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Zusammenfassung

Genexpression bestimmt Funktion und Identität jeder Zelle. Denn obwohl alle Zellen unseres

Körpers - von kleinen Veränderungen der DNA, entstanden durch Fehler während der Replikation

oder Reparatur abgesehen - die gleiche genetische Information enthalten, führt jede Zelle ihre

eigene und höchst spezialisierte Funktion aus. Wie genau eine Zelle ihre Genexpression reguliert,

um zur richtigen Zeit die richtige Funktion auszuführen, und dies, obwohl sie ständig Genex-

pressionsrauschen und externen Signalen ausgesetzt ist, ist bis heute nur teilweise verstanden.

Während neue experimentelle Methoden, wie die Einzelzell-RNA-Sequenzierung, große Daten-

mengen produzieren, die mittels maschinellem Lernen ausgewertet werden können, scheitern

diese Ansätze für Datensätze von geringerer Größe. Werden etabliertere experimentelle Verfahren

zur genaueren Untersuchung, beispielsweise über die Zeit, genutzt, die kleinere Datenmengen

erzeugen, sind alternative Analysemethoden nötig. Falls ein ausreichendes Vorwissen der zu-

grundeliegenden Genregulation vorliegt, können mechanistische Modelle formuliert werden, die

dieses Wissen einbeziehen. Dementsprechend sind mechanistische Modelle keine Patentlösung

für jegliche Fragestellung, sondern müssen an jedes einzelne Problem und das entsprechende

Vorwissen neu angepasst werden.

In der vorliegenden Arbeit wurden mechanistische Modelle aufgestellt, um genregulatorische

Mechanismen unter Genexpressionsrauschen und externen Signalen zu verstehen. Zunächst wurde

untersucht, ob Genexpressionsrauschen zu transienten und seltenen Veränderungen der Gen-

expression führen kann. Indem ein stochastisches Genexpressionsmodel entwickelt wurde, das

sich auf Genexpressionsrauschen und etablierte Grundlagen der Genregulation stützt, konnte

gezeigt werden, dass dieses einfache Model durchaus zu transienten und seltenen Genexpression-

veränderungen führt. Stochastische Simulationen unseres Modells ähnelten Genexpressionsmuster

vor-resistenter Melanomzellen einer Zellkultur. Als nächstes wurde untersucht, wie externe Signa-

le wesentliche Bestandteile der Genexpressionsregulation darstellen können. Dafür ermittelten

wir, ob die globale Genexpression während der Embryonalentwicklung des Frosches durch den

Zellzyklus beeinflusst wird. Hierbei ist eine schnelle und ökonomische Genexpressionskontrolle

notwendig, wenngleich die Zellen konstant dem Zellzyklus - in diesem Fall das sogenannte externe

Signal - unterliegen. Durch die Formulierung einer Reihe von deterministischen mathematischen

Modellen, die die Aktivität globaler Genexpression beschreiben, konnten wir den Zellzyklus als

aktive und wichtige Komponente der Genexpressionsregulation identifizieren. Schließlich wurde

untersucht, ob eine mehrfache Stimulation durch ein externes Signal zu einer adaptiven Genex-

pressionsregulation der Repression, dem Deaktivieren eines Gens, führt. Um dies zu beantworten,

entwickelten wir deterministische Modelle, die die Genexpressionskinetik einzelner Hefezellen,

die wechselnden Kohlenstoffquellen ausgesetzt waren, beschreiben und quantitativ vergleichen.

Hiermit konnten wir zeigen, dass mehrfache externe Stimulation durchaus zu adaptiver Genex-

pressionsregulation der Repression führt.

Zusammengefasst haben wir stochastische und deterministische Modelle aufgestellt, die Genex-

pressionsrauschen und externe Signale berücksichtigen, um somit grundlegende genregulatorische

Mechanismen zu untersuchen.

i





Abstract

The function and identity of a cell is determined by its gene expression levels. Hence, even though

all cells in our body contain the same genetic information encoded in the DNA, that is up to

small alterations due to errors in its repair or replication, each cell performs its own but highly

specialized function. How exactly a cell regulates its correct gene expression at a given time to

fulfill its specific function, although constantly subject to intrinsic noise and external cues, is

only partially understood. While novel experimental techniques to study gene expression, such

as single-cell RNA sequencing, produce data rich enough to be leveraged by machine learning

and deep learning, these powerful approaches fail for small sample sizes. Hence, when using more

established experimental techniques to investigate gene expression regulation on a smaller scale,

for instance over time, other analysis approaches are needed. If prior knowledge of the underlying

gene regulations is available, mechanistic models can be formulated to describe and study the

phenomenon of interest. Accordingly, mechanistic models are not a one-size-fits-all solution, but

need to be specifically tailored to the problem of interest and the available prior knowledge.

In this thesis, we developed and evaluated several mechanistic models to dissect mechanisms of

gene expression regulation by investigating intrinsic noise and external cues. Firstly, we studied

intrinsic noise in the context of transient and rare changes in gene expression. By developing a

stochastic gene expression model comprising intrinsic noise and established principles of gene

regulation, we were able to show that such a simplistic model allows for transient and rare changes

in gene expression, similar to gene expression patterns observed in pre-resistant melanoma cells

of a human skin cancer cell line. Next, we investigated how external cues can be an integral part

of gene expression regulation. For this, we inquired whether global gene expression is actively

regulated by the cell cycle during frog embryonic development. Here, a fast and economical

control of gene expression is required, while cells are constantly exposed to rapid cell divisions,

here the external cue. By formulating and evaluating a set of deterministic mathematical models

describing global gene expression, we identified the cell cycle to be an active and important

regulatory component of gene expression. Finally, we asked whether the repeated exposure to an

external cue can lead to an adaptive gene expression regulation of repression, i.e., the deactivation

of a gene. To answer this, we developed deterministic models describing and comparing the gene

expression kinetics of single yeast cells, which were repeatedly exposed to carbon-source shifts.

Thereby, we showed that a repeated external cue can indeed lead to an adapted gene expression

regulation of repression.

In summary, we developed stochastic and deterministic models addressing the effects of different

sources of intrinsic noise and external cues on gene expression regulation, which provide new

insights into and allow for a more comprehensive picture of the mechanisms of gene expression

regulation.
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1. Introduction

Models are abstractions of reality and are used to explain the world [6]. As most phenomena are

too complicated to be described in their entirety, a model is restricted to the most important

components of a system, whereby the choice of interactions between components represented by

the model strongly influences its performance. The common aphorism ”All models are wrong,

but some are useful”, attributed to George Box, recognizes that all models are hence just better

or worse approximations of reality [7]. Mathematical models describe these abstractions by

mathematical formulations allowing for their analyses by means of theory and algorithms. One of

the earliest translated mathematical models was developed by Ptolemy in 150 AD and describes

the planetary motions of the solar system [8]. Still assuming that the earth is stationary and at

the universe’s center, Ptolemy described the motion of a planet by a circle rotating around a

larger circle surrounding earth. Nonetheless, this model accurately predicted the planet’s motion

with respect to earth and was only replaced by the Copernican system and Johannes Keppler’s

laws of planetary motion in the 16th and 17th centuries. This is just one of many examples

showing how a seemingly complex concept can have a simpler underlying explanation if seen

the right way, where simplicity often yields truth. Mainly driven by astronomy and physics, a

plethora of different classes of models emerged over the past centuries. Coupling established

principles of dynamic mathematical modeling with systems biology, a rather new interdisciplinary

field quantitatively analyzing complex biological systems, I described and studied models of gene

expression regulation.

1.1. Gene expression regulation

The (genetic) information flow within a cell was first proposed by James D. Watson in 1965 [9]: in

a first step, the information encoded by the gene, a basic functional unit of the deoxyribonucleic

acid (DNA) composed of nucleotides, is transcribed to a complementary single-stranded mature

ribonucleic acid (mRNA); in a second step the information encoded by the mRNA is translated

into an amino-acid sequence, the protein (Figure 1.1).

Figure 1.1: The genetic information encoded by the DNA is transcribed to mRNA, and is then
translated to the functional gene product, called protein.

Today, we know that the true process of gene expression is more complex, depending on, e.g.,

the local DNA compaction and the availability and correct positioning of other proteins, such

as regulatory signals and operating machineries [10–12]. Hence, the expression of a gene is

strongly regulated by the protein levels of other genes, a dependency termed gene regulation,

first described by Jacques L. Monod in a bacterial system in 1961 [13]. This means further, that

the function and identity of a cell is determined and regulated by the expression levels of all its

genes. Even though all cells in our body contain the same genetic information encoded in the
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DNA, that is up to small alterations due to errors in its repair or replication, we are composed of

a large variety of cells each performing its own function. How exactly a cell regulates its correct

gene expression at a given time to fulfill its specific function, although constantly subject to

intrinsic noise and external cues, is unknown.

1.2. Experimental techniques to study gene expression regulation

To experimentally study gene expression regulation, one is interested in quantifying the mRNA

and/or protein levels of one or more genes. Recent advances in sequencing, i.e., the process of

identifying the sequence of nucleotides, enables the measurement of single mRNA counts across

all genes within a cell. This high-throughput technique is called single-cell RNA sequencing

(scRNA-seq) and allows for the simultaneous study of gene expression in millions of cells [14]. For

this, cells of a biological sample are isolated, by encapsulating them in individual droplets, and

labeled with a unique barcode. This barcode is used to retrieve the cell-specific information after

sequencing. More established, and preserving spatial information, is a technique referred to as

single-molecule RNA fluorescence in situ hybridization, where individual mRNA molecules of a

pre-defined gene can be detected in single, fixed cells [15]. Here, probes attached to fluorophores

are hybridized to single mRNA molecules, which are then visible as single bright spots under the

microscope. Similarly to smRNA FISH, gene expression reporters, such as the green fluorescent

protein (GFP), are a state-of-the-art method to measure single-cell protein levels [16]. Here,

the GFP sequence is inserted into the gene. Upon transcription and translation, the gene-GFP

fusion is expressed and can be quantified by imaging, where the GFP fluorescence intensities

are assumed to be informative about the expression levels of the gene of interest. In contrast

to scRNA-seq and smRNA FISH, the gene-GFP fusion can be used to track single-cell gene

expression over time. Moreover, for packaging and organizing the three-meter long DNA into the

nucleus of a cell, which is not larger than a few micrometers, the DNA is wrapped around histone

proteins [17]. In the early 1960s, Vincent Allfrey identified that histone proteins do not only have

a structural function, but can also be chemically modified, altering the local DNA compaction

and thereby facilitating or inhibiting gene expression [18, 19]. Hence, histone modifications

allow for a dynamic regulation of gene expression. The relative abundance of specific histone

modifications are nowadays used as a proxy for global gene activity across cell populations and

can be determined by mass spectrometry [20].

1.3. Mathematical models of gene expression regulation

Although experimental techniques are invaluable for measuring gene expression levels, they do

not offer insights into the mechanisms of gene expression regulation. While the rich information

of data acquired by scRNA-seq can be leveraged by novel mathematical and computational

methods from the machine learning and deep learning field [21–23], where little to no prior

knowledge is required, these powerful methods fail for small sample sizes. Hence, when using

experimental techniques to investigate gene expression regulation on a smaller scale, alternative

approaches regarding analysis are needed. By using prior knowledge on the underlying gene

regulations, mechanistic models can be formulated to describe and study the phenomenon of

interest. Accordingly, mechanistic models are not a one-size-fits-all solution, but need to be

2



specifically tailored to the problem of interest. In comparison to machine and deep learning

models, mechanistic models provide an easily interpretable output. Hence, mechanistic models

were the first models developed to describe the dynamical processes of gene expression and are

still commonly applied today.

Brian C. Goodwin introduced the first mathematical models of gene expression in 1965 shortly

after its principles were discovered [24]. Goodwin’s models describe the mRNA and protein

concentrations of (i) a self-repressing gene and (ii) a pair of mutually repressing genes by ordinary

differential equations [25]. Using mathematical theory and an analogue computer for simulations,

he discovered that the expression of a single gene could be governed by an undamped oscillatory

behavior. John S. Griffith refuted Goodwin’s hypothesis only three years later, upon which

Goodwin claimed the simulations to have been erroneous [26]. Nonetheless, Goodwin discussed

the results of his modeling in light of adaptive systems, i.e., organisms with circadian organization,

highlighting the strong dependence between gene expression regulation and external cues.

When considering single cells, Aaron Novick and Milton Weiner described the expression of a

certain protein already in 1957 as ’an all or none-phenomenon’, where expression seemed to

be ’the result of a random single event’ [27]. Early studies of the variability of gene expression

between cells were limited due to the lack of reliable single-cell gene expression reporters [28].

Only in 1990 did Ko et al. develop an assay to identify single-cell gene expression levels and

reported a then surprisingly large variability, which could not be explained by deterministic

gene expression models [29]. Today, it is well known that genetically identical cells exposed to

the same environmental conditions can demonstrate large fluctuations in their gene expressions,

a phenomenon termed cell-to-cell variability [30]: gene expression involves a succession of

probabilistic events, where a gene is present in just one or a few copies per cell and is activated

(inactivated) by random associations (dissociations) leading to noise intrinsic to the process

of gene expression itself. To account for intrinsic noise and describe the stochastic nature of

these reactions, Minoru S. H. Ko developed the first stochastic model for gene induction, called

the telegraph model [31]. The gene is assumed to transition between an active state and an

inactive state, in which mRNA is and is not transcribed, respectively. Computer simulations of

the telegraph model demonstrated heterogeneous levels of gene induction, comparable to the

experimentally observed intrinsic noise. Raj et al. have verified that transcription occurs in short

and intense bursts, a phenomenon today termed transcriptional bursting [28, 32].

With the formation of the research field of systems biology in the beginning of the 2000s [33], the

focus of both deterministic and stochastic studies shifted to systems of coupled gene expression

regulations summarized by gene regulatory networks. Within systems biology, deterministic

and stochastic models of gene expression have been widely developed to explain different

biological phenomena ranging from a more detailed understanding of transcription [34, 35]

and translation [36, 37], to embryonic patterning [38–41], pathophysiology [42, 43], circadian

clocks [44], to stress response [45] and adaptation [46].

However, how intrinsic noise and external cues are integrated into the mechanisms of gene

expression regulation is still an open question for many biological and biomedical systems. In

this thesis, we couple experimental data analysis, computational simulations, and mathematical

modeling to gain a more informed and quantitative representation of gene expression regulation.

3



1.4. Research questions

The main goal of this thesis is to dissect mechanisms of gene expression regulation by investigating

the effects of intrinsic noise and external cues on expression dynamics using mathematical models.

More specifically, we asked the following questions:

I) Is intrinsic noise sufficient to lead to transient and rare changes in gene expression?

II) Can cell cycle as a recurrent external cue be an integral part of gene expression regulation?

III) Can a repeated external cue lead to an adaptive gene expression response of repression?

1.5. Summary of results

This thesis contains two core publications and one manuscript under review, in which we explored

the different effects of intrinsic noise and external cues on gene expression regulation as listed in

the previous section. Doing so appropriately, we explored several model systems from human

melanoma cells over frog to yeast. In Schuh et al. [1] we explored research question I): Rare and

transient gene expression patterns have previously been observed in pre-resistant melanoma (skin

cancer) cells, where cells in the rare gene expression state at time of drug administration are

linked to survival [47]. To understand whether intrinsic noise is sufficient to lead to such rare and

transient gene expression states, we developed a stochastic mathematical model and compared

our simulations to experimental data from smRNA FISH. In Schuh et al. [2] we explored research

question II): During development, a fast and economical control of gene expression is required,

while cells are constantly exposed to rapid cell divisions - here, the cell cycle represents the

external cue. By formulating and evaluating a set of deterministic mathematical models on

mass spectrometry data of a specific histone modification, which acts as a proxy for global gene

expression, of frog embryos, we investigated whether global gene expression is actively regulated

by the cell cycle. In other words, we studied whether the cell cycle is an integral part of gene

expression regulation during frog development. Finally, in Schuh et al. [3], we explored research

question III): To study whether cells repeatedly exposed to an external cue - here, repeated

carbon source shifts - show adaptive gene expression kinetics in repression, we developed a

deterministic model describing the gene repression kinetics of single yeast cells. Using our model

we compared the single-cell gene repression kinetics of yeast between repeated carbon source

shifts, where single-cell gene expression kinetics were experimentally monitored by a gene-GFP

fusion. A detailed summary of the results of these studies can be found below.

Core publications as main author

• [1] in Appendix A.1: Gene networks with transcriptional bursting recapitulate rare transient

coordinated high expression states in cancer

Melanoma cells have been linked to a coordinated and extremely high gene expression

in a number of specific marker genes, arising and disappearing over time [47]. Only cells

with coordinated high expression at the timing of drug administration are thought to

be pre-resistant, surviving drug therapy and acquiring stable resistance. To identify the

origins of these gene expression patterns, we developed a mathematical model consisting
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of transcriptional bursting, gene regulations and stochasticity in gene expression. We

found that given specific parameter sets and gene regulatory networks, our simulated gene

expressions qualitatively recapitulate the patterns observed in pre-resistant melanoma cells.

These states occur more frequently in gene regulatory networks with low connectivity. Fur-

thermore, we found that bursting and regulatory parameters in the model are determinant

of the number of simulations with desired gene expression patterns. Using the simula-

tions, we further studied the initiation, maintenance and termination of these expression

states and found that a long transcriptional burst initiates, an increase in burst frequency

maintains and a random process terminates these expression states. Finally, we used our

mathematical model to hypothesize that stable resistance after drug administration may

be initiated by more gene regulation, which we confirmed experimentally. Together, we

demonstrate that intrinsic noise and established principles of gene regulation are sufficient

to describe transient and rare gene expression, qualitatively similar to the gene expression

patterns as observed in pre-resistant melanoma cells.

• [2] in Appendix A.2: H4K20 methylation is differently regulated by dilution and demethyla-

tion in proliferating and cell-cycle-arrested Xenopus embryos

Gene expression depends on the local compaction of DNA. The openness of DNA is

regulated, among other mechanisms, by the placement of methyl groups on the tails of

histone proteins. However, cells divide rapidly during development and with each cell

cycle unmodified histones get incorporated into the DNA, leading to an overall dilution of

histone modifications. To study whether the cell cycle actively regulates the histone modifi-

cation landscape, and hence global gene expression, during development, we compared the

methylation kinetics of a specific histone modification site, H4K20, between cycling and

cell-cycle-arrested Xenopus laevis (frog) embryos. To identify whether population-specific

parameters are required to explain the H4K20 methylation kinetics between cycling and

cell-cycle-arrested embryos, we formulated a set of plausible models, containing joint and

population-specific parameters. Performing multi-start maximum likelihood optimization

and model selection on all models, we found that population-specific parameters were indeed

required to explain the H4K20 methylation kinetics of both embryo populations. This

suggests that the cell cycle plays an active role in shaping the H4K20 methylation kinetics

and, hence, global gene expression regulation. Moreover, we identified that demethylation,

the active removal of methyl groups, is essential for regulating H4K20 methylation kinetics

in cell-cycle-arrested embryos, while it is likely dispensable in cycling embryos. This

indicates that cell-cycle-mediated dilution is an essential regulatory component for shaping

the H4K20 methylation landscape during early development. Together, we demonstrate

that an external cue, such as the cell cycle during frog development, can be an integral

part of global gene expression regulation.

Further manuscript as main author currently under review

• [3] in Appendix B.1: Gal1 repression memory in budding yeast

When exposed to repeated external cues, cells can ‘remember’ their initial activating
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response, leading to an adapted reaction in gene expression upon re-stimulation, a phe-

nomenon termed transcriptional memory. Most studies on transcriptional memory have

focused on gene induction, the activation of gene expression, although gene repression, the

deactivation of gene expression, plays a similarly central role in gene expression regulation.

This opens the important question as to whether memory also exists for repression. To

address this, we measured the gene expression of gene Galactokinase 1 (Gal1) through

repeated carbon source shifts in single budding yeast cells by GFP-reporters. As Gal1 is

sensitive to changes in the carbon source available to the cell, Gal1 gene expression showed

induction and repression cycles. To deconvolute the kinetics of dilution via budding, the

developing of a new cell, and repression, we first generated a method to compensate for di-

lution effects. Then, we formulated two mathematical models based on ordinary differential

equations to appropriately describe the repression kinetics of repressor and non-repressor

cells, i.e., cells with and without repression kinetics. By performing multi-start maximum

likelihood optimization on single-cell repression traces we inferred the single-cell parameters

per repression. Furthermore, we applied model selection to quantitatively discriminate

between repressor and non-repressor cells. Using statistical testing, we identified the

repression delay, i.e., the time between the beginning of the repression cycle and actual

repression initiation, as a model parameter significantly decreased in repressor cells of

repeated repression. The altered repression kinetics between consecutive repression cycles

suggests that there is repression memory. Moreover, using the same modeling approach,

we identified a gain-of-repression memory mutant, elp6∆, exhibiting a stronger fold change

between the repression delays between first and second repression. Together, we show that

a repeated external cue, such as repeated carbon source shifts, can lead to adaptive gene

expression regulation of repression.

1.6. Summary of individual contributions

To outline and emphasize my individual contributions of the two core publications and the

manuscript contained in this thesis, I here provide a summary of the statements of individual

contributions. More detailed and full-length descriptions of my specific contributions per publi-

cation/manuscript can be found in the appendices A.1, A.2 and B.1.

Core publications as main author

• [1] in Appendix A.1: Gene networks with transcriptional bursting recapitulate rare transient

coordinated high expression states in cancer

In my master thesis, I formulated an initial mathematical model to produce simulations

recapitulating the observed gene expression patterns of pre-resistant melanoma cells [48].

During my Ph.D., I refined and extended the mathematical model, validated its generaliz-

ability with respect to fixed model parameters, and performed a large-scale simulation study

to systemically screen and analyze the gene expression patterns of a self- and pre-defined set

of gene regulatory networks and parameter sets. Merely, the validation of our hypothesis

regarding stable resistance formation was experimentally validated by our collaboration

partners, Michael Saint-Antoine and Abhyudai Singh. Otherwise, I was responsible for
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the entire computational methodology and formal analysis. The original manuscript draft

excluding the methods section was written by Yogesh Goyal and reviewed as well as edited

by me and others. The methods section STAR METHODS was written by me. I generated

all the figures. The full-length statement of my individual contribution to this publication

can be found in A.1.

• [2] in Appendix A.2: H4K20 methylation is differently regulated by dilution and demethyla-

tion in proliferating and cell-cycle-arrested Xenopus embryos

I formulated a mathematical model describing the histone methylation kinetics for both

cycling and cell-cycle-arrested Xenopus embryos, identified a subset of plausible models

by optimizing the mathematical formulation based on ordinary differential equations on a

time-series mass spectrometry data set of H4K20 methylation [49], and identified joint and

cycling-specific rate constants. I was responsible for the entire computational methodology,

formal analysis and the writing of the manuscript. Merely the subsection Experimental

model and subject details in STAR METHODS, describing the experimental work, was

written by my co-author Daniil Pokrovsky. The full-length statement of my individual

contribution to this publication can be found in A.2.

Further manuscript as main author currently under review

• [3] in Appendix B.1: Gal1 repression memory in budding yeast

I formulated the mathematical models for the repressor and non-repressor cells, developed

a method to compensate for dilution effects in the Gal1 kinetics and performed parameter

estimation and model selection on the single-cell Gal1 traces. Moreover, I performed the

statistical analysis on the estimated parameters of the repressor cells and applied the same

modeling approach to the Gal1 repression kinetics of the elp6∆ mutant. I was responsible

for the entire computational methodology, formal analysis and writing of the manuscript.

The full-length statement of my individual contribution to this manuscript can be found

in B.1.

1.7. Outline

In the next chapters, the main mathematical concepts of this thesis and the included publications

are presented and integrated into the existing literature and broader scientific context. More

specifically, in Chapter 2, we provide a short introduction to graph theory which was used to

describe the inter-gene regulations summarized by gene regulatory networks. In Chapter 3,

we discuss the mathematical description of chemical reaction networks, derive the chemical

master equation and introduce Gillespie’s stochastic simulation algorithm. As an application,

we briefly present the stochastic gene expression model developed in Schuh et al. [1] used to

study the effects of intrinsic noise on transient and rare gene expression patterns. In Chapter 4,

we derive the deterministic description of the evolution of the mean of a chemical reaction

network and introduce the deterministic model formulation. In Chapters 5 and 6, we discuss

methods of parameter estimation and model selection as applied throughout the aforementioned

publications [1, 2] and manuscript [3]. Finally, we briefly present the deterministic models to

7



study the effects of external cues on gene expression regulation as developed in Schuh et al. [2]

and Schuh et al. [3] as applications.

The core publications [1] and [2] are included in Appendix A. Appendix B contains the manuscript

under review [3]. Every publication and manuscript is preceded by a summary, a full-length

statement highlighting my individual contribution, and, if needed, a permission to include the

publication in this thesis given by the respective journal.
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2. Graph theory

The paper on the Seven Bridges of Königsberg by Leonhard Euler published in 1736 is considered

to mark the beginning of modern graph theory [50, 51]. Since then, graph theory has witnessed an

unprecedented growth, today being applied in many fields including biology, electrical engineering,

computer science and operations research [52–55].

A graph is a mathematical structure of pairwise relations (edges) between discrete objects

(vertices). In this thesis, we use graph theory to describe the relationships between genes, where

the vertices in a graph represent genes, and the edges represent gene regulations. These graphs

are termed gene regulatory networks [56]. In Schuh et al. [1], we compared the simulations of

gene expression patterns for which the underlying gene regulatory networks varied in the number

of genes and their regulations. To define a suitable set of small gene regulatory networks for

which we simulated the gene expression patterns, we made use of graph theoretical properties as

introduced in this chapter, which is mainly adapted from [57–59].

2.1. Undirected graphs

In this section, we present a collection of definitions introducing graph theoretical concepts as

applied in Schuh et al. [1].

Definition 2.1. An undirected graph is an ordered pair G = (V(G), E(G)), where V(G) = V ≠ ∅
is a finite non-empty set and E(G) = E with E ⊆ {{vi, vj} ⊆ V

2 : vi, vj ∈ V, vi ̸= vj} unordered
pairs of elements of V. Elements of V are called the vertices (or nodes) and elements of E are

called the edges of G.

Notation. For simplicity, we write G = (V, E) if it is clear that V and E belong to graph G.

Definition 2.2. The order of an undirected graph G = (V, E) is defined as the number of vertices

V of G, where order(G) = |V|.

Definition 2.3. Two vertices vi, vj ∈ V are called adjacent if and only if {vi, vj} ∈ E.

Definition 2.4. The neighborhood of vertex vi ∈ V is defined by N (vi) = {vj ∈ V : {vi, vj} ∈ E}.

Definition 2.5. The degree of vertex vi ∈ V is defined by deg(vi) = |{e ∈ E : vi ∈ e}| = |N (vi)|.

Definition 2.6. A v1, vn+1-walk in an undirected graph G = (V, E) is a sequence W =

⟨v1, e1, v2, e2, ..., ei, vi+1, ..., en, vn+1⟩ of vertices v1, ..., vn+1 ∈ V and edges e1, ..., en ∈ E such

that ∀ej = {vj , vj+1} ∈ E.

Definition 2.7. An undirected graph G = (V, E) is called connected if ∀vi, vj ∈ V ∃ a vi, vj-walk.

The regulatory properties of an undirected graph can be summarized by a matrix as defined

below.

Definition 2.8. For an undirected graph G = (V, E) of order(G) = |V|, the adjacency matrix

A ∈ R|V|×|V|, is a matrix whose rows and columns are indexed by the same orderings of V such

that

Aij =

1, if {vi, vj} ∈ E ,

0, else.
(2.1)
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Hence, the adjacency matrix of an undirected graph is symmetric.

Example. Let us consider an undirected graph G = (V, E), where V = {v1, v2, v3, v4, v5} and

E = {{v1, v2}, {v2, v3}, {v3, v4}, {v1, v4}} as depicted in Figure 2.1.

Figure 2.1: Exemplary undirected graph G.

• The order of G is given by order(G) = 5.

• Vertices v1 and v2 are adjacent.

• The neighborhood of v1 is given by N (v1) = {v2, v4}.

• The degree of v1 is given by deg(v1) = |N (v1)| = 2.

• W = ⟨v1, {v1, v2}, v2, {v2, v3}, v3, {v3, v4}, v4⟩ is a walk connecting vertices v1 and v4.

• G is not connected as there exists no walk from v1 to v5.

• The adjacency matrix of G is given given by

A =


0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

0 0 0 0 0

 .

2.2. Digraphs

Gene regulation is directed, i.e., gene X regulates gene Y, or gene Y regulates gene X. Furthermore,

genes are able to auto-regulate their own gene expressions, i.e., gene X regulates gene X. As

the previous definitions regarding undirected graphs are not sufficient to describe these gene

regulatory network properties, we further define directed graphs.

Definition 2.9. A (non-simple) digraph is an ordered pair G = (V, E), where V ≠ ∅ is a finite

non-empty set and E with E ⊆ {(vi, vj) ⊆ V
2 : vi, vj ∈ V} a set of ordered pairs of elements of V.

A (non-simple) digraph allows for self-loops e.g., edge e = (vi, vi), for vi ∈ V.
Accordingly, we reformulate the definitions regarding order, neighborhood and degree to account

for digraphs.

Definition 2.10. The order of a digraph G = (V, E) is defined as the number of vertices V of G,

where order(G) = |V|.

Definition 2.11. The out-neighborhood of vertex vi ∈ V is defined by Nout(vi) = {vj ∈ V :

(vi, vj) ∈ E}. The in-neighborhood of vertex vi ∈ V is defined by Nin(vi) = {vj ∈ V : (vj , vi) ∈ E}.

10



Definition 2.12. The out-degree of vertex vi ∈ V is defined by degout(vi) = |Nout(vi)| and the

in-degree of vertex vi ∈ V is defined by degin(vi) = |Nin(vi)|.

Definition 2.13. A digraph G = (V, E) is called weakly connected if the underlying undirected

graph is connected.

Similar to undirected graphs, the regulatory properties of digraphs can be summarized by a

matrix as defined below.

Definition 2.14. For a digraph G = (V, E) of order(G) = |V|, the adjacency matrix A ∈ R|V|×|V|,

is a matrix whose rows and columns are indexed by the same orderings of V such that

Aij =

1, if (vi, vj) ∈ E ,

0, else.
(2.2)

2.3. Additional structural graph properties

Definition 2.15. Let G1 = (V1, E1) and G2 = (V2, E2) be two digraphs. G1 and G2 are called

isomorphic if and only if there exists a bijection f : V1 → V2 such that ∀vi, vj ∈ V1 : (vi, vj) ∈
E1 ⇔ (f(vi), f(vj)) ∈ E2. The bijection f is called an isomorphism of G1 onto G2.

Definition 2.16. A digraph G = (V, E) of order(G) = |V| is called symmetric if the rows of

its adjacency matrix A are cyclic permutations to the right with offset one of each other. The

adjacency matrix A of symmetric digraph G is then given by

A =


a11 a12 a13 . . . a1|V|

a1|V| a11 a12 . . . a1(|V|−1)
...

...
...

...

a12 a13 a14 . . . a11

 . (2.3)

Each vertex in a symmetric digraph has the same number of in- and outgoing edges and self-loops.

Hence, the in-degrees and out-degrees of all vertices in a symmetric digraph are equal. Moreover,

in a symmetric digraph, all vertices are contextually identically embedded in the graph.

Example. Let us consider a digraph G = (V, E), where V = {v1, v2, v3, v4} and

E = {(v1, v1), (v1, v2), (v1, v3), (v1, v4), (v2, v1), (v3, v1), (v4, v2), (v4, v3)}

and digraph H = (W,F), where W = {w1, w2, w3, w4} and

F = {(w1, w1), (w1, w2), (w1, w3), (w1, w4), (w2, w1), (w3, w2), (w3, w4), (w4, w1)}

as depicted in Figure 2.2.

Figure 2.2: Exemplary directed digraphs G (left) and H (right).
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• The orders of digraphs G and H are given by order(G) = order(H) = 4.

• The out-neighborhood of v1 is given by Nout(v1) = {v1, v2, v3, v4}. The in-neighborhood of

v1 is given by Nin(v1) = {v1, v2, v3}.

• The out-degree of v1 is given by degout(v1) = |Nout(v1)| = 4. The in-degree of v1 is given

by degin(v1) = |Nin(v1)| = 3.

• G and H are weakly connected as the underlying undirected graph is connected.

• The adjacency matrix of digraph G is given by

A =


1 1 1 1

1 0 0 0

1 0 0 0

0 1 1 0

 .

• G and H are isomorphic under the bijection f : v1 7→ w1, f : v2 7→ w2, f : v3 7→ w4, f :

v4 7→ w3.

• G and H are not symmetric digraphs as the rows of their adjacency matrices are not cyclic

permutations to the right with offset one of each other.
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3. Stochastic gene expression models

In Schuh et al. [1], we developed a mathematical model to study intrinsic noise and the formation

of rare and transient gene expression states. For this, we formulated a model comprising

gene interactions, transcriptional bursting and stochasticity and compared its simulations with

rare and transient gene expression patterns observed in pre-resistant melanoma cells. To model

stochasticity in gene expression appropriately, we used concepts originally introduced for modeling

chemical reactions [60–63].

A chemical reaction is a conversion process during which one or more atoms, molecules or

compounds are converted to one or more different substances. To study chemical reactions under

a wide range and highly controlled conditions, mathematical and computational models were

established. However, only in the late 1980s were mathematical models used to describe the

kinetics of chemical reactions, a field today termed chemical reaction network theory [64].

Biological processes such as transcription, translation, and mRNA/protein degradation can

be viewed as chemical reactions and studied by means of chemical reaction network theory.

Stochastic models derived from chemical reaction network theory have been successfully and

widely developed to study gene expression regulation, ranging from more theoretical studies of

mRNA steady-state distributions assuming transcriptional bursting [65], to investigating the

dynamics and attractor states of gene regulatory network modules [66], to describing lineage

decision-making in single-cells, thereby, challenging existing hypotheses regarding the gene

regulatory networks underlying such decisions [67]. This chapter is mainly based on [64, 68, 69],

if not stated otherwise.

3.1. Mathematical formulation

A chemical reaction network describes the possible reactions within a reaction system. Here, we

collect the most essential definitions in that context.

Definition 3.1. A chemical reaction network is defined by a set of chemical species C =

{C1, ..., Cn}, a set of chemical reactions R = {R1, ..., Rm} and stoichiometric coefficients νij ∈ N0

and ηij ∈ N0 such that reaction Rj ∈ R is described by
n∑

i=1

νijCi

kj−→
n∑

i=1

ηijCi, (3.1)

where kj ∈ R+ is the reaction rate constant. Chemical species with νij ̸= 0 are called educts and

chemical species with ηij ̸= 0 are called products of reaction Rj.

Definition 3.2. The stoichiometric matrix S ∈ Nn×m
0 summarizes the net gains and losses of

each chemical species per reaction. S is defined by the stoichiometric coefficients, νij , ηij ∈ N0,

such that Sij = ηij − νij.

Definition 3.3. The order of reaction Rj ∈ R is defined as

oj =

n∑
i=1

νij . (3.2)

Definition 3.4. The state of the chemical reaction network, i.e., the count per chemical species
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at time t, is described by the state vector X(t) ∈ Nn
0 , where X(t) = [X1(t), ..., Xn(t)] and n is the

number of chemical species [70].

Example. Let us consider a common stochastic model describing the induction of a single gene,

called a leaky telegraph model, first introduced by Minoru S. H. Ko in 1991 (Figure 3.1) [31].

DNA is either in an inactive (DNAoff) or active (DNAon) state, where ron and roff the activating

and deactivating rate constants. mRNA is transcribed with rate constants rprod and drprod in

the inactive and active DNA states, respectively, where d > 1, to ensure faster transcription in

DNAon. The mRNA transcription in DNAoff is called leaky transcription. mRNA degrades with

rate constant rdeg.

Figure 3.1: Schematic of the leaky telegraph model. The dotted arrows represent reactions
without conversions, i.e., DNA is a template from which mRNA is transcribed, which maintains
its state upon transcription. Adapted from [1].

The leaky telegraph model is described by chemical species C = {DNAoff, DNAon, mRNA} and
reactions

DNA activation R1: DNAoff
ron−−→ DNAon

DNA deactivation R2: DNAon
roff−−→ DNAoff

leaky transcription R3: DNAoff

rprod−−−→ DNAoff +mRNA

transcription R4: DNAon

drprod−−−−→ DNAon +mRNA

degradation R5: mRNA
rdeg−−→ ∅.

The state of the system is described byX(t) = [XDNAoff
(t), XDNAon

(t), XmRNA(t)], withXDNAoff
(t),

XDNAon
(t) ∈ {0, 1}, where 1 (0) denotes that the system is (not) in the given DNA state

and XmRNA(t) ∈ R≥0, ∀t ∈ R+. The biological DNA states are mutually exclusive, i.e.,

XDNAoff
(t) +XDNAon

(t) = 1, ∀t ∈ R+.

3.2. Law of mass action

First introduced by Peter Waage and Cato Guldberg in 1864, the law of mass action describes

chemical reactions of solutions in dynamic equilibrium [71]. The general idea is that the more

educts are present in a reaction system the more occurrences of the corresponding reaction there

will be [68].

Definition 3.5. Let us assume an idealized, well mixed system of constant volume which is in

thermal equilibrium and kept at a constant temperature. Then the law of mass action states that

the probability of reaction Rj ∈ R to occur in an infinitesimal time interval [t, t+ dt) is given by

P(Rj |X(t)) = aj(X(t)) = cj

n∏
i=1

(
Xi(t)

νij

)
, (3.3)

where aj(X(t)) ∈ R+ is called the reaction propensity and cj a constant [70, 72].
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Here, cj describes the probability of a successful reaction to occur in [t, t+ dt) and the second

term summarizes the potential number of educt collisions which could lead to this reaction. In

general, cj ̸= kj , where kj is the reaction rate constant as defined in Definition 3.1.

Example. Reaction propensities for four so-called elementary reactions are stated below [70].

reaction propensity

∅ k−→ products k

Ci
k−→ products kXi(t)

Ci + Cj
k−→ products kXi(t)Xj(t) (i ̸= j)

2Ci
k−→ products kXi(t)(Xi(t)− 1)/2

Reactions containing more than two educts can be understood as multiple two-educt reactions

and are hence not specified any further.

Example. For the leaky telegraph model the reaction propensities corresponding to reactions

R1, R2, R3, R4 and R5 are given by

a1(X(t)) = ronXDNAoff
(t)

a2(X(t)) = roffXDNAon
(t)

a3(X(t)) = rprodXDNAoff
(t)

a4(X(t)) = drprodXDNAon
(t)

a5(X(t)) = rdegXmRNA(t).

3.3. Chemical master equation

The chemical master equation was first derived by Daniel T. Gillespie in 1992 and is a system of

ordinary differential equations (ODEs) describing the time evolution of the probability distribution

of the state vector X(t) of a chemical reaction network [72]. The chemical master equation is

derived by taking together the following three theorems:

Theorem 3.1. Let X(t) ∈ Γ ⊆ Nn
0 be an element of the state space Γ for time t. If X(t+ dt) =

X(t)− sj, where sj the jth column vector of stoichiometric matrix S, then the probability that

exactly one reaction Rj ∈ R will occur in time interval [t,t+dt) is equal to

aj(X(t)− sj)dt+ o(dt), (3.4)

where aj the reaction propensity of reaction Rj [72].

Theorem 3.2. If X(t + dt) = X(t), then the probability that no reaction will occur in time

interval [t, t+ dt) is equal to
m∏
j=1

(1− aj(X(t))dt) + o(dt) = 1−
m∑
j=1

aj(X(t))dt+ o(dt). (3.5)

Adapted from [72].

Theorem 3.3. The probability of more than one reaction occurring in time interval [t, t+ dt) is

o(dt) [72].

For the proofs of the previous theorems see [72]. Together, these theorems express the probability

15



to end in state X at time t+ dt denoted by p(X, t+ dt). Hence,

p(X, t+ dt) = p(X, t)(1−
m∑
j=1

aj(X)dt+ o(dt)) +
m∑
j=1

p(X− sj, t)
(
aj(X− sj)dt+ o(dt)

)
+ o(dt),

(3.6)

where for convenience aj(X) = aj(X(t)). By rewriting the previous statement to

p(X, t+ dt)− p(X, t) = −p(X, t)

m∑
j=1

aj(X)dt+

m∑
j=1

p(X− sj, t)aj(X− sj)dt+ o(dt), (3.7)

by dividing both sides by dt, and letting dt → 0, one receives the general chemical master

equation.

Theorem 3.4. The chemical master equation to a chemical reaction network as stated in equation

(3.1) is given by

d

dt
p(X, t) = −p(X, t)

m∑
j=1

aj(X) +

m∑
j=1

p(X− sj, t)aj(X− sj). (3.8)

Adapted from [72].

The chemical master equation comprises a system of coupled linear differential equations; one

linear differential equation for every possible state X(t) of the system. Hence, when the state

space of a reaction network is large or infinite it is infeasible to evaluate the exact solution

of the corresponding chemical master equation [73]. Only for very simple chemical reaction

networks [74], when steady-state distributions are assumed [32] or in restricted regimes [75], may

an analytical solution of the chemical master equation be determined. Systems of ordinary or

stochastic differential equations present one option of approximating the solution of the chemical

master equation. However, the chemical master equation only reduces to these approximations

in the thermodynamic limit i.e., where the number of molecules of all chemical species and the

containing volume approach infinity such that the molecular concentrations continue to be finite

values [76]. Other approximation methods contain but are not limited to the Fokker-Planck

approximation [77], the T-factor method [78], finite state projection [79] or van Kampens linear

noise approximation [80]. However, if the exact solution to the chemical reaction network is of

importance and its intrinsic stochastic nature should be maintained, one reverts to stochastic

simulation algorithms.

3.4. Gillespie’s stochastic simulation algorithm

In 1976, Daniel T. Gillespie proposed a method to numerically simulate the stochastic time

evolution of a chemical reaction network [81], which he refined in 1977 [82]. The general idea is

to repeatedly sample from the stochastic process X to approximate the solution to the chemical

master equation. Therefore, Gillespie defined a reaction probability density function [81]

p(τ, j|X, t)dτ = probability that the next reaction to occur is reaction Rj and

happens in the infinitesimal interval [t+ τ, t+ τ + dτ) given that

the current system is in state X(t).

In comparison to the reaction propensity defined in Definition 3.5, the reaction probability

function also contains information about the waiting time. Similar to the derivation of the
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chemical master equation, this is the product of the probability p1(τ |X, t) that no reaction occurs

in time interval [t, t+ τ ] and the probability p2(τ |X, t)dτ that reaction Rj occurs in time interval

[t+ τ, t+ τ + dτ ]. This is given by

p(τ, j|X, t)dτ =p1(τ |X, t)p2(τ |X, t)dτ

=e−
∑m

j=1 aj(X(t))τajX(t),

with e−
∑m

j=1 aj(X(t))τ being the evaluation of the Poisson distribution density with rate aj(X(t))τ

at 0 and ajX(t) the reaction propensity of reaction Rj . When defining

a0(X(t)) =
m∑
j=1

aj(X(t)) (3.9)

it becomes apparent that p(τ, j|X, t)dτ is a joint density of two independent random variables

p(τ, j|X, t)dτ = a0(X(t))e−a0(X(t))τ aj(X(t))

a0(X(t))
, (3.10)

more specifically, an exponential random variable with rate parameter a0(X(i)) which can be

interpreted as the time distribution to the next reaction

T (X(t)) = a0(X(t))e−a0(X(t)), (3.11)

and a discrete random variable representing the discrete index distribution I given by

P(I(X(t) = j)) =
aj(X(t))

a0(X(t))
∀j = 1 : m. (3.12)

Hence, one can simply draw samples from the reaction probability density function. Today

this method is known as Gillespie’s stochastic simulation algorithm or Gillespie’s next reaction

method, which correctly accounts for the intrinsic stochasticity of a reaction system and its

correlations. The pseudo-code for the approach can be found in Algorithm 1.

Algorithm 1 Gillespie’s stochastic simulation algorithm

Input: initial state X0 ∈ Γ, reaction propensities aj(x(t)) for each Rj ∈ R and stoichiometric
matrix S

Output: trajectory of the stochastic process X
set t(0)← 0
for i = 0, 1, 2, ... do

sample τ ∼ T (X(i))
sample j ∼ I(X(i))
t(i+ 1)← t(i) + τ
X(i+ 1)← X(i) + sj
record (X(i+ 1), t(i+ 1))

end for

Example. Two realizations of the leaky telegraph model with identical initial states using

Gillespie’s stochastic simulation algorithm are shown in Figure 3.2.

However, with a large number of chemical species C or reactions R the cumulative propensity

a0(X(i)) increases, rendering the computation of the exact solution to the chemical master

equation infeasible [83]. In order to overcome these limitations, approximation methods for the

simulation of stochastic systems have been introduced. A well known approach in the field is the

τ -leaping method, where the propensity function is updated only after fixed time intervals [83].
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Figure 3.2: Two exemplary realizations of the leaky telegraph model with identical initial states.
States [XDNAoff

(bottom), XDNAon
(middle), XmRNA (top)] are shown for each realization with

identical initialization X0 = [1, 0, 30] and rate constants ron = 0.1, roff = 0.1, rprod = 0.2, d = 20
and rdeg = 0.1.

Other approximation methods include, but are not limited to, the Langevin method [84], the

Poisson approximation method [85], multi-scale stochastic simulations [86, 87] and the integration

of time-dependent rate constants [88].

3.5. Application: Intrinsic noise and rare, transient gene expression regulation

We give a brief example of a stochastic gene expression model, which integrates previously

introduced concepts from graph theory (section 2) and stochastic modeling. We would like to

emphasize that this section focuses on the brief description of the development of a stochastic

gene expression model used to study the effect of intrinsic noise on transient and rare gene

expression regulation. The details and the full study can be found in A.1. This section is based

on (and is partly identical to) core publication [1].

Research problem Melanoma cells have demonstrate rare transient coordinated high gene

expression. By ’coordinated high expression’ we mean the simultaneous high expression in a

subset of genes for a single cell and where by ’transient’ we mean the appearance and disappearance

of coordinated high expression within a cell over time (Figure 3.3) [47]. Only a rare subpopulation

of cells shows coordinated high gene expression at a given time leading to heavy-tailed expression

distributions in these genes at the population level. Moreover, only cells with coordinated high

expression at the time of drug administration are thought to be pre-resistant, surviving drug

therapy and acquiring stable resistance. It is thus of clinical relevance to identify the origins of

this rare transient coordinated high expression state. In other words, is intrinsic noise sufficient

to produce these rare transient coordinated high expression states?

Approach To investigate the emergence of rare transient coordinated high expression states, we

developed a mathematical framework to simulate and evaluate gene expression patterns. The

mathematical framework consists of a set of gene regulatory networks, a minimal mathematical

model that recapitulates the observed gene expression patterns and stochastic simulations.
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Figure 3.3: Drug-naive melanoma cells exist in low (white cells) as well as rare transient
coordinated high (blue cells) expression states. Cells in the rare coordinated high state are
pre-resistant. A schematic of the corresponding expression pattern is shown in the lower panel.
The cells in a high expression state are more likely to survive and acquire resistance upon drug
administration. Adapted from [1].

Gene regulatory networks Experimental data of Shaffer et al. [47] shows that the frequency of

cells with coordinated high expression exceeds the expected frequency when assuming the events

of high expression per gene to be mutually independent. To explain the observed coordination

between the high expressions of several genes, we assumed gene regulatory effects to be an

integral part of our model. Using graph theoretical properties, we defined a set of suitable

gene regulatory networks for which we performed simulations and our downstream analysis. To

efficiently and systematically evaluate gene regulatory networks of different sizes in an unbiased

way, we restricted our analysis to the subset of weakly connected, non-isomorphic and symmetric

digraphs (see Chapter 2). This reduced the testable space of unique gene regulatory networks

by several orders of magnitude. We further restricted the analysis to digraphs of orders 2, 3, 5

and 8, comprising 2, 4, 10 and 80 weakly connected, non-isomorphic and symmetric digraphs,

respectively. In sum, we analyzed 96 different gene regulatory networks.

Transcriptional bursting model We used an extended version of the leaky telegraph model

(see previous examples) to describe gene expression of multiple genes within a pre-resistant

melanoma cell. The gene regulations are described according to predefined gene regulatory

networks (see previous paragraph). We assumed that gene regulation modulates the reaction

propensity of DNA activation of the regulated gene. The strength of the regulation is modeled

by a Hill function (section 4.3) and depends on the current mRNA count of the regulating gene.

Correspondingly, the reaction propensity of the DNA activation, so far denoted by a1(X(t)), of a

regulated gene Gj is modified from

a1Gj(X(t)) = ronGjXDNAoffGj
(t) (3.13)

to

a1Gj(X(t)) =

ronGj +

|V |∑
i=1

raddGiGj

X
nGiGj

mRNAGi(t)

k
nGiGj

GiGj +X
nGiGj

mRNAGi(t)

XDNAoffGj
(t), (3.14)

where raddGiGj = 0 ∀Gi ∈ V : (Gi, Gj) /∈ E describes the regulatory strength of gene Gi on the

activation of gene Gj and kGiGj , nGiGj > 0 ∀Gi, Gj ∈ V parameters of the Hill function (see

equation (4.4)).

Example. For the gene regulation depicted in Figure 3.4A the reaction propensity of the DNA
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activation reaction, so far denoted by a1(X(t)), of the regulated gene G2 is given by

a1G2(X(t)) =

(
ronG2 + raddG1G2

X
nG1G2
mRNAG1(t)

k
nG1G2
G1G2 +X

nG1G2
mRNAG1(t)

)
XDNAoffG2(t). (3.15)

The corresponding transcriptional bursting model for genes G1 and G2 is shown in Figure 3.4B.

Figure 3.4: Transcriptional bursting model. (A) Exemplary gene regulatory network defining
the gene regulation between genes G1 and G2, where gene G1 is the regulating gene and gene G2

the regulated gene. (B) Schematic of the transcriptional bursting model for two genes G1 and
G2. Gene regulation is modeled by a Hill function, where the gene expression of the regulating
gene G1 increases the activation of DNA of regulated gene G2. The dotted arrows represent
chemical reactions without conversions. Adapted from [1].

The Hill function within the modified reaction propensity (equation (3.14)) summarizes a series

of microscopic reactions of which each in itself complies with the law of mass action 3.2. The Hill

function is used to reduce the complexity of the system and to allow for an efficient evaluation of

the model [89]. Although, the model itself now no longer complies with the law of mass action, the

chemical master equation remains valid as long as the modified reaction propensity is interpreted

as the firing rate of the corresponding reaction [90]. We further assumed that translation is

fast such that mRNA is modeled to directly regulate gene expression, thereby allowing us to

neglect the protein level and to reduce model complexity. Furthermore, we restricted our model

to additive and activating gene regulations only.

Simulation parameters To reduce the number of model parameters and to allow for the

comparison of simulated expression patterns between gene regulatory networks, we assumed all

genes to be regulated by the same parameter vector Θ given by Θ = {ron, roff, rprod, d, rdeg, radd, n},
with radd = raddGiGj and n = nGiGj ∀Gi, Gj ∈ V and the dissociation constant k is defined as

k = 0.95
drprod
rdeg

, (3.16)

where
drprod
rdeg

the steady-state solution of the deterministic description of this chemical reaction

network assuming XDNAon
(t) = 1 ∀t. We defined the dissociation constant k as above to

restrict the emergence of coordinated high expression. 1,000 parameter sets, Θ1, ...,Θ1,000, were

then sampled according to the latin-hypercube sampling method [91]. For more details on the

simulation parameters and parameter boundaries see [1].
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Stochastic simulations Using the chemical reaction network described by the transcriptional

bursting model and Gillespie’s stochastic simulation algorithm (see section 3.4), we simulated

the gene expression for all 96 gene regulatory networks and 1, 000 parameter sets, resulting in

96, 000 simulations, for 1, 000, 000 time units. An exemplary frame of a simulation is shown in

Figure 3.5.

Quantitative criteria To identify simulations with rare coordinated high states, we defined a

set of quantitative criteria describing the rare coordinated high expression patterns as observed

in pre-resistant melanoma cells. We first determined a threshold of expressed mRNA counts

above which we call a gene highly expressed.

Definition 3.6. A gene Gi ∈ V is called highly expressed, if

XmRNAGi(t) > 0.8
drprod
rdeg

, (3.17)

where d, rprod, and rdeg are corresponding simulation parameters.

The threshold is set to 80% of the maximal mean expression, assuming a constantly active DNA

state given by
drprod
rdeg

. Next, we wanted the simulated gene expressions of multiple genes to show

coordinated high expression, i.e., more than half of the genes of a given gene regulatory network

express mRNA counts above the previously defined threshold for high expression, at least once

throughout the simulation. Furthermore, we wanted coordinated high expression to be a rare

phenomenon across a pre-resistant melanoma cell population. Hence, we created an artificial cell

population of 1, 000 cells of 1, 000 time units from the original 1, 000, 000 time units simulation.

For the artificially created cell population, we then determined the mRNA counts of all genes for

time point trand to evaluate whether the expression distributions at the population level show

characteristics of heavy-tailed distributions as identified by Shaffer et al. [47].

Definition 3.7. A simulation shows rare coordinated high expression if

(i) (coordinated high expression) ∃W ⊆ V : |W| > |V|
2 and ∃tk : XmRNAGi(tk) highly expressed

∀Gi ∈ W and

(ii) (rare) for a randomly determined trand ∈ 1, ..., 999 the distributions {XmRNAGi(q)}{q=Q},

with Q = {trand : 1, 000 : 999, 000 + trand} ∀Gi ∈ V, are right-skewed and unimodal.

An exemplary frame of a simulation showing rare coordinated high states and a comparison

between an experimental and a simulated expression distribution are shown in Figure 3.5.

Analysis and results Using the mathematical framework and the resulting simulations as

described above, we

(i) found that the transcriptional bursting model based on established principles of transcription

and gene regulation is sufficient to describe the origin of rare coordinated high expression.

(ii) observed that < 1% of the 96, 000 simulations show rare coordinated high gene expression.

(iii) showed that all tested gene regulatory network sizes were able to produce simulations with

rare coordinated high expression.
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Figure 3.5: Example simulation of the transcriptional bursting model. (A) Exemplary frame of
a simulation with a rare coordinated high state (highlighted in gray) for a network of order 3 (top
left). The expression of an artificially created cell N is shown and the criteria evaluated for rare
coordinated high expression are highlighted. The dotted line represents the threshold for high
expression. (B) The simulated expression distribution at the population level is qualitatively
similar to the experimental data from a drug-naive melanoma population. Adapted from [1].

(iv) demonstrated that within a given network size the number of simulations with rare coordi-

nated high expression decreases with increasing in-degree, where by definition all vertices

in a symmetric gene regulatory network have the same in-degree.

(v) identified a set of parameters which is particularly favorable in producing simulations with

rare coordinated high expression (> 20% of the simulations).

(vi) performed a decision tree analysis and found that only 3 out of the 7 model parameters,

ron, roff and radd, show a strong correlation with the parameter sets particularly favorable

in producing simulations with rare coordinated high expression.

(vii) found a constrained parameter space based on the decision tree analysis for which the

frequency of simulations with rare coordinated high expression is increased > 10-fold as

compared to the original parameter space.

(viii) studied the initiation, maintenance and termination of rare coordinated high expression

states and found that a long transcriptional burst initiates, an increase in burst frequency

maintains, and a random process terminates rare coordinated high expression states.

(ix) hypothesized that stable resistance after drug administration may be achieved by an

increase in the number of edges present in the gene regulatory network which was validated

experimentally by comparing the number of edges of inferred gene regulatory networks for

drug-naive cells and resistant melanoma colonies.

Conclusion In sum, we established a minimal gene expression model comprising transcriptional

bursting, gene regulation and stochasticity, which recapitulates the gene expression patterns

observed in pre-resistant melanoma cells. More generally speaking, we showed that intrinsic

noise and established principles of gene expression regulation are sufficient to lead to rare and

transient gene expression patterns.
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4. Deterministic gene expression models

In the previous chapter, we showed that stochasticity in gene expression is a driver of cell-to-cell

variability. However, when considering e.g., the mean expression of a large cell population,

stochastic effects no longer dominate the expression dynamics. In this case, a deterministic

description is more simple and appropriate.

Initially, the stochastic and deterministic descriptions of chemical reaction networks were studied

independently. Work by Thomas G. Kurtz in the 1970s demonstrated that the stochastic model

converges to the deterministic description in the thermodynamic limit [76, 92].

In Schuh et al. [2], we developed a deterministic model describing the histone modification

kinetics in frog embryos during early development. We used this model to identify whether

external cues can be an integral part of gene expression regulation. Moreover, in Schuh et al. [3],

we considered a deterministic model of gene expression to describe the repression kinetics in

yeast cells to study the effects of repeated external cues on the gene expression regulation of

repression. This chapter is mainly based on [70, 93–95], if not stated otherwise.

4.1. Deterministic description of the chemical master equation

In Theorem 3.4, we introduced the chemical master equation, a potentially infinite system

of ODEs describing the time evolution of a chemical reaction network. However, when only

interested in the evolution of the mean, the system of ODEs reduces to a simpler, deterministic

description.

The mean state of a chemical species Xi at time t can be described by

E[Xi(t)] =
∑
X

Xip(X, t),

where p(X, t) the probability to be in state X at time t. Then the time evolution of the mean of

Xi is given by
d

dt
E[Xi(t)] =

∑
X

Xi
d

dt
p(X, t),

where we make use of the previously derived chemical master equation (see Definition 3.4):

d

dt
E[Xi(t)] =

∑
X

Xi

−p(X, t)
m∑
j=1

aj(X) +
m∑
j=1

p(X− sj, t)aj(X− sj)


= −

∑
X

m∑
j=1

Xiaj(X)p(X, t) +
∑
X

m∑
j=1

Xiaj(X− sj)p(X− sj, t).

To further simplify the expression, we substitute X for X+ sj in the right sum, resulting in

d

dt
E[Xi(t)] = −

∑
X

m∑
j=1

Xiaj(X)p(X, t) +
∑
X

m∑
j=1

(Xi + sij)aj(X)p(X, t)

=

m∑
j=1

sij
∑
X

aj(X)p(X, t)

=

m∑
j=1

sijE[aj(X)].
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Hence, the evolution of the mean of a chemical reaction network is dependent on the stoichiometric

matrix (see Definition 3.2) and the reaction propensities (see Definition 3.5), which are easily

determined. The deterministic formulation of the evolution of the mean of a chemical reaction

network is given by

d

dt
E[Xi(t)] =

m∑
j=1

sijE[aj(X)] (4.1)

for chemical species Ci. However, this only holds for zero and first order reactions [89]. More

specifically, for zero order reactions, i.e., reactions with constant reaction propensity aj(X) = k,

E[aj(X)] = k (see section 3.2), and for first order reactions, i.e., reactions with a linear reaction

propensity aj(X) = kXi(t) (see section 3.2), E[aj(X)] = kE[Xi(t)]. However, for second order

reactions of different educts, i.e. with quadratic reaction propensity aj(X) = kXi(t)Xj(t) (see

section 3.2), the expectation of aj(X) is given by

E[aj(X)] = aj(E[X]) +
1

2

∑
l1,l2

∂2aj(X)

∂Xl1
∂Xl2

E
[
(Xl1

− E[Xl1
])(Xl2

− E[Xl2
])
]
, (4.2)

having applied a Taylor series expansion at E[X] and where E
[
(Xl1

− E[Xl1
])(Xl2

− E[Xl2
])
]

the second moment, which is itself dependent on higher order moments. Hence, if non-linear

propensities are described, the equation is typically coupled to higher-order moments. If the

system contains non-linear propensities, moment-closure approximations are used to decouple

lower- and higher-order moments. Common methods are the third order moment-closure

approximation, where the third and higher order moments are assumed to be zero [96], low

dispersion closure, where the distribution around lower order moments is considered before

assuming higher order moments to be negligible [97] or the mean-field closure [98]. Similar

descriptions of the evolution of higher order moments of the chemical master equation can be

derived [95].

Example. For the leaky telegraph model (see example of 3.1) the evolution of the mean for each

of the chemical species C = {DNAoff,DNAon,mRNA} is described by the following ODEs:

d

dt
E[XDNAoff

(t)] = roffXDNAon
(t)− ronXDNAoff

(t)

d

dt
E[XDNAon

(t)] = ronXDNAoff
(t)− roffXDNAon

(t)

d

dt
E[XmRNA(t)] = rprodXDNAoff

(t) + drprodXDNAon
(t)− rdegXmRNA(t).

4.2. Michaelis-Menten enzyme kinetics

A special case of chemical reactions are enzyme reactions. Enzymes catalyze biochemical reactions

but are not consumed or altered by the process. In 1913, Leonor Michaelis and Maud Menten

proposed a mathematical model to describe the rate of a general enzymatic reaction and its

product formation [99]. This section was adapted from [99, 100].

Theorem 4.1. Let C = {E,S,ES, P} be chemical species, where E is the enzyme, S the substrate,

ES the enzyme-substrate complex, and P the product, and let the chemical reaction network be

described by

E + S
k1−−⇀↽−−
k−1

ES
k2−−⇀↽−−
k−2

E + P.
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Then the rate at which the product concentration [P ] is formed is given by

d

dt
[P ] = υ = υmax

[S]

k + [S]
, (4.3)

where [S] is the concentration of the substrate, k the dissociation constant specifying the substrate

concentration at which the product formation is half-maximal, and υmax is the maximal production

rate. This relation is called the Michaelis-Menten kinetics.

In enzyme kinetics, the product formation rate can reach saturation. Even for high substrate

concentrations the reaction rate is limited by the enzymatic reaction during which the substrate

is converted into the product. For the full derivation see [99, 101]. In contrast to basing the

deterministic model description on the law of mass action (see section 3.2), the Michaelis-Menten

enzyme kinetics are commonly used to describe non-linear processes [102].

4.3. Hill function

In 1910, Archibald Vivian Hill introduced the so called Hill function describing the binding of

oxygen to hemoglobin [103]. Under specific conditions the Hill function can be viewed as an

extension of the Michaelis-Menten kinetics modeling the positive cooperative binding of several

substrates, S1, ..., Sn, to an enzyme with multiple subunits and active sites [102]. This section

was adapted from [101, 103].

Theorem 4.2. Let C = {E,S, SE, SSE,P} the chemical species, where E is the enzyme, S the

substrate, SE the enzyme-substrate complex with one substrate bound, SSE the enzyme-substrate

complex with two substrates bound, and P the product, and let the chemical reaction network be

described by

S + E
k1−−⇀↽−−
k−1

SE
k2−−⇀↽−−
k−2

E + P,

S + SE
k3−−⇀↽−−
k−3

SSE
k4−−⇀↽−−
k−4

SE + P.

Assuming positive cooperativity, i.e., upon the binding of one substrate the conformation of the

enzyme changes, thereby facilitating the easier binding of a second substrate; then the rate at

which the product concentration [P ] is formed can be approximated by

d

dt
[P ] = υ = υmax

[S]n

kn + [S]n
, (4.4)

where [S] the concentration of the substrate S, k the dissociation constant specifying the substrate

concentration at which the product formation is half-maximal, υmax the maximal rate, and n the

Hill coefficient which describes the binding affinity or the number of substrates an enzyme can

bind to simultaneously. This relation is called the Hill function.

For n = 1 the Hill function reduces to the Michaelis-Menten kinetics. Furthermore, for n > 1 the

Hill function is sigmoidal and for n→∞, it approximates a step function, with υ = 0 for [S] < k

and υ = υmax for [S] > k (Figure 4.1). The Hill function is frequently used in mathematical

modeling to describe non-linear responses of the regulatory functions in gene regulatory networks

as introduced in chapter 2 [102].
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Figure 4.1: Exemplary Hill functions for υmax = 1, k = 1 and varying n.

Example. Let us consider two genes, G1 and G2, whose interactions are summarized by the gene

regulatory network as shown in Figure 4.2 (see chapter 2).

Figure 4.2: Gene regulatory network for genes G1 and G2, where G1 activates G2.

Let genes G1 and G2 result in proteins P1 and P2, respectively. Focusing on the protein level,

let the chemical reaction network of chemical species C = {P1,P2} be described by reactions

P1 production R1: ∅
rprod1−−−−→P1

P1 degradation R2: P1

rdeg1−−−→ ∅
P2 production R3: ∅

rprod2−−−−→P2

P2 degradation R4: P2

rdeg2−−−→ ∅.
Then, the state of the system is summarized by X(t) = [XP1

(t), XP2
(t)]. Often, the reaction

propensity corresponding to the production of the regulated gene P2 and reaction R3 is not

described according to the law of mass action but accounts for a non-linear regulation of P2 by

P1:

a3(X(t)) = rprod2
XP1

(t)n12

k
n12
12 +XP1

(t)n12
,

where k12 is the dissociation constant and n12 the Hill coefficient of the corresponding Hill

function describing the non-linearity. The Hill function summarizes a series of microscopic

reactions of which each in itself complies with the law of mass action (see 3.2) [89]. Although the

model itself now no longer complies with the law of mass action, the chemical master equation

remains valid as long as the modified reaction propensity is interpreted as the firing rate of the

corresponding reaction [90].

4.4. Deterministic model formulation

So far, we focused on the deterministic formulation describing a biological process. However, we

are often not able to measure the states of a biological system directly. Hence, when using the

deterministic description to explain a biological process, we need to couple the true underlying

dynamical process to a function describing the measurable states.

Definition 4.1. A function of the states and/or parameters, θ, which can be measured, are
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called observables,

y(t,θ) = h (t,θ,x(t,θ)) , (4.5)

with observation function h : R× Rnθ × Rn → Rny and ny the number of observables.

Example. For the leaky telegraph model (see example of 3.1), we have previously described

the deterministic formulation of the dynamic process. However, we cannot measure all of the

states, X(t) = [XDNAoff
(t), XDNAon

(t), XmRNA(t)] for time point t. mRNA concentrations of

a pre-defined gene can be detected in single, fixed cells, by a technique referred to as RNA

fluorescence in situ hybridization (RNA FISH) [104]. Here, fluorescent probes are hybridized to

mRNA molecules. The signal is then detected under the microscope. Hence, in this example,

only the mRNA concentrations, XmRNA(t) for time point t, can be experimentally measured and

the observable is described by

y(t) = XmRNA(t).

A deterministic model couples the deterministic description of a dynamic process and the

observables.

Definition 4.2. A deterministic modelM is given by a deterministic description of the system

dynamics ∂
∂tx(t,θ) and observables y(t,θ) such that

M(θ) =

 ∂
∂tx(t,θ) = f (t,θ,x(t,θ)) ,

y(t,θ) = h (t,θ,x(t,θ)) ,
(4.6)

with initial states x(t0,θ) = x0(θ), where θ is the parameter vector, f : R×Rnθ ×Rn → Rn, and

h : R× Rnθ × Rn → Rny the observation function.

As the system x(t,θ) is a function of time t and parameters θ, we here use the partial derivative
∂
∂t .
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5. Parameter estimation

For most biological processes, the parameter vector θ of the underlying model M(θ) (see

Definition 4.2) is unknown. However, to understand aspects of a biological process and to use

the model for predictions, one is interested in identifying the underlying parameters. As θ can

often not be directly measured, the parameters need to be inferred from experimental data. In

both publications [1, 2] and the manuscript [3], we aimed at identifying the model parameters

underlying the varying biological processes. Overall, there are several approaches to parameter

estimation including the frequentist [91] and Bayes approaches [105]. In this thesis, we mainly

consider the former. This chapter is mainly based on [70, 106–108], if not stated otherwise.

5.1. Mathematical formulation

The general idea of parameter estimation is to find an estimated parameter vector θ∗ for which

the forward simulation M(θ∗) describing the system states x(t,θ∗) and observations y(t,θ∗)

best captures the experimental data D. This can be formulated as a minimization problem,

where the optimal parameter vector underM(θ), θ∗, is given by

θ∗ = argmin
θ∈Θ

subject to M(θ)

J(y(t,θ),yD(t)), (5.1)

where J(θ) the objective function allowing for a quantitative comparison between simulation

y(t,θ) and observations yD(t), and Θ a suitable parameter space. The optimal parameter vector

θ∗ is hence dependent on the choice of the objective function J(y(t,θ),yD(t)).

5.2. Naive approach

In Schuh et al. [2], we were interested in developing a stochastic gene expression model that is

able to recapitulate the gene expression patterns observed in pre-resistant melanoma cells. Due

to the stochastic nature of our model, we applied a naive approach to parameter estimation as

outlined by Algorithm 2.

Algorithm 2 Naive parameter estimation approach

Input: modelM(θ), parameter space Θ, the number of to-be sampled parameter vectors N ,
and data observations yD(t)

Output: estimated optimal parameter vector θ∗

for i = 1, ..., N do
sample θi ∈ Θ by e.g., latin-hypercube sampling
forward simulateM(θi) to get y(t,θi)
compare y(t,θi) with yD(t) by pre-determined criteria

end for
θ∗ = θi for which y(t,θi) best describes y

D(t)

The aforementioned pre-determined criteria for comparing y(t,θi) with yD(t) do not necessarily

need to be distance metrics. In Schuh et al. [1], we used several criteria to determine whether our

biological phenomenon of interest was recapitulated by the stochastic simulations, e.g., whether

any gene was highly expressed, the number of simultaneously highly expressed genes, and the

gene expression distributions.

29



The performance of the naive approach is highly dependent on the number of parameter vectors

sampled from the parameter space Θ. With increasing dimensionality of Θ, the coverage of

the parameter space decreases exponentially, a phenomenon termed the curse of dimensionality.

Hence, if possible, more advanced and efficient methods for estimating the parameter vector θ∗

should be used.

5.3. Likelihood-based approach: maximum likelihood estimation

One of the most common methods for parameter estimation is the likelihood-based approach,

where the objective function of the minimization problem as defined in equation (5.1) is described

by the (negative) likelihood. In Schuh et al. [2] and [3] we applied maximum likelihood estimation

to infer the model parameters of our deterministic model descriptions. Generally, the likelihood

function describes the probability of observing data setD given modelM(θ) and model parameters

θ.

Definition 5.1. The likelihood is defined as

LD(θ) = P(D|θ) =
nt∏
k=1

P(yD(tk)|y(tk,θ),σk) (5.2)

independence of yi=

nt∏
k=1

ny∏
i=1

P(yDi (tk)|yi(tk,θ), σi,k) (5.3)

where D = {((yDi (tk))
ny

i=1, tk)}
nt
k=1 the data set, ny the number of observables y(tk,θ), nt the

number of time points, yD(tk) the data measurements at time tk, θ a parameter vector describing

M(θ) and σk the noise parameters of an underlying noise model.

In contrast to the previous chapter, where one was interested in minimizing the distance between

the model simulation and the observations, we here want to identify the parameter vector having

the highest probability of having produced data D under modelM(θ). Hence, we are interested

in the parameter vector maximizing the likelihood function instead of minimizing the objective

function.

Definition 5.2. The maximum likelihood estimate θML is a solution to the optimization problem

θML = argmax
θ∈Θ

subject to M(θ)

LD(θ). (5.4)

The maximum likelihood estimate is widely used due to its properties in the limit of large sample

sizes, i.e., efficiency, consistency, and asymptotic normality. To improve the numerical solvability

of the optimization problem one often rephrases the maximum likelihood estimate of equation

(5.4) to

θML = argmin
θ∈Θ

subject to M(θ)

− ℓD(θ), (5.5)

where

−ℓD(θ) = − logLD(θ) (5.6)

= −
nt∑
k=1

ny∑
i=1

logP(yDi (tk)|yi(tk,θ), σi,k) (5.7)
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is the negative log-likelihood [107]. When comparing the minimization problems of equations

(5.1) and (5.5), it becomes obvious that the negative log-likelihood equals the objective function

in the likelihood-based approach. If possible, log-transforming the model parameters θ further

improves the computational efficiency of the optimization [91, 109–111].

5.4. Noise models

As experimental data is generally noise corrupted, observed data points yDi (tk) underlie a noise

model, which directly defines the likelihood function (Definition 5.1).

Gaussian noise The most common noise model follows an additive Gaussian distribution,

assuming

yDi (tk) = yi(tk,θ) + ϵi,k, ϵi,k
iid∼ N (0, σ2

i,k(θ)), (5.8)

where the noise is assumed to be independently and identically distributed (iid). The negative

log-likelihood is then given by

−ℓD(θ) =
1

2

nt∑
k=1

ny∑
i=1

log(2πσ2
i,k(θ)) +

(
yDi (tk)− yi(tk,θ)

σi,k(θ)

)2

. (5.9)

Alternatively, one can assume the data to underlie a multiplicative log-Gaussian noise model

where

yDi (tk) = yi(tk,θ)ϵi,k, ϵi,k
iid∼ logN (0, σ2

i,k(θ)). (5.10)

However, the multiplicative log-Gaussian noise model can be described by an additive Gaussian

noise model when considering the log of the data points yDi (tk), assuming all yDi (tk) > 0.

Laplacian noise When modeling outlier-corrupted data, one may rather use a Laplacian noise

model accounting for heavier tails [112], with

yDi (tk) = yi(tk,θ) + ϵi,k, ϵi,k
iid∼ Laplace(0, σ2

i,k(θ)). (5.11)

The negative log-likelihood of the additive Laplacian noise model is given by

−ℓD(θ) =
1

2

nt∑
k=1

ny∑
i=1

log(2σi,k(θ)) +
|yDi (tk)− yi(tk,θ)|

σi,k(θ)
. (5.12)

5.5. Optimization methods

There are various optimization techniques available to numerically solve the optimization problem

of equation (5.5). One mainly differentiates between local and global, and between gradient-based

and derivative-free optimization methods [106]. The performance of each of these methods

strongly depends on the underlying problem. We here introduce a local and gradient-based

optimization approach efficiently estimating the model parameters of deterministic modelsM(θ)

as described in section 4.2 [91].

Sensitivity equations The general idea of gradient-based optimization is to exploit the infor-

mation embedded in the derivative of the objective function J(θ) to determine an adequate

search direction. A naive way of approximating the gradient of an objective function J(θ) can
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be obtained by applying the finite difference method [91]. A more sophisticated and efficient

approach is provided by the sensitivity equations [91]. Assuming an additive Gaussian noise

model as described in equation (5.9), the partial derivative of the objective function with respect

to parameter θl is given by

∂

∂θl
J(θ) =

1

2

nt∑
k=1

ny∑
i=1

1

σ2
i,k(θ)

1−

(
yDi (tk)− yi(tk,θ)

σi,k(θ)

)2
 ∂

∂θl
σ2
i,k(θ)

− 2
yDi (tk)− yi(tk,θ)

σ2
i,k(θ)

∂

∂θl
yi(tk,θ).

Then the sensitivities, describing the partial derivatives of the observable and state vectors are

defined as below.

Definition 5.3. The sensitivity of the observable y(t,θ) with respect to θl is given by

syl (t) =
∂

∂θl
y(t,θ) ∈ Rny (5.13)

and the sensitivity of the state x(t,θ) with respect to θl is given by

sxl (t) =
∂

∂θl
x(t,θ) ∈ Rnx . (5.14)

Then the sensitivity syl (t) with respect to θl of the observable y(t,θ) (equation (4.5)) is given by

syl (t) =
∂

∂θl
h(t,θ,x(t,θ)) +

∂

∂x
h(t,θ,x(t,θ)) sxl (t), (5.15)

where ∂
∂xh(t,θ,x(t,θ)) =

(
∂

∂xm
hj(t,θ,x(t,θ))

)
mj

, with

∂

∂t
sxl (t) =

∂

∂x
f(t,θ,x(t,θ)) sxl (t) +

∂

∂θl
f(t,θ,x(t,θ))

sxl (0) =
∂

∂θl
x0.

Hence, to compute the sensitivities syl (t) one needs to compute the solution to an ODE system

of size nx for every θl in θ, where nx the number of states of the model ODE [106]. Generally,

syl (t) can be efficiently and robustly computed [113]. The gradient of the negative log-likelihood

for data with a Laplacian distributed noise can be derived similarly.

Multi-start optimization Generally, one would like to obtain the global optimum of the

minimization problem described in equation (5.5). However, a common problem when estimating

the parameters of a dynamic system is the existence of multiple local optima in the respective

objective function J(θ). A single run of gradient descent might then converge to a local rather

than a global optimum [91]. To make deterministic optimization approaches more robust, one

can perform multiple independent optimization runs where each run is initiated from a different

point in the parameter space Θ [91]. The optimum with the lowest negative log-likelihood value

is used as an approximation to the global optimum of the minimization problem and its reliability

increases with the number of optimization runs converging to the same local optimum.

5.6. Identifiability and uncertainty analysis

When estimating the parameter vector θ ofM(θ) one is interested in identifying a unique and

optimal solution. Whether an optimization problem as stated in equation (5.5) gives an unique
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solution θ∗ depends on both the functions f and h ofM(θ) (see 4.2) and the experimental data D
used to estimate θ∗. Thereby we differentiate between structural and practical identifiability [114].

Definition 5.4. A parameter θi is structurally local identifiable if for any θ′ ∈ Θ there exists a

neighborhood V (θ′) such that

θ ∈ V (θ′) andM(θ) =M(θ′)⇒ θi = θ′i. (5.16)

Structural identifiability only considers functions f and h ofM(θ) and answers the question

whether a parameter θi can be uniquely identified given perfect experimental data D, i.e.,

noise-free and containing infinite measurements [70]. Structural non-identifiability arises from

a redundant parameterization due to an insufficient mapping h of the states x(t,θ) to the

observations y(t,θ) [114]. To circumvent structural non-identifiability, measurements have to be

taken in accordance with a sufficient mapping h. To test for structural identifiability one can

either directly compare the vector fields of f(t,θ,x(t,θ)) and f(t,θ′,x(t,θ′)) (direct approach),

use approximation approaches such as the Taylor or generating series, or use available toolboxes

such as GenSSI [115], STRIKE-GOLDD [116] or DAISY [117].

Example. We introduce an example, where the model parameters are not structurally identifiable

given the dynamics, initial conditions and measurements [118]. Let the system dynamics be

described by the following equations

∂

∂t
x1(t,θ) = −θ1x1

∂

∂t
x2(t,θ) = θ1x1

with initial conditions x1(t0,θ) = θ2, x2(t0,θ) = 0 and y1(t,θ) = θ3x2(t,θ) the only measurement.

Solving the system of ODEs and substituting the solution into the measurement equation gives

y1(t,θ) = θ3θ2e
−θ1t

(
eθ1t − 1

)
.

Here, θ2 and θ3 are structurally non-identifiable as one cannot differentiate between their product.

We further consider practical identifiability, where also the quality and abundance of the data

measurements are taken into consideration.

Definition 5.5. A (1 − α)% confidence interval/region of parameter θi is an observed inter-

val/region [L(θi,D), U(θi,D)] for which

P(L(θi,D) ≤ θi ≤ U(θi,D)) = 1− α, (5.17)

where α is called the significance level and D the data.

Definition 5.6. A parameter θi is practically identifiable for a data set D if its (1 − α)%

confidence interval [L(θi,D), U(θi,D)] is finite [114].

Depending on the quality of data D, a parameter θi which is structurally identifiable may still

be practically unidentifiable [114]. To evaluate the confidence interval CIαi of parameters θi one

can compute the profile likelihood for parameter θi by fixing θi and by optimizing over all other

parameters.

Definition 5.7. The profile likelihood for parameter θi is

PL(θi) = arg max
θj ̸=i∈Θ

subject toM(θ)

LD(θ). (5.18)
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Then the profile-likelihood-based confidence interval used for evaluating the practical identifiability

of a parameter θi for significance level α is

CIαi =

θi|∃θ :
PL(θi)

LD
(
θML

) > e−
∆α
2

 , (5.19)

where ∆α = χ2(α, 1) for point-wise confidence and χ2(α, 1) the α-th percentile of the χ2-

distribution with 1 degree of freedom. The likelihood-ratio PL(θi)

LD

(
θ
ML

) is an indicator of the

uncertainty of the estimate of parameter θi. In Schuh et al. [3], we used PESTO: Parameter

EStimation TOolbox to evaluate the practical identifiability of the model parameters based on

profile likelihoods [119].
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6. Model selection

In the previous chapter, the model structureM(θ) (see Definition 4.2) underlying the biological

process of interest was assumed to be known. However, often there are several suggested and

competing model hypotheses for which one would like to select the most plausible model(s)

describing data set D. Identifying the most plausible model(s) also presents an optimization

problem, however, on an architectural level for which different optimization/selection methods are

applied than for parameter estimation as introduced in chapter 5. Generally, model selection is

only relative to the set of tested model hypotheses where models with a lower performance can be

rejected but non-rejected models are not automatically validated [120]. The main philosophical

principle underlying model selection is Occam’s razor which states a preference for simple

theories [121]. Hence, for model selection both the goodness of fit regarding the optimized model

M(θ∗) given data D as well as the model’s complexity are taken into consideration.

6.1. Bayes factor

Definition 6.1. For two modelsMi(θ) andMj(θ
′) the Bayes factor is defined as

Bij =
P(D|Mi(θ))

P(D|Mj(θ
′))

, (6.1)

with marginal likelihoods

P(D|Mi(θ)) =

∫
Θ
P(D|θ,Mi(θ))P(θ,Mi(θ))dθ. (6.2)

Adapted from [106].

The Bayes factor is a common criterion in model selection, where Bij describes the relative

support of modelMi(θ) to modelMj(θ
′) [106]. By integrating over the parameter space Θ, the

Bayes factor intrinsically accounts for increasing model complexity.

6.2. Bayesian Information Criterion

The computation cost for evaluating the marginal likelihoods is non-trivial for complex systems.

Hence, one often reverts to an asymptotic approximation of the Bayes factor [122], as done in

Schuh et al. [2, 3].

Definition 6.2. The Bayesian Information Criterion (BIC) is defined as

BICi = nθ log(ny)− 2 log
(
LD(θ

∗)
)
, (6.3)

where ny the number of observables in D, nθ the number of model parameters for modelMi(θ)

and LD(θ
∗) the corresponding optimized likelihood function evaluated at θ∗ [123].

While the term −2 log
(
LD(θ

∗)
)
evaluates the goodness of fit, the term nθ log(ny) penalizes for

the number of model parameters nθ of modelMi(θ). Hence, the lower the BIC value the better

the overall model. For two modelsMi(θ) andMj(θ)

BICi − BICj > 10, (6.4)

evaluated on the same data set D, then the modelMi(θ) can be rejected [123]. Moreover, the

BIC is only a valid model selection criterion for structurally identifiable models [106]. For a large
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data set D and modelsMi(θ) andMj(θ) we have

BICi − BICj ≈ 2 log(Bij) (6.5)

and the probability of the BIC selecting the true best model increases with increasing data set

size [124].

6.3. Akaike Information Criterion

Similar to the BIC in form, another model selection criterion was derived from the principles of

information theory.

Definition 6.3. The Akaike Information Criterion (AIC) is given by

AICi = 2nθ − 2 log
(
LD(θ

∗)
)
, (6.6)

where nθ the number of model parameters for model Mi(θ) and LD(θ
∗) the corresponding

optimized likelihood function evaluated at θ∗ [125].

Relative to the AIC, the BIC penalizes additional model parameters or complexity more strongly.

While the AIC and BIC are easily computed, they are still only approximations and can hence

perform poorly in comparison to the Bayes factor. Other model selection criteria are given by but

are not limited to the corrected AIC accounting for finite data sets [126] and the likelihood-ratio

test which is only valid for nested models [127].

6.4. Application: External cue as an integral part of gene expression regulation

We give an application of a deterministic gene expression model, which makes use of the previously

introduced concepts. We like to emphasize, that the application presented here is only briefly

introduced and not all details are discussed. For a full description of this application see A.2.

This section is based on, and is partly identical to, the core publication [2].

Research problem Among other mechanisms, the openness of DNA and hence gene expression

is regulated by the placement of methyl groups on the tails of histone proteins. Particularly

during development, where cells continuously divide and differentiate, a fast and economical

control of gene expression is required. However, cells divide rapidly during development and

with each cell cycle unmodified histones get incorporated into the DNA leading to an overall

dilution of histone modifications. How is a precise and accurate gene expression assured during

development despite the constant dilution of most histone modifications? In other words: Is the

cell cycle as external cue an integral part of gene expression regulation?

Experiment and data To identify how the cell cycle shapes the histone modification landscape

during development, we compared the kinetics of histone 4 lysine 20 methylation (H4K20me) in

a population of normal frog embryos (from now on called ’mock’) with a cell-cycle-arrested popu-

lation. For this, half of the embryos were continuously incubated with hydroxyurea/aphidicolin

(from now on called ’HUA’) from 11 hours post fertilization onward, arresting the cell cycle.

We measured the global distribution of un-, mono-, di-, and tri-methylated H4K20 by mass

spectrometry at 14.75, 19.75, 27.5, and 40 hours post fertilization for three biological replicates

(Figure 6.1).
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Figure 6.1: H4K20 methylation kinetics during frog development are altered upon HUA-
induced cell cycle arrest. (A) Frog eggs are fertilized in vitro at time point 0. At 5.5 hours,
G1 and G2 cell cycle phases appear. At 11 hours, half of the embryos are incubated with
hydroxyurea/aphidicolin (HUA) arresting the cell cycle. Mass spectrometry measurements of
H4K20 methylation (H4K20me) are performed at 14.75, 19.75, 27.5, and 40 hours in embryos
with dividing (mock) or non-dividing cells (HUA). (B) H4K20me kinetics differ between mock
(gray) and HUA treated (green) embryo populations. Adapted from [2].

Approach Effects of the cell cycle on H4K20me kinetics during frog development should lead to

different H4K20me kinetics between mock and HUA. To identify whether we require population-

specific rate constants to describe the H4K20me kinetics of mock and HUA, we developed a

set of model hypotheses describing the H4K20me kinetics of mock and HUA. Model selection

and parameter estimation on the joint model hypotheses allowed us to directly identify essential

population-specific rate constants for mock and HUA.

Mock models To first identify the model structure underlying the average kinetics of H4K20me

proportions of mock embryos only, we established a general mock model. This model will then

give rise to a whole set of nested mock model hypotheses. We assumed that methylation, the

addition of a methyl group, and demethylation, the active removal of a methyl group, occur

successively. Then, for cells undergoing cell division, newly synthesized and unmethylated

histones are incorporated into replicating DNA leading to an increase of unmethylated H4K20me.

With cell division, the number of cells increases with the population growth rate

g(t) =
ln(2)

c(t)
, (6.7)

where c(t) is the average cell cycle duration across all cells of an average mock embryo as a

function of time. We tested five different cell cycle functions c(t) describing the average cell

cycle duration, where c1(t) = a assumes a constant cell cycle duration, c2(t) = a+ bt assumes a

linearly increasing cell cycle duration, c3(t) = 0.5 + bt assumes a linearly increasing cell cycle

duration with a cell cycle duration of half an hour at 5.5 hours post fertilization (according to
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prior experimental information), c4(t) = a + b t
h+t assumes the cell cycle duration to follow a

scaled Hill function with Hill coefficient 1 and offset a, c5(t) = 0.5 + b t
h+t assumes the cell cycle

duration to follow a scaled Hill function with Hill coefficient 1 and offset 0.5, or c6(t) = 0.5+ b t
b+t

assumes the cell cycle duration to follow a constrained scaled Hill function with Hill coefficient 1

and offset 0.5.

The model is initiated at 5.5 hours post fertilization, as G1 and G2 cell cycle phases are only

established then [128]. At model initialization, experimental data suggests an average cell cycle

duration of half an hour, justifying cell cycle functions c3(t), c5(t) and c6(t) with fixed offset of

0.5 hours [129, 130]. Furthermore, cell cycle functions c4, c5 and c6 make use of the non-linearity

of the Hill function (section 4.3). Let Cabs = {meiabs}
3
i=0 be the set of chemical species describing

absolute un- (me0), mono- (me1), di- (me2) and tri-methylated (me3) H4K20, where Xmei is the

absolute H4K20 methylation as measured by mass spectrometry for chemical species mei. For

the absolute mock H4K20me, we formulated a chemical reaction network with reactions

R1 : me0
m1−−→ me1

R2 : me1
m2−−→ me2

R3 : me2
m3−−→ me3

R4 : me1
d1−→ me0

R5 : me2
d2−→ me1

R6 : me3
d3−→ me2

R7 : me0
g(t)−−→ 2me0

R8 : me1
g(t)−−→ me1 +me0

R9 : me2
g(t)−−→ me2 +me0

R10 : me3
g(t)−−→ me3 +me0

where, m1,m2,m3 methylation rate constants, d1, d2, d3 demethylation rate constants and g(t)

the population growth rate (Figure 6.2). In reactions R7, R8, R9, and R10 we describe the DNA

replication before cell division, where the new integrated histones are unmethylated.

Figure 6.2: Model of cycling mock population composed of four H4K20 states: un- (me0),
mono- (me1), di- (me2), and tri-methylation (me3). m1, m2, and m3 represent the mono-, di-,
and tri-methylation rate constants and d1, d2, and d3 represent the demethylation rate constants.
Due to cell division there is an overall increase of H4K20me0 parameterized with population
growth rate g(t), which is dependent on the cell cycle function c(t). The dotted arrows represent
reactions without conversions. Adapted from [2].

As we considered the mean absolute H4K20me of a large number of histones across cells and
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even across frog embryos, we assumed a deterministic modeling approach to be appropriate. The

system of ODEs describing the mock model for mean absolute H4K20me according to equation

(4.1) is given by

d

dt
Xme0(t) = −m1Xme0(t) + d1Xme1(t) + g(t)

3∑
i=0

Xmei(t)

d

dt
Xme1(t) = m1Xme0(t)− (m2 + d1)Xme1(t) + d2Xme2(t)

d

dt
Xme2(t) = m2Xme1(t)− (m3 + d2)Xme2(t) + d3Xme3(t)

d

dt
Xme3(t) = m3Xme2(t)− d3Xme3(t)

d

dt
N(t) = g(t)N(t),

where N(t) is the total number of histone tails at time t. The experimental H4K20 methylation

data is taken from different mock embryo populations for each of the four time points. To account

for the varying absolute numbers in embryos, and hence varying absolute numbers in histone tails

and H4K20me sites, we considered the proportions of H4K20me. We reformulated the system

of ODEs for Ymei(t) =
Xmei(t)
N(t) , for i ∈ {0, 1, 2, 3} according to [4]. The corresponding ODEs are

given by
d

dt
Ymei(t) =

d
dtXmei(t)

N(t)
− Xmei(t)N(t)

d
dtN(t)

, (6.8)

more specifically by

d

dt
Yme0(t) = −m1Yme0(t) + d1Yme1(t) + g(t)

3∑
i=0

Xmei(t)

d

dt
Yme1(t) = m1Yme0(t)− (m2 + d1 + g(t))Yme1(t) + d2Yme2(t)

d

dt
Yme2(t) = m2Yme1(t)− (m3 + d2 + g(t))Yme2(t) + d3Yme3(t)

d

dt
Yme3(t) = m3Yme2(t)− (d3 + g(t))Yme3(t)

d

dt
N(t) = g(t)N(t),

such that cell division leads to an increase in Yme0(t) and a decrease in Ymei(t) for i ∈ {1, 2, 3}.
The resulting model for Ymei, ∀i ∈ {0, 1, 2, 3}, is described by Figure 6.2, where the non-conversion

reactions, denoted by the dotted arrows, are changed to conversion reactions, such that there is

an additional constant outflow of Ymei for i = {0, 1, 2, 3} to Yme0.

HUA models Similar to mock, we first formulated a general HUA model to identify the specific

rate constants necessary to describe the average kinetics of H4K20me proportions of HUA embryos.

The general HUA model will then be used to give rise to a set of HUA model hypotheses. Again

we assumed that methylation and demethylation occur successively. Furthermore, we assumed

that the HUA treatment at 11 hours post fertilization acts immediately and arrests the cell

cycle of all cells instantaneously. According to these model assumptions, we first formulated a

chemical reaction network for chemical species C = {mei}3i=0 describing the mean absolute HUA
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H4K20me kinetics, with reactions

R1 : me0
m1−−→ me1

R2 : me1
m2−−→ me2

R3 : me2
m3−−→ me3

R4 : me1
d1−→ me0

R5 : me2
d2−→ me1

R6 : me3
d3−→ me2

where, m1,m2,m3 the methylation rate constants and d1, d2, d3 the demethylation rate constants

(Figure 6.3).

Figure 6.3: Model of cell-cycle-arrested HUA population. In contrast to the mock model (Figure
6.2), the HUA cells do not divide (g(t) = 0), and no dilution of methylated H4K20 is required.
Adapted from [2].

We again assume a deterministic modeling approach to be appropriate for modeling the kinetics

of mean absolute HUA H4K20me. The system of ODEs describing the mean absolute HUA

H4K20me according to equation (4.1) is given by

d

dt
Xme0(t) = −m1Xme0(t) + d1Xme1(t)

d

dt
Xme1(t) = m1Xme0(t)− (m2 + d1)Xme1(t) + d2Xme2(t)

d

dt
Xme2(t) = m2Xme1(t)− (m3 + d2)Xme2(t) + d3Xme3(t)

d

dt
Xme3(t) = m3Xme2(t)− d3Xme3(t)

d

dt
N(t) = 0,

where Xmei is the absolute HUA H4K20me as measured by mass spectrometry for chemical species

mei and N(t) is the total number of histone tails. We again reformulated the system of ODEs of

absolute H4K20me to proportions according to Ymei(t) =
Xmei(t)
N(t) , i ∈ {0, 1, 2, 3}. However, for

the HUA model the system of ODEs is identical for Xmei(t) and Ymei(t), ∀i = {0, 1, 2, 3}.

Analysis and results of mock and HUA models In the previous two sections, we introduced

the most general mock and HUA models. In addition, we tested several nested models for bot

mock and HUA, such that rate constants could be shared between two or more reactions (termed

’shared methylation/demethylation rate constants’) or be specific to one reaction (termed ’specific

methylation/demethylation rate constants’) (Figure 6.4). Moreover, we allowed for models

without demethylation, as it has been postulated that demethylation might not be important for

methylation kinetics at all [131].
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Figure 6.4: All possible rate constant combinations result in 5 models without demethyla-
tion and 25 models with demethylation. Rate constants specific to a particular methylation
or demethylation step are indicated in color, rate constants shared between methylation or
demethylation steps are shown in gray. The number of rate constants ranges between 1 and 6.
Adapted from [2].

In total, we tested 180 mock model hypotheses (30 model hypotheses times 6 different cell

cycle functions) and 30 HUA model hypotheses. We performed multi-start maximum likelihood

optimization and model selection according to the Bayesian Information Criterion (BIC, see 6.2).

We found that

(i) 12 out of 180 mock model hypotheses and 5 out of 30 HUA model hypotheses considerably

outperformed the other model hypotheses with a BIC difference > 10.

(ii) the best performing models of mock and HUA show a good overall agreement with the

respective H4K20me proportion kinetics.

(iii) only a constrained scaled Hill function with Hill coefficient 1 and offset 0.5, c6(t) = 0.5+b t
b+t

was able to correctly predict biologically meaningful average cell cycle duration of around 8

hours for the mock embryo population.

(iv) specific mono-, di, and tri-methylation rate constants or only a specific tri-methylation rate

constant are required to describe the mock H4K20me proportion kinetics.

(v) demethylation rate constants do not need to be specific in the mock model and demethylation

is not required to capture the mock H4K20me proportion kinetics.

(vi) specific mono-, di, and tri-methylation rate constants are required to describe the HUA

H4K20me proportion kinetics.

(vii) demethylation rate constants do not need to be specific in the HUA model but demethylation

is required to capture the HUA H4K20me proportion kinetics.

Joint models To identify which rate constants are mock and HUA population-specific, we

formulated a general joint model based on the previous findings describing the H4K20me

proportions for mock and HUA simultaneously. Similar to mock and HUA, the general joint

model gives rise to a set of joint model hypotheses. For the joint model we assumed that mock

and HUA H4K20me proportion kinetics have the same underlying model structure with regard to

the specific and shared methylation and demethylation rate constants. The general joint model
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is a combination of the best and simplest mock and HUA models (Figure 6.5). Its chemical

reaction network and ODE system is identical to the combined formulations and ODE systems of

mock and HUA as introduced above. As a constrained scaled Hill function with Hill coefficient 1

and offset 0.5 was the only function that led to biologically meaningful cell cycle duration, we

only considered this cell cycle function for the mock population of the joint model. Furthermore,

we allowed for 3 mock-specific and 3 HUA-specific methylation rate constants in the joint model,

while we restricted demethylation to the simplest case of at most one shared mock-specific and

one shared HUA-specific demethylation rate constant.

Figure 6.5: Joint model allows for three methylation and one demethylation rate constants for
both mock and HUA as suggested by the best models for mock and HUA. Adapted from [2].

Analysis and results of joint model In addition to the general joint model (Figure 6.5), we

tested several nested models with joint methylation and demethylation rate constants between

mock and HUA and nested models without demethylation rate constants to determine which

rate constants are substantially different between the two embryo populations (Figure 6.6).

Figure 6.6: We fit 16 models with demethylation and 8 models each without demethylation in
mock and/or HUA to the joint data to infer mock- and HUA-specific rate constants. The joint
rate constants of mock and HUA are shown in orange, the rate constants present in both the mock
and HUA models but taking on mock- and HUA-specific values are indicated in gray/green, the
rate constants only present in the mock or HUA model are shown in gray and green half-circles,
respectively. The model structure of the most complex of model is shown in Figure 6.5. The
number of rate constants ranges between 3 and 8. Adapted from [2].

To identify joint model hypotheses that are able to explain the kinetics of H4K20me proportions

in both mock and HUA, we fitted all 40 joint models using multi-start maximum likelihood

optimization and performed model selection according to the BIC (see 6.2). We found that

(i) 6 out of the 40 joint model hypotheses considerably outperformed the other model hypothe-

ses.
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(ii) the best performing joint models showed a good overall agreement with mock and HUA

H4K20me proportion kinetics (Figure 6.7).

(iii) mono- and di-methylation rate constants are required to be mock- and HUA-specific.

(iv) tri-methylation may be described by a joint rate constant.

(v) demethylation is essential to describe the kinetics of H4K20me proportions for HUA but

not necessary for mock.

Figure 6.7: All best-performing joint models are able to explain both the mock and HUA data.
The estimated initial conditions vary between the models. The joint model with the lowest BIC
is highlighted. Adapted from [2].

Conclusion In sum, we developed a deterministic mathematical model describing the joint

kinetics of H4K20me proportions to identify rate constants specific to mock- and HUA embryo

populations. Our approach revealed that cell cycle plays an active role in shaping the global

H4K20me landscape during development. Moreover, it revealed that demethylation is essential

for regulating H4K20me kinetics in HUA cells, while it is likely dispensable in mock cells.

This suggests that cell-cycle-mediated dilution of H4K20 methylation is an essential regulatory

component for shaping the H4K20me landscape during early development. Together, we show

that an external cue can be an integral part of gene expression regulation.

6.5. Application: Repeated external cue and adaptive gene expression regulation of

repression

We give a second application of a deterministic gene expression model, which makes use of the

previously introduced concepts. We like to emphasize, that the application presented here is

only briefly introduced and not all details are discussed. For a full description of this application

see B.1. This section is based on, and is partly identical to, the manuscript under review [3].

Research problem Adaptation to changing environments is crucial for cell survival. When

exposed to repeated stimulation cells can remember their initial transcriptional response which

leads to an adapted reaction upon re-stimulation. This phenomenon is termed transcriptional

memory. Most studies on transcriptional memory so far have focused on gene induction, i.e., the

activation of genes, although gene repression, i.e., the deactivation of genes, plays a similarly

central role in gene regulation. This opens the important questions as to whether memory

also exists for repression and how repression memory manifests at a single-cell level. More

generally speaking: Can a repeated external cue result in an adaptive gene expression regulation

of repression?
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Experiment and data To identify whether budding yeast cells show memory in repeated

repressions of the gene Galactokinase 1 (Gal1), we measured Gal1 expression via a Gal1-GFP

(green fluorescent protein) fusion in budding yeast cells across repeated galactose inductions and

glucose repressions using time-lapse microscopy coupled to a microfluidics device (see section 1.1

and Figure 6.8A). Gal1 converts galactose into energy and is hence only expressed when yeast

cells are exposed to medium containing galactose. Images of each microfluidics chamber were

taken every 3 minutes totaling to 320 images per chamber during one full 16-hour experiment.

Yeast cells were then semi-automatically segmented, mapped and the total Gal1-GFP fluorescence

signal, per cell and per time point, was extracted using PhyloCell and Autotrack resulting in

over 700 single-cell Gal1 expression traces (Figure 6.8B). In contrast to other cells, asymmetric

budding of yeast cells allowed for lineage tracking such that mother-daughter relationships were

identified. We focused our analysis on the repression kinetics of the first two hours of repression.

Approach We assumed that transcriptional memory of repression would lead to an adaptive

dynamic response of Gal1 in the repeated repression. To identify whether the Gal1 repression

kinetics indeed differ between repressions r1 and r2 in budding yeast cells, we formulated a

mathematical framework to describe the repression kinetics of single-cell Gal1 traces specific to

each repression, and performed parameter estimation allowing for a systematic comparison of

model parameters between repressions r1 and r2.

Dilution compensation In glucose, yeast cells divide rapidly. During the emergence of a new

daughter cell the Gal1 proteins are distributed across the mother and daughter cell. Assuming

stable total Gal1 protein amount, the redistribution leads to a decrease of total Gal1-GFP

fluorescence signal in the mother cell (Figure 6.8C top), an effect called dilution. To deconvolute

the dilution and repression kinetics in the total Gal1-GFP fluorescence signal and to compensate

for GFP dilution, we created an artificial population of quasi non-dividing cells by summing up

the total Gal1-GFP fluorescence signal of the mother cell, i.e., a cell existing at the start of a

respective repression, and its progeny (Figure 6.8C bottom). The total GFP of an artificially

created non-dividing cell is defined as

total GFP(t) = Gal1-GFPmother(t) +

N∑
i=1

Gal1-GFPprogeny i(t) ∀t ∈ R, (6.9)

where Gal1-GFPmother(t) is the Gal1-GFP fluorescence value of the mother cell at time t and

Gal1-GFPprogeny i(t) is the Gal1-GFP fluorescence value of progeny cell i at time t, assuming

the mother cell to give rise to N progeny cells in the respective repression. If the mother cell is

connected to a daughter cell at the start of a repression, the daughter cell counts as a progeny

cell. We applied this method of dilution compensation to the single-cell Gal1 traces of repressions

r1 and r2 to deconvolute the dilution and repression kinetics in this study (Figure 6.8D).

Repressor and non-repressor model As galactose induction of Gal1 is highly variable with

respect to its induction delay at the single-cell level, only a subpopulation of cells induce Gal1

during galactose induction [132]. Only cells which induced Gal1 during galactose induction

are assumed to show repression kinetics during glucose repression. To describe the repression

kinetics of induced and non-induced single budding yeast cells we formulated two mathematical
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Figure 6.8: Gal1 repression experiment and data. (A) Budding yeast cells are grown in
microfluidics chambers and alternatingly exposed to medium containing either glucose (orange)
or galactose (gray) as sugar source. Gal1 is induced in cells exposed to galactose and repressed in
cells exposed to glucose. Gal1 expression was monitored via a Gal1-GFP fusion and time-lapse
microscopy. (B) Single-cell traces of total Gal1-GFP fluorescence signal in arbitrary units (a.u.)
of budding yeast cells across two inductions (gray) and repressions 0, 1 and 2 (blue). (C) For
stable Gal1 expression, budding leads to a decrease of total Gal1-GFP fluorescence signal in the
mother cell and to an increase of total Gal1-GFP fluorescence signal in the daughter cell (top).
To compensate for this dilution, we added up the total Gal1-GFP fluorescence signal of each
mother cell present at the beginning of a glucose repression period and its progeny (bottom).
(D) Single-cell traces of total GFP signal compensated for dilution for the first two hours of
repression 1 (r1, left) and repression 2 (r2, right). The mean expressions are highlighted by
dotted lines and the maximal mean total GFP is highlighted by a dot. Taken from [3].

models. As Gal1 induction leads to an approximate 1000-fold change in Gal1 expression [133],

stochasticity inherent to gene expression was assumed to be negligible. Hence, a deterministic

modeling approach is sufficient to explain the kinetics of the total GFP over time per cell. We

further assumed that all reactions resulting in the production of GFP can be summarized by a

constant reaction propensity. Under these model assumptions, we defined a chemical reaction

network describing the production and degradation of total GFP for a non-repressor cell with

chemical specie C = {GFP}, the total GFP, and reactions

R1 : ∅ rbasal−−−→ GFP

R2 : GFP
rdeg−−→ ∅,

where rbasal is the basal GFP production rate constant and rdeg is the GFP degradation rate

constant (Figure 6.9 left). The ODE describing the non-repressor model is given by

∂

∂t
GFP(t) = rbasal − rdegGFP(t), (6.10)

with the solution

GFP(t) =
rbasal
rdeg

+ (GFP0 −
rbasal
rdeg

)e−rdegt =
rbasal
rdeg

(1− e−rdegt) + GFP0e
−rdegt, (6.11)
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where GFP0 = GFP(t0), the initial total GFP at time point t0. The non-repressor model

comprises 4 model parameters, such that θnon-repressor i = {GFP0 i, rbasal i, rdeg i, σi} for cell i,

where σi the noise parameter determining the width of the Gaussian noise distribution (see 5.4).

Figure 6.9: Left: Model for non-repressor cells composed of basal GFP production (rbasal)
and degradation (rdeg). Right: Model for repressor cells composed of an initial constant GFP
production (rprod) and degradation (rdeg) until a delayed repression onset tdelay where GFP
production is switched off. Taken from [3].

For cells showing repression kinetics we assumed that the termination of Gal1 expression is

delayed but instantaneous and that GFP is expressed fast, such that GFP kinetics reflect the

active and inactive states of the Gal1 gene. Under these additional model assumptions, we

defined a chemical reaction network describing the GFP kinetics of repressor cells containing

chemical specie C = {GFP}, the total GFP, and reactions

before t = tdelay

R1 : ∅
rprod−−−→ GFP

R2 : GFP
rdeg−−→ ∅

after t = tdelay

R1 : GFP
rdeg−−→ ∅,

where rprod the GFP production rate constant, rdeg the GFP degradation rate constant and tdelay

the repression delay, i.e., the time between the carbon source switch form galactose to glucose

and the termination of Gal1 expression (Figure 6.9 right). The ODE describing the repressor

model before tdelay is given by

∂

∂t
GFP(t) = rprod − rdegGFP(t), (6.12)

with the solution

GFP(t) =
rprod
rdeg

+ (GFP0 −
rprod
rdeg

)e−rdegt =
rprod
rdeg

(1− e−rdegt) + GFP0e
−rdegt, (6.13)

where GFP0 = GFP(t0), the initial total GFP at time point t0. The ODE describing the repressor

model after tdelay is given by
∂

∂t
GFP(t) = −rdegGFP(t), (6.14)

with solution

GFP(t) = GFP(tdelay)e
−rdeg(t−tdelay), (6.15)

where GFP(tdelay) =
rprod
rdeg

(1− e−rdegtdelay) + GFP0e
−rdegtdelay , the GFP at time point tdelay. The

repressor model comprises 5 model parameters: θrepressor i = {GFP0 i, tdelay i, rprod i, rdeg i, σi} for
cell i, where σi the noise parameter determining the width of the Gaussian noise distribution

(see 5.4). For tdelay ≥ 2 the repressor model corresponds to the non-repressor model.
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Analysis and results

(i) For each Gal1 trace in repression r1 and r2, we performed multi-start maximum likelihood

optimization for the non-repressor and repressor model to infer the cell-specific and model-

specific parameters (Figure 6.10) and performed model selection according to the Bayesian

Information Criterion (BIC) (see Definition 6.2) to distinguish between non-repressor and

repressor cells.

(ii) Using the estimated single-cell parameters of the repressor cell population, we found the

repression delay to be significantly shortened upon the repeated repression, suggesting

repression memory.

(iii) We repeated this analysis for a mutant yeast strain, elp6∆, where the median repression

delay is again shortened in the repeated repression, suggesting repression memory also in

the mutant strain elp6∆.

(iv) Comparing the estimated single-cell parameters of wildtype and elp6∆ repressor cells show

that elp6∆ exhibits a stronger decrease in the repression delay between repressions r1 and

r2, suggesting that elp6∆ is a gain-of-repression-memory mutant.

Figure 6.10: Model selection to discriminate between repressor and non-repressor cells. (A) Two
total GFP traces (dotted line) and fits of the non-repressor model (red solid line) and repressor
model (black solid line). Exemplary images of the cell(s) at three different time points are shown
above. The mother cell is circled in gray and the progeny is circled in black. The better fitting
model was selected according to the BIC. Left: total GFP trace better fitted by the repressor
model. Right: total GFP trace fitted equally well by the non- repressor and repressor model.
Due to the higher model complexity of the repressor model, the repressor model is rejected. (B)
10 exemplary total GFP traces (dotted lines) and best fits (solid lines) of cells for repressions 1
(left) and 2 (right). Fits of total GFP traces best fitted with a repressor model are shown in
black and fits of total GFP traces best fitted with a non- repressor model are shown in red for
repressions rep1 (left) and rep 2 (right). Adapted from [3].

Conclusion We developed a deterministic gene expression model to distinguish between repressor

and non-repressor cells and to quantitatively describe single-cell repression kinetics. Using the

estimated parameters of the repressor cells, we found that there is repression memory in yeast

cells and that elp6∆ is a novel gain-of-repression-memory mutant. Together, we show that a

repeated external cue can result in adaptive gene expression regulation for repression.
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7. Summary and outlook

In this thesis, we dissected mechanisms of gene expression regulation by mathematically modeling

the effects of intrinsic noise and external cues on gene expression. By developing a stochastic

model comprising established principles of gene expression regulation, we found that intrinsic

noise can result in rare and transient gene expression, qualitatively similar to the gene expression

patterns observed in pre-resistant melanoma cells [1]. Next, we asked whether the cell cycle

as a recurrent external cue can be an integral part of gene expression regulation. To describe

global gene expression kinetics in frog embryos, where the cells are subject to rapid cell divisions,

we developed deterministic models and performed parameter estimation and model selection.

This analysis showed that the cell cycle is an integral regulatory component of global gene

expression during frog development [2]. Finally, we investigated whether a repeated exposure to

an external cue can lead to adaptive gene expression regulation of repression. By deterministically

modeling and quantitatively comparing the gene expressions of Gal1 in single yeast cells, which

were exposed to repeated carbon-source shifts, we indeed identified an adaptive gene expression

regulation of Gal1 repression, i.e., the time to Gal1 expression termination is shortened upon

repeated exposure to the external cue [3]. Our results provide new insights into and allow for a

more comprehensive picture of the mechanisms of gene expression regulation.

The field of systems biology is rapidly advancing. This is highlighted by the continued identi-

fication of molecules and chemical modifications involved in gene expression regulation, such

as tRNAs [134], rRNAs [135], as well as histone and mRNA modifications [136, 137]. This is

partially facilitated by advances in experimental methods, such as mRNA-tagging for real-time

imaging of translation [138] or scRNA-seq [14], and mathematical and computational methods

for their analyses. We here outline future research directions for dissecting the mechanisms of

gene expression regulation, restricting our outlook to the two, in our opinion, most promising

mathematical and computational developments of the past years.

Until now, the quantification of single-cell gene expression levels, such as counting smRNA FISH

spots [15] or segmenting, mapping and tracking cells to determine the fluorescence signals of

GFP-reporters over time [67], was coupled to time-consuming, labor-intense manual annotations.

This bottleneck limited the size of the final quantitative information extracted from images or

videos. Deep learning revolutionized image processing in the past years [139]. Today, image anal-

ysis pipelines, such as CellPose [140] or YeaZ [141] allow for a fully automatized and reproducible

image quantification, generating data almost comparable to human-performance in quality, but

at a higher rate. More user-friendly, open-source software allows for a larger community of

biomedical researchers to benefit from this new era of image processing [142, 143]. While not

perfect yet, large image data sets will be easily, quickly, and reliably analyzed by computational

image processing in the near future, allowing for the study of gene expression regulation via image

data of thousands or millions of single cells. The mechanistic models developed throughout this

thesis are not compromised by the size of the input data. Hence, no changes or adaptations are

required to leverage more information of the same kind. Importantly, image analysis could also

aid in identifying other kinds of first- or second-order regulatory components of gene expression,

such as cell density or morphology [144, 145]. To integrate new information into the existing

mechanistic models, these would need to be updated and modified.
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In the studies presented throughout this thesis, we focused on the gene expression regulation

of only one or a few genes. However, systems biology today generally tends to a more global

view. This change in perspective has been majorly driven by the experimental advancement

and development of scRNA-seq [14]. A variety of new single-cell analysis tools for trajectory

inference [146–148], pseudo-time estimation [149, 150], and single-cell fate mapping [151] have

been established in the recent years, leveraging the rich source of scRNA-seq data. Moreover,

algorithms such as SCODE [152] or SCENIC [153] now deploy scRNA-seq data to infer global

gene regulatory networks. However, how can scRNA-seq data be linked to mechanism? Gene

expression regulation is thought to be driven by a small subset of crucial regulatory genes. While

the comprehensiveness of scRNA-seq data enables an unbiased perspective on gene expression

regulation, it is currently unknown how to identify the key players important for a mechanistic

understanding. A common challenge of big data is finding the correct low-dimensional represen-

tation of information. Hence, modern, general machine learning methods such as informed neural

networks [154], graph neural networks [155], and autoencoders [156] might help in identifying

these key genes. To receive biologically and mechanistically meaningful gene expression kinetics,

it is currently also unclear how to map the pseudo-time estimations, i.e, a time estimation

inferred by ordering cells according to similar gene expression profiles, underlying scRNA-seq

data to real time. Attempts at mapping pseudo-time estimations to real time have been made,

however, they are limited to applications with prior knowledge such as cell densities [157]. On the

other hand, Ocone et al., fitted mechanistic models on pseudo-time estimations instead of real

time [158]. How the gene regulatory networks and reaction rates inferred from scRNA-seq data

on a pseudo-time estimation can be translated to real time is unknown and will be dependent on

the biological process under consideration. While there are still fundamental questions to be

answered before mathematical modeling will be able to leverage all the information contained in

scRNA-seq data, to help increase our mechanistic understanding of gene expression regulation,

the possibility of it, as such, is exciting.

Finally, only by integrating mechanistic modeling with data from different sources, such as

imaging and scRNA-seq, will we be able to fully understand gene expression regulation and its

underlying mechanisms.
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Gene networks with transcriptional bursting recapitulate rare transient
coordinated high expression states in cancer.

Lea Schuh, Michael Saint-Antoine, Eric M. Sanford, Benjamin L. Emert, Abhyudai Singh,

Carsten Marr, Arjun Raj, and Yogesh Goyal.

A rare pre-resistant subpopulation of melanoma cells (approximately 1 in 3.000 cells) has been

found to survive current targeted drug therapies [47] allowing the surviving cells to aquire

resistance and initiate relapse in patients. Shaffer et al. [47] link this rare subpopulation of

drug-surviving melanoma cells to extremely high activities (gene expression) in a number of

specific marker genes at the initial time of drug therapy. The underlying distributions of these

marker gene expressions show long right tails where a pre-resistant cell is found in the long tail of

one or several marker gene expression distributions. Additionally, Shaffer et al. [47] have shown

that this high gene expression in any of the marker genes is a transient gene expression pattern,

arising and disappearing over time.

To identify how these rare transient coordinated high expression states arise in melanoma cells,

we described a mathematical framework inlcuding transciptional bursting (the stochastic turning

on and off of a gene) and gene interactions to screen 96 different gene regulatory networks (all

weakly connected, non-isomorphic and symmetric graphs) containing between 2 and 10 nodes for

1,000 latin hypercube sampled parameter sets resulting in more than 96 million cells simulated

with Gillespie’s stochastic simulation algorithm. First, we determined well-defined quantitative

criteria of the gene expression patterns observed in melanoma and classified each of the resulting

simulations into one of four different gene expression classes. Next, we showed that simulations

classified as having rare transient coordinated high expression states are qualitatively comparable

to experimental data from a drug-naive melanoma population [47]. We then evaluated whether

the network topology and/or the parameter set determines the occurrence of simulations with rare

transient coordinated high expression states. We found that within a particular network size, the

ability to produce rare coordinated high states decreases monotonically with increasing in-degree

and auto-regulation. Additionally, we identified a small subset of parameter sets that produced

simulations with rare transient coordinated high expression states unproportionally often across

all network sizes and topologies. Using a decision tree algorithm and generalized linear models,

we found only 3 out of the 7 independent parameters to be critical for producing simulations

with rare transient coordinated high expression states. Next, we showed that entry into and

exit from the rare transient coordinated high expression states occur through fundamentally

different mechanisms, where the marker genes are highly interdependent during the entry but

largely independent of each other during the exit. Finally, we hypothesized that resistant cells

characterized by a stabilization of high expression may achieve such a stable high expression

state by increasing the in-degree of their underlying gene regulatory networks. To validate our

hypothesis, we compared the number of edge connections of inferred networks of drug-naive

melanoma populations with the number of edge connections of inferred networks of resistant

melanoma colonies. Consistent with our hypothesis, inferred networks of drug-naive melanoma

populations consisted of substantially more edge connections than the inferred networks of
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resistant melanoma colonies.

In this work, we developed a minimal mathematical model of transcriptional bursting and gene

interactions which gives rise to gene expression patterns observed in pre-resistant melanoma cells.

We showed that the observed gene expression patterns may arise from stochasticity inherent to

gene expression rather than highly specialized processes regulating the occurrence of such rare

coordinated high states.

Statement of individual contribution

Arjun Raj was interested in investigating the origins of transient gene expression patterns as

observed in pre-resistant melanoma cell cultures. Particularly, he asked whether transient gene

expression patterns were a result of stochastic gene expression or whether a specific, highly

specialized process regulated the occurrence of such rare coordinated high states. In my master

thesis, I determined a well defined set of quantitative criteria describing the observed gene

expression patterns and formulated an initial mathematical model to produce gene expression

patterns as observed in pre-resistant melanoma cell cultures [48]. During my Ph.D., I refined

and extended the mathematical model I initially described in my master thesis. Furthermore, I

validated the generalizability of the mathematical model with respect to fixed model parameters

and the set of quantitative criteria describing the observed gene expression patterns. Using

the refined mathematical framework, I generated simulations of gene expression patterns at a

large-scale to systemically screen and evaluate gene regulatory networks and parameter sets. I

evaluated the resulting simulations and used statistical methods to mechanistically dissect the

initiation, maintenance and termination of the observed gene expression patterns. Furthermore,

with help from my collaboration partners, we formulated a hypothesis based on the gene

expression simulations regarding the formation of stable resistance after drug administration.

Our hypothesis was experimentally validated by collaboration partners, where the analysis of

chapter Increasing network connectivity leads to transcriptionally stable states was performed

by Michael Saint-Antoine and Abhyudai Singh. The original manuscript draft excluding the

methods section was written by Yogesh Goyal and reviewed as well as edited by me and others.

The methods section STAR METHODS was written by me and the figures were generated by

myself.

I, Lea Schuh, am the main author of this publication.
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resistance to targeted therapy. Schuh
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SUMMARY

Non-genetic transcriptional variability is a potential mechanism for therapy resistance in melanoma. Specif-
ically, rare subpopulations of cells occupy a transient pre-resistant state characterized by coordinated high
expression of several genes and survive therapy. Howmight these rare states arise and disappear within the
population? It is unclear whether the canonical models of probabilistic transcriptional pulsing can explain this
behavior, or if it requires special, hitherto unidentified mechanisms. We show that a minimal model of tran-
scriptional bursting and gene interactions can give rise to rare coordinated high expression states. These
states occur more frequently in networks with low connectivity and depend on three parameters. While entry
into these states is initiated by a long transcriptional burst that also triggers entry of other genes, the exit oc-
curs through independent inactivation of individual genes. Together, we demonstrate that established prin-
ciples of gene regulation are sufficient to describe this behavior and argue for its more general existence. A
record of this paper’s transparent peer review process is included in the Supplemental Information.

INTRODUCTION

Cellular heterogeneity has been reported to arise from non-ge-

netic transcriptional variability, even in clonal, genetically homo-

geneous cells grown in identical conditions (Spencer et al., 2009;

Sharma et al., 2010, 2018; Gupta et al., 2011; Pisco and Huang,

2015; Fallahi-Sichani et al., 2017; Shaffer et al., 2017; Su et al.,

2017). Cells exhibiting these non-genetic deviations are resistant

to anti-cancer drugs (e.g., Ras pathway inhibitors) and may lead

to relapse in patients. For example, in a drug-naive melanoma

population, a small fraction (�1 in 3,000) of cells are pre-resis-

tant, meaning they are able to survive targeted drug therapy, re-

sulting in their uncontrolled cellular proliferation (Shaffer et al.,

2017). These rare pre-resistant cells are marked by transient

and coordinated high expression of dozens of marker genes.

In other words, several genes are highly expressed simulta-

neously in a rare subset of cells, whereas the rest of the popula-

tion have low or zero counts of mRNAs for these genes, resulting

in a distribution of steady state mRNA counts per cell that peaks

at or close to zero and has heavy tails.

The rare cells in the tails, which transiently arise and disappear

in the population by switching their gene expression state (Fig-

ure 1A), are much more likely to develop resistance to targeted

therapies. The rare and coordinated large fluctuations in the

expression of multiple genes persist for several generations.

Classical probabilistic models of gene expression have pre-

dicted the possibility of various types of mRNA expression distri-

butions across a population, including normal, lognormal,

gamma, or heavy-tail distributions (Thattai and van Oudenaar-

den, 2001; Golding et al., 2005; Raj et al., 2006; Raj and van Ou-

denaarden, 2008; Iyer-Biswas et al., 2009; So et al., 2011; Chen

and Larson, 2016; Corrigan et al., 2016; Symmons andRaj, 2016;

Antolovi�c et al., 2017; Ham et al., 2019, 2020). It is unclear if such

models can recapitulate the non-genetic variability character-

ized by rare and transient high expression states for several

genes simultaneously (from now on referred to as ‘‘rare coordi-

nated high states’’), and if so, under what conditions.

Might a stochastic system of interacting genes inside the

cell facilitate transition in and out of the rare coordinated

high state? One hypothesis is that only a rare set of unique

(and perhaps complex) networks can facilitate reversible tran-

sitions into the rare coordinated high states. Alternatively,

relatively generic gene regulatory networks may be capable

of producing such behaviors, suggesting that a large
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ensemble of such networks may admit rare cell formation.

Both of these scenarios have different implications—for

instance, the latter hypothesis suggests that this behavior

could be more common in biological systems than hitherto

appreciated. The alternatives described above can also be

posed in terms of the nature of model parameters—whether

the set of values that give rise to rare coordinated high states

are constrained to lie within a narrow window of parameter

space or whether such behavior may occur across broad

swaths of parameter space. Yet another possibility is that sto-

chastic gene expression alone fails to produce rare coordi-

nated high states in the absence of additional regulation. In
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Figure 1. A Transcriptional Bursting Model Is Able to Mimic the Rare Coordinated High States Observed in Drug Naive Melanoma

(A) Drug-naive melanoma cells exist in low (white cells) as well as rare coordinated high (blue cells) expression states. Cells in the rare coordinated high state

characterize the pre-resistant state observed in drug-naive melanoma. A schematic of the corresponding expression pattern is shown in the panel below. The

cells in a high expression state are more likely to survive and acquire resistance upon drug administration.

(B) Schematic of the constitutivemodel for two nodes. Gene product is either produced at rate rprod or degradedwith rate rdeg. Gene regulation ismodeled by aHill

function, where the gene product count of the regulating gene A increases the production rate of the gene product of the regulated gene B.

(C) Schematic of the transcriptional bursting model for two nodes. DNA is either in an inactive (off) or active (on) state. Transitions take place with rates ron and roff,

where gene product is synthesized with rates rpod and d*rprod, respectively, d > 1. Gene product degrades with rate rdeg. Gene regulation is modeled by a Hill

function, where the gene expression of the regulating gene A increases the activation of the DNA of the regulated gene B.

(D–G) Depending on the network and the parameters of the transcriptional bursting model, we observe stably low expression (D), stably high expression (E),

uncoordinated transient high expression (F), and rare transient coordinated high expression (G). See also Figure S1.
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that case, one may argue that the reversible transition into the

rare coordinated high state is driven by highly specialized pro-

cesses (e.g., initiated by a master regulator) or other unknown

mechanisms. Exploring these possibilities will provide poten-

tial transcriptional mechanisms that can recapitulate the

occurrence of rare coordinated high states.

Here,wedescribeamathematical framework to test thehypoth-

eses proposed above for the appearance and disappearance of

rare coordinated high states (Box 1). Recent studies from our lab

suggest that no particular molecular pathway is solely responsible

for the formation of these rarecells (Shaffer et al., 2018; Torre et al.,

2019). Specifically, in these rare cells, a sequencing- and imaging-

based scheme identified a collection of marker genes, which are

targets of multiple signaling pathways ranging from type 1 inter-

feron to PI3K-Akt signaling. The implication is that instead of a sin-

gle signaling pathway leading to the observed behavior, a network

of interacting genes appears to be responsible. Accordingly, we

used network modeling to see whether genes interacting within a

network were capable of producing transitions to coordinated

high expression states. We systematically formulated and simu-

lated networks of increasing size and complexity defined by a

broad range for all independent parameters (Boxes 1 and 2;

STAR Methods, sections Networks and Parameters).

Computational screens on more than 96 million simulated cells

reveal that many networks with interactions between genes are

capable of producing rare coordinated high states. Critically, tran-

scriptional bursting, a ubiquitous phenomenon in which genes flip

between transcriptionally active and inactive states, is necessary

to produce these rare coordinated high states within the context

of our models. Subsequent quantitative analysis shows that rare

coordinated high states occur across networks of all sizes inves-

tigated (up to 10 nodes), but that (1) they depend on three (out of

seven) independent model parameters and (2) their frequency of

occurrence decreases monotonically with increasing network

connectivity. The transition into the rare coordinated high state

is initiated by a long transcriptional burst, which, in turn, triggers

the entry of subsequent genes into the rare coordinated high state.

In contrast, the transition out of the rare coordinated high state is

independent of the duration of transcriptional bursts, rather it hap-

pens through the independent inactivation of individual genes.We

also confirm model predictions using experimental gene expres-

sion data (RNA fluorescence in situ hybridization [FISH] data)

taken from melanoma cell lines. Together, we demonstrate that

the standard model of stochastic gene regulation with transcrip-

tional bursting is capable of producing rare coordinated high

states in the absence of additional regulation.

RESULTS

Framework Selection
Identifying the Minimal Network Model Generating Rare

Coordinated High States

We focused on a network-based mathematical framework that

models cell-intrinsic biochemical interactions and wondered

what would be the minimal set of biochemical reactions that con-

stitutes it. Since network models comprised of only constitutively

expressed genes were not able to produce rare coordinated high

states (Figures 1B, S1A, and S1B; STAR Methods, section

Models), we use a leaky telegraph model as the building block

of our framework. In terms of chemical reactions, a gene can

reversibly switch between an active (ron) and inactive state (roff),

where binding of the transcription factor at a gene locus controls

the effective rate of gene production (Figure 1C; Box 1; STAR

Methods). Specifically, when inactive (or unbound), the gene is

transcribed as a Poisson process at a low basal rate (rprod);

when active, the rate becomes higher (d 3 rprod, where d > 1).

We modeled degradation of the gene product as a Poisson pro-

cesswith degradation rate rdeg. The inter-node interaction param-

eter, radd, has a Hill-function-based dependency on the gene

product amount (Hill coefficient n) of the respective regulating

node to account for the multistep nature of the interaction (Fig-

ure 1C). In particular, we lump steps leading to transcription by im-

plementing the commonly used quasi-equilibrium assumption

(Phillips et al., 2019), where binding and unbinding occurs much

faster thanmRNA transcription and degradation. The dissociation

constant k of the Hill function is dependent on the parameters

rprod, rdeg, and d, such that kðrprod; rdeg;dÞ = 0:95$d$
rprod
rdeg

. In total,

the model has seven independent and one dependent model pa-

rameters, as outlined in Box 1. All chemical reactions, propen-

sities, and model parameters are presented in STAR Methods.

We used Gillespie’s stochastic simulation algorithm (Gillespie,

1977) to systematically simulate networks of various sizes and ar-

chitectures across a broad range of parameters (Box 1; STAR

Methods, sections Networks and Parameters).

We limited our study to networks that are symmetric, i.e., net-

workswithout a hierarchical structure (Box1; STARMethods, sec-

tion Networks; Figure S1C). We also excluded networks that are

compositions of independent subnetworks (non-weakly-con-

nected networks) and networks that can be formed by structure-

preserving bijections of other networks (isomorphic networks)

(STARMethods, section Networks; Box 1). These choices reduce

the testable space of unique networks by several orders ofmagni-

tude (Figure S1C) and allow for comparisons of parameters be-

tween networks of different sizes. They also are a conservative

starting point for our analysis given experimental observations.

In the frequencymatrix for experimentalRNAFISHdatadescribing

the rare high state in drug-naive melanoma, in which each entry

corresponds to the fractionof cellswith eachgenepair being high-

ly expressed (Figure S1D) (Shaffer et al., 2017, 2018), we do not

observe a clear directionality of regulation or hierarchical structure

within thehighlyexpressedgenes.Whilesimulatedsymmetricnet-

works can recapitulate this experimental observation, asymmetric

networkscan result in frequencymatricesbeinghighlyasymmetric

(Figures S1E and S1F). For these reasons, we restricted our initial

analysis to symmetrical networks.

Characterization of the Transcriptional Bursting Model

When genes are organized in the system described above and

simulated over long intervals, the transcriptional bursting model

produced a range of temporal profiles for gene products (Figures

1D–1G and S2A). The model was able to faithfully capture the

qualitative features of experimental data, i.e., rare, transient,

and coordinated high expression states (Figure 1G). We defined

a set of rules to screen for the occurrence of different classes of

states (Figures 1D–1G and S2A); these include stably low

expression (class I), stably high expression (class II), uncoordi-

nated transient high expression (class III), and rare transient co-

ordinated high expression (class IV) (see STARMethods, section

Simulation Classes), and used a heuristic approach to
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Box 1. Model Description, Assumptions, Parameters, and Definitions

MODEL DESCRIPTION

The transcriptional bursting model is comprised of single-gene expression modules described by the telegraph model: the DNA

can take on an active and inactive state and transcribe mRNA at high and low rates (transcriptional bursting), respectively. These

expression modules are coupled by an underlying network architecture, where regulation is modeled by a Hill function: the regu-

lating gene influences the activation rate ron of the respective regulated gene. The chemical reactions and propensities are

described below:

Chemical Reaction Reaction Propensity

I/A

�
ron + radd $

mRNAn
X

kn +mRNAn
X

�
$I

A/I roff$A

I/I + mRNA rprod$I

A/A + mRNA d$rprod$A

mRNA/B rdeg$mRNA

where I,A˛ {0,1}, and I + A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state and I = 1 (A = 0) denotes that the DNA is

in an inactive state. mRNAX is the mRNA count of gene X at the given time. The model aims to recapitulate rare coordinated high

states, where ‘‘rare’’ means that at the population level the expression distributions are unimodal and exhibit heavy tails; ‘‘coor-

dinated’’ means that at least once throughout a simulation more than half the genes (nodes) show mRNA expressions above a

specified threshold simultaneously; and ‘‘high’’ means that the mRNA expression of a gene exceeds a specified threshold (thres).

MODEL ASSUMPTIONS

(1) mRNA is able to influence the gene expression of its regulated gene directly, hencewe refer to it as gene product throughout this

work; (2) all genes are relationally identical (weakly-connected, non-isomorphic, and symmetric gene regulatory networks); (3) all

genes share the same model parameters; (4) gene regulation is only considered to be activating; and (5) if regulation occurs from

several genes, their effects are additive. We discuss and check the generality of our model by testing many of these assumptions

on a subset of cases, as described in Box 2.

PARAMETERS

The model is described by 8 model parameters, as defined in the table below along with the corresponding ranges.

Parameters Sampling Range

Independent Model Parameters

ron The rate at which DNA is activated. 0.001–0.1

roff The rate at which DNA is inactivated. 0.01–0.1

rprod Synthesis rate of gene product. 0.01–1

rdeg Degradation rate of gene product. 0.001–0.1

radd Parameter determining the contribution of the additional DNA

activation rate upon gene regulation.

0.1–1

d Factor by which the mRNA synthesis rate is increased when in an

active DNA state. d > 1.

2–100

n Hill coefficient. 0.1–10

Dependent Model Parameters

k* Dissociation constant of the Hill function, where kðrprod; rdeg;
dÞ = 0:95$d$

rprod
rdeg

-

Dependent Classification Parameters

thres** Threshold above which a gene is thought of being highly expressed,

where thres = 0:8$d$
rprod
rdeg

-

(Continued on next page)
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distinguish between these different classes (Boxes 1 and 2). For

a detailed description of the rules and quantitative metrics used

to define class IV, see Boxes 1 and 2; Figures S3 and S4; STAR

Methods, section Simulation Classes.

To better compare the computational results with the experi-

mental data from static RNA FISH images, we split the entire

simulation into non-overlapping time intervals of 1,000 time

units, as justified by the ergodic theory (Box 2; STAR Methods)

(Van Kampen, 1992). We took snapshots of gene products at

randomly selected time-points in these time intervals and noted

the number of simultaneously highly expressed genes as well as

their gene product counts, allowing us to represent the static

states of a population of simulated cells (Figure 2A). For example,

in a particular 8-node network, we found that the distribution

qualitatively captures the experimental observations where

most cells do not exhibit high expression states, whereas

some cells are in a high state for one or more genes (Figure 2B).

Similarly, when we selected a gene and plotted its product count

for the randomly selected time-points, we observed a heavy-

tailed distribution (Figure 2C, right panel), similar to the experi-

mental observations (Figure 2C, left panel). These observations,

while shown for a particular 8-node network, also hold true for

simulations of other 8-node networks as well as networks of

other sizes (Figure S2B).

Note that the simulated distributions of gene product

counts for each gene are qualitatively similar because each

gene is equivalent within our symmetrical networks (Fig-

ure S2C). This is not biologically realistic; the experimental

data in drug-naive melanoma cells for mRNA counts display

different degrees of skewness of the distribution for different

genes (e.g., epidermal growth factor receptor [EGFR] versus

Jun, Figure S3A) (Shaffer et al., 2017). These experimental

observations can be recapitulated in the simulated networks

by introducing asymmetries. For example, two asymmetric

networks we tested were able to produce rare coordinated

high states (Figures S2G–S4M) and distributions of gene

product counts with different degrees of skewness (Fig-

ure S2M). When experimentally observed expression distri-

butions (Figure S3A) are compared to simulated expression

distributions using Gini coefficients, we observe that while

the Gini coefficient is low for most of the simulations

(99.2%, gray), it is much higher for the simulations that pro-

duce rare coordinated high states (red) and overlaps with

experimental Gini coefficients observed for individual genes

(Figure 2D). In total, these observations suggest that a simple

transcriptional bursting model is able to produce states that

recapitulate key aspects of rare coordinated high states

observed in drug-naive melanoma.

Rare Coordinated High States Depend on Network
Topologies and Model Parameters
Since the rare coordinated high states occur in <1% of all simu-

lations (Figure S2A), we wondered whether their occurrence de-

pends on the network topologies and/or model parameters.

Box 1. Continued

Here, rprod/rdeg is the steady state in the baseline expression state (when there is no transcriptional burst), and d*rprod/rdeg is the

steady state in the high expression state (if the DNA would continuously be in the active state).

MODEL DEFINITIONS

d Weakly connected network: a directed network that when replacing the directed edges by undirected ones produces a con-

nected graph in which every pair of nodes is connected by a path.

d Non-isomorphic: two graphs are called non-isomorphic if there exists no structure-preserving bijection between them.

d Symmetric: within a graph the number of in- and outgoing edges of a node and across nodes is identical and either all nodes

in a network have a self-loop or not.

d Rare coordinated high state: (1) at least once within a simulation more than half the genes are highly expressed simulta-

neously, (2) the histogram of simultaneously highly expressed genes at the population level decreases, and (3) the gene

expression distributions at the population level are heavy-tailed.

d Connectivity: number of ingoing edges for any node of the network.

d Characteristic distance: the average shortest path length between pairs of nodes of the network.

*The parameter k is dependent on the parameters rprod, rdeg, and d, such that: kðrprod;rdeg;dÞ = x$d$
rprod
rdeg

, where x ˛ {0.75, 0.8, 0.85,

0.9, 0.95, 1}, which ensures a consistent definition of k throughout the network architectures and parameter sets. Here, x repre-

sents the fraction of the value corresponding to the steady state value in the high expression state. We showed that for x = 0.75,

none of the 100 simulations show rare coordinated gene expression because the threshold resulting in an effective gene regulation

is exceeded too often—the regulated DNA states are activatedmore frequently leading to the high gene expression states and loss

of rareness of the coordinated high gene expression event (leading to bimodal distributions). For x > 0.75, there is an increase in the

number of simulations showing rare behavior, peaking at x = 0.95. Furthermore, throughout different values of x, the same param-

eter sets give rise to rare coordinated high states. We take x = 0.95 to maximize the number of simulations positive for the rare

coordinated high states.

**We test several values for the threshold abovewhich a gene is highly expressed: thres = y$d$
rprod
rdeg

, where y˛ {0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}. For all y R 0.6, the set of simulations showing rare coordinated high states

largely remains the same. Even for y = 0.3, half of the simulations identified previously to show rare behavior are still classified as

such. We chose x = 0.8. Though arbitrarily chosen, the choice of x = 0.8 will not change the conclusions of our analysis.
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Box 2. Relaxing Model Assumptions

PROTEIN TRANSLATION

The original transcriptional burstingmodel does not include a step for translation and is assumed to be captured by the Hill function

term which not only greatly reduces the computational costs of long stochastic simulations but also allows for analyzing smaller

sets of parameters. To check if our model can produce rare coordinate high states even when the model includes the translation

step, we focused on a particular network (5.3) and associated parameter values that give rise to these states in the original model.

We show that for specific rates of translation and protein degradation (STARMethods), the model including translation exhibits the

rare coordinated high states.

NETWORK ARCHITECTURES

By reducing the network architectures to weakly connected, non-isomorphic, and symmetric networks, we systematically reduce

the number of possible network architectures. The reduced space of networks is partly supported by experimental observations

(Shaffer et al., 2017, 2018), reporting that (1) there is no obvious hierarchical relationship between the expressed genes; and (2) no

particular signaling pathway appears to be solely responsible for the observed behavior (see also Figure S1D). Furthermore, these

network architectures allow for direct comparisons between network sizes, connectivities, and parameter sets (not a given for

other topologies). Although the analysis here primarily focuses on the constrained set of network architectures, we show for a sub-

set of cases (STARMethods) that asymmetric network architectures can also exhibit rare coordinated high gene expression states

(Figures S2G–S2I), paving the way for a more systematic analysis in the future studies.

MODEL PARAMETERS

While we primarily focus on keeping the same parameter set for each node, we analyzed a subset of networks with asymmetric

parameters (STAR Methods) such that each node had distinct underlying parameter sets. We show that a model with asymmetric

parameter sets is also capable of producing rare coordinated high gene expression states (Figures S2J–S2M).

MULTI-GENE REGULATORY EFFECTS

The joint regulatory effects experienced by a gene, which is regulated by several other genes, can be modeled using different ap-

proaches. While the majority of analysis here uses an additive model of joint-regulation, we performed a subset of simulations

(STAR Methods) for cases where the regulation by multiple gene nodes is multiplicative (Figures S4C and S4E). We find that for

network architecture 5.3, 15 and 97 out of 1,000 parameter sets give rise to simulations with rare coordinated high states in the

additive and multiplicative joint-regulation, respectively (Figure S4D). Nine simulations are found to show rare coordinated high

states in both definitions of multi-gene regulation.

DEFINING MODEL-OUTPUT METRICS

Population Level—Sub-simulation Size to Determine a Single Cell
To qualitatively compare our results to experimental data, we convert the 1,000,000 time units long single-cell simulation to 1,000

single-cell sub-simulations of length 1,000 time units. We show that the simulations are largely (88.2%) uncorrelated after 1,000

time units, justifying our analysis (STAR Methods).

Heavy-tails
We test different levels of stringency in our definition of heavy-tailed or sub-exponential distributions. The analysis in Figures 2 and

3 is performed using the criteria described in STAR Methods, section Simulation Classes. We perform further analysis similar to

Figures 2 and 3 by usingmore stringent definitions, i.e., fit exponentials and compare the 99th percentiles (Figure S3C).We demon-

strate that these results and conclusions are similar to the ones obtained using less stringent criteria (Box 1) shown in Figures 2 and

3 (see Figures S4F–S4M). For example, 6 and 7 out of 8 rare coordinated high parameter sets also appear in the twomore stringent

analyses (Figures S4H and S4L). We further validate that our model recapitulates the experimentally observed heavy-tails by

comparing the Gini coefficients (Jiang et al., 2016) of experimental and model distributions (Figure 2D).

NUMBER OF NODES HIGHLY EXPRESSED TO BE CALLED A ‘‘COORDINATED’’ STATE

We define a simulation to show coordinated high gene expression if at least once throughout the simulation more than half of the

gene product counts exceed the threshold. Furthermore, we show that for different node counts (2, 3, 4, 5) the number of simu-

lations showing rare coordinated high states does not vary significantly. As an example, for a count of 2, we get 6 out of 100

(Continued on next page)
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Specifically, what are the features of the topologies and

parameters that facilitate the occurrence of rare coordinated

high states? For the simulations that produced rare coordinated

high states, we extracted and quantitatively analyzed the

corresponding networks. We found that the rare coordinated

high states occur ubiquitously in networks with different

numbers of nodes analyzed (up to 10 nodes) (Figures 2E, S2B–

S2F, S5A, and S5B). Within a particular network size, the ability

to produce rare coordinated high states decreases monotoni-

cally with increasing network connectivity (Figures 2F, S5C,

and S5D). Consistently, the fraction of networks per network

size (normalized by either network size or total networks per

network size) exhibiting rare coordinated high states decreases

with increasing size (Figures S5A and S5B) as a larger fraction

of high connectivity networks exist in bigger networks

(Figure S5D).

We next wondered whether gene auto-activation (networks

with self-loops) have any effect on a networks ability to produce

the rare coordinated high states. We found that adding self-

loops on otherwise identical networks reduced the occurrence

number of simulations with rare coordinated high states (Fig-

ure 2G). We also analyzed network topologies based on charac-

teristic distance, defined as the average shortest path length be-

tween pairs of nodes of the network (see STARMethods; Box 1).

Characteristic distance recapitulates the effects of not only

network connectivity (inversely correlated with characteristic

distance) but also differentiates topologies with the same con-

nectivity (Figure 2H), for example, networks with or without

auto-activation. Using this metric across networks of all sizes,

we found that higher numbers of simulations exhibit rare coordi-

nated high states for larger characteristic distances. Together,

we demonstrate that the occurrence of rare coordinated high

states depends on network topologies.

Since the transcriptional bursting model has seven indepen-

dent parameters (ron, roff, rprod, rdeg, radd, d, and n; see Box 1

for details), we asked whether specific parameter combinations

preferentially give rise to the rare coordinated high states, and if

so, what features of such combinations facilitate it. The subse-

quent analysis is motivated by the initial observation that occur-

rence of different classes of temporal gene product profiles

across different network sizes and connectivities appear to

also depend on the parameter sets (Figure 2I). Specifically, if a

parameter set gave a specific expression profile (e.g., rare coor-

dinated high or stably high) for one network, it displayed a higher

propensity to display the same profile for other networks as well

(Figures 2I and S3D), implying that parameters indeed play ama-

jor role in the occurrence of rare coordinated high states. To

avoid biases in the parameter sets investigated, all 1,000 param-

eter sets were sampled from a broad range for each parameter

using a latin hypercube sampling algorithm (Table S1; STAR

Methods, section Parameters).

We first measured the percentage of simulations per param-

eter set that gave rise to the rare coordinated high states. Out

of the 1,000 parameter sets, eight parameter sets, from now

on called rare coordinated high parameter sets (Box 2), clustered

together at the tail end of the distribution (orange, Figure 3A),

meaning they generated simulations with frequent occurrence

of rare coordinated high states in at least 20% of all networks

tested (Figure 3A). Furthermore, these eight parameter sets

robustly generated rare coordinated high states across all

network sizes and architectures (Figure S6A). Therefore, we

wondered if these eight parameter sets have any special or

Box 2. Continued

simulations showing rare behavior; for a count of 3, we get 7. Note that the sets of simulations were overlapping between different

scenarios.

DEFINITION OF RARE COORDINATED HIGH PARAMETER SETS

We define rare coordinated high parameter sets as parameter sets showing rare coordinated high expression in R 20% of all 96

networks. The threshold was defined by inspecting the histogram (Figure 3A), where we see a separation at 20%. Notably, the

same rare coordinated high parameter sets also appear in other analyses—they show increased frequencies of simulations

with rare coordinated high states when considering the network sizes separately (Figure S6A). Additionally, stricter definitions

for heavy-tailed expression distributions result in similar rare coordinated high parameter sets (Figures S4H and S4L).

BOOTSTRAPPING CONTROLS IN PHIXER ALGORITHM

As the number of connections predicted by the Phixer algorithm can depend on the sample size, we bootstrapped the original data

set into 4,000-sample datasets. The number 4,000 was chosen arbitrarily; bootstrapped sample sizes of 1,000, 2,000, and 6,000

also produced qualitatively similar results.

EDGE WEIGHT IN PHIXER ALGORITHM

We created a randomized control consisting of permutations of each gene column from the original dataset. We then performed

the Phixer analysis on these randomized controls. The resulting edge weight distributions give us a baseline or control edge weight

for Phixer that, in principle, reflects potential false positives. We found that in the controls, nearly all of the predicted edge weights

were below 0.45 (Figure S8B). Therefore, we decided to choose 0.45 as a threshold for our non-control analysis, thus eliminating

edges that could have been predicted by chance alone.
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Figure 2. Simulations of the Transcriptional Bursting Model Show Similar Behavior at the Population Level as the Drug-Naive Mela-

noma Cells

(A) Frame of a simulation showing rare coordinated high state (shaded area). The 1,000,000 time unit simulation is split into frames of 1,000 time units to create a

simulated cell population (shown for cell N). For a randomly determined time point trand, the number of simultaneously highly expressed genes and the gene count

per gene per cell are evaluated. The network of the corresponding simulation is given in the top left corner.

(B and C) The simulated number of simultaneously highly expressed genes and expression distribution at the population level are qualitatively similar to

experimental data from a drug-naivemelanoma population (data fromShaffer et al., 2017). The percentages are indicated above the histogram (in B). The network

and parameter set as well as the particular node (in C) used for comparison are shown in the right panel.

(D) The Gini indices of simulations of rare coordinated high states are substantially higher than of simulations not showing rare coordinated high states. The

experimentally measured expression distributions have Gini indices similar to simulations with rare coordinated high states.

(E) Total number of rare coordinated high states were extracted for simulations of different networks sizes, containing either 2, 3, 5, or 8 nodes to see if they occur

across networks of different sizes. Rare coordinated high states were found to exist ubiquitously across all possible networks of all analyzed network sizes. The

measurements were performed via three independent and randomly sampled trand (median, 25th and 75th percentiles).

(legend continued on next page)
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distinguishing features compared to the remaining 992 param-

eter sets.

We used a decision tree algorithm (Breiman et al., 1984) (see

STAR Methods, section Decision Tree Optimization and Gener-

alized Linear Models) to identify the differentiating features of the

rare coordinated high parameter sets from the rest. The decision

tree analysis revealed that only three (ron, roff, and radd) of the

seven independent parameters showed a strong correlation

with the rare coordinated high parameter sets (Figure 3B). We

validated these findings with complementary analysis using

generalized linear models (STAR Methods, section Decision

Tree Optimization and Generalized Linear Models) where we

found precisely these three specific parameters (ron, roff, and

radd) to be critical to produce the rare coordinated high states

with high statistical significance (p values: ron = 0.003; roff =

0.005; radd = 0.014) (Figure S6B). These observations became

readily evident when we plotted all 1,000 parameter sets for

ron, roff, and radd together and found that the rare coordinated

high parameters sets occupy a narrow region of the parameter

phase space (Figures 3C and S6C). These three parameters

are related to transcriptional bursting and inter-gene(node) regu-

lation. Two of these parameters, ron and roff, define the transition-

ing between the active and inactive state of the DNA respec-

tively. The third parameter is the gene activation rate, radd,

which corresponds to the positive regulation of transcriptional

bursting rate of a gene by the gene product of another interacting

gene. Parameter sensitivity analysis across the parameter space

also confirmed that these three parameters are indeed critical for

producing the rare coordinated high states (Figure S6D). Too

high values (> 0.31) of radd result in the disappearance of rare co-

ordinated high states, as does a complete absence (radd = 0) of

this term (Figures S6E–S6G). To confirm that these three param-

eters (ron, roff, and radd) and their corresponding range of values

are indeed critical to producing simulations with rare coordi-

nated high states, we sampled 1,000 new parameter sets from

a constrained region containing all eight rare coordinated high

parameter sets (Figure 3C, orange box; STAR Methods) and

ran simulations for two test networks, a 3-node and a 5-node

network. We found that the frequency of simulations with rare

coordinated high states for the constrained region is �14-fold

and �21-fold higher than that for the original parameter space,

respectively (Figure 3D). We note that although parameter sets

with parameters ron, roff, and radd within the identified critical

parameter ranges give rise to simulations with rare coordinated

high states much more frequently than other parameter sets, it

is not 100% of the time.

Distinct Mechanisms Regulate the Transition into and
out of Rare Coordinated High States
We have identified the networks and parameter sets for which

the transcriptional bursting model exhibits rare coordinated

high states more frequently. Next, we dissected the features of

the model that facilitate the occurrence of rare coordinated

high states. Specifically, we identified the factors that (1) trigger

the entry into the rare coordinated high states, (2) facilitate its

maintenance, and (3) trigger the escape from it. We began by

analyzing various features of transcriptional activity, since

including transcriptional bursting was found to be critical for

the model to display the rare coordinated high states. These

include the burst fraction, length of transcriptional bursts (burst

duration), and burst frequency. To measure these features, we

defined four regions for each simulation: low expression state

(baseline time-region), entry into the high expression state (entry

time-point), the high expression state (high time-region), and exit

from the high expression state (exit time-region) (Figure 4A;

STAR Methods, section Entry and Exit Mechanisms).

We found an increase in the transcriptional activity, as

measured by the burst fraction, during the high expression

time-region compared with the baseline time-region (Figure 4B),

suggesting that enhanced transcriptional activity facilitates the

maintenance of rare coordinated high states. Increased burst

fraction could be a result of (1) longer transcriptional bursts or

(2) a higher burst frequency. The former is not possible as the

duration of each burst is distributed exponentially according to

exp(roff), which does not change between the baseline and high

time-region. Indeed, we found an increase in the burst frequency

in the high time-region, thus establishing its role in the mainte-

nance of the rare coordinated high state (Figure 4C). The

increased transcriptional bursting seen in the models capable

of generating rare coordinated high states is consistent with the

experimental observations that the transcriptional activity

occurred in frequent bursts in cells high for amarker gene (Shaffer

et al., 2018). Next, we wondered whether burst frequency in-

creases with the interactions of genes within the network. We

compared two networks of the same size (3 nodes), where one

is comprised out of single unconnected (orphan) nodes and the

(F) The frequency of rare coordinated high states depends on the network connectivity, which is defined as number of ingoing edges for any node of the network.

Shown here is the dependence for all 5-node networks, such that increasing connectivity within all 5-node networks leads to a decrease in the number of

simulations with rare coordinated high states. Each dot represents a particular network topology within the possible space of 5-node networks.

(G) Effect of adding auto-activation (self-loop) to networks on the number of simulations with rare coordinated high states. Networks with auto-activation exhibit

simulations with rare coordinated high states less frequently than the same networks without auto-activation. Fold change is calculated by dividing the number of

simulations with rare coordinated high states for networks containing auto-activation with the number of simulations with rare coordinated high states for the

same networks without auto-activation. Each dot represents one of the 96/2 = 46 direct network comparisons. Network comparisons where one of the networks

did not give rise to simulations with rare coordinated high states were discarded.

(H) The frequency of simulations with rare coordinated high states depends on the characteristic distance, defined as the average shortest path length between

pairs of nodes of the network. With increasing characteristic distance (normalized to network size), more simulations show rare coordinated high states. Each dot

represents the characteristic distance of one of the 96 networks. Each network size is represented by a unique color.

(I) The frequency of occurrence of simulations with rare coordinated high states is dependent on the choice of model parameters. Specifically, simulations of a

particular parameter set across different networks and sizes show largely the same class of gene expression profiles. Each row corresponds to specific

parameter sets within the space of all parameter sets analyzed. Each column name corresponds to a particular network, and the underlying network is drawn

below the column name.

See also Figures S2–S5.
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other of an interdependent structure (network 3.2). We found that

for any parameter set (screened for all 26 parameter sets giving

simulationswith rare coordinatedhigh states in thepreviousanal-

ysis for network 3.2, Table S1), the system with a connected

network has (1) more high expression states and (2) prolonged

time in high expression states, as compared with unconnected

nodes (Figure 4D). Together, we find that the maintenance of

the high state is because of increased burst frequency.

Next, we wanted to identify the factors triggering the entry

into the rare coordinated high states. We found that for any

gene in the network, the transcriptional burst duration right

before and/or during the entry into a rare coordinated high state

was significantly higher (two-sample Kolmogorov-Smirnov test)

than that in the baseline time-region (i.e., regular bursting ki-

netics). In the example shown in Figure 4E, the average time

of transcriptional burst at the entry time-point is 84.82 (time

units) as compared with only 15.08 (time units) in the baseline

time-region. Therefore, prolonged transcriptional bursts play a

role in driving the cell to a coordinated high expression state.

Conversely, we asked if the opposite is true at the exit time-re-

gion, such that transcriptional bursts for the exit time-region are

shorter than for the high time-region. We found no statistical

difference in the distributions of burst durations between the

high and the exit time-regions, as demonstrated by the

example in Figure 4F, suggesting that the exit from high

expression state occurs independently of the burst durations.

Both of these conclusions hold true when measured for all sim-

ulations with rare coordinated high states (Figure 4G). Together,

unlike the entry into the high time-region, the exit from it is not

dependent on the transcriptional burst duration.

We also wondered if the entry into the high expression state of

one gene influences the entry of other genes, or that the genes

enter the high expression state independently of each other.

We reasoned that if the time duration between two successive

genes (tent, Figure 4A) entering the high expression state is expo-

nentially distributed, it would imply that the genes enter the high

expression state independent of each other. Instead, we found

that the distributions of entry time intervals rejected the null hy-

pothesis of the Lilliefors’ test for most of the simulations (84%),

meaning they are not exponentially distributed (Figure 4H). The

remaining 16% of cases were found to be largely falsely identi-

fied as exponentially distributed because of limited data (see a

representative example in Figure S7A). Similarly, we tested if

the exit for successive genes from the high expression state oc-

curs independent of each other. Contrary to the situation during

the entry into the high expression state, many distributions of exit

time intervals satisfied the null hypothesis of the Lilliefors’ test,

implying they are indistinguishable from exponential distribu-

tions (Figure 4I). The simulations that did not satisfy the stringent

Lilliefors’ test mainly appear to be exponentially distributed;

nevertheless, a representative example is shown in Figure S7B.

Together, the entry into and exit from the rare coordinated high

state occur through fundamentally different mechanisms—the

entry of one gene into the high expression state affects entry of

the next gene, while they exit from it largely independently

of each other. The exit from the high state could be a result of

weak strength of coupling (as reflected by the moderate values

of parameter radd) between nodes for the simulations that pro-

duce these states. Consistently, we found that too high values

of radd result in the disappearance of rare coordinated high
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Figure 3. Transcriptional Bursting Rates In-

fluence the Formation of Rare Coordinated

High States

(A) Histogram of the percentage of simulations

with rare coordinated high states per parameter

set to identify the parameter sets that favorably

give rise to simulations with rare coordinated high

states. Each of the 96 networks is simulated for

every single of the 1,000 parameter sets, where not

all 96 of these simulations give rise to rare coor-

dinated high states. The eight rare coordinated

high parameter sets, marked in orange, produce

rare coordinated high states in more than 20%

(more than 19 out of the 96 simulations) of simu-

lations and lie at the tail of the histogram. The

cutoff (dashed line) marks the 20%.

(B) Decision tree optimization was performed to

identify differentiating features of the rare coordi-

nated high parameter sets (orange in Figure 3A)

from the rest (dark gray in Figure 3A). Decision tree

analysis revealed that only three out of seven pa-

rameters, ron, roff, and radd, show a strong corre-

lation with the rare coordinated high parameter

sets. Each arm represents a decision, where the decision is marked on top, and each colored dot represents a final class.

(C) Three-dimensional representation of all tested 1,000 parameter sets for ron, roff, and radd show that the rare coordinated high parameter sets are narrowly

constrained in the 3D space (orange dots). The orange box indicates the constrained parameter space enclosing all rare coordinated high parameter sets used for

analysis in (D).

(D) Comparison between the original 1,000 parameter sets and 1,000 parameter new sets sampled from the constrained region (orange box in Figure 3C)

containing all eight rare coordinated high parameter sets. As compared to the original parameter sets, constrained region parameter sets strongly favor the

formation of rare coordinated high states for both of the networks tested (3.2 and 5.3). 3.2 and 5.3 correspond to particular networks (outlined below each bar) of

network size three and five, respectively.

See also Figures S4 and S6.
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Figure 4. Rare Coordinated High State is Initiated by a Long Transcriptional Burst, Maintained by an Increase in Burst Frequency and Termi-

nated According to a Random Process

(A) An exemplary high region, with a baseline time-region, entry time-point, high time-region, and an exit time-region. The time intervals for an additional gene to

enter and exit the high region are marked by tent and texit, respectively. The bursts below the exemplary simulation are representative schematics.

(B) Burst fraction, defined as the number of time-points the system is in a burst divided by the total number of time-points, was calculated for baseline time-region

and high time-region for all (n = 594) simulations that produce rare coordinated high states and compared using violin plots. The burst fraction is significantly

higher in the high time-region than the baseline time-region (two-sample Kolmogorov-Smirnov test, p value < 0.001), implying that enhanced transcriptional

activity facilitates the maintenance of rare coordinated high states.

(C) Burst frequency, defined as the number of bursts divided by the total number of time-points, was calculated for baseline time-region and high time-region for

all (n = 594) simulations that produce rare coordinated high states and compared using violin plots. The frequency of transcriptional bursts is increased in the high

(legend continued on next page)
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states, giving way to stable high states. In other words, the

network can transition into the high expression state but loses

the ability to come out of it (Figures S6E–S6G).

Increasing Network Connectivity Leads to
Transcriptionally Stable States
So far, we have used the transcriptional burstingmodel to under-

stand the potential origins of rare pre-resistant states in drug-

naive melanoma cells. Upon treatment with anti-cancer drugs,

the transient pre-resistant cells reprogram and acquire resis-

tance resulting in their uncontrolled proliferation. The resistant

cells are characterized by the stabilization of the high expression

of themarker genes,whichwere transiently high in thedrug-naive

pre-resistant cells (Figure 5A) (Shaffer et al., 2017). Studies using

network inference of gene expression data have suggested that

the genetic networks undergo considerable rearrangements

upon cellular transitions or reprogramming (Moignard et al.,

2015; Schlauch et al., 2017). We wondered if the transcriptional

bursting model can explain how the transient high expression in

drug-naive cells might become permanent upon treatment with

anti-cancer drugs. The modeling framework produces a range

of gene expressionprofiles, depending on the network properties

and model parameters (Figures 1D–1G). Increasing the network

connectivity (for fixed parameter sets) is one way to shift from a

rare transient coordinated high expression state to stably high

expression state (Figures 5B–5E). As an example, for a fixed

network size (five) and associated parameters, increasing the

network connectivity from one to five resulted in a shift from tran-

sient coordinated to stably high expression states (Figures 5D

and 5E, respectively). The shift from transient coordinated to sta-

bly high expression states is also reflected by the bimodal distri-

bution of genes product counts for in the highly connected

network (Figures 5F and 5G), where genes stay permanently in

the high state once they leave the low expression state. These

results mimic the experimentally measured mRNA expression

states of the drug-induced reprogrammed melanoma cells.

To test if the computational prediction holds true inmelanoma,

we performed network inference using the 4-mixing coefficient-

based (Ibragimov, 1962) Phixer algorithm (Singh et al., 2018) on

the experimental data (Box 2; STAR Methods, section Compar-

ative Network Inference; Table S2). Specifically, we used the

Phixer algorithm on the mRNA counts obtained from FISH imag-

ing data ofmarker genes in drug-naive cells and the resistant col-

onies that emerge post-drug treatment to infer the underlying

network. Consistent with the model prediction, we found that

the number of edge connections (for a range of edge weight

thresholds) between marker genes increased substantially for

6 out of 7 resistant colonies compared with the drug-naive cells

(Figure 5H). To control for biases from subsampling of the exper-

imental data and nature of the Phixer algorithm itself (see STAR

Methods, section Comparative Network Inference), we ran the

entire network inference analysis 1,000 times. Again, in all

1,000 runs, we saw a higher number of total edges for 6 out of

7 resistant colonies than the drug-naive cells (Figures 5I, S8A,

and S8C).

Besides the dependence on networks, our framework predicts

that for a given network, stronger interactions between nodes

(defined by the interaction parameter radd) can also result in sta-

ble gene expression profiles (Figures S6E–S6G). It is possible

that reprogramming results from a combination of increased

edge connectivity as well as the enhanced interactions (given

by parameter radd) between existing edges. Biologically, it would

translate into stronger and increased number of interactions be-

tween genes and associated transcription factors during reprog-

ramming. Together, network inference of the experimental data

is consistent with model findings about the cellular progression

from a transient coordinated high expression state to a stably

high expression state.

DISCUSSION

We developed a computational framework to model rare cell be-

haviors in the context of a drug-naive melanoma population

where a rare subpopulation of cells displays transient and coor-

dinated high gene expression states. We found that a relatively

parsimonious stochastic model consisting of transcriptional

bursting and stochastic interactions between genes in a network

is capable of producing rare coordinated high states that mimic

the experimental observations. To systematically investigate

their origins, we screened networks of increasing sizes and

time-region (two-sample Kolmogorov-Smirnov test, p value < 0.001), implying that enhanced transcriptional activity is caused bymore frequent bursts rather than

prolonged bursts.

(D) Violin plots of the fold change in number of high states and total time spent in high states for network 3.2 and its unconnected graph. Positive regulatory

interactions between the connected nodes (network) leads to an increased number of and total time in high states in comparison to independent nodes. Fold

change is calculated by dividing the number of high states (total time spent in high states) for network 3.2 with the number of high states (total time spent in high

states) for the unconnected graph. Each dot represents one of the 26 simulations showing rare coordinated high states for network 3.2.

(E) Distributions of burst duration in the baseline time-region (black) and those coincident with entry time-point (gray) (see Figure 4A). The bursts coincident with

entry time-points are significantly longer than bursts in the baseline time-region (two-sample Kolmogorov-Smirnov test, p value < 0.001).

(F) Distributions of burst duration in the high time-region but not the exit time-region ([high-exit] time-region) (light gray) and those in the exit time-region (dark gray)

(see Figure 4A). There is no statistically significant difference between the distributions underlying the duration of bursts in the high time-region and the exit time-

region (two-sample Kolmogorov-Smirnov test, p value > 0.05).

(G) Violin plots of the mean burst duration ratios for entry and exit (n entry = nexit = 594), where mean burst ratio represents the difference in means of the burst

duration distributions (see E and F) per simulation for all simulations with rare coordinated high states. Ratio close to 1 suggests no difference between the two

regions. While the mean (and median) burst duration ratio between entry time-point and baseline time-region is considerably increased, the mean (and median)

burst duration ratio between bursts in the exit time-region and in the rest of the high time-region are comparable for all simulations with rare coordinated high

states.

(H and I) Distributions of the time intervals between genes entering (H) and exiting (I) the high time-region, denoted by tent and texit respectively in Figure 4A, are

distributed differently for two representative simulations. While the time intervals for entering (tent) the high time-region are not exponentially distributed (H) (and

hence not random), the time intervals for exiting (texit) the high time-region are exponentially distributed (I) (Lilliefors test, p value < 0.001 and > 0.05, respectively).

See also Figure S7.
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connectivities for a broad range of parameter values. Our study

revealed that they occur more frequently for networks with low

connectivity and depend on 3 of the 7 independent model pa-

rameters. Furthermore, we showed that the mechanisms that

lead to the transition into and out of the rare coordinated high

state are fundamentally different from each other. Collectively,

our framework provides an excellent basis for further mecha-

nistic and quantitative studies of the origins of rare, transient,

and coordinated high expression states.

Given the relative generality of the networks that produce rare

coordinated high states, the transcriptional bursting model pre-

dicts that every cell type is capable of entering the rare coordi-

nated high state. Furthermore, we show that canonical modes

of transcription alone, namely the binding of the transcription

factor at gene locus to produce mRNA via recruitment of RNA

polymerase II, can lead to these states without requiring other

complex mechanisms, such as DNA methylation, histone modi-

fications, or phase separation. Although such other mechanisms

may still be operational in these cells to regulate their entry to or

exit from these states, we posit that in principle, any set of genes

interacting via traditional gene regulatory mechanisms are

capable of exhibiting these rare coordinated high states, as

long as they are interacting in a certain manner (e.g., sparsely

connected) with appropriate kinetic parameters. In the case of

drug-naive melanoma cells, the transient state is characterized

by an increased ability to survive drug therapy leading to uncon-

trolled proliferation of the resulting resistant cells. It is possible

that these rare transient behaviors may exist across many sets

of interacting genes that may or may not manifest into pheno-

typic consequences. Another possibility the transcriptional

bursting model predicts is that even within the same cell, distinct

modules of interacting genes can lead to distinct sets of rare
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Figure 5. Increased Connectivity of a Network Leads to Stable High

Expression Which Is Also Observed in Emerging Resistant Colonies

Post-drug Treatment

(A) Upon drug treatment, the surviving cells acquire stable resistance. A

schematic gene expression pattern is shown below.

(B–E) (B and C) Networks of size 5 with low (B) (1) and high (C) (5) connectivity

and corresponding (D and E) simulations.

(F and G) The expression distributions are determined by taking the counts of

simulated gene products per 1,000 time units (see Figure 2A) of simulations (D

and E) corresponding to the lowly (B) and highly (C) connected networks. The

gene expression distribution of the highly connected network (G) does not

exhibit heavy tails while the simulation of the lowly connected network (F)

exhibits heavy tails.

(H) Comparison of the connectedness of the underlying inferred gene regu-

latory networks of drug-naive cells and resistant colonies (post-drug treat-

ment) using the Phixer algorithm for network inference analysis. Total number

of edges is calculated for different edge weight thresholds, defined as the

threshold at which an inferred edge is assumed to be present in the inferred

gene regulatory network. For all the edge weights investigated, 6/7 resistant

colonies have inferred gene regulatory networks with higher numbers of edges

than drug-naive cells, suggesting that the gene regulatory networks underlying

resistant colonies are more strongly connected.

(I) Applying the network inference analysis 1,000 times for a fixed edge weight

threshold of 0.45 gives distributions for the number of edges in the inferred

gene regulatory networks for both drug-naive cells (red) and resistant colonies

(black) (distributions shown for one example each). The distribution of number

of edges in the inferred gene regulatory network is considerably increased for

the resistant colony.

See also Figure S8.
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coordinated high states that each can affect the cellular function

and outcomes differently. These possibilities can be tested for by

using increasingly accessible single cell RNA sequencing tech-

niques on clonal populations of cells.

One limitation of the transcriptional bursting model is that we

have performed quantitative analysis only on symmetric net-

works with positive interactions between nodes. Although the

preliminary analysis on two cases of randomly selected asym-

metric networks shows that they do exhibit the rare coordinated

high states (Figures S2G–S4M), it remains to be seen whether

these findings hold more generally for asymmetric networks.

Inhibitory interactions between nodes are a separate and

perhaps more interesting point. In principle, the model can be

adapted to include inhibitory interactions. These inhibitory inter-

actions may lead to non-monotonic effects of network connec-

tivity on the occurrence of rare states, as positive and negative

interactions can compete in non-linear ways. Similarly, a network

with both negative and positive interactions may be more prone

to instability, even for relatively smaller networks. Furthermore,

inclusion of these interactions might also make the exit of genes

from the high expression state dependent on one another, which

occurs independently in the current transcriptional bursting

model. We also highlight that unlike the experimental data, the

model simulations do not have non-zero values for a larger num-

ber of genes in the high expression states (Figure 2B). The

absence of non-zero values may be because the network under-

lying the experimental data contains a much larger set of inter-

acting genes, thereby increasing the likelihood of non-zero

values for a higher number of expressed genes. Larger gene net-

works can be explored in the future studies.

While we have focused on rare, transient, and coordinated

high expression states inmelanoma, our study provides concep-

tual insights into other biological contexts, such as stem cell re-

programming. Particularly, there is increasing evidence to sug-

gest that stem cell reprogramming to desired cellular states

proceeds via non-genetic mechanisms in a very rare subset of

cells (Hanna et al., 2009; Pour et al., 2015; Takahashi and Yama-

naka, 2016). The transcriptional bursting model may explain the

origins and transient nature of this type of rare cell variability. In

sum, we have established the plausibility that a relatively parsi-

monious model comprising of transcriptional bursting and sto-

chastic interactions of genes organized within a network can

give rise to a new class of biological heterogeneities. Therefore,

we believe that established principles of transcription and gene

expression dynamics may be sufficient to explain the extreme

heterogeneities that are being reported increasingly in a variety

of biological contexts.

Key Changes Prompted by Reviewer Comments
In response to the reviewers’ comments, we made the introduc-

tory paragraph concise, added Box 1, which provides detailed

description and associated assumptions of the model, and

added Box 2, which provides definitions ofmetrics used to quan-

tify the rare coordinated high states. We also relaxed the model

assumptions (Figures S4A–S4E; STAR Methods) to explore the

effect of (1) including translation and (2) using a multiplicative

mode of gene interaction. Additionally, we performed extensive

mechanistic analysis of the model features that initiate the tran-

sition into rare coordinated high states and those that enable

maintenance of these states. Findings from this analysis are pre-

sented in Figure 4 and Results section. Furthermore, we

analyzed additional network topologies (Figures 2 and S5),

tested the model on a bigger network size (10 nodes) (Fig-

ure S2D), and performed sensitivity analysis on the parameter

space (Figure S6D). We also performed comparative analysis

between experimental data for multiple genes and computa-

tional data using two metrics (1) Gini coefficient measuring en-

tropy (Figure 2D) and (2) fitting exponentials to analyze for sub-

exponentiality (Figure S3C). For context, the complete trans-

parent peer review record is included within the Supplemental

Information.
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d KEY RESOURCES TABLE
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B Simulations
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Models and Constrained Simulations

B Sensitivity Analysis
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cels.2020.03.004.

ACKNOWLEDGMENTS

We thank the Raj lab members, especially Ian Mellis and Amy Azaria, for sci-

entific discussions and comments on themanuscript. We also thank Ravi Rad-

hakrishnan and Alok Ghosh for helpful discussion during the initial stages of

this project. We thank Cesar A Vargas-Garcia for his help during the initial dis-

cussions on network inference. L.S. would like to acknowledge the support of

the PROMOS fellowship of the DAAD, Germany. L.S. was funded by the BMBF

project TIDY (031L0170B) and financially supported by the Entrepreneurial

Award within the program ‘Global Challenges for Women in Math Science’

of the Department of Mathematics, Technical University of Munich. B.L.E. ac-

knowledges support from NIH F30 CA236129 and Patel Family Scholars

award. A.S. acknowledges support from the NIH grant 5R01GM124446-02

ll
Article

376 Cell Systems 10, 363–378, April 22, 2020



and ARO grant W911NF-19-1-0243. C.M. acknowledges support from the

Deutsche Forschungsgemeinschaft DFG through the SFB 1243. A.R. ac-

knowledges support from NIH/NCI PSOC U54 CA193417, NSF CAREER

1350601, P30 CA016520, SPORE P50 CA174523, NIH U01 CA227550, NIH

4DN U01 HL129998, NIH Center for Photogenomics RM1 HG007743, NIH

R01 CA232256, NIH R01 CA238237, NIH R01 GM137425, and the Tara Miller

Foundation. Y.G. would like to acknowledge the Schmidt Science Fellows in

partnership with the Rhodes Trust. Y.G. is a fellow of the Jane Coffin Childs

Memorial Fund for Medical Research and this investigation has been aided

by a grant from the Jane Coffin Childs Memorial Fund for Medical Research.

AUTHOR CONTRIBUTIONS

Conceptualization, A.R. and Y.G.; Methodology, L.S., Y.G., and A.R.; Soft-

ware, L.S. and A.R.; Validation, L.S.; Formal Analysis, L.S. and M.S.-A.; Re-

sources, A.R. and A.S.; Investigation, E.M.S., Y.G., and B.L.E.; Data Curation,

L.S. and Y.G.; Writing – Original Draft, Y.G.; Writing – Review & Editing, A.R.,

L.S., Y.G., C.M., E.M.S., B.L.E., and M.S.-A.; Visualization, L.S. and Y.G.; Su-

pervision, Y.G., A.R., and C.M.; Project Administration, Y.G. and A.R.; Funding

Acquisition, A.R., A.S., and C.M.

DECLARATION OF INTERESTS

A.R. receives royalties related to Stellaris RNA FISH probes. All other authors

declare no competing interests.

Received: July 16, 2019

Revised: February 3, 2020

Accepted: March 24, 2020

Published: April 22, 2020

REFERENCES

Antolovi�c, V., Miermont, A., Corrigan, A.M., and Chubb, J.R. (2017).

Generation of single-cell transcript variability by repression. Curr. Biol. 27,

1811–1817.e3.

Breiman, L., Friedman, J., Stone, C.J., and Olshen, R.A. (1984). Classification

and Regression Trees (Wadsworth Statistics/Probability), First Edition

(Chapman & Hall/CRC).

Chen, H., and Larson, D.R. (2016). What have single-molecule studies taught

us about gene expression? Genes Dev. 30, 1796–1810.

Corrigan, A.M., Tunnacliffe, E., Cannon, D., and Chubb, J.R. (2016). A contin-

uum model of transcriptional bursting. eLife 5, e13051.

Fallahi-Sichani, M., Becker, V., Izar, B., Baker, G.J., Lin, J.R., Boswell, S.A.,

Shah, P., Rotem, A., Garraway, L.A., and Sorger, P.K. (2017). Adaptive resis-

tance of melanoma cells to RAF inhibition via reversible induction of a slowly

dividing de-differentiated state. Mol. Syst. Biol. 13, 905.

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reac-

tions. J. Phys. Chem. 81, 2340–2361.

Golding, I., Paulsson, J., Zawilski, S.M., and Cox, E.C. (2005). Real-time ki-

netics of gene activity in individual bacteria. Cell 123, 1025–1036.

Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C.,

and Lander, E.S. (2011). Stochastic state transitions give rise to phenotypic

equilibrium in populations of cancer cells. Cell 146, 633–644.

Ham, L., Schnoerr, D., Brackston, R.D., and Stumpf, M.P.H. (2020). Exactly

solvable models of stochastic gene expression. bioRxiv. https://doi.org/10.

1101/2020.01.05.895359v1.

Ham, L., Brackston, R.D., and Stumpf, M.P.H. (2019). Extrinsic noise and

heavy-tailed laws in gene expression. bioRxiv. https://doi.org/10.1101/

623371v1.

Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P.,

van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is

a stochastic process amenable to acceleration. Nature 462, 595–601.

Huynh-Thu, V.A., and Sanguinetti, G. (2019). Gene regulatory network infer-

ence: an introductory survey. In Gene Regulatory Networks: Methods and

Protocols, G. Sanguinetti and V.A. Huynh-Thu, eds. (Springer), pp. 1–23.

Ibragimov, I.A. (1962). Some limit theorems for stationary processes. Theory

Probab. Appl. 7, 349–382.

Iyer-Biswas, S., Hayot, F., and Jayaprakash, C. (2009). Stochasticity of gene

products from transcriptional pulsing. Phys Rev E Stat Nonlin Soft Matter

Phys. 79, 031911.

Jiang, L., Chen, H., Pinello, L., and Yuan, G.C. (2016). GiniClust: detecting rare

cell types from single-cell gene expression data with Gini index. Genome Biol.

17, 144.

Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A.J., Tanaka, Y., Wilkinson,

A.C., Buettner, F., Macaulay, I.C., Jawaid, W., Diamanti, E., et al. (2015).

Decoding the regulatory network of early blood development from single-

cell gene expression measurements. Nat. Biotechnol. 33, 269–276.

Phillips, R., Belliveau, N.M., Chure, G., Garcia, H.G., Razo-Mejia, M., and

Scholes, C. (2019). Figure 1 theory meets figure 2 experiments in the study

of gene expression. Annu. Rev. Biophys. 48, 121–163.

Pisco, A.O., and Huang, S. (2015). Non-genetic cancer cell plasticity and ther-

apy-induced stemness in tumour relapse: ‘‘what does not kill me strengthens

me’’. Br. J. Cancer 112, 1725–1732.

Pour, M., Pilzer, I., Rosner, R., Smith, Z.D., Meissner, A., and Nachman, I.

(2015). Epigenetic predisposition to reprogramming fates in somatic cells.

EMBO Rep. 16, 370–378.

Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006).

Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309.

Raj, A., and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochas-

tic gene expression and its consequences. Cell 135, 216–226.

Saint-Antoine, M.M., and Singh, A. (2019). Evaluating pruningmethods in gene

network inference. arXiv http://arxiv.org/abs/1902.06028.

Schlauch, D., Glass, K., Hersh, C.P., Silverman, E.K., and Quackenbush, J.

(2017). Estimating drivers of cell state transitions using gene regulatory

network models. BMC Syst. Biol. 11, 139.

Shaffer, S.M., Emert, B.L., Reyes-Hueros, R., Coté, C., Harmange, G.,
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yogesh

Goyal (yogesh.goyal0308@gmail.com). This study did not generate any new materials.

METHOD DETAILS

Networks
In our framework, the nodes in the network represent genes, where the expression of a gene is regulated by the expression of other

genes. Gene regulation is represented by directed edges in the network, e.g. if the expression of gene Y is regulated by the expres-

sion of gene X, then the network contains an edge from node X to node Y. These networks can be defined by adjacency matrices

given by:

Aij =

�
1; if there is an edge from node i to j
0; else:

Any node in a network of size N can be connectedwith up toN-1 other nodes and in the case of self-loops, to N other nodes. Hence,

the adjacencymatrix A is of size N*N. This means that there are 2NxN possible adjacencymatrices for a network of size N - each of the

possible N*Nmatrix entries can take on one of the values of 0 (no edge) and 1 (edge). For example a network of size 3 has 2(3*3) = 512

possible networks.

Here, we focus on symmetric networks, where we assume a relational identity between all nodes in a network. Experimental data

from Shaffer et al. (Shaffer et al., 2017) implies the absence of any obvious hierarchical structure within the genes, and that the driver

genes may interact in a relatively non-hierarchical manner (Figure S1D). The structural embedding of a node in its network can in-

crease or decrease its ability of being involved in coordinated overexpression. For example, a centered node within a star-shaped

network is involvedmore frequently in coordinated overexpression than the other nodes within the same network (Figure S1E), which

is inconsistent with the experimental observations. To ensure for non-hierarchical behavior we define a set of symmetric networks

(Figure S1F), where the number of in- and outgoing edgeswithin a node and across nodes is identical and either all nodes in a network

have a self-loop or not, leading to adjacency matrices of which the rows are cyclic permutations (to the right) with offset one of each

other. We first compute all possible vectors {0,1}N, in total 2N vectors. From each of these resulting vectors, we create an NxNmatrix

by using the given (row) vector as template, and creating the other N-1 rows by cycling the prior row vector to the right by one step,

where the right-most entry in the row vector is added to the (so far empty) left-most entry. By applying this permutation N-1 times, all

possible cyclic permutations are captured within a matrix, and each node in the given network is completely relational identical. We

make use of the circshift function in MATLAB to receive the possible cyclic permutations of the initial row vectors.

We further constrain the analysis to weakly-connected networks – any node in a network has to be connected to at least one other

node, without taking into account the directionality of the edges. In terms of the adjacency matrix:

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

RNA-FISH data – marker genes Shaffer et al., 2017 https://www.dropbox.com/sh/

g9c84n2torx7nuk/

AABZei_vVpcfTUNL7buAp8z-a?dl=0

RNA-FISH data – network inference

(resistant colonies)

Shaffer et al., 2017 https://www.dropbox.com/sh/

g9c84n2torx7nuk/

AABZei_vVpcfTUNL7buAp8z-a?dl=0

Data – Model simulations This paper https://www.dropbox.com/sh/

n94q45zkn5w54fe/

AACC3cgts4kD6MWEE452pEgEa?dl=0

Software and Algorithms

MATLAB R2017a and R2018a Mathworks https://www.mathworks.com

Phixer Singh et al., 2018 https://github.com/nitinksingh/phixer/

Code – Model simulations This paper https://doi.org/10.5281/zenodo.3713697
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ci˛f1; :::;Ng :
X

j˛f1;:::;Ng; jsi

Aij +AjiR1:

The above restriction allows us to exclude the consideration of compositions of smaller and unconnected networks, which could

otherwise lead to double counting. These subnetworks of smaller sizes are analyzed in the sets of networks of respective node sizes.

To perform this operation, we analyze all the previously constructed adjacency matrices using the MATLAB function conncomp(X,’-

Type’,’weak’), which assigns each nodewith a bin number according to the connected component of its underlying undirected graph.

If all nodes of a network belong to the same bin number i.e. to the same connected component, the adjacency matrix encodes for a

weakly-connected graph. Finally, we further restrict the analysis to non-isomorphic networks. Two networks are called isomorphic if

there exists a bijection from the edge space of one network to the other, such that any edge of one network is projected to a particular

edge in the other network. Here, the labeling of the nodes (gene 1, gene 2,...) in the networks is arbitrary and hence relabeling of nodes

in an adequate fashion leads to identical networks. To ensure that all the final networks analyzed are of a non-isomorphic set of net-

works, we test all networks withMATLAB’s function isisomorphic. We initiate the final set of networks with one adjacencymatrix, and

then sequentially test all other networks for isomorphism. If the given network is non-isomorphic to the current final set, it is added to

the final set. Conversely, if the network is isomorphic to one of the networks in the final set, it is discarded.

By reducing the possible set to weakly-connected, non-isomorphic and symmetric networks, we greatly reduce the possible num-

ber of networks. For example, in the previous example, we had 512 possible networks for 3 nodes. By applying all the mentioned

constraints (weakly-connected, non-isomorphic and symmetric), 4 networks remain (Figure S1C). We perform the analysis on net-

works of sizes 2, 3, 5 and 8 each consisting of 2, 4,10 and 80 networks, respectively, adding up to a total of 96 networks (Figure S9). In

principle, the transcriptional bursting model can easily be extended to larger network sizes without the loss of generality (Figures

S2D–S2F).

Models
Model 2 - Transcriptional Bursting Model

The transcriptional bursting model is an expansion of the telegraph model, where DNA can take on one of the two states, active and

inactive, e.g. based on the presence or absence of transcription factors (Figure 1C). The active and inactive state directly translates

into high and low rates of production of gene products, respectively. We add interaction terms to the model, where the expression of

a gene influences the rate of DNA activation of another gene depending on how they are organized in a respective network. Here we

use the number of mRNA as a faithful proxy for the number of proteins. In other words, we only model the number of mRNA counts

and assume that any mRNA is immediately translated into one single functional protein after its translation. Therefore, the mRNA

count determines the strength of the regulation. Here, we model the regulation of one gene by another using the Hill function, given

by:

fðmRNAXÞ = mRNAn
X

kn +mRNAn
X

;

where mRNAX is the mRNA count of gene X, n is the Hill coefficient and k is the dissociation constant, n,k > 0. The Hill coefficient

determines the steepness of the Hill function, i.e., the extremeness of its switch-like effect. The dissociation constant determines

the half-maximal value, fðmRNAXÞ = 0:5.

The reversible transitions between the inactive and active states, as well as the mRNA synthesis and degradation, are modeled by

chemical reactions. For each gene, we have three chemical species - the DNA inactive state, the DNA active state and mRNA. These

three species interact with one another according to the following 5 chemical reactions:

I/A

A/I

I/ I+mRNA

A/A +mRNA

mRNA/B;

defining the corresponding stoichiometric matrix: 0
@�1 1 0 0 0

1 �1 0 0 0
0 0 1 1 �1

1
A:

The stoichiometric matrix encodes the net change in each chemical species resulting from any of the chemical reactions where the

chemical reactions are assumed to occur stochastically. Under the assumptions of the law of mass action, the probability of a spe-

cific molecular collision to occur in the infinitesimal time interval [t, t + dt) is proportional to the product of the molecule counts of the
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educt chemical species. The reaction propensity aj(x) for a given chemical reaction Rj and state x, determines the probability density

function such that aj(x)dt gives the probability of the chemical reaction Rj taking place in dt, for small dt. Examples of reaction pro-

pensities for so called elementary reactions are given here:

where k is called the reaction rate.

The gene regulation influences the reaction rate of the DNA activating chemical reaction.

To explain the above-mentioned chemical reactions, we introduce eight rates/parameters:

The full model description for one gene regulated by a single gene X is given below:

where I;A˛f0; 1g; and I + A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state and I = 1 (A = 0) denotes that the

DNA is in an inactive state. mRNAX is the mRNA count of gene X at the given time, ron is the basal DNA activation rate, radd is the

additional activation rate due to gene regulation, roff is the DNA inactivation rate, rprod is the basal mRNA synthesis rate in the DNA

inactive state, d denotes the increase in the mRNA synthesis rate when the DNA is in the active state, where d > 1, and rdeg is the

mRNA degradation rate. The chemical reactions are identical for all N nodes in a given network of size N. The reaction rate of acti-

vation (I / A), composed of terms with parameters ron and radd, is the only node-specific rate. It depends on the underlying

network and has to be adapted accordingly for each node, where the in-going edges of a node determine which gene regulations

are active. The addition of hill function-based activation terms corresponds to the adaptation of the standard telegraph model. We

model gene regulation additively: if there is more than one influencing gene, we add the Hill function terms of the respective genes.

As an example, if the gene of interest is influenced not only by gene X, but by gene X and gene Y, the activation rate from above will

expand to:

ron + radd$

�
mRNAX

n

kn +mRNAX
n +

mRNAY
n

kn +mRNAY
n

�
:

We also tested for multiplicative regulation, i.e. regulation where wemultiply the reaction rates (and consequently the reaction pro-

pensities) of the influencing genes (Figure S4C). In the example above the activation rate then expands to

ron + radd$2$

�
mRNAn

X

kn +mRNAn
X

$
mRNAn

Y

kn +mRNAn
Y

�

Reaction Reaction propensity

B/products k

Xi/products kxi

Xi + Xj/products kxixj

Parameter Description

ron The rate at which DNA is activated.

roff The rate at which DNA is inactivated.

rprod Synthesis rate of mRNA.

rdeg Degradation rate of mRNA.

radd Parameter determining the contribution of the additional DNA activation rate

upon gene regulation.

d Factor by which themRNA synthesis rate is increased when in an active DNA

state (in comparison to basal synthesis rate in DNA inactive state), >1.

k Dissociation constant of the Hill function.

n Hill coefficient.

Chemical reaction Reaction rate Reaction propensity

I/A
ron + radd$

mRNAn
X

kn +mRNAn
X

�
ron + radd $

mRNAn
X

kn +mRNAn
X

�
$I

A/I roff roff$A

I/I + mRNA rprod rprod$I

A/A + mRNA d$rprod d$rprod$A

mRNA/B rdeg rdeg$mRNA

ll
Article

Cell Systems 10, 363–378.e1–e12, April 22, 2020 e3



instead. By definition the Hill function is restricted to values between 0 and 1. While a multiplication of two Hill functions results in a

maximal value of 1, an addition results in amaximal value of 2. As the Hill function is an important factor in these simulations we hence

add a scaling factor to the activation rate in case of multiplicative regulation. We show that for network 5.3, 97 out of 1000 simulations

show rare coordinated high states in case ofmultiplicative regulation (Figures S2D and S2E). In comparison, 15 simulations show rare

coordinated high states in case of additive regulation. 9 simulations show rare coordinated high states in both cases.

Additionally, we tested for translation events (Figure S4A).We added one state (P) and two rate parameters, a protein synthesis rate

rprodP and a protein degradation rate rdegP, to the original transcriptional bursting model. The extendedmodel description accounting

for translation for one gene regulated by gene X is given below:

where we define k again as 0.95 of the high steady state, this time for the protein count:

k
�
rprodP; rdegP;d; rprod; rdeg

�
= 0:95$

rprodP
rdegP

$d$
rprod
rdeg

;

which itself is dependent on the high steady state of the mRNA (d * rprod/rdeg). Redefining rprodP = a * rprod and rdegP = b * rdeg gives

k
�
rprod; rdeg;d

�
= 0:95$d$

a

b
$r2prod$r

2
deg:

We tested three different translation scenarios: protein synthesis and degradation being (1) faster than (2) same as and (3) slower

than mRNA synthesis and degradation. For network 5.3 and parameter set 968, giving rise to rare coordinated high states in the tran-

scriptional bursting model without translation, we took a = b = 10 (faster), a = b = 1 (same) and a = b = 0.1 (slower) as additional pa-

rameters. We find that protein synthesis and degradation with faster (Figure S4B) and same rates as mRNA degradation and synthe-

sis, also allows for the formation of rare coordinated high states in the case of translation. Only slower protein synthesis and

degradation rates did not show rare coordinated high states, likely because for faster protein rates, the system dynamics is deter-

mined largely by the transcriptional dynamics. In sum, we demonstrate that the rare coordinated high states can arise in the revised

model that includes translation.

Model 1- Constitutive Model

Model 1 is a simple gene regulatory expression model, where mRNA can either be transcribed or degraded and the mRNA of a reg-

ulatory gene influences the transcription rate of a regulated gene (Figure 1B). Here again, we assume the number of mRNA to be a

faithful proxy for the protein number and hence, only model the mRNA expression of a gene. The gene regulation is modeled accord-

ing to the Hill function (STAR Methods; Model 2 - Transcriptional Bursting Model).

The synthesis and degradation are modeled by chemical reactions. For each gene, we have one chemical species, its mRNA,

described by the following two chemical reactions:

B/mRNA

mRNA/B;

defining the corresponding stoichiometric matrix:

ð1�1Þ:

Chemical reaction Reaction rate Reaction propensity

I/A
ron + radd$

mRNAn
X

kn +mRNAn
X

�
ron + radd $

mRNAn
X

kn +mRNAn
X

�
$I

A/I roff roff$A

I/I + mRNA rprod rprod$I

A/A + mRNA d$rprod d$rprod$A

mRNA/B rdeg rdeg$mRNA

mRNA/mRNA + P rprodP rprodP$mRNA

P/B rdegP rdeg$P
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The full model description for one gene regulated by a single gene X is given below:

where rprod the basal mRNA synthesis rate, rdeg the mRNA degradation rate, radd the additional synthesis rate due to gene regu-

lation and mRNAX the mRNA count of gene X at the given time.

The chemical reactions are identical for all N nodes in a given network of size N. The synthesis rate is a node-specific rate (STAR

Methods; Model 2 - Transcriptional Bursting Model). We model gene regulation additively (STARMethods; Model 2 - Transcriptional

Bursting Model). For k we tested two different definitions: one closer and one further away from the low expression taking into ac-

count the intrinsic stochasticity. We therefore first run a test simulation with a random k for 1,000 time units and determine the stan-

dard deviation of the expression of the node denoted as ‘node 1’. k is latin hypercube sampled with the rest of the parameters with

lower and upper boundary 100 and 1000. We set k to be:

k =
rprod
rdeg

+ x$std;

where std is the standard deviation of the expression of the node denoted as ‘node 1’ and x˛ {3,5}. We then re-initiate the simulation

with the adapted k value.

Model Selection
We decided to develop a network-based framework that models the cell-intrinsic biochemical interactions. One of the first goals we

hadwas to identify theminimal set of biochemical reactions that constitutes this networkmodel. We askedwhether a simple network

model lacking gene activation step (Model 1), i.e. with constitutive mode of gene expression, is sufficient to capture rare coordinated

high states (Figure 1B; STAR Methods; section Model 1)? Or that we need to incorporate gene activation step via transcriptional

bursting (Model 2) at each node, a phenomenon in which genes flip reversibly between transcriptionally active and inactive state

regulated by the binding of a transcription factor(s) (Figure 1C; STAR Methods; section Model 2)?

In terms of chemical reactions, the critical difference between the two models is that, while in Model 1 the gene is transcribed as a

Poisson process with a single rate, rprod (Figure 1B), in Model 2, a gene can reversibly switch between active (ron) and inactive state

(roff), where binding of the transcription factor at a gene locus defines the effective rate of gene production (Figure 1C). Specifically,

when inactive, the gene is transcribed as a Poisson process at a basal rate (rprod); when active, this rate becomes higher (d x rprod,

where d > 1). For both the models, we modeled degradation of the gene product as a Poisson process with degradation rate rdeg. For

both the models, the inter-node interaction parameter, radd, has a Hill-function-based dependency on the gene product amount (Hill

coefficient n) of the respective regulating node to account for the multistep nature of the interaction (Figures 1B and 1C). All chemical

reactions, propensities, and model parameters are presented in STAR Methods. To test these two models, we used Gillespie’s next

reaction method (Gillespie, 1977) and simulated test cases of small networks (of two or three nodes) for a range of parameters.

For a vast majority of the networks and parameter combinations, Model 1 either produced always low or always high expression

states (Figure S1A). In some cases, while Model 1 could indeed produce a transition from low to high expression states, the transition

happens for all gene products at the same time (Figure S1A). However, this model is not consistent with the experimental observa-

tions; in particular, if a cell is positive for one marker gene, then it is more likely to be positive for another marker gene, but not neces-

sarily so (Figure S1B) (Shaffer et al., 2017). Furthermore, this mode of transition resulted in bimodal distributions of cellular state as

determined by the amount of gene product (Figure S1B), which is different from the rare nature of the transitions, as reflected by the

heavy-tailed distributions of gene products observed in melanoma. Model 2, which incorporates transcriptional bursting-dependent

activation of a node (gene), also produced a range of gene expression states (Figures 1C–1F). Importantly, this model was able to

faithfully capture the qualitative features of the experimental data i.e. rare, transient, and coordinated high expression states (Fig-

ure 1F). In contrast to Model 1, Model 2 captures another property of the experimental data, i.e. if one gene is in the high expression

state, the other genes in the network are likely to be in high expression state, but not always (Figures 2B and S2B). Based on these

initial observations, we decided to pursue Model 2 systematically and simulated networks of different sizes and architectures across

a broad range of model parameters.

Parameters
The goal of our study is to model the emergence of rare transient coordinated high expression of several genes. The theoretical idea

behind the transcriptional bursting model is that each time the DNA is in an active state, corresponding to a transcriptional burst, the

steady-state of the mRNA count is shifted from rprod/rdeg to d*rprod/rdeg. Accordingly, the mRNA attempts to reach its new steady-

state which results in a rapid increase in their counts. Depending on the length of the transcriptional burst, which is exponentially

distributed with rate parameter roff, the mRNA count is able to reach the new steady-state. We use the dynamical system behavior

Chemical reaction Reaction rate Reaction propensity

B/mRNA
rprod + radd$

mRNAn
X

kn +mRNAn
X

rprod + radd$
mRNAn

X

kn +mRNAn
X

mRNA/B rdeg rdeg$mRNA
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when modeling the rare coordinated overexpression. In principle, for most transcriptional bursts, the sudden mRNA increase should

not initiate a DNA activation of its regulated genes; only in some rare cases, the transcriptional burst in one gene is long enough such

that its mRNA count exceeds a certain threshold that may be able to affect the state of another gene locus on DNA. Exceeding of the

mRNA threshold can lead to an increased probability of the DNA states of its regulated genes to be activated and hence to an

increasedmRNA synthesis in the respective genes. The increasedmRNA synthesis of regulated genesmay lead to positive feedback

loops network-wide resulting in the transient coordinated overexpression of genes.

The threshold to be overcome by the mRNA count of a gene to make its gene regulation effective is given by the dissociation con-

stant of the Hill function, k. k determines the ‘switching point’ from (almost) no gene regulation to (almost) complete gene regulation.

Therefore, we define k to be a function of rprod, rdeg and d as follows:

k
�
rprod; rdeg;d

�
= 0:95$d$

rprod
rdeg

;

where d*rprod/rdeg gives the steady-state mRNA count of the respective regulating gene in the DNA active state. Here, we arbitrarily

determine the threshold k to 0.95 of its high-expression steady-state to restrict the emergence of coordinated overexpression to be-

ing rare and for the system to demonstrate a considerable difference between the low and high gene expression state. The simula-

tions and the analysis are all performed according to the above definition of k. We tested the robustness of this definition for a partic-

ular network 5.3 (Figure S9) wherewe performed the same simulations (for 100 latin hypercube sampled parameter sets (Table S1)) as

for the final analysis as before using five different definitions of k:

k
�
rprod; rdeg;d

�
= x$d$

rprod
rdeg

;

where x ˛ {0.75, 0.8, 0.85, 0.9, 1} (Table S1). Our analysis shows that for x = 0.75, none of the 100 simulations show rare coordinated

high states: the threshold leading to an effective gene regulation is exceeded too often: the regulated DNA states are activated, the

high state emerges and we lose the rareness of the coordinated high gene expression event. The number of simulations showing rare

coordinated high states increases with increasing x, reaching its maximum for x = 0.95 (standard, 7 out of the 100 simulations show

rare behavior). For x = 1 (high expression steady-state), we also see rare behavior in 7 out of 100 simulations, showing overlapping

results in 6 out of the 7 simulations.

Together, we are left with a set of seven parameters consisting of: ron, radd, n, roff, rprod, d, rdeg, which may be split into inter-gene

(ron, roff, rprod, d, rdeg) and intra-gene (radd, n) parameters and the dependent parameter k. Potentially, these parameter sets are node-

dependent resulting in a N * 7-dimensional parameter space for a network of size N.

To emphasize the equality between the nodes, we use the same 7-dimensional parameter set for all nodes in a network. Hence, the

nodes are relationally and parametrically identical, thereby also allowing us to directly compare the simulations of different network

sizes, otherwise not possible, and to determine the effects of network size and architecture on the ability of forming the rare coor-

dinated high state. Therefore, we latin-hypercube sample 1000 parameter sets out of the parameter space with upper and lower

boundaries (chosen arbitrarily, but typically spanning two orders of magnitude):

by using the MATLAB function lhsdesign_modified (Khaled, N. Latin Hypercube (https://de.mathworks.com/matlabcentral/

fileexchange/45793-latin-hypercube), MATLAB Central File Exchange. Retrieved May 5, 2018.). The 1000 parameter sets are shown

in the Table S1. For some plots, we used a y-axis break function in MATLAB (Mike, C.F. Break Y Axis (https://www.mathworks.com/

matlabcentral/fileexchange/45760-break-y-axis), MATLAB Central File Exchange. Retrieved December 21, 2018.)

Simulations
We simulatedmodel 2 for a total of 96 networks (for all weakly-connected, non-isomorphic, symmetric networks of sizes 2, 3, 5 and 8

with 2, 4, 10 and 80 networks, respectively)(Figure S9), each for 1,000 sampled parameter sets, resulting in a total of 96,000 simu-

lations across four different network sizes. The simulations were performed according to Gillespie’s next reaction method and were

computed for 1,000,000 time units, which is critical for capturing rare behaviors. For all simulations, the DNA state was initiated (t = 0)

to be in its inactive state and themRNA count was arbitrarily set to 20 for all nodes. ThemRNA counts quickly reach their low-expres-

sion steady state, such that we are certain that our analysis is not impaired by the given initial conditions. The simulations were

Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.1

roff 0.01 0.1

d 2 100

radd 0.1 1

n 0.1 10
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implemented in MATLAB R2017a and R2018a. One single simulation of 1,000,000 time units took between 20 minutes and 9 hours

depending on the parameter set and the network. The complete simulations took over 1.5 months to run, where we parallelised all 96

networks and let each of them run on four cores simultaneously.

Simulation Classes
We analyzed all of the 96,000 simulations, and assign them to the following four classes, initially by visual inspection, and subse-

quently by defined criteria (see below):

I - stably low gene expression

II - stably high gene expression

III - uncoordinated transient high gene expression

IV- rare, transient coordinated high gene expression

Therefore we constructed three criteria, for which all the simulations were tested. We primarily focus on the rare, transient coor-

dinated high gene expression states, as defined by the following criteria:

1) Coordinated high gene expression state. We call a simulation to show coordinated high expression, if at least once within the

1,000,000 time unit simulation more than half of the mRNA counts are above a specified threshold (e.g. for 5 nodes, at least

once three or more mRNA counts have to be above a defined threshold; for 8 nodes, at least once 5 or more mRNA counts

have to be above a defined threshold). Similar to the definition of the dissociation constant k, we set the threshold to

thres = 0:8$d$
rprod
rdeg

;

where d * rprod/rdeg gives the high-expression steady state. Again, we want to detect the rare occurrence of a large mRNA count de-

viation from the low-steady state and hence, set the threshold arbitrarily to 0.8 (see below for details on the choice of this value).

To compare the simulated results with the experimental data from a drug-naive melanoma cell population, we split the 1,000,000

time unit simulations into 1,000 time unit sub-simulations, each accounting for a cell. Hence, we receive simulations of 1,000 cells for

1,000 time units, a procedure justified by the ergodic theory. To show that sub-simulations of 1,000 time units are uncorrelated, we

determine the autocorrelations for all 1,000 parameter sets of network 3.2 (Figure S9) for up to 1,000 lags (using the MATLAB

autocorrelation function acf (Autocorrelation function(ACF) (https://www.mathworks.com/matlabcentral/fileexchange/30540-

autocorrelation-function-acf), MATLAB Central File Exchange. Retrieved June 13, 2019.). For each of these, we determine the first

lag at which the autocorrelation is below the upper 95% confidence bound. For 88.2% of all simulations, the first lag below the upper

95% confidence bound occurs before 1,000 lags. For the 26 simulations with rare coordinated high states, 23 show a first lag below

the upper 95% confidence bound before 1,000 lags. For the remaining three simulations the autocorrelation after 1,000 lags is at

0.0615, 0.0206 and 0.4363. Removing the simulation with high autocorrelation (0.4363) does not change the conclusions of our

analysis.

2) Rareness/transience. To mimic the results given by RNA-FISH in a drug naive melanoma population, where we only see a

snapshot of the mRNA counts within a melanoma cell, we randomly determine a time-point trand, where trand ˛ [0,999] (uni-

formly distributed), at which we count the number of mRNA counts above the threshold (for each simulation t varies). We sum-

marize the result of all 1,000 cells in a histogram, for which we expect a decrease with increasing mRNA count above the

threshold.

3) Heavy-tailed gene expression distributions. At the population level, the single mRNA distributions of marker genes show

heavy-tails. We use the same time-point t as sampled for criterion 2) and consider the mRNA counts of all genes. If we plot

these in gene-dependent histograms, we expect to find right-skewed and unimodal distributions. Here, we use the MATLAB

function skewness(X) for evaluating the right-skewness of the histogram, where skewness(X) > 0, denotes that the data is

spread out more to the right of the mean. Skewness is defined as

skewnessðXÞ = E

�ðX� mÞ3
s3

�

where m is the mean of X, s is the standard deviation of X and E(.) the expectation. For determining unimodality, we test whether the

maximum of the last quarter of histogram bins with bin width of one is less than the minimum of the first quarter of histogram bins.

Although the definition above only characterizes a heavy-tailed distribution, we find it to be sufficient for our analysis.

Classes I and III, are both defined by criterion 1 only, where criterion 1 is not met in both cases. For class I, none of the genes in a

network ever express above the given threshold. For class III, genes express above the given threshold but not once are more than

half of the genes above the given threshold at any given time of the simulation. Only if a simulation is able to fulfill all three criteria, will

we call it a simulation of class IV - rare transient coordinated high gene expression. If a simulation fulfills criteria 1, but fails to meet

both other criteria, we classify it into class II. To receive numbers of simulations in class IV - rare transient coordinated high expression

- per network size, we randomly determine three different trand, where each trand ˛ [0,999] (uniformly distributed) and evaluate all
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96000 simulations for being in class IV at the respective snapshot (Figure 2A). Note that all these requirements are tested automat-

ically using a script without manual/human intervention.

To show that criterion 3) is sufficient for defining heavy-tailed simulations in class IV in our analysis, we constrain criterion 3) further

aiming to identify sub-exponentially decaying, heavy-tailed distributions more directly. We therefore reevaluate all simulations so far

identified as class IV and compare their 99th percentiles of their expression distributions with those of fitted exponential distributions

(Figure S3C, right panel). We expect most of the 99th percentile of the expression distributions to be larger than the 99th percentile of

the fitted exponentials. Due to the symmetry of the networks and the resulting similarity between the expression distributions (Fig-

ure S2C), we only consider node one here, without the loss of generality. To avoid that the fitted exponentials account for the heavy-

tails, we constrain the fits to have a maximal bin number (bin size of one) within H 1 of the maximal bin number (bin size one) of the

expression distributions. We do so by sequentially increasing/decreasing the exponential parameter m by steps of 10, sampling 1000

times from the resulting exponential distribution with theMATLAB function exprnd(m,1,1000) and comparing the maximal bin number

of the resulting histograms. We repeat the above until the maximal bin number of the exponential distribution is within the predefined

range ofH 1. As expression distributions with a large maximum bin are more similar to lognormal distributions with small variances

and less to exponentials, we restrict the analysis to expression distributions with a maximum bin of% 15 (Figure S3B). The threshold

of a maximum bin of 15 was determined by considering the simulations and their exponential fits. We additionally discard simulations

for which the optimization takes more than 1000 iterations or is producing non-positive parameter values.

Most (82%) of the 99th percentile of the simulated expression distributions are above the diagonal, hence larger than the 99thpercen-

tile of the fitted exponential distributions (Figure S3C, right panel). The 99th percentile of all the ninemarker genes in Shaffer et al. also lie

above the diagonal in the general vicinity of the points corresponding to simulations with rare coordinated high states (Figure S3C, left

panel). We therefore conclude that criterion 3) sufficiently selects for sub-exponentially decaying heavy-tailed distributions.

We additionally, perform parts of the analysis again on two different levels of stricter stringency for criterion of heavy-tailed distri-

butions (Figures S4F–S4M):

A) All simulations fulfilling criteria 1) - 3) which additionally comply to the above mentioned analysis (maximum bin % 15, 99th

percentile of expression distribution > 99th percentile of fitted exponential, <1000 iterations to reach a H 1 of the maximal

bin number (bin size one) in the optimization for determining the exponential fit and producing non-positive parameter values)

(Figures S4J–S4M)

B) All simulations fulfilling criteria 1) - 3) which additionally comply to the above mentioned analysis or have a maximum bin > 15

(Figures S4F–S4I)

The results are qualitatively very similar to the results we receive if we perform the analysis only on criteria 1) - 3) (Figures 2, 3 and

S4). The 6 and 7 rare coordinated high parameter sets identified by themore stringent analyses A) and B), respectively, are subsets of

the original eight rare coordinated high parameter sets (Figures 3A, S4H, and S4L). Although the resulting optimized decision trees

vary slightly, they still identify all three parameters, ron, radd and roff, controlling rare transient coordinated states, as in the original

analysis. Together, we conclude that the simple characterization of heavy-tailed distributions is sufficient for further analysis.

The analysis above isaprerequisite for further findingsandstatements.Due to its importance,we tested its robustnesswith respect to

the definition of the threshold, marking the mRNA count above which a gene is called to be in the high-gene expression state, and with

respect to the number of mRNA counts required above the threshold to call it a coordinated high state (both determining criterion 1).

For the test network 5.3, we hence repeated the analysis for thresholds:

thres = x$d$
rprod
rdeg

;

where x = 0.3 : 0.05 : 1 (here, for 100 latin hypercube sampled parameter sets (Table S1), andwe only test for class IV). Decreasing the

threshold down to 0.6 of the high-expression steady state does not change the set of simulations with rare behavior in comparison to

the results for x = 0.8. Even a further decrease of the threshold (down to 0.3 of the high-expression steady state) manifests in a similar

result: half of the simulations identified previously to show rare behavior are still classified as such. Hence, we keep x = 0.8 for the rest

of the analysis (Table S1).

Next, for network 5.3 and the 100 parameter sets (Table S1), we repeated the analysis requiring at least 1, 2, 4, and 5mRNA counts

to be above the threshold at least once, in order for the simulation to fulfill criterion 1. The lower the required mRNA count, the more

simulations fulfill criterion 1 (peaking at a required mRNA count of at least 1 with 11 out of the 100 simulations showing rare behavior

according to this definition). The above set of simulations entails the set of simulations fulfilling criterion 1 at the standard required

mRNA count of at least 3 (7 out of 100 simulations). Hence, we keep the definition of coordinated overexpression to more than

half the nodes being above the threshold.

Additionally, we computed the Gini indices for the gene expression distributions of both the simulations showing rare coordinated

high states and the experimental data (Figures 2D and S3A) (Jiang et al., 2016; Shaffer et al., 2017). A Gini coefficient of 0 implies

perfect equality such that for a given gene, all cells within a population have the same number of mRNAmolecules, whereas 1 implies

perfect inequality such that one cell expresses all themRNAmolecules while others express none.We used theMATLAB function gini

(Gini coefficient and the Lorentz curve (https://www.mathworks.com/matlabcentral/fileexchange/28080-gini-coefficient-and-the-

lorentz-curve), MATLAB Central File Exchange. Retrieved October 24, 2019.) for the computations.
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Network Topologies
Connectivity

We define a measure for the connectivity of the networks, where

connectivity = number of ingoing edges for any node of the network

where a self-loop is also considered to be an ingoing edge. As we constrain our analysis to symmetric networks (same number of in-

going edges for all nodes in a network per definition), we are able to define one single connectivity per network. The constraints

enable us to directly evaluate the impact of the connectivity of the network on the ability to form rare behavior.

Self-loops

A network with a direct auto-activation is called a network with a self-loop. Due to the restriction of symmetric networks, all networks

can be classified as having self-loops for all nodes or not having self-loop for any node. Due to non-isomorphism, the set of networks

contains for each network without self-loops an identical network with self-loops. We evaluate the ability of these different edge clas-

ses on the formation of rare coordinated high states (Figure 2G).

Characteristic Distance

The characteristic distance of a network is defined as the average shortest path length for all pairs of nodeswithin a given network. To

calculate this distance, we used theMATLAB function shortestpath on all pairs of nodes.We evaluated the ability of the characteristic

distance normalized to the network size on the formation of rare coordinated high states (Figure S5F).

Quantitative Analysis
For each of the 96,000 simulations showing rare coordinated high states we performed a quantitative analysis. First, we define a high

expression region as a regionwhich is initiated by the firstmRNA count to exceed the threshold, terminated by the lastmRNA count to

drop below the threshold and requires to contain a coordinated high expression state (criterion 1: more than half the mRNA counts

have to exceed the defined threshold) between the initiation and termination time-points. Breaks of up to 50 time unit intervals are

accepted due to the stochastic nature of the simulations. For example, in a 3 node network, where we require at least 2mRNA counts

to exceed the threshold for a coordinated high state: the first mRNA count exceeds the threshold (initiation), then the second mRNA

count exceeds the threshold (initiation of high state) but then drops below the threshold for 50 time units before exceeding the

threshold again, is still counted as one high-expression region. The length of 50 time units were defined arbitrarily. Due to the sto-

chasticity of the system and the conservative definition of the threshold (located close to the high-expression steady state), we

observe these temporary violations of criterion 1. In order to create sensible statistics on the quantitative behavior of the simulations,

the temporary relaxation of criterion 1 is necessary.

In the quantitative analysis we extract the total time spent in a high state (out of 1,000,000 time units) from all simulations showing

rare behavior (Figure S3D).

Decision Tree Optimization, Generalized Linear Models and Constrained Simulations
We classify all parameter sets into two classes, rare coordinated high parameter sets and non-rare coordinated high parameter sets,

according to the percentage of total simulations per parameter set (96 simulations) in which rare coordinated high states are

observed. The threshold above which a parameter set is called a rare coordinated high parameter set is at 20%. More than 19 of

the 96 simulations have to show rare behavior in order for a parameter set to be called a rare coordinated high parameter set.

The threshold was set according to a summarizing histogram, in which we see a clear distinction between the two groups: the

main body of the histogram being located below 20% and the few parameter sets deviating extremely from that main group (>

20%). According to this binary classification, we performed a decision tree optimization (MATLAB function fitctree).

To validate the results of the decision tree optimization, we used generalized linear models on all seven independent parameters

ron, radd, n, roff, rprod, d and rdeg with the MATLAB function fitglm(X,Y,’Distribution’,’binomial’).

To validate that the parameter region determined by the decision tree optimization favors the formation of simulations with rare

coordinated high states, we generate a new set of parameters constrained to values close to the minimal and maximal values of

ron, radd and roff for the rare coordinated high parameter sets:

Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.025

roff 0.06 0.1

d 2 100

radd 0.15 0.36

n 0.1 10
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We latin hypercube sample 1000 parameter sets from that constrained parameter space. For all 1000 parameter sets we simulate

1000000 time units by Gillespie’s next reaction method for networks 3.2 and 5.3 (Figure S9). Each of these simulations was evaluated

for having rare coordinated high states according to the three criteria (STAR Methods, section Simulation Classes).

Sensitivity Analysis
For each parameter, we tested its sensitivity across its corresponding parameter space (see STAR Methods, section Parameters).

Briefly, we take network 3.2 (Figure S9) for the detailed analysis as network 3.2 shows rare coordinated high states in all eight rare

coordinated high parameter sets. For each of the seven independent parameters (ron, roff, rpod, rdeg, n, d, radd), we determine 10 equi-

distant points across its parameter space, and create new parameter sets by swapping these new parameters one-by-one with ones

from the eight rare coordinated high parameter sets, resulting in 8*7*10 = 560 new parameter sets. We simulate 1,000,000 time units

with Gillepsie’s next reaction method for these newly created parameter sets and evaluate all new simulations for showing rare co-

ordinated high states. For each of the 10 newly sampled parameter values per parameter we receive 8 binary decisions where ‘1’

indicates that the simulation exhibits rare coordinated high states and ‘0’ that it does not. Our analysis confirmed that the three pa-

rameters (ron, roff, and radd) identified by the decision tree algorithm and generalized linear model are indeed critical for producing the

rare coordinated high states (Figure S6D). We also found a moderate dependence on the Hill coefficient n, also confirmed by the low

p-value for n from generalized linear model analysis (Figure S6C).

Burst Analysis: Maintenance of Rare Coordinated High States
For all simulations showing rare coordinated high states, we determine the fraction and frequency of transcriptional bursts in both the

high and baseline time-regions (Figures 4B and 4C). By fraction we mean the percentage of the total time the system is bursting. By

frequency we mean the number of bursts per unit time. Additionally, we determine the number of high states and the total time spent

in a high state for a network of size three (network 3.2, Figure S9) and three independent nodes for each of the parameter sets showing

rare coordinated high states in the connected network (Figure 4D).

Entry and Exit Mechanisms
Entering/Exiting of High Expression Region - Transcriptional Bursts

For all of the simulations in class IV showing rare coordinated high states - we analyze whether the durations of transcriptional bursts

are coordinated with the entering and exiting of high time-regions (Figure 4A; STAR Methods; section Quantitative Analysis).

For all of the simulations showing rare transient coordinated high gene expression, we analyze the distributions of waiting times

between genes entering and exiting the high expression region (see Quantitative Analysis).

Entering high expression regions - For all high expression regions, we determine the first time-points at which the gene counts

exceed the threshold (only for genes with a gene count exceeding the threshold during a particular high expression region at least

once). We then consider the waiting times - the time interval between the ascending sorted time-points of genes entering the high

expression region. These distributions - atmost N-1 distributions for a network of size N, one for eachwaiting time between the genes

- are compared to exponential distributions by the Lilliefors test according to the MATLAB function lillietest(X, ’Distr’, ’exp’) at a sig-

nificance level of 0.05.

Entering/Exiting of High Expression Region – Times

For all of the simulations showing rare transient coordinated high gene expression, we analyze the distributions of waiting times be-

tween genes entering and exiting the high expression region (see Quantitative Analysis).

Entering high expression regions - For all high expression regions, we determine the first time-points at which the gene counts

exceed the threshold (only for genes with a gene count exceeding the threshold during a particular high expression region at least

once). We then consider the waiting times - the time interval between the ascending sorted time-points of genes entering the high

expression region. These distributions - atmost N-1 distributions for a network of size N, one for eachwaiting time between the genes

- are compared to exponential distributions by the Lilliefors test according to the MATLAB function lillietest(X, ’Distr’, ’exp’) at a sig-

nificance level of 0.05.

Exiting high expression regions - For all high expression regionswe determine the last time-points at which the gene counts exceed

the threshold (again, only for genes with a gene count exceeding the threshold during a particular high expression region at least

once). We consider the waiting times and compare their distributions to exponential distributions by the Lilliefors test by applying

the MATLAB function lillietest(X, ’Distr’, ’exp’) at a significance level of 0.05.

Comparative Network Inference
Here we describe the computational techniques we used to infer the gene interaction network structure of the pre-drug and post-

drug cells. When studying regulatory interactions between genes in a network, it can be useful to abstract the problem into a graph

theory framework. Let us assume a set of N genes, with the expression level of each gene represented by the random variable Xi, with

i ˛ {1,...,N}. The network of interactions between genes can then be represented as a graph of N nodes. An edge Xi / Xj signifies a

regulatory relationship in which Xi either upregulates or downregulates Xj (Singh et al., 2018).

The computational challenge of network inference is to uncover the true edges of the gene interaction network from statistical re-

lationships between gene expression levels. Many different algorithms, often based onmutual information, conditional probability, or

regression analysis, have been developed (Singh et al., 2018; Huynh-Thu and Sanguinetti, 2019; Saint-Antoine and Singh, 2019). The
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output of an inference algorithm is amatrix of edgeweights, whichwewill call Wwith dimensions NxN. In thismatrix, the element wij is

a measure of how confident we can be that the edge Xi / Xj exists in the network. A final network prediction will typically set a

threshold for edge weights, and exclude any edges that fall below the threshold. Edges Xi / Xi, called ‘‘self-edges’’ are typically

excluded for the final network prediction, except in cases when temporal data is being analyzed. Since we are using atemporal

expression data here, self-edges will be excluded from the analysis.

It is common to judge a network inference algorithm’s reliability by testing it on a ‘‘gold standard’’ dataset, for which the true struc-

ture of the network is already known, to see how well it can recover the real edges from the expression data (Huynh-Thu and San-

guinetti, 2019). We have chosen to use the Phixer algorithm (Singh et al., 2018), based on its impressive performance when bench-

marked on the DREAM5 Challenge gold standard datasets (weblink: http://dreamchallenges.org/project/dream-5-network-

inference-challenge/; last accessed: 05/06/2019).

Phixer

Phixer computes edge weights using the phi-mixing coefficient. For discrete random variables X and Y taking values in sets A and B,

the phi-mixing coefficient 4(XjY) is defined as:

fðXi

		XjÞ = maxS4A;T4B

		Pr
Xi ˛S
		Xj ˛T

��PrfXi ˛Sg		: (Equation 1)

We then assign4(XijXj) as the weight of the edge Xj/ Xi. The phi-mixing coefficient is an asymmetric measure, so the weight of the

edge Xi / Xj may be different (Singh et al., 2018).

The original Phixer algorithm includes a pruning step, which attempts to correct for false positives byminimizing redundancy in the

network. For every possible triplet of nodes Xi, Xj, and Xk, the following inequality is checked:

4ðXijXkÞ%min


4ðXi

		XjÞ;4ðXj

		XkÞ
�

(Equation 2)

If Equation 2 holds, the edge Xk / Xi is eliminated. However, previous work has found that the pruning step, though theoretically

sensible, typically reduces accuracy in practice (Saint-Antoine and Singh, 2019), possibly due to the prevalence of redundant con-

nections, such as feed forward loops in gene regulatory networks. So, we removed this part of the algorithm in order to achieve the

highest possible level of accuracy.

The Phixer software is available online at the creator’s GitHub page: https://github.com/nitinksingh/phixer/ (last accessed: 05/06/

2019).We used the original C code, and kept the default parameter values the same, except for changing ‘‘NROW’’ to 19 and ‘‘TSAM-

PLE’’ to 4000, to reflect the dimensions of the input data files. The original Phixer code includes, by default, 10 bootstrapping runs, as

well as a built-in procedure for binning the raw data, which we did not alter. We removed the pruning step from the code, but other-

wise left the edge weight calculation process unchanged.

Data Description

The two pre-drug datasets are referred to as NoDrug1 and NoDrug2 in the supplementary data files (Table S2). The datasets con-

taining clusters of resistant cells after four weeks of drug exposure are referred to as Fourweeks1-cluster1, Fourweeks1-cluster2,

etc. where we differentiate between Fourweeks1with four clusters and Fourweeks2with three clusters. Details of how these datasets

were acquired are presented in (Shaffer et al., 2017).

Bootstrapping Controls

We found that the Phixer algorithm tends to predict more connections for larger sample sizes, even when the samples are taken from

the same dataset. To control for the differences in original sample sizes of various samples, we bootstrapped the original datasets

into 4000-sample datasets before performing the Phixer analysis. The number 4000 was chosen arbitrarily; bootstrapped sample

sizes of 1000, 2000, and 6000 also appeared to produce similar results.

Randomized Controls

For each size-controlled dataset to be analyzed, we created a randomized control consisting of permutations of each gene column

from the original dataset (Table S2). We then performed the Phixer analysis on these randomized controls. The resulting edge weight

distributions give us a baseline or control edge weight for Phixer that, in principle, reflects potential false positives. We found that in

the controls, nearly all of the predicted edge weights were below 0.45 (Figure S8B). Therefore, we decided to choose 0.45 as a

threshold for the non-control analysis, thus eliminating edges that could have been predicted by chance alone.

Finally, since the analysis contains two stochastic elements (the bootstrapping to correct for the sample size issue and the boot-

strapping step in the Phixer algorithm itself) we had to be sure that the observed differences in connectivity were not due to chance.

For each dataset, we ran the entire analysis (including both the bootstrapping size correction and the Phixer algorithm) 1000 times,

and provide the distributions of the number of edges with weight greater than 0.45 (Table S2).

Asymmetric Networks or Parameter Sets
To test the generality of the results, we generate asymmetric simulations. We introduce asymmetry in both network architectures and

the parameter sets.

Asymmetric Network

We randomly determine a weakly-connected but asymmetric five-node network (Figure S2G). We simulate the network with 100

parameter sets which are latin hypercube sampled out of the same parameter space as the 1000 parameter sets of themain analysis.
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Out of these 100 simulations, two simulations are classified as showing rare, transient coordinated high gene expression (fulfills all

three criteria in STAR Methods, section Simulation Classes, Figures S2H and S2I).

Asymmetric Parameter Sets
For the main analysis, we use the same parameter set, consisting of seven independent parameters (STARMethods, section Param-

eters), for all nodes in a network. We introduce asymmetry by assigning each node in a network a separate set of parameters. Hence,

we latin-hypercube sample 100 parameter sets out of a 7 x N parameter space, where N is the number of nodes of the network, with

the MATLAB function lhsdesign_modified. Due to the high dimensionality, we here confine the parameter space to:

where the changes in the boundaries are highlighted in blue. We confine the parameter space according to the clustering of rare

coordinated high parameter sets. In total, six parameter sets give rise to rare-states more frequently than others for all 96 networks.

Only two out of the seven independent parameters, radd and n, show a strong correlation with the rare coordinated high state pro-

ducing parameter sets as determined by a decision tree optimization. The boundaries in the table above are formed according to

these decision tree boundaries in which five out of the six rare coordinated high state producing parameters lie (Table S1).

For these 100 parameter sets, we generated simulations for five-node network 5.3 (Figure S2J). Out of the resulting 100 simula-

tions, we find two showing rare, transient coordinated high gene expression (fulfills all three criteria in STAR Methods, section Simu-

lation Classes; Figures S2K–S2M).

QUANTIFICATION AND STATISTICAL ANALYSIS

Figure 2E: Independent sampling of trand was performed 3 times. Boxplots show the median and 25th and 75th percentiles. Figures

4B, 4C, 4E, and 4F: Two-sample Kolmogorov-Smirnov test tested for significance level 0.05. Figures 4H and 4I: Lilliefors test tested

for significance level 0.05. Figures S4F and S4J: Independent sampling of trand was performed 3 times. Boxplots show the median

and 25th and 75th percentiles. Figures S5A andS5B: Independent sampling of trand was performed 3 times. Boxplots show themedian

and 25th and 75th percentiles. Figures S7A and S7B: Lilliefors test tested for significance level 0.05.

DATA AND CODE AVAILABILITY

Data
The data used and generated in this manuscript is available via Dropbox (https://www.dropbox.com/sh/n94q45zkn5w54fe/

AACC3cgts4kD6MWEE452pEgEa?dl=0).

Code
The MATLAB code used for the analysis of this manuscript is available on GitHub and the DOI is accessible via Zenodo (https://doi.

org/10.5281/zenodo.3713697). The analysis was performed with MATLAB R2017a and R2018a.

Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.1

roff 0.001 0.1

d 2 100

radd 0.2 0.4

n 5 10
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A.2. H4K20 methylation is differently regulated by dilution and demethylation in

proliferating and cell-cycle-arrested Xenopus embryos.

95



H4K20 methylation is differently regulated by dilution and demethylation
in proliferating and cell-cycle-arrested Xenopus embryos.

Lea Schuh, Carolin Loos, Daniil Pokrovsky, Axel Imhof, Ralph A.W. Rupp, and Carsten Marr.

Histone modifications such as methylation alter the chromatin accessibility of genes thereby

regulating their expression. Particularly during development, where cells continuously divide and

differentiate, a fast and economical control of gene expression is required. However, cells divide

rapidly during early development. With each cell cycle newly formed, largely unmodified histones

are incorporated into the DNA leading to an overall dilution of most histone modifications. How

is the histone modification landscape shaped by the cell cycle in vivo?

To identify whether the cell cycle plays an active role in shaping the histone 4 lysine 20 methylation

(H4K20me) landscape, we compared the H4K20me kinetics between cycling and cell-cycle-arrested

Xenopus embryos. First, we formulated a set of plausible mathematical models by ordinary

differential equations to explain the H4K20me kinetics in cycling Xenopus embryos. We accounted

for dilution of H4K20me proportions upon DNA replication by integrating and testing three

different cell cycle functions. Allowing for shared and specific methylation and demethylation rate

constants in addition to different cell cycle functions we received a set of 180 model hypotheses

to explain the H4K20me kinetics in cycling Xenopus embryos. Next, we performed multi-start

maximum likelihood optimization to infer the model parameters of all models and calculated

the Bayesian Information Criterion for each of the optimized models for model selection which

reduced the set of plausible models from 180 to 12. We found that only one of the three cell

cycle functions (constrained scaled Hill function with Hill coefficient 1 and offset 0.5) was able to

reproduce a biologically meaningful average cell cycle duration of 8 hours. While methylation rate

constants were necessary to be specific for each methylation step, demethylation rate constants

were found to be shared. Additionally, we found that models without demethylation performed

just as well as models with demethylation suggesting that demethylation is not required to explain

the H4K20me kinetics in cycling Xenopus embryos. We validated our findings by comparing the

inferred cell cycle duration of our top performing model with cell cycle durations of Xenopus

neural progenitors reported in literature. Furthermore, we used our top performing model

to predict the effect of morpholino knockdowns of the di- and tri-methyltransferases which

matched the experimental data assuming a 90% knockdown efficacy. We repeated the multi-start

maximum likelihood optimization and model selection on all 30 possible models describing the

H4K20me kinetics in cell-cycle-arrested Xenopus embryos. Similar to our findings in cycling

embryos, we found methylation to be specific while demethylation to be shared. However, for

cell-cycle-arrested Xenopus embryos the presence of demethylation was necessary to explain

the data. Finally, we devised a joint model taking into account H4K20me kinetics of cycling

and cell-cycle-arrested Xenopus embryos simultaneously. Constraining the joint model to our

previous findings, we evaluated 40 possible models on the joint H4K20me kinetics. Performing

model selection, we found a subset of 6 plausible models which all required a similar set of

cycling-specific rate constants. By considering the marginal distributions of the inferred rate

constants, we found that our model identified known cell-cycle-dependent rates. Furthermore,
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our results suggest that demethylation is only required in cell-cycle-arrested Xenopus embryos

likely serving as an alternative mode for regulation of H4K20me in cell-cycle-arrested Xenopus

embryos to dilution in cycling Xenopus embryos.

Statement of individual contribution

This work was motivated by a discussion between Ralph Rupp, Axel Imhof, Carsten Marr and me

during which we questioned whether the cell cycle plays a mere passive role in shaping the histone

modification landscape during embryogenesis. I subsequently formulated a mathematical model

describing the histone methylation kinetics for both cycling and cell-cycle-arrested Xenopus

embryos, identified a subset of plausible models by optimizing the mathematical formulation

based on ordinary differential equations on a time-series mass spectrometry data set of H4K20

methylation [49] and identified joint and cycling-specific rate constants. I was responsible for the

entire methodology, formal analysis and the writing of the manuscript. Merely, the subsection

Experimental model and subject details in STAR METHODS describing the experimental work

was written by Daniil Pokrovsky.

I, Lea Schuh, am the main author of this publication.
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SUMMARY

DNA replication during cell division leads to dilution of histone modifications and can thus affect chromatin-
mediated gene regulation, raising the question of how the cell-cycle shapes the histone modification land-
scape, particularly during embryogenesis. We tackled this problem by manipulating the cell cycle during
early Xenopus laevis embryogenesis and analyzing in vivo histone H4K20 methylation kinetics. The global
distribution of un-, mono-, di-, and tri-methylated histone H4K20 was measured by mass spectrometry in
normal and cell-cycle-arrested embryos over time. Using multi-start maximum likelihood optimization and
quantitativemodel selection, we found that three specific biologicalmethylation rate constantswere required
to explain the measured H4K20 methylation state kinetics. While demethylation is essential for regulating
H4K20 methylation kinetics in non-cycling cells, demethylation is very likely dispensable in rapidly dividing
cells of early embryos, suggesting that cell-cycle-mediated dilution of H4K20 methylation is an essential reg-
ulatory component for shaping its epigenetic landscape during early development.
A record of this paper’s transparent peer review process is included in the Supplemental Information.

INTRODUCTION

All cells in our body contain the samegenetic information encoded

in the DNA. However, we are constituted out of many different cell

types all performing their own specialized functions. Chromatin,

mainly composed of DNA and histone octamers (two copies of

histone H2A, H2B, H3, and H4 each), is an instructive DNA scaf-

fold that aids extracting cell-specific information for gene expres-

sion. Histone tails are subject to various post-translational modifi-

cations, such as methylation, acetylation, phosphorylation, and

ubiquitination (Bannister and Kouzarides, 2011), which play a

fundamental role in altering chromatin accessibility. Dynamic

regulation of gene expression is central for executing cell internal

programs (proliferation, differentiation, etc.) and reacting to cell

external signals with an appropriate response. Particularly during

development, where cells continuously divide and differentiate, a

fast and economical control of gene expression is required. His-

tone modifications are believed to regulate the progression

throughout development (Jambhekar et al., 2020). InXenopus lae-

vis, a model organism for developmental biology, stage-specific

histone modifications have been observed during the transit

from pluripotent to differentiated states, a process called epige-

nome maturation (Schneider et al., 2011). However, cells divide

rapidly during early development. With each cell cycle newly

formed, largely unmodified histones are incorporated into the

DNA leading to an overall dilution of most histone modifications

(Jasencakova et al., 2010). How is the histone modification land-

scape shaped by the cell cycle in vivo?

Histone methylation is known to play important roles in many

biological processes (Greer and Shi, 2012), and its deregulation

is linked to cancer and aging in humans (Fraga et al., 2005; Klut-

stein et al., 2016). The methylation of lysine 20 on histone H4

(H4K20) is one of the most frequent lysine methylation sites

observed in HeLa cells, mouse embryonic fibroblasts and several

other cell types (Evertts et al., 2013; Leroy et al., 2013; Pesavento

et al., 2008; Schotta et al., 2008). It is evolutionarily conserved from

Schizosaccharomyces pombe to humans (Lachner et al., 2004)

and is known to have a strong cell-cycle dependence. H4K20 oc-

curs in four different states, un-, mono-, di-, and tri-methylation.

Each methylation state plays a different functional role ranging

from DNA-damage repair and chromatin condensation observed

in fission yeast Schizosaccharomyces pombe (Sanders et al.,

Cell Systems 11, 1–10, December 16, 2020 ª 2020 The Authors. Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2004), over transcriptional regulation shown in human T cells (Bar-

ski et al., 2007) and Xenopus embryos (Nicetto et al., 2013),mitotic

progression found in Drosophila melanogaster (Sakaguchi and

Steward, 2007), to cell-cycle control (Schotta et al., 2008), and

silencing of repetitive DNA and transposons observed in mouse

models (Schottaetal., 2004) andXenopusembryos (vanKruijsber-

gen et al., 2017). H4K20me is regulated by three methyltrans-

ferases: KMT5A (also known as PR-Set7) for mono-methylation,

first identified in Drosophila (Fang et al., 2002; Nishioka et al.,

2002; Xiao et al., 2005), and SUV4-20H1 and SUV4-20H2 for

both di- and tri-methylation, first identified in mammalian cells

(Schotta et al., 2004). Whether there is a specificity of SUV4-

20H1/2 for di- or tri-methylation is still debated (Schotta et al.,

2008). The level of mono-methyltransferase KMT5A is cell-cycle

dependent, and its degradation in G1 phase leads to a decline of

H4K20me1 in lateG1asobserved inhumancell lines andXenopus

egg extracts (Abbas et al., 2010; Centore et al., 2010; Zee et al.,

2012). H4K20me1 reaches its lowest level in S phase while

increasing in G2 phase and peaking during mitosis. Both

H4K20me2 and H4K20me3 levels have also been found to be

cell-cycle dependent in HeLa cells though in a less dramatic

fashion (Pesavento et al., 2008). The cell-cycle-dependent pres-

ence of H4K20 methyltransferases allows H4K20me2 and

H4K20me3 tobe reestablishedonlyaftermitosis in thenextcell cy-

cle (Jørgensen et al., 2013). For demethylation, unspecific en-

zymes such as PHF8 have been observed in human cell lines

(Feng et al., 2010), but their functional importance has recently

been questioned (Alabert et al., 2020; Jørgensen et al., 2013; Re-

verón-Gómez et al., 2018). It has even been suggested that the

loss of histone mark H3K27me3 in mammalian cells may occur

only by dilution during chromatin replication rather than by active

removal (Jadhavetal., 2020). Finally, homologsofallH4K20-modi-

fying enzymes are present in the Xenopus genome (Bowes

et al., 2010).

To address the role of the cell cycle for epigenome maturation

in Xenopus development, we have measured histone modifica-

tion proportions in sibling embryo populations, which either pro-

liferate or are arrested at the G1/S transition. Using quantitative

mass spectrometry data for H4K20 we compared over 200

model hypotheses describing H4K20me kinetics in the cycling

and cell-cycle-arrested population. With only a few assump-

tions, our computational model is able to explain H4K20me ki-

netics, retrieves correct cell-cycle durations and known cell-cy-

cle dependencies of H4K20me. Furthermore, our approach

allows us to estimate cell numbers over time and reveals the

importance of three specific biological methylation rate con-

stants and a shared biological demethylation rate constant,

which is essential to establish the observed histone modification

profile in the cell-cycle arrested but not required in the cycling

population of Xenopus embryos.

RESULTS

Cell-Cycle Arrest Changes H4K20me Patterns during
Xenopus Embryogenesis
After in vitro fertilization of a Xenopus oocyte, cells rapidly divide in

a state of transcriptional quiescence up to 5.5 h post fertilization

(hpf) (Heasman, 2006). Only then a regular zygotic cell cycle con-

taining G1 and G2 phases is initiated (Newport and Kirschner,

1982). To identify how H4K20 methylation (H4K20me) is shaped

by cell-cycle, we compared a population of normal Xenopus em-

bryos (fromnowon called ‘‘mock’’) with a cell-cycle-arrested pop-

ulation. For this, half of the embryos were continuously incubated

with hydroxyurea/aphidicolin (from now on called ‘‘HUA’’) from

gastrulation onward (11 hpf). This treatment arrests cells at the

G1/S boundary and is compatible with embryonic development

(Harris and Hartenstein, 1991). HUA treatment applied before 11

hpf is lethal (Harris and Hartenstein, 1991; Pokrovsky et al.,

2020). Correct and robust establishment of the cell-cycle arrest

by HUA in the Xenopus embryos has been shown by Pokrovsky

et al. (2020). Mass spectrometry measurements of H4K20me

states, averaging over all cells in the embryos and all histones in

the cells, were conducted at 14.75, 19.75, 27.5, and 40 hpf corre-

sponding to late gastrula (NF13), neurula (NF18), tailbud (NF25),

and tadpole (NF32) stages, respectively (Figure 1A). H4K20me

proportions of mock and HUA showed significant differences

across three biological replicates in all four H4K20me states (Fig-

ure 1B). In HUA-treated embryos, methylation accumulates in

the di- and tri-methylation states in comparison to mock. Upon

DNA replication, newly synthesized and unmodified histones are

incorporated in mock, while in HUA, only little DNA replication

takes place and hence only little incorporation of newly synthe-

sized and unmodified histones occurs. All three biological repli-

cates result in highly reproducible H4K20me proportions across

all four developmental stages suggesting a high accuracy and

quality of the mass spectrometry measurements.

Specific Methylation Rate Constants Are Necessary to
Explain H4K20me in Mock Embryogenesis While
Demethylation Is Not Essential
To identify how H4K20me kinetics are shaped by cell cycle, we

defined models for untreated embryos (mock) and fitted them to

the data (see STAR Methods). Mock models are composed of

four H4K20me states corresponding to un- (me0), mono- (me1),

di- (me2), and tri-methylated (me3)H4K20, allowing for successive

methylation and demethylation with biological rate constants mi

and di, i ˛ {1,2,3}, respectively (see Figure 2A and STARMethods

for a detailed model description). For mock, where the cells un-

dergo cell division, newly synthesized and unmethylated histones

are incorporated into replicating DNA leading to a continuous dilu-

tion of methylated H4K20. Considering methylation proportions

(defined as the frequency of a particular methylation state divided

by the sum of all methylation states as measured by mass spec-

trometry), cell-cycle results in an overall increase of unmethylated

H4K20mediatedbyanoutflowofH4K20mestateswithpopulation

growth rateg(t) = ln(2)/c(t),wherec(t) is theaveragecell-cycledura-

tion c across all cells as a function of experiment time t (see Fig-

ure 2A and STAR Methods). Having measured average

H4K20me proportions across whole Xenopus embryos, our cell-

cycle function accordingly models average cell-cycle durations

acrossall cells constituting theXenopus embryos at the respective

developmental stages. By considering average H4K20me propor-

tions across asynchronous cell populations (Boterenbrood et al.,

1983), we assume H4K20me dilution to occur continuously. The

most general model is parameterized with six biological rate con-

stants,whereabiological rateconstant isdefinedas theproportion

ofH4K20 inaparticularmethylation statebeingmethylated/deme-

thylated per hour (h�1). Although no actual enzymatic rate
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constants are derived we will refer to the biological rate constants

as rate constants from here on. The most general model contains

three rate constants for methylationm1, m2, andm3 and three rate

constants for demethylation d1, d2, and d3 (Figure 2B, rightmost

model). However, we also considered models with less parame-

ters: rate constants shared between two or more reactions are

termed ‘‘shared methylation/demethylation rate constants’’ (Fig-

ure 2B, gray) and rate constants specific to one reaction are

termed ‘‘specific methylation/demethylation rate constants’’ (Fig-

ure 2B, colored). Intrigued by the question whether demethylation

is important for methylation kinetics at all (as its existence was

recentlychallengedat least for histoneH3 lysine27 tri-methylation;

Reverón-Gómez et al., 2018), we also considered 5 models

without demethylation. In total, the 30 models we consider

comprise between 1 and 6 rate constants (Figure 2B; STAR

Methods). In addition to the rate constants, we inferred another 4

model parameters: 3 initial H4K20me proportions at 5.5 hpf (de-

noted as me00, me10, me20, me30 with me00 = 1 � me10 �
me20 �me30), and one noise parameter s, determining the width

of the Laplacian noise distribution (STAR Methods). As we were

interested in H4K20me kinetics under the influence of the cell cy-

cle, we started our mockmodel at 5.5 hpf (Figure 1A), when a reg-

ular zygotic cell-cyclewithG1/G2 phases is initiated (Newport and

Kirschner, 1982). Since cell cycle hasbeenshown to vary substan-

tially with embryonic age, we considered 6 different cell-cycle

functions c(t) to model cell cycle over the experiment time t: con-

stant, linearly increasing, or gradually plateauing (using a scaled

Hill functionwithHill coefficient 1 and offset) (Figure 2C). The num-

ber of model parameters for the cell-cycle functions varied from 1

(for the constant cell-cycle function) to 3 parameters (for the grad-

ually plateauing cell-cycle function) (STAR Methods). We per-

formedmulti-startmaximum likelihoodoptimizationandmodel se-

lection on 180 models (30 models times 6 different cell-cycle

functions). Including prior biological knowledge about the short

cell-cycle at 5.5 hpf of ~30 min (Anderson et al., 2017; Gelens

et al., 2015), we found that only one of the six tested cell-cycle

functions was able to predict a biologically meaningful average

cell-cycle duration of around 8 h: a constrained scaledHill function

withHill coefficient1andoffset0.5, c(t) =0.5+b(t/(b+ t)) (TableS1).

All models with other cell-cycle functions estimated average cell-

cycle durations of at least 70 h. Using a constrained scaled Hill

function, we found 12 models that outperformed other models

with a BIC (Bayesian information criterion) difference of DBIC >

10, which is considered to be an appropriate threshold for model

rejection (Kass and Raftery, 1995) (Figure 2D). The two best

models (with DBIC = 0) show specificity in tri-methylation and

shared rate constants for mono- and di-methylation. Overall, the

best models with and without demethylation showed specificity

A

B

Figure 1. H4K20 Methylation Kinetics during Xenopus Embryogenesis Are Altered upon HUA-Induced Cell-Cycle Arrest

(A) Xenopus eggs are fertilized in vitro at time point 0. For the next 5 hpf, the embryonic cell-cycle consists of S and M phases only. At 5.5 hpf, G1 and G2 phases

appear. At 11 hpf, half of the embryos are incubated with hydroxyurea/aphidicolin (HUA), arresting cells at the G1/S boundary. Mass spectrometrymeasurements

of H4K20 methylation (H4K20me) are performed at 14.75, 19.75, 27.5, and 40 hpf in embryos with dividing (mock) or non-dividing cells (HUA). HUA incubated

embryos are viable and visually remarkably similar to mock embryos (scale bar 1 mm).

(B) H4K20me kinetics differ significantly between mock (gray) and HUA treated (green) embryo populations (two-sample t test for all three biological replicates of

mock and HUA for each time point resulted in p values < 0.05 for 15 out of 16 time points). In HUAH4K20 un- andmono-methylation is decreased while H4K20 di-

and tri-methylation (see inset) is increased.
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in either all three methylation rate constants or only in the tri-

methylation rate constant. Varying numbers of demethylation

rate constants were possible, ranging from 0 to 3. Fits to these

12 top models were able to capture the kinetics underlying

H4K20me during mock embryogenesis (Figure 2E). Together, we

found that either three specific methylation rate constants or one

specific tri-methylation rate constant were necessary to explain

the data from untreated embryos and that active demethylation

was not required.

Validation of Mock Model by Comparing Cell-Cycle
Durations to Experimental Data
We validated one of the best-performing models by comparing it

to the average cell-cycle durations experimentally measured in

Xenopus neural progenitors at various developmental stages

(Graham and Morgan, 1966; Sabherwal et al., 2014; Thuret

et al., 2015). We are aware that this comparison is drawn between

the average cell-cycle durations of heterogeneous cell popula-

tions of Xenopus embryos and potentially more homogeneous

cell populations of neural progenitors. However, to the best of

our knowledge, this is the only available data onaverage cell-cycle

durations during early Xenopus embryogenesis, which we could

use for comparison. The cell-cycle durations from themockmodel

with three specific methylation rate constants but no demethyla-

tion (Figure 2F, inset) showed good agreement with measured

cell-cycle durations (Figure 2F). Using thismodel,we can also pre-

dict the absolute number of cells within a normally developing em-

bryo, which is experimentally challenging. For the same model

(Figure 2G, inset), the number of cells was predicted to rise expo-

nentially from roughly 20,000 cells after 10 h to 300,000 cells after

40 h (Figure 2G and STAR Methods). Similar results are obtained

for the other best-performing mock models. Additionally, we pre-

dicted the effect of morpholino knockdowns of the di- and tri-

methyltransferases SUV4-20H1/2 (KD) on H4K20me kinetics

with the samemodel (Figure 2H).We found that a complete reduc-

tion of the di- and tri-methylation rate constants did not match the

data perfectly. However, under the assumption that either the

knockdown efficacy is not 100%or that there exist other enzymes

performing di- and/or tri-methylation leading to a leaky reduction

of the original di- and tri-methylation rate constants to 10%, the

model is able to capture the perturbation.

SpecificMethylation Rate Constants and Demethylation
Are Necessary to Model H4K20me in HUA
Embryogenesis
In contrast tomock,methylatedH4K20 is not diluted in the cell-cy-

cle-arrested HUA embryo population. We thusmodeled HUAwith

the same set of reactions, however, without a cell-cycle function

g(t) = 0 (Figure 3A). Similarly, to the mock model we performed

multi-start maximum likelihood optimization and model selection

on 30 HUA models with and without demethylation. We found

that the five best-performing models (with DBIC < 10) all required

three specific methylation rate constants and demethylation (Fig-

ure 3B). The number of demethylation rate constants varied be-

tween 0 and 3 (Figure 3B). The single best-performing HUAmodel

without demethylation (rightmost model in Figure 3B) was sub-

stantially outperformed by the HUA models with demethylation

(DBIC = 13), suggesting that demethylation was essential to

explain the HUA data. The model fits of the five best HUA models

were able to capture the kinetics underlyingH4K20meduringHUA

embryogenesis (Figure 3C). Together, we found that three specific

methylation rate constants were necessary to explain the HUA

data and that demethylation was essential.

Joint Model Is Able to Retrieve Cell-Cycle Dependence
of H4K20me and Finds Demethylation to Be Essential in
HUA but Not Necessary in Mock
Themodels performing best inmock andHUA required three spe-

cific methylation rate constants and were indecisive about deme-

thylation ranging from no demethylation over one shared to three

Figure 2. Demethylation Is Not Necessary to Explain Data of Cycling Mock Cells

(A) Model of cycling mock population composed of four H4K20 states: un- (me0), mono- (me1), di- (me2), and tri-methylation (me3). m1, m2, andm3 represent the

mono-, di-, and tri-methylation rate constants and d1, d2, and d3 represent the demethylation rate constants. An overall dilution of methylation happens due to cell

division, parametrized with population growth rate g(t), which is dependent on the cell-cycle function c(t).

(B) All possible parameter combinations result in 5 models without demethylation and 25 models with demethylation. Rate constants specific to a particular

methylation or demethylation step are indicated in color, rate constants shared between methylation or demethylation steps are shown in gray. The number of

rate constants ranges between 1 for the simplest model with no demethylation and shared methylation rate constant and 6 for the most complex model, where

each methylation and demethylation rate constant is specific.

(C) Only a constrained scaled Hill function with Hill coefficient 1 and offset 0.5 gives an average cell-cycle duration in the expected range of 8 h (marked by the

black box). All other cell-cycle functions c(t) predicted average cell-cycle durations of at least 70 h, which is biologically notmeaningful and reflects a population of

non-cycling cells.

(D) The 12 best-performing models are ordered by increasing BIC. All models withDBIC < 10 require either three specific methylation rate constants (m1, m2, and

m3) or a specific tri-methylation rate constant. However, if present, demethylation may take on any of the 5 possible rate constant combinations. The best-

performing models without demethylation perform similarly well as the best-performing models with demethylation (DBIC = 0 and 1). The estimated average cell-

cycle duration <c(t)> is in a biologically realistic range of around 8 h.

(E) All 12 best-performing models fit the data. The model with three specific methylation rate constants but with no demethylation is shown in black.

(F) Model prediction of the cell-cycle duration (median, 25th and 75th percentiles of MCMC samples of the cell-cycle parameter of the model with three specific

methylation rate constants but with no demethylation (inset)) agrees with experimental measurements of different papers.

(G) The model with three specific methylation rate constants but with no demethylation (inset) predicts an increase of cell numbers from roughly 20,000 cells after

10 h to 300,000 cells after 40 h (using the median, 25th and 75th percentiles of the MCMC samples of the cell-cycle parameter of the model with three specific

methylation rate constants but with no demethylation (inset)) in a developing Xenopus embryo.

(H) Themodel with three specificmethylation rate constants but with no demethylation is able to predict the effects onH4K20me uponmorpholino knockdowns of

the di- and tri-methyltransferases SUV4-20H1/2 (KD) assuming a reduction to 10% of the original di- and tri-methylation rate constants. The dotted lines are the

H4K20me kinetics predictions corresponding to 0%, 5%, and 15% of the original di- and tri-methylation rate constants. The solid line shows the previous fit with

100% of the original di-and tri-methylation rate constants.

See also Table S1.
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specific demethylation rate constants (Figures 2D and 3B). To

determine which rates are substantially different between the

two Xenopus populations we considered these findings and

devised a joint model considering mock and HUA data simulta-

neously. For the most general hypothesis (Figure 4A), we allowed

for threemock-and threeHUA-specificmethylation rateconstants

(visualized bya half gray and half green dot form1,m2, orm3 in Fig-

ure 4B). We also allowed for joint methylation rate constants

sharedbetween specificmockandHUAmethylation steps (visual-

ized as an orange dot for m1, m2, or m3 in Figure 4B) reducing the

number of parameters. As demethylation was not necessary to

explain themockdataandonedemethylation rateconstantshared

between methylation steps was sufficient for HUA, we here

restricted demethylation to the simplest case of at most one

shared demethylation rate constant dmock and dHUA (Figure 4A).

We allowed for mock- and HUA-specific demethylation rate con-

stants (visualizedagainbyahalf grayandhalf greendot ford inFig-

ure 4B) or a joint demethylation rate constant for mock and HUA

(visualized as an orange dot for d in Figure 4B). Furthermore, as

a constrained scaled Hill function with Hill coefficient 1 and offset

0.5was theonly function that led tobiologicallymeaningful cell-cy-

cle durations (see above and Figures 2C and 2F), we did not

consider different cell-cycle functions thereby reducing the set of

possiblemodels to8 jointmodelswithoutdemethylation (Figure4B

left), 16 jointmodelswith demethylation and 23 8modelswith de-

methylation in eithermockorHUA (Figure4B right). To identify joint

models that are able to explain our measured data, we again fitted

themodels usingmulti-start maximum likelihood optimization and

model selection.

All 6 best-performing joint models (DBIC < 10) required mock-

and HUA-specific mono- and di-methylation rate constants (Fig-

ure 4C). However, theywere not conclusive about tri-methylation

and, if present, demethylation rate constants (Figure 4C). Spec-

ificity in one ormore rate constants highlights that the differences

in H4K20me proportions of mock and HUA are not explicable by

the missing cell cycle alone but that the overall H4K20me ki-

netics are cell-cycle dependent. The model structure of the

best-performing joint model (model I) is shown in Figure 4D. Joint

models with demethylation in HUA only (models I and V in Fig-

ure 4C) performed just as well as joint models with demethylation

in both HUA andmock (models II, III, IV, and VI in Figure 4C) while

joint models without demethylation (DBIC = 17 and 20) and joint

models with demethylation inmock only (DBIC = 21 and 26) were

substantially outperformed. This suggested that demethylation

was essential for HUA only, in accordance with the results

from the separate models (Figures 2D and 3B).

The top 6 joint models (models I–VI in Figure 4C) showed good

overall agreement with mock and HUA data (Figure 4E) and

strongly consistent rate constants (Figure 4F). We determined

the marginal distributions for all rate constants by Markov chain

Monte Carlo (MCMC) sampling, where the credibility ranges are

the 25th and 75th percentiles of the marginal distributions (see

STAR Methods). We found strong discrepancies between mono-

and di-methylation rate constants for mock and HUA, decreasing

A B

C

Figure 3. Demethylation Is Essential to Explain Data of Cell-Cycle-Arrested HUA Cells

(A) Model of cell-cycle-arrested HUA population. In contrast to the mock model (Figure 2A), the HUA cells do not divide ( g(t) = 0), and no dilution of methylated

H4K20 is required.

(B) The 5 best-performing HUA models with DBIC < 10 all require 3 specific methylation rate constants (m1, m2, and m3) and demethylation. However, de-

methylation may take on any of the 5 possible rate constant combinations. The single best-performing HUA model without demethylation (right) is outperformed

by the HUA models with demethylation (DBIC = 13).

(C) Model fits of top 5 HUA models with demethylation overlap strongly and show the ability to explain the HUA data. The best-performing model is highlighted

in black.

See also Table S1.
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10-fold and 2-fold, respectively (Figure 4F). The mock-specific

mono- and di-methylation rate constants of the top 6 joint models

had overlapping credibility ranges suggesting that for mock, a

shared rate constant for mono- and di-methylation would suffice

(Figure 4F). Similarly, mock- and HUA-specific tri-methylation

rate constants show overlapping credibility ranges suggesting

that a joint tri-methylation rate constant would suffice. In joint

models with demethylation (models III and VI) we found the

mock-specific demethylation rate constants to take on very small

values while the HUA-specific demethylation rate constants were

small but substantially larger: for model VI the median mock-spe-

cific demethylation rate constant was estimated to be 2.0 10�4

(with 0.5–8.3 10�4 credibility range), while theHUA-specificdeme-

thylation rate constantwas estimated tobe5.9 10�3 (4.9–7.0 10�3)

(Figure 4F).

DISCUSSION

The joint demethylation rate constants (in models II and IV) were

estimated to similar values as HUA-specific demethylation rate

constants (the joint demethylation rate constant for model II and

the HUA-specific demethylation rate constant for model VI were

both estimated to be 5.9 10�3 [4.9–7.0 10�3]). This suggests

that joint demethylation rate constants are overshadowed by the

HUA model, strengthening the hypothesis that demethylation is

not necessary in mock but essential in HUA. We would like to

note that we here consider bulk H4K20me mass spectrometry

data. However, demethylation might act highly localized and spe-

cific on only a few promoter nucleosomes with very important

functions. Biologically, this could mean that while demethylases

are present during embryogenesis, their effect in cycling cells is

minute due to an overall dilution by unmodified histones. Only

when cells stop to cycle (as modeled with the HUA treatment in

our approach) demethylation kicks in and stabilizes post-transla-

tional modifications specifically, thereby potentially driving differ-

entiation. To verify this experimentally, a knockdown of the H4K20

demethylases in HUA-treated embryos would be required where

we hypothesize severe phenotypes due to the cell’s incapability

of reversing methylation. In contrast, such a knockdown should

show little to no effect in untreated embryos aswe hypothesize lit-

tle to no active demethylation here. However, known H4K20 de-

methyltransferases e.g., PHF8, ROSBIN, and PHF2 are not spe-

cific to H4K20, and no global inhibitors of H4K20 demethylation

are yet known. Hence, an experimental validation of our model

predictions is currently not feasible due to technical limitations

and therefore beyond the scope of this work.

Our findings can be interpreted in light of the current knowledge

on methyltransferases. Themono-methyltransferase KMT5A (also

known as PR-Set7) was found to be cell-cycle dependent, getting

degradedby the proteasome inG1phase (Abbas et al., 2010;Cen-

tore et al., 2010). In the absence of KMT5A, mono-methylation

might be compensated by SUV4-20H1/2 but with lower activity

(Southall et al., 2014; Yang et al., 2008). HUA treatment blocks

the cell-cycle at the G1/S boundary, suggesting that none to little

KMT5A is present in HUA to mono-methylate H4K20. This is re-

flected by a 10-fold decrease in the HUA-specific mono-methyl-

ation rate constant in all best-performing joint models (Figure 4F).

AsHUA-specificmono-methylation rateconstantswerenecessary

to explain thedata (seeFigure4C), the jointmodel is able to retrieve

this knowncell-cycle dependence ofH4K20me.H4K20me2 is also

regulated in a cell-cycle dependent manner, however, peaking in

G1 phase (Pesavento et al., 2008). In contrast, all best-performing

joint models estimate the HUA-specific di-methylation rate con-

stants to be decreased 2-fold in comparison to the mock-specific

di-methylation (Figure 4F). We hypothesize this unexpected

decrease of HUA-specific di-methylation to be due to either

compensatory effects of SUV4-20H1/2, when the enzymes addi-

tionally mono-methylate H4K20, or so far unknown effects.

The separate model for mock identified either only tri-methyl-

ation or all three methylation steps to be specific (Figure 2D). The

joint model reflects the same specificities regarding methylation

in mock. Even though the joint model allows for specificity in all

three methylation steps, the credibility ranges of mock-specific

mono- and di-methylation rate constants in the joint models over-

lap (Figure 4F left). This suggests that a shared rate constant for

mock mono- and di-methylation would suffice resulting in a

mock model with specificity in tri-methylation only. However, in

the joint models the HUA-specific mono- and di-methylation rate

constants have non-overlapping credibility ranges with respect

to the mock-specific rate constants (10-fold and 2-fold decrease)

nor to each other. Under the assumption that the mock and HUA

models are based on the samemodel structure, allowing for three

Figure 4. Joint Computational Modeling Allows Direct Comparisons between Mock and HUA Rate Constants and Reveals that Demethyla-

tion Is Overshadowed by HUA

(A) Joint model allows for three methylation and one demethylation rate constants for both mock and HUA as suggested by the best models for mock and HUA.

(B) We fit 16 models with demethylation and 8 models each for without demethylation in mock and/or HUA to the joint data to infer mock- and HUA-specific rate

constants. The joint rate constants of mock and HUA are shown in orange, the rate constants present in both the mock and HUAmodels but taking onmock- and

HUA-specific values are indicated in gray/green, the rate constants only present in themock or HUAmodel are shown in gray and green half-circles, respectively.

The model structure of the most complex of models is shown in (A). The number of rate constants ranges between 3 and 8.

(C) The best-performing models on the combined dataset are ordered according to their BIC value. All models require HUA-specific mono- and di-methylation

rate constants but are indecisive about tri- methylation and demethylation. Joint models where demethylation is present in either only HUA or in both mock and

HUA perform equally well. Joint models where demethylation is not present in either only HUA or in bothmock andHUA perform considerably worse. Model IDs of

all considerably best-performing models are given (I–VI).

(D) Model structure of the simplest best-performing joint model with demethylation in only HUA (model I).

(E) All best-performing joint models are able to explain both the mock and HUA data. The estimated initial conditions vary between the models. Joint model I is

highlighted.

(F) The violin plots of the marginal distributions of all best-performing joint models show high consistency between the estimated methylation and demethylation

rate constants. HUA-specific mono- and di-methylation rate constants are considerably decreased. Tri-methylation rate constants betweenmock and HUA have

strongly overlapping marginal distributions. Demethylation seems to be dominated by the HUA population and is negligible in the mock population if a mock-

specific demethylation rate is allowed.

See also Table S1.
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specific methylation rate constants in the joint model was thus

necessary (Figure 4F) to resolve these differences.

All three joint models with specificity in tri-methylation (models

IV, V, and VI) result in slightly lower BIC values (Figure 4C), which is

likely due to an increased penalization term for an additional esti-

mated parameter and not due to a decreased likelihood. The esti-

mated tri-methylation rate constants are small (on the order of

10�3) and the credibility ranges for mock- and HUA-specific tri-

methylation overlap in all three joint models suggesting that a joint

tri-methylation rate constant would suffice. When we interpret dif-

ferences in HUA and mock rates as indications for cell-cycle

dependent rates, we find no evidence for cell-cycle dependence

for H4K20 tri-methylation. To clarify if the corresponding enzymes

are indeed homogeneously expressed is up to further research.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILIBILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Carsten

Marr (carsten.marr@helmholtz-muenchen.de).

Materials Availability
This study did not generate new materials.

Data and Code Availability
d H4K20 methylation proportions have been deposited at https://github.com/marrlab/HistonesXenopus and are publicly avail-

able at https://doi.org/10.5281/zenodo.4046502.

d Original MATLAB code is publicly available at https://github.com/marrlab/HistonesXenopus and https://doi.org/10.5281/

zenodo.4046502.

d The scripts used to generate the figures reported in this paper are available at https://github.com/marrlab/HistonesXenopus

and https://doi.org/10.5281/zenodo.4046502.

d Any additional information required to reproduce this work is available from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal work has been conducted in accordancewith Deutsches Tierschutzgesetz; Xenopus experiments were approved by theGov-

ernment of Oberbayern.

Embryos Handling and HUA Treatment
Xenopus laevis eggs were collected, in vitro fertilized and handled by standard methods (Sive et al., 2000). The staging was done

according to Nieukoop and Faber (Faber andNieuwkoop, 1994).When embryos reached the desired stage (NF10.5), they were sepa-

rated into two groups and incubated continuously into either HUA or mock solutions in parallel. HUA solution: 20mM Hydroxyurea

(USBiological, H9120) and 150mM Aphidicolin (BioViotica, BVT-0307) in 0.1x MBS solution (Harris and Hartenstein, 1991). Mock so-

lution: 2% DMSO (dissolvent for Aphidicolin) in 0.1x MBS solution. The embryos were collected at the four developmental stages

(NF13, NF18, NF25 and NF32) for the mass spectrometry analysis.

Nuclear Histone Extraction
Around 50 to 200 embryos developed to desired stages (NF13, NF18, NF25 NF32). They were harvested and histone proteins were

purified by acid extraction from nuclei (Pokrovsky et al., 2020; Schneider et al., 2011). Each developmental stage is represented by

three biological replicates. Each biological replicate derived from a different mating pair.

Mass Spectrometry Sample Preparation
The pellet from the nuclear histone extraction was dissolved in an appropriate amount of L€ammli Buffer to reach 1.37 106 nuclei/ml in

each sample. 15mL were loaded on an 8-16% gradient SDS-PAGE gel (SERVA Lot V140115-1) and stained with Coomassie Blue to

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

H4K20me proportions This work https://doi.org/10.5281/zenodo.4046502

Software and Algorithms

MATLAB2017a (including the Statistics and

Optimization Toolbox)

Mathworks https://www.mathworks.com

AMICI Fröhlich et al., 2017 http://icb-dcm.github.io/AMICI/

PESTO Stapor et al., 2018 https://github.com/ICB-DCM/PESTO

Code – parameter estimation and model

selection

This work https://doi.org/10.5281/zenodo.4046502
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visualize the histone bands. Histone bands were excised and propionylated (as described in (Villar-Garea et al., 2012)). As an internal

and inter-sample control, a library consisting of heavy-labelled peptides mimicking H4K20 methylation states which contain a heavy

Arginine (R10 peptides) was used (product of JPT company). R10 peptides weremixed in the library with the equimolar concentration

and the mix was added to each analyzed sample before in-gel trypsin digestion. Digested peptides were sequentially desalted using

C18 Stagetips (3M Empore) and porous carbon material (TipTop Carbon, Glygen) as described in (Rappsilber et al., 2007) and resus-

pended in 15ml of 0.1% FA.

Mass Spectrometry Analysis
To identify and measure the proportion of the histone modifications a parallel reaction monitoring method (PRM) was used

(Liebler and Zimmerman, 2013). The mass spectrometer was operated in the scheduled PRM mode to identify and quantify

specific fragment ions of N-terminal peptides histone proteins. In this mode, the mass spectrometer automatically switched

between one survey scan and 9 MS/MS acquisitions of the m/z values described in the inclusion list containing the precur-

sor ions, modifications and fragmentation conditions. Survey full scan MS spectra (from m/z 270–730) were acquired with

resolution 60,000 at m/z 400 (AGC target of 3x10^6). PRM spectra were acquired with resolution 30,000 to a target value of

2 105, maximum IT 60 ms, isolation window 0.7 m/z and fragmented at 27% or 30% normalized collision energy. Typical

mass spectrometric conditions were: spray voltage, 1.5 kV; no sheath and auxiliary gas flow; heated capillary tempera-

ture, 250�C.

Histone Modifications Quantification
Data analysis was performed with Skyline (version 3.7) (MacLean et al., 2010) by using doubly and triply charged peptide masses for

extracted ion chromatograms (XICs). Selection of respective peaks was identified based on the retention time and fragmentation

spectra of the spiked in heavy-labelled peptides. Integrated peak values (Total Area MS1) were exported as csv file for further cal-

culations. Total area MS1 from endogenous peptides was normalized to the respective area of heavy-labelled peptides. The sum of

all normalized total area MS1 values of the same isotopically modified peptide in one sample resembled the amount of total peptide.

The proportions of the different K20 methylation states were calculated and displayed as percentages of the overall K20 peptide

amount.

METHOD DETAILS

Models
HUA and Mock Models

We consider the proportions of un- (me0), mono- (me1), di- (me2) and tri-methylated (me3) H4K20 within a Xenopus embryo popu-

lation, defined as

meX =
meXMSP3
i = 0meiMS

;

where meXMS is the H4K20 methylation as measured by mass spectrometry and X ˛ {0,1,2,3}. We assume successive methylation

and demethylation of H4K20 (van Nuland and Gozani, 2016) resulting in three possible methylation rate constants for mono-, di-, and

tri-methylation with rate constants m1, m2, m3, respectively, and three possible demethylation rates with rate constants d1, d2, d3

(Figures 2A and 3A). However, reactions might share rate constants. The simplest model (Figure 2B left) comprises one shared

methylation rate constant for mono-, di- and tri-methylation We successively added model-specific rate constants to this simplest

model (Figure 2B). Models allowing for two specific methylation rate constants are identical to a model allowing for three specific

methylation rate constants. Hence, we do not consider models with two specific methylation rate constants separately. This results

in 23-3 = 5 models for methylation - three methylation rate constants with either a shared or specific rate constant minus the three

cases where we assume only two of the three rate constants to be specific. We have the same for demethylation resulting overall in

(23-3) 3 (23-3) = 25 possible HUA models.

Joint Models

The joint model considers both mock and HUA data sets. We based the joint model on our previous findings assuming three specific

methylation rate constants and at most one demethylation rate constant for both mock (Figure 2D) and HUA (Figure 3B) as well as a

scaled Hill function with Hill coefficient 1 and offset 0.5 as cell-cycle function. In general, the joint model would allow for (23-3)4 = 625

distinct models. By constraining both the HUA andmockmodel to allow for three methylation and one demethylation rate constants,

we are able to reduce the number of possible models to 16. The simplest joint model is comprised of 3 rate constants which are

shared for mock and the HUA reactions (Figure 4B left). We successively added model complexity by allowing for HUA-specific

rate constants, totaling to 16 models for the joint model with demethylation in mock and HUA and 8 models for the joint model

with demethylation present in either one or none (Figure 4B).

For all models we describe the temporal changes in these proportions by systems of ordinary differential equations (ODEs) using

mass action kinetics (see below).
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HUA Model

We first derive the system of ODEs for the absolute numbers of H4K20me states, given by mẽ0, mẽ1, mẽ2, and mẽ3, for the model

with the largest number of rate constants (Figure 3A):

m _ee0= �m1 3mee0+d1 3mee1
m _ee1= m1 3mee0� ðm2 +d1Þ3mee1+d2 3mee2
m _ee2= m2 3mee1� ðm3 +d2Þ3mee2+d3 3mee3
m _ee3= m3 3mee2� d3 3mee3

_N= 0;

where N is the total number of histone tails. As the HUA model assumes no cell-cycle, the number of histones over time is constant

and its derivative is zero. The proportions me0, me1, me2 and me3 are given by meX = m~eX
N , for X ˛ {0, 1, 2, 3} (Alabert et al., 2020)

and the corresponding ODEs are given by

_meX =
_~meX

N
�

~meX3 _N

N2

simplifying to

_meX =
_~meX

N

in the HUA model. The full ODE system for the proportions is given by

_me0= �m1 3me0+d1 3me1
_me1= m1 3me0� ðm2 +d1Þ3me1+d2 3me2
_me2= m2 3me1� ðm3 +d2Þ3me2+d3 3me3
_me3= m3 3me2� d3 3me3
_N= 0:

Mock Model - Constant Cell-Cycle Duration

According to the HUAmodel, we first formulate the ODE system of the absolute numbers of methylation states, mẽ0, mẽ1, mẽ2, and
mẽ3. During DNA replication newly synthesized and unmodified histones are incorporated, leading to a constant increase in unme-

thylated H4K20 with a population growth rate g(t)=ln(2)/c(t), where c(t) is the cell-cycle function that allows cell-cycle durations to

change with time. In the simplest case, we assume the cell-cycle duration to be constant over time, denoted by a:

cðtÞ = a:

Then the full ODE system of the absolute numbers of methylation states is given by

m _ee0= �m1 3mee0+d1 3mee1+ lnð2Þ
a

3 ðmee0+mee1+mee2+mee3Þ
m _ee1= m1 3mee0� ðm2 +d1Þ3mee1+d2 3mee2
m _ee2= m2 3mee1� ðm3 +d2Þ3mee2+d3 3mee3
m _ee3= m3 3mee2� d3 3mee3

_N=
lnð2Þ
a

3N;

where N is the total number of histone tails, NðtÞ= N03e
lnð2Þ
a 3t and Nðt0Þ= N0 the number of histone tails at the beginning of the

model. Then the ODE system of the methylation proportions is given by
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_me0=
�m1 3mee0+d1 3mee1+ lnð2Þ

a
3 ðmee0+mee1+mee2+mee3Þ

N
�
mee03 lnð2Þ

a
3N

N2

= �m1 3me0+d1 3me1+
lnð2Þ
a

3 ðme0+me1+me2+me3Þ �me03
lnð2Þ
a

= �m1 3me0+d1 3me1+
lnð2Þ
a

3 ðme1+me2+me3Þ

_me1= m1 3me0�
�
m2 +d1 +

lnð2Þ
a

�
3me1+d2 3me2

_me2= m2 3me1�
�
m3 +d2 +

lnð2Þ
a

�
3me2+d3 3me3

_me3= m3 3me2�
�
d3 +

lnð2Þ
a

�
3me3

_N=
lnð2Þ
a

3N;

leading to a constant increase of the unmethylated H4K20 proportion and a constant decrease of the methylated H4K20me

proportions.

Mock Model - Linearly Increasing Cell-Cycle

In the case of a linear cell-cycle function

cðtÞ = a+b3 t

we first derive the ODE system for the absolute numbers of H4K20 methylation mẽ0, mẽ1, mẽ2, and mẽ3:

m _ee0= �m1 3mee0+d1 3mee1+ lnð2Þ
a+b3 t

3 ðmee0+mee1+mee2+mee3Þ
m _ee1= m1 3mee0� ðm2 +d1Þ3mee1+d2 3mee2
m _ee2= m2 3mee1� ðm3 +d2Þ3mee2+d3 3mee3
m _ee3= m3 3mee2� d3 3mee3

_N=
lnð2Þ

a+b3 t
3N;

with N the total number of histone tails. Accordingly, the relative H4K20me proportions me0, me1, me2 and me3 are given by

meX = m~eX
N , for X ˛ {0, 1, 2, 3} (Alabert et al., 2020) and the corresponding ODEs are given by the chain rule:

_meX =
_~meX

N
�

~meX3 _N

N2
:

When plugging in the equations for the absolute H4K20 methylation states into the above equation, we receive the following ODE

system for the proportional H4K20 methylation states:

_me0=
�m1 3mee0+d1 3mee1+ lnð2Þ

a+b3 t
3 ðmee0+mee1+mee2+mee3Þ

N
�
mee03 lnð2Þ

a+b3 t
3N

N2

= �m1 3me0+d1 3me1+
lnð2Þ

a+b3 t
3 ðme0+me1+me2+me3Þ �me03

lnð2Þ
a+b3 t

= �m1 3me0+d1 3me1+
lnð2Þ

a+b3 t
3 ðme1+me2+me3Þ

_me1= m1 3me0�
�
m2 +d1 +

lnð2Þ
a+b3 t

�
3me1+d2 3me2
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_me2= m2 3me1�
�
m3 +d2 +

lnð2Þ
a+b3 t

�
3me2+d3 3me3

_me3= m3 3me2�
�
d3 +

lnð2Þ
a+b3 t

�
3me3

_N=
lnð2Þ

a+b3 t
3N:

To constrain the system to biologically meaningful cell-cycle durations we included prior knowledge from literature: at 5.5 hpf the

cell-cycle in Xenopus has been found to be ~0.5 h (Heasman, 2006). Hence, we assumed a second linearly increasing cell-cycle

function

cðtÞ = 0:5+b3 t:

Mock Model - Scaled Hill function

Similarly, we derive the ODE system of the methylation proportions me0, me1, me2 and me3 for the cell-cycle function cðtÞ = a+

b3 t
h+ t, a scaled Hill function with Hill coefficient 1 and offset:

_me0=

�m1 3mee0+d1 3mee1+ lnð2Þ
a+

b3 t

h+ t

3 ðmee0+mee1+mee2+mee3Þ
N

�

mee03 lnð2Þ
a+

b3 t

h+ t

3N

N2

= �m1 3me0+d1 3me1+
lnð2Þ

a+
b3 t

h+ t

3 ðme0+me1+me2+me3Þ �me03
lnð2Þ

a+
b3 t

h+ t

= �m1 3me0+d1 3me1+
lnð2Þ

a+
b3 t

h+ t

3 ðme1+me2+me3Þ

_me1= m1 3me0�

0
B@m2 +d1 +

lnð2Þ
a+

b3 t

h+ t

1
CA3me1+d2 3me2

_me2= m2 3me1�

0
B@m3 +d2 +

lnð2Þ
a+

b3 t

h+ t

1
CA3me2+d3 3me3

_me3= m3 3me2�

0
B@d3 +

lnð2Þ
a+

b3 t

h+ t

1
CA3me3

_N=
lnð2Þ

a+
b3 t

h+ t

3N:

Similar to the mock model with linearly increasing cell-cycle function we tested three different scaled Hill functions with Hill coef-

ficient 1 and offset as cell-cycle functions:

cðtÞ = a+
b3 t

h+ t
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cðtÞ = 0:5+
b3 t

h+ t

cðtÞ = 0:5+
b3 t

b+ t
:

We again reduced the number of model parameters in the second equation by inserting prior knowledge about the cell-cycle dura-

tion at the start of the model (see Mock Model - Linearly Increasing Cell-Cycle Duration). Additionally, we reduced the number of

model parameters further by assuming the scaling b and the dissociation constant h to be identical in the third equation. In compar-

ison to the former two cell-cycle functions, the third equation constrains the parameter space more strictly. E.g. for upper and lower

boundaries of 100 and 0.0001 for parameters a, b and h the first equation will allow for cell-cycle durations up to 100+1003 (42-5.5)/

(0.0001+42-5.5)z 200 hours while the third equation only allows for cell-cycle durations for up to 0.5+1003 (42-5.5)/(100+42-5.5)z
27 hours. Additionally, we tested whether inferring the Hill coefficient with the other parameters rather than fixing it to 1 would lead to

similar or improved results. Hill functions with Hill coefficient > 1 first increase slowly before a rapid increase and a gradual plateau

follows. This does not reflect the biologically observed cell-cycle dynamics. Hill coefficients % 1 lead to a fast initial increase which

could reflect known cell-cycle dynamics.We ran the optimization for the best performingmockmodel without demethylation this time

inferring the Hill coefficient with the other parameters (lower and upper boundaries of 0.001 and 1, respectively). We found the in-

ferred Hill coefficient to be 0.5.While the BIC values for bothmodels are comparable (-23 and -21 for themodels with Hill coefficient =

1 and inferred Hill coefficient, respectively) the average cell-cycle durations differ (8 h and 15 h, respectively) (Table S1). By choosing

a Hill coefficient = 1, we receive biologically meaningful average cell-cycle durations while reducing the number of inferred param-

eters by 1 and maintaining the same goodness of fit. Hence, all analyses were performed using the scaled Hill function with Hill co-

efficient 1 and offset 0.5.

Noise Models
As experimental data is generally noise corrupted, we evaluated all models with an underlying Laplacian noise model. Maier et. al.

(Maier et al., 2017) have shown that Laplacian noise models may outperform Gaussian ones due to their increased robustness

against outliers (Maier et al., 2017). All model parameters are comprised in the parameter vector q and the experimental measurement

i at time point k is denoted by yi
k . The log-likelihood for the Laplacian noise model is given by

logLðqÞ = �
X
i;k

�
logð2sÞ + logðyikÞ � logðyiðtk; qÞÞ

s

�
:

By performing maximum likelihood estimation we obtain the optimal model parameters.

OPTIMIZATION AND PARAMETER ESTIMATION

Themodel parameters include the initial proportions,me10,me20 andme30.Without loss of generality, we fix relative initial proportion

me00rel=0.1 to obtain structural identifiability, where the relative initial proportions are given by

meX0 =
meX0relP3
i= 0mei0

;

with X ˛ {0, 1, 2, 3} and meX0rel the relative initial proportions. We additionally infer one noise parameter, the model-specific

rate constants of (de-)methylation and potentially up to three constants (mock models) describing the cell-cycle function. We

tested whether the fixation of the relative initial proportion me00rel influences the robustness of the optimization by fixing

me00rel=0.01 and me00rel=1 for the best performing mock model without demethylation. We found that the optimized

rate constant parameter sets are robust to the initializations of the relative initial proportion of unmethylated H4K20 (see

Table S1). For numerical reasons we optimized the parameters in a log10 scale (Hass et al., 2019). The lower and upper

bounds for the rate constants, initial states, noise parameter and cell-cycle parameters were initiated in log10 scale at

-10 to 2, -4 to 2, -2 to 0 and -10 to 10, respectively. We performed multi-start local optimization of the negative log-likeli-

hood using the parameter estimation toolbox PESTO (Stapor et al., 2018) and simulated the models with AMICI (Fröhlich

et al., 2017). We performed at least 100 local optimization runs per model, initialized by latin-hyper cube-sampled starts.

For the models not converging upon these initializations (where by ‘not converging’ we mean that the likelihood value of

the second best run differs more than 0.1) we decreased the width between upper and lower bounds to increase the prob-

ability of convergence. For this, we assured that the optimization bounds were wide enough such that the optimal values

are not in the bounds for the rate constants and the cell-cycle parameters. As the initial states are unidentifiable we ignored

optimal values which ran into these boundaries as long as other optimal values were found within. For models where this

was not the case we expanded the boundaries of the rate constants and initial states up to -20 to 10 and -10 to 10,
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respectively, as we assumed any smaller or larger values to be biologically non-informative. For the initially non-converged

joint models we also increased the number of starts to 800. Models not having converged upon manually adjusting the

boundaries and running for 800 starts were determined to not converge. All mock and HUA models converged. We deter-

mined 5 out of the 40 joint models to not converge (Table S1). The given likelihood values of these joint models are lower

bounds of the true optimal likelihood values obtainable upon convergence. As the likelihood values of all 5 non-converged

joint models still resulted in considerably lower BIC values in comparison to the other tested models we can safely report

them as best performing models for the respective demethylation hypothesis. As the BIC values between the demethylation

hypotheses allowing and not allowing for demethylation in HUA differ considerably we assume the comparison between

different demethylation hypotheses to be valid and the resulting conclusions to be justified.

Model Selection
We use the Bayesian Information Criterion (BIC) (Schwarz, 1978) for model comparisons:

BIC = lnðnÞ3 k� 23 logL;

where n is the number of data points, k is the number of estimated parameters or the overall model complexity and logL is the log-

likelihood value for the maximum likelihood estimate of the model parameters. The BIC rewards high likelihood values and penalizes

model complexity. Hence, low BIC values are preferable. In comparison to other model selection methods such as the Akaike Infor-

mation Criterion (AIC) the BIC penalizes additional model complexity more strongly. We consider a DBIC>10 between two models to

be enough evidence to reject the model with the higher BIC (Kass and Raftery, 1995).

Parameter Uncertainty
To receive the uncertainties for the estimated model parameters we performed Markov Chain Monte Carlo (MCMC) sampling of the

posterior distribution

pðqjDÞfLðqÞpðqÞ;
with uniform prior p(q) defined over the optimization boundaries, likelihood function L(q) and data D. We sampled the posterior for

all six best performing jointmodels and themockmodel with three specificmethylation rate constants and no demethylation (PESTO-

internal function getParameterSamples). We employed parallel tempering with five parallel chains initiated at the five most optimal

parameter estimates per model obtained during optimization and performed 106 iterations. Upon performing a Geweke test (first

10% versus last 50% of the final MCMC chains), we discarded the first 10% of the samples as burn-in phase and thinned the chains

keeping only every 100th sample. The marginal posterior distributions are plotted via violin plots (plotting function violin, Hoffman, H.

(2015). violin.m - Simple violin plot using matlab default kernel density estimation. (https://de.mathworks.com/matlabcentral/

fileexchange/45134-violin-plot), MATLAB Central File Exchange. Retrieved November 13, 2019.)).

Validation - Cell-Cycle Durations
We used the median and the 25th and 75th percentiles of the MCMC chain determined during the parameter uncertainty analysis for

the cell-cycle parameter b, and evaluated the median and the 25th and 75th percentiles of the cell-cycle function according to

cðtÞ = 0:5+
b3 t

b+ t
;

for t ˛ [0,40], where the cell-cycle duration of 0.5 hours at 5.5 hpf (start of model) is taken from (Anderson et al., 2017; Gelens

et al., 2015).

Prediction of Number of Cells
Using the median and the 25th and 75th percentiles of the cell-cycle parameter b (as determined in the validation analysis), we deter-

mined the theoretical number of cells a Xenopus embryo is on average composed of between 5.5 hpf and 45.5 hpf according to dN/

dt = ln(2)/(0.5+b*t/(b+t))*N, where

vNðtÞ
vt

=
lnð2Þ

0:5+
b3 t

b+ t

3N

NðtÞ=N03 eð23 lnð2ÞÞ=ð23b+ 1Þ2 3ð23b2 3 lnð23b3 t+b+ tÞ+ 23b3 t+ t�23b2 3 lnðbÞÞ;
where N(t) is the number of cells at time t, N0 the initial number of cells and 0.5+b*t/(b+t) the cell-cycle function (constrained scaled

Hill function with Hill coefficient 1 and offset 0.5). At the start of the model (at 5.5 hpf) we take the initial number of cells N0 to be 4096

(Heasman, 2006).
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Implementation
The toolboxes used for the analysis of the manuscript for ODE simulation (AMICI (Fröhlich et al., 2017)) and parameter estimation

(PESTO (Stapor et al., 2018)) are available under https://github.com/ICB-DCM. The MATLAB code corresponding to this manuscript

is available via https://github.com/marrlab/HistonesXenopus. The analysis was performed with MATLAB 2017a.

QUANTIFICATION AND STATISTICAL ANALYSIS

For comparing H4K20me data for mock and HUA (Figure 1B), a two-sample t-test at the 0.05 significance level was used for all three

biological replicates of mock and HUA for each time point. In Figures 2F and 2G, the model predictions are given for the median, 25th

and 75th percentiles of theMCMC samples of the cell-cycle parameter of themodel with three specificmethylation rate constants but

no demethylation. Stated values of specific (de-)methylation rate constants are given by the median and the credibility ranges from

the 25th to the 75th percentiles. All statistics and analyses were performed with MATLAB 2017a.
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Gal1 repression memory in budding yeast.

Lea Schuh, Igor Kukhtevich, Poonam Bheda, Melanie Schulz, Maria Bordukova, Robert Schneider,

and Carsten Marr.

Transcriptional adaptation to changing environments is crucial for cell survival. When exposed

e.g., to repeated stimulation cells can ’remember’ their initial transcriptional response leading to

an adapted reaction upon re-stimulation, a phenomenon termed transcriptional memory. Most

studies on transcriptional memory so far have focused on gene induction, although gene repression

plays a similarly central role in gene regulation. This opens the important question as to whether

memory also exists for repression and how repession memory would manifest at a single-cell level.

To identify whether there is repression memory in budding yeast cells, we compared the repression

kinetics of Galactokinase 1 (Gal1) expression of two consecutive repression periods. First, we

developed a method to compensate for dilution effects due to budding, the developing of a new

cell. This enabled me to deconvolute dilution and repression kinetics. Next, we formulated

two mathematical models based on ordinary differential equations to appropriately describe the

repression kinetics of repressor and non-repressor cells. While the non-repressor cells are assumed

to demonstrate constant basal Gal1 production, the repressor cells are assumed to first actively

produce Gal1 until they re-establish delayed repression and switch off Gal1 production. For both

models, we determined the analytical solutions. We performed multi-start maximum likelihood

optimization and model selection using the Bayesian Information Criterion on each of the single-

cell Gal1 repression traces for each repression period. This enabled me to quantitatively describe

the single-cell repression kinetics and to discriminate between repressor and non-repressor cells.

Using the estimated parameters of the repressor cells, we identified that the repression delay,

i.e., the time between carbon source switch and termination of Gal1 expression, is statistically

significantly decreased in cells during repeated repression, suggesting the existence of repression

memory. Finally, we applied the same modeling approach to the Gal1 repression kinetics of a

mutant, elp6∆ and identified elp6∆ as a novel gain-of-repression-memory mutant exhibiting a

stronger decrease in the repression delay between first and second repression.

Statement of individual contribution

This work was motivated by several discussions between Robert Schneider, Carsten Marr and

myself. I had the idea to model the Gal1 repression kinetics of every single-cell and repression

period individually in order to receive single-cell parameters and to quantitatively describe and

compare single-cell repression kinetics. I subsequently formulated the mathematical models for

the repressor and non-repressor cells, developed a method to compensate for dilution effects in

the Gal1 kinetics and performed parameter estimation and model selection on the single-cell

Gal1 traces. Moreover, I performed the statistical analysis on the estimated parameters of the

repressor cells and applied the same modeling approach to the Gal1 repression kinetics of the

elp6∆ mutant. I was responsible for the entire methodology, formal analysis and writing of the

manuscript.

I, Lea Schuh, am the main author of this manuscript.
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ABSTRACT 
Cells must continuously adapt to changing environments and, thus, have evolved mechanisms 
allowing them to respond to repeated stimuli. For example, faster gene induction upon a repeated 
stimulus aids adaptation - a process known as reinduction memory. However, whether such a 
memory exists for gene repression is unclear. Here, we studied gene repression across repeated 
carbon source shifts in over 2,500 single Saccharomyces cerevisiae cells. By monitoring the 
expression of a carbon source-responsive gene, galactokinase 1 (Gal1), and mathematical 
modeling, we discovered repression memory at the population and single-cell level. Using a 
repressor model to estimate single-cell repression parameters, we show that repression memory 
is due to a shortened repression delay, the estimated time gap between carbon source shift and 
Gal1 expression termination, upon the repeated carbon source shift. Additionally, we show that 
cells lacking Elp6 display a gain-of-repression-memory phenotype characterized by a stronger 
decrease in repression delay between two consecutive carbon source shifts. Collectively, our 
study provides the first quantitative description of repression memory in single cells.  
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INTRODUCTION 
Cells receive and process external signals to optimally adapt to changing environments. 
Repeated stimulation from the same external signal induces an adapted transcriptional response, 
a phenomenon termed transcriptional memory (1). It is crucial to understand the mechanisms 
underlying transcriptional memory due to its implications for a broad range of cellular functions, 
including the human adaptive immune system (2, 3), disease development in diabetes (4, 5), and 
aging (6). However, transcriptional memory has primarily been researched concerning gene 
induction despite gene repression playing an essential role in gene regulation (7, 8). This raises 
the question of whether memory exists in repression. 
The adaptation of Saccharomyces cerevisiae (budding yeast) to carbon sources is among the 
most well-studied eukaryotic signal integration systems. Whereas glucose directly enters 
glycolysis, a vital metabolic route providing cells with energy, galactose is first converted to 
glucose-6-phosphate (9, 10), necessitating the production of Gal gene-encoded enzymes (11). 
Repeated alternations between glucose and galactose media revealed that yeast cells are primed 
by their carbon source history, exhibiting transcriptional memory: repeated galactose induction 
results in enhanced Gal gene expression (12–16). Bheda et al. examined the expression of 
galactokinase 1 (Gal1) in single cells, for which reinduction memory has been well characterized, 
and discovered that a shorter delay, rather than an increased expression rate, contributed to the 
observed increase in Gal1 levels (17). Moreover, they identified elp6Δ as a gain-of-reinduction 
memory mutant, with elp6Δ cells showing Gal1 levels comparable to wildtype cells in the first 
induction, but earlier induction onset and increased Gal1 levels in the second induction. While, as 
these examples show, reinduction memory upon galactose induction has been thoroughly 
researched, and, while, Lee et al. suggested repression memory for bulk populations (18), it is 
uncertain if individual cells display Gal1 repression memory upon repeated glucose repression 
(Figure 1).  
 

 
Figure 1. Does gene repression memory exist in budding yeast?  
Previous studies focused on gene expression during induction. However, whether there is memory in 
repression indicated by altered repression kinetics is still unknown.  
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We measured Gal1 expression in wildtype budding yeast cells via a Gal1-GFP (green fluorescent 
protein) fusion across repeated galactose inductions and glucose repressions using time-lapse 
microscopy coupled with a microfluidic device to follow and study Gal1 repression kinetics. In the 
second repression, we discovered that the time of maximal mean Gal1 expression was shortened. 
By using a mathematical model to quantify single-cell Gal1-GFP kinetics during glucose 
repression, and by distinguishing between repressor and non-repressor cells, we revealed that 
the shortened time to maximal mean Gal1 expression at the population level was not caused by 
different fractions of repressor cells between consecutive repressions. Using the estimated single-
cell parameters, we found the repression delay, which is the estimated time gap between the 
galactose to glucose shift and the Gal1 expression termination, to be shortened in the second 
repression at the single-cell level, implying Gal1 repression memory. Furthermore, we repeated 
the experiments and analysis for the gain-of-induction memory mutant elp6Δ. Remarkably, elp6Δ 
cells showed a stronger repression memory effect than wildtype, making elp6Δ also a gain-of-
repression memory mutant. 
 
 
RESULTS 
Automated time-lapse microscopy and microfluidics allow for the quantification of single-
cell Gal1 repression kinetics across repeated carbon source shifts 
To study Gal1 repression kinetics over multiple repressions, we exposed wildtype budding yeast 
cells alternatingly to glucose or galactose media (Figure 2A). For this, we cultured the cells in 
custom-made microfluidic devices to ensure precise media shifts and long-term tracking (17). 
Gal1 expression levels in single yeast cells were monitored using a Gal1-GFP fusion, a standard 
reporter to study gene expression in time-lapse microscopy (see Bheda et al., 2020 for details). 
We captured images from the microfluidics chambers every 3 min totaling 320 images per 
chamber during a 16-h experiment. The yeast cells were then semi-automatically segmented, 
mapped and the total Gal1-GFP fluorescence signal per cell and time point was extracted using 
Autotrack and PhyloCell (19), YeaZ (20) and Cell-ACDC (21) (see Materials and Methods), 
yielding over 2,500 single-cell Gal1 expression traces (Figure 2B). Asymmetric budding allowed 
us to identify mother-daughter relationships. As expected, the total Gal1-GFP fluorescence signal 
of single cells reveals Gal1 inductions and repressions during galactose and glucose, 
respectively, and increased overall Gal1 levels in induction i2 (Figure 2B).  
During budding, cytoplasmic proteins are disseminated between the mother and daughter cells. 
Assuming a constant Gal1 protein amount, its redistribution decreases the total Gal1-GFP 
fluorescence signal in the mother cell (Figure 2C top), a phenomenon called dilution. To 
deconvolute dilution and repression kinetics, we calculated the sum of the total Gal1-GFP 
fluorescence signal of the mother cell and its progeny (Figure 2C bottom, and see Materials and 
Methods). In the following, the adjusted sum of the total Gal1-GFP fluorescence signal of the 
mother cell and its progeny is referred to as total GFP. We applied the same dilution compensation 
to repressions r1 and r2 (Figure 2D).  
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Figure 2. A shortened time to maximal mean total GFP in the second repression at the population 
level. 
(A) Budding yeast cells were grown in microfluidic chambers and alternatingly exposed to a medium 
containing either glucose (orange) or galactose (gray) as carbon source. Galactokinase 1 (Gal1) is induced 
in cells exposed to galactose and repressed in cells exposed to glucose. Gal1 expression was monitored 
via a Gal1-GFP fusion and time-lapse microscopy. 
(B) Single-cell traces of total Gal1-GFP fluorescence signal across two inductions i1 and i2 (gray) and 
repressions r0, r1, and r2 (blue). 
(C) Budding decreases the total Gal1-GFP fluorescence signal in mother cells and increases the total Gal1-
GFP fluorescence signal in daughter cells (top). To compensate for this dilution, we summed up the total 
Gal1-GFP fluorescence signal of each mother cell present and its progeny during one repression (bottom).  
(D) Single-cell traces of total GFP signal adjusted for dilution (see (C)) for the first two hours of repressions 
r1 (left) and r2 (right). Time to maximal mean total GFP is 17 min shorter in repression r2, where mean total 
GFP is indicated by the dotted line and the maximal mean total GFP is highlighted by the dot. Bootstrap 
(105) samples were drawn to generate mean ± std.  
 
 
Decreased time to maximal total GFP in repression r2 at the population level 
Following a galactose-glucose shift, total GFP intensities initially rise before decreasing (Figure 
2D). To determine the repression kinetics at the population level, we calculated the mean total 
GFP signal over time for repressions r1 and r2. Interestingly, the time to attain the maximal mean 
total GFP reduced from 0.79 ± 0.10 h (mean ± std, n = 102 cells) in r1 to 0.50 ± 0.03 h (n = 328 
cells) in r2, where the time point of the maximal mean was bootstrapped 105 times (Figure 2D). 
This demonstrates a decreased time to maximal total GFP in r2 at the population level. 
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The computational model distinguishes between repressor and non-repressor cells 
At the single-cell level, Gal1 induction delay varies significantly. Zacharioudakis et al. showed that 
Gal1 induction caused by a glucose–galactose media shift results in a bimodal population 
distribution, with only a subset of cells inducing Gal1 even after several hours of galactose 
exposure (16). As in our experiments, repression was preceded by 3 h of galactose induction, we 
expected that our cell population at the start of repression contained induced and uninduced cells, 
which show and do not show repression kinetics, respectively. However, independent of 
repression memory, a larger proportion of non-repressor cells in repression r1 could explain the 
decrease in the time to maximal mean total GFP in repression r2 (Figure 2D). As it is difficult to 
distinguish between repressor and non-repressor cells from the total GFP traces alone (Figure 
2D), we used computational modeling and model selection to systematically describe the kinetics 
of single total GFP traces. Since Gal1 induction results in an approximate 1000-fold change in 
Gal1 expression (22), we assumed that stochasticity inherent to gene expression was insignificant 
and that a deterministic modeling approach was sufficient in describing the kinetics of the total 
GFP traces. To discriminate between repressor and non-repressor cells, we defined two models. 
The non-repressor model assumes a constant basal GFP production and degradation over time 
with rates rbasal and rdeg (Figure 3A left), since we observed a gradual increase in total GFP signal 
in cells visually identified as not showing repression kinetics (Figure 3B top right). The temporal 
variation of the total GFP signal over time indicated by the non-repressor model is summarized 
using the following ordinary differential equation:  

dGFP(t)/dt = rbasal!"!#deg GFP(t) . 
This is solved by  

GFP(t) = rbasal/rdeg!$%!"!&'($"#degt)) + GFP0&'($"#degt),  
where GFP0 = GFP(0), the initial total GFP at time point 0. According to the repressor model, cells 
that induced Gal1 during galactose induction required time to reestablish glucose-mediated 
repression. Hence, GFP is actively generated at rate rprod till a time point tdelay. GFP production is 
switched off (rprod = 0) and GFP is degraded with rate rdeg after this estimated repression delay 
tdelay (Figure 3A right). An example of a cell visually identified as showing repression kinetics can 
be found in Figure 3B top left. Until tdelay, the repressor model equals the non-repressor model. 
The temporal change of total GFP over time described by the repressor model is summarized by 
the following ordinary differential equations:  

before tdelay: dGFP(t)/dt = rprod "!#deg GFP(t)  
after tdelay)!*+,-$./0*.!1!"#deg GFP(t)  

with solutions 
before tdelay: GFP(t) = rprod/rdeg!$%!"!&'($"#degt)) + GFP0&'($"#degt) 
after tdelay: GFP(t) = GFP(tdelay/&'($"#deg$.!"!.delay)),  

where GFP(tdelay) = rprod/rdeg! $%! "! &'($"#degtdelay)) + GFP0&'($"#degtdelay). The non-repressor and 
repressor model comprise four and five model parameters, respectively: initial total GFP, GFP0, 
basal GFP production rate, rbasal, or GFP production rate, rprod, GFP degradation rate rdeg, a noise 
parameter σ determining the width of the Gaussian noise distribution (see Materials and 
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Methods), and the repression delay tdelay for the repressor model. For repressions r1 and r2, 
respectively, we performed multi-start maximum likelihood optimization and model selection on 
both models for each total GFP trace (Figure 3B top and 3C). Calculating the profile likelihoods 
of exemplary total GFP traces, we found the model parameters of the repressor model to be 
identifiable (Figure 3B bottom). We then determined whether active repression, i.e. the repressor 
model, was required to explain a total GFP trace using the Bayesian information criterion (BIC). 
A BIC difference of ten between the repressor and non-repressor model (BICrepressor < BICnon-

repressor – 10) was considered an appropriate threshold to reject the non-repressor model with fewer 
model parameters (see Materials and Methods and Figure 3B). Of all total GFP traces, 71% and 
76% of r1 and r2, respectively, were discovered to require the repressor model (Figure 3D) and 
are henceforth referred to as “repressor cells.” The higher proportion of repressor cells was 
expected due to Gal1 transcriptional reinduction memory resulting in increased proportions of 
cells producing detectable GFP in induction i2. The median initial total GFP, GFP0, was 
significantly higher in repressor cells than in non-repressor cells (p = 9.2·10"2 for r1 and p = 
2.7·10"3 for r2) (Figure 3D). This implies that our repression models can discriminate between 
cells that were repressing Gal1 and cells uninduced at the beginning of repression. The 
overlapping ranges of initial total GFP between repressor and non-repressor cells reveal how 
simple thresholding could result in wrong differentiation between repressor and non-repressor 
cells.  
 
Decreased time to maximal total GFP is also present in the repressor cell subpopulation  
To determine whether the previously described decrease in time to maximal mean total GFP in 
r2 is due to a different fraction of non-repressor cells between r1 and r2, we computed the times 
to maximal mean total GFP on the repressor cell subpopulation. We again found a shortened time 
to maximal mean total GFP in r2, with 0.81 ± 0.09 (mean ± std, n = 72 cells) and 0.52 ± 0.05 (n = 
248 cells) h for r1 and r2, respectively (Figure 3E), demonstrating that the decrease in time to 
maximal total GFP in r2 is not due to a different fraction of non-repressor cells. 
 
Shortened repression delay in repression r2 at the single-cell level  
To address if the repression kinetics are different between r1 and r2 in individual cells, we 
compared the paired estimated single-cell parameters of repressor cells present in both 
repressions. We discovered that the median initial total GFP, GFP0, and median repression delay, 
tdelay, are substantially different (p = 3.3·10"4 and p = 1.5·10"5, respectively) between both 
repressions using a two-sided paired sign test and multiple test correction (Figure 3F). Median 
GFP0 is increased (median values of 0.59 and 2.05 for r1 and r2, respectively), while median tdelay 
is shortened in r2 (median values of 0.50 and 0.38 for r1 and r2, respectively, where 72% of paired 
cells showed a decrease in tdelay), in line with the previously identified decrease in the time to the 
maximal mean total GFP in r2 at the repressor subpopulation level (Figure 3E). The increased 
GFP0 in r2 conforms to the transcriptional reinduction memory of Gal1 and results in higher GFP0 
at the start of r2. The median rprod and median rdeg between the two repressions were comparable 
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(p = 0.22 and p = 0.34, respectively) (Figure 3F). In line with our findings, Bheda et al. also 
identified similar production rates (17). We repeated the entire wildtype analysis based on data 
from independent experiments (see Methods for details). This replicate analysis confirms the 
conclusions presented in Figures 2B, 2D and 3 , in particular the earlier repression response in 
repression r2 (Figure S1). 
 

 
 
Figure 3. Shortened repression delay in repression r2 at the single-cell level. 
(A) Left: a model for non-repressor cells composed of basal GFP production (rbasal) and degradation (rdeg). 
Right: a model for repressor cells composed of an initial constant and active GFP production (rprod) and 
degradation (rdeg) until a delayed repression onset (tdelay) where GFP production is switched off.  
(B) Top: two exemplary total GFP traces (dotted line) and fits of the non-repressor model (red solid line) 
and repressor model (black solid line). Exemplary images of the cell(s) at three different time points are 
shown above. Mother cells are circled in gray, progeny in pink. The better fitting model was selected 
according to the Bayesian information criterion (BIC). Left: total GFP trace better fitted by the repressor 
model. Right: total GFP trace fitted equally well by the non-repressor and repressor model. Due to the 
higher model complexity of the repressor model, the repressor model is still rejected. Bottom: profile 
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likelihoods of the repressor model corresponding to the two exemplary total GFP traces above endorse 
parameter identifiability. Asterisks represent optimized parameters and corresponding log-likelihood (logL) 
values. 
(C) Ten exemplary total GFP traces (dotted lines) and best fits (solid lines) for repressions r1 (left) and r2 
(right). GFP traces best fitted with a repressor model are shown in black and fits of total GFP traces best 
fitted with a non-repressor model are shown in red. 
(D) The median initial total GFP, GFP0, is significantly higher (p = 9.2·10−5 and p = 2.7·10−7, two-sided median 
test corrected for multiple testing with Bonferroni correction, m = 20) in traces better fitted by the repressor 
model (black) than in traces better fitted by the non-repressor model (red). This confirms that the repressor 
model fits induced cells better, while the non-repressor model fits uninduced cells. The number of cells and 
percentages of all GFP traces best fitted by the repressor model and non-repressor model are shown.  
(E) Time to maximal mean total GFP is decreased in repression r2 for repressor cells (0.81 ± 0.09 vs. 0.52 
± 0.05). Bootstrap (105) samples of the repressor cells were drawn to generate mean ± std. 
(F) Comparison of paired estimated single-cell parameters of repression r1 and r2 shows that the median 
initial total GFP, GFP0, and median repression delay, tdelay, are significantly different (p = 3.3·10−9 and p = 
1.5·10−3, respectively, two-sided paired sign test correcting for multiple testing with Bonferroni correction, m 
= 20, and the number of paired cells = 54), with median GFP0 increased and median tdelay decreased (median 
tdelay values of 0.50 and 0.38 for r1 and r2, respectively).  
 

Earlier repression response in repression r2 for elp6Δ cells 
Intrigued by the findings in wildtype yeast cells, we repeated our analysis for the previously 
identified gain-of-reinduction memory mutant Elp6 (elp6Δ). The total Gal1-GFP fluorescence 
signal of single elp6Δ cells demonstrates Gal1 induction and repression during galactose and 
glucose and reinduction memory (Figure 4A). We performed dilution compensation (Figure 2C) 
on repressions r1 and r2 (Figure 4B) and calculated the mean total GFP signals over time to 
determine the repression kinetics at the population level. Similar to wildtype cells, we discovered 
that the time to attain the maximal mean total GFP decreased from 1.40 ± 0.09 h (n = 66 cells) in 
r1 to 0.71 ± 0.07 h (n = 237 cells) in r2, (Figure 4B). Subsequently, we repeated multi-start 
maximum likelihood optimization and model selection for the non-repressor and repressor models 
to show that the shortened time to maximal mean total GFP in r2 is not caused by a larger 
proportion of non-repressor cells in r1 (Figure 4C). Of all total GFP traces, 64% and 83% of elp6Δ 
cells in r1 and r2 require the repressor model (Figure 4D). When determining the time to maximal 
mean total GFP for the elp6Δ repressor subpopulation, we again identified a shortened time to 
maximal mean total GFP, with 1.20 ± 0.14 (n = 42 cells) and 0.69 ± 0.07 (n = 196 cells) h for r1 
and r2, respectively (Figure 4E). To investigate the earlier repression response at the single-cell 
level, we compared the paired estimated single-cell parameters of elp6Δ repressor cells present 
in both repressions. We found the median GFP0, and median tdelay, to be significantly different (p 
= 1.2·10"%6 and p = 3.9·10"2) between repressions (Figure 4F). Similar to wildtype cells, the 
median GFP0 increased (median values of 0.57 and 3.69 for r1 and r2, respectively), while the 
median tdelay is shortened in r2 (median values of 0.95 and 0.50 for r1 and r2, respectively, where 
85% of paired cells showed a decrease in tdelay), as previously identified at the repressor 
subpopulation level. The increased initial total GFP level in r2 was expected due to the previously 
identified reinduction memory of elp6Δ cells. Contrary to wildtype cells, we discovered that for 
elp6Δ cells the median production rate, rprod, is significantly different between r1 and r2 (p = 
6.9·10"7) with increased median rprod in r2 (median values of 1.10 and 3.10 for r1 and r2, 
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respectively, Figure 4F) reflecting the gain-of-reinduction-memory phenotype reported by Bheda 
et al. (17). Median rdeg was comparable between repressions (p = 0.39). We repeated the elp6Δ 
analysis based on additional data from independent experiments (see Methods for details). The 
replicate analysis confirms the conclusions presented in Figure 4, in particular the earlier 
repression response in repression r2 (Figure S2). 
 

 
Figure 4. Earlier repression response in repression r2 for elp6Δ cells at both the population and 
single-cell level. 
(A) Single-cell traces of total Gal1-GFP fluorescence signal of elp6Δ budding yeast cells across two 
inductions i1 and i2 (gray) and repressions 0, 1, and 2 (purple). 
(B) Single-cell traces of total GFP signal of elp6Δ budding yeast cells adjusted for dilution (see Figure 2C) 
for the first two hours of repression 1 (r1, left) and repression 2 (r2, right). Time to maximal mean total GFP 
is 41 min shorter in repression r2, where the mean total GFP signal is indicated by the dotted line and the 
maximal mean total GFP is highlighted by the dot. Bootstrap (105) samples were drawn to generate mean 
± std. 
(C) Ten exemplary total GFP traces (dotted lines) and best fits (solid lines) of elp6Δ budding yeast cells 
and repressions r1 (left) and r2 (right).  
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(D) The median initial total GFP, GFP0, is higher in elp6Δ traces better fitted by the repressor model (black) 
than in elp6Δ traces better fitted by the non-repressor model (red). This confirms that the repressor model 
fits induced elp6Δ cells better, while the non-repressor model fits uninduced elp6Δ cells. The number of 
cells and percentages of all GFP traces best fitted by the repressor model and non-repressor model are 
shown in brackets.  
(E) Time to maximal mean total GFP is decreased in repression r2 for elp6Δ repressor cells (1.20 ± 0.14 
vs. 0.69 ± 0.07). Bootstrap (105) samples of the repressor cells were drawn to generate mean ± std. 
(F) Comparison of paired estimated single-cell parameters of elp6Δ cells of repression r1 and r2 show that 
median initial total GFP, GFP0, median repression delay, tdelay, and median production rate, rprod, are 
significantly different (p = 1.2·10−10, p = 3.9·10−5 and p = 6.9·10−8, respectively, two-sided paired sign test 
correcting for multiple testing with Bonferroni correction, m = 20, and the number of paired cells is 34), with 
both median GFP0 and median rprod increased and median tdelay decreased (median tdelay values of 0.95 and 0.50 
h for r1 and r2, respectively) in r2. 
 
 
elp6Δ shows stronger repression delay impairment in first repression 
To first identify if the repression kinetics between wildtype and elp6Δ cells differed at the repressor 
subpopulation level, we compared the repression kinetics of wildtype and elp6Δ repressor cells. 
We found that the time to maximal mean total GFP increased for elp6Δ repressor cells for 
repression r1 (Figure 5A). Next, we wanted to identify if the elp6Δ repressor cells show altered 
repression kinetics at the single-cell level compared to wildtype cells. As we here assess different 
strains, we were no longer able to pair cells and, thus, compared the estimated single-cell 
parameters of all repressor cells. Using a two-sided median test and correcting for multiple testing, 
we discovered that the median tdelay for wildtype was significantly lower (median tdelay = 0.52h) 
compared to elp6Δ (median tdelay = 0.88h, p = 4.7·10"8) for r1 (Figure 5B). However, median GFP0, 
median rprod, and median rdeg are comparable (p = 1, p = 1, and p = 0.44, respectively) (Figure 
5B). This is in line with previous findings that wildtype and elp6Δ cells have similar Gal1 levels in 
induction i1 leading to comparable median GFP0 in r1 and comparable production rates between 
wildtype and elp6Δ cells during induction i1 (17). Then, we performed the same analysis for 
repression r2. For r2, we found that the time to maximal mean total GFP at the repressor 
subpopulation level was more similar between wildtype and elp6Δ repressor cells (Figure 5C) 
than in r1. At the single-cell level, the median GFP0, median tdelay, and median rprod were 
significantly different (p = 1.8·10"9, p = 2.2·10-3, and p = 8.1·10"%%, respectively) between wildtype 
and elp6Δ cells for r2 (Figure 5D) (see Materials and Methods), whereas median rdeg was 
comparable after correcting for multiple testing (p = 0.04) (see Materials and Methods). Overall, 
this analysis identifies a - compared to wildtype - stronger repression delay impairment of elp6Δ 
cells in r1, while the repression delay in r2 is more similar to wildtype cells. The previously 
described gain-of-induction-memory phenotype of elp6Δ, which showed identical Gal1 levels to 
wildtype in induction i1 but increased Gal1 levels in induction i2, is responsible for the increased 
median GFP0 (17). Furthermore, Bheda et al. reported increased elp6Δ production rates for 
induction i2 but not for induction i1.  
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Figure 5. Stronger Gal1 repression delay impairment in elp6Δ cells during first repression. 
(A) Time to maximal mean total GFP is increased for elp6Δ repressor cells for repression r1 (0.81 ± 0.09 
vs. 1.20 ± 0.14). Bootstrap (105) samples were drawn to generate mean ± std.  
(B) Comparison of estimated single-cell parameters of wildtype and elp6Δ cells of repression r1 shows that 
elp6Δ has a significantly different median repression delay, tdelay, in comparison to wildtype, (p = 4.7·10−4, 
two-sided median test correcting for multiple testing with Bonferroni correction, m = 20, and the number of 
cells for wildtype and elp6Δ is 72 and 42, respectively) with median tdelay increased in elp6Δ (median values 
of 0.52 and 0.88 h for wildtype and elp6Δ, respectively).  
(C) Time to maximal mean total GFP is more comparable for wildtype and elp6Δ repressor cells for 
repression r2 (0.52 ± 0.05 vs. 0.69 ± 0.07). Bootstrap (105) samples were drawn to generate mean ± std.  
(D) Comparison of estimated single-cell parameters of wildtype and elp6Δ cells of repression r2 shows 
median GFP0, median tdelay, and median rprod, to be significantly different in elp6Δ compared to wildtype (p = 
1.8·10−6, p = 2.2·10−3, and p = 8.1·10−11, respectively, two-sided median test correcting for multiple testing 
with Bonferroni correction, m = 20 and number of cells for wildtype and elp6Δ is 248 and 196, respectively), 
with median GFP0, median tdelay, and median rprod increased in elp6Δ  (median values of 0.42 and 0.48 h for 
wildtype and elp6Δ, respectively).  
 
 
DISCUSSION 
Based on population data, we found an earlier repression response upon a repeated repression. 
We used mathematical modeling to demonstrate that changes in the repression response were 
not simply due to different proportions of repressor cells. Interestingly, we discovered that elp6Δ 
cells showed prolonged repression delay in the first repression but a more comparable delay in 
comparison to wildtype in the second repression.  
 
Repression memory manifests as faster initiation of second repression 
At both the population and single-cell level, we identified that both wildtype and elp6Δ cells have 
an earlier repression response in repression r2 (Figures 3E–F, 4E–F, S1E-F, S2E-F). This implies 
that cells repeatedly exposed to glucose are faster at initiating Gal1 repression. We thus propose 
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that budding yeast cells do not only show reinduction memory when exposed to repeated 
galactose inductions (17) but also have a repression memory when exposed to repeated glucose 
repressions. We hypothesize that faster repression of the galactose-metabolizing machinery 
would save energy and/or allow for faster induction of the glucose-metabolizing machinery, which 
would be beneficial to individual yeast cells. It will be intriguing to investigate how Gal1 repression 
is acquired on a molecular level and if glucose and galactose repression memories are linked in 
the future. We would like to note here that we assessed the kinetics of the Gal1-GFP fusion 
protein, which has been successfully employed in several studies involving Gal1 gene expression 
(16, 23–26), and hence also modeled Gal1-GFP kinetics. Moreover, it should be mentioned that 
potential photo-bleaching effects would not influence the estimated repression delays, and, thus, 
our repression memory hypothesis. When considering memory as the fold change of the second 
delay to the first delay, we discover reinduction memory to have an overall stronger effect size. 
The fold changes of the repression delays are (median tdelay r2/median tdelay r1 = 0.38/0.50 = 0.76) 
0.76 for wildtype and (median tdelay r2/median tdelay r1 = 0.50/0.95 = 0.53) 0.53 for elp6Δ. In 
comparison, the fold changes of the induction delays are (median tdelay i2/median tdelay i1 = 
0.67/2.33 = 0.29) 0.29 and (median tdelay i2/median tdelay i1 = 0.50/2.50 = 0.20) 0.20 for wildtype 
and elp6Δ, respectively, as reported in Bheda et al. (17). 
 
elp6Δ is a novel gain-of-repression-memory mutant  
We observed that elp6Δ cells had longer repression delay in repression r1 than wildtype cells, 
while the repression delay is more comparable for wildtype and elp6Δ cells in repression r2 at 
both the population and single-cell level (Figure 5). This reveals that the repression memory 
effects (shortening of repression delay in r2) of elp6Δ cells are stronger than in wildtype cells. 
Hence, elp6Δ can be classified as a gain-of-repression-memory mutant. Elp6 has been identified 
as one of the six subunits of the so called RNA polymerase II elongator complex (24) and has 
been linked to a variety of biological functions (25–27). However, its precise function is still 
debated. Contrary to induction, where elp6Δ and wildtype show comparable induction delays in 
the first induction but exhibit significantly different induction delays in the second induction, elp6Δ 
and wildtype cells show significantly different repression delays in r1 and more comparable 
repression delays in r2 (17) (Figure 5B and D). Although reinduction memory has a stronger 
overall effect size than repression memory, the relative memory effect of elp6Δ and wildtype is 
comparable between induction (elp6Δinduction memory/wildtype induction memory = 0.20/0.29 
= 0.69) and repression (elp6Δ repression memory/wildtype repression memory = 0.53/0.76 = 
0.70). Whether the gain-of-repression memory is a unique characteristic of elp6Δ cells or if other 
knock-out mutants show similar repression kinetics and delay responses will be interesting to 
investigate in the future. 
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MATERIALS AND METHODS 
Data acquisition and sources 
For the analysis for Figures 1-5, we used microscopy images and initial segmentation, mapping, 
and tracking information from a microfluidics experiment from Bheda et al. (17), which contained 
13 and ten positions for wildtype and elp6Δ, respectively. The images from the first two hours of 
repression r1 were rectified, and the segmentation, mapping, and tracking were extended to the 
entire two hours of repression r2. Bheda et al. only segmented r2 partially since they were 
primarily interested in galactose induction, and did not adjust the final repression frames. Using 
the software PhyloCell (19), we manually corrected the segmentation, mapping, and tracking of 
r1 and r2 for wildtype and elp6Δ. For the replicate analysis (Figures S1 and S2), we repeated the 
induction-repression experiment as described in Bheda et al. (17) (Figure 2A). Due to low cell 
numbers, we pooled data from three and two independent experiments for wildtype and elp6Δ, 
totaling 13 and 23 positions, respectively. Using the software YeaZ (20) and Cell-ACDC (21) for 
cell segmentation, mapping and tracking, we extracted the relevant single-cell information of the 
live-cell images for both repressions r1 and r2. During glucose repression, the yeast cells 
proliferated, increasing the cell numbers within the microfluidic chambers. However, filled 
microfluidic chambers no longer assure that all the progeny of a cell is recorded, and mapping 
and tracking of cells become infeasible. To ensure mapping and tracking of single yeast cells 
within the microfluidic chambers, the glucose repressions were limited to a maximum of 4 h and 
the overall experiment was limited to 16 h (4 h in glucose (r0), 3 h in galactose (i1), 4 h in glucose 
(r1), 3 h in galactose (i2), 2 h in glucose (r2)). 
 
Data preprocessing  
We extracted the single-cell information relevant for our analysis, namely cell ID, mother cell ID, 
detection frame (first frame in which a cell is detected), last frame (last frame a cell is detected), 
relative GFP intensities per time (mean GFP intensity of a segmented cell) and cell area per time. 
As the data regarding the relative GFP intensities and cell area was not sorted over time, we first 
sorted it and then calculated the total GFP fluorescence per time given by  

total GFP fluorescence = relative GFP fluorescence × cell area.  
Finally, cells that were not imaged till the end of the experiment, cells with missing relative GFP 
and/or cell area values, and cells that were supposedly detected before their mother cells 
(segmentation error) were discarded.  
 
Dilution compensation 
Cytoplasmic proteins are disseminated between the mother and daughter cells during budding. 
Assuming that Gal1 is not produced or degraded, protein redistribution causes a drop in total 
Gal1-GFP fluorescence in the mother cell and a rise in total Gal1-GFP fluorescence in the 
daughter cell till the mother and daughter cells split (Figure 2C top). As a result, regardless of 
repression, dilution causes variations in total Gal1-GFP fluorescence. The daughter cell grows to 
about ⅓ of the size of the mother cell (27) such that the decrease in total Gal1-GFP fluorescence 
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due to dilution was expected to be ⅓ of the initial total Gal1-GFP fluorescence of the mother cell. 
To ensure that dilution does not overshadow potentially more subtle repression kinetics, we 
created artificial non-dividing cells compensating for dilution by adding the total Gal1-GFP 
fluorescence of the progeny of a cell present at the start of glucose repression, which we called 
mother cell, to the total Gal1-GFP fluorescence of that mother cell during the first 2 h of repression 
(Figures 2C bottom, 2D, 4B, S1B, and S2B). For mother cells with a bud at the beginning of a 
repression period, we additionally added the bud to the total Gal1-GFP fluorescence of that 
mother cell. The GFP traces of all computed non-dividing cells can be found under 
https://github.com/marrlab/Gal1repression. As we found the maximal mean total GFP to be 
attained before 2 h of glucose exposure, we restricted our analysis to the first 2 h of repression.  
 
Models 
During the first two hours of glucose repression, we modeled the kinetics of the total GFP of every 
single cell. Due to the high variability in galactose induction, we assumed that our initial cell 
population at the beginning of repression contained induced and uninduced cells, which show 
and do not show repression kinetics, respectively. We developed two models, the repressor and 
the non-repressor model, to account for both total GFP kinetics during repression. 
 

Non-repressor model  
For more information regarding the non-repressor model, see the main text.  
  

Repressor model 
For more information regarding the repressor model, see the main text.  
  

Noise model 
Experimental data, such as total GFP per cell per time, is noise corrupted. As a result, we used 
an underlying additive Gaussian noise model with a constant variance σ2 throughout time to test 
our models. The single-cell specific model parameters are comprised in the parameter vector Θi 
for cell i and the experimental measurement at time point k for cell i is denoted by 𝑦i

k. The log-
likelihood for the Gaussian noise model is given by  

logL(Θi) = - ½ ∑ 		$ (log(2πσi
2)+(𝑦i

k-y(tk,Θi))2/σi
2).  

We obtained the optimal model parameters of both models for the total GFP traces for each cell 
by performing maximum likelihood estimation. 
 
Optimization and parameter estimation 
For each total GFP trace separately for r1 and r2, wildtype, and elp6Δ, we computed the model 
parameters for both the non-repressor and repressor models. The initial total GFP GFP0, the 
basal production rate rbasal, and the degradation rate rdeg are the model parameters for the non-
repressor model. Instead of a basal production rate, rbasal, we have a production rate, rprod, for the 
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repressor model. Also, we discovered the time point of delayed repression tdelay for the repressor 
model. For both models we also infer one noise parameter σ determining the spread of the 
Gaussian noise model. We assumed that all parameters are constant over time. For numerical 
reasons we optimized the parameters in log10 scale (28) and rescaled the data by 107. As total 
Gal1-GFP fluorescence signal and total Gal1-GFP molecules are (linearly) mapped by an 
unknown constant, the number of total Gal1-GFP molecules is always scalable by that unknown 
constant that we exploit to increase convergence. The lower and upper bounds for all initial, rate, 
and noise parameters are –10 and 1 in log10 scale, respectively, assuring that the whole range of 
biologically plausible parameter values is covered. The lower and upper bounds for the repression 
delay are given by 36 s and 2 h (corresponding to –2 and log10(2) in log10 scale). As we only 
considered 2 h of glucose repression, we did not allow the time delay to take on larger values. 
We performed multi-start local optimization of the negative log-likelihood using the parameter 
estimation toolbox PESTO (29). For each model and total GFP trace, we performed local 
optimization runs from at least 20 different Latin-hypercube-sampled starts. If less than five starts 
converged, i.e. the objective function values of the starts differ less than 0.1 to the best start, we 
re-ran the optimization with 50, 100, and 200 starts until at least five starts converged for each 
GFP trace. 
 
Model selection 
We used the Bayesian information criterion (BIC) (30) for comparing the non-repressor model 
and the repressor model per total GFP trace. The BIC is calculated by  

BIC = log(n)k-2logL,  
where n is the number of data points, k is the number of estimated parameters and logL is the 
log-likelihood value for the maximum likelihood estimate of the model parameters. Here, the 
number of estimated parameters is either four for the non-repressor model or five for the repressor 
model. The BIC rewards high likelihood values and penalizes the model complexity in the form of 
additional model parameters. We considered the repressor model to fit a given total GFP trace 
considerably better than the non-repressor model if BICrepressor < BICnon-repressor–10 (Figures 3C–D, 
4C–D, S1C-D and S2C-D).  
 
Statistical analysis  

Comparison of initial total GFP of total GFP traces 
On the estimated initial total GFP, GFP0, of all total GFP traces significantly better fitted by a 
repressor model and all total GFP traces better fitted by a non-repressor model, we did a two-
sided median test. To avoid false-positive results, we used the Bonferroni correction, which 
adjusts the significance-level ɑ = 0.05 by the total number of investigated null hypotheses m, such 
that ɑ’ = ɑ/m. In this study, the total number of null hypotheses for the main analysis is m = 20:  

● Two hypothesis tests comparing initial total GFP between repressor and non-repressor fits 
for wildtype r1 and r2,  
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● Four hypothesis tests comparing estimated single-cell parameters between wildtype r1 and 
r2,  

● Two hypothesis tests comparing initial total GFP between repressor and non-repressor fits 
for elp6Δ r1 and r2, 

● Four hypothesis tests comparing estimated single-cell parameters between elp6Δ r1 and r2,  
● Four hypothesis tests comparing estimated single-cell parameters between wildtype and 

elp6Δ for r1, and 
● Four hypothesis tests comparing estimated single-cell parameters between wildtype and 

elp6Δ for r2. 
 
In this study, the total number of null hypotheses for the replicate analysis is m = 12:  

● Two hypothesis tests comparing initial total GFP between repressor and non-repressor fits 
for wildtype r1 and r2, 

● Four hypothesis tests comparing estimated single-cell parameters between wildtype r1 and 
r2,  

● Two hypothesis tests comparing initial total GFP between repressor and non-repressor fits 
for elp6Δ r1 and r2, and 

● Four hypothesis tests comparing estimated single-cell parameters between elp6Δ r1 and r2. 
 

Comparison of estimated single-cell parameters between repression r1 and r2 for wildtype and 
elp6Δ 
We ignored all traces that were well described by a non-repressor model (uninduced cells) and 
focused the statistical analysis on the total GFP traces for which the repressor model gave a 
considerably better fit (see the Model selection, Figures 3C, 4C, S1C and S2C). For those total 
GFP traces, we compared the estimated single-cell parameters of initial total GFP, GFP0, 
repression delay tdelay, production and degradation rates, rprod and rdeg, for repressions r1 and r2 
and wildtype and elp6Δ. We performed a two-sided paired sign test on the estimated single-cell 
parameters of paired mother cells in r1 and r2 for both wildtype (Figures 3F and S1F) and elp6Δ 
(Figures 4F and S2F). To avoid false-positive outcomes, we used the Bonferroni correction, which 
modified the significance level of ɑ = 0.05 by the total number of tested null hypotheses m to ɑ’ = 
ɑ/m, with m = 20 for the main analysis and m = 12 for the replicate analysis. 

Comparison of estimated single-cell parameters between wildtype and elp6Δ for repression r1 
and r2  
We performed a two-sided median test on the estimated single-cell parameters of all cells for 
wildtype and elp6Δ for r1 (Figure 5B) and r2 (Figure 5D) of the main analysis. Due to the 
comparison between two different yeast strains, we could not perform a paired test. To counteract 
false-positive results, we again corrected for multiple testing according to the Bonferroni 
correction, where the significance-level ɑ = 0.05 was adjusted by the total number of tested null 
hypotheses m to ɑ’ = ɑ/m with m = 20 for the main analysis. As the replicate analysis was 
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performed on pooled data to increase overall cell numbers, we were not able to compare the 
estimated single-cell parameters between wildtype and elp6Δ. 
 
Implementation 
The toolboxes used for segmentation, mapping, and tracking are available at 
https://github.com/gcharvin/phyloCell (PhyloCell (19)), https://github.com/lpbsscientist/YeaZ-GUI 
(YeaZ (20)), and https://github.com/SchmollerLab/Cell_ACDC (Cell-ACDC (21)). The toolbox 
used for parameter estimation (PESTO (29)) is available under https://github.com/ICB-DCM. The 
MATLAB code corresponding to this manuscript is available under 
https://github.com/marrlab/Gal1repression. The analysis was performed with MATLAB 2017b. 
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Figure S1. Earlier repression response in repression r2 at both the population and single-cell level 
for cells of replicate experiment. 
(A) Single-cell traces of total Gal1-GFP fluorescence signal across two inductions i1 and i2 (gray) and 
repressions r0, r1, and r2 (blue). 
(B) Single-cell traces of total GFP signal adjusted for dilution (see (C)) for the first two hours of repression 
r1 (left) and repression r2 (right). Time to maximal mean total GFP is 24 min shorter in repression r2, where 
mean total GFP is indicated by the dotted line and the maximal mean total GFP is highlighted by the dot. 
Bootstrap (105) samples were drawn to generate mean ± std. 
(C) Ten exemplary total GFP traces (dotted lines) and best fits (solid lines) for repressions r1 (left) and r2 
(right). GFP traces best fitted with a repressor model are shown in black and fits of total GFP traces best 
fitted with a non-repressor model are shown in red. 
(D) The median initial total GFP, GFP0, is higher in traces better fitted by the repressor model (black) than 
in traces better fitted by the non-repressor model (red). This confirms that the repressor model fits induced 
cells better, while the non-repressor model fits uninduced cells. The number of cells and percentages of all 
GFP traces best fitted by the repressor model and non-repressor model are shown.  
(E) Time to maximal mean total GFP is decreased in repression r2 for repressor cells (0.97 ± 0.08 vs. 0.88 
± 0.04). Bootstrap (105) samples of the repressor cells were drawn to generate mean ± std. 
(F) Comparison of paired estimated single-cell parameters of repression r1 and r2 shows that the median 
initial total GFP, GFP0, and median repression delay, tdelay, are significantly different (p = 4.6·10−7 and p = 
3.3·10−3, respectively, two-sided paired sign test correcting for multiple testing with Bonferroni correction, m 
= 12, and the number of paired cells = 31), with median GFP0 increased and median tdelay decreased (median 
tdelay values of 0.83 and 0.53 for r1 and r2, respectively).  

p = 4.6·10-7 p = 3.3·10-3

*** * ns

t d
el

ay
 (h

)

r p
ro

d 
(h

-1
)

r d
eg

 (h
-1

)

G
FP

0 
(a

.u
.)

r1 r1 r1 r1r2 r2 r2 r2

ns
FE

BA

experimental time (h)
0 4 7 11 14 16

0

4

to
ta

l G
al

1-
G

FP
flu

or
es

ce
nc

e 
(a

.u
.)

C D

G
FP

0 
(a

.u
.)

*
p = 3.5·10-3

ns

0

1

0

n=47 (46%)
n=55 (54%)

n=195 (42%)
n=267 (58%)

r1 r2

r1 r2

0 1 2

to
ta

l G
FP

 (a
.u

.)

repression time (h)

0

1
2

0 1 2
repression time (h)

0

to
ta

l G
FP

 (a
.u

.)

0

1

2

0

4r1 r2

repression time (h)
0 1 2

repression time (h)
0 1 2

data fitrepressor modelnon-repressor model

2

mean
max mean

2

1 1

2

time to maximal
mean total GFP (h)

0 1 2

n=55
n=267

0.97±0.08

0.88±0.04

0 0 0 0

1

2

1
1

2

1

2

1.60±0.33 (n=102) 1.20±0.18 (n=462)



Schuh et al. 2022 - draft          22 

Figure S2. Earlier repression response in repression r2 at both the population and single-cell level 
for elp6Δ cells of replicate experiment. 
(A) Single-cell traces of total Gal1-GFP fluorescence signal of elp6Δ budding yeast cells across two 
inductions i1 and i2 (gray) and repressions 0, 1, and 2 (purple). 
(B) Single-cell traces of total GFP signal of elp6Δ budding yeast cells adjusted for dilution (see Figure 2C) 
for the first two hours of r1 (left) and r2 (right). Time to maximal mean total GFP is 36 min shorter in 
repression r2, where the mean total GFP signal is indicated by the dotted line and the maximal mean total 
GFP is highlighted by the dot. Bootstrap (105) samples were drawn to generate mean ± std. 
(C) Ten exemplary total GFP traces (dotted lines) and best fits (solid lines) of elp6Δ budding yeast cells 
and repressions r1 (left) and r2 (right).  
(D) The median initial total GFP, GFP0, is higher in elp6Δ traces better fitted by the repressor model (black) 
than in elp6Δ traces better fitted by the non-repressor model (red). This confirms that the repressor model 
fits induced elp6Δ cells better, while the non-repressor model fits uninduced elp6Δ cells. The number of 
cells and percentages of all GFP traces best fitted by the repressor model and non-repressor model are 
shown.  
(E) Time to maximal mean total GFP is decreased in repression r2 for elp6Δ repressor cells (1.30 ± 0.19 
vs. 0.94 ± 0.02). Bootstrap (105) samples of the repressor cells were drawn to generate mean ± std. 
(F) Comparison of paired estimated single-cell parameters of elp6Δ cells of repression r1 and r2 show that 
median initial total GFP, GFP0, median repression delay, tdelay, and median production rate, rprod, are 
significantly different (p = 4.1·10−9, p = 2.9·10−3, and p = 2.9·10−3, respectively, two-sided paired sign test 
correcting for multiple testing with Bonferroni correction, m = 12, and the number of paired cells is 34), with 
median GFP0 and rprod increased and median tdelay decreased (median values of 1.00 and 0.59 h for r1 and r2, 
respectively) in r2. 
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