
3848 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Motion Vector Coding and Block Merging in the
Versatile Video Coding Standard

Wei-Jung Chien , Member, IEEE, Li Zhang , Senior Member, IEEE, Martin Winken ,

Xiang Li , Senior Member, IEEE, Ru-Ling Liao , Han Gao , Graduate Student Member, IEEE,

Chih-Wei Hsu , Hongbin Liu, and Chun-Chi Chen

(Invited Paper)

Abstract— This paper overviews the motion vector coding and
block merging techniques in the Versatile Video Coding (VVC)
standard developed by the Joint Video Experts Team (JVET).
In general, inter-prediction techniques in VVC can be classified
into two major groups: “whole block-based inter prediction”
and “subblock-based inter prediction”. In this paper, we focus
on techniques for whole block-based inter prediction. As in
its predecessor, High Efficiency Video Coding (HEVC), whole
block-based inter prediction in VVC is represented by adaptive
motion vector prediction (AMVP) mode or merge mode. Newly
introduced features purely for AMVP mode include symmetric
motion vector difference and adaptive motion vector resolution.
The features purely for merge mode include pairwise average
merge, merge with motion vector difference, combined inter-
intra prediction and geometric partitioning mode. Coding tools
such as history-based motion vector prediction and bidirectional
prediction with coding unit weights can be applied on both
AMVP mode and merge mode. This paper discusses the design
principles and the implementation of the new inter-prediction
methods. Using objective metrics, simulation results show that
the methods overviewed in the paper can jointly achieve 6.2%
and 4.7% BD-rate savings on average with the random access
and low-delay configurations, respectively. Significant subjective
picture quality improvements of some tools are also reported
when comparing the resulting pictures at same bitrates.

Index Terms— Block merging, HEVC, motion compensation,
motion vector coding, versatile video coding (VVC).

I. INTRODUCTION

THE Versatile Video Coding (VVC a.k.a. ITU-T Rec.
H.266 and ISO/IEC 23090-3) is the latest international

video-compression standard jointly finalized by ITU-T Video
Coding Experts Group (VCEG) and ISO/IEC Motion Picture
Expert Group (MPEG) in July 2020 [1], [2]. The project of

Manuscript received August 24, 2020; revised March 24, 2021 and June 16,
2021; accepted July 17, 2021. Date of publication July 30, 2021; date of
current version October 4, 2021. This article was recommended by Associate
Editor J.-R. Ohm. (Wei-Jung Chien and Li Zhang are co-first authors.)
(Corresponding author: Li Zhang.)

Wei-Jung Chien and Chun-Chi Chen are with Qualcomm Inc., San Diego,
CA 92121 USA.

Li Zhang is with Bytedance Inc., San Diego, CA 92122 USA (e-mail:
lizhang.idm@bytedance.com).

Martin Winken is with Fraunhofer HHI, 10587 Berlin, Germany.
Xiang Li is with Tencent, Palo Alto, CA 94306 USA.
Ru-Ling Liao is with Alibaba, Beijing 100102, China.
Han Gao is with Huawei Technologies, 80992 Munich, Germany.
Chih-Wei Hsu is with MediaTek Inc., Hsinchu 30078, Taiwan.
Hongbin Liu is with Bytedance Inc., Beijing 100190, China.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TCSVT.2021.3101212.
Digital Object Identifier 10.1109/TCSVT.2021.3101212

this new standard was announced by the so called “Joint
Video Exploration Team (JVET)” of VCEG and MPEG in
October 2017 with the joint call for proposal of video com-
pression with capability beyond High Efficiency Video Coding
(HEVC) [3] and then officially launched in April 2018. At the
same time, JVET has been renamed to “Joint Video Experts
Team”. The main goal of VVC is to address two aspects of
industry needs for a future video coding standard: (a) higher
coding efficiency than HEVC with over 50% bitrate reduction
while keeping the same subjective quality for SDR/HDR
contents with picture size at least covering from VGA to
8K × 4K and (b) broad versatility that supports efficient com-
pression of various types of video contents and applications,
such as screen contents, adaptive resolution change, omni-
directional/360◦ videos [4].

Although the VVC standard inherits the framework of
block-based hybrid coding, similar to HEVC, it adopts several
highly adaptive and sophisticated coding tools. In general,
VVC follows a multi-type tree structure (i.e., quadripartite,
binary and/or ternary tree) to split a picture into a variety
of block shapes (i.e., square, or non-square). Each block is
a basic unit for signaling prediction information. Then, intra
prediction and/or inter prediction operates on a block-by-
block or subblock-by-subblock basis [5] within the basic unit,
followed by transform and quantization processes with switch-
able bases for residual coding, a chain of in-loop filters (i.e.,
deblocking, sample adaptive offset, adaptive loop filtering [6])
for subjective quality improvement and syntax coding/parsing
for transmission.

In a video signal, high temporal redundancy exists between
sequential pictures. Therefore, inter prediction, targeting at
reducing the temporal redundancy, makes a major contribution
in the video compression capability and plays a key role in
the hybrid video coding scheme. In VVC, a lot of novel
coding tools are developed to further improve inter prediction.
In general, those tools can be classified into two major groups,
depending on whether the whole block share the same set of
motion information, i.e., “whole block-based inter prediction”
wherein only one set of motion information is utilized and
“subblock-based inter prediction” wherein each sub-block
could have its own set of motion information.

This paper covers both algorithm descriptions and perfor-
mance analysis of whole block-based inter-prediction coding
tools while the subblock-base inter prediction is overviewed
in another overview paper of this special issue [7]. Basically,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3864-5691
https://orcid.org/0000-0003-2118-4876
https://orcid.org/0000-0001-5375-4090
https://orcid.org/0000-0001-6547-1557
https://orcid.org/0000-0003-2597-8470
https://orcid.org/0000-0002-0575-2143
https://orcid.org/0000-0002-7339-0471
https://orcid.org/0000-0003-3750-4651


CHIEN et al.: MOTION VECTOR CODING AND BLOCK MERGING IN THE VVC STANDARD 3849

the whole block-based inter-prediction coding tools include
the extended adaptive motion vector prediction (AMVP) mode
and block merging which are employed in the HEVC inter
prediction scheme, and multiple other coding tools introduced
in the VVC standardization work. Therefore, following the
inter prediction scheme, the coding tools are categorized into
3 topics, AMVP, merge, and others, as follows:

• Motion vector (MV) coding: MV predictor (MVP)
candidate list with 2 candidates generated based on
spatial/temporal MV predictors or MVs from history-
based motion vector prediction(HMVP) tables [8], [9];
symmetric MV difference(SMVD) that signals a pair
of symmetric bi-prediction MV differences (MVDs) with
slice-level indicated reference pictures [10], [11]; adap-
tive MV resolution (AMVR) for MV predictors and
MVDs at 1) quarter- to 4- luma samples or 2) one-16th- to
one- luma sample precision depending on selected motion
models, i.e., 1) for the translational motion model and
2) for the affine motion model [13]–[18];

• Block merging: block merging candidate list with at
most 6 candidates generated based on spatial/temporal,
candidates from HMVP tables and a synthetic pair-
wise motion vector predictor; geometric partition-
ing mode (GPM) that geometrically splits a block at
an angle of power-of-two tangent with a boundary-
shifting offset [22]–[24]; merge mode with MV differ-
ence(MMVD) that allows adding power-of-2 1-D offsets
to either horizontal or vertical components of a selected
merge candidate [22], [23]; combined inter-intra predic-
tion (CIIP) to generate a prediction block with weighted
combination of a planar intra predictor and the motion-
compensated temporal predictor of a selected merge can-
didate [25], [26]; merge estimation region (MER) to
allow independent/parallel derivation of MV prediction
list and merge candidate list of coding units (CUs) inside
the region [27];

• Others: bidirectional prediction with coding unit
weights (BCW) to introduce non-equal weights at CU
level for bi-prediction [28]–[30]; motion vector com-
pression and range to encode motion fields on reference
pictures by using a 10-bit mantissa-exponent representa-
tion at every 8 × 8 grid [31].

These coding tools introduced to inter prediction offer
more encoding options for VVC to efficiently represent the
motion fields of coded blocks with complex object motion. For
example, the VVC standard offers quite a few motion models,
including translational model, 4- and 6-parameter affine model,
to accommodate more video content types with complex
structures and ensures coding efficiency. The effectiveness of
each individual coding tool reported during the development
of VVC has justified the increase of encoding/decoding com-
plexity [43].

This paper is organized as follows. Sections II presents
the motion data coding in the HEVC standard, including
the AMVP mode and merge mode. Multiple aspects of inter
prediction in the VVC standard are provided in Section III.
Sections IV, V and VI give the detailed description of

Fig. 1. AMVP candidate list construction process.

Fig. 2. Five neighboring spatial locations (above blocks: A0, A1; left blocks:
B0, B1 and B2) and locations of collocated blocks for TMVP (H and C) of
the current block.

individual coding tools and the interactions among tools. Tool-
by-tool testing results are given in Section VII to explore the
coding performance and analyze the implementation complex-
ity, and Section VIII concludes this paper.

II. MOTION DATA CODING IN HEVC

In HEVC, inter prediction is represented by two modes:
the AMVP mode and merge mode, wherein reference picture
indices and MVDs are signaled in the former mode but not
signaled in the latter one. Skip mode is a special merge mode,
in which residuals are inferred to be zero and thus not signaled.
In this section, we briefly review the two modes in HEVC.

AMVP mode origins from MV competition [32] wherein
one of the best MVPs could be selected according to rate-
distortion cost. For the AMVP mode in HEVC, motion vector
predictions are used to exploit spatio-temporal correlations of
MVs among prediction units (PUs). The encoder can select
the best MVP from an MVP candidate list and transmit the
corresponding index together with the reference picture index
and MVD. The MVP candidate list for each reference picture
list with up to two candidates is constructed, following the flow
depicted in Fig. 1. More specifically, the MVPs from spatial
neighboring PUs, left and above to the current PU, an MVP
derived from temporal motion vector prediction (TMVP) and
zero MVPs are added to fulfill the candidate list in order. The
locations of five neighboring PUs are denoted respectively as
A0, A1, B0, B1 and B2 in Fig. 2. The left spatial neighboring
MVP candidate can be derived from A0 and A1 when at
least one of them is inter predicted, and the above spatial
neighboring MVP candidate can be derived from B0, B1 and
B2 when at least one of them is inter predicted. A scaled
MV, according to the temporal distances between the reference
picture associated with the left MVP and the current reference
picture, will be output as the left MVP if no MV refers to



3850 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Fig. 3. Construction of a merge candidate list.

Fig. 4. Comparison pairs for spatial merge candidates.

the target reference picture in block A0 and A1. Similarly,
a scaled MV will be output as the above MVP if no MV refers
to the target reference picture in block B0, B1 and B2. The
above spatial neighboring MVP candidate is discarded if it is
identical to the left neighboring MVP candidate. The TMVP
candidate is derived by scaling an MV stored at location H
or C as shown in Fig. 2 in the collocated picture to the target
reference picture. Location H is checked first. If no MV is
available at location H, location C is checked.

With the merge mode in HEVC, motion information of the
current PU can be directly inherited from spatial or temporal
neighboring blocks [33]. A merge candidate list with five
candidates is constructed as demonstrated in Fig. 3. Like in
the AMVP mode, the encoder selects the best merge candidate
from the candidate list and transmits the corresponding index,
but without any reference index or MVDs.

To derive spatial merge candidates, a maximum of four
merge candidates are selected among candidates located in the
positions depicted in Fig. 2. The order of derivation is A1, B1,
B0, A0 and B2. Position B2 is considered only when any PU
of position A1, B1, B0 and A0 is not available (e.g. because
it belongs to another slice or tile) or is not inter predicted.
After the candidate at position A1 is added, the addition of
the remaining candidates is subject to a redundancy check
which ensures that candidates with same motion information
are excluded from the list to improve the coding efficiency.
To reduce computational complexity, only the pairs linked
with an arrow in Fig. 4 are compared and a candidate is
added to the list only if it passes the redundancy check.
In HEVC, a CU may be partitioned into PUs, which may bring
redundancy with the merge mode. Fig. 5 depicts the “second
PU” partitioned from a CU by N × 2N and 2N × N pattern,
respectively. When the second PU is partitioned from a CU
by N × 2N, candidate at position A1 is not considered for
list construction. In fact, by choosing this candidate, two PUs

Fig. 5. The second PU partitioned by (a) N × 2N and (b) 2N × N.

will share the same motion information, which is redundant
to the case when there is just only one PU in the CU.
Similarly, position B1 is not considered when the second PU
is partitioned from a CU by 2N × N.

In the derivation of the temporal merge candidate,
the TMVP candidate is derived from MVs stored at location
H or C as shown in Fig. 2 in the collocated picture, similar to
the TMVP candidate for AMVP mode. For a TMVP candidate
in the merge candidate list, the MVs will be scaled to the
reference picture with reference index 0 in the corresponding
reference picture list.

Beside spatio-temporal merge candidates, there are two
additional types of merge candidates: combined bi-predictive
merge candidate and zero motion candidate with (0, 0) motion
vector. Combined bi-predictive merge candidates are generated
by utilizing spatio-temporal merge candidates for B-slice only.
The combined bi-predictive candidates are generated by com-
bining a first MV referring to reference list 0 of a first merge
candidate, and a second MV referring to reference list 1 of
a second merge candidate where the first and second merge
candidates are selected from available merge candidates in the
merge candidate list according to a pre-defined order. The two
MVs will form a new bi-predictive candidate. If the merge
candidate list is not fulfilled, zero merge candidates will be
appended to the list to fill it up.

III. OVERVIEW OF MOTION VECTOR CODING AND

BLOCK MERGING IN VVC

As aforementioned, VVC supports both the whole block-
based and subblock-based inter prediction tools. The whole
block-based inter-prediction has been widely used for decades
in former video coding standards such as HEVC. With whole
block-based inter prediction, a set of motion information,
which comprises MVs and reference pictures, is assigned to a
block, and the motion compensation (MC) is performed on the
whole block with the set of motion information. Unlike whole
block-based inter prediction, subblock-based inter prediction
first divides a block into subblocks, e.g. 4 × 4 or 8 × 8
subblocks, then an individual set of motion information is
assigned to each subblock. Fig. 6 shows a skeleton diagram
of all inter-prediction techniques in VVC.

In the following sub-sections, the newly employed whole
block-based inter coding tools in VVC are provided.

A. Motion Vector Predictor From HMVP Tables

In HEVC, there are two types of MVPs, i.e., spatial MVP
and temporal MVP which utilize the motion information from



CHIEN et al.: MOTION VECTOR CODING AND BLOCK MERGING IN THE VVC STANDARD 3851

Fig. 6. Inter-prediction techniques in VVC.

spatially adjacent or temporal blocks. While in VVC, a new
type of MVP, i.e., HMVP is introduced. The basic idea of
HMVP is to further use previously coded MV as MVP which
are associated with adjacent or non-adjacent blocks relative to
current block. In order to track available HMVP candidates,
a table of HMVP candidates is maintained at both encoder and
decoder and updated on the fly. Whenever a new CTU row
starts, the table is reset to ease parallel coding. There are up
to five candidates in the HMVP table. After coding one inter
predicted block which is not in sub-block mode (including
affine mode) or GPM, the table is selectively updated by
appending the associated motion information to the end of
the table as a new HMVP candidate. A restricted first-in-first-
out (FIFO) rule is applied to manage the table wherein the
redundant candidate in the HMVP table is firstly removed
instead of the first one. With HMVP, the motion information
of previously coded blocks can be utilized for more efficient
motion vector prediction, even if the coded blocks are not
spatially adjacent to the current block.

The HMVP candidates can be added to the AMVP candidate
list as well as the merge candidate list.

B. Motion Vector Coding

In addition to the introduction of HMVP candidate added to
the AMVP mode, there are other new features for the AMVP
mode in VVC. The SMVD technology sets the MVD for
reference list 1 as a mirror of the MVD for reference list 0 to
save the overhead for coding MVD. The AMVR technology
allows MVDs of a block to be signaled in 4-, 1/2-, 1- or
4- luma sample resolutions for translational motion model,
which is also adopted to further save bits of MVD. These two
coding tools could be applied together for one block. Besides,
to provide more precise motion compensation, the precision
of MV is 1/16-luma sample in VVC instead of 4-luma sample
in HEVC.

C. Block Merging

In VVC, merge/skip mode is more sophisticated than that
in HEVC. First, besides the neighboring block-based merge
candidates similar to those in HEVC, two new types of merge
candidates are added into the merge candidate list, namely
HMVP merge candidates and the pairwise average merge
candidate. Second, besides the regular merge mode which is
similar to merge mode in HEVC, VVC adopts three additional
merge modes known as MMVD mode, CIIP mode and GPM.

The newly introduced HMVP and pairwise average merge
candidates are put into the merge candidate list after the spatial
or temporal neighboring block-based merge candidates. The
pairwise average merge candidate in VVC replaces the com-
bined bi-predictive merge candidates in HEVC. The pairwise
average merge candidate is put after HMVP candidates and
is generated by averaging the MVs of the first two available
merge candidates in the merge candidate list. As in HEVC,
a merge estimation region is adopted by VVC to facilitate the
hardware design for the encoder.

The three additional merge/skip modes can help VVC to
adapt better to varieties of video contents. MMVD serves as an
intermediate motion representation between merge/skip mode
and AMVP mode. An MVD index is signaled for a merge
candidate and represents an MVD or a pair of MVDs that are
limited to four directions and eight distances. The combination
of inter-prediction and intra-prediction has been studied for
many years [34]–[36]. With CIIP as adopted in VVC, only
the planar mode is used to generate the intra-prediction
block, and a merge candidate is used to generate the inter-
prediction block. The final prediction is a weighted sum of
the inter-prediction and intra-prediction blocks. MC with non-
rectangular partitions also gains a lot of research attentions
for years [37], [38]. With GPM in VVC, a coding block is
partitioned into two parts which may be non-rectangular or
asymmetric rectangular. Two inter-prediction blocks are gen-
erated with two MVs derived from two merge candidates for
the two parts individually. The final prediction is a weighted
sum of the two inter-prediction blocks with weighting values
particularly designed for the partitioning shapes.

D. Weighting of Motion-Compensated Prediction and Motion
Data Storage

In VVC, some coding tools such as BCW can be applied
to both merge mode and AMVP mode. With BCW, a set of
weighting value candidates can be selected for bidirectional
inter prediction. The index of the selected weighting values
is signaled for AMVP mode and inherited for merge mode,
if allowed.

Besides coding efficiency, computational complexity and
storage requirement are also intensively evaluated during stan-
dardization for video coding. To limit the required storage
of MVs used for temporal prediction, VVC employs a new



3852 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

algorithm to compress stored MVs, by using 10-bit mantissa-
exponent representation.

IV. MOTION VECTOR CODING IN VVC

As known, inter prediction is a key part of every video cod-
ing standard. The compression ratio heavily relies on efficient
representation of motion data. The motion vector coding in the
new VVC standard is based on the well-established concepts
of HEVC. However, there are several refinements, including
the revised AMVP candidate list construction process, SMVD
and AMVR, which lead to an improved coding efficiency. The
detailed descriptions and theories behind those tools will be
described in the following subsections.

A. Motion Vector Predictor List Generation Algorithm

The motion vector prediction algorithm of VVC is based on
the AMVP of HEVC. It is applied in case of explicit motion
vector signaling, i.e., for inter predicted blocks that do not
use merge mode. For each motion vector, a list of exactly
two motion vector predictor candidates is generated and a flag
indicates which of the two is used. The following candidates
are checked for availability:

• up to two spatial candidates (similar to that in HEVC),
• up to one temporal candidate (similar to that in HEVC),
• up to four HMVP candidates (new in VVC),
• zero motion vectors, if not enough other candidates are

available (similar to that in HEVC).

For the spatial and the temporal (co-located) candidates, the
same spatial locations as in HEVC are used. Unlike in HEVC,
when the picture order count (POC) of the candidate’s refer-
ence picture does not match the POC of the current reference
picture, the candidate is considered unavailable in this case
and the scaling of spatial candidates is removed in VVC to
save the computational complexity. As in HEVC, in order to
limit memory bandwidth requirements, the temporal motion
vector predictor (TMVP) is restricted to only use co-located
candidates that belong to the same coding tree unit (CTU) row
as the current block. Also, as in HEVC, the TMVP candidate
can be disabled at sequence level or at picture level. The
TMVP is also not available for coding blocks of size 8×4 and
4 × 8 in VVC in order to improve the MV throughput since
TMVP derivation process typically requires a scaling process
which is relatively more complex compared to other merge
candidates and MV determination process for small blocks is
in a critical path for hardware implementation. In case that
after checking the spatial and temporal candidates, still less
than two candidates have been found, up to two candidates
derived from HMVP table can be used as a new feature of
VVC [8]. Finally, if there are still less than two candidates
after checking HMVP, the motion vector candidate list is filled
with zero motion vectors as in HEVC.

B. Symmetric Motion Vector Difference

In the bi-prediction mode, lots of bits are used to code
the motion information which includes the reference picture
indices, MVP indices and MVDs for reference picture list

0 and list 1. To code the motion information of bi-prediction
mode in a more effective way, the SMVD technology is
adopted. The SMVD mode is an inter bi-prediction mode
in which part of motion information is derived with an
assumption of linear motion. Therefore, the number of bits for
motion information coding can be reduced. For a CU coded
with a non-affine bi-prediction mode, a SMVD flag is signaled
to indicate whether the SMVD mode is selected or not. When
the flag is true, only the MVP indices of list 0 and list 1 and
the MVD of list 0 are signaled, and other motion information
(i.e., reference pictures and MVD of list 1) is not signaled but
derived at the decoder side.

First, the MVD of list 1 is symmetrically derived from the
MVD of list 0. That is, the MVD of list 1 (mvdx L1, mvdy L1)
is symmetric to the MVD of list 0 (mvdx L0, mvdy L0),
as shown in below:�

mvdx L1, mvdy L1
� = �−mvdx L0,−mvdy L0

�
. (1)

Second, the reference pictures of list 0 and list 1 are
determined at slice-level. These two reference pictures can
only be short-term reference pictures and may be as in either
case 1 or case 2, as follows.

• Case 1: Reference picture of list 0 is the nearest picture
among all the pictures preceding the current picture in
output order in list 0. Reference picture of list 1 is
the nearest picture among all the pictures following the
current picture in output order in list 1

• Case 2: Reference picture of list 0 is the nearest picture
among all the pictures following the current picture in
output order in list 0. Reference picture of list 1 is
the nearest picture among all the pictures preceding the
current picture in output order in list 1

If none of the reference pictures can be found as in case 1 or
case 2, the SMVD mode is marked as unavailable and the
SMVD flag is not sent.

C. Adaptive Motion Vector Resolution

The video coding standards HEVC and AVC/H.264 use
a fixed motion vector resolution of quarter luma sample.
However, it is a well-known fact that in order to achieve over-
all rate-distortion optimality, an optimum trade-off between
displacement vector rate (Rd) and prediction error rate (Re)
has to be chosen [12]. In particular, at optimality the partial
derivatives of the multivariate distortion rate function with
respect to Rd and Re have to be equal. Previously, this aspect
has only been considered at the encoder-side in the motion
estimation stage. The new video coding standard VVC allows
to select the motion vector resolution at coding block level and,
therefore, to trade-off bit rate versus fidelity for the signaling
of the motion parameters. This is enabled by the AMVR mode
which is based on ideas and concepts that have initially been
described in [13]–[15], [39]. For translational inter predicted
blocks, the following motion vector resolutions are which is
out of scope for this paper. The AMVR mode is signaled at
the coding block level if at least one component of an MVD
is unequal to zero. The motion vector predictor is rounded to
the given resolution such that the resulting motion vector is
guaranteed to fall on a grid of the given resolution.



CHIEN et al.: MOTION VECTOR CODING AND BLOCK MERGING IN THE VVC STANDARD 3853

Fig. 7. Frequency responses of the half-pel interpolation filter.

Note that in case the half luma sample resolution is selected
for a coding block, also an alternative luma interpolation filter
is used for the half-sample position in this block. This aspect
of AMVR is also known as switchable interpolation filter
(SIF). The frequency responses of the regular interpolation
filter and the alternative interpolation filter are shown in Fig. 7.
It can be seen that the alternative filter has a strong low
pass characteristic which can be beneficial for attenuating high
frequency noise components. More details about SIF can be
found in [16]. The application of the alternative interpolation
filter is also further propagated in merge mode, i.e., if a coding
block in merge mode references a neighboring block that uses
the alternative interpolation filter, the referencing block will
use it as well.

V. BLOCK MERGING IN VVC

Block merging is an efficient coding tool in HEVC. In VVC,
more merge modes are introduced for higher coding efficiency.
In this section, regular merge mode is first introduced. Sub-
sequently, new merge modes, including geometric partitioning
mode, merge mode with motion vector difference, combined
inter-intra prediction are discussed in order. Finally, merge
estimation region for low encoding complexity is described.

A. Block Merging Candidate List Generation Algorithm

There are five types of motion vector (MV) predictor candi-
dates in regular merge mode, i.e., spatial candidates, temporal
candidates, HMVP candidates, pairwise average candidate, and
zero MV candidates. The spatial and temporal candidates are
the same as those in HEVC except that the order of the first
two spatial candidates is swapped for higher coding efficiency.
HMVP candidates, derived from an HMVP table, are inserted
into merge list after spatial and temporal candidates until the
merge list reaches the maximum allowed size minus one.
To avoid duplicated candidates while keeping a relatively low
complexity, redundancy check is applied. Only when any of
the following three conditions is met, an HMVP candidate is
inserted into the merge list.

• The HMVP candidate is not the last two in the HMVP
table;

• The current HMVP candidate is not the same as the spa-
tial candidates derived from A1/B1, as depicted in Fig. 2.

The pairwise average candidate is generated by averaging a
pre-defined candidate pair in the existing merge candidate list.
There is up to one pairwise candidate which averages the first

TABLE I

DISTANCE TABLES (IN UNIT OF LUMA SAMPLES) USED IN MMVD

two existing candidates in merge candidate list. The averaged
motion vectors are calculated separately for each reference
list. If both motion vectors are available in one list, these two
motion vectors are averaged even when they point to different
reference pictures; if only one motion vector is available, use
the one directly; if no motion vector is available, keep this list
invalid. If the merge candidate list is not full after inserting the
pairwise average candidate, zero MV candidates will be added
until the candidate list is full, which is the same as in HEVC.

B. Merge Mode With Motion Vector Difference

In addition to merge mode wherein motion information is
directly derived from neighboring, historic or zero motion
information, the MMVD technology [19], [20] is adopted
to allow further encoding an MVD as refinement of the
derived motion information. Roughly speaking, MMVD mode
is between AMVP mode and merge mode, and it provides
a new trade-off between accuracy of motion information
and bitrate. In MMVD, one of the first two candidates in
the merge candidate list is selected as base motion, and an
MVD represented by a direction and a distance is encoded
as refinement of the base motion. Four directions including
{0, 90, 180, 270}-degrees are allowed for an MVD and a
direction index is signaled to indicate the selected direction.
Meanwhile, two distance tables [20], [21], each of which has
eight distance entries as illustrated in Table I are designed for
the MVD. The encoder can select a distance table at picture
level. A distance index is signaled for an MVD to indicate the
selected entry of the distance table.

Only one MVD is signaled for both unidirectional and bidi-
rectional base motion. When the base motion is bidirectional,
the signaled MVD is directly used for one reference picture
list and is scaled according to POC distances from the current
picture to the two reference pictures before being used for the
other reference picture list. When the current picture is with
shorter absolute POC distance to the reference picture in list
1 than to the reference picture in list 0, the signaled MVD is
directly used for list 1, otherwise, it is directly used for list 0.

C. Geometric Partitioning Mode

The GPM [22]–[24] aims to increase the partition precision
and to better fit the moving objects boundaries using a
geometrical partition of a coding tree leaf node CU. Because
of the more flexible partitioning and the blending process,
the GPM is benefit to video contents that include rigid moving
objects relative to static background or other moving objects.



3854 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Fig. 8. Example of the prediction process of GPM; note that both predictions
may originate from pictures in a same reference picture list, which is not
shown in this example.

Furthermore, the newly design GPM algorithm significantly
reduces the encoder and decoder complexity yet reserves the
coding gain comparing with the prior methods proposed to
HEVC. Therefore, the presented algorithm has been adopted
in VVC. This section briefly presented the algorithm of GPM,
for further background logic, comprehensive description, and
statistical analysis, readers can refer to [24].

Fig. 8 shows an example of the prediction process of GPM.
In VVC, GPM is designed for CU with size w × h =
2k × 2l (in terms of luma samples) with k, l ∈ {3, . . . , 6}.
Moreover, GPM is disabled for a CU that has an aspect ratio
larger than 4:1 or smaller than 1:4, considering narrow CUs
rarely contain geometrically separated patterns. When GPM
is applied, the current CU is split into two parts by a straight
partitioning boundary, parameterized by an angle ϕ and an
offset ρ. In total, 64 partitioning lines are supported and
indexed by GPM partition index. Each part of the partition
associates a unidirectional MV that is coded with merge mode.
The GPM merge list is directly derived from the regular
merge list using the parity of the indices. The GPM partition
index and the two GPM merge indices are coded into the
bitstream. For each part, a block-based motion compensation
prediction (MCP) is performed, resulting in two intermediate
prediction blocks P0 and P1. A GPM prediction block PG
is generated by performing a blending process using integer
blending matrices W0 and W1, containing weights in the value
range of [0, 8]. This can be expressed as

PG = (W0 ◦ P0 + W1 ◦ P1 + 4) � 3 (2)

with

W0 + W1 = 8Jw,h, (3)

where “◦” in (2) denotes the Hadamard product and Jw,h

denotes a matrix of ones with size of the current CU. The
generated GPM prediction PG is subtracted from the original
signal to generate residuals, which is transformed and coded
into the bitstream using the regular VVC transform coding and
CABAC engine.

The weights in the blending matrices of GPM are derived
based on the displacement from a sample location to the par-
titioning boundary as shown in Fig. 9. The displacement from
an arbitrary location (xC , yC) to the partitioning boundary is
given by Hessian normal form as

d (xC , yC) = xC cos (ϕ) − yC sin (ϕ) + ρ, (4)

Fig. 9. An example of GPM blending matrix derivation.

where (xC , yC ) is the coordinate relative to the CU center, ϕ is
the anticlockwise angle from x-axis, and ρ is the displacement
from the origin. The Hessian normal form contains only angle
and offset parameters, which can be easily quantized and
grouped to reducing the signaling cost. Equation (4) can be
quantized and discretized as

d (m, n) = ���
m + ρx, j

� ∗ 2 − w + 1
� · cosLut[i ]�

+ ���
n + ρy, j

� ∗ 2 − h + 1
� · cosLut[(i + 8) %32]� , (5)

where (m, n) denotes integer sample locations relative to
the top-left sample of the CU of size w × h. In (5), the
angle parameter is quantized into ϕi with fixed tan(ϕi ) in
{0,±1/4,±1/2,±1,±2,∞}. Note that the tangent values of
±4, which yield a near horizontal partitioning boundary, are
not included, because the near horizontal partitioning of a
motion field is rarely used for natural video content. The offset
parameter is quantized into ρ j that is factorized as

ρx, j =
�

0, i%16 = 8 or (i%16 = 0 and h ≥ w)

± j · w/8, otherwise
(6)

and

ρy, j =
�

0, i%16 = 8 or(i%16 = 0 and h ≥ w)

± j · h/8, otherwise,
(7)

where i and j denote the indices of angle parameter and
offset parameter, respectively. The sign of ρx, j and ρy, j are
set as positive if angle index i < 16, otherwise negative.
Equations (6) and (7) couple the factorized offset parameters
ρx, j and ρy, j with the width or height of the current CU to
adapt GPM partitions to CUs with different sizes. The cos (ϕ)
and sin(ϕ) values are discretized as a 4-bit precision (three bits
for value and one bi for sign) look-up table cosLut[·]. Note
that the displacement d(m, n) in (5) can be derived without
multiplication operations, because the values in cosLut[·] and
the value of w/8 and h/8 in ρx, j and ρy, j are all shift-based
values (i.e., 2k with k ∈ Z

≥0). The weights γm,n in one of the
blending matrices is given by a discrete ramp function as

γm,n = Clip3 (0, 8, (d (m, n) + 32 + 4) � 3) , (8)

and the other blending matrix is easily derived from (3).
Unlike the regular bi-prediction, the GPM coded CUs

contain three types of MVs. That is, each partition contains its
own unidirectional MVs, and the blending area is physically
predicted by bidirectional MVs from both partitions. There-
fore, the MVs of GPM, which are stored for the MV predic-
tion of the succeeding CUs, are adapted to the partitioning



CHIEN et al.: MOTION VECTOR CODING AND BLOCK MERGING IN THE VVC STANDARD 3855

Fig. 10. Illustration of spatial merging candidate insertion with MER.

boundary. The displacement from the integer central position
of a 4 × 4 motion storage unit to the partitioning boundary is
re-calculated by (5). When the displacement is larger than a
threshold, the unidirectional MV, which is used to predict the
corresponding GPM partition, is stored depending on the sign
of the displacement. Otherwise, combined bidirectional MVs
from both unidirectional MVs are stored.

D. Combined Inter-Intra Prediction

Inter prediction uses the signaled motion data to reference
the temporal information from different pictures to perform
motion compensation which shows significant benefit in video
compression. Among inter prediction, merge mode is one
special inter prediction which uses simpler signaling scheme to
derive the motion data based on a previously coded CU. On the
other hand, intra prediction tends to provide more accurate
spatial prediction when a sample is closer to the reference
sample. To take the advantages of both inter-prediction merge
mode and intra prediction, a new merge mode, called CIIP
mode, is designed for the CU which contains at least 64 luma
samples and has both CU width and CU height smaller than
128 [25], [26]. In CIIP mode, a weighted combination of
inter-prediction merge mode and intra prediction is utilized
for prediction as follows. The merge prediction is derived with
the inter-prediction process for a regular merge mode and the
intra prediction is derived with the intra-prediction process for
planar mode. Then, a weighted averaging process is applied
to combine both predictions. The sum of prediction weights is
equal to 4 and a right-shift operation is used after adding two
weighted predictions. The final prediction for CIIP, denoted as
PCIIP, is formed as follows.

PCIIP = �
Wmerge ∗ Pmerge + Wintra ∗ Pintra + 2

� � 2, (9)

wherein Wintra is the weight for the intra prediction, denoted
as Pintra , Wmerge is the weight for the merge prediction,
denoted as Pmerge, and sum of Wmerge and Wintra is equal
to 4. The weights for intra- and merge- predicted samples
are uniform in the whole CU and decided based on the
number of neighboring intra blocks. If both top and left
neighboring blocks are intra-coded, Wintra is set as 3 which
means intra prediction is preferred. Otherwise, if only one of
these blocks is intra-coded, Wintra is set as 2 which implies
identical weights are used for two predictions. Otherwise,
Wintra is set as 1. The weights for CIIP are the same for luma
and chroma components. By weighted averaging one existing
merge prediction and another existing intra prediction with
a simple weighting process, better coding efficiency could be
achieved. Moreover, to avoid 2×N intra blocks, only the merge
prediction is used for the chroma CB when the chroma CB

has width smaller than 4. To indicate the usage of CIIP mode,
an additional flag is conditionally signaled to indicate whether
CIIP is used or not when regular merge mode is selected.

E. Merge Estimation Region

Merge estimation region (MER) was first introduced in
HEVC as an implementation-friendly feature for encoders. It is
used to enable parallel cost estimation of merging candidates
for different CUs. MER divides a picture into equally sized and
non-overlapping square regions and allows a spatial merging
candidate to be added into merging candidate list only when
the current CU and the neighboring CU are in different MERs,
as shown in Fig. 10.

Two CUs are treated as in the same MER when the
following conditions are met,�

(xCb � Log2ParMrgLevel) = (xNb � Log2ParMrgLevel)

(yCb � Log2ParMrgLevel) = (yNb � Log2ParMrgLevel)

wherein Log2ParMrgLevel specifies the MER size in base
2 logarithm, xCb and yCb are the coordinates of the current
CU, xNb and yNb are the coordinates of the spatial neighbor-
ing CU.

In addition to spatial merging candidates, subblock-based
merging candidates follow the same rules as that of spatial
merging candidates.

When updating HMVP table, a constraint is imposed to
break the dependency between different CUs within one MER
in order to allow parallel processing. That is, HMVP table is
not updated until the last CU located at the bottom-right of a
MER satisfies the following conditions,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
((xCb + cbWidth) � Log2ParMrgLevel)

> (xCb � Log2ParMrgLevel)

((yCb + cbHeight) � Log2ParMrgLevel)

> (yCb � Log2ParMrgLevel)

(10)

wherein cbWidth and cbHeight are width and height of the
current CU.

Moreover, encoder-only binary tree (BT) and ternary tree
(TT) split constraints are needed where the general rule for
MER is that any CU not smaller than MER size should
contain one or multiple complete MERs and any CU smaller
than MER size should locate within one MER entirely. The
following shows the detailed constraint: When either width
or height of current CU is larger than MER, the following
applies:

• If cbHeight <= R, then disallow horizontal BT split for
current CU;

• If cbWidth <= R, then disallow vertical BT split for
current CU;

• If cbHeight <= 2 ∗ R, then disallow horizontal TT split
for current CU;

• If cbWidth <= 2 ∗ R, then disallow vertical TT split for
current CU;

wherein R is equal to 1 � Log2ParMrgLevel.
The MER size can be adaptively decided and signaled

as sps_log2_parallel_merge_level_minus2 in the sequence



3856 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

parameter set, wherein Log2ParMrgLevel is equal to 2
+sps_log2_parallel_merge_level_minus2.

VI. OTHERS

A. Bidirectional Prediction With Coding Unit Weights

The BCW technology (a. k. a. generalized bi-prediction) is
a syntax shortcut of weighted bi-prediction (WP) to predict
a block by weighted-averaging two motion-compensated pre-
diction blocks. Unlike WP which indicates weights at slice
level respectively for all reference pictures, BCW signals the
use of weight at CU level by using an index (denoted as
wIdx) pointing to where the selected weight is located in
a list of pre-defined candidate weights. In general, this list
pre-defines 5 candidate weights (i.e., {−2, 3, 4, 5, 10}/8) to
be selected for reference pictures in reference list 1, where
−2/8 and 10/8 are used to reduce negatively correlated noises
between prediction blocks of bi-prediction. The list may be
reduced to {3, 4, 5}/8 when there are forward and backward
reference pictures in both reference lists to achieve better
trade-off between performance and complexity [45]. Since
unit-gain constraint is applied, once the weight (denoted as
W pointed to by wIdx) corresponding to reference list 1 is
determined, the weight corresponding to the other reference
list is 1–W . Specifically, each luma/chroma prediction sample
of BCW is computed as follows:

PBC W = (8(1 − W ) ∗ P0 + 8W ∗ P1 + 4) � 3, (11)

where PBCW is the final prediction of a current-block sample
and P0 and P1 are prediction samples pointed to by the
motion vectors respectively from list 0 and list 1 reference
pictures. Note that BCW enables only for bi-predicted CUs
with at least 256 luma samples and WP being turned off.

The notion of BCW is also extended to affine AMVP modes.
Same as aforementioned, BCW signals a wIdx for the whole
affine CU, and the corresponding weights of the signaled index
are applied to subblock motion compensation [29].

The use of wIdx is buffered for subsequent CUs in the same
frame to perform spatial motion merging, either for regular
or for affine merge mode. When a spatial neighboring merge
candidate is bi-predicted and the current CU selects this candi-
date, all the reference indices and motion vectors (or control-
point motion vectors in the case of inherited affine merge
mode) including its wIdx are inherited by the current CU. The
only exception that the wIdx is not inherited occurs when the
current CU has CIIP flag enabled. In the case of constructed
affine merge mode, the wIdx is simply inherited from the
one associated with above-left control-point motion vectors
(or above-right control-point motion vectors when above-left
ones are not used) [30]. It is noted that when the inferred
wIdx points to a non-0.5 weight, decoder-side motion vector
refinement and bidirectional optical flow are both turned off.

B. Motion Vector Compression and Range

In VVC, the MV precision is increased from quarter luma
sample in HEVC to 1/16-luma sample to provide a more
precise motion compensation. With the increase of the MV
precision, the bit depth of MV is also extended by 2 bits in

order to allow the same MV range as that in HEVC. Thus,
in VVC, 18 bits are used for one MV component with the
range from −217 to 217−1.

In terms of temporal motion storage, the motion field
compression is performed in two aspects. First, the temporal
motion vectors are stored at 8 × 8 granularity instead of
16 × 16 granularity in HEVC. Second, each component of
a temporal MV is represented using a 6-bit signed mantissa
plus a 4-bit exponent to further reduce the temporal motion
storage. The benefit of using the mantissa plus exponent format
is that this representation effectively quantizes larger MVs
more coarsely while maintaining higher precision for smaller
MVs. The conversion between an 18-bit MV representation
and 10-bit mantissa-exponent representation is not analogous
to IEEE 754 but an approximation that allows for efficient
implementations using only additions and shifts, as shown
below:

sign = mv � 17, scale = 	log2((mv ⊕ sign)|31)� − 5,

val = (mv + ((1 � scale) � 1)) � scale,

ex p =
�

scale + ((val ⊕ sign) � 5) scale ≥ 0

0 others,

mant =
�

(val&31)|(sign � 5) scale ≥ 0

mv others,
(12)

and the inverse is obtained as:

mv � =
�

mant ex p = 0

(mant ⊕ 32) � (ex p − 1) others,
(13)

where ⊕ represents bitwise XOR operation, | is bitwise OR
operation, & is bitwise AND operation, mv and mv are the
value of an MV component before and after compression,
respectively. With this compression, number of bits for tem-
poral MVs stored in a 16 × 16 luma block are reduced from
288 bits (i.e. 2×2×18×4) to 160 bits. As compared to HEVC
in which 64 bits (i.e. 2 × 2 × 16 × 1) are needed, 96 bits are
increased for a 16 × 16 luma block in a reference picture.

VII. EXPERIMENTAL RESULTS

In this section, the inter-prediction coding regarding MV
coding and block merging in VVC is evaluated. The JVET
common test conditions [40] were used to measure the coding
performance with bit-rate savings in terms of the Bjøntegaard
Delta (BD) rate [41]. To calculate the BD-rates, four rate
points were generated by using quantization parameters (QPs)
22, 27, 32, and 37 and piece-wise cubic interpolation [40]
was used. Weighted combined PSNRs of YUV components
(using a weighting factor of 6 for the luma component and
1 for the two chroma components) were used to consider
chroma fidelity in the BD-rates calculation. Note, the positive
�BD-rate in tables below represents the bitrate increases in
the bitstreams while maintaining the same PSNR for the
reconstructed video due to disabling the coding tools. The
less than 100% encoding and decoding time indicates that the
encoder and decoder speed are faster than anchor.

The video sequences in the common test conditions (CTC)
are categorized into six classes (Class A-F) covering



CHIEN et al.: MOTION VECTOR CODING AND BLOCK MERGING IN THE VVC STANDARD 3857

TABLE II

OVERALL PERFORMANCE OF WHOLE BLOCK-BASED
INTER TOOLS IN VVC

resolutions from UHD (Class A1/A2, 3840 × 2160) to
WQVGA (Class D, 416×240) and frame rates from 60 frame
per second to 20 frame per seconds. While Classes A-D
consist of natural camera captured material, Class F includes
computer-generated contents and mixed natural video and
computer-generated contents. The average BD-rate saving
only measures Class A-C, targeting higher resolution natural
camera applications.

VTM-9.0 reference software [42] with the Main10 profile
settings were used to evaluate the VVC inter-prediction coding
performance. Two configurations, random access (RA) and
low delay with B slices (LDB), were utilized to simulate
common video applications. In the RA configuration, which
targets video broadcasting applications, an Intra Random
Access Pictures (IRAP) frame was inserted approximately
every one second. In LDB configuration, which targets real
time video applications, decoding order and output picture
order need to be the same.

A. Performance Analysis of VVC Inter-Prediction Coding
Tools in VTM

The MV coding and block merging techniques mentioned
in Section III were tested to demonstrate their overall per-
formance impact relative to VTM anchors. Table II summa-
rizes the coding performance by disabling all coding tools
described in Section III, in terms of �BD-rate and runtime
ratio of encoder and decoder, where a 100% in Enc/Dec Time
represents the test has the same software runtime as VTM
anchor. The positive �BD-rate represents the bitrate increases
in the bitstreams while maintaining the same PSNR for the
reconstructed video due to disabling the coding tools. The
less than 100% encoding and decoding time indicates that the
encoder and decoder speed are faster than anchor. Component-
wise coding performance (by disabling individual tool) was
also reported in Table III and Table IV respectively for RA
and LDB to profile individual contribution to overall coding
gain.

As reported in Table II, the overall �BD-rate is slightly
larger in RA (4.7%−6.7%) than in LDB (3.6%−5.3%).
Basically, better coding gain is observable from large-
resolution sequences (e.g., 4.7% for WQVGA and 6.7% for
UHD in RA). According to Table III and Table IV, it is
attributed to tools, such as AMVR, which are more adaptive
to resolution changes and texture-complexity variation, while
others appear relatively invariant to video content types.

TABLE III

CODING PERFORMANCE ON RA CONFIGURATION, � BD-RATE (%)

When Table II is compared with Table III and Table IV,
it is observed that these tools can cooperate to reach nearly
synergy effect. It is obvious that one tool would compete
with another since they share partially but not completely the
same source that boosts coding performance. For example,
SMVD and MMVD share the same common ground in
motion field representation but their MVDs are signaled
differently at finer or coarser granularity based on their
respective underlying motion models. The experiment results
confirm the performance-wise overlap among tools is modest.

The encoding time is approximately doubled, mainly due
to extra rate-distortion evaluation for mode selection (e.g.,
AMVR, BCW, MMVD) at the encoder [43]. The variation of
decoding time is relatively minor since the extra computational
complexity introduced (e.g. blending for GPM, BCW and
CIIP) is nearly negligible when compared with interpolation
process of motion compensation.

Among all, AMVR and GPM are the two most performing
tools, each of which could deliver up to 1.6% of �BD-rate on
average. Detailed analyses will be provided in later sections.

B. Luma Samples Coverage of VVC Inter-Prediction Coding
Tools in VTM

The effectiveness of the MV coding and block merging
techniques were further justified by using the luma samples
coverage of each coding tool. Fig. 11 (a) and (b) illustrate
the average percentage of inter predicted samples in different
coding modes for RA and LDB, respectively. Over 40% (and



3858 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

Fig. 11. Luminance sample coverage of inter coding tools in VTM-9.0.

TABLE IV

CODING PERFORMANCE ON LOW DELAY B CONFIGURATION,
� BD-RATE (%)

up to 50% for RA) of the samples were coded with at least
one of the VVC inter coding tools (not including HMVP and
pairwise merge candidates). Note that one luma sample may
be coded with multiple tools (e.g., being coded with BCW and
another inter coding tools), so the luma sample may be counted
multiple times accordingly. And since SMVD is disallowed
for LDB configuration, it is not depicted in Fig. 11 (b).
These numbers roughly indicate VVC could achieve a more
effective trade-off between the accuracy of the motion field
representation and the required overhead. Thus, almost half

TABLE V

LUMA SAMPLE COVERAGE OF AMVR AND SIF WHEN USING VTM-9.0

of the luma samples in testing sequences that were coded
by using HEVC-based methods (e.g., quarter luma sample
MVD without precision adaptivity, rectangular-only prediction
unit with equal weights, regular merge without offsetting) are
now replaced by using the VVC-based MV coding and block-
merging techniques.

C. AMVR

In Table V, the various AMVR modes are analyzed based
on the luma sample usage. The numbers give the percentage
of all luma samples which are encoded using the given AMVR
mode when using VTM-9.0 under the CTC. In the heading,
“x-Luma sample” corresponds to an MV resolution of x luma
samples. It can be seen that AMVR is used more often for
higher resolution sequences. The same applies to SIF. Note
that due to merge mode, the percentage for SIF is higher than
that for the half sample AMVR mode.

In Table VI, the AMVR modes are analyzed using tool-off
tests. Again, the CTC are used. For the results in the first
column, AMVR has been disabled completely, i.e., both in
the translational and the affine variant. The resulting BD-rate
values are positive, indicating a coding loss caused by dis-
abling AMVR. In Test 1, only translational AMVR with a
motion vector resolution of one luma sample (“full-sample
AMVR”) has been enabled. A small, positive BD-rate number
indicates smaller coding loss. In other words, the difference
between the values in the first and the second column shows
the coding gain of full-sample AMVR. In Test 2, both full-
sample and 4-sample AMVR are enabled. In particular for
the high-resolution sequences in Class A1, the coding gain
has been further improved. In Test 3, translational AMVR
with all supported motion vector resolutions (i.e., full-sample,
4-sample, and half- sample), including SIF, has been enabled,
only affine AMVR is still disabled. Again, the positive BD-rate
values have been further reduced, especially for the high-
resolution classes of sequences, indicating a higher coding
gain. In the last test (“SIF off”), only the switchable inter-
polation filter has been disabled, showing an average coding
loss of 0.3%.

D. GPM

As shown in Table III (fourth column) and Table IV (third
column), an average BD-rate reduction of 0.8% and 1.6% for
RA and LDB configurations can be achieved by GPM. In some
sequences (e.g., BQMall, RaceHorses BasketballDrill, and
KristenAndSara), the coding performance was notably better



CHIEN et al.: MOTION VECTOR CODING AND BLOCK MERGING IN THE VVC STANDARD 3859

TABLE VI

YUV BD-RATE RESULTS FOR VARIOUS AMVR CONFIGS (TEST 1: ONLY
TRANSLATIONAL AMVR WITH 1-SAMPLE RESOLUTION; TEST 2:

LIKE 1, BUT ADDITIONALLY ALSO 4-SAMPLE RESOLUTION;
TEST 3: LIKE 2, BUT ADDITIONALLY ALSO

1/2-SAMPLE RESOLUTION)

TABLE VII

YUV BD-RATE RESULTS FOR VARIOUS MER SIZES

than the average for both RA and LDB configurations. The
particularly favorable results of these sequences were mainly
attributed to clearly distinctive motion field and moving object
boundaries contained in these sequences. Another observation
is that the performance of GPM for LDB was generally better
than that for RA. The reason is that the reference pictures
are typically closer to the current picture in LDB than in RA,
which yields shorter MVs that are more easily to be coded
using merge mode in both partitions of GPM. Therefore, GPM
is more often selected in LDB than in RA.

In addition to the improved coding performance and the
low complexity, GPM also enhanced the visual quality. For
the sequences containing motion of rigid objects, the GPM
was used predominantly for coding of the moving objects
boundaries as an example shown in Fig. 12(a). Therefore,
sharp and clear edges of moving objects were visible in the
coded sequences with GPM instead of the serrated and blurred
moving object boundaries caused by rectangular partitions in
the coded sequences without GPM. This phenomenon was
shown as still picture example in Fig. 12(b) and (c).

E. MER

MER is an important feature for a commercial hardware
encoder because it can effectively reduce pipeline latency
which is introduced by deriving merge candidates depending
on the MVs of the spatial neighbors of the current CU.
By using MER, merge mode decision of all CUs inside the
MER region can be performed at the same time without

Fig. 12. Visual impression of GPM.

waiting for each other. When exerting MER at the encoder,
the performance on VTM-9.0 are shown in Table VII. Y with
MER size equal to 8 × 8, 16 × 16, 32 × 32, 64 × 64 and
128 × 128, which corresponds to Log2ParMrgLevel 3, 4, 5,
6, 7. Since encoder-only BT and TT split constraints are
also applied, the valid CU partitions for encoding may differ
from MER size to MER size, which results in encoder run
time variations, e.g. 20% run time reduction for 8 × 8 MER
region, 30% reduction for 16 × 16 and 32 × 32 cases, and
10% increase for 64 × 64 and 128 × 128 cases, respectively.
In a practical commercial hardware encoder architecture for
VVC, 32 × 32 or 64 × 64 MER regions are activated in most
cases. There is one alternative encoder-only design [44] that
simply disables inter merge modes in CUs smaller than MER
where the sequential processing problem in merge mode can
be avoided as well. Compared with the alternative encoder-
only design, MER method shows much less coding efficiency
loss in both 32 × 32 and 64 × 64 cases.

VIII. CONCLUSION

The motion vector coding and block merging tools in the
VVC which enhance and extend the main concept of inter
coding in HEVC are introduced in this paper. The technical
details and design philosophy are presented and illustrated.
Thanks to those advanced coding tools, significant objective
and subjective improvements have been demonstrated when
compressing various video contents and under different use
cases. In addition, the complexity of the tools was investigated
and carefully optimized during the standardization process in
JVET which will be definitely helpful for the success of VVC.

ACKNOWLEDGMENT

The authors would like to greatly thank all the JVET experts
who have contributed to the VVC inter mode coding.



3860 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 10, OCTOBER 2021

REFERENCES

[1] B. Bross, J. Chen, S. Liu, and Y.-K. Wang, Versatile Video Coding (Draft
10), document JVET-S2001 ITU-T/ISO/IEC, Joint Video Experts Team,
Jul. 2020.

[2] J. Chen, Y. Ye, and S. Kim, Algorithm Description for Ver-
satile Video Coding and Test Model 10 (VTM 10), docu-
ment JVET-S2002 ITU-T/ISO/IEC, Joint Video Experts Team, Jul. 2020.

[3] A. Segall, V. Baroncini, J. Boyce, J. Chen, and T. Suzuki, Joint Call
for Proposals on Video Compression with Capability beyond HEVC,
document JVET-H1002 ITU-T/ISO/IEC, Joint Video Exploration Team,
Oct. 2017.

[4] Requirements for a Future Video Coding Standard V5,
document N17074 ISO/IEC JTC 1/SC 29/WG 11, MPEG, Jul. 2017.

[5] W.-J. Chien, Y. Chen, J. Chen, L. Zhang, M. Karczewicz, and X. Li,
“Sub-block motion derivation for merge mode in HEVC,” Proc. SPIE
Appl. Digit. Image Process., vol. 9971, Sep. 2016, Art. no. 99711K.

[6] M. Karczewicz, L. Zhang, W.-J. Chien, and X. Li, “Geome-
try transformation-based adaptive in-loop filter,” in Proc. Picture
Coding Symp. (PCS), Nuremberg, Germany, 2016, pp. 1–5, doi:
10.1109/PCS.2016.7906346.

[7] H. Yang et al., “Subblock-based motion derivation and inter pre-
diction refinement in versatile video coding standard,” IEEE Trans.
Circuits Syst. Video Technol., early access, Jul. 27, 2021, doi:
10.1109/TCSVT.2021.3100744.

[8] L. Zhang, K. Zhang, H. Liu, Y. Wang, P. Zhao, and D. Hong, CE4:
History-based Motion Vector Prediction (Test 4.4.7), document JVET-
L0266 ITU-T/ISO/IEC, Joint Video Experts Team, Macao, CN, USA,
Oct. 2018.

[9] L. Zhang et al., “History-based motion vector prediction in versatile
video coding,” in Proc. Data Compress. Conf. (DCC), Snowbird, UT,
USA, Mar. 2019, pp. 43–52, doi: 10.1109/DCC.2019.00012.

[10] H. Chen, H. Yang, and J. Chen, Symmetrical Mode for Bi-Prediction,
document JVET-J0063 ITU-T/ISO/IEC, Joint Video Experts Team,
San Diego, CA, USA, Apr. 2018.

[11] J. Luo and Y. He, CE4-related: Simplified Symmetric MVD based on
CE4.4.3, document JVET-M0444 ITU-T/ISO/IEC, Joint Video Experts
Team, Marrakech, MA, USA, Jan. 2019.

[12] B. Girod, “Rate-constrained motion estimation,” in Proc. SPIE,
vol. 2308, Chicago, IL, USA, Sep. 1994, pp. 1026–1034.

[13] J. Chen et al., Further Improvements to HMKTA-1.0, document VCEG-
AZ07, Warsaw, PL, USA, Jun. 2015.

[14] J. Chen, W.-J. Chien, N. Hu, V. Seregin, M. Karczewicz, and
X. Li, Enhanced Motion Vector Difference Coding, document JVET-
D0123 ITU-T/ISO/IEC, Joint Video Exploration Team, Chengdu, China,
Oct. 2016.

[15] A. Henkel et al., Non-CE4: Switched Half-pel Interpolation Filter,
document JVET-N0309 ITU-T/ISO/IEC, Joint Video Experts Team,
Geneva, China, Mar. 2019.

[16] A. Henkel et al., “Alternative half-sample interpolation filters for ver-
satile video coding,” in Proc. ICASSP, Barcelona, Spain, May 2020,
pp. 2053–2057.

[17] H. Liu, L. Zhang, and K. Zhang, CE2: Adaptive Motion Vector Reso-
lution for Affine Inter Mode (Test 2.1.2), document JVET-M0246 ITU-
T/ISO/IEC, Joint Video Experts Team, Jan. 2019.

[18] H. Liu et al., “Adaptive motion vector resolution for affine-inter
mode coding,” in Proc. Picture Coding Symp. (PCS), Ningbo, China,
Nov. 2019, pp. 1–4, doi: 10.1109/PCS48520.2019.8954531.

[19] S. Jeong et al., “Merge mode with motion vector difference,” in
Proc. IEEE Int. Conf. Image Process. (ICIP), Abu Dhabi, United Arab
Emirates, Oct. 2020, pp. 1157–1160.

[20] S. Jeong, M. W. Park, Y. Piao, M. Park, and K. Choi, CE4 Ulti-
mate Motion Vector Expression (Test 4.5.4), document JVET-L0054
ITU-T/ISO/IEC, Joint Video Experts Team, Macao, China, Oct. 2018.

[21] H. Liu et al., AHG11: MMVD without Fractional Distances for SCC,
document JVET-M0255 ITU-T/ISO/IEC, Joint Video Experts Team,
Marrakech, MA, Jan. 2019.

[22] M. Bláser et al., “Low-complexity geometric inter-prediction for versa-
tile video coding,” in Proc. Picture Coding Sym. (PCS), Ningbo, China,
2019, pp. 1–5.

[23] H. Gao et al., “Advanced geometric-based inter prediction for versatile
video coding,” in Proc. Data Compress. Conf. (DCC), Snowbird, UT,
USA, Mar. 2020, pp. 93–102.

[24] H. Gao, S. Esenlik, E. Alshina, and E. Steinbach, “Geometric partition-
ing mode in versatile video coding: Algorithm review and analysis,”
IEEE Trans. Circuits Syst. Video Technol., early access, Nov. 24, 2020,
doi: 10.1109/TCSVT.2020.3040291.

[25] M.-S. Chiang, C.-W. Hsu, Y.-W. Huang, and S.-M. Lei, CE10.1.1: Multi-
hypothesis Prediction for Improving AMVP Mode, Skip or Merge Mode,
and Intra Mode, document JVET-L0100 ITU-T/ISO/IEC, Joint Video
Experts Team, Oct. 2018.

[26] L. Pham Van, G. Van der Auwera, A. K. Ramasubramonian, V. Seregin,
and M. Karczewicz, CE10: CIIP With Position-Independent Weights
(Test CE10-1.1), document JVET-N0302 ITU-T/ISO/IEC, Joint Video
Experts Team, Mar. 2019.

[27] H. Huang et al., AHG16: Merge Estimation Region With Constraint
in HMVP Update, document JVET-Q0297 ITU-T/ISO/IEC, Joint Video
Experts Team, Jan. 2020.

[28] C.-C. Chen, X. Xiu, Y. He, and Y. Ye, “Generalized bi-prediction
method for future video coding,” in Proc. Picture Coding Symp. (PCS),
Dec. 2016, pp. 1–5.

[29] Y.-C. Su et al., CE4-related: Generalized Bi-prediction Improve-
ments Combined from JVET-L0197 and JVET-L0296, document
JVET-L0646 ITU-T/ISO/IEC, Joint Video Experts Team, Oct. 2018.

[30] N. Park, J. Nam, H. Jang, J. Lim, and S. Kim, Non-CE4: Simpli-
fications on BCW Index Derivation Process, document JVET-O0366
ITU-T/ISO/IEC, Joint Video Experts Team Jul. 2019.

[31] F. Bossen, K. Misra, and A. Segall, Non-CE4: On Temporal Motion
Buffer Compression, document JVET-M0512 ITU-T/ISO/IEC, Joint
Video Experts Team, Jan. 2019.

[32] G. Laroche, J. Jung, and B. Pesquet-Popescu, “RD optimized coding
for motion vector predictor selection,” IEEE Trans. Circuits Syst. Video
Technol., vol. 18, no. 9, pp. 1247–1257, Sep. 2008.

[33] P. Helle et al., “Block merging for quadtree-based partitioning in
HEVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1720–1731, Dec. 2012.

[34] K. Andersson, Combined Intra Inter Prediction Coding Mode, docu-
ment ITU-T SG.16 Q.6 VCEG-AD11, Oct. 2006.

[35] K. Zhang, S. Ma, D. Zhao, and W. Gao, “Directional residue prediction
with motion alignment for video coding,” Electron. Lett., vol. 44, no. 19,
pp. 1124–1126, Sep. 2008.

[36] K. Zhang, L. Zhang, W.-J. Chien, and M. Karczewicz, “Intra-prediction
mode propagation for video coding,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 9, no. 1, pp. 110–121, Mar. 2019.

[37] O. Divorra Escoda, P. Yin, C. Dai, and X. Li, “Geometry-adaptive block
partitioning for video coding,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Apr. 2007, vol. 1, pp. 657–660.

[38] M. Karczewicz et al., “A hybrid video coder based on extended
macroblock sizes, improved interpolation, and flexible motion repre-
sentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12,
pp. 1698–1708, Dec. 2010.

[39] X. Li, J. Sole, and M. Karczewicz, Adaptive MV Precision for Screen
Content Coding, document JCTVC-P0283, Joint Collaborative Team on
Video Coding, Jan. 2014.

[40] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring, JVET Common
Test Conditions and Software Reference Configurations for SDR Video,
document JVET-N1010, Geneva, China, Mar. 2019.

[41] G. Bjøntegaard, Calculation of Average PSNR Differences Between RD-
Curves, document VCEG-M33 ITU-T VCEG Meeting, Austin, TX,
USA, 2001.

[42] Versatile Video Coding Test Model (VTM) 9.0. Accessed: Jun. 2020.
[Online]. Available: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_
VTM

[43] W.-J. Chen et al., JVET AHG Report: Tool Reporting Procedure and
Testing (AHG13), document JVET-S0013 ITU-T/ISO/IEC, Joint Video
Experts Team, Jun. 2020.

[44] Y.-L. Hsiao et al., AHG16: On Merge Estimation Region for VVC,
document JVET-Q0185 ITU-T/ISO/IEC, Joint Video Experts Team,
Jan. 2020.

[45] E. Alshina et al., Exploration Experiments on Coding Tools Report,
document JVET-D0010 ITU-T/ISO/IEC, Joint Video Experts Team,
Oct. 2016.

Wei-Jung Chien (Member, IEEE) received the B.S.
and M.S. degrees in electronics engineering from the
National Chiao Tung University, Hsinchu, Taiwan,
in 1995 and 1999, respectively, and the Ph.D. degree
in electrical engineering from Arizona State Univer-
sity, Tempe, AZ, USA, in 2009. Since 2008, he has
been actively involved in the development of HEVC
and VVC standard that was jointly issued by ITU-T
VCEG and ISO/IEC MPEG. Since 2009, he has been
a Senior Engineer with Qualcomm Technologies
Inc., San Diego, CA, USA. He is currently the

director of engineering. His current research interests include areas of image
and video processing and image and video coding.

http://dx.doi.org/10.1109/PCS.2016.7906346
http://dx.doi.org/10.1109/TCSVT.2021.3100744
http://dx.doi.org/10.1109/DCC.2019.00012
http://dx.doi.org/10.1109/PCS48520.2019.8954531
http://dx.doi.org/10.1109/TCSVT.2020.3040291


CHIEN et al.: MOTION VECTOR CODING AND BLOCK MERGING IN THE VVC STANDARD 3861

Li Zhang (Senior Member, IEEE) received the
Ph.D. degree in computer science from the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China, in 2009.

From 2009 to 2011, she held a post-doctoral
position at the Institute of Digital Media, Peking
University, Beijing. From 2011 to 2018, she was
a Senior Staff Engineer with Multimedia R&D and
Standards Group, Qualcomm, Inc., San Diego, CA,
USA. She was a Software Coordinator for Audio and
Video Coding Standard (AVS) and the 3D extensions

of High Efficiency Video Coding (HEVC). She has been an Active Contributor
to the Versatile Video Coding (VVC), Advanced AVS, the IEEE 1857, 3D
Video (3DV) coding extensions of H.264/AVC, HEVC, and HEVC screen
content coding extensions. During the development of those video coding
standards, she co-chaired several ad hoc groups and core experiments. She
is currently the Head of Advanced Video Group, Bytedance Inc., San Diego.
She has authored more than 450 standardization contributions, more than
170 granted U.S. patents, and more than 70 technical articles in related
book chapters, journals, and proceedings in image/video coding and video
processing. Her research interests include 2D/3D image/video coding, video
processing, and transmission. She has been appointed as an Editor of AVS
and the Main Editor of the Software Test Model for 3DV Standards.

Martin Winken received the Dipl.-Ing. and Dr.-Ing. degrees from the
Technical University of Berlin, Germany, in 2006 and 2015, respectively.
Since 2005, he has been active in video coding standardization. He is currently
a Research Associate with Fraunhofer HHI, Berlin.

Xiang Li (Senior Member, IEEE) received the B.Sc.
and M.Sc. degrees in electronic engineering from
Tsinghua University, Beijing, China, and the Dr.-Ing.
degree in electrical, electronic and communica-
tion engineering from the University of Erlangen-
Nuremberg, Germany.

He is currently a Senior Principal Researcher and
the Head of video coding standards at Tencent’s
Media Lab. Before joining Tencent, he was with
Qualcomm, MediaTek, the Institute of Communica-
tions Engineering, RWTH Aachen University, and

Siemens. He has been working in the field of video compression for years.
He is an active contributor to international video coding standards. He served
as the chair and the co-chair in a number of ad hoc groups, core experiments,
including the Co-Chair of JEM Reference Software and VVC Reference
Software. He has published over 50 journals and conference papers, more
than 300 standard contributions, and holds more than 240 U.S. granted and
pending patents. His research interests include video coding and processing.
He is a Co-Editor of MPEG-5 EVC.

Ru-Ling Liao received the B.S. and M.S. degrees in
computer science and engineering from the National
Chao Tung University, Hsinchu, Taiwan, in 2013 and
2016, respectively.

She has been participated in the development of
VVC standard since 2016. After 2019, she joined
XG Laboratory, Alibaba Inc., Beijing, China. She
is currently a senior engineer. Her research interests
include video processing and neural network-based
video compression technology.

Han Gao (Graduate Student Member, IEEE)
received the B.Sc. degree in electrical engineering
from Xidian University, Xi’an, China, in 2012, and
the M.Sc. degree in electrical engineering and infor-
mation technology from the Technical University of
Munich (TUM), Munich, Germany, in 2015, where
he is currently pursuing the Ph.D. degree. In 2016,
he joined the Chair of Media Technology, TUM, and
Audiovisual Technology Laboratory, Huawei Tech-
nologies, Munich. Since 2016, he has been actively
involved in the development of the VVC standard

that was jointly issued by ITU-T VCEG and ISO/IEC MPEG. His research
focuses on image and video processing, traditional and neural network-based
video compression, and coding.

Chih-Wei Hsu received the B.S. degree in electri-
cal engineering and the M.S. degree in electronics
engineering from the National Taiwan University
(NTU), Taipei, Taiwan, in June 2001 and June 2003,
respectively.

He joined MediaTek Inc., Hsinchu, Taiwan,
in October 2003, and is currently a Senior Man-
ager of the Multimedia Technology Development
Division. From 2003 to 2010, he researched and
developed video encoding algorithms, hardware
architectures, and related IC designs for consumer

electronics products. He started attending international video coding standard
meetings held by ITU-T VCEG and ISO/IEC MPEG in 2011 and is an
active contributor. During the development of VVC, he has made several
technical contributions and was the coordinator of the core experiments
on combined and multi-hypothesis prediction. His current research interests
include image and video coding, image and video processing, and related
hardware architectures.

Hongbin Liu received the B.S., M.S., and Ph.D.
degrees in computer science and technology from
Harbin Institute of Technology, Harbin, China,
in 2005, 2007, and 2011, respectively.

He is currently a Video Coding Engineer at
Bytedance Inc., Beijing. He was actively participat-
ing in the research of 3D-HEVC and VVC standards.
His current research interest includes video coding
and processing.

Chun-Chi Chen received the Ph.D. degree in com-
puter science and engineering from the National
Chao Tung University, Hsinchu, Taiwan, in 2017.
Since 2011, he has been participating in the video
coding standardization process of ISO/IEC MPEG.
In 2014–2015, he has been an active contributor
to HEVC-SCC and has co-chaired several core
experiments. During his internship with InterDigital,
San Diego, in 2015–2016, he initiated works on
generalized bi-prediction which has been included
as a coding tool in VVC. After 2018, he focused

on inter-prediction techniques and conducted quarterly service works as a
core experiment coordinator of VVC. He is currently a Senior Engineer with
Multimedia R&D and Standards Group, Qualcomm Technologies, Inc., San
Diego, CA, USA. He has authored/coauthored more than 70 technical papers
and video standards contributions. His research interests include image/video
compression and screen content coding.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


