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We report predictions for the suppression and elliptic flow of theϒð1SÞ,ϒð2SÞ, andϒð3SÞ as a function
of centrality and transverse momentum in ultrarelativistic heavy-ion collisions. We obtain our predictions
by numerically solving a Lindblad equation for the evolution of the heavy-quarkonium reduced density
matrix derived using potential nonrelativistic QCD and the formalism of open quantum systems. To
numerically solve the Lindblad equation, we make use of a stochastic unraveling called the quantum
trajectories algorithm. This unraveling allows us to solve the Lindblad evolution equation efficiently on
large lattices with no angular momentum cutoff. The resulting evolution describes the full 3D quantum and
non-Abelian evolution of the reduced density matrix for bottomonium states. We expand upon our previous
work by treating differential observables and elliptic flow; this is made possible by a newly implemented
Monte Carlo sampling of physical trajectories. Our final results are compared to experimental data
collected in

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV Pb-Pb collisions by the ALICE, ATLAS, and CMS collaborations.

DOI: 10.1103/PhysRevD.104.094049

I. INTRODUCTION

Ultrarelativistic nucleus-nucleus (AA) collisions per-
formed at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory and the Large Hadron
Collider (LHC) at the European Organization for Nuclear
Research (CERN) have provided unprecedented insight
into the behavior of matter at extreme energy and baryon

number densities the likes of which previously only existed
in the very early Universe [1,2]. The goal of these experi-
ments is to produce and study a color-ionized, or decon-
fined, quark-gluon plasma (QGP), a state of matter in
which the degrees of freedom are quarks and gluons rather
than the hadronic degrees of freedom observed at low
energies in which quarks and gluons are confined. In order
to determine the properties of the QGP, experimentalists at
the RHIC and LHCmeasure a variety of observables in AA,
pA, and pp collisions including the spectra of produced
hadrons, their azimuthal momentum correlations, photon
production, dilepton production, etc.
An observable of particular interest is the ratio of the

number of heavy quarkonia observed in an AA collision
to the number observed in a pp collision (scaled by the
number of binary collisions); this defines the nuclear
modification factor RAA of the particular quarkonium
species. It was predicted decades ago that due to Debye
screening at distances larger than approximately the inverse
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of the Debye mass, the interquark potential of heavy
quarkonium in a color-ionized QGP becomes more short
range, and consequently, the measured rates of heavy
quarkonium bound state production in AA collisions would
be suppressed relative to the rates in pp collisions, in which
no QGP is generated [3,4]. Since these early papers, there
has been considerable progress in understanding the
dynamics of heavy quarkonia in the QGP. A paradigmatic
shift in our theoretical understanding of heavy quarkonium
suppression occurred in 2007 with the findings of thermal
corrections to the real part of the in-medium potential
related to screening and a nonzero imaginary part related to
the in-medium dissociation rate due to Landau damping
[5]. Subsequent works extended this to include the effect
of non-Abelian singlet-octet transitions using the effe-
ctive field theory (EFT) potential nonrelativistic QCD
(pNRQCD) [6–9]. In the interim, the existence of a large
in-medium decay width has been taken into account in
phenomenological calculations of RAA which use complex
potential models [10–16]. Nonrelativistic EFTs, and espe-
cially pNRQCD, allow for a systematic and nonperturba-
tive exploitation of the separation of scales inherent in
heavy quark bound states.
In order to fully understand the dynamics of in-medium

heavy quarkonium, a careful consideration of in-medium
scattering including both dissociation and recombination is
necessary. The formalism of open quantum systems (OQS)
allows for a rigorous treatment of a quantum system (here
the heavy quarkonium) coupled to an external environment
(here the QGP) and thus provides a useful framework for
treating heavy quarkonia in medium [17–20]. In the present
work, we utilize a set of evolution equations describing
the in-medium evolution of heavy quarkonium realizing the
hierarchy of scales 1=a0 ≫ πT ∼mD ≫ E, where a0 is the
Bohr radius of the bound state, T is the medium temper-
ature, mD ∼ gT is the Debye screening mass, and E is
the binding energy of the bound state. In this regime, the
medium is dilute in the heavy (anti-)quark, and the
evolution equations are linear in the heavy quarkonium
density and take the form of a Lindblad equation, describ-
ing the Markovian quantum Brownian motion of a heavy
quarkonium in the QGP [21–23].
In this work, we extend Ref. [24] wherein the Lindblad

equation was solved numerically using the quantum tra-
jectories algorithm which represents a quantum unraveling
of the Lindblad equation. The numerical code, developed
for and presented in Ref. [24], is called QTraj and was
used to make phenomenological predictions for the nuclear
suppression ofϒð1SÞ,ϒð2SÞ, andϒð3SÞ states in 5.02 TeV
Pb-Pb collisions as a function of the number of participat-
ing nucleons Npart. The quantum trajectories algorithm
requires averaging over a set of stochastically generated
quantum evolutions. Due to the associated computational
costs, in Ref. [24], the temperature evolution of the plasma
was simplified by using an average temperature profile per

centrality class computed from the average of Monte Carlo
sampled physical trajectories in that centrality class. In this
work, we compute the QGP survival probability for each
physical trajectory and bin the results as is done exper-
imentally. This has been made possible by efficiency and
scalability improvements to the QTraj code [25]. As a result
of these improvements, we are able to present predictions
for RAA and associated double ratios as functions of both
Npart and pT . In addition, due to the large number of
physical trajectories now considered, we are able to make
statistically significant predictions for the elliptic flow v2 of
the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states as functions of both
Npart and pT . We compare our results to experimental data
collected by the ALICE, ATLAS, and CMS collaborations.
The structure of this work is as follows: in Sec. II,

we review the derivation of the Lindblad equation describ-
ing in-medium heavy-quarkonium dynamics in a strongly
coupled QGP and the quantum trajectories algorithm as
implemented in the QTraj code; in Sec. III, we present our
numerical results and compare to experimental data; in
Sec. IV, we present our conclusions and an outlook for
the future; in Appendix A, we present a table of QTraj

predictions for the centrality-integrated RAA of the ϒð1SÞ,
ϒð2SÞ, and ϒð3SÞ; finally, in Appendix C, we investigate
the role of quantum jumps in heavy-quarkonium dynamics
and their effect on experimental observables.

II. METHODOLOGY

A. Heavy quarkonium dynamics
in a strongly coupled quark-gluon plasma

In this paper, we solve the Lindblad equation describing
the in-medium dynamics of a heavy quarkonium that was
derived using the EFT pNRQCD and the OQS formalism
in Refs. [21–23]. The nonrelativistic nature of heavy-heavy
bound states, i.e., v ≪ 1 where v is the quark-antiquark
relative velocity, leads to at least three hierarchically
ordered scales: the hard scale M of the heavy quark mass,
the soft scale Mv of typical momentum transfers, and the
ultrasoft scaleMv2 associated with the binding energy E. If
the bound state is Coulombic, then v ∼ αs. Integrating out
the hard scale M from full QCD gives rise to the EFT
nonrelativistic QCD (NRQCD) [26,27]; further integrating
out the soft scale Mv gives rise to pNRQCD [28–30].
In this treatment, the small radius r of the lowest lying
bound states allows for a multipole expansion in r.
pNRQCD implements this expansion in the bound state
radius r and in the inverse of the heavy quark mass M at
the Lagrangian level and is thus ideally suited for describ-
ing low lying bottomonium states of small radius. The
degrees of freedom in the resulting effective Lagrangian
are composite fields made of heavy quark and heavy
antiquark pairs in a color singlet, or color octet configu-
ration, and light quarks and gluons at the ultrasoft scale.
Transitions between the singlet and octet fields are encoded

NORA BRAMBILLA et al. PHYS. REV. D 104, 094049 (2021)

094049-2



in chromoelectric-dipole interaction terms and account for
dissociation and recombination.
The OQS formalism allows for the rigorous treatment of

a quantum system coupled to an external environment (see
Ref. [31] for a general introduction). The relevant time
scales of the full system are a time scale τS characterizing
the system, a time scale τE characterizing the environment,
and a relaxation time τR characterizing the interaction
between the system and the environment. The scale τS is
set by the characteristic time scale of internal transitions
in the system and, as such, is related to the inverse of
the internal level spacing of states. The scale τE is set by
the time scale of equilibration of the environment, and the
scale τR is the characteristic time scale associated with
the in-medium evolution of the reduced density matrix.
Hierarchical orderings of these scales allow for simplifi-
cations of calculations and the realization of different
evolution paradigms. For the system treated in this work,
i.e., a bottomonium in a QGP at temperatures reached in
current heavy ion collision experiments, one has

τR ≫ τE; ð1Þ

which allows for the Markovian approximation, i.e., the
system is insensitive to its prior evolution. Furthermore,
one has

τS ≫ τE; ð2Þ

which qualifies the evolution as quantum Brownian
motion.
We consider a strongly coupled plasma in which the

heavy-quark mass M, the Bohr radius of the quarkonium
a0, the temperature of the medium T, the Debye mass
mD ∼ gT, and the binding energy of the quarkonium E
fulfill the hierarchy of scales

M ≳ 1=a0 ≫ πT ∼mD ≫ E: ð3Þ

In this regime, the system, the environment, and the
relaxation time scales are given by

τS ∼
1

E
; ð4Þ

τE ∼
1

πT
; ð5Þ

τR ∼
1

Σs
∼

1

a20ðπTÞ3
; ð6Þ

where Σs is the thermal self-energy of the system. The
hierarchy of scales in Eq. (3) ensures that the evolution of
the reduced density matrix is Markovian and exhibits
quantum Brownian motion.

Using pNRQCD and OQS and working in the regime
specified in Eq. (3), in Refs. [21,22] a set of master
equations governing the in-medium evolution of a heavy
quarkonium was derived. In the limit T ≫ E, an expansion
in E=T may be performed; at leading order, the evolution
equations take the form of a Lindblad equation [32,33],

dρðtÞ
dt

¼ −i½H; ρðtÞ� þ
X
n

�
CnρðtÞC†

n −
1

2
fC†

nCn; ρðtÞg
�
;

ð7Þ

where

ρðtÞ ¼
�
ρsðtÞ 0

0 ρoðtÞ

�
; ð8Þ

H ¼
�
hs 0

0 ho

�
þ r2

2
γ

�
1 0

0 N2
c−2

2ðN2
c−1Þ

�
; ð9Þ

C0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ

N2
c − 1

r
ri
�

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 1
p

0

�
; ð10Þ

C1
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2

c − 4Þκ
2ðN2

c − 1Þ

s
ri
�
0 0

0 1

�
: ð11Þ

The singlet and octet density matrices ρsðtÞ and ρoðtÞ
describe quarkonium in the singlet and octet configura-
tions, respectively. The operators hs;o ¼ p2=M þ Vs;o

are the singlet and octet Hamiltonians with Vs ¼
−4αsð1=a0Þ=ð3rÞ and Vo ¼ αsð1=a0Þ=ð6rÞ; note that
αsð1=a0Þ is the strong coupling at the energy scale of
the inverse of the Bohr radius. Interactions with the
strongly coupled medium are encoded in the nonperturba-
tive transport coefficients κ and γ,

κ ¼ g2

18

Z
∞

0

dthfẼa;iðt; 0Þ; Ẽa;ið0; 0Þgi; ð12Þ

γ ¼ −i
g2

18

Z
∞

0

dth½Ẽa;iðt; 0Þ; Ẽa;ið0; 0Þ�i; ð13Þ

where

Ẽa;iðt; 0Þ ¼ Ω†ðtÞEa;iðt; 0ÞΩðtÞ; ð14Þ

with ΩðtÞ being a temporal Wilson line running from time
negative infinity to time t, i.e.,

ΩðtÞ ¼ exp

�
−ig

Z
t

−∞
dt0A0ðt0; 0Þ

�
: ð15Þ

κ is the heavy quark momentum diffusion coefficient
[34,35], and γ is its dispersive counterpart. As noted in
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Ref. [22], κ and γ are related to the thermal width Γ and
mass shift δM of the bottomonium, respectively, and can,
therefore, be extracted indirectly from unquenched lattice
measurements of these quantities as done in Ref. [23].
More recently, direct quenched lattice measurements of κ
have been performed across an unprecedentedly large range
of temperatures allowing to detect the dependence of κ on
the medium temperature [36]. Direct lattice extractions of γ
(as opposed to the indirect extractions via δM in Ref. [23])
are currently in progress.

B. Quantum trajectories algorithm

Directly solving the Lindblad equation given in Sec. II A
is computationally demanding, and previous works
relied on simplifying assumptions. Specifically, Ref. [22]
expanded the density matrix in spherical harmonics and
introduced a cutoff at l ¼ 1, thus only considering S- andP-
wave states. In Ref. [24], the quantum trajectories algorithm
was utilized to solve the Lindblad equation via a computa-
tionally less intensive Monte Carlo method. This allowed for
solving of the evolution equations to all orders in l while
also dramatically increasing the spatial extent of the lattice
and decreasing the lattice spacing compared to Ref. [22].
The quantum trajectories algorithm implements a sto-

chastic evolution of each quantum trajectory in order to
solve the Lindblad equation (frequently referred to as an
unraveling of the Lindblad equation).1 The central idea of
the algorithm is to split the full evolution specified by the
Lindblad equation into a diagonal contribution that leaves
the quantum numbers of the system unchanged and an off-
diagonal contribution that changes the quantum numbers.
For this purpose, we rewrite the Lindblad equation as

dρðtÞ
dt

¼ −iHeffρðtÞ þ iρðtÞH†
eff þ

X
n

CnρðtÞC†
n; ð16Þ

where

Heff ¼ H −
i
2

X
n

C†
nCn: ð17Þ

The nonunitary effective Hamiltonian Heff is diagonal; its
action on ρðtÞ leaves the color and angular momentum
state of ρðtÞ unchanged but decreases its trace. The jump
operatorsCn entering into the summation in Eq. (16) are off
diagonal, and their action on ρðtÞ results in a change of
quantum numbers.2 The diagonal contributions include the

effect of the thermal width Γ ¼ P
n C

†
nCn in the evolution

(cf. Eq. (2.2) of Ref. [24]), and the off-diagonal terms can
be mapped to quantum jumps between different states. Both
of these contributions can be implemented at the level of
one-dimensional wave functions rather than density matri-
ces, thereby greatly reducing both the memory needed for
the simulation and the number of computational cycles
required.3

The QTraj code implements the quantum trajectories
algorithm as follows:
(1) Initialize a wave function jψðt0Þi at initial time t0

which corresponds to the initial quantum state of the
particle given by ρðt0Þ ¼ jψðt0Þihψðt0Þj.

(2) Generate a random number 0 < r1 < 1 and evolve
the wave function forward in time with Heff until

���e−iR t

t0
dt0Heffðt0Þjψðt0Þi

���2 ≤ r1: ð18Þ

Denote the first time step fulfilling the inequality
of Eq. (18) as the jump time tj. If the jump time is
greater than the simulation run time tf, end the
simulation at time tf; otherwise, proceed to step 3.

(3) At time tj, initiate a quantum jump:
(a) If the system is in a singlet configuration,

then jump to octet. If the system is in an octet
configuration, then generate a random number
0 < r2 < 1 and jump to singlet if r2 < 2=7;
otherwise, remain in the octet configuration.

(b) Generate a random number 0 < r3 < 1; if
r3 < l=ð2lþ 1Þ, then take l → l − 1; otherwise,
take l → lþ 1.

(c) Multiply the wave function by r and normalize.
(4) Continue from step 2.

The procedure for the calculation of the jump time tj in
step 2 is known as the waiting time approach and
reduces the number of random numbers to be generated
compared to the standard quantum trajectories approach
(see Sec. III D of Ref. [37] and references therein). The
probabilities in step 3 correspond to the branching fractions
into a state of different angular momentum and/or color and
are calculated via the relation

pn ¼
hψðtÞjC†

nCnjψðtÞiP
nhψðtÞjC†

nCnjψðtÞi
: ð19Þ

Each evolution of the wave function from time t0 to tf is
called a quantum trajectory. In practice, a large number of
quantum trajectories must be generated and averaged over,
and, as the number of trajectories considered increases, the

1For a comprehensive introduction to this method see Ref. [37].
2This is clearly the case for C0 as it is off diagonal in color

space, i.e., it induces a singlet-octet transition (and a change
of �1 in l). C1 is diagonal in color space but off diagonal in
angular momentum space, i.e., it induces an octet-octet transition
between states of angular momentum l and l� 1. This can be
made manifest by expanding in spherical harmonics; cf. Eqs. (83)
and (84) of [22].

3Details concerning the QTraj implementation, including scal-
ing studies, benchmarks, and runtime comparisons to other
methods can be found in Ref. [25]. This reference accompanies
the open-source release of QTraj.
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average converges to the solution of the Lindblad equation.
This equivalence can be explicitly proven by writing
jψðtþ δtÞi as a superposition of a jumped state and a
state evolved with Heff . For details of this proof, see
Sec. III A of Ref. [37].

C. Simulation details

In order to solve Eq. (7), we must specify the values of
the transport coefficients κ and γ. For the former, we make
use of recent quenched lattice measurements of κ carried
out in Ref. [36] which provide κðTÞ over a large range of
temperatures. All results reported in this work are carried
out using three temperature-dependent parametrizations
of κ̂ðTÞ ¼ κðTÞ=T3 which are given by the lower, central,
and upper bounds of the “fit” curve of Fig. 13 of [36].
We denote these three parametrizations κ̂LðTÞ, κ̂CðTÞ,
and κ̂UðTÞ, respectively. For γ, we perform simulations
with three temperature-independent values of γ̂ ¼ γ=T3 ¼
f−3.5;−1.75; 0g. These values are taken from the relation
δMð1SÞ ¼ ð3=2Þa20γ where δMð1SÞ is the in-medium mass
shift of theϒð1SÞ state as detailed in Ref. [23]. We note that
the lattice studies of Refs. [38,39] used in Ref. [23] favor
larger absolute values of (the negative parameter) γ̂, while
more recent lattice studies [40,41] favor δMðϒð1SÞÞ ≃ 0
and thus γ̂ ≃ 0.
For the mass, we takeM ¼ mb ¼ mϒð1SÞ=2 ¼ 4.73 GeV

with mϒð1SÞ from [42].4 The strong coupling αs is calcu-
lated by solving

a0 ¼
2

CFαsð1=a0Þmb
; ð20Þ

where αs is evaluated at the inverse of the Bohr radius using

the 1-loop running with Nf ¼ 3 flavors, and ΛNf¼3

MS
¼

332 MeV [43]. The resulting value of the strong coupling
constant is αs ¼ 0.468.
For the initial state radial wave function we use a

Gaussian-smeared delta function multiplied by a power
of r appropriate for the initial angular momentum state l,
i.e.,

ψlðt0Þ ∝ rle−r
2=ðca0Þ2 ; ð21Þ

with rψlðt0Þ normalized to one when summed over the
entire (one-dimensional) lattice volume. Narrower initial
states (smaller c) require a significantly larger number of
trajectories to obtain similar statistical errors. We take the
width of the Gaussian to be c ¼ 0.2 to balance accuracy
and computational effort; while this choice may cause
relative systematic uncertainties of about 10% or 15% for

the excited S-wave states, the S-wave ground state is
unaffected (below 5% level) by changes of c within a
factor of 2 [25].
We employ a radial lattice of NUM ¼ 4096 lattice sites

and a radial volume of L ¼ 80 GeV−1, corresponding to a
radial lattice spacing of a ≈ 0.0195 GeV−1. Systematic
errors due to the finite lattice spacing or volume are of
the same order as those due to the smeared initial state; the
former is more significant for the ground state, the latter for
the excited states. The real time integration employed for
deterministic evolution between jumps is discretized with a
time step of dt ¼ 0.001 GeV−1; this time discretization
leads to a quantitatively similar level of systematic errors as
the other sources [25].
We expand upon our work reported in Ref. [24] by

Monte Carlo generating independent physical trajectories
through the quark-gluon plasma rather than using a single
path-averaged temperature evolution in each centrality bin.
A physical trajectory corresponds to the sampled path
which is determined by the centrality c of the collision and
the initial production point in the x-y plane, the transverse
momentum pT , and the azimuthal angle ϕ of the state. We
note that there is no explicit pT dependence in Eq. (7);
the pT dependence is due to the different velocities of
quarkonium states with different pT , which hence experi-
ence different effective temperature evolution during their
traversal of the QGP. In Ref. [24], in each centrality bin, a
path-averaged temperature evolution was computed from
the average of approximately 132000 Monte Carlo gen-
erated physical trajectories and used to compute the
survival probability. In the present work, due to increased
code efficiency/scalability and access to large-scale com-
putational resources, we sample approximately 7–9 × 105

independent physical trajectories for each choice of κ̂ðTÞ
and γ̂, with approximately 50–100 quantum trajectories per
physical trajectory. To generate each physical trajectory, we
sample the bottomonium production point in the transverse
plane using the nuclear binary collision overlap profile
Nbin

AAðx; y; bÞ, the initial transverse momentum of the state
pT from an E−4

T spectrum, and the initial azimuthal angle ϕ
of the state’s momentum uniformly in ½0; 2πÞ.5 We bin the
results for the survival probability as a function of central-
ity, pT , and ϕ. This allows us to make predictions for
differential observables such as RAA as a function of pT and
elliptic flow.
We use the same medium evolution as Ref. [24]

that is modeled using a (3þ 1)dimensional dissipative
relativistic hydrodynamics code, which makes use of
the quasiparticle anisotropic hydrodynamics (aHydroQP)
framework [44–46]. The code uses a realistic equation of

4We note that we update the value of mb used in this work
compared to Refs. [22,24] in order to be more consistent with
other literature. As a result, the value of αs changes accordingly.

5The precise E−4
T form of the spectrum is an idealization

which, however, captures the qualitative features of the botto-
monium production spectrum, namely that it falls rapidly as a
function of pT .
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state fit to lattice QCD measurements [47] and was tuned to
soft hadronic data collected in 5.02 TeV collisions using
smooth optical Glauber initial conditions in Ref. [48]. The
resulting hydrodynamic parameters provide an excellent
description of the experimentally observed hadronic
spectra/multiplicities, extracted femtoscopic radii, and iden-
tified hadron elliptic flow with an initial central temperature
of T0 ¼ 630 MeV at τ0 ¼ 0.25 fm=c and a constant specific
shear viscosity of η=s ¼ 0.159. The anisotropic hydrody-
namics framework allows for an accurate description of both
the early-time evolution of the quark-gluon plasma and the
evolution near the transverse edges of the plasma where
deviations from equilibrium are large. This is due to an all
orders resummation in the inverse Reynolds number [49]. As
a result, aHydroQP reliably describes even the very early
stages of the collision, when nonequilibrium corrections are
large, in addition to extreme cases of the flow profile, such as
Gubser flow where nonequilibrium corrections are large
both at early and late times [50–62].
In our simulations, the wave function is initialized at time

τ ¼ 0 fm=c and evolved in the vacuum until the interaction
with the medium is initialized at τ ¼ 0.6 fm=c.6 To ensure
that the hierarchy of scales of Eq. (3) is fulfilled and our
evolution equations are valid, we evolve the state in the
vacuum when the temperature falls below Tf ¼ 250 MeV.
In this temperature region, the hierarchy of scales given in
Eq. (3) is no longer fulfilled, as πT is no longer signifi-
cantly greater than the binding energy E. Hence, in this
temperature region, the medium effects are ignored, and
the quantum state is evolved using the vacuum potential.
As this particular value of Tf is somewhat arbitrary, in
Ref. [24], a set of simulations were performed varying Tf

by�25 MeV; the uncertainty from this variation was found
to be similar in magnitude to that obtained from variation of
κ̂ðTÞ and γ̂. We note that the most recent lattice QCD
calculations find that the pseudocritical temperature for
the QGP phase transition is approximately Tpc ≃ 158 MeV
[63,64].7 All results reported in this work are obtained
using Tf ¼ 250 MeV. For a detailed discussion of these
points, we direct the reader to the closing paragraph of
Sec. V and Appendix D of Ref. [24].

D. Feed down

The QTraj code allows for a computationally efficient
solution of the Lindblad equation describing the in-medium
evolution of bottomonium states in the QGP. From this

evolution, one can extract the survival probability of a state
that has traversed the QGP. However, in order to compare to
experimental measurements of the nuclear modification
factor RAA, one must take into account the probability
that an excited bottomonium state emerging from the
plasma decays to a lower-lying bottomonium state in the
vacuum before being experimentally detected. At the level
of the cross section, the experimentally observed and direct
production cross sections are related by σ⃗exp ¼ Fσ⃗direct,
where each entry of the σ vectors corresponds to a
particular bottomonium state, and F is a matrix related
to the branching ratios of the excited states. We consider the
states fϒð1SÞ;ϒð2SÞ; χb0ð1PÞ; χb1ð1PÞ; χb2ð1PÞ;ϒð3SÞ;
χb0ð2PÞ; χb1ð2PÞ; χb2ð2PÞg. The entry Fij i < j is the
branching ratio of state j to state i, Fii ¼ 1, and Fij ¼ 0

for i > j. The explicit values of Fij are taken from the
Particle Data Group [66] and presented in Eq. (6.4)
of Ref. [24].
The resulting nuclear suppression RAA of each state is

computed using

Ri
AAðc; pT;ϕÞ ¼

ðF · Sðc; pT;ϕÞ · σ⃗directÞi
σ⃗iexp

; ð22Þ

where Sðc; pT;ϕÞ is a diagonal matrix which collects the
survival probabilities extracted from the QTraj evolution; c
labels the centrality class, pT the transverse momentum,
and ϕ the azimuthal angle. The experimental cross sections
used are σ⃗exp¼f57.6;19;3.72;13.69;16.1;6.8;3.27;12.0;
14.15g nb. We note that the experimental cross sections
are pT averaged. We can, in principle, improve upon this by
using pT dependent cross sections, but this is beyond the
scope of the current work. These values are computed from
experimental measurements presented in Refs. [67,68] as
explained in Sec. 6.4 of Ref. [24].

III. RESULTS

In this section, we present our final results for the nuclear
modification factor RAA and the elliptic flow v2 of the
ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ. The theoretical uncertainties,
which are indicated as shaded bands, come from varying
the values of the parameters κ̂ðTÞ and γ̂ as detailed in
Sec. II C, while statistical errors are indicated by narrow
bands around the individual lines which are, in many cases,
smaller than the respective line widths. In Appendix C,
for a subset of observables, we present comparisons
between QTraj simulations run with the full evolution,
including jumps as detailed in Sec. II B, and results
obtained by evolving the wave function using only the
effective Hamiltonian Heff without applying the jump
operators. The full QTraj results presented in this section
are obtained from approximately 50–100 quantum trajec-
tories per 7�9 × 105 physical trajectories for each combi-
nation of κ̂ðTÞ and γ̂. The Heff results were obtained by

6Initializing the interaction with the medium prior to τ ¼
0.6 fm=c would require considering the role of large momentum
space anisotropies; such a consideration is beyond the scope of
the present work.

7A study is in progress to determine the next-to-leading-
order corrections to the evolution equations in the E=T expan-
sion, thus extending the validity of the description to lower
temperatures [65].

NORA BRAMBILLA et al. PHYS. REV. D 104, 094049 (2021)

094049-6



sampling approximately 106 physical trajectories for each
combination of κ̂ðTÞ and γ̂. We compare our results
with experimental data collected by the ALICE [69,70],
ATLAS [71], and CMS [67,72,73] collaborations.

A. Nuclear modification factor RAA

In Fig. 1, we plot the results of our QTraj simulations for
the nuclear modification factor RAA of the ϒð1SÞ, ϒð2SÞ,
and ϒð3SÞ as a function of the number of participating
nucleons Npart. In the left panel of Fig. 1, the shaded bands
indicate the variation in our QTraj results for RAA when
varying κ̂ while holding γ̂ fixed at its central value; the
dashed lines correspond to the lower bound κ̂ðTÞ ¼ κ̂LðTÞ;
and the dot-dashed lines correspond to the upper bound
κ̂ðTÞ ¼ κ̂UðTÞ. In the right panel of Fig. 1, the shaded

bands indicate the variation in our QTraj results for RAA
when varying γ̂ while holding κ̂ fixed at its central value;
the dashed lines correspond to the lower bound γ̂ ¼ −3.5;
and the dot-dashed lines correspond to the upper bound
γ̂ ¼ 0. As can be seen from this figure, the central values of
these two parameters provide a good description of the
Npart dependence of RAA for all three states considered.
Comparing the left and right panels of Fig. 1, one sees that
the uncertainty associated with the variation of γ̂ (right
panel) is larger than the one associated with the variation
of κ̂ (left panel).
In Fig. 2, we present our results for RAA½1S�, RAA½2S�,

and RAA½3S� as a function of transverse momentum pT . The
bands, line styles, and panels represent the same variation
as in Fig. 1. We observe that, within uncertainties, our

FIG. 1. Nuclear modification factor RAA of the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ as a function of Npart compared to experimental
measurements from the ALICE [69], ATLAS [71], and CMS [67] collaborations. The bands in the theoretical curves indicate variation
with respect to κ̂ðTÞ (left) and γ̂ (right). The central curves represent the central values of κ̂ðTÞ and γ̂, and the dashed and dot-dashed lines
represent the lower and upper values, respectively, of κ̂ðTÞ and γ̂.

FIG. 2. Nuclear modification factor RAA of theϒð1SÞ,ϒð2SÞ, andϒð3SÞ as a function of pT compared to experimental measurements.
The experimental data are taken from the ALICE [69], ATLAS [71], and CMS [67] collaborations. The bands represent theoretical
uncertainties as in Fig. 1.
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results are in agreement with the experimental data. In
fact, the dependence of RAA on pT is very mild. This
behavior is seen both in our results and in experimental
measurements. Our results for ϒð1SÞ show a greater
sensitivity to variation of γ̂ than to κ̂; however, the
opposite is true for the excited states.
In Figs. 3 and 4, we present our results for the double

ratio of RAA½2S� and RAA½3S�, respectively, to RAA½1S� as a
function of Npart. As in Fig. 1, the left and right panels
correspond to the variation over κ̂ðTÞ and γ̂, and the line
styles for the bounds are the same. We note that the data
from the CMS collaboration in Fig. 4 give only an upper
bound on RAA½3S�. We observe good agreement between
our QTraj results and the experimentally measured values
of the double ratios across the entire range of Npart.
Our results show a much larger dependency on γ̂ than

on κ̂. This suggests that this measurement can potentially
constrain the value of γ̂, for which there are much less
lattice QCD data than for κ̂. Unfortunately, at the moment,
the experimental uncertainties are of the order of the effect
of the γ̂ variation.
In Fig. 5, we plot the double ratio of RAA½2S� to RAA½1S�

as a function of pT . The notation and parameter variation
are the same as in the previous plots. What we observe in
this figure confirms what we saw in previous plots. The
dependence of this double ratio with pT is very mild. And
similarly to what we observed in the double ratio versus the
number of participants, varying κ̂ has almost no influence,
while varying γ̂ is significant. Regarding the comparison
with experimental data, we see a reasonable agreement
within reported uncertainties with some tension with the
data seen at large pT .

FIG. 3. Double ratio of the nuclear modification factor RAA½ϒð2SÞ� to RAA½ϒð1SÞ� as a function of Npart compared to experimental
measurements of the ALICE [69], ATLAS [71], and CMS [72] collaborations. The bands in the theoretical curves indicate variation of
κ̂ðTÞ and γ̂ as in Fig. 1. The black and red bars in the experimental data represent statistical and systematic uncertainties, respectively.

FIG. 4. Double ratio of the nuclear modification factor RAA½ϒð3SÞ� to RAA½ϒð1SÞ� as a function of Npart compared to experimental
measurements of the ATLAS [71] and CMS [72] collaborations. The bands and bars represent uncertainties as in Fig. 3; we note that the
CMS measurements give only an upper bound at 95% confidence level.
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B. Elliptic flow v2
In Fig. 6, we plot our results for the elliptic flow v2 of the

ϒð1SÞ as a function of centrality. Again, the notation is as
in previous plots. Our results agree to within uncertainties
with the experimental results of the CMS collaboration,
though we note the large uncertainties of the experimental
results. In this case, we see that the influence of κ̂ and γ̂ is
similar. It is noteworthy that the more inclusive prediction
(in the 10% to 90% percent centrality window) is very
precise and close to the central value of the experimental
results (more details below).
In Fig. 7, we plot v2½ϒð1SÞ� as a function of pT . We

observe agreement to within uncertainties with the exper-
imental results of the ALICE and CMS collaborations. In
this case, the sensitivity of our results to κ̂ and γ̂ is similar,
except for the lower momentum region, in which the
sensitivity to γ̂ is larger.
In Fig. 8, we plot our results for the elliptic flow of the

ϒð2SÞ and ϒð3SÞ as a function of centrality. Our results

agree to within uncertainties with the experimental data
point from the CMS collaboration, although the experi-
mental uncertainties are at least an order of magnitude
larger than our theoretical uncertainty. It is interesting to see
that our model predicts very similar v2 for both ϒð2SÞ and
ϒð3SÞ; v2 for the excited states appears to be somewhat
larger than for the ground state.
In the case of v2 of the ϒð1SÞ, we predict that it has a

maximum on the order of 1.5% as a function of both
centrality and transverse momentum. Our prediction for the
10%–90% centrality- and pT-integrated ϒ elliptic flow is
v2½ϒð1SÞ� ¼ 0.008� 0.003� 0.002, v2½ϒð2SÞ� ¼ 0.016�
0.003� 0.002, and v2½ϒð3SÞ� ¼ 0.015� 0.002� 0.001,
where the first uncertainty corresponds to both κ̂ and γ̂
variation, and the second uncertainty corresponds to the
statistical uncertainty due to the average over physical and
quantum trajectories. We find that the 2S and 3S states have
similar integrated elliptic flow, which is roughly a factor of
2 larger than the 1S state, v2½ϒð2S or 3SÞ�=v2½ϒð1SÞ� ≃ 2

FIG. 5. Double ratio of the nuclear modification factor RAA½ϒð2SÞ� to RAA½ϒð1SÞ� as a function of pT compared to experimental
measurements of the ATLAS [71] and CMS [72] collaborations. The bands and bars represent uncertainties as in Fig. 3.

FIG. 6. Elliptic flow v2 of the ϒð1SÞ as a function of centrality compared to experimental measurements of the CMS [73]
collaboration. The bands represent uncertainties as in Fig. 1.
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for 10%–90%. When considering the 2S to 1S v2-ratio
in different centrality bins, we find that taking into
account the variation over both κ̂ and γ̂ results in 2≲
v2½ϒð2SÞ�=v2½ϒð1SÞ�≲ 4 with the maximum in this ratio
occurring in the 30%–50% centrality bin.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we presented a comprehensive set of
predictions for the suppression and elliptic flow of
ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ in 5 TeV Pb-Pb collisions
and compared our predictions to experimental data from
the ALICE, ATLAS, and CMS experiments. To make our
predictions, we numerically solved the 3D non-Abelian
Lindblad equation for the quarkonium reduced density
matrix that emerges when OQS methods are applied within
the pNRQCD effective field theory for a strongly coupled
QGP. The numerical solution was realized by mapping the
solution of the Lindblad equation to a 1D Schrödinger
equation with a non-Hermitian Hamiltonian that is subject
to stochastic quantum jumps. Using the resulting quantum
trajectories algorithm, we were able to simulate the full 3D

evolution of the wave function, including the possibility of
internal transitions between different color and angular
momentum states.
To describe the interaction with the hot and three-

dimensionally expanding QGP, we made use of a realistic
dissipative hydrodynamics simulation called anisotropic
hydrodynamics. The initial conditions and transport coef-
ficients used in the (3þ 1)dimensional aHydro code were
tuned to reproduce soft observables such as identified pion,
proton, and kaon pT-spectra, multiplicities, and elliptic
flow. To compute RAA, we produced a large ensemble of
physical quarkonium trajectories by Monte Carlo sampling
both the initial production points and transverse momentum
vectors. We then computed the survival probability along
each of these physical trajectories by averaging over
ensembles of stochastically generated quantum trajectories.
Based on the Monte Carlo sampling of physical trajecto-
ries, we could compute both the Npart- and pT-dependence
of RAA and the elliptic flow of the states. This extends our
prior work where, due to the high computational demand
of solving the Lindblad equation, we used a trajectory-
averaged temperature evolution in each centrality bin [24].

FIG. 7. Elliptic flow v2 of the ϒð1SÞ as a function of pT compared to experimental measurements of the ALICE [70] and CMS [73]
collaborations. The bands represent uncertainties as in Fig. 3. Note the much larger range of the ordinate compared to Fig. 6.

FIG. 8. Elliptic flow v2 of the ϒð2SÞ and ϒð3SÞ as a function of centrality compared to experimental measurements of the CMS [73]
collaboration. The bands represent uncertainties as in Fig. 1.
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Our final predictions also include the effect of late-time
feed down of bottomonium states, the calculation of which
is based on known experimental measurements of botto-
monium production cross sections and branching ratios in
pp collisions. We find that the primary effect of computing
the survival probability on a trajectory-by-trajectory basis is
to increase both ϒð2SÞ and ϒð3SÞ RAA, which helps to
bring our predictions for both RAA of these states, and the
corresponding double ratios, into better agreement with
available experimental data than the trajectory-averaged
results presented in [24]. We comment further on this
improvement in Appendix B and, furthermore, compare
survival probabilities of the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ
obtained using evolution with Heff along distinct physical
trajectories against survival probabilities obtained using an
average physical trajectory as in Ref. [24]. Associated with
this paper, the QTraj code used to generate the results will be
released under a public Gnu Public License. We present the
details of the code, along with examples, and benchmarks
in a separate work with a more computational focus [25].
Due to the stochastic quantum trajectories algorithm

and Monte Carlo sampling of the physical trajectories, the
results of our simulation had an associated statistical
uncertainty. For each parameter set considered, the stat-
istical uncertainty computed was reported in each figure
based on an ensemble size of approximately 105–106

physical trajectories. With these large ensemble sizes,
the statistical uncertainty in the determination of RAA
was on the order of the line width in the plots, while there
remained somewhat larger statistical uncertainties in our
predictions for v2. We estimated our theoretical uncertain-
ties by varying the relevant transport coefficients κ̂ and γ̂
in the range indicated by lattice measurements of these
quantities. We found that RAA½ϒð1SÞ�, the 2S to 1S double
ratio, and 3S to 1S double ratio had a larger variation with γ̂
than with κ̂, with the double-ratios rather strongly depend-
ing on γ̂ but not κ̂. This observation offers some hope that,
with increased statistics for both 1S and 2S RAA, one can
constrain κ̂ and γ̂ based on experimental data.
In the case of the elliptic flow, we found similar varia-

tion in our predictions under variation of κ̂ and γ̂. We
found reasonable agreement between our predictions for
v2½ϒð1SÞ� and available experimental data and made
predictions for the elliptic flow of the ϒð2SÞ and ϒð3SÞ,
finding that the differential suppression of these states
results in a larger elliptic flow, as can be expected from the
fact that their survival probabilities are smaller (stronger
medium interactions). When considering the centrality
dependence of the ratio of the elliptic flow of the 2S
and 1S states, our approach predicts 2≲ v2½ϒð2SÞ�=
v2½ϒð1SÞ�≲ 4, with the maximum occurring in the
30%–50% centrality bin. This prediction can hopefully
soon be tested by experimentalists.
Turning to the future, one limitation of the framework

used herein is that it relied on an assumed strict ordering of

the binding energy and temperature, namely T ≫ E. As a
result, at low temperatures, the framework used herein
becomes potentially unreliable. For this reason, we used a
lower temperature of Tf ¼ 250 MeV for bottomonium
interactions with the medium. In our previous work, it
was shown that the variation of RAA, when varying Tf by
10%, was on the same order as the theoretical uncertainty
associated with the variation of the fundamental transport
coefficients κ̂ and γ̂. That said, it seems necessary to include
subleading corrections in E=T in order to gauge their
impact on in-medium bottomonium dynamics [19].
Another interesting prospect is that, at low temperatures,
one could interface QTraj output to codes based on a
semiclassical approach in which one instead solves in-
medium Boltzmann equations, see, e.g., [74–76].
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APPENDIX A: TABLE OF RESULTS FOR
INTEGRATED RAA

In Table I, we present QTraj predictions for the integrated
RAA of 1S, 2S, and 3S along with the corresponding results
from the ALICE, ATLAS, and CMS experiments. We note
that, for the QTraj results, the variation over the full γ̂ range
was the dominant source of systematic theoretical uncer-
tainty in all cases listed.

APPENDIX B: EFFECT OF PHYSICAL
TRAJECTORIES

In Fig. 9, we compare the survival probabilities of the
ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states obtained from QTraj

simulations carried out along approximately 106 distinct
physical trajectories against the results of an equivalent
simulation carried out along an averaged physical trajec-
tory. The simulations were performed using only Heff
evolution, i.e., without jumps, and κ̂ðTÞ ¼ κ̂CðTÞ and
γ̂ðTÞ ¼ −1.75. Equivalent simulations with the other four
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combinations of κ̂ and γ̂ represented in, e.g., Fig. 1 were
additionally performed. The qualitative results are the same
as those presented in Fig. 9, and we thus show only
the central parameter values as representative of the
general effect.
We observe that the use of distinct physical trajectories

decreases the survival probability of all states in peripheral
collisions and increases it with increasing centrality. This
effect manifests more strongly for the excited states than the
ground state. This is most likely due to the fact that the in-
medium widths of the excited states depend more strongly
on temperature than that of the ground state.

APPENDIX C: COMPARISONS OF
JUMP VS NO JUMP EVOLUTION

In this Appendix, we present comparisons between the
full Lindblad evolution including the effects of quantum
jumps and evolution in which we only evolve the system
with the complex Hamiltonian Heff . This will help us to
assess the role played by quantum jumps and their final
effect on experimental observables.
In Fig. 10, we plot a comparison of the QTraj results

for RAA½2S� as a function of pT , implementing the full
evolution with jumps to those obtained using only Heff.
Each panel presents results obtained using different values
of κ̂ðTÞ and γ̂. We observe agreement to within uncertain-
ties with the experimental data for all values of κ̂ðTÞ and γ̂
and between the full andHeff evolution for all values except
γ̂ ¼ 0 (lower left panel). We note that the difference
between the full Lindblad evolution and the Heff evolution
is much smaller than the uncertainty obtained by varying κ̂
and γ̂. Therefore, until more precise determinations of κ and
γ are available, the error made by ignoring jumps when
computing RAA is negligible.
In Fig. 11, we present a comparison of results obtained

using full evolution with jumps against results obtai-
ned using only Heff evolution for the double ratio
RAA½ϒð2SÞ�=RAA½ϒð1SÞ� as a function of pT . As in the
case of RAA½ϒð2SÞ�, we observe the largest effect of the
jumps in the case γ̂ ¼ 0 and κ̂ ¼ κ̂C (lower left panel in
Fig. 10) and in the case γ̂ ¼ −1.75 and κ̂ ¼ κ̂U (upper right
panel in Fig. 10) with agreement to within the reported
statistical uncertainties for the other values. We note that
the error induced by ignoring the jumps is of the order of
the uncertainty obtained by varying κ but much smaller
than the uncertainty obtained by varying γ. In summary,
the uncertainty on the prediction of the double ratio
RAA½ϒð2SÞ�=RAA½ϒð1SÞ� as a function of pT is driven by
γ, and a precise value of this quantity can potentially
constrain the transport coefficient.
In Fig. 12, we plot a comparison of full and Heff

evolution results for v2½ϒð1SÞ� as a function of pT ; the
panels correspond to separate variations of κ̂ðTÞ (left panel)
or γ̂ (right panel), while the other parameter is kept fixed.
We observe again agreement to within uncertainties with

TABLE I. Comparison of QTraj predictions for integrated
RAA½ϒ� with available experimental data. In the right column,
the top value is the experimental value, and the bottom value is
the QTraj prediction. With the exception of RAA½ϒð3SÞ�, results
agree within quoted uncertainties. In all cases, the first uncer-
tainty quoted is the systematic uncertainty, and the second is the
statistical uncertainty.

Observable Source/Cuts Experiment/QTraj

RAA½ϒð1SÞ� ALICE 0–90% [77] 0.37� 0.03� 0.02
pT < 15 GeV 0.35� 0.09� 0.002

RAA½ϒð1SÞ� ATLAS 0–80% [71] 0.32� 0.05� 0.02
pT < 30 GeV 0.35� 0.09� 0.002

RAA½ϒð1SÞ� CMS 0–100% [67] 0.376� 0.035� 0.013
pT < 30 GeV 0.36� 0.09� 0.002

RAA½ϒð2SÞ� ALICE 0–90% [77] 0.10� 0.02� 0.04
pT < 15 GeV 0.139� 0.022� 0.001

RAA½ϒð2SÞ� ATLAS 0–80% [71] 0.11� 0.04� 0.04
pT < 30 GeV 0.137� 0.022� 0.001

RAA½ϒð2SÞ� CMS 0–100% [67] 0.117� 0.019� 0.022
pT < 30 GeV 0.148� 0.022� 0.001

RAA½ϒð3SÞ� CMS 0–100% [67] 0.022� 0.016� 0.038
pT < 30 GeV 0.138� 0.008� 0.001

FIG. 9. Survival probability of theϒð1SÞ,ϒð2SÞ, andϒð3SÞ as
a function of Npart obtained from evolution with only Heff, i.e.,
without applying the jump operators. Solid lines indicate results
obtained by sampling approximately 106 distinct physical tra-
jectories; dashed lines indicate results obtained using an averaged
physical trajectory as in Ref. [24]. The simulations were carried
out using κ̂ðTÞ ¼ κ̂CðTÞ and γ̂ðTÞ ¼ −1.75. We note that the
statistical errors associated with the sampling of distinct physical
trajectories are indeed shown in the figure but are of the order of
the line width.
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the available experimental data. It is interesting to note that
v2 seems to be the only observable, within our obtained
accuracy, in which the effect of the jumps competes with
the uncertainties associated with the variation of κ and γ.

Therefore, v2 appears to be the observable most sensitive
to quantum jumps and might provide, in the future, an
observable that cannot be explained with purely Heff
evolution.

FIG. 10. Nuclear modification factor RAA of the ϒð2SÞ as a function of pT together with experimental measurements of RAA½ϒð2SÞ�
from the ATLAS [71] and CMS [67] collaborations. We compare the results obtained using the full QTraj algorithm (red, solid) with
results obtained using evolution with Heff with no jumps (purple, dashed). The top row varies κ̂ðTÞ at γ̂ ¼ −1.75, and the bottom row
varies γ̂ at κ̂CðTÞ.

FIG. 11. Double ratio of the nuclear modification factor RAA½ϒð2SÞ� to RAA½ϒð1SÞ� as a function of pT computed using QTraj plotted
against experimental measurements of RAA½ϒð1SÞ� and RAA½ϒð2SÞ� from the ATLAS [71] and CMS [72] collaborations. We compare
the results obtained using the full QTraj algorithm (blue) with results obtained using evolution with Heff with no jumps (orange). The
bands represent uncertainties as in Fig. 1.
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