
Safety Science 142 (2021) 105386

Available online 20 July 2021
0925-7535/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Analysis of information dissemination through direct communication in a 
moving crowd☆ 

Christina Maria Mayr a,b,*, Stefan Schuhbäck a,b, Lars Wischhof a, Gerta Köster a 
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A B S T R A C T   

New generation mobile communication protocols, such as the 5G standards, allow direct communication be-
tween devices. This allows to disseminate information directly in a moving crowd. In a safety concept, this in-
formation could be used to redirect pedestrians away from danger. We couple state-of-the-art computer models 
of pedestrian motion and mobile device-to-device communication to build a model of this complex socio- 
technical system. The model captures the interplay between information dissemination and human behavior. 
We further harness methods of uncertainty quantification to pinpoint the parameters that most influence the 
systems functionality for a scenario where pedestrians are redirected. We bundle successful analysis methods to 
suggest a procedure for future studies. We find that, in our scenario, there are rare cases of information 
dissemination delayed by shadowing and additional network load from apps, where agents cannot be redirected 
in time. Our simulation tools and methodology can help to detect such problems and serve as a basis to inves-
tigate more complex scenarios and rerouting strategies.   

1. Introduction 

In urban environments crowds are omnipresent. Guiding them effi-
ciently to ensure their safety and comfort has become one of the pressing 
problems of traffic engineers, event managers, and other decision- 
makers. In car-traffic, drivers take an active part by following the 
advice of navigation systems, and traffic information can be passed from 
car to car. Pedestrian networking is far less developed. The reasons are 
many: The system itself is much more complex, e.g. a pedestrian has 
much more freedom of motion than a road user. Also, there is no mobile 
application that gathers and transmits information only locally and in a 
decentralized manner. However, emerging telecommunication stan-
dards such as 5G open the opportunity to use local direct communication 
between crowd members. In this contribution, we want to find out 
whether or not such direct communication methods are suitable to 
disseminate saftey-relevant information within a crowd. 

This contribution links two areas of research: pedestrian dynamics 
and mobile communication networks. In the pedestrian dynamics 
community, terms from the mobile communication area might not be 
familiar and vice versa. This also entails the possibility of 

misunderstandings, where technical terms are used differently. Most 
prominent among those terms is the word ‘mobility’: We are investi-
gating the interaction of human mobility, or locomotion, and commu-
nication in ‘mobile’ networks. To avoid confusion, we use the word 
‘motion’ as much as possible whenever we refer to the movement of 
pedestrians in the real world or agents in the simulation. In Table 1, we 
explain our usage of several key terms. 

1.1. State-of-the-art of crowd motion in network simulations 

Several authors have investigated crowd motion in the context of 
network simulations. Grossglauser and Tse (2001) find that the motion 
of network nodes impacts the performance of wireless communication 
systems. Bai et al. (2003) introduce a simulation framework which offers 
the opportunity to analyze the impact of different motion models on 
information dissemination and routing in mobile ad hoc networks. Two 
of these models, the random waypoint model and the reference point 
group mobility model, include motion of pedestrians. In the random 
waypoint model, agents choose a random destination at every time step, 
and move towards it. The motion models neither capture the 
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topography, that is, obstacles, nor the interaction between nodes. The 
reference point group mobility model represents the locomotion of 
groups, in particular, the motion within a military battlefield where the 
commander and soldiers form a logical group. In (Bai et al., 2004), the 
authors find that the path-duration within ad hoc networks is indeed 
affected by the motion model. At the same time, Jardosh et al. (2003) 
introduce obstacles in a motion model that affect radio wave propaga-
tion. However, they neglect how agents interact. Chaintreau et al. 
(2007) try to capture the motion behavior of pedestrians in more detail. 
They use empirical data to model the contact between moving pedes-
trians gaining a statistical representation of the connectivity pattern of 
pedestrians from their mobility. Fading, that is, signal attenuation 
through human bodies in pedestrian crowds, is particularly relevant for 
communication at high radio frequencies. This has recently been 
confirmed for 5G mmWave communication in a measurement study and 
model by MacCartney et al. (2017). Helgason et al. (2014) use 

LegionSim, a model provided by the pedestrian dynamics community, 
that reflects the interaction between pedestrians. They analyze the in-
fluence of several parameters qualitatively. They find that the topog-
raphy affects communication within the mobile network. They also find 
that, in their set-up, the parameters of the motion model, like the free 
flow speed, have no influence. Chancay-García et al. (2018) use a social 
force model, a model type that is widely used in pedestrian dynamics 
research, to generate mobility traces. They observed the number of 
people arriving and leaving at different times of the day to represent the 
statistical properties of arrivals in the spawning process. They find that 
information dissemination depends on the degree of motion and mes-
sage size. Other approaches to create crowd motion derive microscopic 
mobility patterns from macro- or mesoscopic view points. Map based 
models generate trajectories of nodes by intelligent path selections from 
a map graph that is provided to the system. An example is the working 
day mobility model (Ekman et al., 2008) in the ONE simulator (Keränen 
et al., 2009): the shortest paths between two points of interest such as 
home and work place are selected that match measured mobility pat-
terns of workers. The trajectories are then sampled and some speed 
distribution along each path is assumed. Hahn et al. (2015) improve the 
trajectories between two points of interest by, for instance, allowing 
paths to traverse roads only at designated street crossings. Similar 

models can be found in Krajzewicz et al. (2014) and in the SUMO 
simulator as described in Lopez et al. (2018). For further reading we 
refer to Zhang et al. (2016) who present an overview of mobility models 
used in communication simulation studies. 

Among these contributions, only (Helgason et al., 2014; Chancay- 
García et al., 2018) profit from the vast progress that has been made in 
modeling and understanding pedestrian dynamics in the last two de-
cades. The field of pedestrian dynamics offers a number of locomotion 
models such as social force models, velocity models and optimal steps 
models that have been validated against empirical data for many rele-
vant scenarios. See (Chraibi, 2012; Dietrich and Köster, 2014; Seer, 
2018; Seitz and Köster, 2012; Tordeux and Seyfried, 2014; von Sivers 
and Köster, 2015) for background reading. Unfortunately, the pedes-
trian dynamics simulator in Helgason et al. (2014) is not open-source 
and in Chancay-García et al. (2018) it is not clear whether the simula-
tion model1 is validated carefully, as it is in the simulation frameworks 

Table 1 
Key terms for combined crowd locomotion and mobile communication 
networks.  

Term Meaning 

Pedestrian Person walking through a real world scenario. 
Agent Virtual person walking through a simulated scenario. 
Node Redistribution point for information in a network. In this 

context, each agent carries one mobile device and thus 
represents a node. 

(Mobile) network Network with non-stationary nodes. In our scenarios, 
information is always disseminated from device to device using 
broadcasts. 

Network traffic Data that is produced by applications that impair the 
information dissemination of the redirection application in our 
scenario, e.g. an app for streaming music or videos. 

Network load Synonym for network traffic. 
Mobility model In mobile communication simulation, a mobility model 

describes the positions and orientations of nodes over time in a 
Euclidean coordinate system. From this, velocity and 
acceleration, and also angular position, angular velocity, and 
angular acceleration data can be computed at the current 
simulation time. 

Dissemination 
time 

Quantity that measures the time until 95% of agents are 
informed in our example scenario. We use the dissemination 
time to evaluate the success of our measure to redirect agents.  

Fig. 1. Research scenario: Agents (dots) coming 
from a source (top) try to reach a target (bottom). 
They have a choice between two paths (modeled by 
the two intermediate targets IT1 and IT2). However, 
the left pathway is closed (red cross). Agents in line 
of sight (hatched area) to that pathway become 
aware of the closure and change their target. 
Without communication, uninformed agents will 
continue to follow the unnecessary detour until the 
closed pathway comes into view. With information 
through direct wireless communication agents 
without line of sight are made aware of the closure 
and directly switch to the right corridor. The simu-
lator does not explicitly model the field of vision or 
visual perception of an agent, but simply changes 
the awareness of agents when they reach the 
hatched area in front of the closure. (Spatial di-
mensions: 177m× 120m.)   
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Menge (Curtis et al., 2016), JuPedSim (Chraibi and Zhang, 2016) or 
Vadere (Kleinmeier et al., 2019). Such validation is necessary to make 
quantitative predictions (Popper, 2002). 

1.2. Guiding crowds through direct communication 

So far, however, there has been little discussion about the interaction 
of crowd motion and mobile networks. Even the more realistic models in 
Jardosh et al. (2003), Helgason et al. (2014), and Chancay-García et al. 
(2018) simulate pedestrian locomotion separately and before they 
simulate the communication in the network. With this, interactions 
between locomotion and information dissemination cannot be investi-
gated. In particular, one cannot study how information disseminated 
through the network changes locomotion behavior and vice versa. This 
is exactly the knowledge gap that we close in this contribution. Our 
research question is: Is direct device-to-device communication suitable 
to disseminate information to guide a crowd? Our methods are computer 
simulation, forward propagation and systematic sensitivity studies on 
key parameters in the simulation model. These parameters are: the 
number of agents, the transmitter power and the presence of additional 
load on the communication system, e.g. from app users. 

First, we combine a state-of-the-art open-source mobile networks 
simulator, OMNeT++, with a state-of-the-art pedestrian locomotion 
simulator, Vadere. The coupling at simulator level through the interface 
TraCI was recently presented by the authors in Schuhbäck et al. (2019), 
see Fig. 2. With this, agents could be redirected using information. 
However, the information dissemination process itself was not captured. 
For this, one needs to extend the coupling to the model level. In 
particular, one needs a guidance model, which we will introduce in this 
contribution. We call the resulting open-source tool CrowNet — for 
Crowd Network. It is publicly available at https://github.com/pedest 
rian-dynamics-HM/crownet-uq-analysis under the following license: 
GNU Lesser General Public License v2.1. 

Second, we construct a scenario where pedestrians are guided away 
from an exit that might be closed for safety reasons and observe the 
information dissemination and path changes in the crowd. The goal is to 
keep the scenario simple while it contains vital aspects of communica-
tion: The realistically modeled crowd flow induces an ever changing 
network. The density of nodes can be varied through the number of 
agents in the crowd. Walls entail a risk of shadowing. The scale and set- 
up of our scenario corresponds to a built environment inspired by parts 
of a train station, see Fig. 1. 

Third, we analyze the uncertainties of the simulation model with 
systematic methods from the field of uncertainty quantification. 

The results of our simulations depend on parameters whose exact 
values are unknown which must be considered when addressing the 
research question. There are multiple methods to investigate un-
certainties (Smith, 2014). In this contribution, we use forward propa-
gation and sensitivity analysis. Forward propagation quantifies the 
uncertainty of the model output, while sensitivity analysis quantifies the 
influence of the uncertain parameters (Smith, 2014; Saltelli et al., 2008; 
Saltelli et al., 2010). Sensitivity indices measure the influence of each 
parameter on an output quantity of interest. If the index is low, the 
parameter is not influential. If the index is high, the parameter is 
influential. So far, quantitative sensitivity analysis has been applied 
little in the mobile networks and in the pedestrian dynamics community. 
The use of these methods is limited to some recent studies (Cheng and 
Monebhurrun, 2017; Dietrich et al., 2018; Gödel et al., 2020; Kurtc 
et al., 2021). Cheng and Monebhurrun (2017) use sensitivity analysis to 
gauge the effect of antenna and casing design parameters in a CAD 

model of a mobile phone on the specific absorption rate (SAR) calcula-
tion. SAR is the rate at which energy is absorbed by the phone user’s 
body when exposed to the radio frequency emitted by the phone’s an-
tenna. Gödel et al. (2020) and Kurtc et al. (2021) successfully apply 
sensitivity analysis to identify influential parameters, such as the need 
for personal space (see Gödel et al., 2020), in pedestrian simulations. We 
are unaware of any related work where sensitivity analysis has been 
applied on a mobile network model with direct communication between 
members of a pedestrian crowd. 

Sensitivity analysis as described in Smith (2014), Saltelli et al. 
(2008), and Saltelli et al. (2010) assumes a deterministic model. Yet, 
agent-based models of pedestrian motion contain many stochastic ele-
ments, from the initial placement of agents to any number of interme-
diate decisions that simulation tools handle by drawing from some 
pseudo-random distribution (Kleinmeier et al., 2019). The mobile 
network models add their own stochasticity. Among the causes are: 
radio channel modeling based on stochastic radio propagation models, 
random elements within communication protocols, e.g. random access 
at the medium access layer, and application layer models, e.g. random 
inter-transmission intervals of generated data packets. This is indeed a 
problem for sensitivity analysis, where a deterministic model is 
assumed. In practice, different approaches can be found to tackle sto-
chasticity in sensitivity analysis. Gödel et al. (2020) and Kurtc et al. 
(2021) simply eliminate the stochasticity. They (Gödel et al., 2020; 
Kurtc et al., 2021) repeat the simulation 10 times and average the 
outcome. The authors (Gödel et al., 2020; Kurtc et al., 2021) state that 
the number of repetitions (10) was motivated by the results of the 
convergence analysis method of Ronchi et al. (2014) applied to a simple 
test scenario. While this approach is pragmatic, it is also computation-
ally expensive. Repeating a coupled crowd-network simulation multiple 
times becomes infeasible, when the number of samples is large. Also, 
information may be lost through the averaging process, neglecting once 
again the variance in model outcomes. What we need is an approach for 
sensitivity analysis that quantifies stochasticity and, at the same time, 
reliably quantifies parameter influences. 

Hart et al. (2017) differentiates two approaches to considering sto-
chasticity in a sensitivity analysis which are both based on surrogate 
models. A surrogate model is a simplified version of the simulation 
model that approximates one or multiple quantities of interest (Smith, 
2014). A very simple example is a linear regression. While surrogate 
models are not new in uncertainty quantification, they have been used 
little to handle stochasticity. A few specialized approaches for uncer-
tainty propagation have been proposed (Azzi et al., 2019; Binois et al., 
2018; Hall et al., 2004; Koenker and Bassett, 1978; Moutoussamy et al., 
2015; Plumlee and Tuo, 2014; Zhu, 2020), but none of them has yet 
become established in practical use. Approaches that quantify stochas-
ticity within a sensitivity analysis are even less available. The authors 
are only aware of the contributions of Iooss and Ribatet (2009) and 
Marrel et al. (2012). The idea was firstly presented by Iooss and Ribatet 
(2009). 

The first approach is to, among other things, use the coefficient of 
determination R2 of a surrogate model to estimate the influence of sto-
chasticity in the sensitivity analysis. If R2 is small, stochasticity is large. 
If R2 is high, stochasticity is small. Iooss and Ribatet (2009) apply their 
methodology to an analytical function and nuclear fuel irradiation 
application using special types of surrogate models, namely, an inter-
linked generalized linear model and a generalized additive model. 
Marrel et al. (2012) apply this approach to a biochemistry problem. 
Unlike (Iooss and Ribatet, 2009), Marrel et al. use Gaussian processes as 
surrogate models. Although Iooss and Ribatet (2009) and Marrel et al. 
(2012) apply their approaches successfully to analytical and practical 
examples, the methodology is not generally applicable. The use of one 
single surrogate model can lead to loss of information on the system’s 
behavior. This was shown by Hart et al. for an analytic toy example 
(Hart et al., 2017). This is why Hart et al. propose a second approach, 

1 Chancay-García et al. (2018) refer to the PedSim simulator http://pedsim. 
silmaril.org which we cannot access (April 2021). However, there are open- 
source versions of PedSim available, see e.g. https://github.com/srl-freiburg/ 
pedsim_ros (BSD 2-Clause license). 

C.M. Mayr et al.                                                                                                                                                                                                                                

https://github.com/pedestrian-dynamics-HM/crownet-uq-analysis
https://github.com/pedestrian-dynamics-HM/crownet-uq-analysis
http://pedsim.silmaril.org
http://pedsim.silmaril.org


Safety Science 142 (2021) 105386

4

that is, to use multiple surrogate models to compute distributions of the 
sensitivity indices. Neither of the two approaches (Iooss and Ribatet, 
2009; Marrel et al., 2012; Hart et al., 2017) can quantify stochasticity 
and ensure that the sensitivity indices are indeed reliable at the same 
time. 

We conclude that there is a need for a systematic approach to 
sensitivity analysis in the fields of pedestrian dynamics and mobile 
network simulation as well as to their combination. More concretely, we 
ask: Which methods are suitable to investigate the influence of param-
eters in our model of reciprocal effects of communication and locomo-
tion? And in particular, how can we deal with the stochasticity of the 
system? This constitutes a second, methodological research question, 
which we will tackle. We will scrutinize uncertainty quantification 
methods from other research fields, modify them where necessary and 
transfer them to our problem. The goal is to bundle such methods into a 
sensitivity analysis procedure that works for coupled crowd-network 
simulators. In particular, we will combine the best of the two ap-
proaches that we just discussed. 

This paper is divided into six sections: In Section 2, we introduce the 
simulation framework CrowNet. Furthermore, we introduce the methods 
forward propagation and sensitivity analysis as well as two sub- 
approaches that handle stochasticity in sensitivity analysis. Section 3 
presents the new train station scenario from Fig. 1. We explain the 
configuration of our new simulation model and how it can be used to 
analyze information dissemination in a moving crowd. We introduce the 
three uncertain parameters and the quantity we use to measure the 

success of the information dissemination. In Section 4, we present and 
discuss the results of the forward propagation. We use additional sim-
ulations to identify possible causes that led to these results. In Section 5, 
we quantify the influence of the three uncertain parameters. We present 
a new methodology for sensitivity analysis that is based on bundling 
existing approches. We apply this methodology to the simulation results 
from Section 4 and analyze the results in the last part of Section 5. 
Finally, in Section 6 we interpret our findings, draw conclusions and 
provide an outlook on future work. 

2. Materials and methods 

2.1. CrowNet: a coupled crowd-network-simulator 

The CrowNet simulator couples Vadere with OMNeT++ to allow the 
analysis of interactions between the pedestrian dynamics and mobile 
networking domains at the simulator level, see Fig. 2. 

Vadere offers implementations of several microscopic motion models 
to simulate crowd behavior. In this contribution we use Vadere’s default 
model: the optimal steps model (OSM), a model type that is well spread 
within the pedestrian dynamics community. Each agent navigates 
through two-dimensional space by optimizing a utility function that 
reflects distance to the agent’s target and to other agents. The agent 
chooses its next foot position at the most favorable location that is 
within its stride length. ‘Stepping’ on other agents or obstacles would be 
heavily punished so that collisions are avoided. See (Seitz and Köster, 

Fig. 2. Simulator coupling (Schuhbäck et al., 2019) of CrowNet using Traffic Control Interface (TraCI) to share simulation states. The communication domain is 
simulated using OMNeT++ in conjunction with the INET framework. The mobility behavior of pedestrians is provided by the Vadere framework. 

Fig. 3. Method pipeline. We use a bundle of methods to answer the questions: Will agents receive the information in time? How is this affected by uncertain model 
parameters and stochasticity? For the latter, we propose a new procedure that is based on bundling existing approaches and cross-checking the results. 
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2012; Kleinmeier et al., 2019) for more detailed descriptions of the 
model, its verification and validation. 

OMNeT++ is a highly modular discrete event simulation library. In 
conjunction with the INET framework (INET, 2020), it provides a 
modular communication simulation ecosystem for wired and wirelesses 
scenarios. 

The coupled CrowNet simulator is based on our previous work 
described in Schuhbäck et al. (2019). The basic idea is to use Vadere as 
mobility provider in the mobile networks simulation. This is realized 
using the ‘Traffic Control Interface’ (TraCI) (Wegener et al., 2008) 
provided by SUMO (Lopez et al., 2018). The client-side for interaction 
with the mobility provider is implemented in the veins project (Sommer 
et al., 2011). Both simulators run as dedicated processes and commu-
nicate via TraCI in a client (OMNeT++) server (mobility provider; here 
Vadere) model. Both simulators retain their simulation loops but syn-
chronize every 400ms to share their simulation states and thus bi- 
directionally affect each other. The interval is based on the default up-
date interval of Vadere. For a detailed description the reader is referred 
to Schuhbäck et al. (2019) and Sommer et al. (2011). 

The CrowNet simulator provides different communication models. 
Each consists of several sub-models that form a communication stack. In 
this contribution, we combine established sub-models from the INET 
framework to model the information dissemination process. We use 
IEEE 802.11 WLAN in ad hoc mode, the 802.11 DimensionalRadio 
model, and the corresponding 802.11 DimensionalRadioMedium to 
simulate the lower layers of the communication stack. To model the path 
loss, we use the standard log normal shadowing model, implemented in 
OMNeT++ and cross-validated with the ns-3 simulator (Kuntz et al., 
2008). Additionally, we choose the ideal obstacle loss model, where 
objects in line of sight between nodes block communication entirely. For 
detailed description of the IEEE 802.11 model, we refer to the corre-
sponding chapters in Virdis and Kirsche (2019) and the INET docu-
mentation (INET, 2020). 

2.2. Method pipeline 

We use a bundle of methods in this contribution. This is necessary, 
because the information dissemination process is affected by uncertain 
parameters and stochastic effects. Our quantity of interest is the 
dissemination time, that is, the time until 95% of the agents in the 
scenario in Fig. 1 have received the saftey-relevant information. Our 
parameters are the number of agents in the scenario, the radio trans-
mitter power and the network load, which we will all justify and 
describe in detail in Section 3. We focus on sampling-based methods 
only. Forward propagation (Smith, 2014) is used to analyze the uncer-
tainty of the dissemination time tdiss, see Fig. 3(1). The influence of the 
uncertain parameters is quantified in a sensitivity analysis, see Fig. 3(2). 
Since our simulation model is stochastic, a modified version of sensi-
tivity analysis is used (2.2). In particular, this consists of two sub- 
approaches (2.2-a and 2.2-b). All of the methods have in common that 
the simulation model has to be evaluated for different parameter com-
binations (samples), see Fig. 3. These samples are generated with the 
robust version of Saltelli’s extension (Saltelli, 2002). Saltelli’s extension 
is commonly used to reduce the error of the sensitivity indices (Section 
2.2.2) at low sample size. For that purpose, ‘cross-samples’ are gener-
ated from a Sobol sequence. The resulting cross-sampling still represents 
the initial parameter distributions while correlations between parame-
ters are low (the maximum correlation coefficient is 0.007 in our sam-
pling). We argue that the cross-sampling can be used for forward 
propagation and sensitivity analysis to reduce the computational effort. 
Hence, the methods differ in the post-processing only, see Fig. 3. 

2.2.1. Forward propagation 
Forward propagation determines the uncertainty of the quantity of 

interest. For a linear function, the uncertainty can be evaluated directly 
(Smith, 2014). Since our model, CrowNet, is neither linear nor available 

in closed mathematical form, this is not possible. For such models, it is 
common to use a sampling-based approach (Smith, 2014). That includes 
sampling the parameter space, running the simulation for each sample, 
and collecting the quantity of interest for each simulation. The collected 
model evaluations form an empirical distribution, see Fig. 3. The dis-
tribution and its statistical properties are analyzed. The higher the 
number of samples, the better the true distribution is represented. 

2.2.2. Sensitivity analysis 
For sensitivity analysis it is assumed that the simulation model is 

deterministic. That means repeating a sample yields the same results. 
The simulation model CrowNet is stochastic. Repeating a simulation with 
fixed parameters (but different seeds) yields different results. In this case 
the model evaluations are not fed directly into the sensitivity analysis, 
but they are processed in an intermediate step, see Fig. 3. The actual 
sensitivity analysis remains the same. Before we explain the interme-
diate step, we briefly introduce the basic idea of sensitivity analysis and 
the algorithms that we use in this contribution. We are interested in the 
effect of input uncertainties of the model outcome over the entire range 
of the parameters, not just the effect of local perturbations. That is, we 
are interested in global sensitivity analysis. Gödel et al. (2020) gives a 
brief overview over different types of global sensitivity analysis. So- 
called variance-based sensitivity analysis is a good choice, if the 
output does not behave linearly and monotonously on the input (Smith, 
2014). The influence of parameters is quantified by so-called Sobol or 
sensitivity indices. The first-order sensitivity index Si is defined as ratio 
of the variance Di that is caused by the parameter i only, and the total 
variance of the output D: 

Si = Di/D (1)  

The total-effect index STi is defined as ratio 

STi = DTi/D (2)  

where DTi is the variance caused by the parameter i and its interactions 
(Saltelli et al., 2010) with the other parameters. If the influence of a 
parameter is high, the corresponding indices Si, STi are high. The influ-
ence is low when the index is low. For the first-order sensitivity index 
Si ∈ [0, 1] holds (Saltelli et al., 2008). For the total-effect index, STi ⩾0 
holds (Saltelli et al., 2008). 

In a sampling-based procedure, the sensitivity indices are estimated 
numerically. We approximate the sensitivity indices with the procedure 
presented in Saltelli et al. (2010). The samples are stored as elements aji 

and bji in the corresponding sample matrices A and B, i = 1…k, j = 1…N 
where k is the number of parameters, N is the number of simulations. 
The columns of A and B are used to generate the matrix A(i)

B which 
contains the columns of A except for column i which is from B. Ac-
cording to Saltelli et al. (2010), Di and DTi are estimated with 

Di ≈
1
N

∑N

j=1
f (B)j

(
f (A(i)

B )j − f (A)j

)
(3)  

DTi ≈
1

2N
∑N

j=1

(
f (A)j − f (A(i)

B )j

)2
(4)  

For these estimates, confidence intervals are bootstrapped (Archer et al., 
1997; Saltelli et al., 2010) to get a better understanding on how reliable 
the estimated indices are. We look at symmetric confidence intervals 
(Archer et al., 1997). 

2.2.3. Approaches to consider stochasticity in sensitivity analysis 
Standard sensitivity analysis requires deterministic models. Yet, our 

simulation model, CrowNet, is stochastic. The authors know two ap-
proaches (Iooss and Ribatet, 2009; Hart et al., 2017) that try to consider 
the stochasticity in sensitivity analysis. We briefly introduce the main 
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ideas of these approaches before we explain, in Section 5, how these 
approaches can be combined to cross-check the results. 

We refer to the first approach as ‘single surrogate model approach’. 
The basic idea is to use a surrogate model instead of the actual simula-
tion model (Iooss and Ribatet, 2009; Marrel et al., 2012). The steps are 
as follows:  

1. Evaluate the simulation model at the sample points (f in Fig. 3).  
2. Use these evaluations to construct one surrogate that approximates 

the quantity of interest.  
3. Evaluate the surrogate (̃f in Fig. 3).  
4. Use the surrogate evaluations in sensitivity analysis according to Eqs. 

(1)–(4).  
5. Use the coefficient of determination R2 to quantify the effect of 

stochasticity (see e.g. Iooss and Ribatet, 2009; Marrel et al., 2012). 

The second approach is presented by Hart et al. (2017). We refer to it as 
the ‘multiple surrogate model approach’, because multiple surrogate 
models are used (Hart et al., 2017):  

1. Evaluate the simulation model at the sample points (f in Fig. 3).  
2. Use these evaluations to construct r > 1 surrogates that approximate 

the quantity of interest.  
3. Evaluate the r surrogates (f̃i in Fig. 3). 
4. For each evaluation ri for i = 1,…, r apply sensitivity analysis ac-

cording to Eqs. (1)–(4).  
5. Analyze the resulting distributions of the sensitivity indices. 

Hart et al. (2017) argue that the multiple surrogate model approach 

is superior, because no information about the stochastic model is lost. 
They (Hart et al., 2017) show this for an analytical example. However, 
they do not consider the computational cost to construct multiple sur-
rogate models. 

2.3. Software and hardware 

The complete source code for the coupled simulator CrowNet and the 
Python code to perform the forward propagation and sensitivity analysis 
is publicly available on a repository.2 In our Python code, we use the 
well tested external python package SALib (Herman and Usher, 2017). 

We run 20 simulations in parallel on a server with 80 i7 cores and 
250GB RAM. The simulation of 2000 samples takes more than 6 days 
including two restarts of the script that manages the simulations in 
parallel. 

3. A crowd guidance model: interaction between pedestrian 
locomotion and mobile networks models 

The goal of this section is to create a simulation model that redirects 
a crowd using information disseminated through mobile networks. The 
model encompasses three steps. First, generate information that is 
relevant for pedestrian motion. Second, disseminate the information 
through the mobile network. Third, when information is received, adjust 
the pedestrians’ targets and thus their paths and the motion pattern of 
the entire crowd. We propose that the three processes each run in a 
specific domain, see Fig. 4. The crowd guidance domain contains the 

Fig. 4. Modeling interactions between pedestrian dynamics and mobile networks. A new crowd guidance model propagates information that is relevant for pe-
destrians’ path choices through direct communication. Receiving nodes will use this information to trigger a target change of respective agents. This forms a closed 
loop of mobility and communication models. 

Fig. 5. Simplified finite state machine of applica-
tion model were some error states are not displayed: 
The application model waits for an incident mes-
sage. If an incident is received, the node checks (1) 
if the specific incident is new or already known, and 
(2) if the incident is applicable for the current node, 
that is, if the current target of the agent is 
mentioned in the incident. If the incident is new and 
applicable, the node will choose an alternative route 
that it received in the same message and initialize 
the re-broadcast process.   

2 https://github.com/pedestrian-dynamics-HM/crownet-uq-analysis. 
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newly introduced ‘Redirection model’ that generates messages and 
triggers the information dissemination process. The actual dissemina-
tion process is simulated in the communication domain using estab-
lished models from the INET module, see Section 2.1. To model the 
pedestrian dynamics behavior, we use the ‘Optimal Steps Model’ which 
is part of the mobility domain. Since the information changes the pe-
destrians’ paths which in turn changes the information dissemination 
process in the mobile network, the system contains a closed-loop 
interaction. 

3.1. Test scenario: rerouting agents from a closed area 

We consider a scenario where pedestrians walk in a built environ-
ment that covers an area of size 177 m x 120 m, see Fig. 1. They walk 
along different routes to reach a destination depicted at the bottom. A 
gate on one of the paths is suddenly closed which forces agents to detour 
and use one of the remaining routes. The information of the closure is 
disseminated through direct communication to all agents, starting from 
one stationary node3 in the scenario. Agents receiving this information 
will re-broadcast the message. This is described in more detail in Section 
3.2 and Fig. 5. We assume that agents always change their direction 
when they have received the information. While this assumption is 
certainly optimistic, it does not have an effect on whether or not the 
agents receive the information in time for action. Agents are ‘spawned’ 
from four sources (green boxes at the top in Fig. 1). The spawning 
process follows a Poisson distribution. The Poisson parameter p = 1

4
n

100s 
is equal for all four sources. Here n is the average number of agents 
spawned within 100s. Agents need approximately 100s to reach the 
target (orange box at the bottom in Fig. 1). After 100s the number of 
agents in the scenario is almost constant, a steady flow with some 
fluctuations. At this point, a stationary node (coordinates: x = 35, y =
83.5), starts sending information about the closure to any agent in range. 
When an agent receives this message, its DetourApp model starts to 
disseminate the information about the path closure. Also all informed 
agents change their targets so that they follow an alternative route to the 
destination. When 95% of the agents have received a text message 
instructing them to take an alternative route, we consider information 
dissemination successful, and we stop the simulation to save computa-
tional cost. 

3.2. A simple redirection model: a crowd guidance model for the test 
scenario 

The communication model consists of several sub-models that form a 
communication stack. For the lower layers, we use established models 
from the INET module, see Section 2.1. 

The new component is the application model. It manages the logical 
level of the communication as well as the decision whether agents 
should change their target or not. Dissemination and interaction are 
handled in a simple way: we broadcast information without any dedi-
cated ad hoc routing protocol. Messages are passed via a link local 
broadcast between neighboring nodes. Received messages are passed up 
to the application model for processing. A finite state machine manages 
the decisions and triggers re-broadcasts if needed, see Fig. 5. The 
application model waits for an incident message. If an incident message 
arrives, the node checks (1) if the specific incident is new or already 
known, and (2) if the incident is applicable for the current node, that is, 
if the current target of the node (the destination where the agent is 
heading) is mentioned in the incident message. 

If the incident is new and applicable, the node will choose an alter-
native route which it received in the same message. Independently, a 

timer is created for the new incident to be disseminated via broadcast to 
neighboring nodes. The frequency and number of re-broadcasts is based 
on the received message parameters. If the received incident is known 
and the repeat timer is already set no new timer or message is created. 

3.3. Quantity of interest 

We measure information dissemination with the dissemination time 
tdiss which is the time between the moment when at least 95% of the 
agents have been informed and the moment when the information 
dissemination starts (tstart = 100s). There are several reasons for this 
definition. First, the quantity can be easily interpreted by the mobile 
networks community and the pedestrian dynamics community. Second, 
it quantifies the success of the redirection measure. If the dissemination 
time is below ∼ 30s, at least 95% of the agents have been successfully 
redirected. As an alternative, one could count arrivals in the area of the 
closure. If it is larger than zero, the redirecting attempt failed at least 
partially. However, if there are more complex guiding strategies in the 
scenario, the results of the counting procedure might be ambiguous: We 
would not know whether the agents were in a certain area, because this 
was their original strategy or because they were redirected. The 
dissemination time, on the other hand, tells us reliably, whether the 
agents have a chance to adapt their strategies. 

We use 95% instead of 100% in our definition of the dissemination 
time because new agents are being created continuously throughout the 
simulation, but not informed immediately after their spawning. 

3.4. Parameters 

We investigate three uncertain model parameters. The first param-
eter is the number of agents n, see Table 2. Each agent represents a 
mobile node in the mobile network. The network is continuously 
changing, due to the agents’ motion, and so is the information dissem-
ination through the network. We decide to use a truncated exponential 
distribution for the number of agents with lower bound lb = 10 and 
upper bound ub = 2000: 

n(x, b) =
e− x

1 − eb (5)  

We use b = 4, shift the distribution by lb = 10 and scale it by (ub − lb)/b. 
A histogram for 2000 samples is depicted in Fig. 6. We argue that this 
type of distribution is especially suited to capture the rare event of 
shadowing that occurs randomly when the number of agents is low. 

We also think that an exponential distribution, while probably not 
often completely correct, matches certain arrival situations in a train 
station sufficiently well for our investigation, see Appendix C. Recall 
that our study scenario was inspired by building blocks that one might 
find in built environments. The number of agents is extremely high at 

Table 2 
Uncertain parameters. We would like to know how three uncertain parameters 
affect the dissemination time tdiss. We control the packet size sd to vary the 
amount of network load tr in our model.  

Parameter Unit Lower 
bound 

Upper 
bound 

Distribution 
type  

Number of 
agents n 

1 10 2000 Truncated 
exponential 
(Eq. 5)  

Transmitter 
power p 

mW 0.5 2.0 Uniform  

Packet size sd  B 0 4000 Uniform   

Dependent 
parameter 

Equation Unit Lower 
Bound 

Upper bound Distribution 

Network load 
tr  

see Eq. 6 MB/s 0 0.20 Uniform  

3 This stationary node could, e.g., be a road-side unit managed by a public 
transportation company or a local authority. 
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certain events, e.g. after a soccer game, it is high during rush hours, but 
it can be very low during small time intervals during the rest of the day, 
e.g. between train arrivals. In the future it would be interesting to look 
into measured distributions in a real built environment. 

The second parameter is the radio transmitter power p which affects 
how far agents can communicate. If the power is low, messages only 
reach agents that are close by. Information dissemination over large 
distances fails (‘range-problem’). The reception in the deployed model is 
based on the signal to interference plus noise (SINR) ratio. If the SINR of 
a given transmission exceeds a threshold, the transmission is correctly 
received. The default threshold value is 4dB in the INET framework 
(INET, 2020). In our safety-relevant scenario, we choose a more con-
servative threshold of 6dB. Furthermore, we assume that the radio 
transmitter power is equal and constant for all mobile phones within a 
sample. This is a simplification since in reality, p depends on the local 
situation and the device itself. We vary the transmitter power in the 
range 0.5…2.0mW(EIRP4). 

The third parameter is the network load caused by other apps. While 
traveling people listen to music, use navigation apps, check their emails. 
Some even watch movies while walking. To make the simulation more 
realistic, we assume that agents use apps which produce load in the 
range of 0…0.20MB/s. This range contains listening to music 
(0.01..0.03MB/s), using navigation apps (0.05MB/s) and even stream-
ing videos in low-quality (0.06MB/s). The load tr depends on the packet 
inter-transmission interval dtx and the packet size sd 

tr = sd
1

dtx
(6)  

In our simulation model, we use a constant inter-transmission interval 
and assume one-packet messages. We control the packet size sd to vary 
the amount of load in our model. The inter-transmission interval dtx is 
defined by the (re-) broadcast interval, which is fixed to 20ms. The 
corresponding packet size sd is between 0…4000B. We expect that the 
information dissemination might be disturbed if the network load is 
high. 

4. Simulation results 

If we want to use direct communication technologies to safely guide 
crowds, we need to make sure that the saftey-relevant information is 
reliably disseminated. In particular, in the case of redirection, the in-
formation must reach the pedestrians in time to alter their course. In the 
following we will analyze this for our benchmark detour scenario 
described in Fig. 1. 

We consider information dissemination to have failed, if the 
dissemination time is tdiss > 30s. We determine this value as follows: The 
redirection measure is only successful, if the information reaches the 
agents before they have passed the obstacle that hides the closed exit. 
Once they see the closure, they do not gain anything from using the 
DetourApp. The distance between the source (green area in upper left 
corner of Fig. 1) and the obstacle is ds = 40m. A typical average walking 
speed is v = 1.34m/s (Weidmann, 1992). Thus the average agent needs 
ds/v = 30s before they pass the obstacle through the passage on the left. 
Since the walking speed varies within a population (Weidmann, 1992) 
which we model with a truncated normal distribution, the speed of some 
persons can be higher. To take into account that some people even run 
(4m/s) to catch the train, we consider information dissemination to be 
successful if tdiss < 10s. With that, even the fastest agent in our simula-
tion is informed in time. We consider the interval [10s, 30s] as a transi-
tion interval in which information may succeed or fail. If the estimated 
probability of the dissemination time to be in the transition interval is 
much smaller than the probability to be below 10 s, 
P(10s⩽tdiss⩽30s) << P(tdiss⩽10s), and if the estimated probability of 
failure is zero, P(30s⩽tdiss) = 0, we consider the information transfer to 
be ‘safe’. This pragmatic classification allows us to evaluate the simu-
lation outcomes. 

We expect that information dissemination may fail for two reasons: 
One is shadowing, that is, agents are separated by obstacles that hinder 
wave propagation. Shadowing occurs seemingly randomly, when agents 
take up unfavorable positions. We cannot control it directly. If the 
number of agents is small, it is more likely that information cannot be 
disseminated due to shadowing. A second effect is interference that 
occurs when agents try to communicate simultaneously. 

4.1. Forward propagation 

First, we analyze how likely it is that information dissemination fails. 
For that purpose, we use forward propagation, see Fig. 7–8. The 
empirical distribution of the dissemination time tdiss from our 

Fig. 6. Histogram of parameter ‘number of agents’ n as we generate it from a 
negative exponential distribution. We draw many samples where n is small to 
detect the effect of shadowing. 

Fig. 7. Empirical distribution of the dissemination time tdiss (2000 samples). 
With a probability of 86.2%, agents are informed within 10s. In some cases 
(1.1%), the information dissemination takes more than 30s. 

4 Equivalent Isotropically Radiated Power (EIRP). 
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simulations is depicted in Fig. 7. We observe that the dissemination is 
below 10s for more than 1500 out of 2000 samples, actually it is even 
below 8s. The probability that the information dissemination time is 
successful, that is tdiss⩽10s, is 86.2%. This finding is consistent with the 
empirical distribution depicted in Fig. 7 which is extremely right- 
skewed. The mode is 4.8s, the median is 4.8s, and the mean is 6.9s, 
see Table 3. Hence, we find that in most cases information dissemination 
is successful. 

The probability that information dissemination fails, that is 
tdiss > 30s, is 1.1%. We find that information dissemination fails in rare 
cases. Nevertheless, the information is always disseminated after a 

certain time: the maximum dissemination time is 69.2s, see Table 3. This 
is too long for timely information in this scenario, but it might be suf-
ficient when the topography is larger. 

4.2. Identifying reasons why information dissemination fails 

We use additional simulations to identify reasons why the informa-
tion dissemination fails. First, we check whether the effect of shadowing, 
that is, communication between agents is blocked by obstacles, impedes 
information dissemination. Shadowing is likely if the number of agents 
is small, see Fig. 10. We remove the obstacle model so that signals are no 
longer interrupted and rerun all simulations with tdiss > 30s: Agents get 
informed more quickly, see Fig. 9. We conclude that shadowing is 
indeed a problem. Range, and thus the ‘transmitter power’, does not 
seem to have any effect, because the dissemination time is low even 
when the number of agents is low. 

However, even without obstacles, we see in Fig. 9 that information 
dissemination can still take longer than 30s for a medium number of 
agents n ∈ [150,200] in samples where app users cause a significant 
amount of network load. The more agents (n ∈ [10,200]) there are and 
the higher the network load (message size), the longer it takes to 

Table 3 
Statistical properties of the dissemination time depicted in Fig. 7. 1724 of 2000 
(86.2%) samples lead to dissemination times tdiss⩽10s. In 22 out of 2000 cases, 
the dissemination time is tdiss > 30s.  

Statistical properties of the dissemination time tdiss   

Mean 6.9s  Min 2.8s  75%-Percentile 7.2s   
Median 4.8s  Max 69.2s  P(t⩽10s)  86.2%   
Mode 4.8s  25%-Percentile 4.8s  P(t⩽30s)  98.9%    

Fig. 8. Dissemination time tdiss in dependency of the number of agents (left), the transmitter power (middle), and the packet size (right) that is proportional to the 
network load. Only 1.1% of the data points exceed the 30s-border. Note: The sample values of the two remaining parameters have been projected in the plane. 

Fig. 9. Additional simulations where the 
information duration is tdiss > 30s. There are 
two causes which lead to information 
dissemination times tdiss > 30s. First, the ef-
fect of shadowing, that is, communication is 
blocked by obstacles. If the obstacle model is 
removed, agents get informed immediately 
(no shadowing). This means the transmitter 
power is sufficient and range is not a prob-
lem. Shadowing is likely if the number of 
agents is small (1). Second, the effect of 
interference when other apps take away re-
sources from the DetourApp (2). This effect 
occurs in conjunction with shadowing (2). 
Due to shadowing, agents communicate 
irregularly and only for short periods. If 
network load is present during these periods, 
the information dissemination can be 
impeded (2). This effect seems to vanish, if 
the number of agents is large enough, and 
communication is possible at any time.   
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disseminate information, see Fig. 9 (right). However, this is only true 
until the number of agents exceeds a certain threshold. Fig. 8 (left) de-
picts that information is disseminated quickly (tdiss < 10s) when the 
number of agents exceeds n ≈ 500. In this case, shadowing is present. 
Note, that the threshold may shift when shadowing is removed. 

We also see the combined effect of shadowing with network load. 
When shadowing occurs, agents communicate irregularly and only for 
short periods. If network load is present during these periods, the in-
formation spread can be impeded. The effect seems to vanish, if the 
number of agents is large enough, and communication is possible at any 
time. Fig. 8 supports these hypotheses. 

Next, we would like to understand to which extend these effects can 
be controlled by the choice of our parameters. To quantify the influence 
of our parameters, we use sensitivity analysis. 

5. Sensitivity analysis 

The system behavior in a deterministic simulation model is 
completely controlled by the choice of its parameters. The influence of 
these parameters is quantified through the size of their sensitivity 
indices. We use the 2000 samples of the forward propagation to compute 
the sensitivity indices according to Eqs. (1)–(4). Note that this corre-
sponds to a sample size of 250(= 2000/8) in Saltelli’s sampling 

procedure at cost 2k+2 with k = 3 parameters (Saltelli, 2002). First we 
analyze the order of the sensitivity indices of the simulation model. The 
parameter ‘number of agents’ is most influential, followed by ‘network 
load’, followed by ‘transmitter power’, see Fig. 13. Since the simulation 
contains stochasticity, the confidence intervals of the sensitivity indices 
are large, see Appendix B. With these confidence intervals, drawing 
reliable conclusions from the index size becomes impossible. 

In Section 2.2.3, we presented two approaches where the simulation 
model is replaced by one or multiple surrogate models. If a Kriging 
model is used as a surrogate model, one can separate the average from 
the stochastic model behavior. This allows us to look at the controllable 
part of the model only. Thus, we hope to reduce the confidence intervals 
of the sensitivity indices. One might argue that we risk losing informa-
tion about the system. We mitigate this risk by quantifying the stochastic 
part of the model with the regression coefficient. This together, with the 
sensitivity indices of the average model, can help to characterize the 
system and to draw conclusions. 

To tackle the problem of stochasticity in the sensitivity analysis, we 
combine the two approaches presented in 2.2.3. The basic idea is to 
cross-check the results of the single surrogate model approach with the 
multiple surrogate models. This ensures that no relevant information 
about the system is lost (Hart et al., 2017). Fig. 11 shows how we bundle 
existing approaches for our purpose. We construct multiple surrogate 
models by drawing r different sub-sets of samples randomly. This is 
similar to generating a training-set in a ‘Monte Carlo-cross validation’ 
(Kuhn and Johnson, 2013). We will use the terminology from Kuhn and 
Johnson (2013). 

So far, different types of surrogate models have been used in Iooss 
and Ribatet (2009), Marrel et al. (2012) and Hart et al. (2017). We 
decide to use a universal Kriging model as surrogate model. Background 
information for this type of model can be found in Appendix A. 

5.1. Applying stochastic sensitivity analysis to information dissemination 

The first step is to construct a single universal Kriging model ac-
cording to Eq. A.1 using the samples from the forward propagation. As 
parameter values, we feed in the re-scaled sample values that range from 
0…1 (min-max normalization). The re-scaling ensures that each 
parameter contributes proportionally to the construction of the surro-
gate model. As quantity of interest, we choose the log-transformed 
values of the dissemination time and a linear variogram model. The 
Kriging model is regressed as non-exact interpolator, that is, the sample 
points are not exactly reconstructed in the surrogate, see Fig. 12. The 
resulting Kriging model is suitable to model the average dissemination 
time, because the model is not biased (Q1 = 0.01 < (2/

̅̅̅̅̅̅̅̅̅̅̅
1999

√
)). We 

observe that the dissemination time in the Kriging model evaluation 
varies less than for the simulation model, see Fig. 12. Rare events are no 
longer captured. 

We evaluate the Kriging model at the 2000 sample points. Other than 
before, the surrogate allows us to compute a coefficient of determination 
R2 to quantify the influence of stochasticity. R2 is ‘the proportion of the 
information in the data that is explained by the model’ (Kuhn and 
Johnson, 2013). For the single surrogate model, the coefficient of deter-
mination is R2 = 0.30. We use R2 to measure the influence of stochas-
ticity. We find that 70%(=1–0.3) of the variation of the dissemination 
time is caused by stochastic effects. Hence, the uncertainty in the output 
caused by stochasticity is larger than the uncertainty caused by parameter 
variation. This is why we consider the system as difficult to control. Then, 
we conduct a sensitivity analysis as in Section 2.2.2. As result, we get the 
first-order and total-effect sensitivity indices and their corresponding 
confidence intervals computed through a bootstrapping procedure. We 
call these indices ‘surrogate sensitivity indices’.    

Fig. 10. Effect of shadowing. Agents (marked red) are initially (t = 100s) not 
informed. The effect of shadowing will impede the information dissemination 
process. Top: Shadowing occurs when agents are separated by obstacles (red 
lines of sight are cut by obstacles). Bottom: If the number of agents is high, 
information is disseminated successfully. 
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Fig. 11. Overview of approaches to handle stochasticity in sensitivity analysis. We use a surrogate model to smooth the noise caused by stochasticity (rare cases of 
shadowing). By that, we hope to reduce the confidence intervals of the sensitivity indices. Besides, the coefficient of determination is used to measure the influence of 
stochasticity. We propose to cross-check the different approaches. 

Fig. 12. Dissemination time tdiss over the parameter number of agents. The evaluations of simulation model and Kriging model differ. The dissemination time in the 
Kriging model evaluation varies less than for the simulation model. Rare events (tdiss > 30s) are no longer captured. Note: the other two parameter dimensions 
(transmitter power, network load) are projected in the plane. 
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In a second step, we cross-check the sensitivity indices and the coeffi-
cient of determination of the single Kriging model. We produce multiple 
Kriging surrogate models using different sub-sets of the 2000 samples. 
We draw these sub-sets randomly as it is done in a Monte-Carlo cross- 
validation. Except for the type of surrogate model, this is similar to the 
methodology proposed by Hart et al. (2017). We use three different 
training sizes trs ∈ {50.0%, 37.5%, 25.0%}. For each training size we 
generate r = 100 Kriging surrogates. To evaluate the quality of the 
model, we use the Q1-value, see Appendix A. If Q1 > (2/

̅̅̅̅̅̅̅̅̅̅̅
1999

√
), the 

model is replaced by a surrogate model that fits the condition. We 
predict the dissemination time ̃tdiss for the 2000 samples and compute 
the coefficient of determination. For each surrogate model, we also 
compute the sensitivity indices. In summary, there are 100 values for the 
coefficient of determination and each index that form an empirical 
distribution. We use these distributions to compute symmetric 95% 
confidence intervals. We compare these results with the results of the 
single surrogate model, see Fig. 13 and 14. We observe that the confi-
dence intervals of the surrogate models always overlap. Thus, we 
consider the cross-check as successful. In the following, we do no longer 
distinguish between the different surrogate model approaches, and refer 
to the ‘surrogate model approach’ only. 

5.2. Interpretation of results of the stochastic sensitivity analysis 

Our goal was to quantify the effect of stochasticity and the influence 
of parameters on the parameter-dependent part of the simulation model. 
By removing the stochastic component of the model, we hoped to reduce 
the confidence intervals of the sensitivity indices. 

First, we look at the size of the confidence intervals. The confidence 
intervals computed with the surrogate model approaches are smaller 
than those of the original simulation model, see Fig. 13. Nonetheless, the 
size of the confidence interval of the first-order index for the parameter 

‘number of agents’ is still large. A possible explanation for this is that the 
sensitivity indices are defined as the ratio between conditional and total 
variances which may both be reduced when using a surrogate model. For 
the total effect indices we see a more pronounced shrinking of the 
confidence intervals. 

Second, we look at the order of influence. The order of the parameter 
influence has not changed, see Fig. 13. The number of agents still has the 
biggest influence, followed by the network load, followed the trans-
mitter power. The number of agents is indeed dominant, with first-order 
and total-effect sensitivity indices larger than 0.6. With the reduced 
confidence intervals, however, the order is now clearly recognizable. 
Important parameters have become even more important, while the 
influence of less important parameters has been reduced. The surrogate 
model seems to work as a filter. A possible explanation for this is, that 
the surrogate model smooths the noise caused by stochasticity. Hence, 
parameters that influence the overall system behavior (without sto-
chasticity) become more important while others are ignored. 

Third, we look at the parameter ‘transmitter power’. In Section 4.2, 
we found that this parameter is not influential in the scenario considered 
in this study. When obstacles are removed, agents are immediately 
informed. The ‘transmitter power’ does not seem to affect the informa-
tion dissemination. Hence, the respective sensitivity indices must be 
zero. However, the confidence interval of the total-effect index ranges 
from 0 to 0.5 in the standard procedure, see Fig. 13. Only the surrogate 
model approaches reveal its true lack of influence. Both sensitivity 
indices of the Kriging models are (numerically) zero with vanishing 
confidence intervals. This is in agreement with our observations and 
plausibility arguments from Section 4.2. Thus, we argue that the sur-
rogate model indices which we proposed are more suitable to describe 
the parameter influence in our model than the indices from the standard 
procedure. 

Fig. 13. First-order and total-effect sensitivity 
indices. The quantity of interest is the information 
dissemination time tdiss. The parameter ‘number of 
agents’ affects tdiss most, followed by ‘network load’, 
followed by ‘transmitter power’. The confidence 
interval of the indices of the simulation model are 
large. The parameters network load and transmitter 
power might be non-influential, because the confi-
dence intervals contain or are near zero. The sur-
rogate model approaches work as a filter. Through 
smoothing the data, the confidence intervals are 
reduced while maintaining the same order. The 
confidence intervals of the multiple approaches 
overlap (dashed lines). The influence of important 
parameters increases (number of agents), while the 
influence of non-influential parameter decreases 
(transmitter power). The indices of the single sur-
rogate model approach indicate that the network 
load is only influential in combination with the 
parameter number of agents. The confidence inter-
val of the first-order index contains zero, while its 
total-effect index > 0, and only the parameter 
number of agents contributes to that. The multiple 
surrogate model approach indicates that the influ-
ence of the ‘network load’ is very low. Note: Nega-
tive index values are numerical artifacts.   
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6. Discussion 

6.1. Summary 

The goal of this study was to find whether or not direct communi-
cation as defined in new generation mobile communication protocols, 
such as the 3GPP Rel. 14 and 5G standards, is suitable to guide pedes-
trians in safety-relevant situations, for example, when an evacuation 
route is closed or a certain area should be avoided. Our criterion for 
success was that pedestrians receive redirection suggestions in time to 
act on them. We presented a new simulation tool CrowNet to analyze this 
in simulation studies. CrowNet is a free and open-source simulation tool 
that couples a state-of-the-art pedestrian dynamics simulator, Vadere, 
with a state-of-the-art mobile communication simulator, OMNeT++

with INET. It introduces an interaction between pedestrian dynamics 
and mobile networks on a model level, thus capturing, for the first time, 
the information dissemination process, the ensuing redirection of the 
crowd, and the effect on the mobile network. We proposed a simple 
scenario in a built environment with a structural composition that was 
inspired by train stations. Pedestrians equipped with mobile devices are 
redirected from a closed gateway through an app. We analyzed the 
simulation model with methods of uncertainty quantification to assess 
how reliable direct communication is and to identify parameters that 
most influence the functionality of the system. We looked at three pa-
rameters: the number of agents, the transmitter power of the mobile 
devices and additional network load caused by the agents’ use of other 
apps. Our quantity of interest was the dissemination time, that is, the 
time it took to inform 95% of the agents in the scenario. We propagated 
2000 samples and found that information dissemination fails in rare 
cases. We found strong evidence that the failure is caused by shadowing, 
that is, agents cannot communicate because they are separated by ob-
stacles. We also found that a high network load can aggravate this effect. 

Our observations on the network load improve on former observa-
tions by Chancay-García et al. (2018) who used an application to 
transmit information and varied the message size in the same applica-
tion to investigate the influence of traffic load. Our approach has the 
advantage of separating the information dissemination from the addi-
tional load through consumer apps. Our findings go beyond those ob-
tained by Helgason et al. (2014) by adding true interaction between 
mobility and information dissemination to the investigation, by 
providing quantitative analysis, and by modeling obstacles in the mobile 
networks simulation. 

We computed sensitivity indices to measure the influence of the 

parameters on the information dissemination quantitatively. We real-
ized that their confidence intervals were too large to draw reliable 
conclusions on the parameter influence. We suspected that the inherent 
stochasticity of CrowNet overshadows the parameter dependencies. 

Thus, we suggested to use a modified version of sensitivity analysis 
which is based on a surrogate model, namely a universal Kriging model. 
We proposed to use this model to quantify the effect of stochasticity and 
to cross-check the results with a multiple surrogate model approach. The 
surrogates allowed us to compute a coefficient of determination of about 
0.3 which confirmed our suspicion regarding the stochasticity of the 
simulation model. At the same time we observed that confidence in-
tervals for the Kriging model shrank in size compared to the original 
model, while the order of the indices was preserved. The value of the two 
influential parameters, number of agents and network load, and the 
corresponding confidence intervals shifted away from zero. We argue 
that the surrogate acted as a filter, smoothing the noise caused by sto-
chasticity. We realized that the Kriging model did not capture rare 
events. The filtering allowed us to draw conclusions: In our scenario, the 
number of agents has the strongest influence on the dissemination time. 
The network load plays a role in conjunction with the number of agents. 
The transmitter power is not influential in our scenario when varied in a 
range 0.5mW…2.0mW. We propose to fix this parameter in further 
studies to reduce the number of uncertain parameters. Thereby, 
computational cost is reduced. 

In all but very rare cases information dissemination was successful. 
Thus we think that direct device-to-device communication is indeed 
suited to disseminate saftey-relevant information in a crowd. However, 
network and device designers as well as decision makers must keep in 
mind that it can fail in rare cases for which alternative solutions must be 
found. 

In the course of our investigations we were confronted with the 
limitations of standard sensitivity analysis when using non-deterministic 
models, like Vadere, OMNeT++ and their combination CrowNet. This led 
to a second, methodological research questions: Which methods are 
suitable to quantify the influence of parameters in our stochastic model? 
We pursued the idea to apply sensitivity analysis not only to the original 
simulation model but also to a surrogate model, namely a universal 
Kriging model. For the surrogate one can compute a coefficient of 
determination that quantifies how much of the variance in the model is 
caused by parameter variation. We cross-checked the statistic results for 
the Kriging model with a multiple surrogate model approach. The sta-
tistics from the multiple surrogate model approach confirmed the sta-
tistics for the single surrogate. This encourages us to propose sensitivity 

Fig. 14. Coefficient of determination. The coeffi-
cient of determination is only 30% (single surrogate 
model approach). This indicates a large effect of 
stochasticity on the dissemination time tdiss. The 
results from the cross-check look similar. Three 
different training sizes are compared: 25.0% of the 
sample data, 37.5% of the sample data and 50.0% of 
the sample data (multiple surrogate model 
approach). For each, 100 surrogate model are con-
structed. The resulting distribution is represented by 
the symmetric 95% confidence interval (error bars).   
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analysis with a Kriging surrogate to handle model stochasticity. We 
further suggest to cross-check whenever the computational costs allow 
this. 

In our example, the multiple surrogate model approach yields results 
similar to the single surrogate model approach. We did not observe in-
formation being lost, as Hart et al. (2017) feared. This supports the work 
of Iooss and Ribatet (2009) and Marrel et al. (2012). This may, however, 
be a coincidence and cannot be naively transferred to arbitrary sce-
narios. Nevertheless, it demonstrates that the usage of multiple surro-
gate models, while superior in theory, is not always necessary in 
practical applications. Moreover, the construction of multiple surrogate 
models is computationally expensive. We argue that, while cross- 
checking with multiple models is desirable, one surrogate may suffice 
in many practical examples. If one wants to be sure, one should cross- 
check the approach as we do. 

6.2. Limitations and open research questions 

There are some limitations concerning sensitivity analysis with a 
surrogate model that we would like to mention. 

One should be aware that the multiple surrogate model approach 
might be sensitive to the method setup. The results of the three multiple 
surrogate model approaches (25%,37.5%,50% training size) are affected 
by the training size. In our case, the effect is low. However, this might 
limit how far the methodology can be transferred to other application 
use cases. 

Also, the results of the sensitivity analysis depend on the choice and 
setup of the surrogate model. For different model types, the regression 
surfaces representing the average behavior can differ. ‘Fast’ but relevant 
oscillations might be smoothed, while over-estimating the uncertainty 
with the Gaussian process model. The question which surrogate model is 
most suitable is still an open question in research. 

Other limitations regard the CrowNet simulator and the set-up of the 
scenario. 

In our scenario, redirection measures are disseminated successfully 
through the mobile network except for some rare cases, when the 
dissemination process takes too long. We see, however, that the infor-
mation is always received. In the case of a larger topography, the agents 
might still be informed in time. However, range could become a problem 
and, thus, the parameter ‘transmitter power’ could become influential. 
In scenarios with many obstacles a delay may be even more pronounced. 
Clearly, the spatial dimensions and the rerouting strategy are influential 
and no scenario can fit all cases. 

Also, in our scenario, all agents immediately follow the instructions 
which is a very optimistic view. A psychological model is needed that 
tells how likely people are to react at all and with which delay. This 
interdisciplinary subject will be part of future research. 

Another limitation is the simplicity of the obstacle model that is used 
in the information dissemination process. When an obstacle is in be-
tween agents, the communication fails. This is quite conservative. In 
reality, communication can still be possible. Hence, the risk of failure 

might be lower. 
We only analyzed the effect of three uncertain parameters that we 

identified as main model parameters. The effect of other uncertain pa-
rameters is not captured. We think that it would be interesting to 
investigate the effect of the threshold of the ‘signal to interference plus 
noise ratio’ (SINR) which is currently fixed to 6 dB. 

It is important to mention that our example scenario and our quan-
tity of interest, the dissemination time, may not be fully sufficient to 
answer safety-related questions in general. Further scenarios and 
quantities of interest like local densities, pre-movement times and 
pedestrian flows need to be considered. 

Finally, security concepts for direct communication as assumed 
within this paper are a challenging research topic: While confidentiality 
is not required for the application investigated, integrity and non- 
repudiation have to be guaranteed. However, for several systems with 
similar requirements (such as LTE-A D2D, C-V2X or ITS-G5) security 
architectures have been proposed5 or are part of the ongoing research 
within the field of network security. Therefore, these aspects are 
considered to be out-of-scope for this article. 

7. Conclusion 

The goal of this study was to assess how suitable direct communi-
cation is to redirect crowds. For that purpose, a simulation model and 
methodology were proposed. The analysis of the proposed scenario 
showed that even in the worst-case, assuming that obstacles completely 
hinder communication, direct communication works except for some 
rare cases of shadowing. The outcome is affected by the parameters 
‘number of agents’ and the ‘network load’. Although the topography and 
the redirection measure are simple, basic properties of the closed-loop 
interaction between pedestrian dynamics and mobile networks were 
captured in the simulation model. 

We consider our contribution as a first step in an emerging field of 
research and application. Many open questions remain. We would like to 
draw the readers’ attention to some that we think are especially 
important: First, our simulations only demonstrate a worst case of 
shadowing, that is, complete failure if the line-of-sight is cut. More 
elaborate obstacle models should be investigated. With respect to the 
agents’ reaction, on the other hand, we consider a best case scenario: all 
agents follow instructions. The variance in the agents’ reaction must be 
modeled. Moreover we would like to scrutinize more surrogate models 
to see which is best suited for sensitivity analysis in our field. One should 
also be aware that a surrogate may not only bring out the main system 
characteristics but could also filter important non-linearities (oscilla-
tions, jumps) in the model behavior. 
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Appendix A. Universal Kriging 

Kriging is an approximation method that predicts unknown values of a random function. This is modelled through a second-order covariance 
process. The assumption is that ”the closer the input data, the more positively correlated the prediction errors” (van Beers and Kleijnen, 2003). In 
universal Kriging the observations have a polynomial representation: gT(q)β =

∑K
k=0βkgk(q). The covariances of the observations depend only on the 

“distances” between the corresponding inputs. The behavior of the covariance is represented by a Gaussian process error model Z(q) (Smith, 2014). 
In this contribution, the quantity of interest is the dissemination time tdiss. The universal Kriging model approximates the dissemination time t as ̃t 

(Smith, 2014) 

5 See e.g. ETSI TS 102 731 V1.1.1 (2010-09), https://www.etsi.org/deliver/etsi_ts/102700_102799/102731/01.01.01_60/ts_102731v010101p.pdf (27th April 
2021). 
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t̃(q, β) = gT(q)β+Z(q) (A.1) 

where q is the vector of the three uncertain parameters (number of agents, transmitter power, network load), gT(q)β is the polynomial trend function 
and Z(q) represents a Gaussian process error model (Smith, 2014). The coefficients β = [β0,…βk] are determined using a least squares regression 
(Smith, 2014). 

The variogram plays a crucial role in the Kriging method. It is the ”diagram of the variance of the difference between the measurements at two 
input locations” (van Beers and Kleijnen, 2003). It is a function of the distance h between two locations (van Beers and Kleijnen, 2003). Such a function 
is sufficient to describe a second-order covariance process (van Beers and Kleijnen, 2003). In this contribution, a linear variogram model is used. This 
assumes that the variance increases with the distance between parameter values. We assume that measurement errors are present in the model. This 
has the effect that the Kriging model is an approximation rather than an excat interpolator. The goodness of fit of the Kriging model can be evaluated 
with the statistics Q1 and Q2 (Kitanidis, 1997). Q1 measures the bias of Z(q). The model should be rejected, if (Kitanidis, 1997) 

|Q1| > 2
/ ̅̅̅̅̅̅̅̅̅̅̅

n − 1
√

(A.2)  

is true, where n is the number of data points that are used to construct the Kriging model. The statistic Q2 measures the variance of the normalized 
errors of the model Z(q). Ideally, Q2 = 1. If Q2 < 1, the variance is underestimated. We are interested in the average model behavior but not its 
variance. This is why look at Q1 in this contribution. For background information, we refer to Cressie (1993), Kitanidis (1997), van Beers and Kleijnen 
(2003), and Smith (2014). 

Appendix B. Limitations of standard sensitivity analysis 

The system behavior in a deterministic simulation model is completely controlled by the choice of its parameters. The influence of these parameters 
is quantified through the size of their sensitivity indices. However, random effects in the model we investigate lead to large confidence intervals for the 
sensitivity indices. With these, drawing reliable conclusions from the index size becomes impossible. We will demonstrate this below for the results of 
our simulation model. 

First we order the parameters according the size of their first-order indices: The parameter ‘number of agents’ is most influential, followed by 
‘network load’, followed by ‘transmitter power’, see Table B.4. 

The first-order index for the ‘number of agents’ is 0.27. Its 95% confidence interval has the lower bound 0.02 and the upper bound 0.52. We think 
that the large size of the confidence interval reflects the parameter’s connection to random shadowing. Shadowing is caused when agents happen to 
take up unfavorable positions in some of the samples. Then the dissemination time is large. In the bootstrapping procedure, we randomly draw sub-sets 
of samples for which we compute the sensitivity indices. When shadowing occurs for some of these samples the variance of the dissemination time is 
high, otherwise it is small. The first-order sensitivity index is proportional to the variance which explains the large size of the confidence interval. 

In the next step, we analyze the influence of the parameters ‘transmitter power’ and ‘network load’. The first-order indices of both parameters are 
almost zero. Hence, the parameters, each seen separately, do not contribute anything. The corresponding total-effect indices can be found in Table B.5. 
The total-effect index for the transmitter power is between 0.07 and 0.72. The corresponding index for the network load is between 0.02 and 0.54. 
Since the total-effect indices are larger than the first-order indices, there must be interaction effects among the parameters. 

This is why we also compute the second-order sensitivity indices: All the confidence intervals of the second-order sensitivity indices include zero. 
This means that the total variance is not caused by second order interaction effects, but higher-order interaction effects. We find that this is also an 
indicator for stochasticity in the simulation. 

All in all, we find that the confidence intervals of the sensitivity indices are too large to draw conclusions on the importance of the parameters. As 
result, we cannot fix any parameter. This is indeed a problem for further studies where additional parameters are varied. If the number of parameters is 
increased, the simulation becomes infeasible. With three parameters only, the evaluation of 2000 simulations took six days. 

Table B.4 
First-order sensitivity indices of the simulation model. The confidence interval of parameter 2 and 3 are close or even contain the zero. This means, they might not 
affect the dissemination time tdiss directly.  

Parameter First-order sensitivity index 5% Confidence level 95% Confidence level 

Number of agents 0.27 0.02 0.52 
Transmitter power 0.01 − 0.06 0.08 
Network load − 0.05 − 0.10 0.00  

Table B.5 
Total-effect sensitivity indices of the simulation model. The confidence interval of parameter 2 and 3 are close to zero. This means, they might not affect the 
dissemination time tdiss. At the same time, the confidence interval is large. This is why we cannot make a clear statement about the influence of the parameters.  

Parameter Total-effect sensitivity index 5% Confidence level 95% Confidence level 

Number of agents 0.90 0.48 1.32 
Transmitter power 0.40 0.07 0.72 
Network load 0.28 0.02 0.54  
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We think that the size of the confidence intervals is caused by model stochasticity. However, we cannot quantify the effect of the stochasticity using 
standard sensitivity analysis. This is why we propose to use a modified form of sensitivity analysis that is based on surrogate models. 

Appendix C. Number of arrivals at Melbourne central station 

The number of arrivals at a train station varies over the day and over the week, see e.g. the publicly available pedestrian counting data in the City of 
Melbourne.6 Exceptional situations, such as pandemics, can affect the passenger traffic volume and its distribution. The Melbourne data set contains 
many distributions. An example distribution for the number of arrivals at a train station is depicted in Fig. C.15. We find that it looks like an 
exponential distribution because the number of counts decreases over the number of arrivals. 
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