
robotics

Article

Nonlinear Model Predictive Control for Mobile Robot
Using Varying-Parameter Convergent Differential
Neural Network

Yingbai Hu 1, Hang Su 2 , Longbin Zhang 3 , Shu Miao 4, Guang Chen 1,5,* and Alois Knoll 1

1 Department of Informatics, Technical University of Munich, 85748 Munich, Germany
2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
3 BioMEx Center & KTH Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
4 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518052, China
5 College of Automotive Engineering, Tongji University, Shanghai 201804, China
* Correspondence: guangchen@tongji.edu.cn; Tel.: +86-13671534131

Received: 29 June 2019; Accepted: 26 July 2019; Published: 31 July 2019
����������
�������

Abstract: The mobile robot kinematic model is a nonlinear affine system, which is constrained by velocity
and acceleration limits. Therefore, the traditional control methods may not solve the tracking problem
because of the physical constraint. In this paper, we present the nonlinear model predictive control
(NMPC) algorithm to track the desired trajectory based on neural-dynamic optimization. In the proposed
algorithm, the NMPC scheme utilizes a new neural network named the varying-parameter convergent
differential neural network (VPCDNN) which is a Hopfifield-neural network structure with respect to
the differential equation theory to solve the quadratic programming (QP) problem. The new network
structure converges to the global optimal solution and it is more efficient than traditional numerical
methods. In the simulation, we verify that the proposed method is able to successfully track reference
trajectories with a two-wheel mobile robot. The experimental validation has been conducted in simulation
and the results show that the proposed method is able to precisely track the trajectory maintaining a high
robustness based on the VPCDNN solver.

Keywords: mobile robot; nonlinear model predictive control; quadratic programming; varying-parameter
convergent differential neural network

1. Introduction

Over past decades, the motion control of mobile robots has increasingly attracted a lot of researchers,
especially for applications in industry and transportation. The two-wheel mobile robot is a special
differential wheeled robot and the physical system is the nonholonomic system, so the two-wheel robot
system is in asymptotic stabilization when it is controlled by time-varying methods based on Brockett’s
theory [1].

There are various approaches that have been developed for mobile robot control and in some
applications under certain conditions. In Reference [2], the authors presented the back-stepping control
algorithm for the curved weld seam tracking of a mobile robot and achieved good tracking precision.
In Reference [3], a nonlinear control algorithm based on sliding mode control (SMC) was developed
for mobile robots, where the four wheel motion mode was converted to an inverted pendulum mode,
which has a small turning radius and high-speed observation features. In Reference [4], the iterative
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learning control method was developed for path-tracking, which can reduce the errors in Cartesian space
for repeat motions. In Reference [5], the fuzzy control is applied to autonomous mobile robot control.
In Reference [6,7], the author presents a robust adaptive feedback controller for a tractor trailer wheeled
robot under uncertain parameters.

In Reference [8], a non-iterative controller is presented for a nonlinear mobile robot system without
constraint. The new method has a low worst-cost ration than nonlinear model predictive control method
(NMPC), but cannot ensure safety in its running because no physical limits are considered. In Reference [9],
an adaptive optimal control method is presented to solve the H∞ problem under changing environmenalt
conditions, which can adapt to a complex environment, but it seems that the gradient-descent based solver
is used to solve the optimal problem.

For safety reasons, the velocity and acceleration constraints (equivalent to velocity incremental
constraint) and other constraints need to be taken into account during operation, which is not suitable
for some special applications with physical limits and is very dangerous in real time, running over the
limit speed. In this paper, the nonlinear model predictive control algorithm is employed to optimize the
performance of the mobile robot during the tracking of the reference trajectories. Due to the excellent
performance of the NMPC control method with nonlinear input-output over a finite horizon, it is widely
used to track trajectories with the kinematic constraints of a mobile robot.

There are many traditional model predictive control methods developed for the tracking of mobile
robots. In References [10,11], the linear model predictive control is used for tracking problems with
fast small-scale solvers. However, for strong nonlinear robot systems, linear models find it difficult to
describe the complex motion process, and it is hard to predict the next step accurately. Therefore, in this
paper, the nonlinear model predictive control method is proposed to control the mobile robot system.
Compared with the linear MPC method, NMPC describes the complex dynamic processes of the robot
system more accurately.

The NMPC method has the nonlinear input-output over a finite horizon and it is widely used for
tracking in mobile robots or auto driving vehicle or mobile robots [12,13]. In Reference [14], NMPC is
applied to control vehicle velocity which demonstrated the NMPC’s energy cost.

In References [15,16], a novel NMPC method is presented to control vehicles, which has complex
nonlinear terms and uncertainties. In References [17,18], the stochastic MPC method is employed to
penalize undesired factors. In References [19,20], the traditional numerical optimization method is used
for solving the quadratic programming (QP) problem of MPC. However, it has the computational burden
problem which cannot meet online computing in a real time running application.

In Reference [21], the authors present the NMPC method to follow customers and maintain a certain
distance, but the solver for NMPC seems to be based on the gradient-descent method. In this case,
the methods cannot track the theoretical solutions because the theoretical solutions change over time,
which causes an undesired performance and cannot converge to 0 in a limited amount of time. Therefore,
time-varying neural network methods have been designed to solve the optimization problem of NMPC.

There are many works on the neural network methods for solving MPC optimization [22].
In Reference [23], the nonlinear model predictive control scheme using general projection neural networks
(GPNN) is employed to optimize the chained systems with nonholonomic constraints. The GPNN is
designed for the QP problem and it globally converges to the optimal solution with a quick convergence
rate and a low computational burden. In addition, in References [24–26], the primal dual neural network
(PDNN) is used to optimize the QP problem of NMPC, where the PDNN has no matrix inversion and
matrix-matrix multiplication, which is suitable for the online optimization in References [27,28].

However, these are all time-invariant methods based on gradient-descent for optimization. Inspired
by the works mentioned above, in this paper a new neural network named the varying-parameter
convergent differential neural network (VPCDNN) method is employed to solve the QP problems of MPC.
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Our VPCDNN has the same neurons in the network as the decision variables for NMPC optimization.
The proposed VPCDNN can obtain an optimal solution for the QP problem in real-time application.

The main contributions of this paper are:

1. A varying parameter convergent differential neural network method is proposed to solve the time
varying QP problem of MPC and all state variables can converge quickly to the optimal value
using the neural network with physical. This is the first time that be presented to optimize the
MPC problem.

2. The convergence analysis of VPCDNN and the simulation results demonstrate good performance on
the convergence speed and robustness of VPCDNN.

The remainder of this paper is organized as follows. The kinematic model of mobile robots and the
nonlinear model predictive control scheme are described in Section 2. The proposed VPCDNN method
for solving the online QP problem of MPC is detailed in Section 3. The convergence and robustness
analysis of VPCDNN is shown in Section 4. Simulation results are reported and discussed in Section 5.
Finally, Section 6 concludes this paper.

2. Model Predictive Control Scheme

In this section, the kinematic model of a mobile robot is reformulated as a nonlinear affine system,
then the model predictive control scheme is presented for the tracking problem. The varying-parameter
neural network base model predictive control scheme is proposed to solve the QP problem with
physical constraints.

2.1. Mobile Robot Control System

The kinematic model of two wheels mobile robot are shown in Figure 1. According to the relationship
between robot velocity v and two driving wheels velocity (vL, vR), the robot velocity and angle velocity
are expressed as: v = (vL + vR)/2, ω = (vL − vR)/l f , respectively. l f denotes the distance of two wheels.
The kinematic model formulation of mobile robot is expressed as,

Ẋ =

 ẋ
ẏ
θ̇

 =

 v cos θ

v sin θ

ω

 =

 cos θ 0
sin θ 0

0 1

 u (1)

where (x, y) is the mobile robot position in Cartesian space and θ is the orientation; u = (v, ω)T is the
control input and X is the state vector. From the formulation in (1), we can obtain a kinematic model of the
reference trajectory by state vector Xr = (xr, yr, θr)T and control input ur = (vr, ωr)T and it is expressed as:

Ẋr =

 ẋr

ẏr

θ̇r

 =

 vr cos θr

vr sin θr

ωr

 =

 cos θr 0
sin θr 0

0 1

 ur (2)

Therefore, we can get the robotic kinematic errors,

Xe =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 xr − x

yr − y
θr − θ

 (3)
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where Xe = [xe, ye, θe]T . The derivative of Ẋe can be obtained from the error state in (3),
ẋe = ωye − v + vr cos θe

ẏe = −ωxe + vr sin θe

θ̇e = ωr −ω

(4)

The control inputs are reformulated as:

ue =

[
u1

u2

]
=

[
vr cos θe − v

ωr −ω

]
(5)

Substituting (5) into (4), the kinematic model of Xe can be rewritten as

Ẋe =

 ẋe

ẏe

θ̇e

 =

 0 ω 0
−ω 0 0

0 0 0


 xe

ye

θe

+

 u1
vr sin θe

u2

 (6)

The formulation in (6) can be reformulated as the following equation:

˙̄Xe =

 0 ωr 0
−ωr 0 vr

0 0 0

 X̄e +

 1 0
0 0
0 1

 ue (7)

Therefore, the motion control problem of the mobile robot in (1) is converted into a stabilization
problem of a nonlinear affine system in (7).

Figure 1. Kinematic model of two-wheels mobile robot.

2.2. Nonlinear Model Predictive Control

The NMPC can be converted into a closed-loop optimal control problem in a finite time-horizon,
which is subject to the input vector and state vector constraints. The NMPC formulation can be presented as

X (j + 1) = ψ1 (X(j)) + ψ2 (X(j)) u(j) (8)
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the input and state vector constraints are defined as:

X(j) ∈ RX , j = 1, 2, . . . , N
u(j) ∈ RU , j = 1, 2, ...Nu

where X and u denote state vector and input vector, respectively. In a nonlinear affine system (8), ψ1(.)
and ψ2(.) denote the nonlinear continuous functions. The initial conditions satisfy ψ1(0) = 0, and N ≥ 1
and 1 ≤ N ≤ Nu that denotes the prediction horizon.

In each sampling period, the optimal input vector can be obtained by a given cost function online
optimization, thus the NMPC scheme is formulated by iterative solution of optimal control problems. The
cost function can be described as the following form function:

S(X, u) =
j+N−1

∑
i=j

L1 (X(i), u(i)) + L2 (X(j + N)) (9)

where L1(X, u) denotes the immediate cost and the satisfying condition is L1(0, 0) = 0. The cost function
S(X, u) can be defined as a quadratic form as follows:

S(j) =
N

∑
i=1
‖X (j + i|j)‖2

Q +
Nu−1

∑
i=0
‖∆u (j + i|j)‖2

R (10)

where X(j + i|j) is the predicted future horizon state; ∆u(j + i|j) = u(j + i|j)− u(j− 1 + i|j) which is
the increment of the input vector; the parameters R and Q represent the constant design weight matrix;
the symbol ‖·‖ represents the Euclidean norm of the corresponding vector. The Equation (8) can be
reformulated as:

Xe (j + 1) = ψ1 (Xe(j)) + ψ2 (Xe(j)) ue(j) (11)

subject to u− ≤ ue(j) ≤ u+ (12)

∆u− ≤ ∆u(j) ≤ ∆u+ (13)

X− ≤ Xe(j) ≤ X+ (14)

ψ1 (Xe) =

 x1

x2

x3

+ T

 ωrx2

−ωrx1 + vrx3

0



ψ2 (Xe) = T

 1 0
0 0
0 1


where Xe = [x1, x2, x3]

T = [xe, ye, θe]
T is the state vector, and T is the sampling period; ue = [u1, u2]

T ,
u1 = vrcos(θe)− v, u2 = ωr − ω is the input vector; (u−, u+) are the upper and lower limits of input
variable, and (∆u−, ∆u+), (x−, x+) are also the upper and lower limits of the input increment variable
and state variable, respectively.
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To construct the QP problem for online optimization, we introduce the vectors as:

X̄ = [Xe(j + 1|j), ..., Xe(j + N|j)]T (15)

ū(j) = [ue(j|j), ..., ue(j + Nu − 1|j)]T (16)

∆ū(j) = [∆ue(j|j), ..., ∆ue(j + Nu − 1|j)]T (17)

According to (11), and (15)–(17), we can get the predicted output,

X̄(j) = H∆ū(j) + ν̂1 + ν̂2 (18)

H =


ν2 (Xe(j|j− 1)) · · · 0

ν2 (Xe(j + 1|j− 1)) · · · 0
...

. . .
...

ν2 (Xe(j + N − 1|j− 1)) · · · ν2 (Xe(j + N − 1|j− 1))



ν̂1 =


ν1 (Xe(j|j− 1))

ν1 (Xe(j + 1|j− 1))
...

ν1 (Xe(j + N − 1|j− 1))



ν̂2 =


ν2 (Xe(j|j− 1)u(k− 1))

ν2 (Xe(j + 1|j− 1)u(j− 1))
...

ν2 (Xe(j + N − 1|j− 1)u(j− 1))


where H ∈ R3N×2Nu , ν̂1 ∈ R3N , and ν̂2 ∈ R3N . Then, the optimization problem in (10) can be rewritten,

minimum ‖H∆ū(j) + ν̂1 + ν̂2‖2
Q + ‖∆u(j)‖2

R (19)

subject to ∆ū− ≤ ∆ū(j + 1) ≤ ∆ū+ (20)

ū− ≤ ū(j− 1) ≤ ū+ (21)

ū− ≤ ū(j− 1) + Î∆ū(j) ≤ ū+ (22)

X− ≤ ν̂1 + ν̂2 + H∆ū(j) ≤ X+ (23)

where Î =


I 0 0 0
I I · · · 0
...

...
. . .

...
I I · · · I

 ∈ R2Nu×2Nu

The optimization problem in (19)–(23) can be reformulated as a QP problem:

minimum 1
2 ∆ūT M∆ū + cT∆ū (24)

subject to E∆ū ≤ r (25)

∆ū− ≤ ∆ū ≤ ∆ū+ (26)

and the parameter details are given,

M = 2(HTη1H + η2) ∈ R2Nu×2Nu
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c = −2HTη1(ν̂2 + ν̂1) ∈ R2Nu

E =


− Î
Î
−H
H

 ∈ R(4Nu+6N)×2Nu , r =


−u− + u(j− 1)
u+ − u(j− 1)
−X− + ν̂1 + ν̂2

X+ − ν̂1 − ν̂2

 ∈ R4Nu+6N

3. Varying-Parameter Convergent Differential Neural Network (VPCDNN)

Firstly, we can rewrite the QP problem as follows:

minimum 1
2 dT Md + cTd (27)

subject to Ed ≤ r (28)

ζ− ≤ d ≤ ζ+ (29)

where d = ∆ū, ζ− = ∆ū−, ζ+ = ∆ū+, and d ∈ [ζ−, ζ+].
In order to find the optimal solution of the time-varying convex quadratic programming problem,

we design the Lagrange function for Equations (27)–(29) as follows:

L (d, y) =
dT Md

2
+ cTd + yT (Ed− r) (30)

where variable y is the Lagrange-multiplier. From the Lagrangian theorem in Reference [29], if the
derivatives of ∂L

∂d , ∂L
∂y are continuous, we give the following algebraic equations of the Lagrange necessary

condition by setting the partial derivatives of L(d, y) to zero,
∂L
∂d = Md + c + ETy = 0

∂L
∂y = Ed− r = 0

(31)

We can rewrite the equation in (31) as the matrix form,

W p = l (32)

W =

[
M ET

E 0

]
∈ R(6Nu+6N)×(6Nu+6N)

p =

[
d
y

]
∈ R6Nu+6N , l =

[
−c
r

]
∈ R6Nu+6N

where W is a square matrix and invertible; p denotes the vector that needs to be solved by physical limits.
It should be noted that the vectors c and r are time-varying parameters. Therefore, the time-varying solver
is considered to solve the time-varying QP problem in (27)–(29).

Actually, the optimal solution is under the condition that the equation in (32) is equivalent to zero.
So, the error expression is defined as

e(t) = W p(t)− l(t) (33)
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where the error e(t) ∈ R6Nu+6N and we hope the variable e is close to zero. Therefore, the
varying-parameter convergent differential neural network is proposed for the problem in (33),

ė(t) = −λ exp(κt)PΩ(e(t)) (34)

PΩ (e(t)) =



e−i , if ei < e−i

ei, if e−i ≤ ei ≤ e+i , ∀i ∈ {1, · · · , 6Nu + 6N}

e+i , if ei > e+i
where the parameters λ and κ are positive constants, which are used to scale the convergence rate; the
symbol PΩ(·) is the active function. Then, substituting (33) into (34), the differential equation of the solver
for the QP problem can be concluded as

W ṗ(t) = −Ẇ p(t)− λ exp(κt)PΩ(W p(t)− l(t)) + l̇(t) (35)

The block diagram of the VPCDNN model (35) is shown in Figure 2. Finally, for the online solving
process, the neural network consists of Np neurons and the neural network is constructed as

ṗi = −
Np

∑
j=1

ẇij pi +
Np

∑
j=1

(
ρij − wij

)
ṗi − λ exp(κt)PΩ

{
Np

∑
j=1

(
wij pi − li

)}
+ l̇i (36)

where pi, ṗi, li, l̇i are the i-th elements of variable p, ṗ , li, l̇i, respectively; wij,ẇij, ηij,η̇ij are the i-th row
and j-th column elements of variable W, I, respectively. Figure 3 exhibits the detailed structure of the
VPCDNN model.

Figure 2. The block diagram of VPCDNN model.
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Figure 3. Structure of VPCDNN model.

4. Convergence and Robustness Analysis of VPCDNN

4.1. Convergence Analysis

It should be noted that the VPCDNN algorithm is a special type of Hopfield-neural network because
the network fits the Hopfield-neural network structure with reference to the differential equation theory.

If there exists the optimal solution d∗ for (27)–(29), the vector p converges to equilibrium point p∗

from all initial states p(0), which means the VPCDNN can achieve the convergence and the stable point
p∗ of VPCDNN is the optimal solution of the QP problem. Firstly, we design the Lyapunov function of
error variable e(t) and then find the minimum point of the Lyapunov function. The detailed proof of
convergence is given as follows.

Theorem 1. For the time-varying QP problem in (27)–(29), assume that there is the optimal solution d∗ for the QP
problem when the monotone nondecreasing activation function of PΩ acts on the error variable. From any initial
state p(0) ∈ R6Nu+6N , the state vector p(t) = [dT(t), yT(t)]T of VPCDNN globally converges to equilibrium
point p∗(t) =

[
d∗T(t), y∗T(t)

]T , where the first n-elements of p∗ (x∗) are the optimal solution of (27)–(29).
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Proof. Considering the candidate Lyapunov function as

F(t) =
1
2

eT(t)e(t), ∀e(t) 6= 0 (37)

It is obvious that the Lyapunov function in (37) is a positive function. The time derivative of F(t) can
be obtained as

Ḟ(t) =
dF(t)

dt
= eT(t)ė(t) (38)

Then, substituting (34) into (38), we obtain

Ḟ(t) = −λ exp(κt)eT(t)PΩ {e(t)}

= −λ exp(κt)
Np

∑
i=1

ei(t)PΩ (ei(t))
(39)

where ei(t) represents the ith element of variable e(t); PΩ {e(t)} is the ith projection element of variable
PΩ {e(t)}. Since PΩ {e(t)} is the monotone nondecreasing projection function, it is easy to obtain

ei(t)PΩ (ei(t)) =

{
> 0, if ei(t) 6= 0
= 0, if ei(t) = 0

(40)

Therefore, we can obtain the following,

Ḟ(t) =

{
> 0, if ei(t) 6= 0
= 0, if ei(t) = 0

(41)

According to the (41), we know that if and only if ei(t) = 0 , Ḟ(t) is equal to zero. Therefore,
p(t) − p∗(t) globally converges to 0 based on Lyapunov theory [30], which also means d(t) − d∗(t)
globally converges to zero. So, the proof of VPCDNN is finished.

4.2. Robustness Analysis

Considering the disturbance model in (35) as follows,

W ṗ(t) = −(Ẇ + ∆B(t))p(t)− λ exp(κt)P(W p(t)− l(t)) + l̇(t) + ∆ξ(t) (42)

where ∆B ∈ R(6Nu+6N)×(6Nu+6N) is the disturbing term of W; ∆ξ ∈ Rn+m is the error from the
VPCDNN model.

Theorem 2. If ‖∆B(t)‖ ≤ µB, ‖∆ξ(t)‖ ≤ µξ ,
∥∥W−1

∥∥ ≤ µW , ‖l(t)‖ ≤ µl , and µB, where µξ , µW , µl are all
positive parameters, the error e(t) will converge to 0 under the condition of λa exp(κt)− µBµA > 0.

Proof. Substituting the (33), (34) into (42), we can conclude

ė(t) = −λ exp(κt)PΩ (e(t))− ∆B(t)W−1e(t) + ∆ξ(t)− ∆B(t)W−1l(t) (43)
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We choose a Lyapunov function as

V(t) =
1
2

eT(t)e(t) =
1
2

6Nu+6N

∑
j=1

e2
i (t) (44)

where V(t) is the non-negative variable.
Then, we can obtain the time derivative of V(t),

V(t) = eT(t)ė(t)
= eT(t)(−λ exp(κt)PΩ(e(t))− ∆B(t)W−1e(t) + ∆ξ(t)− ∆B(t)W−1l(t))
= −λ exp(κt)eT(t)PΩ(e(t)) + eT(t)ψ(t)e(t) + eT(t)∆ξ(t) + eT(t)

(
−∆B(t)W−1l(t)

)
= −λ exp(κt)eT(t)PΩ(e(t)) + eT(t)ψ(t)+ψT(t)

2 e(t) + eT(t)∆ξ(t) + eT(t)
(
−∆B(t)W−1l(t)

) (45)

where ψ(t) = −∆B(t)W−1. Moreover,

eT(t)ψ(t)+ψT(t)
2 e(t) ≤ eT(t)e(t)

∣∣∣λmax

(
ψ(t)+ψT(t)

2

)∣∣∣
≤ eT(t)e(t)

∥∥∆B(t)W−1(t)
∥∥ ≤ eT(t)e(t)µBµW

(46)

eT(t)∆ξ(t) ≤
6Nu+6N

∑
i=1

|ei|µξ (47)

eT(t)
(
−∆B(t)W−1l(t)

)
≤

6Nu+6N
∑

i=1
|ei| ·

∥∥−∆B(t)W−1l(t)
∥∥ ≤ 6Nu+6N

∑
i=1

|ei|µBµξ µl (48)

Therefore, substituting (46)–(47) into (45),

V̇(t) ≤ −λ exp(κt)eT(t)PΩ (e(t)) + eT(t)e(t)µBµW +
6Nu+6N

∑
i=1

|ei|µξ +
6Nu+6N

∑
i=1

|ei|µBµξ µl

= −
6Nu+6N

∑
i=1

|ei|
(
λ exp(κt)PΩ(|ei|)− µBµW |ei| − µξ − µBµξµl

) (49)

We define the Θ1 = λ exp(κt)PΩ(|ei|) − µBµW |ei| − µξ − µBµξ µl . We know variable Θ1 may be
positive or negative.

1. if Θ1 ≥ 0, so V̇ ≤ 0. It is obvious that the error variable e(t) converges to zero from the Lyapunov
theorem and the state variable p converges to the optimal solution p∗.

2. if Θ1 < 0, then V̇ < δ(δ > 0). Therefore, V̇ may be positive or negative.

(a) if V̇ ≤ 0, we know the error variable e(t) converges to zero, also the state variable p will
converge to optimal solution p∗.

(b) if V̇ > 0(0 < V̇ < δ), and consider the linear activation function Θ1(|e(t)|) = a |e(t)| (a ≥ 1),
and λa exp(κt)− µBµW > 0, so we can obtain,

V̇ ≤ −
6Nu+6N

∑
i=1

|ei| (λ exp(κt)a |ei| − µBµW |ei| − µξ − µBµWµl))

= − (λa exp(κt)− µBµW)
n+m
∑

i=1
|ei|
(
|ei| −

µξ+µBµW µl
λa exp(κt)−µBµW

) (50)
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It is easy to obtain λ > µBµW
a . According to (50), in this case, 0 < V̇ < δ, so V(t) increase that means

|ei| will increase, and V̇ will decrease. Therefore, V̇ always exists a moment V̇ ≤ 0, then the control system
will stabilize again.

It should be noted that when v̇(t) = 0, |ei| = |e|+, |e|+ is the upper bound. We define Θ2 =

µξ+µBµW µl
λa exp(κt)−µBµW

. If V̇(t) = 0,
6Nu+6N

∑
i=1

|ei| (|ei| −Θ2) = 0 and the variable |ei| can be seen as the input, the

function |ei| (|ei| −Θ2) will obtain the minimum output, if |ei| = 0.5Θ2. Moreover, |ei| (|ei| −Θ2) > 0
when |ei| > Θ2

We know
6Nu+6N

∑
i=1

|ei| (|ei| −Θ2) = 0 and the function mentioned above has a negative minimum

output. We assume that ej(i = j) is the upper bound e+, so ej will be achieved if and only if the rest
6Nu + 6N − 1 terms |ei| (|ei| −Θ2) obtain the minimum point. Therefore,

6Nu+6N

∑
i=1

|ei| (|ei| −Θ2) =
6Nu+6N

∑
i=1,i 6=j

|ei| (|ei| −Θ2) +
∣∣ej
∣∣ (∣∣ej

∣∣−Θ2
)

(51)

Then, Θ2 =
µξ+µBµW µl

λa exp(κt)−µBµW
is substituted in (51) and obtain

6Nu+6N
∑

i=1
|ei| (|ei| −Θ2) =

∣∣ej
∣∣2 − ∣∣ej

∣∣ ( µξ+µBµW µl
λa exp(κt)−µBµW

)
− 6Nu+6N−1

4

(
µξ+µBµW µl

λa exp(κt)−µBµW

)2
= 0 (52)

According to analysis, we can conclude the upper bound
∣∣ej
∣∣,

∣∣ej
∣∣ = 1

2

(
(1 +

√
6Nu + 6N)η

)
where η =

µξ+µBµW µl
λa exp(κt)−µBµW

, |eend| (end = 6Nu + 6N) converge to zero.

5. Simulation

In this section, the proposed VPCDNN algorithm is tested with a two-wheel mobile robot in
simulation. Two type trajectories will be tested for tracking: circle-shape trajectory (the linear velocity v
and angular velocity w are time constant); ’8’-shape trajectory (the linear velocity v and angular velocity w
are time varying) and the trajectory function in Cartesian space will be given in Section 5.2. Both of the
two trajectories will be tested in mobile robot tracking and the detailed analysis of the simulation results
will be given in Sections 5.1 and 5.2.

5.1. Circle-Shape Tracking

In this part, we control the mobile robot to track the circle-shape trajectory, where the reference linear
velocity v and angular velocities ω are set as v = 0.2 m/s, w = 0.2 rad/s, respectively. In order to prove
the tracking performance of our method, the initial position of the mobile robot is set as Xr(0) = [1.0; 0; 0]
which does not coincide with the reference initial point X(0) = [1.2; 0; 0].

The parameters of nonlinear MPC are listed as: N = 3, Nu = 2, η1 = 3I, η2 = I. The neural network
parameter λ and κ are set as: λ = 0.1, κ = 1e− 4. The sampling period of MPC is ∆t = 0.1s.

From Figures 4 and 5, it can be seen that the trajectories of the mobile robot quickly converge to the
reference trajectory, regardless of the initial position of the mobile robot. From Figures 6 and 7, we can see
the mobile robot’s linear and angular velocity are extremely close to the reference values. We can also see
that the tracking errors of the mobile robot quickly converge to zero as shown in Figures 8 and 9.
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5.2. ‘8’-Shape Tracking

The mobile robot’s task in this scenario is to track the ‘8’-shape trajectory for the periodic movement
with changing linear and angular velocity, starting from initialized positions and orientations. The reference
trajectory of ‘8’-shape is given as

x = sin(0.1t)
y = 2sin(0.05t)

The parameters of nonlinear MPC are listed as: N = 3, Nu = 2, η1 = 3I, η2 = I. The convergence
parameter λ and κ are set as: λ = 0.1, κ = 1e− 4. The sampling period of MPC is set ∆t = 0.1 s.

The initial position of the reference trajectory is Xr(0) = [0; 0; 0.7854], and the initial position of the
mobile robot is X(0) = [0.3; 0; 0.7]. From Figures 10 and 11, we can see that the trajectories of the mobile
robot quickly converge to the reference trajectory even changing the linear and angular velocity of the
robot periodically. From Figures 12 and 13, we can see that the mobile robot’s linear and angular velocity
follow the reference velocity quite well. Figures 14 and 15 show that the tracking errors of the mobile robot
quickly converge to zero.

In both scenarios, the mobile robot is able to track the reference trajectory successfully.
The convergence rate is very fast which is very important for running in real time. The mobile robot solves
the trajectory tracking task with the optimal solution from different initialized positions and orientations.
The tracking errors also converge very fast to zero. These results show the robustness and effectiveness of
the proposed method. Moreover, the overall success rate, fast convergence, and the performance of the
proposed VPCDNN based MPC method indicates its strong ability in real time.

In order to verify the effectiveness of VPCDNN, we have added contrast tests using LNN methods
which include the time- invariant method called the recurrent neural network (gradient-descent based) in
Reference [31]. The comparison results are shown in Figures 16–18. We can conclude that both VPCDNN
and RNN can track the given trajectory, but VPCDNN has the faster convergence speed which is better for
the time-varying optimization problem.

In addition, in this paper, we connect CarSim software to a Matlab/Simulink model and test the
VPCDNN-MPC method to track the sinusoidal trajectory which is shown in Figure 19. The requirements
of simulator platform were Matlab2018b/Simulink, Carsim2016, Windows10.
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Figure 10. Tracking result of ‘8’-shape trajectory.
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Figure 19. Tracking the sinusoidal trajectory using vehicle in Carsim simulation.
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6. Conclusions

In this paper, the MPC scheme is presented to the control problem over finite time-horizon with the
input and state vector of a mobile robot. In the reformation of the nonlinear affine system of a mobile
robot, the nonlinear non-convex optimization problem is converted to the nonlinear convex optimization
problem. Therefore, the new network of VPCDNN is also presented to solve the online optimization QP
problem of NMPC. In order to test the proposed method, the mobile robot tracks the circle-shape and
’8’-shape trajectories in simulation. The results show that the proposed method successfully tracked the
desired trajectories. The method converges quickly to the solution with the VPCDNN. The tracking errors
of the VPCDNN based NMPC are maintained at a very low level. All these characteristics enable our
proposed method to be a powerful and efficient solution to the control problem of mobile robots.
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