
1. Introduction
The outbreak of the novel COVID-19 virus in late 2019 prompted governments to take various measures to 
prevent the COVID-19 virus from spreading through society. These actions include physical distancing, a 
ban on large group gatherings, home office work, and international and domestic travel restrictions (DW 
COVID-19, 2020). These measures resulted in a significant reduction in emissions following economic ac-
tivity and overall mobility (Evangeliou et al., 2021; Gensheimer et al., 2021; Guevara et al., 2021; Le Quéré 
et al., 2020; Z. Liu, Ciais, et al., 2020; Z. Liu, Deng, et al., 2020; Turner et al., 2020). There has been a lot of 
interest in studying this time window and its impacts on the Earth system. Numerous studies (Bauwens 
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et al., 2020; Berman & Ebisu, 2020; Chauhan & Singh, 2020; Collivignarelli et al., 2020; Dietrich et al., 2021; 
He et al., 2020; Keller et al., 2021; R. Zhang et al., 2020) have reported a reduction in major air pollutant 
concentrations during the COVID-19 lockdown period, including nitrogen dioxide ( 2NOE  ), carbon monoxide 
(CO), sulfur dioxide ( 2SOE  ) and particulate matter ( 10PME  and 2.5PME  ), which are primarily emitted by fossil 
fuel consumption. During the COVID-19 lockdown period, air quality improved in most countries, particu-
larly in urban areas (Bedi et al., 2020; Fu et al., 2020). Previous studies, such as Bauwens et al. (2020); Der-
oubaix et al. (2021), compared lockdown period concentration with long-term mean to estimate lockdown 
effects by eliminating the average climatological seasonal cycle. However, a direct comparison of lockdown 
period pollutant concentrations with pre-lockdown period pollutant concentrations includes both meteor-
ological and COVID-19 emission reduction influences.

Meteorological effects must be considered to determine the actual impact of anthropogenic emission re-
ductions on changes in pollutant concentrations during the COVID-19 lockdown period (Barré et al., 2020; 
Deroubaix et al., 2021; Gaubert et al., 2021; Goldberg et al., 2020; Petetin et al., 2020; Sharma et al., 2020; 
Y. Liu et al., 2020), particularly with regard to chemical processes (Kroll et al., 2020). An analysis of pol-
lutant concentration changes over the European networks of surface air quality measurement stations was 
performed to isolate the lockdown impacts based on a data-driven meteorological adjustment (Ordóñez 
et al., 2020; Venter et al., 2020). Previous works (Gaubert et al., 2021; Menut et al., 2020; Mertens et al., 2021; 
Potts et al., 2021; Weber et al., 2020) have used different modeling approaches to investigate the impact of 
lockdown measures on air quality over Europe. The 2020 emission reduction scenarios were set up using 
available activity data from various sources (Doumbia et al., 2021; Forster et al., 2020; Guevara et al., 2021). 
As part of its modeling work, Gaubert et al. (2021) compared the 2020 lockdown period with climatological 
mean in order to separate the anomalies caused by the weather conditions in 2020, and they have called for 
more meteorology adjusted studies to avoid the flawed results.

We focus on nitrogen dioxide ( 2NOE  ) and ozone ( 3OE  ) concentration changes due to 2020 COVID-19 lock-
down restrictions, from March 21 to June 30. We consider 2NOE  and 3OE  together from the perspective of 
atmospheric chemistry, because 2NOE  and 3OE  concentrations are functions of each other (Bozem et al., 2017). 
Nitrogen oxide ( NOXE   = NO+ 2NOE  ) emissions have a pronounced seasonal cycle, with higher emissions in 
the winter than in the summer (Beirle et al., 2019; Kuenen et al., 2014). Half of the NOXE  in the troposphere 
is from fossil fuel consumption in urban areas (e.g., Figure S1). Tropospheric 2NOE  concentrations follow a 
similar annual cycle, with higher values in the winter than in the summer. This is due to the fact that in 
addition to the higher emissions mentioned above also the lifetime of 2NOE  is longer in the winter ( E  21 h) 
than in the summer ( E  6 h) (Shah et al., 2020). Peak 2NOE  concentrations in the winter are also influenced 
by atmospheric inversion conditions. 2NOE  influences climate by acting as a precursor to the formation of 
tropospheric 3OE  (Crutzen, 1988; Jacob, 1999), and both 2NOE  and 3OE  have an impact on human health. Trop-
ospheric ozone production is complex and depends strongly and non-linearly on nitrogen oxides ( NOXE  ) and 
volatile organic compound (VOC) concentrations, despite the fact that photolysis of 2NOE  is the only chemi-
cal source of tropospheric ozone (Council et al., 1992; Kleinman, 2005; Lin et al., 1988). Ozone decreases as 
NOXE  decreases in regions with low NOXE  and high VOC concentrations, that is, NOXE  limited regimes; howev-
er, in high NOXE  regions, that is, VOC limited regimes (or NOXE  saturated regimes), a decrease in NOXE  results 
in an increase in 3OE  concentration (Kleinman et al., 1997; Sillman, 1999; Sillman et al., 1990) (Figure S2).

This study uses the TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (Sen-
tinel-5P) satellite and governmental in-situ 2NOE  measurements as a proxy for changes in 2NOE  , and govern-
mental in-situ 3OE  measurements as a proxy for changes in 3OE  concentrations in Germany. To account for 
the impact of meteorology, we use the same anthropogenic emissions in 2020 and 2019 with 2019 open fire 
emissions and long-term (1995–2013) monthly lightning NOXE  emission climatology for the GEOS-Chem 
model. We are therefore able to present separate quantitative results for changes in 2NOE  and 3OE  concentra-
tions caused by meteorological changes and by reductions in anthropogenic emissions resulting from COV-
ID-19 lockdown measures. To the best of our knowledge, no such study using GEOS-Chem (GC) modeling 
to account for meteorological impacts has been conducted for Germany.
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2. Study Regions, Data Sets, Model and Method
Our study region covers a bounding box over the national area of Germany (5–15. 5E  E, 47–55. 5E  N), with a 
particular focus on eight urban areas spread across the country: Munich, Berlin, Cologne, Dresden, Frank-
furt, Hamburg, Hanover, and Stuttgart (Figure S3). This study mainly focused on the urban scale to examine 
the impact of reduced mobility on 2NOE  and 3OE  concentrations during the 2020 COVID-19 pandemic period. 
We also extended our study nationwide to investigate other significant NOXE  sources in rural locations.

We used tropospheric 2NOE  column data from the TROPOMI aboard the Sentinel-5P satellite (Coperni-
cus, 2020). The satellite is in a sun synchronous orbit with an equatorial crossing time of 13:30 (local solar 
time). TROPOMI 2NOE  data has a spatial resolution of 7 × 3.5 km (increased to 5.5 × 3.5 km after August 6, 
2019) and it covers the globe daily due to its wide swath (Van Geffen et al., 2020). TROPOMI 2NOE  precision 
(error estimate originating from the spectral fit and other retrieval aspects) for each pixel is within the range 
of 3.6 × 1014 to 3.7 × 1016 molec. cm−2 (about 21%–75% of tropospheric 2NOE  column). The TROPOMI 2NOE  
measurements for winter are highly uncertain (Figure S4). The main source of uncertainty is the calcula-
tion of the air mass factor, which is estimated to be on the order of 30% (Lorente et al., 2017). Since our study 
is mainly focusing on the relative difference in 2NOE  between 2020 and 2019, the systematic errors associated 
with TROPOMI retrievals (e.g., spectroscopic errors and instrument bias) should cancel out, while random 
error component is persistent. However, when we apply temporal and spatial averaging, random errors are 
reduced. We followed S5P NO2 Readme (2020) for the quality filter criteria, which removes cloud-covered 
scenes in order to avoid high error propagation through retrievals. We averaged the TROPOMI values within 
a radius of 0.5° from the urban center to create time series (& daily observations) at the urban scale. For 
comparisons between 2020 and 2019 at the national scale, TROPOMI tropospheric 2NOE  column densities 
were gridded in 0.25 × 0.25-degree bins.

We investigate agricultural activities in Germany using ammonia ( 3NHE  ) data (Kuttippurath et al., 2020). 
The “Standard monthly IASI/Metop-B ammonia ( 3NHE  ) data set” was downloaded from IASI NH3 (2020). 
This data set contains monthly averaged 3NHE  measurements (total column), from the Infrared Atmospher-
ic Sounding Interferometer (IASI), onboard the Metop satellites, at 1  ×  1° resolution. We also used the 
“Near-real time daily IASI/Metop-B ammonia (NH3) total column data set (ANNI-NH3-v3)” product to in-
vestigate the inter-annual short-term (less than a month) variability in 3NHE  over Germany (IASI NH3, 2020).

In-situ surface 2NOE  and 3OE  concentrations were obtained as hourly averaged measurements from the UBA's 
(German Environment Agency) database (Umweltbundesamt, 2020). We collected data from 38 stations in 
eight German cities, including both urban and rural measurement sites, for 2020 and 2019. In this study, we 
averaged all 24-h measurements from stations located within each city.

The ERA5 data set (Copernicus Climate Change Service (C3S), 2017) is used as a reference data set to dis-
cuss meteorological conditions over study areas. We used the “ERA5 hourly data on pressure levels” prod-
uct for wind speed and direction and temperature. Further, we used the “ERA5 hourly data on single levels” 
product for boundary layer height. We averaged these values within a radius of 0.5° from the urban center 
to create a time-series (& daily observations) at the urban scale. The sunshine duration (hours per day) data 
was obtained from Deutscher Wetterdienst (DWD, 2020).

The GC chemical transport model (GEOS-Chem, 2020) is used to estimate the concentration differences in 
2NOE  and 3OE  between 2020 and 2019 caused by meteorological changes. The GC model is driven by MER-

RA-2 assimilated meteorological data (MERRA-2,  2020). We conduct nested simulations over Germany 
(4- 17E  E, 45- 57E  N) at a horizontal resolution of 0. 5E   × 0. 625E  with dynamic boundary conditions generated 
from a global simulation by 4E   ×   5E  resolution. GC assumes the same anthropogenic emissions in 2020 
and 2019. We used anthropogenic emissions in 2014 from the Community Emissions Data System (CEDS) 
inventory (Hoesly et al., 2018) and 2019 open fire emissions from GFED4 (Werf et al., 2017) for both 2019 
and 2020 simulations. The spatial and monthly climatology of lightning NOXE  emissions is constrained by 
LIS/OTD satellite observations averaged over 1995–2013. We used an improved parameterization approach 
implemented in the GC model to calculate soil NOXE  emissions (Hudman et al., 2012). In all comparisons 
of the GC model to TROPOMI, GC 2NOE  vertical profile simulations (at 47 vertical layer) are converted to 

2NOE  column densities for TROPOMI footprints by interpolating into TROPOMI measurements pressure 
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levels and applying TROPOMI's averaging kernels. Similar to above, GC column densities were gridded in 
0.25 × 0.25-degree bins at the national scale.

Our methodology to obtain 2NOE  and 3OE  concentration changes between 2020 and 2019 (2020-2019) for 
which meteorological impacts have been accounted for is as follows. Previous studies (Fiore et al., 2003; R. 
F. Silvern et al., 2019; Tai et al., 2012) have shown that GC can reproduce the temporal variability of 2NOE  , 3OE  
and particulate matter, implying that GC accounts for meteorological impacts. We conduct GC simulations 
for 2020 and 2019 with identical emissions but with the respective meteorology from MERRA-2 reanalysis. 
Since, we use the same anthropogenic emission in 2020 and 2019, the GC differences in 2NOE  and 3OE  between 
2020 and 2019 are solely due to meteorological influences, that is, differences in wind speed, boundary layer 
height, photo-chemistry etc.:

2( ) 2( ,2020) 2( ,2019)GC GC GCNO NO NO   (1)

3( ) 3( ,2020) 3( ,2019)GC GC GCO O O   (2)

The difference between the 2020 and 2019 2NOE  and 3OE  observations for specific time periods include influ-
ence from both meteorological and emissions changes:

2( ) 2( ,2020) 2( ,2019)obs obs obsNO NO NO   (3)

3( ) 3( ,2020) 3( ,2019)obs obs obsO O O   (4)

In order to account for the differences resulting from meteorology and isolate the impact resulting from 
emission changes we subtract the difference in the simulations from the difference in the observations as 
follow (Qu et al., 2021),

2( ) 2( ) 2( )acc obs GCNO NO NO     (5)

and similarly for ozone:

3( ) 3( ) 3( )acc obs GCO O O     (6)

Where, “acc” refers to meteorology accounted for, “obs” refers to in-situ or TROPOMI measured concen-
trations, and “GC” refers to GEOS-Chem model simulated concentrations. This approach results in values 
that have accounted for meteorological influence to estimate the concentration changes resulting only from 
COVID-19 emission reductions.

3. Tropospheric NO2 and O3: Impact of Meteorological Conditions
Like previous studies (Çelik & İbrahim,  2007; Deroubaix et  al.,  2021; Ordóñez et  al.,  2020; Voiculescu 
et al., 2020), we investigated correlations between satellite and in-situ 2NOE  and 3OE  concentrations and local 
meteorological parameters to find the dependency of 2NOE  and 3OE  concentrations on meteorology. The cor-
relation matrix is shown in Figure 1 for the Munich metropolitan area. We find similar correlation behavior 
between variables for 2019 (no lockdown) and 2020 (lockdown). Generally, satellite and in-situ 2NOE  concen-
trations have a negative correlation with wind speed, temperature and boundary layer height, for example, 
as pollutants disperse more at high wind speeds than at low wind speeds. As temperature and sunlight in-
creases, the rate of 2NOE  photochemical loss accelerates, and the planetary boundary layer expands resulting 
in higher dilution. 3OE  concentrations have a generally negative correlation with 2NOE  concentrations and 
positive correlation with sunshine duration and temperature. This results from the fact that 2NOE  and high 
solar radiation play an important role in regulating 3OE  . Temperature has been shown to have a significant 
influence on ozone production over Europe under various NOXE  conditions (Coates et al., 2016; Melkonyan 
& Wagner, 2013). In addition, Curci et al. (2009) show that increasing temperature causes an increase in bi-
ogenic VOC emissions, which can raise the ozone level, especially in the summer. Future climate conditions 
in Europe (as a result of global warming) will almost certainly have an impact on ozone pollution (Engardt 
et al., 2009; Forkel & Knoche, 2006; Meleux et al., 2007; Vautard et al., 2007). Europe may experience more 
intense and frequent heatwaves and droughts in the future, which will increase wildfire events and, as a 
result, background ozone levels will increase (De Sario et al., 2013; Meehl & Tebaldi, 2004). Furthermore, 
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temperature, boundary layer height and solar radiation, which are considered to be the most related mete-
orological factors influencing 2NOE  and 3OE  concentrations, are interdependent.

4. Changes in NO2 and O3 Concentrations in Germany Due To COVID-19 
Lockdown Restrictions
In this study, we compare January through June of 2020 and 2019. This time period is divided into five sec-
tions: (a) No lockdown restrictions from January 1 to January 31, 2020. (b) No lockdown restrictions with 
anomalous weather conditions from February 1 to March 20, 2020. (c) Strict lockdown restrictions from 
March 21 to April 30, 2020 (spring). (d) Loose measures from May 1 to May 31, 2020 (late spring). (e) Loose 
measures from June 1 to June 30, 2020 (early summer). The mean TROPOMI and in-situ 2NOE  in January 
of 2020 was slightly higher than in 2019 (Figures 2c and 3a). However, between February 1 and March 20, 
2020, prior to the lockdown, mean observed TROPOMI and in-situ 2NOE  was already significantly lower than 
in 2019 at both the national (Figure 2f) and urban scales (Figures 3c and S5). This can be attributed to unu-
sually high wind speeds caused by storms in February 2020 (DLR COVID-19, 2020). The first governmental 
COVID-19 lockdown restrictions went into effect on March 21, 2020. In the period following the lockdown 
implementation, lower 2NOE  values are observed compared to 2019. In-situ measurements show lower mean 

3OE  concentrations in January and June 2020, and higher mean 3OE  concentrations from February 1 to May 
31, 2020, compared to 2019 (Figures 3 and S5).

GC model simulations are used to estimate the difference in 2NOE  and 3OE  concentrations between 2020 and 
2019 caused by meteorology. Studies (Fiore et  al.,  2003; R. F. Silvern et  al.,  2019; Tai et  al.,  2012) have 
demonstrated that GC can reproduce the observed temporal variability of 2NOE  , 3OE  and particulate matter, 
implying that GC accounts for impacts of meteorology when using precise meteorological data and emission 
inventories. In our study, we also compare the GC and observed concentrations from 2019 to verify that the 
GC can reproduce the temporal variability of observed concentration changes. The 2019 (January to June) 
period is used to validate the GC model simulations as unlike 2020 emissions are not affected by changes 
resulting from COVID measures. To validate the GC model, we compared GC surface concentrations with 
in-situ surface concentrations, and GC column densities with TROPOMI column densities (Figure S6, for 
cologne metropolitan area). We find good agreement between GC surface 2NOE  concentrations and in-situ 
surface 2NOE  concentrations for eight metropolitan areas (R, pearson correlation coefficient, E  0.65, with high 
R (0.75) for Cologne). Similar results were obtained for GC surface 3OE  concentrations, (R E  0.65, with a high 
R (0.74) for Dresden). GC underestimates 2NOE  surface concentrations, except for Hamburg. The mean bias 

Figure 1. Correlation matrix (R-correlation coefficient) between meteorological parameters and 2NOE  and 3OE  concentrations (January to June in 2020 and 2019) 
in Munich.
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Figure 2. Mean TROPOspheric Monitoring Instrument (TROPOMI) tropospheric 2NOE  column densities for 2019 (first column) and 2020 (second column). The 
absolute differences in TROPOMI tropospheric 2NOE  column densities between 2020 and 2019 (third column).
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Figure 3. Mean relative changes in meteorological impacts unaccounted (left column) and accounted (right column) 
2NOE  and 3OE  concentrations in eight metropolitan cities between 2020 and 2019. Error bars represent the 1 E   (standard 

deviation) of mean of eight metropolitan cities.
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(GC-in-situ) ranges from +2.9% to −23%. Except for Hamburg and Hanover, GC overestimates surface 3OE  
concentrations, with mean bias ranges from +24% to −10.3%. When comparing 2019 GC and TROPOMI 

2NOE  column densities, relatively low correlation (R, between 0.24 and 0.55) was found, and the 2NOE  column 
densities in metropolitan areas were underestimated by GC (mean bias ranges from −4% to −28%). How-
ever, the GC model is capable of modeling the spatial variability of 2NOE  column densities at the national 
scale, emphasizing GC's ability to represent the distribution of emission source locations (Figure S7). The 
over/under estimation of 2NOE  and 3OE  concentrations are caused by the emission inventory (over/under 
estimation of emission) used in GC simulation. The low bias in 2NOE  and high bias in 3OE  could be consistent 
with NOXE  saturated conditions. Because we use the difference in GC concentrations between 2020 and 2019 
( 2( )NO GCE   and 3( )O GCE   ), general biases are canceled out.

Due to the passage of two strong storm systems February 2020 experienced high winds. We consider the pe-
riod from February 1 to March 20, 2020 (prior to the implementation of lockdown restrictions) to determine 
the extent to which meteorology is responsible for variations in pollutant concentrations. Before account-
ing for meteorology, the difference in mean in-situ 2NOE  concentration between 2020 and 2019 is −28% for 
the period February 1 and March 20. After accounting for meteorology, the difference is reduced to −6% 
(consistent with meteorology accounted changes for the period between January 1 and January 31, 2020 
compared to 2019, Figures 1a–1d). This emphasizes the significance of employing our method to account 
for meteorological impacts. The impacts of meteorology on in-situ and TROPOMI 2NOE  concentrations are 
relatively small (+0.4% and −0.6%, respectively) for the period between March 21 and June 30, 2020 (the pe-
riod after the implementation of lockdown restrictions). After accounting for meteorology, the mean in-situ 
and TROPOMI 2NOE  values between March 21 and June 30, 2020 were significantly lower (by 23% and 
16%, respectively) than the same period in 2019 (Figures 3f, 3h, and 3j)). Other studies (Barré et al., 2020; 
Grange et al., 2020; Solberg et al., 2021) that used a machine learning and statistical approach to account 
for meteorological impacts also found that the impact of the COVID-19 pandemic on NOXE  emissions lasted 
at least until June 2020. After accounting for meteorology, we observed a slight increase in mean in-situ 

3OE  concentration between March 21 and May 31, 2020 (consistent with Deroubaix et al., 2021; Ordóñez 
et al., 2020), and a slight decrease in mean in-situ 3OE  concentration in June 2020 compared to 2019. In our 
study areas (metropolitan areas), the impact of meteorological conditions on in-situ 3OE  concentrations are 
clearly noticeable in all periods. Meteorological conditions were favorable for high 3OE  concentrations be-
tween February 1 and May 31, 2020 (consistent with Gaubert et al., 2021), while meteorological conditions 
were favorable for low 3OE  concentrations in January and June 2020. For instance, before accounting for 
meteorology, mean 3OE  concentration in June 2020 is 16.5% lower than in 2019, which could be attributed 
to the low temperature (less ozone production) in June 2020 (Figure S8j). After accounting for meteorol-
ogy, the difference between mean 3OE  concentrations in June 2020 and the same period in 2019 is reduced 
to −3%. Meteorology had a different impact on 2NOE  and 3OE  levels and this impact also varied for different 
time periods. This demonstrates the complex relationship between 3OE  , 2NOE  , and meteorological conditions.

We found large discrepancies between in-situ and TROPOMI 2NOE  changes for the study period. It is im-
portant to note that the number of TROPOMI cloud-free measurements between 2020 and 2019 may have 
an impact on results (for Munich, TROPOMI measurements are available for 269 days out of 363 days). 
In addition, the TROPOMI overpass occurs at 13.30 local time, which may make it less sensitive to traf-
fic-related emissions (peak in the morning from 7 to 9 a.m and evening from 4 to 7 p.m). We conducted 
two comparisons between 2019 in-situ 2NOE  and TROPOMI 2NOE  measurements to determine whether the 
TROPOMI measurements (overpass occurs around 13.30) could represent traffic-related emissions. First, 
we compare the mean 24 h in-situ 2NOE  to the TROPOMI 2NOE  observation. Second, we compare the in-situ 

2NOE  at the time of TROPOMI overpass with the TROPOMI 2NOE  , which should have better agreement. 
We use the empirical relationship (Lorente et al., 2019) that includes boundary layer information to con-
vert the surface concentration to column density. The TROPOMI observations agree well with the in-situ 
observations at the TROPOMI overpass time (mean bias (TROPOMI - in-situ) is about −13%), whereas 
TROPOMI underestimates 2NOE  compared to the 24-h mean in-situ value (mean bias is about −41.5%) (Fig-
ure S9, for Munich). This indicates that TROPOMI is not suitable to directly represent the 24-h mean (daily 
concentration), which could lead to errors in estimating lockdown effects, because the lockdown primarily 
reduced traffic-related emissions. Furthermore, the observed satellite column concentration is certainly 
influenced by the background concentration. The free tropospheric background contributes 70%–80% of 
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the total column observed via satellite (R. Silvern et al., 2018; Travis et al., 2016). R. F. Silvern et al. (2019) 
and Qu et al. (2021) demonstrate the importance of accounting for the influence of free tropospheric 2NOE  
background on satellite column measurements to infer the changes in surface NOXE  emission. The primary 
sources of background 2NOE  are lightning, soil, wildfires and long-range transport of pollution (L. Zhang 
et al., 2012), which are unaffected by lockdown restrictions. The contribution from soil has been shown to 
increase up to 27% of total NOXE  emissions at elevated temperatures (Butterbach-Bahl et al., 2001) (discussed 
below). In addition, subtracting the contribution of the 2NOE  background from satellite column observation 
is complex, because of its non-uniformity (Marais et al., 2018, 2021), thus, using column measurements 
is challenging for estimates of local changes in 2NOE  emissions. In contrast to satellite column measure-
ments, background 2NOE  has little influence (5%–10%) on in-situ surface 2NOE  concentrations (R. F. Silvern 
et al., 2019). The discrepancies between in-situ and TROPOMI changes primarily results from unaccounted 
background 2NOE  influence on the satellite observation and that TROPOMI's overpass time makes it less 
sensitive to overall diurnal emissions. These discrepancies limit the use of satellite column measurements 
to infer the surface NOXE  emission changes.

The 2NOE  column densities in rural locations were also investigated. During the 2020 stricter lockdown 
period, after accounting for meteorology, slightly increased 2NOE  vertical column densities over North-West 
Germany are observed compared to 2019 (Figure 4c). We hypothesize that this is due to enhanced soil NOXE  
emissions over North-West Germany in the 2020 stricter lockdown period (associated with increased tem-
perature over North-West Germany (Figure S8f); soil NOXE  emissions typically increase with temperature 
(Oikawa et al., 2015). Soil NOXE  emissions are expected to be high in the early spring (stricter lockdown pe-
riod), even though the average temperature in May and June is higher than in the stricter lockdown period, 
because agricultural practices such as fertilizer application begin and end in the early spring (Ramanan-
tenasoa et al., 2018; Viatte et al., 2020). Fertilized soils have high potential for NOXE  emissions (Almaraz 
et al., 2018; S. Liu et al., 2017; Skiba et al., 2021). Figure S11 shows the monthly mean 3NHE  total column 
densities over Germany. High 3NHE  total column densities were observed in April as agricultural practices 
(fertilizer application) began in the early spring. Notably, strong enhancements were observed over North-
West Germany. The total column of 3NHE  over North-West Germany in 2020 (strict lockdown period) is high-
er than in 2019 (Figure S12). This supports our hypothesis that North-West Germany, which is dominated 
by Grass and Crop land (ESA CCI, 2020), is an agricultural region, with fertilized soil producing NOXE  in 
elevated-temperature environments.

5. Ozone Sensitivity to NOX Changes
Like previous studies that reported the urban 2NOE  weekly cycle (Beirle et al., 2003; Ialongo et al., 2020), we 
also investigate this at the national (Germany) and urban scale (Figures S13 and S14). Both TROPOMI and 
in-situ 2NOE  measurements show that weekend 2NOE  concentrations are lower than weekday 2NOE  concentra-
tions, because primary emission activities such as transportation typically decrease on weekends. Studies 
(Sicard et al., 2020; Wang et al., 2014) have demonstrated that analyzing the difference in weekday versus 
weekend 3OE  concentrations helps identify the ozone production regime. As NOXE  emissions decrease on 

Figure 4. (a) The absolute difference in TROPOspheric Monitoring Instrument and (b) GEOS-Chem 2NOE  column densities between 2020 and 2019 (stricter 
lockdown period: March 21–April 30). The absolute difference between first two columns is shown in panel (c).
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weekends, the response of ozone will demonstrate whether ozone production is NOXE  limited or saturated. 
Hammer et al. (2002); Gaubert et al. (2021) used the 2 2H OE  / 3HNOE  ratio and Sillman et al. (2003) used the 

3OE  / NOyE  ratio as a way to identify the ozone production regime over Europe urban regions. Previous stud-
ies (Beekmann & Vautard, 2010; Derwent et al., 2003; Gabusi & Volta, 2005; Gaubert et al., 2021; Martin 
et  al.,  2004) have demonstrated that European urban regions are characterized as NOXE  saturated ozone 
production regime. The influence of biogenic VOC emissions on ozone is relatively low in Europe (Curci 
et al., 2009; Simpson, 1995). There also is a shift between NOXE  saturated and NOXE  limited regimes during 
the year; in the winter, ozone production is usually NOXE  saturated, whereas it is often NOXE  limited in the 
summer (Jin et al., 2017). The winter and spring 3OE  weekend effect is much stronger than the summer 3OE  
weekend effect (Figure  5, for Munich metropolitan area); reduced NOXE  emission on weekends increase 

3OE  concentrations, that is, NOXE  saturated conditions prevail, consistent with above mentioned previous 
studies, which shows that NOXE  saturated conditions persist to the current time period. Therefore, German 
metropolitan areas are expected to be in a NOXE  saturated ozone production regime also during the initial 
2020 COVID-19 pandemic period. Notably, we found an increase (4%) in meteorology accounted for mean 
in-situ 3OE  concentrations in spring (March 21 and May 31, 2020) and a slight decrease (3%) in meteorology 
accounted for mean in-situ 3OE  concentrations in early summer (June, 2020) compared to the same period 
in 2019. This implies that the degree of NOXE  saturation of ozone production is weakening from winter to 
summer (consistent with weekend effects and Jin et al., 2017; Kang et al., 2021). During the lockdown peri-
od, the daily maximum 8-h mean 3OE  concentration in metropolitan areas also exceeded the EU target value 

Figure 5. Mean relative change in in-situ NO
2
 and 3OE  concentrations in Munich between weekends and weekdays. Error bars represent statistical uncertainty 

(1 E   ) in the calculation of relative change between weekend and weekday means.
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(120 E  g/ 3mE  ) (2 days in Munich, Berlin, Cologne, Stuttgart metropolitan areas). These exceedances are more 
attributable to NOXE  saturated conditions than to meteorology.

6. Conclusions
A year-to-year comparison of atmospheric pollutant concentrations is widely used to estimate the influ-
ence of reductions in anthropogenic emissions on atmospheric pollutant concentration changes during the 
COVID-19 pandemic period. However, these findings could be misleading if meteorological impacts are not 
taken into account. We used identical anthropogenic emissions in 2020 and 2019 in GC model simulations, 
allowing us to separate the changes in 2NOE  and 3OE  attributed to meteorological impacts from the observed 
changes. Finally, we show that, due to reductions in anthropogenic emissions during the COVID-19 pan-
demic period, meteorology accounted for mean in-situ & TROPOMI 2NOE  concentrations decreased by 23 %E  
& 16 %E  , respectively, compared to 2019, in eight German metropolitan cities between March 21 and June 30. 
After accounting for meteorology, we find a nationwide decrease in TROPOMI 2NOE  concentrations except 
for North-West Germany, which can be attributed to enhanced NOXE  emissions from agricultural soils during 
the 2020 stricter lockdown period. We hypothesize that North-West Germany is a hot spot of soil NOXE  emis-
sions in elevated-temperature environments due to intensive agricultural practices (fertilizer applications) 
during the early spring. The IASI 3NHE  satellite data also supports our statement that North-West Germany 
is an intensive agricultural region during the early spring.

After accounting for meteorology, the concentration of 3OE  increased slightly (4%) during the 2020 spring 
lockdown while it decreased slightly (3%) during the 2020 early summer lockdown, in response to decreased 

2NOE  in both time periods, compared to 2019. This implies that the degree of NOXE  saturation of ozone pro-
duction is weakening from winter to summer. These findings are also supported by the response of 3OE  
to changes in precursor emissions using weekend versus weekday differences. Therefore, reducing NOXE  
emissions would benefit summer ozone reduction, whereas reducing NOXE  emissions would increase ozone 
levels during winter and spring. Appropriate NOXE  and VOCs emission control strategies are required to 
mitigate ozone pollution in German metropolitan areas during winter and spring; otherwise, it may lead to 
incorrect environmental regulation policies that are closely linked to public health. Despite a sharp decrease 
in emissions from the transportation sector, emissions from natural sources (dust storms, wildfires) and 
agriculture sectors were unaffected by 2020 COVID-19 lockdown restrictions. Changes in other pollutants 
such as 10PME  , 2SOE  , CO and anthropogenic VOCs (primary pollutant) and 2.5PME  (secondary pollutant) may 
provide further insight on air quality during the COVID-19 pandemic period. Extensive studies on air qual-
ity during the lockdown period could pave the way for an improved understanding of pollution formation. 
Those findings will be useful in understanding how reductions in primary emissions affect secondary pol-
lutant formation.
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