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ABSTRACT:
Vehicle interior noise is a quality criterion of passenger cars. A considerable amount of resources is used to evaluate

and design the acoustic environment with respect to given requirements. The customer’s perception in the end-of-

line vehicle is the main criterion. Therefore, full vehicle testing is a large part of today’s sound comfort

development. To increase efficiency, it is desirable to limit the hardware testing to a specific component. A later

reassembly of the full vehicle is done virtually using transfer functions. These transfer functions of the substructures

can be derived numerically or through measurements. However, full vehicle simulations are still challenging. Hence,

transfer functions are typically measured but come with the burden of complex procedures. In this work, the authors

propose a machine learning algorithm to reduce the effort for finding suitable transfer models in the automotive

context. Artificial neural networks with rectified linear unit and swish activation functions are trained on full vehicle

measurements. Multiple operation conditions are used for training. The networks compute spectral system responses

and relative sensitivities for the input features. The performance is discussed with respect to the full vehicle

validation data. The results indicate an effective procedure to reduce the costs of full-size vehicle measurements.
VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005535
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I. INTRODUCTION

Passenger cars are developed to meet comfort levels

that are characteristic of a specific brand and vehicle type.

The interior noise as a quality aspect is influenced by many

external and internal factors. The dominant contributors will

vary depending on the driving condition of the vehicle.

Aeroacoustic phenomena will typically dominate for faster

vehicle speeds. The acoustics of slower speeds are often

mainly influenced by the rolling noise or engine noise. For

specific road conditions or maneuvers, such as the parking

maneuver, other components, like the steering system, can

become dominant. A common operating condition evaluated

for interior sound quality is a constant turning motion of the

steering wheel. The acoustic system response in the passen-

ger cabin is a result of the excitation on the component level

and transfer behavior of the vehicle structure, including the

cabin cavity volume. The final assessments of the acoustic

performance of the exciter and receiver combinations are

still mainly conducted in full vehicle systems. Because hard-

ware related evaluations are typically costly, a digital repro-

duction of the noise-, vibration-, and harshness- (NVH)

transfer is an enabler for improved efficiency in develop-

ment processes.1,2 The transfer path analysis (TPA) with its

three families, the classical TPA, component based TPA,

and transmissibility based TPA, are commonly mentioned in

this context.3 The transmissibility based approaches focus

on determining the path contributors. Once the target vehi-

cle is available, the transfer functions between the relevant

locations can be acquired by exciting the system with a vol-

ume sound source.4 The spectral system description can be

combined with an excitation on the component level to syn-

thesize the system response. This allows the comparison of

different operation conditions (OCs) or varying hardware

combinations. Measuring the transfer functions is time

extensive and influenced by multiple parameters. For exam-

ple, the frequency range of the excitation must match the

frequency range of the OC of interest. Another factor is the

amount of energy that has to be applied to the system to gen-

erate a sufficient signal-to-noise ratio. Because the packag-

ing situation of modern vehicles is typically very restrictive,

the excitation locations must yield enough space to apply

the desired forces to the structure.

Machine learning (ML) has recently become a powerful

tool to extract information from data. Artificial neural net-

works (ANNs) are one of the most successful contributors in

this branch.5 Transfer functions, as information given

through excitation and system responses, represent a suit-

able field to investigate with pattern recognizing algorithms.

ANNs can approximate every continuous function.6 Given

nonlinear activation functions and a large number of train-

able parameters, they excelled in topics such as speech or

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Also at: Department Development Steering Systems, Mercedes-Benz

AG, Mercedesstrasse 120, 70372 Stuttgart, Germany. Electronic mail:

dimitrios.tsokaktsidis@tum.de, ORCID: 0000-0003-2302-7970.
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image recognition.7 Data-driven models are increasingly

used throughout various automotive areas. Their latest

improvements with respect to perception led to growing

adoption in the full vehicle context. Camera based driving

aid systems and speech assistants are two areas to which

ML has contributed lately.8,9 The use of ML in the field of

vehicle NVH is a topic that is increasingly attractive to the

scientific community. Applications in this context are found

in the fields of psychoacoustics,10–13 traffic noise,14 interior

noise,10,15,16 structural health monitoring,11,17 approxima-

tion of material parameters,18 and as a complementary

method for established simulation approaches.19 Speaking

of ANNs and grouping these applications into classification

and regression tasks, the following two paragraphs provide

orientation. The first paragraph covers classification, and the

second paragraph covers regression.

Ma et al.10 use an ANN model to categorize the interior

noise of pure electric vehicles with respect to psychoacous-

tics. Their model inputs are 14 objective parameters, such as

loudness or sharpness, and then assigns them to 10 classes

that describe the subjective acoustic impression. The classi-

fier performs with an average error of 9% on the validation

data. Kane and Andhare11 process statistical signal features

and psychoacoustic indices with ANNs to identify faulty

gearboxes in an end-of-line scenario. They use three-layered

ANNs with sigmoid and tangens-hyperbolicus activation

functions. While propagating psychoacoutic inputs, they

achieve an accuracy of 98% for faulty and 99% for healthy

gearboxes. Lerspalungsanti et al.12 estimate a subjective

perception from objective data with ANNs. They use neuron

pruning to optimize their network topology. The approach is

applied to evaluate different drive train assemblies as well

as gear rattle noise. Stender et al.15 apply deep learning to

detect, characterize, and predict brake noise. Convolutional

neural networks (CNNs) perform the detection tasks in the

frequency domain. State-of-the-art models, like inception or

resnet, are modified for the use case. The proposed transfer

learning process enables brake squeal detection and classifi-

cation for large datasets. Qian and Hou16 investigate the

interior sound quality of electric vehicles. They use an ANN

with one hidden layer to describe the nonlinear relation

between eight objective input values and subjective ratings

from a listening test. Their estimates show less than a 5%

error with a correlation coefficient of 0.997. Wang et al.17

develop a classifying method for engine fault diagnosis

based on sound intensity measurements and ANNs. Wavelet

transformations are applied to the input vector before proc-

essing the data through a network with one hidden layer.

Distinguishing nine different engine states, they achieve

100% accuracy on their validation set.

He et al.13 analyze the influence of structure parameters

on the loudness of the exhaust tail noise. They use a radial

basis function network to find a relation between eight geo-

metric values and the noise emission. Their structure-

loudness model can be used as a target function for fast

parameter studies to search for an optimal exhaust pipe

design. Li et al.14 investigate tire-pavement interaction noise

as it is one of the dominant noise sources of passenger cars

and trucks after reaching a certain speed. They compare 23

different tread patterns with a maximum difference of

17.2 dBA between the quietest and loudest. Testing different

ANN configurations, they find a relationship between 12

spectral input parameters describing tire patterns and the

related 81-dimensional spectral system response when driv-

ing at different speeds. Wang et al.18 investigate the noise

reduction coefficient of porous materials. A single-layer

ANN is trained on a feature vector consisting of density,

thickness, and porosity. Applying a genetic algorithm to

their ML approach, they find a parameter set resulting in a

noise reduction coefficient of 0.62. Addressing the computa-

tional requirements of finite-element simulations, Capuano

and Rimoli19 use ANNs as a substitution. They train surro-

gate elements to generate a direct relationship between the

unit state and its forces. By presenting a modular approach

with their smart finite elements, they establish a flexible

method applicable to different geometries.

Despite being used in the abovementioned NVH related

fields, to the best knowledge of the authors, no deep learning

related TPA study on real vehicle operational steering data

has been reported as of today. In an early study,

Tsokaktsidis et al.20 published an article in which a neural

network with nonlinear activation was used on a frequency

domain finite-element method (FEM) training set to extract

the transfer behavior of a simple two-sided beam structure

with variable geometry. The training set consisted of 1001

input and output pairs. The system response calculated with

their network has shown a good fit compared with the con-

ventional FEM simulation. Lee and Lee21 also used FEM

training data to train an ANN. A frame for a car-body prob-

lem with a substructure, connected with four joints, was

investigated. Comparing the relative importance for each

path derived from the ML model with a reference calcula-

tion, they identified the same four structural main contribu-

tors. They state future research can focus on experimental

validation and real vehicle application where noise will play

a larger role in the data set. Also, different network architec-

tures should be examined to better understand the deep

learning process. In another article, Tsokaktsidis et al.22

used an ANN-TPA on full vehicle time domain data. They

calculated the interior sound pressure level during a steering

maneuver. The acceleration level data of eight tri-axle sen-

sors on a steering system have been used as features. The

interior sound pressure level was the target value. Besides

opposing the ANN-calculated interior noise to a validation

data set, they studied the effect of the network size with

respect to the prediction performance.

In this paper, the authors present a vehicle interior noise

calculation in the frequency domain that is performed by an

ANN. Eventually, the machine-learned transfer behavior is

compared with conventionally acquired functions from a

reciprocal TPA. Figure 1 gives an overview of the paper.

Structure-borne excitation on the steering system and air-

borne responses in the passenger cabin contain information

about the transfer behavior of the vehicle. Aiming at a
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simplified procedure to access this information, ML gets

introduced in this context. The measurement effort is limited

to operational measurements instead of a specific procedure

(i.e., volume sound source, impact measurements, etc.).

Because the presented method relies solely on accelerome-

ters and microphones, it also weakens the typical packaging

drawbacks of more complex procedures. The measured data
will be processed with ANNs to extract the desired informa-

tion. The results are compared with the measured data of a

reciprocal full vehicle TPA. The process of finding a suit-

able set of features, labels, and network parameters is dis-
cussed. Finally, the similarities and differences for acquired

sensitivities are reflected.

II. DATA AND METHODS

This section covers the investigated OCs and measure-

ment setup. It provides a detailed overview of the used data.

Furthermore, tools and mathematical formulations for

describing transfer behavior are presented. The complexity

is illustrated by describing a typical approach for approxi-

mating interior noise. ML as the data-driven method is

explained, beginning with the required hardware setup and

data acquisition. The required preprocessing to prepare the

acquired database for ANN usage is explained. This

includes the network architecture and its hyperparameters.

The network training is covered. Last, the prediction process

is explained in the post-processing step.

A. Description of maneuver and measurement setup

A commonly evaluated OC of modern steering systems

is the parking maneuver. It can be described by the steering

wheel position aStWhl and speed of its turning motion _aStWhl.

Figure 2 shows both parameters during a steering maneuver

with a target speed of 300 deg/s. The steering wheel angle

[see Fig. 2(a)] of 0 deg indicates a centered position.

Positive values represent a wheel position right of center,

and negative values each represent a position left of center.

The steering wheel angular speed [see Fig. 2(b)] reaches

FIG. 2. (Color online) The steering maneuver over time. (a) Steering wheel angle, starting in the middle position, positive values correspond to wheel posi-

tions right of center, and negative values correspond to wheel positions left of center; (b) steering wheel angular speed, positive values correspond to the

clockwise operation, and negative values correspond to the counterclockwise operation. The data were derived from the vehicles controller area network

(CAN)/the electrical control unit (ECU) of the steering. The exact signal form results from the regulation of the ECU when requesting a certain OC.

FIG. 1. (Color online) Overview of the paper structure. The data and method section provide information about a typical steering maneuver and the recorded

data to give the reader an entry point. After briefly discussing general transfer behavior, the focus shifts to ANNs. In the results section, various networks

and their results are presented. The final models are then used to rate the transfer behavior of the vehicle. This machine-learned behavior is compared with

the reference from a volume sound source measurement. The discussion will provide further insights about ANN parameters until eventually reflecting the

similarities and differences between the machine-learned and conventional approaches for transfer behavior determination.
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roughly 6300 deg/s. Today’s steering systems are typically

evaluated for different steering speeds. They range from

100 deg/s to 700 deg/s.

To assess the NVH behavior for the OC in the full vehi-

cle system, structure-borne and airborne noise is recorded.

Figure 3 shows the measurement setup for the accelerome-

ters on the steering system. The sensors are placed close to

the interfaces between the stearing subsystem and main

vehicle body. All sensors are applied on the component

side. The coupling positions front left (FL), front right (FR),

back left (BL), and back right (BR) are rigid connections to

the vehicle and affixed using screws. Flexible bushings con-

nect the left and right tie rods (TRL and TRR, respectively)

to the wheel carriers. The input shaft of the steering column

(STCOL) connects with the rack bar and is guided through

the ball bearings. While operating, the electric drive applies

a force to the rack bar. Because its behavior is characteristic

for the investigated parking maneuver, an accelerometer

(EMOT) is placed on it. The assurance of a specific acoustic

response in the passenger cabin is typically verified for each

available seat. In this paper, the sound pressure at the posi-

tion of the co-driver’s left ear is evaluated. An omnidirec-

tional microphone is mounted to the headrest according to

Fig. 4. A sampling rate of 48 kHz is used.

B. Data

The recorded database of the operational measurements

consists of five separate conditions of which each is mea-

sured two times. The measurements are distinguished by

their target steering wheel angle speeds. The lowest speed

recorded targets 200 deg/s. The highest speed recorded tar-

gets 600 deg/s. The targets for the intermediate measure-

ments are 100 deg/s apart from each other in terms of their

steering wheel angle speed. Figure 5 gives an overview of

the processing chain from the measurement until the data

are fed into the ML algorithm for model extraction. The left

path covers the structure-borne data. The right path covers

the airborne data. The structure-borne raw data arawðtÞ con-

sists of 129 024 000 samples. These result from 24 measured

channels (CH), multiplied by two measurements (M) per

speed, multiplied by the number of samples (S) needed to

record the steering maneuver according to Fig. 2.

Generating blocks with 16 384 samples and transforming

them to the frequency domain results in 7776 narrow-band

spectra. Eventually, calculating third-octave bands creates

arawðxÞ. Within the model-validation split, the 7776 third-

octave spectra will be equally distributed into amodðxÞ and

avalðxÞ. Both data containers consist of the same amount of

samples for each OC. amodðxÞ is further split into atrainðxÞ
and atestðxÞ using a two-to-one ratio. These containers are

later used for model creation.

The processing steps for the airborne data container are

identical to the structure-borne procedure with the exception

that there is only 1 measured channel compared to 24. The

initial 5 376 000 samples in prawðtÞ end in 107 third-octave

spectra in ptrainðxÞ and 55 third-octave spectra in ptestðxÞ.
After training the ANN, avalðxÞ and pvalðxÞ are used for

validation.

The desired target value is centered on the vehicle inte-

rior noise. It is the criterion on which a quality decision for

the steering is made. Two possible ways of representing

pðxÞ are linear or logarithmic. Figure 6 shows the distribu-

tion of these values throughout the dataset. On the left side,

the system response is given in Pa values in a third-octave

resolution [Fig. 6(a)]. The sound pressure level distribution

with reference to 2� 10�5 Pa is shown on the right side

[Fig. 6(b)].The orange indicator on both of the plots marks

the median for each third-octave. The boxes end on the

lower and upper quartile of the data. The whiskers mark the

entire data range.

C. Transfer behavior

To achieve the goal of calculating the system response

in the passenger cabin from the component data, the descrip-

tion of the transfer function HpaðxÞ between the source and

receiver, according to Fig. 7, is possible. Because the source

input is given as the acceleration aðxÞ and the desired

receiver output is the sound pressure pðxÞ, the transforma-

tion from input to output requires two intermediate steps.4

The accelerance,

HaFðxÞ ¼
aðxÞ
FðxÞ ; HaFðxÞ½ � ¼ 1

kg
; (1)

FIG. 3. (Color online) The vehicle bottom view with the structure-borne

measurement setup. The accelerometers are on chosen subsystem positions.

From left to right: left tie rod (TRL), back left (BL) coupling, front left (FL)

coupling, steering column (STCOL), electric drive (EMOT), front right

(FR) coupling, back right (BR) coupling, and right tie rod (TRR). The driv-

ing direction corresponds to the positive x axis.

FIG. 4. The vehicle passenger cabin view in the anechoic chamber. The air-

borne measurement setup with the omnidirectional microphone is shown.

The measurement position is head high on the left side of the co-driver seat

(CD_L), and the microphone is mounted to the headrest.
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FIG. 5. (Color online) The overview of the data used, including the processing steps from the raw measured data to features and labels used for model crea-

tion. The left path shows the processing for the structure-borne data. The right path shows the processing for the airborne data. The middle column represents

the general preprocessing steps from the data acquisition to model creation.

FIG. 6. (Color online) The box and whisker plot for prawðxÞ in the linear and logarithmic presentation. (a) shows the Pa values (linear), and (b) shows the

dB values (logarithmic).
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as the ratio between the acceleration a and force F has to be

calculated for each measurement position. It can be experi-

mentally determined through the impact hammer measure-

ments. Here, the square brackets indicate the unit. Given F,

the sound pressure p is calculated using

HpFðxÞ ¼
pðxÞ
FðxÞ ¼ HaqðxÞ ¼

aðxÞ
QðxÞ ;

HpFðxÞ
� �

¼ HaqðxÞ
� �

¼ 1

m2
; (2)

which are equivalent based on reciprocity for linear, time-

invariant systems.4 HpF requires exciting each measurement

position on the steering system with an impact hammer

while measuring the sound pressure in the passenger cabin.

Depending on the vehicle package, this process is difficult

to perform as the desired measurement positions for the

operational measurements will typically be unreachable for

the engineer conducting the experiments. Measuring Haq as

the equivalent transfer function is performed by applying a

volume excitation QðxÞ to the cavity in the passenger cabin

at the desired response position while simultaneously mea-

suring the accelerations at all desired sensor positions. For n
structure-borne excitations,

pðxÞ ¼
Xn

u¼1

auðxÞ � Hpa;uðxÞ (3)

can be used to compute the pressure signal as a linear com-

bination of the accelerations au and their respective transfer

functions Hpa;u.

D. Data-driven model

ML approaches like ANNs are driven by data and

trained for a specific purpose. To approximate the spectral

system response in a vehicle passenger cabin using accelera-

tion inputs from the steering system, the database has to

reflect the desired relation between the input and output.

The required hardware setup is equivalent to the operational

measurements configuration from Figs. 3 and 4.

In contrast to the measurement procedures involving an

impact hammer or a volume sound source to determine the

transfer behavior, no additional exciters or special hardware

are needed when applying the proposed ML approach.

Figure 8 illustrates the data processing to generate a spectral

vehicle surrogate with respect to the NVH transfer from

acceleration a(t) on the component level to sound pressure

pðxÞ in the passenger cabin (also recall Fig. 5). Because the

ML algorithm is desired to extract spectral information, the

raw data are transformed to the frequency domain by applying

a discrete Fourier transformation (DFT). In a second step, the

spectral data anðxÞ for each sensor n are concatenated to cre-

ate an input vector for the ANN. Multiplying all of the inputs

anðxmÞ with the weights wn;m;k connected to neuron k in the

hidden layer results in the neuron input. The sum for these val-

ues will then be transformed by the activation function to gen-

erate the neuron output yk. Researchers have introduced many

weight initialization methods and activation functions. Glorot

uniform initialization is widely used; see Glorot and Bengio23

for a deeper insight. The most common nonlinear activation,

f ðxÞ ¼ maxð0; xÞ; (4)

is the rectified linear unit (ReLU) function.7,24 Another pos-

sible nonlinear activation is the swish function

f ðxÞ ¼ x � sigmoidðxÞ; (5)

see Ramachandran et al.25 Moving from the hidden layer to

the output layer, the neuron activations yk are multiplied

with the weights wk;j. Creating another weighted sum and

feeding the value into the identity function generates the

network output yj in the output layer. During the training

process, this network prediction will be compared with the

desired target data pðxÞ. A mean squared error function,

MSE ¼ 1

j

Xj

s¼1

pðxÞ � ysð Þ2; (6)

serves as a metric for the backpropagation. The dimensions

of the layers can vary largely depending on the task. In the

illustrated case, the input layer, hidden layer, and output

layer have the dimensions

dIN ¼ n � m; (7a)

dHL ¼ k; (7b)

dOUT ¼ j: (7c)

FIG. 7. (Color online) The source, transfer, and receiver relations to pair the component acceleration and passenger cabin sound pressure.
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Hyperparameters, such as the number of layers, dimension

dHL, or the activation function used, are often determined

through an iterative process. As an example, a grid search

will vary dHL while evaluating the network performance.

The mean absolute percentage error (MAPE) and mean

absolute error (MAE) are common evaluation metrics.26,27

The MAPE will allow us to relatively compare the training

performance even when the target value ranges are differ-

ent. A MAE metric, on the other hand, will express errors

in the target unit of the model. An example, speaking of

dB values in an automotive NVH environment, is those

values provide a very concrete understanding for the per-

formance of the model. In addition to optimizing the

hyperparameters, the composition of the input and target

data decides about the performance of the ML approach.

In the presented explanation of a parking maneuver

involving eight triaxial accelerometers of which all possi-

bly contribute to the interior sound pressure, the

concatenated input vector dimension can easily reach the

order of Oð103Þ or higher. It mainly depends on the fre-

quency resolution. Considering an output vector that also

has thousands of dimensions, the ANN training becomes

complex.

III. RESULTS

Full vehicle data, an established set of methods from the

NVH sector, and state-of-the-art ML techniques are combined

in this work. One of the most common frameworks for work-

ing with ANNs is Python. Finding a suitable network architec-

ture while adapting the network parameters is a highly

iterative process. After implementing a new architecture, the

evaluation and interpretation take considerable effort due to

the ANNs being black box models. This section is divided

into two parts. In part one, the network architectures, training

results, and validation results for different ANNs are provided.

This leads to two networks that are compared to each other in

terms of a prediction for the interior noise target value.

Eventually, a reciprocal volume sound source measurement is

used to create a relative sensitivity ranking for each translatory

structure-borne degree of freedom. These are then compared

to the machine-learned ranking to assess how strongly ANNs

correlate to the physical domain.

A. Architectures, training, and validation

To find network architectures, grid searches have been

used throughout the training process. Recalling Fig. 5, the

features amodðxÞ and labels pmodðxÞ are the basis for model

fitting. According to Fig. 8, the features vector is assembled

with a third-octave frequency resolution. A frequency range

between 89.2 and 4467 Hz was used because this will cover

the majority of today’s operational noise phenomena of steer-

ing systems. The exact upper and lower limits are defined by

the third-octave resolution. The structure-borne setup consists

of 24 channels (8 sensors � 3 degrees of freedom). Having 17

third-octave amplitudes per channel in the mentioned fre-

quency range results in an input vector dIN of size 408. The

feature amplitudes used for training are given in m/s2. The

output vector dOUT has size 17, consisting of the third-octave

amplitudes of pmodðxÞ. The labels have been processed as lin-

ear and logarithmic values. In total, eight network

FIG. 8. The data processing with ANNs for structure-borne excitation and acoustic response. The features consist of acceleration, and the labels consist of

sound pressure. The network is trained on the spectral data. The hidden layer uses ReLU activations. The output layer uses identity activations. A mean

squared error function is applied for backpropagation.
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architectures have been investigated with the feature, label,

and OC combinations given in Table I. Details on the parame-

ter variation for each ANN with more insights on the results

can be found in the Appendix in Table III.

As a result of ANN 1–ANN 6 suffering from dying

ReLU (see the Appendix for details), further results focus

on ANN 7 and ANN 8. Figure 9 shows the loss curves for

both ANNs during the training. Figure 9(a) shows training

and validation loss for ANN 7, which is ReLU based.

The loss curves for the swish based ANN 8 are shown in

Fig. 9(b). Both networks are trained on the entire amodðxÞ
and pmodðxÞ data. Hence, the networks reflect the entire

range of OCs at once.

To rate the prediction performance of each trained

ANN, avalðxÞ and pvalðxÞ are processed for every OC sepa-

rately. The MAE values for the comparison of the network

output versus the ground truth are presented in Table II. The

values are supported by Figs. 10–13, which will be explic-

itly addressed in the following.

The predictions with the ReLU based ANN 7 are per-

formed for all five OCs. The spectral responses of ANN 7

[Figs. 10(a)–10(e)] generate MAE values ranging from 2.94

to 5.37 dB for the different steering wheel angular speeds.

Figure 11 results from predicting the third-octave band

responses for a steering cycle over time. The values calcu-

lated by ANN 7 for a steering speed of 200 deg/s [Fig. 11(a)

left] are opposed to the corresponding ground truth values

[Fig. 11(a) right]. The faster steering wheel angular speeds

are compared similarly in Figs. 11(b)–11(e).

Comparable to ANN 7, Figs. 12 and 13 show the pre-

dictions of the swish based ANN 8. The averaged third-

octave predictions are given in Fig. 12. Depending on the

steering wheel angular speed, the MAE values range from

3.02 to 5.22 dB. The time-discrete responses for an entire

steering cycle from slowest to fastest steering speed are

shown in Figs. 13(a)–13(e). The predictions are shown on

the left, and the ground truths are shown on the right.

B. Physical domain versus ML domain

A direct comparison for the time-discrete responses of

ANN 7 and ANN 8 against the measured ground truth for

the 400 deg/s validation measurement is shown in Fig. 14.

The ReLU prediction of ANN 7 is displayed in Fig. 14(a), and

the swish prediction of ANN 8 is displayed in Fig. 14(b). The

ground truth spectrum in Fig. 14(c) is marked with numbers

1–4, indicating the moments in time when there was a steering

direction change, and A and B denote the areas of high ampli-

tude for the 315 Hz and 1000 Hz third-octave bands,

respectively.

Having performed a reciprocal volume sound source

measurement, a relative sensitivity ranking based on Eq. (2)

was calculated for each structure-borne measurement posi-

tion. The airborne noise reference position in the passenger

cabin is CDL. This physically based ranking is opposed to a

ranking that was derived via ANN 7. To create the ANN

ranking, the median values for each feature in amodðxÞ were

processed through the network. To determine the influence

of each measured channel, the median values were proc-

essed 24 more times, subsequently zeroing the input

for each measured channel at a time. To clarify with an

example, in the first iteration, the input of the TRL in the

x-direction is set to zero. The ANN response is then com-

pared to the response acquired with the full input vector.

Normalizing and opposing the results of the measured and

TABLE I. Overview of trained networks with feature, label, and OC combinations.

ANN 1 ANN 2 ANN 3 ANN 4 ANN 5 ANN 6 ANN 7 ANN 8

Features aðxÞ m

s2
aðxÞ m

s2
aðxÞ m

s2
aðxÞ m

s2
aðxÞ m

s2
aðxÞ m

s2
aðxÞ m

s2
aðxÞ m

s2

Labels pðxÞ Pa pðxÞ Pa pðxÞ Pa pðxÞ Pa pðxÞ Pa pðxÞ Pa pðxÞ dB pðxÞ dB

Data container OC: all OC: 200 OC: 300 OC: 400 OC: 500 OC: 600 OC: all OC: all

FIG. 9. (Color online) The loss curves for a ReLU-based and swish based networks trained on amodðxÞ and pmodðxÞ. The labels are in dB. (a) shows the loss

curves of the ReLU-based ANN, and (b) shows the loss curves of the swish based ANN.
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machine-learned sensitivities results in Fig. 15. In the top

part, the sensitivities are overlayed on a picture of the vehi-

cle underbody. For each measurement position, there are

2 � 4 bars displayed. Using the TRR as an example, the left

four bars are solidly contoured. The vertical, gray-filled bar

represents the sum of the x-, y-, and z-sensitivity for this

measurement position according to ANN 7. The growth

direction is from the bottom to top. The related translatoric

sensitivities increase horizontally from left to right with the

colors given at the coordinate system. The dashed contoured

bars follow the same logic for the measured sensitivities.

For the TRR, the ANN and measurement rate the x- and

z-direction to be more sensitive than the y-direction.

Figure 15(b) gives a direct overview of all relative

sensitivities from Fig. 15(a), excluding the sensitivity sums.

The ANN weighs the coupling points, especially the BL,

FL, and FR, as being stronger compared to the measured

values. The z-direction is emphasized for the BL and FL.

The electric drive (EMOT) has low to medium importance

for both methods. Again, the ANN shows the strongest influ-

ence on the z-direction, whereas the measurement highlights

the x-direction. The TRL and STCOL are evaluated compa-

rably. For the TRR, both methods show the highest impor-

tance in the x- and z-directions. The measurement roughly

shows a sensitivity that is three times as high. Figure 15(c)

shows the average coherence for the measured relative sen-

sitivities. The values reflect the frequency range between

200 and 2000 Hz as a result of the technical limitations of

FIG. 10. (Color online) ANN 7 (ReLU) predictions versus the ground truth. The ANN was trained on dB values. (a) 200 deg/s, (b) 300 deg/s, (c) 400 deg/s,

(d) 500 deg/s, and (e) 600 deg/s are the steering wheel angular speeds.

TABLE II. Prediction performances for ANN 7 and ANN 8 for all OCs. The mean absolute dB deviation for calculated third-octave bands is shown.

OC: 200 MAE dB OC: 300 MAE dB OC: 400 MAE dB OC: 500 MAE dB OC: 600 MAE dB

ANN 7 (see Fig. 10) 4.0 4.0 2.94 3.22 5.37

ANN 8 (see Fig. 12) 4.49 3.02 3.04 4.41 5.22
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the volume sound source that was used. With the exception

of the electric drive in the z-direction and TRL in the x-

direction, a coherence of more than 70% is reached.

IV. DISCUSSION

Training ANNs to describe noise propagation of a steer-

ing system in a full vehicle environment requires a specific

conditioning of the ML procedure. Using accelerometers on

the vehicle component and a microphone on the desired

response position, this paper proposes to train ANNs with

operational data to acquire a vehicle surrogate. The network

architecture, as well as the feature and label combination,

has been shown to largely influence the outcome. The dying

ReLU phenomenon and its countermeasures are discussed in

the first subsection to sensibilize future research. Due to

FIG. 11. The ANN 7 (ReLU) predictions versus the ground truth (time discrete). The ANN was trained on dB values. (a) 200 deg/s, (b) 300 deg/s, (c)

400 deg/s, (d) 500 deg/s, and (e) 600 deg/s are the steering wheel angular speeds.
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explainability being a major factor for today’s ML

approaches, a comparison with conventionally measured

sensitivities was shown. Thus, the second subsection of the

discussion aims at the physical comparison of the approach.

To account for the practical usage besides the sensitivities,

the final vehicle surrogates have been used to calculate the

spectral system response for a steering maneuver. The use-

ability in an automotive environment is discussed.

A. Dying ReLU

The results for eight different ANNs have been pre-

sented. ANN 1–ANN 6 from Table III are ReLU based net-

works because it is the most common nonlinear activation

as of today. ANN 1 is trained for five different operational

conditions at once. ANN 2–ANN 6 are trained for each indi-

vidual operational condition. The ReLU based average

third-octave band results from ANN 1 in Fig. 16 show prom-

ising results, especially for the 300 and 400 deg/s target

steering wheel angular speeds. MAE values of 1.31 and

1.05 dB with a good fit for the third-octave band trend are

displayed. Training ANN 2–ANN 6 for each specific OC

decreases the error for the average third-octave band ampli-

tude predictions even further. The lowest MAE of 0.42 dB is

reached for a 400 deg/s target speed (Fig. 17). Calculating

the time-discrete system response with ANN 2–ANN 6

shows constant values for each frequency regardless of the

input (Fig. 18). As the ReLU function from Eq. (4) becomes

zero for negative values, it is possible for the network to

learn to ignore all of the inputs. The dying ReLU phenome-

non hinders the neurons to recover because the gradient for

negative values is zero as well.28,29 Despite ignoring the

actual input vector, the network predicts a learned average

value from the dataset. This happens by updating the

weights for the bias of the last layer. The weights of this

bias layer of the ANN are exactly equal to the predicted

amplitudes. As the last layer is using the identity function, it

is not affected by the dying ReLU phenomenon. It through-

puts the last bias layer values. The same observation can be

made when investigating ANN 1. This behavior also

FIG. 12. (Color online) The ANN 8 (swish) predictions versus the ground truth. The ANN was trained on dB values. (a) 200 deg/s, (b) 300 deg/s, (c)

400 deg/s, (d) 500 deg/s, and (e) 600 deg/s are the steering wheel angular speeds.
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explains the better MAE values for ANN 2–ANN 6, which

are only trained for a single steering wheel angular speed.

The spread of the values that has to be covered within one

OC is smaller than the spread covering all of the OCs.

B. Measures: Swish and label range

To overcome the dying neurons, two measures have

been implemented before starting the grid search of ANN 7

and ANN 8. The first measure makes the swish activation

function available for the parameter variation. Swish fea-

tures a nonzero gradient for each input value and is, there-

fore, more robust against vanishing gradient phenomena like

the dying ReLU. The second measure was changing the

value range for the labels. Originally training on Pa values,

the targets were close to zero. For Glorot uniform initialized

layer weights, zero initialized bias weights, and typical

structure-borne accelerations as inputs, this results in mostly

negative bias weights for all of the layers except the output

layer at the end of training. Hence, the ReLU activations

will output zero. Using dB labels for training seems to stabi-

lize the backpropagation process. The neurons remain

active. Both, ANN 7 (ReLU) and ANN 8 (swish) have larger

error values than ANN 1 (dying ReLU), which was also

trained on all OCs. Calculating the time-discrete system

responses shows that both networks are processing the

inputs to the output layer. The calculated system response is

changing throughout the steering cycle (Figs. 11 and 13).

The time-discrete predictions show comparable characteris-

tics as the ground truth (Fig. 14). Discrete phenomena, like

FIG. 13. The ANN 8 (swish) predic-

tions versus the ground truth (time dis-

crete). The ANN was trained on dB

values. (a) 200 deg/s, (b) 300 deg/s, (c)

400 deg/s, (d) 500 deg/s, and (e)

600 deg/s are the steering wheel angu-

lar speeds.
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the moment of steering direction change, as well as constant

phenomena, such as the continuous high amplitudes at 315

and 1000 Hz, are predicted correctly. Comparing ANN 7

and ANN 8, the objective overall performance of the ReLU

based network is slightly better compared to swish with

respect to the MAE metric. The predictions in Figs. 11

and 13 subjectively confirm the objective values. Especially

for 500 and 600 deg/s, the swish prediction contains more

noise. The architecture of the swish network is smaller in

terms of the trainable parameters. It is to be investigated

whether a larger swish based architecture can outperform a

ReLU based approach. Another topic to investigate in the

future is the influence of unbalanced training data. As the

faster OCs are of shorter duration until completion of one

steering cycle, these speeds are underrepresented in the

dataset. This might have led to poorer learning for these

conditions. To improve precision, a larger and more bal-

anced dataset should be tested for training.

C. Sensitivities and practical usage

Because ANN 7 is slightly superior compared to the others,

it has been additionally compared to a reciprocal volume sound

source measurement. The sensitivities of ANN 7 and reciprocal

TPA have similarities and differences at the same time.

Generally speaking, the coupling points are more important for

the ANN, whereas the tie rods dominate the ML approach.

Despite showing this overall difference, both approaches agree

on the TRR being valuable for the interior noise. Showing good

overall coherence, the measured TPA seems trustworthy. As

mentioned before, the ANN shows higher sensitivity for the

coupling points and, therefore, reduces the impact rating of the

tie rod in terms of the noise propagation. Keeping in mind that

the TPA was only performed for a frequency range from 200 to

2000 Hz and also recalling the predictions over time from Fig.

14, a possible explanation could be that the ANN is extracting

additional information between 2000 and 4467 Hz. amod and

pmod have spectral information available that the conventional

approaches data do not contain. This is due to the volume sound

source (conventional) being limited in the frequency range it

can produce excitation. Since the ANN is working with amod

and pmod it has chances to extract spectral links from the data in

higher frequencies that are not contained in the conventional

approaches data.

Discussing the practical use of the approach for indus-

trial application, the spectral responses over time and sensi-

tivity extraction both show potential. For a structure-borne

based interior noise calculation, one of the main drawbacks

is the time needed to assess the full vehicle transfer behav-

ior. The ANN-calculated system responses over time subjec-

tively enable us to evaluate a steering maneuver. Whether

the objective values are sufficient enough depends on the

requirements. Using the ANN method is by far faster than

the conventional approach. In addition to the faster execu-

tion, the ANN sensitivities indicate the counter spectral lim-

itations of typical exciters like impact hammers or volume

FIG. 14. (Color online) The comparison of (a) ANN 7 and (b) ANN 8 predictions for the 400 deg/s steering wheel angular speed versus (c) the ground truth.

The change of the rotation direction for the ground truth is marked as 1–4. The constant high amplitude bands for the ground truth are marked with A and B.
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FIG. 15. (Color online) The comparison of the relative sensitivity for each structure-borne channel according to the ANN and reciprocal measurement. (a)

shows a graphical visualization. Gray bars with solid outlines are the sum of the x-, y-, z-sensitivities for each position according to the ANN. The growth

direction is from bottom to top. The colored bars with the solid outline are the x-, y-, z-sensitivities according to the ANN. The growth is from left to right.

The bars with the dashed outlines follow the same logic, representing the relative sensitivities for the measurements. (b) shows the corresponding numerical

values for the ANN sensitivities and measured sensitivities. (c) provides the average coherence from 200 to 2000 Hz.

TABLE III. Architectures and training performances for different ReLU and swish based ANNs. The hyperparameter variation is done via the grid search.

Backpropagation for ANN 1–ANN 6 based on Pa labels. The backpropagations for ANN 7 and ANN 8 is based on dB labels.

ANN 1

aðxÞ m

s2
pðxÞ Pa

OC: all

ANN 2

aðxÞ m

s2
pðxÞ Pa

OC: 200

ANN 3

aðxÞ m

s2
pðxÞPa

OC: 300

ANN 4

aðxÞ m

s2
pðxÞ Pa

OC: 400

ANN 5

aðxÞ m

s2
pðxÞ Pa

OC: 500

ANN 6

aðxÞ m

s2
pðxÞ Pa

OC: 600

ANN 7

aðxÞ m

s2
pðxÞ dB

OC: all

ANN 8

aðxÞ m

s2
pðxÞ

dB OC: all

In layer dIN 408 408 408 408 408 408 408 408

Layer 1 dHL1 2008 1050 954 720 450 40 520 119

Activation 1 ReLU ReLU ReLU ReLU ReLU ReLU ReLU Swish

Layer 2 dHL2 669 350 318 480 50 60 607 81

Activation 2 ReLU ReLU ReLU ReLU ReLU ReLU ReLU Swish

Layer 3 dHL3 223 — 328 — 50 60 693 —

Activation 3 ReLU — ReLU — ReLU ReLU ReLU —

Layer 4 dHL4 — — — — 450 40 780 —

Activation 4 — — — — ReLU ReLU ReLU —

Dropout 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Out layer dOUT 17 17 17 17 17 17 17 17

Activation out id id id id id id id id

Parameters 2 318 511 803 267 804 101 648 737 239 767 25 617 1 504 868 59 785

Validation

MAPE %

41.00 21.18 29.78 23.07 38.23 31.85 29.92 31.89
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sound sources. If this assumption proves to be true, it would

reduce hardware costs by a substantial amount. Further

investigations with a wider range of exciters are needed to

strengthen the hypothesis.

V. CONCLUSION

Passenger cars are complex mechanical systems with a

large number of components, some of which are producing

enough excitation to be acoustically perceived in the passen-

ger cabin. Determining the transfer behavior between the

excitation and response is an enabler for the digital develop-

ment processes. ML as a data-driven method for identifying

transfer functions shows a high potential to be used for fre-

quency domain interior noise predictions. Exclusively using

operational measurements decreases costs compared with

the existing experimental methods. Iteratively searching

ANN architectures with nonlinear activation functions leads

to a model that is capable of predicting the interior noises

for different OCs. The network’s internal behavior is not

intuitively assessable due to the large number of trainable

parameters. Further comparisons with conventional physical

approaches throughout larger frequency ranges are neces-

sary to enhance the understanding of the capabilities of the

ML approach.

To conclude, the findings of this paper are as follows:

• NVH transfer behavior in the frequency domain can be

extracted from operational measurements with ANNs. A

system description to pair component excitation with

vehicle influence is acquirable without performing com-

mon procedures (impact measurements, volume sound

source, etc.). For steering systems, multiple OCs can be

trained into one final network.
• The extraction of the transfer behavior with ML is not lim-

ited by the often narrow range of the exciter. For example,

the volume sound source used was able to range up to

2 kHz, whereas the accelerators and microphone recorded

with a sampling rate of 48 kHz. Hence, the analyzable

range is much higher when using the natural excitation of

FIG. 16. (Color online) The ANN 1 (ReLU) predictions versus the ground truth for (a) 200 deg/s, (b) 300 deg/s, (c) 400 deg/s, (d) 500 deg/s, and (e) 600 deg/s

steering wheel angle target speeds.
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the system for a specific OC. An ANN trained on opera-

tional measurements can be used to derive sensitivities for

structure-borne measurement positions. The results shown

partly correlate with the results from a volume sound

source measurement. Further investigations would be

interesting to evaluate whether the ANN does extract cor-

rect sensitivities over the entire frequency range recorded

through the accelerometers and microphone.
• The composition of the feature and label vectors is highly

relevant to the training outcome. For airborne targets, the

label range plays a key role in terms of the training success.

If no normalization is applied to the labels in a NVH surro-

gate modelling task for airborne targets, then the user has to

pay close attention to the training process. It is advisable to

track the weight updating, since Pa values are close to zero,

which might interfere with the backpropagation. Also, for

ML use with airborne targets, countermeasures to vanishing

gradient phenomena should be applied.
• Finding a suitable network architecture and its hyperpara-

meters is an iterative process worth improving to save

time. Generally speaking, the internal behavior of ANNs

for NVH propagation tasks should be closely analyzed.

The large number of parameters and self-optimizing pro-

cess lacks convenience in the post-processing.

From an automotive point of view, development pro-

cesses are continuously shortened. Providing a method that

reduces hardware needs and also time needs provides major

benefits for the NVH investigations. Emphasizing the large

efforts of the conventional TPA, getting a feeling for transfer

behavior solely based on operational measurements seems to

be a promising tool. Further, mentioning the often inconve-

nient handling of typical exciters with their limited frequency

ranges in a full vehicle context makes it even more desirable

to establish new ways with data based methods.

APPENDIX

Table III lists eight network configurations. All archi-

tectures shown are found by a grid search, which is limited

to four hidden layers. For ANN 1–ANN 6, only ReLU

FIG. 17. (Color online) (a) The ANN 2 (ReLU) prediction for 200 deg/s, (b) ANN 3 (ReLU) prediction for 300 deg/s, (c) ANN 4 (ReLU) prediction for

400 deg/s, (d) ANN 5 (ReLU) prediction for 500 deg/s, and (e) ANN 6 (ReLU) prediction for 600 deg/s.
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activations are implemented in the grid. ANN 7 and ANN

8 also feature swish as the possible activation. ANN 1 inputs

a vector concatenating all structure-borne accelerations

aðxÞ from Fig. 3. Their amplitudes in the frequency domain

are fed into the ANN without distinguishing between the

OCs. The target values pðxÞ are given in Pa. The training is

conducted for data in a frequency range between 89.2 and

4467 Hz, where a third-octave resolution is used. Having

8 structure-borne sensors with 3 degrees of freedom and 17

third-octave bands per signal results in 408 input features.

The best performing ReLU based architecture for all OCs

trained on Pa values is three-layered. The hidden layers

have the dimensions dHL1; dHL2; and dHL3. The output layer

has the dimension dOUT with an identity activation. Its out-

put reflects the acoustic system response pðxÞ. The entire

network has 2 318 511 trainable parameters. The final valida-

tion MAPE of the network training reaches 41%. From

Table III, ANN 2–ANN 6 are each trained on data that is

only comprised of excitations and responses of a single OC.

The speeds are rising from 200 to 600 deg/s. The best per-

forming architecture for each speed with regard to the train-

ing validation MAPE is listed. Values between 21.18% and

38.23% are found. ANN 7 and ANN 8 are trained on dB

labels. All of the OC are included in the training data for

these networks. ANN 7 is the best perfoming ReLU architec-

ture with a training validation MAPE of 29.92%. ANN 8 is

the swish based network with the lowest MAPE for thess

input and output configurations. The value reaches 31.89%.

To rate the prediction performance of each trained

ANN, an unseen dataset is processed for every OC. The

MAE values for the comparison of the network output ver-

sus the ground truth are presented in Table IV.

Figures 16(a)–16(e) represent the responses for ANN 1.

It is trained on a dataset containing all five OCs. The sound

pressure third-octave band amplitude spectra are chronologi-

cally sorted from the slowest to fastest steering wheel

FIG. 18. The time-discrete third-octave band prediction of (a) ANN 2 (ReLU), 200 deg/s; (b) ANN 3 (ReLU), 300 deg/s; (c) ANN 4 (ReLU), 400 deg/s; (d)

ANN 5 (ReLU), 500 deg/s; and (e) ANN 6 (ReLU), 600 deg/s.
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angular speed. One MAE value for each state from 200 to

600 deg/s is calculated.

Figure 17 contains the responses of ANN 2–ANN 6.

The processed structure-borne accelerations of a maneuver

with 200 deg/s result in the prediction in Fig. 17(a). The fol-

lowing amplitude spectra [Figs. 17(b)–17(e)] are subse-

quently showing the faster speeds.

Figure 18 shows the time-discrete third-octave band pre-

diction of ANN 2–ANN 6 for their corresponding steering

wheel angle target speeds. Each third-octave block is pro-

duced through 16 384 samples from each structure-borne

measurement position. Linear interpolation is applied for

the time and frequency axes. The prediction in Fig. 18(a)

shows the airborne response for a maneuver with a 200 deg/s

target speed. The dB values remain constant throughout

the steering cycle for each frequency. The maneuvers in

Figs. 18(b)–18(d) show comparable behavior. Processing the

data of the 600 deg/s maneuver results in Fig. 18(e). It shows

changes for the response of block six and block ten.
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