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Abstract— Real-world face recognition applications often deal
with suboptimal image quality or resolution due to different
capturing conditions such as various subject-to-camera dis-
tances, poor camera settings, or motion blur. This character-
istic has an unignorable effect on performance. Recent cross-
resolution face recognition approaches used simple, arbitrary,
and unrealistic down- and up-scaling techniques to measure
robustness against real-world edge-cases in image quality.
Thus, we propose a new standardized benchmark dataset and
evaluation protocol derived from the famous Labeled Faces in
the Wild (LFW). In contrast to previous derivatives, which focus
on pose, age, similarity, and adversarial attacks, our Cross-
Quality Labeled Faces in the Wild (XQLFW) maximizes the
quality difference. It contains only more realistic synthetically
degraded images when necessary. Our proposed dataset is then
used to further investigate the influence of image quality on
several state-of-the-art approaches. With XQLFW, we show that
these models perform differently in cross-quality cases, and
hence, the generalizing capability is not accurately predicted
by their performance on LFW. Additionally, we report baseline
accuracy with recent deep learning models explicitly trained for
cross-resolution applications and evaluate the susceptibility to
image quality. To encourage further research in cross-resolution
face recognition and incite the assessment of image quality
robustness, we publish the database and code for evaluation.'

I. INTRODUCTION

Current state-of-the-art face recognition systems [3], [21],
[41] show superior performance on several standard face
recognition benchmarks in unconstrained environments (e.g.,
MegaFace [13], [JB-A [16], or LFW [10]), almost reaching
saturation levels on LFW. But do these results generalize to
more challenging scenarios or edge-cases? Multiple bench-
marks focus on specific properties like age [24], [39] or
pose [26], [38] to enhance the difficulty, which results in
a substantial drop in performance. Other works on occlu-
sions [9] or transferable adversarial attacks [40] also report
decreasing performances with modified databases.

In real-world face recognition applications, the quality
and resolution of the examined images vary due to different
camera settings or the subject-to-camera distance. Comparing
two faces, comprising a different image resolution or quality,
is often referred to as cross-resolution problem. This inequal-
ity of image resolution substantially affects the performance,
and hence, several methods studied cross-resolution face
verification [5], [14], [17], [19], [20], [25], [28], [34], [35].
To evaluate cross-resolution face recognition systems, they

ICode, dataset and evaluation protocol available on https://
martlgap.github.io/xglfw
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Fig. 1. Comparison between LFW and our proposed XQLFW dataset with
two example image pairs, image quality scores, and the distribution of the
absolute difference in image quality per pair.

simulate a lower image resolution by down- and up-sampling
with bicubic or bilinear kernels. However, several studies [1],
[11], [37], [42] on image super-resolution showed that real
low-resolution images differ from synthetically generated
images. Moreover, sampling kernels vary across software
packages and make a fair comparison impossible. This cir-
cumstance motivates us to dig deeper into the LFW database
and analyze it according to image resolution and quality.
Modern face recognition systems often rely on a fixed
input image resolution of 112 x 112 px determined by the
resolution of training images. But the pixel dimensions do
not necessarily correspond to the real resolution of the
image. LFW, for example, contains loosely cropped images
with 250 x 250 px resolution, with a facial region covering
~ 112 x 112px. We cannot be sure that all images are
captured with exactly that resolution. Since images are
crawled from the web, they are very likely down- or up-
sampled beforehand. Besides characteristic camera motion
blur or bad lighting conditions, the lower original image
resolution constitutes a reason for encountering images with
inferior quality in the LFW database. However, the inherent
quality difference within pairs of the LFW database is tiny.
Fig. 1 shows two example pairs of LFW and the distribution
of image quality score differences per pair, demonstrating a
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small variance of image quality within the database.

To enlarge the quality variance and thus to test the
robustness of face recognition systems against image quality,
we use a more realistic method to synthetically deteriorate
images and create a modified Cross-Quality LFW dataset
(XQLFW). Fig. 1 depicts two example pairs of our proposed
XQLFW, demonstrating a more considerable quality differ-
ence per pair. The distribution of quality score differences per
pair of our XQLFW protocol compared to LFW in Fig. 1 is
shifted to the right, which indicates a wider variety of image
quality in our proposed evaluation protocol.

Our main contributions can be summarized as follows:

o We continue research on the LFW database and show
that image quality variation inside the evaluation proto-
col is tiny.

o We establish a more challenging and realistic database
to evaluate the robustness of face recognition systems
towards cross-resolution image quality.

« We maintain the dataset size, image ensemble, and face
verification protocol rules of LFW and thereby ensure
disjoint identities in training and testing datasets.

o We report and analyze the robustness of face recogni-
tion performance for several state-of-the-art approaches
on our novel XQLFW evaluation protocol and reveal
large discrepancies in the generalization performance
of several state-of-the-art face recognition approaches.

II. RELATED WORK
A. Datasets

Most of the publicly available databases concentrate exclu-
sively on rather high-resolution images (e.g., LFW [10], IJB-
A [16], IIB-B [32], MegaFace [13], AgeDB [24], CFP [26])
or rather low-resolution images (e.g. TinyFaces [2]). SC-
Face [6], for example, combines high- and low-resolutions
but contains only 130 subjects, which makes it not suitable
for performance evaluation of cross-resolution face recogni-
tion due to its poor generalization.

To overcome the saturating performance on the LFW
dataset, other LFW derivatives were created in recent years.
For example, Zheng et al. [38], [39] focused on signifi-
cant age and pose variance within the evaluation protocol
and provided the cross-age and cross-pose LFW dataset
(CALFW, CPLFW). While Zhong et al. [40] investigated
the vulnerability of face recognition systems against trans-
ferable adversarial attacks and proposed a novel Transferable
Adversarial LFW dataset (TALFW), Deng et al. [4] analyzes
the robustness against similar looking faces and propose a
new challenging evaluation protocol (SLLFW).

Facial occlusions are studied in the following works: The
authors of [9] analyzed the impact of occlusions and pro-
posed the Partial LFW evaluation dataset, which contains face
images with synthetically generated occlusions on different
facial landmarks. Eyeglass-robustness of face recognition
systems was analyzed by Guo et al. [7]. Recently, in [31]
and [23] LFW is extended with synthetically added face
masks.

In contrast, our XQLFW evaluation protocol aims to show
how well face recognition performs under realistic edge-case
scenarios in the scope of image quality.

B. Image Quality Metrics

Reference-based image quality assessment approaches
compare the image quality between two or more images. In
contrast, no-reference-based methods focus on a single image
and report an independent, absolute score, representing the
quality of the image. In this work, we use no-reference-
based metrics to assess each image’s quality independently.
Kamble et al. [12] presented an exhaustive enumeration of
no-reference-based approaches in their work.

We distinguish between non-face-specific metrics (e.g.,
BRISQUE [22], sharpness [18]) and face-specific metrics in
the following: In [33], the authors presented a two-stream
convolutional neural network that quickly and accurately pre-
dicts the face quality score. Another approach was suggested
by Khryashchev et al. [15]. They propose a novel metric-
based image quality assessment using resolution, sharpness,
symmetry, blur, and face landmarks. Recently, Terhorst et
al. [29] studied the unsupervised estimation of face image
quality based on stochastic embedding robustness (SER-
FIQ).

C. Cross-Resolution Face Recognition

Cross-resolution face recognition can be categorized into
two groups: 1) transformation-based approaches [14], [19],
[28], which first transform images into the same resolution
or quality space and then apply face recognition. 2) non-
transformation based approaches [17], [20], [25], [27], which
directly project facial features of different image resolu-
tions/qualities into the same space.

However, a fair performance comparison across different
approaches is impeded by different evaluation protocols and
image down-sampling methods for benchmarks. Thus, we
deduct the need for a standardized cross-resolution database
to more accurately gauge performance on realistic and chal-
lenging cross-quality images.

III. CONSTRUCTING XQLFW

A. Image Quality Assessment

First, we evaluate the BRISQUE [22] and SER-FIQ [29]
scores on every single image of the LFW database. To
mitigate effects from the background around the face, we
crop and align all images with MTCNN [36] as in [3].
While BRISQUE measures the visual quality of an image,
SER-FIQ evaluates the quality of the face itself via facial
feature assessment (i.e., occlusions or extreme head poses)
result in a meaningless identity feature and thus reflect poor
quality. A correlation coefficient of —0.021 for the complete
LFW database proves the independence of both metrics.
For a combination of both, we first normalize each score
Qm(-), m € {BRISQUE, SER-FIQ} for a given image I
such that they both lie in the same value range [0, 1]:

Q’m(I) _ min(maX(Qmin, ms Qm(I))a Qmax,m) (1

Gmax,m — Gmin,m
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Fig. 2. Pipeline for the construction of the proposed cross-quality labeled
faces in the wild (XQLFW) evaluation protocol.

For QprisQue(-), We set ¢min Brisgque = 0 and
@max, BRISQUE = 100, which correspond to the minimum
and maximum possible values reported in [22]. During
the normalization of QSER_FIQ(~), we use minimum and
maximum values of 0.78 and 0.91, to capture the full
range of image quality. Then, we calculate the normalized
combined image quality score Q() for a given image I
using both normalized scores as follows:

Q(I) — 1- QBRISQUE(I; + QSER-FIQ(I)

B. Evaluation Protocol Construction Details

The Labeled Faces in the Wild database (LFW) contains
13233 images from 5749 unique identities. The number of
images per identity varies from 1 up to 530. The LFW
View-2 evaluation protocol defines 3000 image pairs with the
same identity (genuine) and 3000 image pairs with different
identity (imposter).

To construct the XQLFW evaluation protocol, we follow
the same procedure as Huang et al. [10] proposed for the
LFW View-2 evaluation protocol. Genuine pairs are formed
iteratively: First, we randomly pick one identity from all
identities with at least two images. Two different images
were selected at random from this given identity and added
to the evaluation protocol if that specific pair was not already
added previously. The whole process is repeated until 3000
pairs are found.

Imposter pairs are formed iteratively as follows: First,
we randomly pick two identities out of all identities. If
this specific combination of identities is already present in
the protocol, we repeat this step. From each identity, one
image is then selected at random. Similar to [38] and [39],
gender and race are forced to be equal by using the attributes
provided by [10]. This process is also repeated until 3000
pairs are generated.

2

C. Synthetic Image Quality Deterioration

To further increase the per pair image quality score dif-
ference A(Q within the evaluation protocol, we introduce
a threshold ¢ for a minimum score difference and apply
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Fig. 3. Combined image quality score distribution @ for LFW and XQLFW
with the lower (grey) and higher (green) score of every image pair.

synthetic image deterioration. The process is described as
follows: We loop over each identity in the database and
synthetically deteriorate images if: 1) Q is below a quality
threshold of 0.85 and 2) the number of deteriorated images
within an identity does not exceed half the number of images
of that identity. This procedure assures that a certain amount
of high-quality images remains for each identity.

Several works [1], [11], [37], [42] argue that simple
down- and up-sampling images with, e.g., bicubic or bi-
linear kernels, is not sufficiently reflecting real low image
resolution. In contrast to previous works, we therefore use
the method from Bell et al. [1] to blur and then sub-sample
each image with a different, randomly generated 21 x 21 px
Gaussian an-isotropic kernel. Scale factors are randomly
chosen from the following list {3, 4, 5,6, 7,8,10,12, 14, 16}.
Additionally, we specifically apply deterioration to rather
low-quality images only. Experiments demonstrate that this
synthetic image resolution reduction highly correlates with
our combined image quality score.

As depicted in Fig. 2, we follow this construction protocol
and generate two evaluation protocols using a threshold
t = 0.15: 1) XQLFW*, which is developed from the
original LFW database and 2) XQLFW, which is developed
from the synthetically deteriorated XQLFW database. Fig. 2
additionally illustrates the different distributions of image
quality scores within both source databases.

D. Comparison of LFW and XQLFW

The LFW database mainly contains images with a score
Q in the range of 0.7 to 0.9. In contrast, XQLFW principally
consists of two groups of images with Q in the range
of 0.7 to 0.9 corresponding to the non-degraded images
from the LFW, and additionally, 0.25 to 0.65. This database
characteristic enables imposter and genuine image pairs with
an extensive image quality score difference. We report an
average AQ of 0.177 for XQLFW* and 0.327 for XQLFW,
compared to the relatively low average AQ of 0.056 for

TABLE I
COMPARISON OF THE MEAN IMAGE QUALITY DIFFERENCE @AQ AND
NUMBER OF UNIQUE IDENTITIES AND IMAGES OF SEVERAL DATABASES.

LFW XQLFW* XQLFW CPLFW CALFW SLLFW

SAQ 0.056 0.177 0.327 0.078 0.046 0.054
identities 4281 2450 3743 2296 2997 2810
images 7701 4395 7263 5984 7167 6091
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LFW (c.f. Table I). The comparatively large average AQ
score of 0.078 in CPLFW also reveals the susceptibility of
the SER-FIQ metric against extreme head pose variations.

In Fig. 3, we depict the image quality distribution for
LFW and XQLFW. To highlight the quality score differences
between both images of a pair, we employ different colors for
the lower and higher image quality score of every image pair.
In contrast to LFW, one can see the widening gap of scores
in XQLFW, which implicates a significantly larger quality
score difference (c.f. also Fig. 1). By not strictly picking the
image with higher Q exclusively but also from the degraded
images and allowing to select a degraded image, we also
include a relatively small amount of cross-resolution pairs
with both images having rather low quality (c.f. Fig. 3).

Moreover, we state the number of unique identities and
images for the resulting evaluation protocols and compare
them to LFW, CALFW, CPLFW, and SLLFW (c.f. Table I).
Due to the relatively small image quality variations within
the LFW database, the construction of XQLFW* leads
to excessive use of particular identities and images. E.g.,
mainly the rare identities with large quality variation within
the images are preferably chosen for genuine pairs. Con-
sequently, the XQLFW?* evaluation protocol contains only
2450 identities and 4395 unique images, thus lacking gen-
erality. CALFW, CPLFW, and SLLFW similarly have fewer
unique identities and images compared to LFW. However,
our proposed evaluation protocol (XQLFW), derived from
the deteriorated database, contains 3743 individual identities
and 7263 images, topmost among other LFW derivatives
mentioned in Table 1.

IV. FACE RECOGNITION BENCHMARK

We benchmark the evaluation protocols XQLFW#* and
XQLFW with several state-of-the-art face recognition ap-
proaches (all using a cleaned version of MSIM [8] for
training). Table II depicts our XQLFW, the original LFW, and
the non-degraded variant XQLFW* with a threshold ¢ = 0.15
and denotes face verification accuracy. The small decrease
in performance for XQLFW* underlines the requirement of
further deterioration of images to measure the susceptibility
of face recognition systems to image quality. While the
performance on XQLFW drops substantially for ArcFace [3]
and MagFace [21], the decrease of accuracy for BT-M, ST-
M1, and ST-M2 from [17] is moderate. This comparatively
small worsening is reasonable due to the specific training
methods, which aim for a resolution-robust network. How-
ever, the performance of ST-M1 and ST-M2 is considerably
lower on LFW, which is a huge drawback.

Interestingly, the performance of the FaceTransformer
approach [41] is remarkably good on the XQLFW protocol.
We conclude that the Transformer [30] architecture, which
is heavily used in speech recognition, applied in the Face-
Transformer network, is less susceptible to image resolution
or quality than classical CNN architectures.

Fig. 4 shows the receiver operating characteristic curve for
several state-of-the-art models on LFW and our proposed

TABLE I
FACE VERIFICATION ACCURACY (%) FOR SEVERAL STATE-OF-THE-ART
APPROACHES ON LFW AND OUR GENERATED EVALUATION PROTOCOLS.
THE ABSOLUTE DECREASE WITH RESPECT TO LFW IS SHOWN IN

BRACKETS.
Model LFW XQLFW#* XQLFW
ArcFace [3]2 99.50  99.13(—0.37)  74.22(—25.28)
MagFace [21] 99.63  99.35(—0.28)  76.95 (—22.68)
FaceTransformer [41] 99.70 99.35(—0.35) 87.90(—11.80)
BT-M [17] 99.30  99.10(—0.20)  83.60 (—15.70)
ST-M1 [17] 97.30 96.50 (—0.80) 90.97 (—6.33)
ST-M2 [17] 95.87  94.77(—1.10)  90.82 (—5.05)
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Fig. 4. ROC curves of several state-of-the-art face recognition approaches
on LFW and our proposed XQLFW evaluation protocol.

XQLFW evaluation protocol. Interestingly, the FaceTrans-
former approach outperforms all other models on XQLFW
at very low false positive rates, whereas ST-M1 and ST-M2
clearly perform best at higher false positive rates. The BT-M
model performs considerably better for about two-thirds of
the database but struggles with the remaining third.

V. CONCLUSIONS

This paper introduces a novel face recognition benchmark
protocol constructed from the well-known LFW database:
Cross-Quality Labeled Faces in the Wild (XQLFW). This
dataset focuses on significant image quality variations and
thus, evaluates face recognition systems on their robustness
against image quality or resolution. We first synthetically
deteriorate a fraction of images from the original LFW
database via blurring with random variations of Gaussian
kernels to enhance the quality variation. We then randomly
generate image pairs and construct our evaluation protocol
while: 1) maintaining the characteristics of the original LFW
evaluation protocol (View-2), hence, being easy-integrable,
2) keeping gender and race equality to be consistent with
genuine pairs, and 3) using a considerable number of iden-
tities to preserve generality. A benchmark of several state-
of-the-art approaches shows that superior face recognition
performance on standard datasets like LFW is not necessarily
correlated to the challenging and more realistic XQLFW. We
conclude that our dataset provides new insights and helps to
better understand and further develop real-world applicable
face recognition systems.
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