set of indices of nodes that are inserted in πp, plus
the dummy index ϵ. Let Z = I1 × I2 × · · · × I |G|. Each element
z := {z1, . . . , z|G|

} ∈ Z encodes a configuration that describes
how to map the new potential node in each graph of the dataset,
where zp is the index of the node in Gp to which the new potential
node in G⋆ is mapped. In order to check whether augmenting the
order of G⋆ yields a lower SOD, one should identify the couple
(z⋆, ϕ⋆) ∈ Z × LV defined as follows:

(z⋆, ϕ⋆) := argmin ∆+

z,ϕ (3)

(z,ϕ)∈Z×LV

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

n
1
s
t
d

g
s
o
s

S
s
p
L
z
b

∆

c
g
m
z

∆

i

o
l
h
o
l

t
d
o
c
s
c
o
m
b
n

I
i

G
f
c
s
m
a
Z
o
a
p
C
e
f

a
o
e

5

c
f

m
c
c
s
n
g
m

u
t
t
b
t
i
i
w
c

P
B
w
a
c

5

v
p

S
r
b
o
o
t
i
i

∆+

z,ϕ :=

∑
p∈[|G|]

zp=ϵ

cnd +

∑
p∈[|G|]

zp ̸=ϵ

(
cns(ϕ, ϕ

p
zp) − cni

)
(4)

∆+
z,ϕ denotes the variation of the SOD induced by adding a

ode with index |G⋆
| + 1 and label ϕ to G⋆ and setting πp(|G⋆

| +

) := zp in each assignment πp. In other words, if ∆+
z,ϕ < 0 for

ome couple (z, φ) (and a fortiori for the optimal couple (z⋆, ϕ⋆)),
he SOD can be lowered by applying the modifications we just
escribed.
The problem described by Eqs. (3) and (4) is intractable in the

eneral case, but some efficient strategies can be derived for some
pecific labels and cost functions. We now present a polynomial
ptimal strategy for symbolic labels and an efficient heuristic
trategy for the general case.

ymbolic node labels with constant edit costs. For graphs with
ymbolic node labels and constant node substitution costs cns it is
ossible to identify an optimal couple (z⋆, ϕ⋆) in polynomial time.
et z(ϕ) be the number of nodes with label ϕ in a configuration
, and z(ε) be the number of dummy nodes in it. Eq. (4) can then
e rewritten as follows:
+

z,ϕ := z(ε)cnd + (|G| − z(ε))(cns − cni) − z(ϕ)cns

If we consider z as a fixed parameter, the above expression is
learly minimized when z(ϕ) is maximal. In other words, for any
iven configuration z, the label ϕ⋆(z) that minimizes ∆+

z,ϕ is the
ost frequent label among nodes of z. This implies that we have

⋆
= argminz∈Z∆

+
z , where

+

z := z(ε)cnd + (|G| − z(ε))(cns − cni) − z(ϕ⋆(z))cns

s the impact of the couple (z, ϕ⋆(z)) on the SOD.
Since ∆+

z is minimal if and only if z(ϕ⋆(z)) is maximal, an
ptimal configuration z⋆ must contain as many occurrences of the
abel ϕ⋆(z) as possible. For a couple (z⋆, ϕ⋆) to be optimal, ϕ⋆ must
ence be selected as a label that appears in the greatest number
f sets Ip. Moreover, for each set Ip that contains a node k with
abel ϕ⋆, we must set z⋆p

:= k.
For the sets Ip that do not contain any node with label ϕ⋆,

he cases cns ≤ cnd + cni and cns > cnd + cni have to be
istinguished. In the first case, ∆+

z positively depends on z(ε). In
rder to minimize ∆+

z⋆ , an optimal configuration z⋆ must hence
ontain as few dummy nodes as possible. This is achieved by
etting z⋆p

:= ϵ, if Ip = {ϵ}, and arbitrarily setting z⋆p
:= k, if Ip

ontains a node k ̸= ϵ. In the second case, ∆+
z negatively depends

n z(ε). In order to minimize ∆+

z⋆ , an optimal configuration z⋆

ust contain as many dummy nodes as possible. This is achieved
y setting z⋆p

:= ϵ for all remaining sets Ip that do not contain a
ode with label ϕ⋆.
The whole procedure runs in O(

∑
p∈|G|

|Ip|) time, as each set
p must be scanned in order to identify the label ϕ⋆ that appears
n the greatest number of sets.

eneral case. For the general case, we make use of the fact that,
or each fixed ϕ ∈ LV , the optimal configuration zϕ can be
onstructed as follows: For each p ∈ [|G|], if Ip = {ϵ}, we must
et zpϕ := ϵ. Otherwise, let k⋆

:= argmink∈Ip\{ϵ}cns(ϕ, ϕ
p
k). The

inimization of ∆+
z,ϕ imposes to set zpϕ to ϵ if cnd+cni ≤ cns(ϕ, ϕ

p
k⋆)

nd to k⋆ otherwise. Moreover, for each fixed configuration z ∈

, the optimal node label ϕz can be computed as the median
f the labels {ϕ

p
zp | p ∈ [|G|] ∧ zp ̸= ϵ} of all nodes that

re substituted under z. That is, inferring ϕz amounts to com-
uting a median label, as described in Section 5.2. Given a set
= {ϕ1, . . . , ϕK } of initial candidate labels, we hence obtain an

stimate of the optimal solution by running the following BCU
rom each candidate:

(Step 1) Compute optimal configuration z := argminz̃∈Z ∆+

z̃,ϕ for
current node label ϕ.
9

(Step 2) Compute optimal node label ϕ := argminϕ̃∈LV ∆+

z,ϕ̃ for
current configuration z.

The initial candidate set C is obtained by running a K -medians
lgorithm on the set

⋃
p∈[|G|]

{ϕ
p
k | k ∈ Ip ∧ k ̸= ϵ} of labels

f all inserted nodes. Once all BCUs have terminated, the best
ncountered couple is returned.

.4. Termination criteria and convergence

The algorithm GMG-BCU presented in the previous section
an be run with various termination criteria. We consider the
ollowing ones:

• Global convergence: stop if no improving node map is found
and the median G⋆ has not been modified in the current
iteration.

• Median-wise convergence: stop if the median G⋆ has not been
modified for a constant number I ′ of consecutive iterations.

• Time limit: stop if a time limit T has been reached.
• Maximal number of iterations: stop if a maximal number of

iterations I has been reached.

GMG-BCU should always be run with the global and the
edian-wise convergence criteria. Note that the median-wise
onvergence criterion ensures that the descent stops when it has
onverged median-wise, even if better and better node maps can
till be found. This may happen with complex GED instances and
on deterministic GED heuristics. Initial tests showed that it is a
ood choice to set the number of consecutive iterations without
odification of the median to I ′ := 3.
The time limit T and the maximal number of iterations I can be

sed in addition to the convergence criteria to achieve a desired
radeoff between runtime and accuracy. Since GMG-BCU is an any-
ime algorithm, it always returns a solution even if interrupted
efore convergence. However, the experiments reported in Sec-
ion 7 indicate that enforcing a maximum number of iterations
s usually not required, as GMG-BCU typically converges after few
terations. The following Proposition 4 states that, even if run only
ith the global convergence criterion, GMG-BCU is guaranteed to
onverge after finitely many iterations.

roposition 4. If run with the global convergence criterion, GMG-
CU converges after at most ⌊(SOD(G0, G) − SOD⋆)/ε⌋ iterations,
here G0 is the initial candidate graph, SOD⋆ is the optimal SOD,
nd ε is the convergence threshold used by the global convergence
riterion.

.5. Initialization

Since GMG-BCU is a local search algorithm, it can be run with
arious strategies for generating the initial candidate G0. In this
aper, we consider the following strategies:

• The medoid or set-median of the collection G.
• Graphs with minimum, maximum, and mean order in the

collection G.
• A multi-start version which randomly picks a constant num-

ber κ of initial graphs from G, applies BCU to each of them,
and selects a resulting graph with a minimum SOD.

Initializing with the medoid has the advantage that the initial
OD is already pretty low. However, it is costly in terms of
untime, since all pairwise distances between graphs in G must
e computed. This can be avoided if we initialize with a graph
f minimum, maximum, or mean order—of course, at the price
f a higher initial SOD. The multi-start version yields a good
radeoff between runtime and accuracy. It is faster than medoid
nitialization (cf. Section 5.6) and achieves a better SOD than
nitializing with just one graph.

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

5
.6. Complexity analysis

Let nmax
:= maxp∈[|G|] np be the size of the largest graph in

the collection G, and n⋆ be the maximal size of the median G⋆ as
the BCU runs. Note that, although for very exotic cost functions
(deletion for free) it might happen that n⋆

= O(nmax
|G|), we

usually have n⋆
= O(nmax). Furthermore, let I⋆ be the maximal

number of iterations required by one of the descents, and ω(n, n′)
and ω′(n, n′) be the complexities of upper bounding the GED from
a graph of order n to a graph of order n′ using the heuristics
⌈GED⌉ and ⌈GED⌉

′ employed, respectively, during the BCU and
during the final tightening phase. Finally, let ω′′(n⋆, nmax, |G|) be
the complexity of updating the node and edge labels as well as
the order in one iteration of the BCU. Then we can state the
following proposition:

Proposition 5. GMG-BCU runs in O(δmedoidω(nmax, nmax)|G|
2

+

κI⋆[ω(n⋆, nmax)|G| + ω′′(n⋆, nmax, |G|)] + δtighteningω
′(n⋆, nmax)|G|)

time, where κ denotes the number of initial candidate graphs, and
δmedoid, δtightening ∈ {0, 1} indicate, respectively, whether or not
medoid initialization and final tightening are employed.

Note that the complexity ω′′(n⋆, nmax, |G|) depends on the
label spaces and on the edit cost functions and hence cannot
be specified in more detail. In the case of symbolic labels and
constant edit cost functions, ω′′ is linear in |G|. The same holds if
the sizes of the label spaces are constant w. r. t. |G|. In the case of
real-valued vectors, ω′′ comprises the complexity of Weiszfeld’s
algorithm and K -medians estimation for real-valued vectors. By
enforcing a constant number of iterations, these subroutines can
be set up to run in linear time w. r. t. |G|, too. We hence obtain the
following corollary, which states that GMG-BCU can be configured
to run in linear time w. r. t. the size of the collection G:

Corollary 2. Assume that median node and edge labels can be
computed in linear time w. r. t. |G|, which, for instance, is the case
if the labels are symbolic, if they are real-valued vectors, or if the
label spaces are of constant size w. r. t. |G|. Then GMG-BCU runs in
linear time w. r. t. |G| if a constant maximal number of iterations I is
enforced and GMG-BCU is run with any initialization strategy other
than medoid initialization.

6. Applications

In this section, we describe how to use our median graph es-
timator GMG-BCU for an application from bioinformatics, namely,
the computation of representative graphs for differential analysis
of microbiome data (Section 6.1). We also discuss how to use
GMG-BCU as a subroutine in higher-order applications such as
graph clustering (Section 6.2), classification (Section 6.3), and in-
dexing (Section 6.4). Note that, since the main contribution of this
paper is the heuristic GMG-BCU itself, these discussions will nec-
essarily remain incomplete. They are mainly intended as proofs
of concept which show that our new scalable algorithm GMG-BCU
opens new possibilities for employing generalized median graphs
in various application scenarios.

6.1. Computing representative graphs for differential microbiome
data analysis

In differential microbiome analysis, microbiome data is used
to gain insights into pathological traits. For instance, given the
relative abundances of different types of microbes present in
stool samples, recent works have individuated microbes with
explanatory value for clinical variables such as case vs. control
or treatment response vs. no response in type 2 diabetes [54]

or inflammatory bowel disease [55]. Since microbiome data is

10
compositional, the relative abundances are incomparable across
samples [56]. For this reason, the raw input data is usually nor-
malized into log-transformed co-occurrence ratios [57], which is
then fed into for downstream data analysis algorithms.

One commonly used approach for further processing the pre-
processed data is the analysis of co-occurrence networks, where
the nodes are annotated with the microbe types and the log-
transformed co-occurrence ratios are used as edge weights [57–
59]. However, existing methods based on co-occurrence networks
have been shown to perform poorly in practice, which can pos-
sibly be explained by the fact that microbial types are modeled
in a binary fashion (identical vs. non-identical) and gradual (dis-
)similarities between them are hence ignored [60]. A natural way
to overcome this problem is to define node and edge substitution
costs as, respectively, normalized phylogenetic distances (i. e.,
genetic dissimilarities) between the microbes and absolute dif-
ferences between the normalized log-transformed co-occurrence
ratios. Representatives for all classes of the clinical variable of
interest (e. g., one median each for controls and cases) can then
be computed as generalized median graphs, and subsequently be
used in downstream differential graph analysis.

Of course, this approach can be successful only if the obtained
generalized median graphs are indeed good representatives of
their classes, that is, if their SODs are as tight as possible. To
achieve tight SODs, it is crucial that the employed heuristic can
handle the features of the input graphs, i. e., is designed for
graphs with varying order, constantly many symbolic node labels,
and continuous edge labels. This is the case for our algorithm
GMG-BCU but for none of the existing competitors.

6.2. Clustering

Let O be a collection of objects (real-valued vectors, strings,
graphs, etc.), and dO : O × O → R be a distance measure.
Two classical techniques for decomposing a collection O ⊂ O
into K disjoint clusters are K -medoids and K -medians. K -medoids
(suboptimally) computes a K -sized set F⋆

= {o⋆
i | i ∈ [K]} of

focal objects o⋆
i ∈ O that minimizes the expression SOD(F,O) :=∑

o∈O minoi∈F dO(oi, o) among all K -sized sets F = {oi | i ∈

[K]} ⊆ O of focal objects. Each object o ∈ O is assigned to
its closest focal object, and the K clusters are defined as the
sets of objects that are assigned to the same focal object. K -
medians works just like K -medoids, except for the fact that focal
objects are now also allowed to be contained in O \ O. In the
sequel, we briefly review implementations of K -medoids and K -
medians (Section 6.2.1), and then discuss how to apply them to
the problem of clustering a collection of graphs G (Section 6.2.2).

6.2.1. Implementing K-medoids and K-medians
The classical implementation of K -medoids is PAM (partition-

ing around medoids) [61]. Given an initial K -sized set of focal
objects F ⊆ O, PAM computes the pair (o⋆

i , o
⋆) ∈ F × (O \ F)

that minimizes the cost delta ∆F (oi, o) := SOD(F,O)− SOD((F \

{oi})∪{o},O) among all (oi, o) ∈ F × (O \F). If ∆F (o⋆
i , o

⋆) > 0, F
is replaced by (F \{o⋆

i })∪{o⋆
} and the process iterates. Otherwise,

F is returned. The main drawback of PAM its runtime complexity
is quadratic, because dO has to be evaluated |O|

2 times [62].
A faster implementation of K -medoids has been proposed

in [63]. Given an initial K -sized set of focal objects F ⊆ O, the
following variant of Lloyd’s Algorithm [64] is run until the clusters
converge or maximal number of iterations has been reached: (1)
Assign each object o ∈ O to its closest focal object oi ∈ F . (2)
Update each focal object oi ∈ F as the medoid of all objects
o ∈ O that are currently assigned to it. This algorithm is faster in
practice, but in the worst case still requires O(|O|

2) evaluations

of dO.

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

T
o
o
o
d
p
i
c
t
K

6

S
t
d
o
o
e

n
a
c
T
m
g
t
i
p
g
a

6

d

G

K -medians is typically implemented in a similar fashion [65].
he only difference is that, inside Lloyd’s Algorithms, the focal
i ∈ F is set to (an estimation of) the generalized median of all
bjects o ∈ O. In the worst case, the standard implementation
f K -medians requires O(ω(|O|)) evaluations of dO, where ω(κ)
enotes the number of distance computations required to com-
ute the generalized median for a collection of size κ . It hence
nherits its runtime complexity from the algorithm employed to
ompute the generalized medians: If this algorithm runs in linear
ime w. r. t. |O|, then so does the standard implementation of
-medians.

.2.2. Clustering collections of graphs
Prima facie, the implementations of K -medoids presented in

ection 6.2.1 can straightforwardly be applied to the task of clus-
ering a collection of graphs G (G and GED take the roles of O and
O, respectively). However, running K -medoids requires to carry
ut at least O(|G|

2) GED computations. Because of the complexity
f computing GED, this is infeasible for large collections of graphs,
ven if suboptimal GED heuristics are used.
If, instead of using K -medoids, we use K -medians in combi-

ation with our heuristic GMG-BCU, we obtain a graph clustering
lgorithm that can be configured to require only O(|G|) GED
omputations and hence scales to large collections of graphs.
o ensure the linear runtime behavior, we just have to run our
edian graph estimator from a constant number of randomly
enerated initial solutions, enforce a maximal number of itera-
ions both for our median graph estimator and for the K -medians
mplementation, and use K -means++ initialization [66] for sam-
ling the initial focal graphs. Note that none of the other median
raph estimators suggested in the literature can be set up to yield
graph clustering heuristic that runs in linear time.

.3. Classification and data reduction

Assume that we are given a collection G = {Gp
| p ∈ [|G|]} of

ata graphs, each of which is known to belong to a class cl(Gp) ∈

[N], where N ∈ N. At query time, we are given a graph H ∈ G
whose class is unknown, and we want to decide to which class
i ∈ [N] it should be assigned. A popular and very simple approach
for this task is k nearest neighbor (k-NN) classification. Given a
query graph H , we first determine the k graphs in G that are
closest to H w. r. t. (a heuristically computed estimation of) GED,
and then assign H the class that occurs most frequently among
them.

A drawback of k-NN classification is that, unless G is supported
by an appropriate index structure (cf. Section 6.4 below), |G| GED
computations have to be carried out at query time. One way to
mitigate this problem is to partition G into the subsets Gi := {Gp

∈

G | cl(Gp) = i} of data graphs with class i, then run K -medians
clustering on each Gi for some K ≪ |G|/N , and finally construct
a set of representative graphs as the union

⋃
i∈[N]

Fi of the focal
graphs obtained for each class. At query time, we can then run k-
NN (or any other classification algorithm that benefits from data
reduction) between the query graph H and the K · N ≪ |G|

representatives.
This approach is feasible for large collections of graphs only

if the employed K -medians clustering algorithm runs sufficiently
fast. In particular, it is highly desirable that the required number
of GED computations is linear w. r. t. the size of the graph collec-
tion. As detailed in Section 6.2.2 above, this can be achieved by
using K -medians clustering in combination with our algorithm
GMG-BCU.
11
6.4. Indexing

As mentioned in the previous section, we are often interested
in answering proximity queries such as k-NN or range queries
(find all data graphs that are sufficiently close to the query graph
H) over a collection G of data graphs. As argued in the previous
section, one strategy to avoid that GED(H,Gp) has to be computed
for each data graph Gp

∈ G is to use data reduction. Another
option is to pre-compute an index structure that allows quick
query answering.

In the remainder of this section, we elaborate on the second
option. More precisely, we show that with the help of GMG-
BCU, one can construct metric trees [67] to index collections
of graphs. We first provide exact definitions of graph proximity
queries (Section 6.4.1), then briefly discuss existing index struc-
tures (Section 6.4.2) and metric trees (Section 6.4.3), and finally
show how to use GMG-BCU based metric trees for processing
graph proximity queries (Section 6.4.4).

6.4.1. Graph proximity queries
Given a set of objects O and a distance measure dO : O×O →

R≥0, k-NN and range queries are typically defined as follows:

Definition 4 (k-NN Query). Given a collection O ⊂ O, a query
object q ∈ O, and a constant k ∈ N, compute a k-sized result set
R ⊆ O such that, for each object o ∈ O \ R, there is an object
o′

∈ R with dO(q, o′) ≤ dO(q, o).

Definition 5 (Range Query). Given a collection O ⊂ O, a query
object q ∈ O, and a range τ ∈ R≥0, compute a result set R ⊆ O
such that o ∈ R ⇔ dO(q, o) ≤ τ holds for all objects o ∈ R.

The problems with these definitions when applied to GED is
that answering them requires to exactly compute the distance
measure dO. This is practically impossible if dO = GED. We hence
have to come up with alternative definitions that account for the
exponential complexity of computing GED. For k-NN queries, the
natural thing to do is to replace GED by a proxy G̃ED (i. e., a lower
and an upper bound for GED) that can be computed efficiently:

Definition 6 (k-NN Query for GED). Given a collection of graphs
G ⊂ G, a query graph H ∈ G, and a constant k ∈ N, compute a
k-sized result set R ⊆ G such that, for all Gp

∈ G \ R, there is a
Gp′

∈ R with G̃ED(H,Gp′

) ≤ G̃ED(H,Gp), where G̃ED is a proxy
for GED.

For range queries, there are two alternatives: We can either
replace GED by a proxy G̃ED as before. Alternatively, we can
require the query to return a partition (V,U,F) of the input
collection G such that V contains the graphs Gp

∈ G for which
GED(H,Gp) ≤ τ has been verified, F contains the graphs Gp

∈ G
that have been filtered, and U contains the graphs Gp

∈ G for
which we are uncertain whether or not GED(H,Gp) ≤ τ .

Definition 7 (GED Range Query—First Variant). Given a collection
of graphs G ⊂ G, a query graph H ∈ G, and a range τ ∈ R≥0,
compute a result set R ⊆ G such that Gp

∈ R ⇔ G̃ED(H,Gp) ≤ τ

holds for all Gp
∈ G, where G̃ED is a proxy for GED.

Definition 8 (GED Range Query—Second Variant). Given a col-
lection of graphs G ⊂ G, a query graph H ∈ G, and a range
τ ∈ R≥0, compute a partition (V,U,F) of G such that Gp

∈ V ⇒

ED(H,Gp) ≤ τ and Gp
∈ F ⇒ GED(H,Gp) > τ hold for all

Gp
∈ G.

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

6

r
t
a

t
a
s
p
t
a

6

q

d
t

P
b
d
d

a

n

(
(

(
(

.4.2. Existing index structures
In the past years, several index structures that support GED

ange queries as defined in Definition 7 have been proposed in
he literature [68–72]. However, all of these index structures are
pplicable only in very restricted scenarios:

• All existing index structures only support uniform edit costs,
i. e., they assume all edit operations to have the same cost.

• Each existing index structure only supports one specific
proxy G̃ED for GED.

The first restriction constitutes a severe shortcoming, because,
o the best of our knowledge, the assumption that the edit costs
re uniform is not met in any application where GED is used to
olve real-world problems [3]. The second restriction is highly
roblematic, too, because the supported proxies are much looser
han other proxies for GED that have been proposed in the liter-
ture [10].

.4.3. Metric trees
Metric trees are index structures that support proximity

ueries in pseudometric spaces (O, dO). Recall that for (O, dO)
to be a pseudometric space, the distance dO must respect the
constraints dO(o, o′) ≥ 0, dO(o, o′) = dO(o′, o), and dO(o, o′) +

O(o′, o′′) ≥ dO(o, o′′) for all o, o′, o′′
∈ O. It is easy to show that

he following Proposition 6 holds for pseudometric spaces:

roposition 6. Let (O, dO) be a pseudometric space, ⌊dO⌋ and ⌈dO⌉

e lower and upper bounds for dO, and q, o, oi ∈ O. Then we have
O(q, oi) ≥ dO(q, o) − ⌈dO⌉(o, oi) ≥ ⌊dO⌋(q, o) − ⌈dO⌉(o, oi) and
O(q, oi) ≤ dO(q, o) + ⌈dO⌉(o, oi) ≤ ⌈dO⌉(q, o) + ⌈dO⌉(o, oi).

The key idea behind metric trees is to organize a given collec-
tion O ⊂ O in a tree-like structure. At query time, the inequalities
stated in Proposition 6 are employed to filter or verify branches of
the search tree. Various metric trees have been suggested in the
literature; cf. [67] for an extensive survey. In the remainder of
this section, we illustrate metric trees by describing the so-called
monotonous bisector trees (MBST) presented in [73,74]. There are
more efficient metric trees, but MBSTs are conceptually simple
and hence perfectly suited for illustrating how metric trees work.

Definition 9 (Nodes of MBSTs). Let O ⊂ O be a collection of
objects. A node N of an MBST T for O is a 5-tuple of the form
N = (o, C, r,N1,N2), where o ∈ O is a focal object, C ⊆ O
contains (pointers to) all objects covered by N , the radius r ∈ R≥0
upper bounds dO(o, oi) for all oi ∈ C, and N1 and N2 are pointers
to N ’s children with N1.C ∪ N2.C = C, N1.C ∩ N2.C = ∅, and
N1.o = o, or N1 = N2 = null if N is a leaf node.

MBSTs are constructed recursively from root to leafs. The
root is initialized as (o,O, r, null, null), where o is a suitably
defined focal object (e. g., the medoid, the median, or the center
of O). If |N .C| exceeds a size limit, a new focal object o2 is
computed, N .C is partitioned into sub-clusters C1 := {o′

∈ N .C |

dO(o, o′) ≤ dO(o2, o′)} and C2 := N .C \ C1, the radii r1 and r2
re computed for C1 and C2, and N ’s children are set to N .N1 :=

(o, C1, r1, null, null) and N .N2 := (o2, C2, r2, null, null). The
construction routine is then recursively called onN .N1 andN .N2.

MBSTs naturally support range queries: In each iteration, a
ode N = (o, C, r,N1,N2) is popped from a set OPEN , which is

initialized with the root and, throughout the algorithm, contains
all unprocessed nodes. Next, the distance dO(q, o) between the
query object q and N ’s focal object o is computed, and four cases
are distinguished:

MBST-1) dO(q, o) > τ + r

MBST-2) dO(q, o) ≤ τ − r

12
MBST-3) ¬(1) ∧ ¬(2) ∧ ¬(N1 = N2 = null)
MBST-4) ¬(1) ∧ ¬(2) ∧ (N1 = N2 = null)

Proposition 6 implies that the entire subtree rooted at N can
be pruned, if we are in the case (MBST-1), and that it has been
verified, if we are in the case (MBST-2). In the case (MBST-3), N is
an inner node whose covered subtree cannot be pruned and has
not been verified. Hence, N ’s children N1 and N2 are added to
OPEN . In the case (MBST-4),N is a leaf whose covered data graphs
cannot be pruned and have not been verified. Hence, dO(q, oi) has
to be computed for all oi ∈ C.

Metric trees in general and MBSTs in particular also support
k-NN queries. In fact, most existing k-NN algorithms that are
designed for pseudometric spaces use range queries as their main
building blocks and can hence be adapted to any metric tree [67].
In this paper, we therefore do not discuss how to use metric trees
for answering k-NN queries, but instead refer to [67].

6.4.4. Using metric trees for graph proximity queries
In this section, we show how K -medians graph clustering

allows to use metric trees for indexing graph collections. For the
sake of simplicity, we again focus on MBSTs. Slight modifications
of the proposed techniques can be used in combination with any
metric tree that is defined for general pseudometric spaces.

If we want to use metric trees for indexing collections of
graphs, we have to ensure that (G,GED) is a pseudometric space.
The following Proposition 7 states that this is indeed the case if
the edit costs are symmetric. This is the case in most applica-
tions [3].

Proposition 7. If (C3) holds, GED is a pseudometric on G.

(C3) The edit costs are symmetric, i. e., we have cnd = cni, ced = cei,
cns(ϕ, ϕ′) = cns(ϕ′, ϕ) for all ϕ, ϕ′

∈ LV , and ces(ϕ, ϕ′) =

ces(ϕ′, ϕ) for all ϕ, ϕ′
∈ LE .

For constructing an MBST for a collection of graphs G ⊂ G,
we initialize the root as (G, G, r, null, null). G is a heuristically
computed generalized median graph for G, and the radius r
is set to r := maxGp∈G⌈GED⌉(G,Gp), where ⌈GED⌉(G,Gp) is a
polynomially computable upper bound for GED(G,Gp) (e. g., the
upper bound used by GMG-BCU). To split the collection of covered
graphs of a node N = (G, C, r, null, null) with |C| > M , we
compute a new focal graph G2 as a generalized median for the
collection Cfar := {Gp

∈ C | ⌈GED⌉(G,Gp) ≥ s + ρ · (r − s)} of
graphs that are far away from G, where s := minGp∈C⌈GED⌉(G,Gp)
and ρ ∈ (0, 1] is a hyper-parameter. We then construct clusters
C1 := {Gp

∈ C | ⌈GED⌉(G,Gp) ≤ ⌈GED⌉(G2,Gp)} and C2 :=

C \ C1, compute the radii r1 := maxGp∈C1⌈GED⌉(G,Gp) and r2 :=

maxGp∈C2⌈GED⌉(G2,Gp), and set N .N1 := (G, C1, r1, null, null)
and N .N2 := (G2, C2, r2, null, null).

GED range queries in the sense of Definition 8 can then be
answered as follows. Since exactly computing GED is infeasible,
at query time, we compute lower and upper bounds ⌊GED⌋(H,G)
and ⌈GED⌉(H,G), where H is the query graph and G is the focal
graph of our current MBST node N = (G, C, r,N1,N2). We distin-
guish the four cases (MBST-1) to (MBST-4) with dO(q, o) substi-
tuted by ⌊GED⌋(H,G) and ⌈GED⌉(H,G) in, respectively, (MBST-1)
and (MBST-2). Proposition 6 implies that, in the cases (MBST-
1) and (MBST-2), we can, respectively, add C to the set F of
all filtered graphs or to the set V of all verified graphs. In the
case (MBST-3), we add N1 and N2 to OPEN . In the case (MBST-
4), we compute ⌊GED⌋(H,Gp) and ⌈GED⌉(H,Gp) for each data
graph Gp

∈ C, and add Gp to F , if ⌊GED⌋(H,Gp) > τ , to V , if
⌈GED⌉(H,Gp) ≤ τ , and to U , otherwise.

GED range queries in the sense of Definition 7 can be pro-
cessed similarly. The main difference is that, depending on

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

w
u

u
t
q
f
t

i
t
u

a

i
c
n

a
g
c
e
e
o

hether G̃ED is a lower or an upper bound for GED, we can
se the inner nodes N = (G, C, r,N1,N2) only for verifying or

only for pruning: If G̃ED is a lower bound, we compute upper
bounds ⌈GED⌉(H,G) to verify the covered data graphs; if it is an
pper bound, we compute lower bounds ⌊GED⌋(H,G) to prune
he subtree rooted an N . Algorithms for answering GED k-NN
ueries in the sense of Definition 6 can be built upon algorithms
or answering GED range queries in the sense of Definition 7. For
he details, we again refer to [67].

Again note that, in theory, one could use metric trees to
ndex collections of graphs without having access to a linear
ime median graph estimator such as GMG-BCU: For instance, if
sing MBSTs, one could define the new focal graph G2 as the

medoid of Cfar. However, just as for K -medoids graph clustering,
the decisive disadvantage of this alternative approach is that it re-
quires to carry out O(|G|

2) GED computations, which is practically
infeasible for large collections of graphs.

7. Empirical evaluation

In this section, we report the results of an extensive empirical
evaluation of GMG-BCU. In Section 7.1, we describe the setup of
the experiments. In Section 7.2, we report how different initial-
ization strategies and GED heuristics affect the performance of
our algorithm. In Section 7.3, we compare our approach to state
of the art methods for estimating generalized median graphs.
In Section 7.4, we discuss how our algorithm performs when
used for classification, clustering, and indexing as described in
Section 6. Finally, Section 7.5 provides a brief summary of the
most important experimental findings.

7.1. Experimental setup

7.1.1. Datasets
We tested on three widely used benchmark datasets, two

datasets containing synthetically generated graphs, and one mi-
crobiome dataset from a biomedical application. Table 3 summa-
rizes the most important properties of the datasets. In the follow-
ing paragraphs, we describe them in more detail. All datasets and
edit cost functions respect constraints (C1) to (C3).

Benchmark datasets. We tested on the widely used benchmark
datasets letter, aids, and muta from the IAM Graph Database
Repository [75]. The graphs in aids and muta represent molecules
that do or do not exhibit activity against HIV and mutagenicity,
respectively. They have symbolic labels both on the nodes and
on the edges. The graphs in letter represent distorted drawings
of all capital roman letters that can be drawn with straight lines
only. They have two-dimensional Euclidean node labels and unla-
beled edges. We used the following edit cost functions suggested
in [28,76]: For aids and muta, we used constant node and edge
substitution cost functions cns ≡ 4 and ces ≡ 1, node insertion
nd deletion costs cni = cnd = 2, and edge deletion and insertion

costs cei = ced = 1. For letter, we set the node and edge
nsertion and deletion costs to cni = cnd = 0.675 and cei =

ed = 0.425, and used two different node substitution costs,
amely Euclidean costs cns(ϕ, ϕ′) = 0.75 ·

ϕ − ϕ′

2 and squared

Euclidean costs cns(ϕ, ϕ′) = 0.75 ·
ϕ − ϕ′

2
2. All constants are

chosen as suggested in [28,76]. In the sequel, letter-eucl and
letter-squared denote, respectively, the variants of letter with
Euclidean and squared Euclidean node substitution costs.
13
Synthetically generated datasets. We also tested on the two syn-
thetically generated datasets s-mol and aids-edit to evaluate
scalability (s-mol) and quality (aids-edit). The dataset s-mol
contains 5 · 104 synthetic molecule graphs, which were generated
as follows: In a first step, the order n of the graph G was randomly
selected from the range {10, . . . , 15}. Subsequently, we randomly
generated a Prüfer sequence of length n−2, constructed G as the
corresponding tree on n nodes, and randomly selected node labels
(modeling atoms) from {1, . . . , 5} and edge labels (modeling va-
lence) from {1, 2}. For the tests on s-mol, we used the same edit
cost functions [28,76] as for aids and muta. The aids-edit dataset
was generated such that we (almost) know the optimal SOD for
each sub-collection. This was achieved as follows: In a first step,
we randomly selected a seed graph G0 from the aids dataset.
Subsequently, we generated all graphs H that can be reached
from G0 via exactly one edit operation, computed lower bounds
for ⌊GED⌋(H1,H2) for each pair (H1,H2) of generated graphs, and
created a conflict graph X with edges (H1,H2) for all (H1,H2) with
⌊GED⌋(H1,H2) = 0. In the last step, we heuristically computed
maximum independent set S for X and put all 542 surviving
raphs H ∈ S in the dataset aids-edit. If used with uniform edit
osts, this construction ensures that all graphs contained in aids-
dit are at distance 1 from G0 and at distance at least 1 from
ach other. Therefore, the optimal SOD for each sub-collection G
f aids-edit is lower-bounded by |G| − 1 and upper-bounded by

|G|.

Microbiome dataset. Finally, we tested on the real-world dataset
ibd which contains graphs that model the gut microbiome of
133 patients with inflammatory bowel disease (IBD) and 6 con-
trols [77]. The graphs and edit costs were derived from the raw
data as described in Section 6.1 above. The IBD patients are
further subdivided into a group of patients who responded to
hematopoietic stem cell transplantation (HSCT) and a group of
patients who did not respond to HSCT.

7.1.2. Test protocol and implementation
For each dataset D except ibd and each p ∈ {10, 20, . . . , 90},

we randomly sampled five collections (Dp
i)i∈[5] containing p% of

the graphs. For each p, we ran the tests on all five collections and
aggregated the results. First, we evaluated various configurations
of GMG-BCU on the datasets letter-eucl, aids, and muta. We then
selected the three best performing configurations and compared
them against the state of the art on these three datasets and addi-
tionally on letter-squared, aids-edit, and s-mol. Subsequently,
we compared the ibd prototypes computed by the configurations
of GMG-BCU to those computed by the state of the art, and prelim-
inarily evaluated the performance of one GMG-BCU configuration
within heuristics for graph clustering, classification and indexing.
All methods were implemented in C++ and were parallelized to
run in six threads. They are distributed on GitHub along with
all datasets and test scripts: https://github.com/dbblumenthal/
gedlib/. Experiments were run on a machine with 80 Intel(R)
Xeon(R) Gold 6148 CPU @ 2.40 GHz processors with two cores
each and 384 GB of main memory running GNU/Linux.

7.2. Evaluation of different configurations of GMG-BCU

In a first set of experiments, we evaluated different configu-
rations of GMG-BCU. We used three different heuristics for com-
puting the node maps and upper bounds ⌈GED⌉ during the main
while-loop of our algorithm: BRANCH-FAST [8], 2-REFINE [9],
and IPFP [46,78,79]. We selected these heuristics, because it
has been shown in [10] that all of them provide upper bounds
that are Pareto optimal on the range from computationally-
cheap-but-rather-loose to tight-but-computationally-expensive
(with BRANCH-FAST yielding the cheapest and IPFP yielding

https://github.com/suffix/removed/for/double/blind/review/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766
Table 3
Overview of test datasets.
Dataset # Graphs # Classes # Nodes

min max mean std median

letter 2250 15 1 9 4.7 1.3 5
aids 1500 2 2 95 15.7 13.8 11
muta 4299 2 4 98 29.2 14.6 27
s-mol 50000 1 10 15 12.5 1.7 13
aids-edit 542 1 32 33 32.1 0.3 32
ibd 139 3 23 190 95.8 44.5 91.0

Dataset Labels # Edges

Nodes Edges min max mean std median

letter vectors none 0 9 4.5 1.6 5
aids symb. symb. 1 103 16.2 15.1 11
muta symb. symb. 3 105 30.1 15.4 28
s-mol symb. symb. 9 14 11.5 1.7 12
aids-edit symb. symb. 32 34 33.2 0.4 33
ibd symb. scalars 28 5529 710.8 736.1 499
r

the tightest upper bound). We tested medoid, minimum, mean,
and maximum order initialization, as well as random initializa-
tion where the number of initial solutions was varied across
the set {1, 2, 4, 8, 16, 32}. Each configuration was initially run
with a time limit of 10min and was tested with and without
tightening, where IPFP was chosen to compute the improved
final upper bounds ⌈GED⌉

′. Subsequently, the three overall best
configurations were run with varying time limits between 1min
and 10min.

Number of initial solutions for randomly initialized configuration.
Fig. 1 shows the effect of varying the number of initial solutions
and the GED heuristic used during the BCU on randomly initial-
ized configurations on the (D90

i)i∈[5] collections. On letter, the
choice of the GED heuristic had little influence on the SOD; on
aids, 2-REFINE and IPFP yielded tighter SODs than BRANCH-
FAST; and on muta, using 2-REFINE led to the best SODs. Using
IPFP on muta resulted in loose SODs, because the time limit
was almost always exceeded already during the first iteration of
the BCU. For all GED heuristics, increasing the number of initial
solutions to a value higher than eight had no significant marginal
gain. For all other experiments, we therefore fixed the number of
initial solutions for randomly initialized configurations to eight.

Number of iterations. The first row of Fig. 2 shows that the max-
imal number of iterations of the configurations. To improve the
readability of the plots, we only show the results of those config-
urations that were not Pareto dominated on at least one dataset.
We see that the maximal number of iterations mainly depends on
the label types. Since the graphs contained in aids and muta have
symbolic node and edge labels, the label domains LV and LE are
finite, which leads to a very small number of iterations. Graphs
contained in letter are labeled with Euclidean coordinates, i. e.,
LV is continuous, which increases the number of iterations. In
contrast to that, the average size of the graphs turns out not
to increase the maximal number of iterations. Although letter
graphs are smaller than aids and muta graphs, GMG-BCU required
more iterations on letter-eucl than on muta and aids. Another
important observation is that, on all datasets, the number of
iterations is independent of the size of the graph collection G,
of the initialization strategy, and also of the GED heuristic used
during the BCU. (The low number of iterations of configurations
that use medoid initialization on muta and aids is due to the fact
that these methods exceeded the time limit during initialization.)
Unless medoid initialization is employed, the runtime behavior of
GMG-BCU is hence linear in the size of G, even if run without a
maximal number of iteration.
14
Effect of algorithm used during descent. The second row of Fig. 2
shows how the non-dominated configurations performed w. r. t.
mean runtime and SOD. Interestingly, the dominated configura-
tions include all configurations that use IPFP during the BCU,
although IPFP has been shown to produce tighter upper bounds
for GED than BRANCH-FAST and 2-REFINE [9,10]. The reason
for this is that IPFP is by far the slowest of these heuristics
and therefore very often reached the time limit already after
very few iterations of the BCU. Most GED heuristics led to pretty
similar SODs on all datasets; in terms of SOD, GMG-BCU is hence
obust w. r. t. the choice of this heuristic. On letter-eucl, the best
configuration used BRANCH-FAST during the BCU; on aids and
muta, the best configuration used 2-REFINE. Another interesting
observation is that, on letter-eucl, different GED heuristics did
not have a great effect on the runtime. The reason for this is
that the graphs contained in letter are very small and that their
node labels are Euclidean coordinates (cf. Table 3). In this setting,
computing node maps via any GED heuristic is fast and evaluating
median-label(·) hence becomes the dominant operation. This
operation is the same for all GED heuristics. On the other datasets,
computing the node maps is the dominant operation. Therefore,
configurations that use the fast GED heuristic BRANCH-FAST dur-
ing the BCU and do not carry out the IPFP-based tightening
clearly outperformed all other configurations in terms of runtime.

Effect of initialization type. The second row of Fig. 2 also shows
that, on all datasets, randomly initialized configurations with
tightening computed the tightest SODs, and that also among
the fast configurations without tightening the best results were
achieved with random initialization. In view of these findings, we
included the following three configurations in the time limit tests
and in the comparison against the state of the art:

GMG-BCU (I) Random initialization, BRANCH-FAST during BCU,
with tightening (yielded best mean SOD on let-
ter).

GMG-BCU (II) Random initialization, 2-REFINE during BCU, with
tightening (yielded best mean SODs on aids and
muta).

GMG-BCU (III) Random initialization, BRANCH-FAST during BCU,
without tightening (yielded best mean SOD among
fast configurations).

Effect of time limit. Fig. 3 shows how varying the time limit affects
the performance of the three selected configurations GMG-BCU
(I), GMG-BCU (II), and GMG-BCU (III). Both on letter-eucl and
on muta, we observe that, even if interrupted before regular
termination, the SODs do not increase dramatically. This implies
that, if computation time is critical, GMG-BCU can safely be run

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766
Fig. 1. Effect of number of initial solutions used for random initialization on mean SODs at termination with time limit set to 10min.
Fig. 2. Effect of configurations with time limit set to 10min. Configurations that were dominated on all benchmark datasets are not displayed. Since tightening does
not affect the maximal number of iterations, in the first row, we only show the results for the configurations without tightening if both the version with and the
version without tightening were not dominated on all datasets.
with a small time limit and still returns an estimated median
graph of good quality. On aids, all configurations except GMG-BCU
(II) with time limits of 1 and 2 min terminated regularly.

7.3. Comparison against the state of the art

We compared GMG-BCU (I), GMG-BCU (II), and GMG-BCU (III)
to LINEAR [18,29], BEST-LINEAR [18,29], TRIANGULAR [32], and
BEST-TRIANGULAR [32]. We selected these methods, because
they are the most competitive generic state of the art approaches,
as detailed in Section 2. Moreover, we compared against the first
prototype of our algorithm presented in [33] (denoted as PROTO-
TYPE in the sequel). Recall that GMG-BCU improves PROTOTYPE
in that it allows initialization strategies other than medoid ini-
tialization and includes the heuristic update-order to optimize
the order of the computed median graph.

7.3.1. Runtime and scalability
Fig. 4 shows how the compared methods performed w. r. t.

runtime and scalability. On all datasets except the two variants
15
of letter, GMG-BCU (III) was orders of magnitudes faster than all
tested competitors. Moreover, the results for aids and aids-edit
clearly show that also the other two configurations GMG-BCU (I)
and GMG-BCU (II) scale better to large collections of graphs than
the competitors. On muta, this is less visible, because here all
tested algorithms except GMG-BCU (III) reached the time limit of
10min already on pretty small collections. On the largest dataset
s-mol, all competitors reached the time limit already on the
smallest sub-collections. In contrast to that, the fast configuration
GMG-BCU (III) terminated in around a minute even on the largest
sub-collections containing 45 000 graphs.

The results for the two variants letter-eucl and
letter-squared of the letter dataset are very different. Here,
the tested competitors were significantly faster than the three
configurations of GMG-BCU. There are two reasons for this. Firstly,
the letter graphs are very small (cf. Table 3), which implies that
computing node maps— the dominant operation in the state
of the art approaches— is cheap. Secondly, the node labels of
the letter graphs are Euclidean coordinates, i. e., the node label
domain L is continuous. GMG-BCU optimizes over this domain,
V

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

r

u
q
m
w
a
G
v

Fig. 3. Effect of time limit on SOD and on the number of runs which terminated regularly for configurations GMG-BCU (I), GMG-BCU (II), and GMG-BCU (III). The
esults for aids are not displayed, because here all configurations except GMG-BCU (II) with time limits of 1 and 2 min terminated regularly.
Fig. 4. Performance of GMG-BCU configurations w. r. t. runtime in comparison to state of the art heuristics and the first prototype of our algorithm presented in [33].
All heuristics were run with a time limit of 10min.
7

a
c
S
o
B
l
c
w
t
i
a
c
s
i
t
r
r
M
G

which leads to an increased number of iterations w. r. t. instances
with symbolic node labels (cf. Fig. 2). In contrast to that, the state
of the art approaches always select the labels of the estimated
median graph as (interpolations between) labels that are present
in the graph collection. This improves the runtime, but negatively
affects the quality of the estimated median graph, as detailed
below.

When comparing the variants of GMG-BCU to the preliminary
version PROTOTYPE presented in [33], we observe that PROTO-
TYPE was faster than all three GMG-BCU variants only on the two
letter datasets, but was slower than GMG-BCU (III) on all other
datasets and scaled worse to large graph collections than all three
GMG-BCU variants. Again, this is as expected: Since PROTOTYPE
ses medoid initialization and does not use update-order, it re-
uires to compute |G|

2 node maps for initialization and then ter-
inates quickly as soon as the candidate median has converged
ithin the initial order. Consequently, PROTOTYPE has a worse
symptotic runtime behavior than the three configurations of
MG-BCU and is faster only on small graph collections containing
ery small graphs such as letter-eucl and letter-squared.
 b

16
.3.2. Quality
Fig. 5 shows how varying the size of the graph collection

ffects the compared algorithms’ deviations from the theoreti-
ally known optimal SOD (plot for aids-edit) or from the best
OD obtained by one of the tested algorithms (plots for all
ther datasets). As expected, the three configurations of GMG-
CU computed tighter SODs than the competitors on the two
etter datasets with continuous node label domains. On the
hemical datasets aids, muta, and s-mol, all computed SODs
ere similar with GMG-BCU (II) performing slightly better than
he other algorithms and configurations, on average. However, as
ndicated by the missing or partial curves in Fig. 5, all state of the
rt approaches failed to compute any results on the larger sub-
ollections of muta and on all sub-collections of the large dataset
-mol, because they reached the time limit while computing the
nitial GED based graph embeddings. In contrast to that, also
he slower configurations GMG-BCU (I) and GMG-BCU (II) always
eturned an estimated median graph even if interrupted before
egular termination, because GMG-BCU is an any-time algorithm.
oreover, on aids, muta, and s-mol, all three configurations of
MG-BCU always yielded SODs which deviated from the best SOD
y at most 11%.

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

h
m
g

Fig. 5. Mean deviations from theoretically known optima (aids-edit) or best computed SODs (all other datasets). Missing or partial curves for the state of the art
euristics indicate that they reached the time limit of 10min while computing the graph embeddings and hence did not return any candidate median. Similarly,
issing curves for the prototype of our algorithm presented in [33] indicate that it reached the time limit during initialization and hence did not return a median

raph.
On aids-edit, the SOD of the best performing algorithm GMG-
BCU (I) exceeded the theoretically known optimal SOD by a factor
of around 2 (i. e., deviated from the optimum by around 100%).
The SODs computed by the other algorithms and configurations
were significantly looser. To correctly interpret these results,
recall that, by construction, aids-edit is a very special dataset,
since all contained graphs are extremely similar and at most
one edit operation away from the optimal median. Because of
this, already one incorrect node assignment in each of the node
maps leads to a relative error of at least 2, even if the optimal
median is found. Therefore, the empirical approximation factor
of 2 is actually a pretty good result. The special structure of the
aids-edit dataset also explains the poor performance of GMG-
BCU (II), which yielded the tightest SODs on all but one of the
other datasets. The reason is that GMG-BCU (II) uses the GED
heuristic 2-REFINE, which computes node maps via local search
from randomly initialized solutions. This randomized approach
yields excellent results on natural GED instances [9], but fails to
detect the fine-grained differences between the synthetic graphs
contained in aids-edit.

The comparison of the three GMG-BCU variants to PROTOTYPE
yields two findings. Firstly, PROTOTYPE failed to compute any
medians on the larger sub-collections of muta as well as on all
s-mol sub-collections, because it reached the time limit during
initialization. Secondly, and more interestingly, whenever PRO-
TOTYPE did computed a median graph, it was outperformed in
terms of quality even by the fast configuration GMG-BCU (III).
This shows the effectiveness of the sub-routine update-order
employed by GMG-BCU: Even though GMG-BCU (III) starts the local
search from worse initial candidate medians than PROTOTYPE, it
eventually finds a better solution because it is not restricted to
the order of the initial candidates.

7.4. Performance of GMG-BCU in application scenarios

In a third set of experiments, we evaluated how GMG-BCU per-
forms when used for computing representatives for microbiome

data graphs, and when used as a sub-routine within higher-order

17
algorithms for graph clustering, classification, and indexing. The
prototype computation tests were carried out on the ibd dataset,
the tests for clustering, classification, and indexing on the bench-
mark datasets letter-eucl, aids, andmuta. Just as the expositions
in Section 6.2 to 6.4, the latter tests are intended as proofs of
concept. Carrying out in-depth empirical evaluations is the task
of future work, whose dedicated focus is the development of
graph clustering, classification, or indexing techniques. For the
ibd prototype tests, we used the configuration GMG-BCU (I), which
yielded the best empirical approximation ratio on aids-edit. For
all other application tests, we used the configuration GMG-BCU
(III), i. e., the configuration that, on average, computed the tightest
SODs among all fast configurations.

7.4.1. Computation of representatives for ibd graphs
Table 4 shows the quality of the representatives for the three

sub-groups of the ibd dataset computed by GMG-BCU and state
of the art heuristics. For each sub-group, we show the obtained
SODs and the deviations in percent from the best SOD. GMG-
BCU computed the best representatives on all sub-groups; the
SODs of the representatives computed by best competitor BEST-
TRIANGULAR were between 10% and 15% looser. Like on the
letter datasets, GMG-BCU outperformed the state of the art in
terms of SOD, because the ibd graphs have continuous (edge)
labels, and, unlike the competitors, GMG-BCU optimizes the labels
of the estimated median over the continuous domain. Since the
ibd dataset only contains 139 graphs, all heuristics terminated
within a couple of seconds on all sub-groups.

To assess whether the obtained results are meaningful from
a biological point of view, we had a closer look at the median
graphs computed by GMG-BCU. It is well known that the diversity
of the gut microbiome is decreased in IBD patients [80]. This
is reflected in the computed median graphs: While the median
graph for the control group contains 169 different OTUs, this
number decreases to 67 for the HSCT responders and to 49 for
the HSCT non-responders, i. e., the IBD patients with the most
severe disease courses. We also had a look at the set O0 of
OTUs that are present in the control group median but missing

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766
Table 4
Quality of representatives for ibd graphs.
Method Controls HSCT responders HSCT non-responders

SOD Deviation in % SOD Deviation in % SOD Deviation in %

GMG-BCU 4737.1 0.0 28005.1 0.0 11222.7 0.0
LINEAR 5456.2 15.2 32548.2 16.2 13384.4 19.3
TRIANGULAR 5456.2 15.2 32474.7 16.0 12999.9 15.8
BEST-LINEAR 5456.2 15.2 31207.3 11.4 12421.7 10.7
BEST-TRIANGULAR 5456.2 15.2 30932.7 10.5 12341.4 10.0
in the medians for the two IBD subgroups, and at the set O1
of OTUs that are present in the one of the IBD medians but
missing in the median for the control group. Interestingly, many
OTUs contained in O0 fall into the families Ruminococcaceae
and Bacteroidaceae, for which reduced abundances have been
observed in IBD patients [81]. At the same time, O1 contains OTUs
from the families Veillonellaceae and Coriobacteriaceae, for which
increased abundances in IBD patients have been reported [81].
Finally, we analyzed set O3 of OTUs present in the median for
the HSCT responders but absent in the median for the non-
responders. In line with the findings reported in [77], O3 contains
butyrate-producing bacteria from the Clostridiales order, as well
as sulfate-reducing deltaproteobacteria.

7.4.2. Clustering
To evaluate the clustering performance, we clustered the 90%

sub-collections of letter-eucl, aids, and muta with K -medians
clustering (cf. Section 6.2). We used K -means++ initialization and
set the maximum number of iterations of Lloyd’s algorithm to
10. For all datasets, we set K to the number of different classes,
i. e., K = 2 for muta and aids, and K = 15 for letter-eucl. We
recorded the runtime, the SOD, and the adjusted Rand index (ARI)
w. r. t. the ground truth clustering. ARI measures the similarity
between two clusterings [82]. Its range is [−1, 1], and it evaluates
to 1 if the two clusterings are identical. To have a baseline against
which to compare, we also recorded these metrics for the very
first clustering obtained by the K -means++ initialization.

Table 5 shows the mean outcomes of the experiments across
the five test collections. On all datasets, K -medians clustering
based on our BCU reduced the overall SOD by more than 30%
w. r. t. the initial clustering obtained by K -means++ initialization.
On letter-eucl and aids, K -medians clustering significantly im-
proved the ARI. This was not the case on muta, which can be
explained by the fact that, on this dataset, tightness of bounds for
GED is only very weakly correlated with clustering and classifica-
tion performance [10]. Finally, the overall runtime was a couple of
hours on letter-eucl, a couple of minutes on muta, and a couple
of seconds on aids. This is due to the facts that we computed 15
classes on letter-eucl, but only 2 on aids and muta, and that
computing the median labels is much more expensive than on
aids and muta (cf. Section 7.2 above).

7.4.3. Classification and data reduction
Next, we tested how our algorithm performs when used for

classification and data reduction as explained in Section 6.3. First,
we split the benchmark datasets into disjoint collections of data
and query graphs that we constrained to be balanced w. r. t.
the classes. For each dataset and each class, we then computed
10 representatives of the data graphs via 10-medians cluster-
ing. Finally, we ran the following 1-NN query specifications (cf.
Definition 6) for each query graph: (a) determine the nearest
neighbor of each query graph among all data graphs; (b) deter-
mine the nearest neighbor from the set of representatives. Both
specifications were set up to use the upper bound computed by
BRANCH-FAST as the proxy G̃ED for GED.

Table 6 shows the mean classification coefficients (i. e., the
proportion of correctly classified query graphs) and the mean
18
query times. On all datasets, determining the nearest neighbor
only among the set of representatives led to a speed-up of at least
one order of magnitude. At the same time, the mean classification
coefficient deteriorated only on muta, stayed unchanged on aids,
and even slightly improved on letter-eucl. Computing the rep-
resentatives took a couple of minutes on aids and muta and a
couple of hours on letter-eucl.

7.4.4. Indexing
Finally, we tested how median based MBSTs as introduced

in Section 6.4 perform at processing GED range queries in the
sense of Definition 8. We again split the benchmark datasets
into disjoint collections of data and query graphs. Subsequently,
we computed median based MBST indices for the data graphs.
Finally, for each query graph, we answered GED range queries
for thresholds τp ∈ {τ0.01, τ0.025, τ0.05, τ0.075, τ0.1} (a) with the help
of the pre-computed indices, and (b) via linear scans against all
data graphs. To define the thresholds, we first estimated the GEDs
between all query graphs as the means between the lower and
the upper bounds returned by BRANCH-FAST. Subsequently, the
estimated edit costs were sorted in increasing order, and τp was
defined as the mean of the entries at positions ⌊p · length(a)⌋ and
⌈p · length(a)⌉ in the sorted array of estimated edit costs a. This
construction mirrors the fact that, when issuing range queries,
one is typically interested in retrieving objects that are close to
the query object. All configurations of the range queries were set
up to use the upper bound computed by IPFP and the lower
bound returned by the linear programming based algorithm ADJ-
LP suggested in [45] as, respectively, the upper and lower bounds
⌈GED⌉ and ⌊GED⌋ for GED (cf. Section 6.4.4). We selected these
methods, because in [10] they are reported to produce very tight
bounds for GED at affordable computational costs.

Fig. 6 shows the results of the indexing experiments. On all
datasets, using median based MBSTs significantly reduced the
mean query time. We also see that the runtime gain is especially
high for small thresholds— that is, the thresholds one is typically
interested in. This is not surprising, because more data graphs
can be filtered for small thresholds. Building the index took a
couple of minutes on aids and muta and a couple of hours on
letter-eucl.

7.5. Upshot of the experiments

The extensive experiments we reported in this section re-
vealed that the proposed algorithm GMG-BCU clearly outperforms
state of the art heuristics for computing generalized median
graphs. The most important empirical findings are summarized
in the following paragraphs.

7.5.1. Configuration of the proposed algorithm
Initialization. The best tradeoff between runtime and quality is
achieved if GMG-BCU is initialized with a small number of ran-
domly generated candidates.

Termination criteria. Running GMG-BCU with a maximal number
of iterations is unnecessary, because GMG-BCU typically converges
after a small number of iterations which is independent of the

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766
Table 5
Results of clustering experiments.
Dataset GMG-BCU K -means++

ARI SOD Runtime in s ARI SOD Runtime in s

letter-eucl (90%) 0.62 4437.8 11899.4 0.26 6388.8 2.9
aids (90%) 0.43 47220.2 30.8 0.19 77540.0 0.5

muta (90%) 0.00 224711.0 213.1 0.00 347107.8 1.7
Table 6
Results of classification experiments.
Dataset GMG-BCU representatives All data graphs

Classification coefficient Query time in s Classification coefficient Query time in s

letter-eucl (90%) 0.92 2.07e−3 0.90 2.54e−2
aids (90%) 0.98 1.68e−3 0.98 5.26e−2

muta (90%) 0.70 2.13e−3 0.80 5.45e−1
Fig. 6. Results of indexing experiments.
size of the graph collection G. In contrast to that, the execution
time of one iterations increases linearly with the size of G. To
control the maximal runtime of GMG-BCU, it is hence better to
run it with a time limit. Since GMG-BCU quickly finds solutions of
good quality, this time limit can safely be set to a small value, if
necessary.

Heuristic used during BCU. The choice of the GED heuristic used
during the BCU has only a small effect on the SOD but, on some
datasets, a tremendous effect on the runtime. Therefore, it is
recommendable to use GED heuristics that are optimized for
speed rather than for tightness of the obtained upper bounds for
GED.

Final tightening. If fast GED heuristics are used during the BCU,
the final SOD can be improved by tightening the final node maps
via more expensive GED heuristics. However, this configuration
comes at the price of a significantly increased runtime and should
hence only be used if runtime is not critical.

7.5.2. Comparison to state of the art
Runtime. Whenever computing node maps between the input
graphs is computationally more expensive than computing me-
dian labels, GMG-BCU can be configured to run orders of magni-
tudes faster than all competitors. State of the art approaches are
faster only when used on relatively small datasets that contain
very small graphs with continuous labels, but then compute
looser SODs than our algorithm (cf. next paragraph).

Quality. If used for graphs with continuous labels, GMG-BCU com-
putes tighter SODs than all evaluated competitors. If used for
graphs with symbolic labels and constant edit costs, all obtained
SODs are similar.

7.5.3. Performance in application scenarios
Computing representative graphs for differential microbiome data
analysis. GMG-BCU clearly computes the best representatives for
19
all three sub-groups of the ibd dataset. The SODs of the repre-
sentatives computed by state of the art heuristics are at least
10% looser than the SODs of the representatives computed by
GMG-BCU.

Clustering. On all test datasets except muta, K -medians cluster-
ing based on GMG-BCU yields a much better ARI than a ran-
domized baseline that uses K -means++ initialization only. The
poor performance on muta can be explained by the fact that, as
reported in [10], the muta dataset seems to be poorly suited for
GED based clustering techniques.

Classification and data reduction. On all test datasets, 1-NN can be
sped-up by orders of magnitude if run against class-
representatives obtained via GMG-BCU based K -medians cluster-
ing. At the same time, the classification coefficient drops only on
muta and stays unchanged or even improves on the other test
datasets.

Indexing. On all test datasets, GMG-BCU based MBSTs significantly
speed up processing of GED range queries. This result is especially
interesting, because, to the best of our knowledge, all existing
indexing techniques that are designed to support GED range
queries accept only uniform edit costs.

8. Conclusions and future work

In this paper, we presented a new algorithm GMG-BCU for
estimating generalized median graphs. Unlike all existing ap-
proaches, GMG-BCU is designed to converge to a local optimum
and is hence tightly linked to the definition of a generalized
median graph. Moreover, it is generic, as it can be configured
to use any GED heuristic and works for arbitrary node and edge
labels as long as (exact or approximate) algorithms for comput-
ing median labels are available and the insertion and deletion
costs are constant. Last but not least, GMG-BCU scales to large
collections of graphs, because it can be configured to run in linear

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

t
s

w

C
C
C

C
C

N

ime w. r. t. the size of the graph collection and always returns a
olution even if interrupted during the optimization.
We also proved that generalized median graphs are NP-hard

to compute and APX-hard to approximate, that no polynomial
α-approximation algorithm exists unless the graph isomorphism
problem is in P , that they exist if median labels exist and the in-
sertion and deletion cost are constant, and that they are in general
non-unique. Moreover, we provided proofs of concept of how to
beneficially employ generalized median graphs for applications
such as differential microbiome analysis, clustering, classification
and data reduction, and indexing. Extensive experiments showed
that our algorithm GMG-BCU clearly outperforms state of the art
median graph estimators and also yields promising results when
used for the aforementioned applications.

In future work, we will further explore how to beneficially em-
ploy GMG-BCU for differential microbiome data analysis. Here, the
idea is to systematically compare the obtained generalized me-
dian graphs for the classes of the clinical variable of interest and
hence individuate features that are predictive and/or causative for
specific conditions. Moreover, we will build a compression tool
for graph collections on top of GMG-BCU.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The IBD data is available from BioProject under the accession
code PRJNA565903: https://www.ncbi.nlm.nih.gov/bioproject/PRJ
NA565903/. All other data is available on GitHub: https://github.
com/dbblumenthal/gedlib/.

Acknowledgments

We would like to thank Markus List and Monica Matchado
for pointing us to the ibd dataset. This work has been supported
by Région Normandie, France under the project RIN AGAC, and
by Agence nationale de la recherche, France under the project
ESIGMA (ANR-17-CE23-0010). This work was supported by the
Open Access Fund of the Free University of Bozen-Bolzano, Italy.

Appendix A. Path based definition of the graph edit distance

Let Pns ⊂ [n] × [n′
], Pnd ⊂ [n], and Pni ⊂ [n′

] be the
sets of, respectively, node substitutions, deletions, and insertions
contained in an edit path P from a graph G of order n to a graph
G′ of order n′. Similarly, let Pes ⊂ ([n] × [n]) × ([n′

] × [n′
]),

Ped ⊂ [n] × [n], and Pei ⊂ [n′
] × [n′

] be the sets of, respectively,
edge substitutions, deletions, and insertions. Then the cost of the
edit path P is defined as

c(P) :=

∑
(i,k)∈Pns

cns(ϕi, ϕ
′

k)
node substitutions

+

∑
((i,j),(k,l))∈Pes

ces(Φi,j, Φ ′

k,l)
edge substitutions

+

∑
i∈Pnd

cnd(ϕi) +

∑
(i,j)∈Ped

ced(Φi,j)
node and edge deletions

+

∑
k∈Pni

cni(ϕ′

i) +

∑
(k,l)∈Pei

cei(Φ ′

i,j)
node and edge insertions

,

hich leads to the following definition of GED:
20
Definition 10 (GED—Path Based Definition). The graph edit dis-
tance from a graph G to a graph G′ is defined as GED(G,G′) :=

minP∈ΨG,G′ c(P), where ΨG,G′ is the set of all edit paths from G to
G′. Recall that an edit path P from G to G′ is a sequence of edit
operations transforming G into a graph isomorphic to G′, and that
its cost c(P) is defined as the sum of the costs of the contained
edit operations.

Appendix B. Proof of Theorem 1

The proof starts with Lemma 1, which shows that if (C1) holds,
then for any graph with a sufficiently large order, there is always
a graph of smaller order with a smaller SOD.

Lemma 1. Let Pfin(G) be the set of all finite multisets of G and
assume that (C1) holds. Then there is a function

N : Pfin(G) × R4
≥0 → N

such that for all (G, (cnd, cni, ced, cei)) ∈ Pfin(G)×R4
≥0 and all graph

G ∈ G of order n > N(G, (cnd, cni, ced, cei)) there is a graph G′
∈ G

of order n′
≤ N(G, (cnd, cni, ced, cei)) with SOD(G′, G) ≤ SOD(G, G).

Proof. We construct a function N that meets the requirements of
the lemma. Let (G, C) ∈ Pfin(G)×R4

≥0, with C = (cnd, cni, ced, cei).
We distinguish the following three cases:

ase (1) cnd = ced = 0
ase (2) cnd > 0
ase (3) cnd = 0 ∧ ced > 0

Case (1) Let G′ be the disjoint union of all the graphs contained
in G. Since nodes and edges can be deleted for free, we have
SOD(G′, G) = 0. So we can define

N(G, C) :=

∑
p∈[|G|]

np.

Case (2) Let G be any graph of order n > maxp np. To transform
G into each Gp, at least n − np > 0 nodes must be deleted with
non-zero cost. So its SOD is bounded from below by

SOD(G, G) ≥

∑
p∈[|G|]

cnd(n − np) = cnd(n|G| −

∑
p∈[|G|]

np).

This is an increasing function in the order n of G. If n is taken
large enough, e. g., such that cnd(n|G| −

∑
p n

p) ≥ UB(G, (cni, cei)),
where UB is defined as

UB(G, (cni, cei)) := SOD(G∅, G)

= cni
∑

p∈[|G|]

np
+ cei

∑
p∈[|G|]

ep

and ep denotes the number of edges contained in Gp
∈ G, then

the SOD is greater for G than for the empty graph G∅. So we can
define

N(G, C) :=

⌈
1
|G|

(
1
cnd

UB(G, (cni, cei)) +

∑|G|

p=1
np

)⌉
.

ase (3) By using analogous arguments to the ones employed in
ase (2), we can show that if a graph G contains more than

′(G, C) := max
{ (

n⋆

2

)
,⌈

2
|G|

(
UB(G, (cni, cei))

ced
+

∑
p∈[|G|]

(
np

2

))⌉ }

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565903/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/suffix/removed/for/double/blind/review/
https://github.com/dbblumenthal/gedlib/

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

n

t

P
o
e

on-isolated nodes, where n⋆
:= maxp∈[|G|] np, then SOD(G∅, G) <

SOD(G, G) holds. Now we define

N(G, C) := N ′(G, C) +

∑
p∈[|G|]

np.

Let G ∈ G be a graph of order larger than N(G, C), and Vi and Vn-i
be the sets of G’s isolated and non-isolated nodes, respectively. If
|Vn-i| > N ′(G, C), we are done. Otherwise, we construct a graph
G′ as follows: G′ contains G’s induced subgraph on Vn-i. Moreover,
for each node i in each graph Gp

∈ G, G′ contains an isolated node
with label ϕp

i . It is easy to see that GED(G′,Gp) ≤ GED(G,Gp) holds
for each Gp

∈ G. Moreover, by construction, G′’s order does not
exceed N(G, C), and we are done. □

Since the bound N for the order does not depend on substi-
tution cost, the search space for the order variable n in Corol-
lary 1 can be reduced to [N]. Also note that, since the edge
labels are independent of the node labels, the third minimiza-
tion in Corollary 1 can be decomposed into two independent
minimizations:

SOD(G⋆, G) = min
n∈N

min
π∈Π

G
n

[
min
ϕ∈Ln

V

∑
p∈[|G|]

cV (πp, ϕ, ϕp)
(E1)

+ min
(A,Φ)∈An×Ln×n

E

∑
p∈[|G|]

cE(πp, A, Φ, Ap, Φp)
(E2)

]

The following Lemma 2 shows that, if condition (C1) holds,
then condition (C2) ensures that the subproblems (E1) and (E2)
have a solution. In other word: the median graph exists if median
labels for the substituted nodes and edges exist.

Lemma 2. Assume that (C2) holds. Then the following statements
hold:

• A vector of node labels ϕ⋆
∈ Ln

V solves subproblem (E1), if
ϕ⋆
i = argminx∈LV

∑
y∈Li

cns(x, y) holds for all i ∈ [n], where
Li := {ϕ

p
πp(i) | p ∈ [|G|] ∧ πp(i) ̸= ϵ} is the multiset of labels

of i’s substituted nodes.
• A pair (A⋆, Φ⋆) ∈ An × Ln×n

E solves subproblem (E2), if Φ⋆
i,j =

argminy∈LE

∑
z∈Li,j

ces(y, z) and A⋆
i,j = (

∑
z∈Li,j

ces(Φ⋆
i,j, z) <

(cei + ced)|Li,j| − ced|G|) hold for all (i, j) ∈ [n] × [n], where
Li,j := {Φ

p
πp(i),πp(j) | πp(i) ̸= ϵ ∧ πp(j) ̸= ϵ ∧ Ap

πp(i),πp(j) = 1}
is the multiset of labels of (i, j)’s substituted edges.

Proof. By removing the constant terms in the expression of cV ,
we obtain that the subproblem (E1) is equivalent to the following
minimization problem:

argmin
ϕ∈Ln

V

∑
i∈[n]

∑
p∈[|G|]

δπp(i)cns(ϕi, ϕ
p
πp(i))

Since the sum over p is positive and independent for each i, this
problem is equivalent to∑
i∈[n]

argmin
x∈LV

∑
y∈Li

cns(x, y),

which implies the first part of the lemma by definition of Li.
For showing the second part of the lemma, note that, by

removing the constant terms in cE , we obtain that the subproblem
(E2) is equivalent to the minimization problem

argmin
n×n

∑∑
fi,j(Ai,j, Φi,j), (B.1)
(A,Φ)∈An×LE i∈[n] j∈[n]

21
where the functions fi,j : {0, 1}×LE → R≥0 are defined as follows:

fi,j(x, y) := x
∑

p∈[|G|]

δπp(i)δπp(j)A
p
πp(i),πp(j)ces(y, Φ

p
πp(i),πp(j))

+ x · ced
∑

p∈[|G|]

1 − δπp(i)δπp(j)A
p
πp(i),πp(j)

+ (1 − x) · cei
∑

p∈[|G|]

δπp(i)δπp(j)A
p
πp(i),πp(j)

= x
∑
z∈Li,j

ces(y, z) + x
(
|G| − |Li,j|

)
ced

+ (1 − x)|Li,j|cei

For all pairs (i, j) ∈ [n] × [n], these functions are positive
and independent from each others. Therefore, the optimization
problem given in Eq. (B.1) is equivalent to the problem∑
i∈[n]

∑
j∈[n]

argmin
(x,y)∈{0,1}×LE

fi,j(x, y).

The variable x can only take two values. If x = 0 (no edge), we
have fi,j(0, y) = cei|Li,j| for each y ∈ LE . If x = 1, then fi,j(1, y) is
minimized by any

y⋆
:= argmin

y∈LE

∑
z∈Li,j

ces(y, z)

By definition of Li,j, this yields the second part of the lemma. □

We are now in the position to prove Theorem 1.

Proof of Theorem 1. Using (C1) and Lemma 1, the order n of
the median graph is bounded by N(G, (cnd, cni, ced, cei)). Moreover,
it has been shown in [83] that |Πn,n′ | ≤ (n + n′)! holds for
all n, n′

∈ N, which implies that ΠG
n is finite for each order

n. Therefore, (C2) and Lemma 2 imply that the optimal median
graph (A, ϕ, Φ) can be determined by enumerating all n ∈ [N]

and all π ∈ ΠG
n . This concludes the proof. □

Appendix C. Proof of Theorem 2

Our proof uses a polynomial reduction from the maximum
common edge subgraph problem (MCES). Given two unlabeled,
undirected graphs G1 and G2 of equal order, MCES asks to com-
pute a common subgraph G of G1 and G2 with a maximum
number of edges. MCES is known to be NP-hard [84]. To facilitate
notations, throughout this section, we use the notation |G| to
denote the number of edges of a graph G. We start the proof with
two lemmata.

Lemma 3. Let G be the set of all undirected, unlabeled graphs. If
he edit costs are uniform, i. e., if cnd = cni = ced = cei = 1, GED is
a metric on G.

Proof. The lemma immediately follows from the definition of
GED. A formal proof can be found in [45]. □

Lemma 4. Let G1 and G2 be unlabeled graphs of the same order. If
the edit costs are uniform, it holds that GED(G1,G2) = |G1|+ |G2|−

2|G|, where G is a maximum common edge subgraph for G1 and G2.

roof. Since the graphs G1 and G2 have the same order, any
ptimal edit path between them performs edit operations on the
dge set only. This implies the following simple observations:

• Given any edit path P from G1 to G2, the graph G(P) obtained
by applying only the edge deletion operation of P is a
common edge subgraph of G and G .
1 2

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

r
o
m
c

P
t
(
a

a
W
(

C
C

c

t
t

S

w
b

s
c

|

w

S
|

a
|

w

T
g

P
o
s
e
l
a
c

d
s
r
n
t
o

• For each common edge subgraph G of G1 and G2, the edit
path P(G) from G1 to G2 obtained by first deleting all edges
of G1 \G and then inserting all edges of G2 \G is a valid edit
path, and its cost is |G1| + |G2| − 2|G|.

Combining these observations implies that there is a bijective
elation between the set of common edge subgraphs and the set
f unordered edit paths. Finding a common edge subgraph with
aximal size hence amounts to finding an edit path with minimal
ost and vice versa. This proves the lemma. □

We are now ready to prove Theorem 2.

roof of Theorem 2. Let (G1,G2) be an instance of MCES and n be
he order of G1 and G2. We construct an instance
G, G, cnd, cni, ced, cei) of the generalized median graph problem
s follows:

• G is the set of all unlabeled undirected graphs.
• The collection G is defined as G := {G1,G2,G3}, where G3 is

a graph with n isolated unlabeled nodes.
• The edit costs are uniform.

Let G be a maximum common edge subgraph of G1 and G2
nd G⋆ be a generalized median graph for (G, G, cnd, cni, ced, cei).
e have to show that G is a generalized median graph for

G, G, cnd, cni, ced, cei) and that G⋆ is a maximum common edge
subgraph of G1 and G2. This is the case if and only if the following
claims are true:

laim (1) It holds that SOD(G⋆) = SOD(G).
laim (2) G⋆ is a common subgraph of G1 and G2 and it holds that

|G⋆
| = |G|.

We first prove Claim (1). Since SOD(G⋆) ≤ SOD(G) holds by
hoice of G⋆, it suffices to show the inequality SOD(G⋆) ≥ SOD(G).
By definition of SOD, we have

SOD(G⋆) = GED(G⋆,G1) + GED(G⋆,G2) + GED(G⋆,G3)
≥

(
GED(G1,G2) + GED(G1,G3)

+ GED(G2,G3)
)

/2,

where the inequality follows from Lemma 3. By noting that
GED(G1,G3) and GED(G2,G3) are equal to |G1| and |G2|, respec-
ively, and applying Lemma 4 to the inequality above, we obtain
he following lower bound for the SOD(G⋆):

OD(G⋆) ≥ |G1| + |G2| − |G| (C.1)

On the other hand, the SOD of a maximum common subgraph
G amounts to

SOD(G) = GED(G,G1) + GED(G,G2) + GED(G,G3)

= |G1 \ G| + |G2 \ G| + |G| = |G1| + |G2| − |G|,

hich exactly matches the lower bound on the optimal SOD given
y Eq. (C.1). We hence have SOD(G) ≤ SOD(G⋆), as required.
Next, we prove Claim (2), i. e., show that G⋆ is a common

ubgraph of G1 and G2 with |G⋆
| = |G|. We first bound the

ardinality of G⋆ by

G⋆
| = GED(G⋆,G3) (C.2)
= SOD(G⋆) −

(
GED(G⋆,G1) + GED(G⋆,G2)

)
≤ SOD(G) − GED(G1,G2)
= |G1| + |G2| − |G| −

(
|G1| + |G2| − 2|G|

)
= |G|,

here the inequality again follows from Lemma 3.
Let G1 be a maximum common edge subgraph of G1 and G⋆,

and G be a maximum common edge subgraph of G and G⋆.
2 2

22
ince GED(G⋆,G1) = |G⋆
| + |G1| − 2|G1|, and GED(G⋆,G2) =

G⋆
| + |G2| − 2|G2|, we have

SOD(G⋆) = |G1| + |G2| + 3|G∗
| − 2(|G1| + |G2|)

≥ |G1| + |G2| − |G| + 2
(
2|G⋆

| − (|G1| + |G2|)
)

≥ SOD(G) + 2
(
2|G⋆

| − (|G1| + |G2|)
)
,

which, by plugging in the equation SOD(Ḡ) = SOD(G⋆), eventually
leads to

2|G⋆
| ≤ |G1| + |G2|. (C.3)

Since both G1 and G2 are subgraphs of G⋆, we have |G1| ≤ |G⋆
|

nd |G2| ≤ |G⋆
|. By combining these upper bounds on |G1| and

G2| with Eq. (C.3), we obtain |G⋆
| = |G1| = |G2| and hence

G⋆
= G1 = G2. Therefore, G⋆ is a subgraph of both G1 and G2,

hich implies |G⋆
| ≤ |G| by choice of G. Together with Eq. (C.2),

this concludes the proof. □

Appendix D. Proofs of propositions

Proof of Proposition 1. Let LV = R\{0} be the set of node labels,
LE = {1} be the set of edge labels, cns(x, y) := (x−y)2 be the node
substitution costs, all other edit costs be equal to a constant c > 2,
and G := {Gx,Gy} be the collection of graphs, where Gx and Gy
each contain just one isolated node with labels x = −1 and y = 1,
respectively. Assume that there is a generalized median graph
G⋆. Then G⋆ contains just one isolated node, because otherwise
we have SOD(G⋆, G) ≥ 2 · c > 4 = SOD(Gx, G). Let z ∈ LV
be the label of G⋆’s unique node. Since 0 /∈ LV , we know that
z ̸= 0. Let G′ be a graph with just one isolated node with label z/2.
Then easy algebra shows that we have SOD(G′, G) < SOD(G⋆, G).
his contradicts the assumption that G⋆ is a generalized median
raph. □

roof of Proposition 2. Consider any order n and any vector
f pairwise different node labels ϕ = (ϕi)ni=1. Now consider the
et Gn,ϕ := {(A, ϕ, 1n×n) | A ∈ An} of graphs with unlabeled
dges generated from ϕ. Since ϕ is fixed and contains different
abels, Gn,ϕ contains exactly 2(n2−n)/2

= |An| graphs. Furthermore,
ssume that, for all x ̸= y ∈ ϕ, we have cns(x, y) = cnd = cni ≫

ed = cei = c > 0.
First, notice that any graph outside of Gn,ϕ has labeled nodes

ifferent from ϕ, and so its SOD to Gn,ϕ is very large (as node
ubstitution, deletion and insertion have a very high cost). Then,
emark that the SOD of any graph in Gn,ϕ always equals to c(n2

−

) · 2((n2−n)/2)−2. Indeed, for each pair (G,G′) of graphs of Gn,ϕ ,
here is a unique node map that has a non-infinite cost, the
ne that maps each node label in G to the same label in G′ (no

node insertion nor deletion), i.e. the identity. Thus, for any graph
in Gn,ϕ , the contribution of the nodes to the sum of distances
amounts to 0 (cV = 0 from cns = 0).

Regarding edges, note that for any pair of nodes, Gn,ϕ has
2((n2−n)/2)−1 graphs where there is an edge between these two
nodes, or 2((n2−n)/2)−1 graphs where there is none. Hence, for
any pair of nodes, its contribution to sum of distances amounts
exactly to c ·2((n2−n)/2)−1, whether this pair corresponds to an edge
of G or not. If this pair corresponds to an edge, then 2(n2−n/2)−1 of
the node maps that count in the sum of distances delete this edge,
if on the other hand this pair does not correspond to an edge, then
2(n2−n/2)−1 of the node maps insert an edge. □

Proof of Proposition 3. The proposition follows from the re-
spective results for GED demonstrated in [85] and the fact that,

⋆
as long as the edit costs are metric, the equation SOD :=

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766

m

S

l
G
t
t
G
G

P
t

P
t
t
a

P
t

P
t

R

inG∈G SOD(G, {G1,G2}) = GED(G1,G2) holds for all graphs
G1,G2 ∈ G. To show this equation, first note that we have SOD⋆

≤

OD(G1, {G1,G2}) = GED(G1,G1) + GED(G1,G2) = GED(G1,G2).
Assume now that SOD⋆

= SOD(G⋆, {G1,G2}) < GED(G1,G2), and
et P⋆→1 and P⋆→2 be optimal edit paths from G⋆ to G1 and from
⋆ to G2, respectively. Since the edit costs are metric, inverting
he edit operations along P⋆→1 yields an edit path P1→⋆ from G1
o G⋆ with cost c(P1→⋆) = c(P⋆→1). This implies the contradiction
ED(G1,G2) ≤ c(P1→⋆ ◦ P⋆→2) = c(P1→⋆) + c(P⋆→2) = SOD⋆ <
ED(G1,G2). □

roof of Proposition 4. The proposition follows from the fact
he, in the each iteration, the SOD is improved by at least ε. □

roof of Proposition 5. The proposition follows from the fact
hat, in each iteration of BCU, we have to call ⌈GED⌉ exactly |G|

imes to compute upper bounds between the current median and
ll the graphs contained G. □

roof of Proposition 6. The proposition follows from the defini-
ion of a pseudometric space. □

roof of Proposition 7. The proposition follows from (C3) and
he path-based Definition 10 of GED. □

eferences

[1] E. Ozdemir, C. Gunduz-Demir, A hybrid classification model for digital
pathology using structural and statistical pattern recognition, IEEE Trans.
Med. Imag. 32 (2) (2013) 474–483, http://dx.doi.org/10.1109/TMI.2012.
2230186.

[2] M. Stauffer, A. Fischer, K. Riesen, A novel graph database for handwritten
word images, in: A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano, R. Wilson
(Eds.), S+SSPR 2016, in: LNCS, vol. 10029, Springer, Cham, 2016, pp.
553–563, http://dx.doi.org/10.1007/978-3-319-49055-7_49.

[3] M. Stauffer, T. Tschachtli, A. Fischer, K. Riesen, A survey on applications
of bipartite graph edit distance, in: P. Foggia, C. Liu, M. Vento (Eds.),
GbRPR 2017, in: LNCS, vol. 10310, Springer, Cham, 2017, pp. 242–252,
http://dx.doi.org/10.1007/978-3-319-58961-9_22.

[4] H. Bunke, G. Allermann, Inexact graph matching for structural pattern
recognition, Pattern Recognit. Lett. 1 (4) (1983) 245–253, http://dx.doi.org/
10.1016/0167-8655(83)90033-8.

[5] K. Riesen, Structural Pattern Recognition with Graph Edit Distance, in:
Advances in Computer Vision and Pattern Recognition, Springer, Cham,
2015, http://dx.doi.org/10.1007/978-3-319-27252-8.

[6] Z. Zeng, A.K.H. Tung, J. Wang, J. Feng, L. Zhou, Comparing stars: On
approximating graph edit distance, Proc. VLDB Endow. 2 (1) (2009) 25–36,
http://dx.doi.org/10.14778/1687627.1687631.

[7] D.B. Blumenthal, J. Gamper, On the exact computation of the graph edit
distance, Pattern Recognit. Lett. 134 (2020) 46–57, http://dx.doi.org/10.
1016/j.patrec.2018.05.002.

[8] D.B. Blumenthal, J. Gamper, Improved lower bounds for graph edit dis-
tance, IEEE Trans. Knowl. Data Eng. 30 (3) (2018) 503–516, http://dx.doi.
org/10.1109/TKDE.2017.2772243.

[9] N. Boria, D.B. Blumenthal, S. Bougleux, L. Brun, Improved local search
for graph edit distance, Pattern Recognit. Lett. 129 (2020) 19–25, http:
//dx.doi.org/10.1016/j.patrec.2019.10.028.

[10] D.B. Blumenthal, N. Boria, J. Gamper, S. Bougleux, L. Brun, Comparing
heuristics for graph edit distance computation, VLDB J. 29 (1) (2020)
419–458, http://dx.doi.org/10.1007/s00778-019-00544-1.

[11] Y. Li, C. Gu, T. Dullien, O. Vinyals, P. Kohli, Graph matching networks
for learning the similarity of graph structured objects, in: K. Chaudhuri,
R. Salakhutdinov (Eds.), ICML 2019, in: Proceedings of Machine Learning
Research, vol. 97, PMLR, Long Beach, 2019, pp. 3835–3845, URL http:
//proceedings.mlr.press/v97/li19d.html.

[12] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, W. Wang, SimGNN: A neural
network approach to fast graph similarity computation, in: J.S. Culpepper,
A. Moffat, P.N. Bennett, K. Lerman (Eds.), WSDM 2019, ACM, New York,
2019, pp. 384–392, http://dx.doi.org/10.1145/3289600.3290967.

[13] D.B. Blumenthal, J. Gamper, S. Bougleux, L. Brun, Upper bounding the graph
edit distance based on rings and machine learning, Int. J. Pattern Recognit.
Artif. Intell. (2021) http://dx.doi.org/10.1142/S0218001421510083, in press.

[14] X. Jiang, A. Munger, H. Bunke, On median graphs: properties, algorithms,
and applications, IEEE Trans. Pattern Anal. Mach. Intell. 23 (10) (2001)
1144–1151, http://dx.doi.org/10.1109/34.954604.
23
[15] C. de la Higuera, F. Casacuberta, Topology of strings: Median string is NP-
complete, Theoret. Comput. Sci. 230 (1–2) (2000) 39–48, http://dx.doi.org/
10.1016/S0304-3975(97)00240-5.

[16] F. Nicolas, E. Rivals, Hardness results for the center and median string
problems under the weighted and unweighted edit distances, J. Discrete
Algorithms 3 (2005) 390–415, http://dx.doi.org/10.1016/j.jda.2004.08.015.

[17] A. Münger, Synthesis of Prototype Graphs from Sample Graphs (Master’s
thesis), University of Bern, 1998 (in German).

[18] M. Ferrer, Theory and Algorithms on the Median Graph. Application
to Graph-Based Classification and Clustering (Ph.D. thesis), Universitat
Autònoma de Barcelona, 2008, URL http://hdl.handle.net/10803/5788.

[19] M. Ferrer, E. Valveny, F. Serratosa, Median graph: A new exact algorithm
using a distance based on the maximum common subgraph, Pattern
Recognit. Lett. 30 (5) (2009) 579–588, http://dx.doi.org/10.1016/j.patrec.
2008.12.014.

[20] M. Ferrer, E. Valveny, F. Serratosa, Median graphs: A genetic approach
based on new theoretical properties, Pattern Recognit. 42 (9) (2009)
2003–2012, http://dx.doi.org/10.1016/j.patcog.2009.01.034.

[21] A. Hlaoui, S. Wang, Median graph computation for graph clustering, Soft
Comput. 10 (1) (2006) 47–53, http://dx.doi.org/10.1007/s00500-005-0464-
1.

[22] L. Musmanno, C.C. Ribeiro, Heuristics for the generalized median graph
problem, European J. Oper. Res. 254 (2) (2016) 371–384, http://dx.doi.org/
10.1016/j.ejor.2016.03.048.

[23] L. Mukherjee, V. Singh, J. Peng, J. Xu, M.J. Zeitz, R. Berezney, Generalized
median graphs and applications, J. Comb. Optim. 17 (1) (2009) 21–44,
http://dx.doi.org/10.1007/s10878-008-9184-7.

[24] M. Ferrer, F. Serratosa, A. Sanfeliu, Synthesis of median spectral graph, in:
J.S. Marques, N.P. de la Blanca, P. Pina (Eds.), IbPRIA 2005, in: LNCS, vol.
3523, Springer, Berlin, Heidelberg, 2005, pp. 139–146, http://dx.doi.org/10.
1007/11492542_18.

[25] D. White, R.C. Wilson, Mixing spectral representations of graphs, in: ICPR
2006, IEEE Computer Society, Los Alamitos, 2006, pp. 140–144, http:
//dx.doi.org/10.1109/ICPR.2006.803.

[26] S. Umeyama, An eigendecomposition approach to weighted graph match-
ing problems, IEEE Trans. Pattern Anal. Mach. Intell. 10 (5) (1988) 695–703,
http://dx.doi.org/10.1109/34.6778.

[27] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and per-
formance: A survey, Knowl.-Based Syst. 151 (2018) 78–94, http://dx.doi.
org/10.1016/j.knosys.2018.03.022.

[28] K. Riesen, H. Bunke, Graph Classification and Clustering Based on Vector
Space Embedding, in: Series in Machine Perception and Artificial Intelli-
gence, vol. 77, World Scientific, Singapore, 2010, http://dx.doi.org/10.1142/
7731.

[29] M. Ferrer, E. Valveny, F. Serratosa, K. Riesen, H. Bunke, Generalized median
graph computation by means of graph embedding in vector spaces, Pattern
Recognit. 43 (4) (2010) 1642–1655, http://dx.doi.org/10.1016/j.patcog.2009.
10.013.

[30] M. Ferrer, D. Karatzas, E. Valveny, I. Bardaji, H. Bunke, A generic framework
for median graph computation based on a recursive embedding approach,
Comput. Vis. Image Underst. 115 (7) (2011) 919–928, http://dx.doi.org/10.
1016/j.cviu.2010.12.010.

[31] M. Ferrer, I. Bardají, E. Valveny, D. Karatzas, H. Bunke, Median graph
computation by means of graph embedding into vector spaces, in: Y. Fu,
Y. Ma (Eds.), Graph Embedding for Pattern Analysis, Springer, New York,
NY, 2013, pp. 45–71, http://dx.doi.org/10.1007/978-1-4614-4457-2_3.

[32] A. Nienkötter, X. Jiang, Improved prototype embedding based generalized
median computation by means of refined reconstruction methods, in: A.
Robles-Kelly, M. Loog, B. Biggio, F. Escolano, R.C. Wilson (Eds.), S+SSPR
2016, in: LNCS, vol. 10029, Springer, Cham, 2016, pp. 107–117, http:
//dx.doi.org/10.1007/978-3-319-49055-7_10.

[33] N. Boria, S. Bougleux, B. Gaüzère, L. Brun, Generalized median graph via
iterative alternate minimizations, in: D. Conte, J. Ramel, P. Foggia (Eds.),
GbRPR 2019, in: LNCS, vol. 11510, Springer, Cham, 2019, pp. 99–109,
http://dx.doi.org/10.1007/978-3-030-20081-7_10.

[34] M.B. Cohen, Y.T. Lee, G.L. Miller, J. Pachocki, A. Sidford, Geometric median
in nearly linear time, in: D. Wichs, Y. Mansour (Eds.), STOC 2016, ACM,
New York, 2016, pp. 9–21, http://dx.doi.org/10.1145/2897518.2897647.

[35] E. Pekalska, R.P.W. Duin, P. Paclík, Prototype selection for dissimilarity-
based classifiers, Pattern Recognit. 39 (2) (2006) 189–208, http://dx.doi.
org/10.1016/j.patcog.2005.06.012.

[36] H. Bunke, S. Günter, Weighted mean of a pair of graphs, Computing 67
(3) (2001) 209–224, http://dx.doi.org/10.1007/s006070170006.

[37] R. Chaieb, K. Kalti, M.M. Luqman, M. Coustaty, J.-M. Ogier, N.E.B. Amara,
Fuzzy generalized median graphs computation: Application to content-
based document retrieval, Pattern Recognit. 72 (2017) 266–284, http:
//dx.doi.org/10.1016/j.patcog.2017.07.030.

[38] A.K.C. Wong, M. You, Entropy and distance of random graphs with applica-
tion to structural pattern recognition, IEEE Trans. Pattern Anal. Mach. Intell.
7 (5) (1985) 599–607, http://dx.doi.org/10.1109/TPAMI.1985.4767707.

http://dx.doi.org/10.1109/TMI.2012.2230186
http://dx.doi.org/10.1109/TMI.2012.2230186
http://dx.doi.org/10.1109/TMI.2012.2230186
http://dx.doi.org/10.1007/978-3-319-49055-7_49
http://dx.doi.org/10.1007/978-3-319-58961-9_22
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1007/978-3-319-27252-8
http://dx.doi.org/10.14778/1687627.1687631
http://dx.doi.org/10.1016/j.patrec.2018.05.002
http://dx.doi.org/10.1016/j.patrec.2018.05.002
http://dx.doi.org/10.1016/j.patrec.2018.05.002
http://dx.doi.org/10.1109/TKDE.2017.2772243
http://dx.doi.org/10.1109/TKDE.2017.2772243
http://dx.doi.org/10.1109/TKDE.2017.2772243
http://dx.doi.org/10.1016/j.patrec.2019.10.028
http://dx.doi.org/10.1016/j.patrec.2019.10.028
http://dx.doi.org/10.1016/j.patrec.2019.10.028
http://dx.doi.org/10.1007/s00778-019-00544-1
http://proceedings.mlr.press/v97/li19d.html
http://proceedings.mlr.press/v97/li19d.html
http://proceedings.mlr.press/v97/li19d.html
http://dx.doi.org/10.1145/3289600.3290967
http://dx.doi.org/10.1142/S0218001421510083
http://dx.doi.org/10.1109/34.954604
http://dx.doi.org/10.1016/S0304-3975(97)00240-5
http://dx.doi.org/10.1016/S0304-3975(97)00240-5
http://dx.doi.org/10.1016/S0304-3975(97)00240-5
http://dx.doi.org/10.1016/j.jda.2004.08.015
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb17
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb17
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb17
http://hdl.handle.net/10803/5788
http://dx.doi.org/10.1016/j.patrec.2008.12.014
http://dx.doi.org/10.1016/j.patrec.2008.12.014
http://dx.doi.org/10.1016/j.patrec.2008.12.014
http://dx.doi.org/10.1016/j.patcog.2009.01.034
http://dx.doi.org/10.1007/s00500-005-0464-1
http://dx.doi.org/10.1007/s00500-005-0464-1
http://dx.doi.org/10.1007/s00500-005-0464-1
http://dx.doi.org/10.1016/j.ejor.2016.03.048
http://dx.doi.org/10.1016/j.ejor.2016.03.048
http://dx.doi.org/10.1016/j.ejor.2016.03.048
http://dx.doi.org/10.1007/s10878-008-9184-7
http://dx.doi.org/10.1007/11492542_18
http://dx.doi.org/10.1007/11492542_18
http://dx.doi.org/10.1007/11492542_18
http://dx.doi.org/10.1109/ICPR.2006.803
http://dx.doi.org/10.1109/ICPR.2006.803
http://dx.doi.org/10.1109/ICPR.2006.803
http://dx.doi.org/10.1109/34.6778
http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1142/7731
http://dx.doi.org/10.1142/7731
http://dx.doi.org/10.1142/7731
http://dx.doi.org/10.1016/j.patcog.2009.10.013
http://dx.doi.org/10.1016/j.patcog.2009.10.013
http://dx.doi.org/10.1016/j.patcog.2009.10.013
http://dx.doi.org/10.1016/j.cviu.2010.12.010
http://dx.doi.org/10.1016/j.cviu.2010.12.010
http://dx.doi.org/10.1016/j.cviu.2010.12.010
http://dx.doi.org/10.1007/978-1-4614-4457-2_3
http://dx.doi.org/10.1007/978-3-319-49055-7_10
http://dx.doi.org/10.1007/978-3-319-49055-7_10
http://dx.doi.org/10.1007/978-3-319-49055-7_10
http://dx.doi.org/10.1007/978-3-030-20081-7_10
http://dx.doi.org/10.1145/2897518.2897647
http://dx.doi.org/10.1016/j.patcog.2005.06.012
http://dx.doi.org/10.1016/j.patcog.2005.06.012
http://dx.doi.org/10.1016/j.patcog.2005.06.012
http://dx.doi.org/10.1007/s006070170006
http://dx.doi.org/10.1016/j.patcog.2017.07.030
http://dx.doi.org/10.1016/j.patcog.2017.07.030
http://dx.doi.org/10.1016/j.patcog.2017.07.030
http://dx.doi.org/10.1109/TPAMI.1985.4767707

D.B. Blumenthal, N. Boria, S. Bougleux et al. Information Systems 100 (2021) 101766
[39] A. Solé-Ribalta, F. Serratosa, Models and algorithms for computing the
common labelling of a set of attributed graphs, Comput. Vis. Image
Underst. 115 (7) (2011) 929–945, http://dx.doi.org/10.1016/j.cviu.2010.12.
007.

[40] A. Solé-Ribalta, Multiple Graph Matching and Applications (Ph.D. thesis),
Universitat Rovira i Virgili, Tarragona, Spain, 2012.

[41] N. Rebagliati, A. Solé-Ribalta, M. Pelillo, F. Serratosa, On the relation be-
tween the common labelling and the median graph, in: G.L. Gimel’farb, E.R.
Hancock, A. Imiya, A. Kuijper, M. Kudo, S. Omachi, T. Windeatt, K. Yamada
(Eds.), S+SSPR 2012, in: LNCS, vol. 7626, Springer, Berlin, Heidelberg, 2012,
pp. 107–115, http://dx.doi.org/10.1007/978-3-642-34166-3_12.

[42] B.J. Jain, Statistical graph space analysis, Pattern Recognit. 60 (2016)
802–812, http://dx.doi.org/10.1016/j.patcog.2016.06.023.

[43] G. Peyré, M. Cuturi, J. Solomon, Gromov–Wasserstein averaging of kernel
and distance matrices, in: M. Balcan, K.Q. Weinberger (Eds.), ICML 2016,
in: Proceedings of Machine Learning Research, vol. 48, PMLR, New York,
2016, pp. 2664–2672, URL http://proceedings.mlr.press/v48/peyre16.pdf.

[44] T. Vayer, N. Courty, R. Tavenard, L. Chapel, R. Flamary, Optimal transport
for structured data with application on graphs, in: K. Chaudhuri, R.
Salakhutdinov (Eds.), ICML 2019, in: Proceedings of Machine Learning
Research, vol. 97, PMLR, Long Beach, 2019, pp. 6275–6284, URL http:
//proceedings.mlr.press/v97/titouan19a/titouan19a.pdf.

[45] D. Justice, A. Hero, A binary linear programming formulation of the
graph edit distance, IEEE Trans. Pattern Anal. Mach. Intell. 28 (8) (2006)
1200–1214, http://dx.doi.org/10.1109/TPAMI.2006.152.

[46] S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère, M. Vento, Graph
edit distance as a quadratic assignment problem, Pattern Recognit. Lett.
87 (2017) 38–46, http://dx.doi.org/10.1016/j.patrec.2016.10.001.

[47] L. Babai, Graph isomorphism in quasipolynomial time [extended abstract],
in: D. Wichs, Y. Mansour (Eds.), STOC 2016, ACM, New York, 2016, pp.
684–697, http://dx.doi.org/10.1145/2897518.2897542.

[48] D.B. Blumenthal, S. Bougleux, J. Gamper, L. Brun, GEDLIB: A C++ library
for graph edit distance computation, in: D. Conte, J.-Y. Ramel, P. Foggia
(Eds.), GbRPR 2019, in: LNCS, vol. 11510, Springer, Cham, 2019, pp. 14–24,
http://dx.doi.org/10.1007/978-3-030-20081-7_2.

[49] E. Weiszfeld, F. Plastria, On the point for which the sum of the distances
to n given points is minimum, Ann. Oper. Res. 167 (2009) 7–41, http:
//dx.doi.org/10.1007/s10479-008-0352-z.

[50] Y. Vardi, C.-H. Zhang, The multivariate L1-median and associated data
depth, Proc. Natl. Acad. Sci. USA 97 (4) (2000) 1423–1426, http://dx.doi.
org/10.1073/pnas.97.4.1423.

[51] F. Nicolas, E. Rivals, Hardness results for the center and median string
problems under the weighted and unweighted edit distances, J. Discrete
Algorithms 3 (2–4) (2005) 390–415, http://dx.doi.org/10.1016/j.jda.2004.
08.015.

[52] M. Hayashida, H. Koyano, Finding median and center strings for a prob-
ability distribution on a set of strings under Levenshtein distance based
on integer linear programming, in: A.L.N. Fred, H. Gamboa (Eds.), BIOSTEC
2016, in: CCIS, vol. 690, Springer, Cham, 2017, pp. 108–121, http://dx.doi.
org/10.1007/978-3-319-54717-6_7.

[53] J.I. Abreu, J.R. Rico-Juan, A new iterative algorithm for computing a quality
approximate median of strings based on edit operations, Pattern Recognit.
Lett. 36 (2014) 74–80, http://dx.doi.org/10.1016/j.patrec.2013.09.014.

[54] S. Sharma, P. Tripathi, Gut microbiome and type 2 diabetes: where we are
and where to go? J. Nutr. Biochem. 63 (2019) 101–108, http://dx.doi.org/
10.1016/j.jnutbio.2018.10.003.

[55] E.A. Franzosa, A. Sirota-Madi, J. Avila-Pacheco, N. Fornelos, H.J. Haiser,
S. Reinker, T. Vatanen, A.B. Hall, H. Mallick, L.J. McIver, J.S. Sauk, R.G.
Wilson, B.W. Stevens, J.M. Scott, K. Pierce, A.A. Deik, K. Bullock, F. Imhann,
J.A. Porter, A. Zhernakova, J. Fu, R.K. Weersma, C. Wijmenga, C.B. Clish,
H. Vlamakis, C. Huttenhower, R.J. Xavier, Gut microbiome structure and
metabolic activity in inflammatory bowel disease, Nat. Microbiol. 4 (2)
(2019) 293–305, http://dx.doi.org/10.1038/s41564-018-0306-4.

[56] G.B. Gloor, J.M. Macklaim, V. Pawlowsky-Glahn, J.J. Egozcue, Microbiome
datasets are compositional: And this is not optional, Front. Microbiol. 8
(2017) 2224:1–2224:6, http://dx.doi.org/10.3389/fmicb.2017.02224.

[57] Y. Ban, L. An, H. Jiang, Investigating microbial co-occurrence patterns
based on metagenomic compositional data, Bioinformatics 31 (20) (2015)
3322–3329, http://dx.doi.org/10.1093/bioinformatics/btv364.

[58] J. Friedman, E.J. Alm, Inferring correlation networks from genomic survey
data, PLoS Comput. Biol. 8 (9) (2012) e1002687:1–e1002687:11, http:
//dx.doi.org/10.1371/journal.pcbi.1002687.

[59] H. Fang, C. Huang, H. Zhao, M. Deng, CCLasso: correlation inference
for compositional data through Lasso, Bioinformatics 31 (19) (2015)
3172–3180, http://dx.doi.org/10.1093/bioinformatics/btv349.

[60] H. Hirano, K. Takemoto, Difficulty in inferring microbial community struc-
ture based on co-occurrence network approaches, BMC Bioinform. 20 (1)
(2019) 329:1–329:14, http://dx.doi.org/10.1186/s12859-019-2915-1.

[61] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to
Cluster Analysis, John Wiley & Sons, Hoboken, 1990, http://dx.doi.org/10.
1002/9780470316801.
24
[62] E. Schubert, P.J. Rousseeuw, Faster k-medoids clustering: Improving the
PAM, CLARA, and CLARANS algorithms, 2018, arXiv:1810.05691.

[63] H. Park, C. Jun, A simple and fast algorithm for K-medoids clustering,
Expert Syst. Appl. 36 (2) (2009) 3336–3341.

[64] S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28
(2) (1982) 129–136, http://dx.doi.org/10.1109/TIT.1982.1056489.

[65] P.S. Bradley, O.L. Mangasarian, W.N. Street, Clustering via concave mini-
mization, in: M. Mozer, M.I. Jordan, T. Petsche (Eds.), NIPS 1996, MIT Press,
Cambridge, Massachusetts, 1996, pp. 368–374.

[66] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in:
N. Bansal, K. Pruhs, C. Stein (Eds.), SODA 2007, SIAM, Philadelphia, 2007,
pp. 1027–1035.

[67] E. Chávez, G. Navarro, R.A. Baeza-Yates, J.L. Marroquín, Searching in metric
spaces, ACM Comput. Surv. 33 (3) (2001) 273–321, http://dx.doi.org/10.
1145/502807.502808.

[68] G. Wang, B. Wang, X. Yang, G. Yu, Efficiently indexing large sparse graphs
for similarity search, IEEE Trans. Knowl. Data Eng. 24 (3) (2012) 440–451,
http://dx.doi.org/10.1109/TKDE.2010.28.

[69] X. Wang, X. Ding, A.K.H. Tung, S. Ying, H. Jin, An efficient graph indexing
method, in: A. Kementsietsidis, M.A.V. Salles (Eds.), ICDE 2012, IEEE
Computer Society, Los Alamitos, 2012, pp. 210–221, http://dx.doi.org/10.
1109/ICDE.2012.28.

[70] X. Zhao, C. Xiao, X. Lin, W. Wang, Y. Ishikawa, Efficient processing of graph
similarity queries with edit distance constraints, VLDB J. 22 (6) (2013)
727–752, http://dx.doi.org/10.1007/s00778-013-0306-1.

[71] W. Zheng, L. Zou, X. Lian, D. Wang, D. Zhao, Efficient graph similarity
search over large graph databases, IEEE Trans. Knowl. Data Eng. 27 (4)
(2015) 964–978, http://dx.doi.org/10.1109/TKDE.2014.2349924.

[72] X. Zhao, C. Xiao, X. Lin, W. Zhang, Y. Wang, Efficient structure similarity
searches: a partition-based approach, VLDB J. 27 (1) (2018) 53–78, http:
//dx.doi.org/10.1007/s00778-017-0487-0.

[73] I. Kalantari, G. McDonald, A data structure and an algorithm for the
nearest point problem, IEEE Trans. Softw. Eng. 9 (5) (1983) 631–634,
http://dx.doi.org/10.1109/TSE.1983.235263.

[74] H. Noltemeier, K. Verbarg, C. Zirkelbach, Monotonous bisector∗ trees – a
tool for efficient partitioning of complex scenes of geometric objects, in: B.
Monien, T. Ottmann (Eds.), Data Structures and Efficient Algorithms, Final
Report on the DFG Special Joint Initiative, in: LNCS, vol. 594, Springer,
Berlin, Heidelberg, 1992, pp. 186–203, http://dx.doi.org/10.1007/3-540-
55488-2_27.

[75] K. Riesen, H. Bunke, IAM graph database repository for graph based pattern
recognition and machine learning, in: N. da Vitoria Lobo, T. Kasparis, F. Roli,
J.T. Kwok, M. Georgiopoulos, G.C. Anagnostopoulos, M. Loog (Eds.), S+SSPR
2008, in: LNCS, vol. 5342, Springer, Berlin, Heidelberg, 2008, pp. 287–297,
http://dx.doi.org/10.1007/978-3-540-89689-0_33.

[76] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, A graph database repository and
performance evaluation metrics for graph edit distance, in: C. Liu, B.
Luo, W.G. Kropatsch, J. Cheng (Eds.), GbRPR 2015, in: LNCS, vol. 9069,
Springer, Cham, 2015, pp. 138–147, http://dx.doi.org/10.1007/978-3-319-
18224-7_14.

[77] A. Metwaly, A. Dunkel, N. Waldschmitt, A.C.D. Raj, I. Lagkouvardos, A.M.
Corraliza, A. Mayorgas, M. Martinez-Medina, S. Reiter, M. Schloter, T.
Hofmann, M. Allez, J. Panes, A. Salas, D. Haller, Integrated microbiota
and metabolite profiles link Crohn’s disease to sulfur metabolism, Na-
ture Commun. 11 (1) (2020) 4322, http://dx.doi.org/10.1038/s41467-020-
17956-1.

[78] S. Bougleux, B. Gaüzère, L. Brun, Graph edit distance as a quadratic
program, in: ICPR 2016, IEEE Computer Society, Los Alamitos, 2016, pp.
1701–1706, http://dx.doi.org/10.1109/ICPR.2016.7899881.

[79] D.B. Blumenthal, É. Daller, S. Bougleux, L. Brun, J. Gamper, Quasimetric
graph edit distance as a compact quadratic assignment problem, in: ICPR
2018, IEEE Computer Society, Los Alamitos, 2018, pp. 934–939, http:
//dx.doi.org/10.1109/ICPR.2018.8546055.

[80] M. Schirmer, A. Garner, H. Vlamakis, R.J. Xavier, Microbial genes and
pathways in inflammatory bowel disease, Nat. Rev. Microbiol. 17 (8) (2019)
497–511, http://dx.doi.org/10.1038/s41579-019-0213-6.

[81] M.T. Alam, G.C.A. Amos, A.R.J. Murphy, S. Murch, E.M.H. Wellington, R.P.
Arasaradnam, Microbial imbalance in inflammatory bowel disease patients
at different taxonomic levels, Gut Pathog. 12 (2020) 1, http://dx.doi.org/
10.1186/s13099-019-0341-6.

[82] L. Hubert, P. Arabie, Comparing partitions, J. Classification 2 (1) (1985)
193–218, http://dx.doi.org/10.1007/BF01908075.

[83] S. Bougleux, L. Brun, Linear sum assignment with edition, 2016, arXiv:
1603.04380.

[84] L. Bahiense, G. Manic, B. Piva, C.C. de Souza, The maximum common edge
subgraph problem: A polyhedral investigation, Discrete Appl. Math. 160
(18) (2012) 2523–2541, http://dx.doi.org/10.1016/j.dam.2012.01.026.

[85] D.B. Blumenthal, New Techniques for Graph Edit Distance Computa-
tion (Ph.D. thesis), Free University of Bozen-Bolzano, 2019, URL https:
//bia.unibz.it/handle/10863/10433.

http://dx.doi.org/10.1016/j.cviu.2010.12.007
http://dx.doi.org/10.1016/j.cviu.2010.12.007
http://dx.doi.org/10.1016/j.cviu.2010.12.007
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb40
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb40
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb40
http://dx.doi.org/10.1007/978-3-642-34166-3_12
http://dx.doi.org/10.1016/j.patcog.2016.06.023
http://proceedings.mlr.press/v48/peyre16.pdf
http://proceedings.mlr.press/v97/titouan19a/titouan19a.pdf
http://proceedings.mlr.press/v97/titouan19a/titouan19a.pdf
http://proceedings.mlr.press/v97/titouan19a/titouan19a.pdf
http://dx.doi.org/10.1109/TPAMI.2006.152
http://dx.doi.org/10.1016/j.patrec.2016.10.001
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1007/978-3-030-20081-7_2
http://dx.doi.org/10.1007/s10479-008-0352-z
http://dx.doi.org/10.1007/s10479-008-0352-z
http://dx.doi.org/10.1007/s10479-008-0352-z
http://dx.doi.org/10.1073/pnas.97.4.1423
http://dx.doi.org/10.1073/pnas.97.4.1423
http://dx.doi.org/10.1073/pnas.97.4.1423
http://dx.doi.org/10.1016/j.jda.2004.08.015
http://dx.doi.org/10.1016/j.jda.2004.08.015
http://dx.doi.org/10.1016/j.jda.2004.08.015
http://dx.doi.org/10.1007/978-3-319-54717-6_7
http://dx.doi.org/10.1007/978-3-319-54717-6_7
http://dx.doi.org/10.1007/978-3-319-54717-6_7
http://dx.doi.org/10.1016/j.patrec.2013.09.014
http://dx.doi.org/10.1016/j.jnutbio.2018.10.003
http://dx.doi.org/10.1016/j.jnutbio.2018.10.003
http://dx.doi.org/10.1016/j.jnutbio.2018.10.003
http://dx.doi.org/10.1038/s41564-018-0306-4
http://dx.doi.org/10.3389/fmicb.2017.02224
http://dx.doi.org/10.1093/bioinformatics/btv364
http://dx.doi.org/10.1371/journal.pcbi.1002687
http://dx.doi.org/10.1371/journal.pcbi.1002687
http://dx.doi.org/10.1371/journal.pcbi.1002687
http://dx.doi.org/10.1093/bioinformatics/btv349
http://dx.doi.org/10.1186/s12859-019-2915-1
http://dx.doi.org/10.1002/9780470316801
http://dx.doi.org/10.1002/9780470316801
http://dx.doi.org/10.1002/9780470316801
http://arxiv.org/abs/1810.05691
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb63
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb63
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb63
http://dx.doi.org/10.1109/TIT.1982.1056489
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb65
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb65
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb65
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb65
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb65
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb66
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb66
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb66
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb66
http://refhub.elsevier.com/S0306-4379(21)00028-4/sb66
http://dx.doi.org/10.1145/502807.502808
http://dx.doi.org/10.1145/502807.502808
http://dx.doi.org/10.1145/502807.502808
http://dx.doi.org/10.1109/TKDE.2010.28
http://dx.doi.org/10.1109/ICDE.2012.28
http://dx.doi.org/10.1109/ICDE.2012.28
http://dx.doi.org/10.1109/ICDE.2012.28
http://dx.doi.org/10.1007/s00778-013-0306-1
http://dx.doi.org/10.1109/TKDE.2014.2349924
http://dx.doi.org/10.1007/s00778-017-0487-0
http://dx.doi.org/10.1007/s00778-017-0487-0
http://dx.doi.org/10.1007/s00778-017-0487-0
http://dx.doi.org/10.1109/TSE.1983.235263
http://dx.doi.org/10.1007/3-540-55488-2_27
http://dx.doi.org/10.1007/3-540-55488-2_27
http://dx.doi.org/10.1007/3-540-55488-2_27
http://dx.doi.org/10.1007/978-3-540-89689-0_33
http://dx.doi.org/10.1007/978-3-319-18224-7_14
http://dx.doi.org/10.1007/978-3-319-18224-7_14
http://dx.doi.org/10.1007/978-3-319-18224-7_14
http://dx.doi.org/10.1038/s41467-020-17956-1
http://dx.doi.org/10.1038/s41467-020-17956-1
http://dx.doi.org/10.1038/s41467-020-17956-1
http://dx.doi.org/10.1109/ICPR.2016.7899881
http://dx.doi.org/10.1109/ICPR.2018.8546055
http://dx.doi.org/10.1109/ICPR.2018.8546055
http://dx.doi.org/10.1109/ICPR.2018.8546055
http://dx.doi.org/10.1038/s41579-019-0213-6
http://dx.doi.org/10.1186/s13099-019-0341-6
http://dx.doi.org/10.1186/s13099-019-0341-6
http://dx.doi.org/10.1186/s13099-019-0341-6
http://dx.doi.org/10.1007/BF01908075
http://arxiv.org/abs/1603.04380
http://arxiv.org/abs/1603.04380
http://arxiv.org/abs/1603.04380
http://dx.doi.org/10.1016/j.dam.2012.01.026
https://bia.unibz.it/handle/10863/10433
https://bia.unibz.it/handle/10863/10433
https://bia.unibz.it/handle/10863/10433

	Scalable generalized median graph estimation and its manifold use in bioinformatics, clustering, classification, and indexing
	Introduction
	Related work
	Spectral methods
	Methods based on graph embedding into vector spaces
	Methods based on genetic and linear programming and greedy and local search
	Other approaches for closely related problems

	Preliminaries
	Labeled graphs
	Graph edit distance and node maps
	Generalized median graphs and sum of distances

	Theoretical results
	GMG-BCU: A scalable algorithm for estimating generalized median graphs
	Overview and decomposition into subproblems
	Subproblem spb:graph: Updating the median graph within the current order
	Subproblem spb:order: Updating the order
	Decreasing the order
	Increasing the order

	Termination criteria and convergence
	Initialization
	Complexity analysis

	Applications
	Computing representative graphs for differential microbiome data analysis
	Clustering
	Implementing K-medoids and K-medians
	Clustering collections of graphs

	Classification and data reduction
	Indexing
	Graph proximity queries
	Existing index structures
	Metric trees
	Using metric trees for graph proximity queries

	Empirical evaluation
	Experimental setup
	Datasets
	Test protocol and implementation

	Evaluation of different configurations of GMG-BCU
	Comparison against the state of the art
	Runtime and scalability
	Quality

	Performance of GMG-BCU in application scenarios
	Computation of representatives for ibd graphs
	Clustering
	Classification and data reduction
	Indexing

	Upshot of the experiments
	Configuration of the proposed algorithm
	Comparison to state of the art
	Performance in application scenarios

	Conclusions and future work
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Path based definition of the graph edit distance
	Appendix B. Proof of Theorem 1
	Appendix C. Proof of Theorem 2
	Appendix D. Proofs of propositions
	References

