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A B S T R A C T

Recent developments in maintenance modelling fuelled by data-based approaches such as machine learning
(ML), have enabled a broad range of applications. In the automotive industry, ensuring the functional safety
over the product life cycle while limiting maintenance costs has become a major challenge. One crucial
approach to achieve this, is predictive maintenance (PdM). Since modern vehicles come with an enormous
amount of operating data, ML is an ideal candidate for PdM. While PdM and ML for automotive systems have
both been covered in numerous review papers, there is no current survey on ML-based PdM for automotive
systems. The number of publications in this field is increasing — underlining the need for such a survey.
Consequently, we survey and categorize papers and analyse them from an application and ML perspective.
Following that, we identify open challenges and discuss possible research directions. We conclude that (a)
publicly available data would lead to a boost in research activities, (b) the majority of papers rely on supervised
methods requiring labelled data, (c) combining multiple data sources can improve accuracies, (d) the use of
deep learning methods will further increase but requires efficient and interpretable methods and the availability
of large amounts of (labelled) data.
1. Introduction

The use of data-driven methods like machine learning (ML) is
increasingly becoming a norm in manufacturing and mobility solutions
— from predictive maintenance (PdM) to predictive quality, including
safety analytics, warranty analytics, and plant facilities monitoring [1,
2]. A number of terms such as E-maintenance, Prognostics and Health
Management (PHM), Maintenance 4.0 or Smart Maintenance are used
to refer to the development of approaches ensuring the integrity of
components, products and systems by analysing, prognosticating or pre-
dicting problems caused by performance deficiencies which may cause
adverse effects on safety [3–6]. The influx of data and the emergence
of the industrial internet of things have led to ML-based approaches
playing a major role in this context, taking traditional maintenance
modelling methods to unprecedented levels.

A prime example of how machine learning (ML) has revolution-
ized an industrial sector is the automotive industry, fuelled by the
transformation of the vehicle into an increasingly complex system [7].
Especially, with regard to current developments towards automated
driving and the transformation of the drive-train, there is a strongly
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increasing demand for cost-efficient technical solutions to ensure the
vehicles’ functional safety and reliability over lifetime [8–11]. In order
to exploit the vehicles’ data-richness while handling the high system
complexity, ML-based PdM of safety- and cost-relevant components
constitute a major solution approach with increasing attention in re-
search. This is backed by the observed increase of publications in the
field, which will be shown in Section 5.5.

While the topic of predictive maintenance (PdM) itself as well as
machine learning (ML) for automotive systems have both been covered
in various, separate review papers, there is a research gap: there is no
current survey on the growing field of ML-based PdM for automotive
systems. However, the increasing number of publications in this field
emphasizes the need for such a survey. Our main contribution is two-
fold: First, we survey and categorize papers on ML-based PdM for
automotive systems and in addition analyse them from a use case- and
machine learning-perspective. Second, we identify open challenges and
discuss possible research directions aiming to contribute to the devel-
opment of the field and to inspire research questions. In that context,
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we focus on maintenance related to the vehicle in use, not during
manufacturing, i.e. we focus on predictive maintenance of automotive
systems.

The aim of this paper is to give a broad range of readers an overview
on ML-enabled PdM in automotive applications. Besides scholars and
students, these are (1) maintenance specialists which have so far used
classical approaches and are interested in the added value of data-
driven methods, (2) ML professionals interested in key use cases with
such potential as maintenance represents to the automotive industry,
and (3) automotive engineers interested in machine learning for the
enhancement of safety and reliability for automotive systems.

The main contributions of this paper are:

1. We introduce the machine learning subfields most relevant for
predictive maintenance. This aims to make the research field of
ML-based PdM accessible for experts with a background in either
maintenance or machine learning, aiming to initiate fruitful
collaborations.

2. We systematically survey and categorize papers in the field of
ML-based PdM for automotive systems from a use case - and a
machine learning-perspective.

3. From the surveyed papers we identify the most frequent use
cases, frequently used ML methods and most active authors.

4. As a major contribution, we identify open challenges in the field
and discuss possible research directions. This may serve readers
to identify open research questions.

The paper is structured as follows: In the related work section
Section 2) we discuss literature reviews on all three topics of this

urvey’s concern, namely maintenance, ML and automotive applica-
ions. Based on that we identify the research gap, motivating our work:
n contrast to the related work, our work combines the named three
opics into ML-based PdM for automotive systems. In Section 3 we
ive a general introduction on maintenance modelling and its subfields
ncluding PdM. Following that, in Section 4, we introduce the broad
ield of ML focusing on the tasks most relevant for PdM. The main
ontributions are to be found in Section 5, where we systematically
urvey and categorize ML-based PdM for automotive systems and in
ection 6, where we identify challenges and discuss future research
irections which may be used by readers to identify open research ques-
ions. Finally, Sections 7 and 8 contain the discussion and conclusion,
espectively. Commonly used abbreviations are listed in the appendix
n Table A.7.

. Related work and research gap

Three factors can be mentioned as the drivers for the astounding de-
elopment of machine learning (ML): data availability, breakthroughs
n algorithm development and the advancements in computational
ower. The type of ML-methods used in maintenance modelling is
ictated by the application and ultimately, the data available.

The pace at which this development takes place is fast and has
esulted in a growing number of publications — as will be shown
n Section 5.5. There is a number of reviews discussing the findings
resented in research papers in the main three topics which concern our
urvey: PdM models, ML, and automotive applications. They comprise
eviews which surveyed AI or ML methods for maintenance but also
eviews on maintenance in general in which ML is treated as one
ossible approach. Also, reviews can be found which survey the use
f ML in the automotive industry. Lastly, also reviews considering
aintenance, data-driven approaches and automotive applications can

e found, but cover only a very narrow field of automotive use cases.
able 1 gives an overview of related work and in what follows we
laborate further.

With regards to related work, our starting point were reviews
2

n maintenance modelling approaches. Wu [17] and Werbińska-
Wojciechowska [16] both presented a review on preventive mainte-
nance models, the latter focusing on technical systems. Ran et al. [13]
considered ML but as one of many approaches for PdM. Sutharssan
et al. [14] also reviewed publications in prognostics and health moni-
toring (PHM) and categorized them into model-driven, data-driven and
hybrid methods, subdividing the data-driven methods into statistical
and ML approaches. In a similar manner, Peng et al. [15] categorized
condition-based maintenance approaches, but added knowledge-based
methodologies, including fuzzy logic and expert systems, as a further
category.

More specifically on data-driven modelling approaches, Tsui et al.
[26] made a review of the use of data-driven methods in PHM and
illustrated it with practical examples. Schwabacher and Goebel [25]
looked specifically at AI-methods used in prognostics and structured
the revised models by the following types of methods: Physics based,
classical AI, numerical methods, and ML. Wu et al. [27], on the other
hand, focused on data-driven models for PHM. Carvalho et al. [21]
surveyed ML for predictive maintenance in general and assessed the
performance of state-of-the-art methods.

Ali [18] focuses on recent research and developments in the field of
acoustic emission signal analysis through AI in machine condition mon-
itoring and fault diagnosis. Deep Learning (DL) approaches for machine
health monitoring and for system health management were reviewed
by Zhao et al. [29] and Khan and Yairi [23], respectively. Bhargava
[20] presented a collection of papers from various authors with a broad
range of reliability prediction for electronic components comprising a
wide range of AI methods.

Li et al. [33] surveyed AI applications in vehicles, tending to focus
on applications in autonomous driving. In the work of Nowakowski
et al. [12], the authors give a brief survey of maintenance of technical
systems. Although one of their case studies is from the automotive
domain, the survey itself is not automotive-specific. Falcini et al. [34]
discuss deep learning (DL) for automotive systems, however not with
a focus on predictive maintenance. Also, in the context of automotive
applications, Singh and Arat [35] give an overview of the advances and
challenges in DL.

Although it does not focus on automotive applications, the clas-
sification of recent literature from Wu et al. [28] can be seen as
an important premise to our contribution. In a similar fashion to
our approach, Fink et al. [22] and Lei et al. [24] evaluate current
developments and discuss potential research trends but they do it in
the fields of deep learning applied to PHM and machine fault diagnosis,
respectively.

Finally, the closest work to our survey are two reviews combining
PdM, data-driven approaches and automotive applications: Ahsan et al.
[30] and Sankavaram et al. [32]. However, our survey is significantly
different to these in following aspects: (1) both are brief reviews with
a limited selection of papers, (2) Ahsan et al. [30] have a different
focus, reviewing the subfield of automotive electronics in the context
of data-driven methods — ML methods covered as one of subfield that,
(3) Sankavaram et al. [32] reviewed work up to the year of 2009.

A point worth mentioning is, that earlier reviews already pointed
towards the importance of data-driven approaches in PHM, see Mes-
garpour et al. [31].

In contrast to the named reviews, we (a) focus specifically on ML-
based PdM for automotive systems, (b) survey a variety of applications
and categorize them into PdM sub-fields, and (c) as a key contribution,
identify open challenges and research directions in the field. Our paper
closes the research gap of a case study survey of ML-based PdM for
automotive systems with a focus on vehicles in operation. To the best
of our knowledge, there is no current survey of that kind, combining

ML, PdM and automotive applications.
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Table 1
Overview of related work.
Reference Topic

Maintenance Modelling:

Nowakowski et al. [12] Brief survey of predictive maintenance
Ran et al. [13] Predictive Maintenance
Sutharssan et al. [14] PHM methods
Peng et al. [15] Prognostics in condition-based maintenance
Werbińska-Wojciechowska [16] Preventive Maintenance for Technical Systems
Wu [17] Preventive Maintenance Models

PdM & ML
Ali [18] AI-based signal analysis in CM and fault diagnosis
Alsina et al. [19] ML for reliability prediction of components
Bhargava [20] AI for reliability prediction of electronic components
Carvalho et al. [21] ML for predictive maintenance
Fink et al. [22] DL in PHM
Khan and Yairi [23] DL in system health management
Lei et al. [24] ML in machine fault diagnosis
Schwabacher and Goebel [25] AI in prognostics
Tsui et al. [26] Data-driven approaches in PHM
Wu et al. [27] PHM and AI
Wu et al. [28] ML in reliability and maintenance
Zhao et al. [29] DL for machine health monitoring

Data-based models & PdM & Automotive
Ahsan et al. [30] Prognostics of Automotive Electronics
Mesgarpour et al. [31] Telematics PHM for Commercial Vehicles
Sankavaram et al. [32] Prognosis of Automotive and Electronic Systems

Automotive & ML:

Li et al. [33] AI for vehicles
Falcini et al. [34] DL in automotive software
Singh and Arat [35] DL in the automotive industry
3. Maintenance modelling — terminology and taxonomy

In this section, the terminology and categories of maintenance
modelling as used in this survey are introduced. Maintenance comprises
measures to maintain a system in its specified operation mode either
by repairing failures or by taking actions in order to avoid them. In
the European standard PN-EN 13306 [36], maintenance is defined as
‘‘a combination of all technical, administrative and managerial actions
during the life cycle of an item intended to retain it, or restore it to a
state, in which it can perform the required function’’.

Maintenance strategies can be subdivided in various ways, a com-
monly used categorization is [12,37,38]:

1. corrective maintenance: Corrective maintenance, also called re-
active maintenance, fix-upon-failure or run-to-failure, aims to
repair a system or its components after a failure occurred.

2. preventive maintenance: Preventive maintenance (see e.g. [16])
bases on pre-scheduled maintenance intervals mainly using fixed
time intervals, sometimes in addition utilizing a system’s usage
(e.g. the mileage of vehicles). Preventive maintenance aims to
repair a system before a failure occurs, not taking into account
the system’s actual health status.

3. predictive maintenance (PdM): PdM aims to predict the opti-
mal time point for maintenance actions, taking into account
information about the system’s health state and/or historical
maintenance data. It tries to avoid the premature and costly repair
of a system, while at the same aiming to ensure a timely repair
prior to a failure. Advanced methods aim to predict the expected
time of a failure, thereby estimating the remaining useful life
(RUL), see e.g. [39,40].

While condition-based maintenance (CBM) is often used as a syn-
onym for predictive maintenance, in [41] CBM is viewed as a subcate-
gory of PdM, subdividing PdM into:

1. statistical PdM: based on data not directly connected with the
state of an individual vehicle, e.g. historical maintenance data
3

or data from a vehicle fleet or entire population
2. condition-based PdM: monitoring the system health using real-
time data to determine maintenance decisions

In this survey, we adopt the categorization of [41], i.e. statistical
PdM and condition-based PdM are viewed as the two subcategories of
PdM.

An alternative categorization of maintenance is the use of the termi-
nology from ‘‘Industry 4.0’’. Doing so, maintenance can be categorized
according to the level of maturity from maintenance 1.0 (corrective
maintenance) to maintenance 4.0 comprising advanced data-driven
methods, and methods estimating the probability of failures and their
effects (reliability centred maintenance) [12].

4. Machine learning for predictive maintenance

Since this paper discusses machine learning (ML) for predictive
maintenance, in this section, the ML fundamentals relevant for PdM
are reviewed and ML is related to PdM.

ML is a subfield of artificial intelligence (AI) that focuses on teach-
ing computers how to learn without the need to be programmed for
specific tasks. ML approaches can be subdivided into unsupervised,
semi-supervised, supervised and reinforcement learning (see Fig. 1)
— see e.g. [42]. In unsupervised learning, the data is not labelled.
The ML model aims to discover unknown patterns in the data, e.g. by
means of similarities between the data points. Algorithms are therefore
formulated such that they can find patterns and structures in the data
on their own. In semi-supervised learning the input data is a mixture
of labelled and unlabelled data points. In supervised learning, the ML
model uses labelled training data. That is, it is given labels with the
correct output and aims to learn a mapping of inputs to outputs, often
adjusting the model in an iterative way. This process is repeated until
the model achieves a desired level of accuracy on the training data and
can correctly predict the outputs for new instances.

Finally, reinforcement learning uses trial and error in an exploration
vs. exploitation manner to discover the actions that yield the greatest
rewards. Regarding applications to the automotive industry, reinforce-

ment learning has been pivotal to enable autonomous driving. RL has
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Fig. 1. Common categorization of machine learning with the ML tasks relevant for
this work. For reinforcement learning no further details are shown, since none of the
surveyed papers used reinforcement learning.

Fig. 2. Machine learning tasks most relevant for PdM.

been applied to PdM, see for example [43] in the context of power grids
and for a general approach for maintenance planning in [44]. Also, in
one of the reviews mentioned in Section 2, Ran et al. [13] discussed
several works on PdM and deep reinforcement learning, a combination
of reinforcement learning (RL) with deep learning. However, based on
our search criteria for ML-based predictive maintenance for automotive
systems (see Table 2 in Section 5.1), none of the surveyed papers
used reinforcement learning. Hence, it is not further detailed here. The
interested reader is referred to [45,46] for surveys of the field and
e.g. to [47,48] for (non-automotive-specific) application.

In the following, the ML tasks from Fig. 1, clustering, classification,
regression and anomaly detection, are briefly introduced. Fig. 2 shows
the four tasks for contrived two-dimensional data sets. A survey of
ML-based PdM use cases is then given in Section 5.

4.1. Clustering

The most common unsupervised learning method is cluster analysis
(clustering) which is used for exploratory data analysis to find hidden
4

patterns or groupings in data (see top left in Fig. 2). Examples of clus-
tering methods are k-means, fuzzy c-means [49], hierarchical cluster
analysis, DBSCAN [50], and HDBSCAN [51].

Definition 1 (Clustering). Clustering is the partitioning of data points
𝑥𝑖 of a data set 𝑋 with feature space 𝐹 into 𝑘 groups 𝐶𝑗 = {𝑐1,… , 𝑐𝑘}
by a model 𝑀𝑐𝑙𝑢𝑠𝑡.

4.2. Classification

Supervised learning can be further subdivided into classification and
regression. Classification uses labelled data to learn a mapping from in-
puts to class labels aiming to learn some decision function (see top right
in Fig. 2). Some common classifiers are k-nearest neighbours (k-NN),
naïve Bayes classifiers, support vector machines (SVMs) [52], (deep)
artificial neural networks [53], decision trees, random forests [54] and
XGBoost [55].

Definition 2 (Classification). Classification is the assignment of data
points 𝑥𝑖 to any or multiple of 𝑘 pre-defined classes 𝑌 = {𝑦1,… , 𝑦𝑘} by
a model 𝑀𝑐𝑙𝑎𝑠𝑠, where 𝑀𝑐𝑙𝑎𝑠𝑠 was trained on a train set 𝑋𝑡𝑟 with labels
𝑌𝑡𝑟 and feature space 𝐹 .

4.3. Regression

Regression comprises supervised methods that use pairs of inputs
and outputs to learn to predict continuous outputs for new inputs (see
bottom left in Fig. 2). Some common ML methods for regression are
support vector regression [52], (deep) artificial neural networks [53],
random forests [54] and XGBoost [55].

Definition 3 (Regression). Regression is the prediction of (typically
continuous) outputs 𝑌 for input data 𝑋 by a model 𝑀𝑟𝑒𝑔 , where 𝑀𝑟𝑒𝑔
was trained on a train set 𝑋𝑡𝑟 with outputs 𝑌𝑡𝑟 and feature space 𝐹 .

4.4. Anomaly detection

The task of predictive maintenance (PdM) is closely related to
modelling a system’s normal behaviour and detect deviations, so-called
anomalies, which may point to present or evolving failures (see bottom
right in Fig. 2). This is known as anomaly detection and has been used
in a variety of domains [56–61], not limited to the automotive industry.
The importance of anomaly detection is due to the fact that anomalies
translate to significant information about a system’s health status. Due
to its high relevance for PdM, we review anomaly detection in more
detail.

While anomaly detection can be achieved by classification (one-
class [62,63], two-class or multi-class classification) or clustering (e.g.
outlier detection with DBSCAN [50] or HDBSCAN [51]), we decided to
have anomaly detection as an own subcategory spanning methods from
all three levels of supervision in accordance with [64] (see Fig. 1).

A general definition of anomaly detection is given in Definition 4,
where 𝑥𝑖 may refer to some subset of the data e.g. an individual data
point, a group of data points, a subsequence of a time series, or a region
of an image:

Definition 4 (Anomaly Detection). Let 𝑀𝑎𝑑 be some function or model
that, applied on a subset 𝑥𝑖 of given input data 𝑋 utilizing some feature
space 𝐹 , returns 0 if 𝑥𝑖 is normal and 1 if 𝑥𝑖 is an anomaly.

In the automotive safety-related standard ISO-26262 [65], an
anomaly is defined as a ‘‘condition that deviates from expectations,
based, for example, on requirements, specifications, design documents,
user documents, standards, or on experience’’. In a more general
context, in [64] an anomaly is defined as a deviation from expected
behaviour.
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Table 2
Criteria which were combined into one search query on Scopus. The rows are combined with AND operators.
Criterion Search terms

Automotive ‘‘automotive’’ OR ‘‘vehicle’’ OR ‘‘car’’ OR ‘‘truck’’
PdM ‘‘predictive maintenance’’ OR (detect* W/2 fault) OR ‘‘condition-based maintenance’’

OR ‘‘condition monitoring’’ OR ‘‘prognostic and health management’’ OR ‘‘PHM’’
ML ‘‘machine learning’’ OR ‘‘deep learning’’ OR ‘‘artificial intelligence’’ OR

‘‘classification’’ OR ‘‘clustering’’ OR ‘‘regression’’ OR ‘‘anomaly detection’’ OR
‘‘reinforcement learning’’

Exclude NOT (‘‘rail’’ OR ‘‘railway’’ OR ‘‘aerial’’ OR ‘‘UAV’’ OR ‘‘underwater’’ OR ‘‘aircraft’’
OR ‘‘road surface’’ OR ‘‘road condition’’ OR ‘‘ship’’ OR ‘‘trains’’ OR ‘‘EOL’’ OR
‘‘end-of-line’’ OR ‘‘review’’ OR ‘‘survey’’)

Date ≥2010
Type journal article OR conference paper
Language English
4
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Anomaly detection is a common approach for fault detection. Within
he taxonomy of error, fault, and failure, an anomaly can be considered
s a potential error, where an error is caused by a fault and may in turn
ause a failure. Hence, an anomaly detection may point to a fault [7]
nd can therefore be used for condition-based PdM.

In statistical PdM, anomaly detection can be applied on data from
ehicle fleets or historical maintenance data. Detected anomalies may
oint to issues for an entire vehicle model or to problems of an indi-
idual vehicle. Possible data sources can be diagnostic trouble codes,
.g. from connected vehicles or from repair shop visits (see e.g. [66])
r the repair history. In condition-based PdM, anomalies can be detected
y physical modelling of the normal behaviour or data-driven ML
pproaches, where data from vehicles or from simulations can be used
s the training data set. For the estimation of the remaining useful life
RUL), anomalies may be an indication for degradation. The following
nomaly detection approaches can be distinguished:

1. Physical models: The physical modelling of the normal be-
haviour based on underlying specifications allows to detect de-
viations (residuals) as anomalies. In addition or alternatively,
implausible situations and known faults can be modelled. Pure
physical models are not contained in this paper but there are
hybrid models combining physical models with ML, as will be
discussed in point 5 (see e.g. [67] for a Deep Learning-based
method or [68] for a review).

2. Unsupervised anomaly detection: In an unsupervised setting,
anomalies can be detected by determining whether a subset 𝑥𝑖 is
anomalous w.r.t. to the remaining data 𝑋 [64]. No class labels
are used, i.e. 𝑋 contains no reference data labelled as normal
or anomaly. Examples of unsupervised methods use distance or
density measures [69], clustering [50,51,70], tree-based meth-
ods [71,72], or neural network-based autoencoders [73,74].
Those approaches can, for example, be used to model the normal
behaviour and for new data to test how well the models describe
the data.

3. Semi-supervised anomaly detection: While unsupervised
methods can be applied in the absence of labels – which are often
very costly to obtain – this lack of information is compensated
by the models’ assumptions about anomalies. For cases where
it is possible to obtain normal data, e.g. using simulations or
real systems that are not likely to show abnormal behaviour
during the time of data acquisition, semi-supervised anomaly
detection [64] can be used. ML models can be trained on normal
data to model the system’s normal behaviour. During operation,
deviations are reported as anomalies. Common methods are
one-class classifiers, e.g. support vector machines [62,63] or
one-class deep learning methods [75,76].

4. Supervised anomaly detection: If both, normal data and rep-
resentative data with anomalies, are available, the setting can
be viewed as a two-class or multi-class classification problem.
The presence of a representative set of anomalies is, however, a
5

strong assumption. In such a setting, supervised anomaly detec-
tion [64] can be utilized. Common ML models can be trained on
both, normal data and anomalies, classifying new instances as
either normal or anomaly. For this task, standard classifiers can
be used, however, either the data or the classifiers need to be
adapted to the high class imbalance [77] — anomalies are usu-
ally rare. As an alternative to classification, regression methods
can be used. Common ML methods that can be used are support
vector machines [52], random forests [54], XGBoost [55], or
deep learning models [53].

5. Hybrid approaches: Different types of hybrid approaches ad-
dress the drawbacks of the named individual methods by com-
bining data-driven and physical models.

.5. Further methods

Further unsupervised methods are dimensionality reduction/
rojection methods like principal component analysis (PCA) and t-
NE [78]. These can be used in a pre-processing step to reduce the
imensionality of the data, but PCA can also be used to model the
ormal behaviour.

A promising approach in the absence of labels are generative mod-
ls, which offer a way of learning data distributions using unsupervised
earning. The aim of learning the true data distribution of the training
et is to generate new data points with some variations. Two of the
ost commonly used approaches are variational autoencoders and

enerative adversarial networks (GAN), see [79,80] for variants thereof
or anomaly detection.

A further promising field is transfer learning which aims to transfer
nowledge learned in one setting (the source domain) to another setting
the target domain) in order to leverage available training data and
pply the models to deviating scenarios with new conditions or faults.
ethods for transfer learning were proposed for bearing fault diagnosis

n [81], a weighted domain adaptation network was proposed in [82]
nd demonstrated for gear box data, and a RUL use case was presented
n [83].

. ML-based PdM for automotive systems: a survey

In this section we survey and structure papers on machine learning-
ased predictive maintenance for automotive systems. In total we sur-
eyed 62 papers. The selection of the papers is described in Section 5.1.
o structure the field, we categorized PdM along the dimensions of

‘maintenance benefit’’ and ‘‘complexity’’ into the three subfields sta-
istical PdM, condition-based PdM and remaining useful life (see Fig. 3).
he surveyed papers are categorized into these subfields based on their
ain use case. An overview of the papers is given in Table 4. For

eaders without ML background, the predominantly used ML methods
re briefly introduced in the appendix in Table A.8.
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Fig. 3. PdM subfields of selected papers (own categorization).

Table 3
Exclusion criteria to refine the initial result set
of the search query.
Exclusion criteria:

pure physical models or no ML included
road, traffic or infrastructure monitoring
manufacturing, logistics, cyber security
driver observation
trains, ships, agricultural vehicles
aircraft, space vehicles
literature reviews, surveys, overview papers

5.1. Research methodology

To allow the reader to understand our selection of papers, our
research methodology is described in the following (see Fig. 4 for an
overview):

1. We defined search criteria for papers that cover predictive main-
tenance for automotive systems using machine learning (see
Table 2) and searched for Scopus-indexed papers.1 This resulted
in 395 papers.

2. We manually filtered the list of papers in a reproducible way
with the exclusion criteria in Table 3. As an additional criterion,
we only selected papers with > 5 citations. This resulted in 39
papers, we refer to that list as 𝐴.

3. While the number of citations is an acknowledged criterion to
reduce the number of papers [143], it introduces a bias towards
older papers: Recently published papers are likely to have less
citations. Therefore, we additionally selected 5 papers with pub-
lication date ≥ 2020, ignoring the number of citations. Instead of
that, the inclusion criterion was agreement among this paper’s
authors that the selected paper is likely to be influential. We
denote these papers as 𝐵 and marked them withB in Table 4.

4. We analysed the result set 𝐴 and grouped them by their main use
case. In order to further illuminate these use cases, we conducted
an individual targeted search. From this search we manually
selected 18 papers, which are marked withC in Table 4.

5.2. Statistical predictive maintenance

Statistical PdM, as [41] termed it, uses data not directly connected
with the state of an individual vehicle, but rather data from a number of
vehicles in some common backend. In some papers this is also referred
to as Big Data approaches. Examples are historical maintenance data,
vehicle properties like age, mileage and model, and feedback data from
vehicle fleets.

1 Search query executed on 18th Feb 2021 at Scopus.
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Phillips et al. [84] conducted a real-world case study to classify
oil samples from diesel engines. The data was obtained from a fleet
of 60 off-highway trucks in the mining industry and classified into
four classes — from healthy to clear contamination. The authors se-
lected features relying on expert knowledge from domain specialists.
Their main goal was an interpretable model, hence they used logistic
regression and compared it to an SVM and an ANN.

Zhao et al. [11] applied unsupervised ML methods on data from a
vehicle fleet to detect the location of faulty cells within electric vehicle
batteries. They focus on potential design problems not addressing
random errors that could occur during production or in the field. Their
underlying assumption is, that the location of faulty cells within the
battery pack is constant in the case of design flaws and follows a
Gaussian distribution. The terminal voltages of the cells in the batteries
of the vehicle fleet are used. In a first step, the data distribution is
approximated with an ANN. Following that, outliers are detected in
a statistical way, applying a stepwise 3-𝜎 threshold. In the absence
of labels, they compared their approach with the unsupervised local
outlier factor (LOF) algorithm [144] and a clustering-based outlier
detector. While LOF showed better performance in the case of low fault
frequencies, their proposed approach was most robust w.r.t. differing
frequencies of faults.

Sankavaram et al. [85] address the classification of known and un-
known fault types using incremental learning. They used an ensemble
that allows to adapt to new fault types by not re-training the entire
model on the previous fault classes. The ensemble’s base classifiers
were methods like k-NN, SVM and ANN. In a real-world case study,
they evaluated their approach on the electronic throttle control. Data
from a wide range of vehicles of different ages were used and successful
adaption to new fault types was shown.

Nowakowski et al. [12] investigated the benefit of statistical PdM
using the example of a vehicle fleet of a transportation company. In a
case study they show that simple statistical PdM is indeed superior to
the currently used preventive maintenance strategy. They showed that
the brand and age of the vehicles can be predictive factors for selected
failures.

In [86], Byttner et al. introduced COSMO (Consensus self-organized
models), an approach that aims to build up knowledge over time by an
explorative search of internal local signals and comparing them with
equivalent signals from a group of vehicles that perform similar tasks.
COSMO was used for predictive maintenance of vehicle fleets, where
the majority of the vehicles is assumed to be healthy and deviations
from the majority can be considered as potentially faulty. Fan et al.
[87] used COSMO to detect compressor failures in a fleet of city buses.
For this purpose, available sensor signals were tracked and compared
to the rest of the fleet to detect deviations.

Killeen et al. [88] proposed an IoT approach based on COSMO that
detects faulty buses deviating from the rest of the fleet. It differs from
the original COSMO approach by proposing a semi-supervised approach
for improved sensor feature selection. The IoT infrastructure contains
a vehicle node and a gateway which performs sensor data acquisition,
aggregation, and lightweight data analytics. A root node is responsible
for managing the entire fleet system.

Gardner et al. [89] presented a novel algorithm, PRISM, for au-
tomating multivariate sequential data analyses using tensor decompo-
sition. Much of the reason their work is significant comes from the
extensive data source: a municipal vehicle fleet of 2500 vehicles op-
erated by the city of Detroit with e.g. police cars and ambulances. The
aim was three-fold: to discover sequential patterns in the multivariate
maintenance data (using the proposed unsupervised PRISM approach),
to perform predictive maintenance (using an LSTM), and to predict
vehicle- and fleet-level costs (using an ARIMA time series model). To
this end, historical maintenance and purchase data were utilized. They
are able to accurately predict both future maintenance jobs and the
average future expenses. They state that one advantage of their method
is that it is composed of interpretable predictive models, providing
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Table 4
Overview of surveyed papers, with main use case, ML task (clust = clustering, class = classification, reg = regression, AD = anomaly detection, fcast = forecasting),
and ML method (the predominantly used methods are briefly explained in the appendix Table A.8).

Use case ML task ML method Reference

Statistical PdM:

SoH engines class log. regression, SVM, ANN Phillips et al. [84]

Faults in EV batteries AD fuzzy c-means clustering, FDA, PCA Zhao et al. [11]

Full vehicle fault detection class ensemble (incremental learning) Sankavaram et al. [85]

Maintenance in vehicle fleets or
populations

n/a Statistics Nowakowski et al. [12]C

AD COSMO Byttner et al. [86]C

AD COSMO Fan et al. [87]
AD IoT & COSMO Killeen et al. [88]C

seq. pattern mining, fcast PRISM, LSTM, ARIMA Gardner et al. [89]C

reg gcForest Chen et al. [41]C

reg, class, fcast linear regression, gradient boosting Khoshkangini et al. [90]B

Condition-based PdM:

Faults in engines class ensemble of ELMs Wong et al. [91]
class ensemble of ELMs Zhong et al. [92]
clust, class ANN variant Wang et al. [93]
class ANN Zabihihesari et al. [94]
AD, class residual selection, logistic regression Jung and Sundström [95]
AD, class LSTM and CNN, log. regression, SVM,

random forest
Wolf et al. [96]

AD, class one class-SVM Jung [97]C

class ANN Wang et al. [98]B

SoH EV batteries reg ELM vs. ANN Pan et al. [99]
fcast LSTM You et al. [100]C

Faults in EV batteries class random forest Yang et al. [101]
reg polyn. regression, SVR, ANN Quintián et al. [102]

Faults in EV powertrains AD, class SVM, k-NN, ANN variant Sankavaram et al. [103]

Full vehicle fault detection AD ensemble of one- and two-class
classifiers

Theissler [104]

class dec. trees, SVM, k-NN, random forest Shafi et al. [105]
class autoencoder variant Tagawa et al. [106]
clust, AD, class PCA, ICA, own clustering method Routray et al. [107]

Faults in air pressure system class ANN, LSTM, CNN Rengasamy et al. [108]
class boosted decision trees Cerqueira et al. [109]
fcast relaxed prediction horizon algorithm Nowaczyk et al. [110]

Faults in gearboxes class ANN Heidari Bafroui and Ohadi [111]
class k-NN, Gaussian mixture models Gharavian et al. [112]
class hybrid deep belief networks Zhang et al. [113]

Faults in suspension systems AD, clust, class fuzzy c-means clustering variant, PCA,
FDA

Yin and Huang [114]

AD, clust, class fuzzy c-means clustering variant, PCA,
FDA

Wang and Yin [115]

class CNN, ANN Zehelein et al. [116]B

reg NARX ANN Capriglione et al. [117]C

reg NARX ANN Capriglione et al. [118]C

AD SVM Jeong et al. [119]C

Faults in brake systems class clonal selection classification algorithm Jegadeeshwaran and Sugumaran [120]
class ANN, SVM, best first trees, Hoeffding

trees
Alamelu Manghai and Jegadeeshwaran [121]

Faults in steering systems reg SVR Ghimire et al. [122]
AD, class rough set theory, dec. trees, SVM, k-NN,

ANN variant
Ghimire et al. [123]

Sensor fault detection AD ELM-based autoencoders and ANN Fang et al. [124]C

Tyre monitoring class dec. trees, PCA Siegel et al. [125]
class CNN Siegel et al. [126]C

Fuel cell vehicles class ANN Mohammadi et al. [127]
reg attention-based LSTM and gated

recurrent unit (GRU)
Zuo et al. [128]B

Faults in generators class neuro-fuzzy inference system Wu and Kuo [129]

Engine starter system class ensemble of multinomial regression
models

Peters et al. [130]C

(continued on next page)
actionable insights. Their work also highlighted the need to improve the

accuracy and granularity of existing data and collecting additional data,
7

including vehicle drivers, time, location, and the total time a vehicle

was in use.
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Table 4 (continued).
Use case ML task ML method Reference

Faults in electric motors reg, class ANN Şimşir et al. [131]
class ensemble of random forest and ANN

variant
Seera et al. [132]C

SoH autonomous vehicles class IoT & MLP Jeong et al. [133]C

SoH automated vehicles AD CNN Van Wyk et al. [134]

Remaining useful life (RUL):

EV batteries reg ANN, L-PEM Rezvani et al. [135]C

class, fcast multi-target probability estimation Last et al. [136]
fcast LSTM Wu et al. [137]C

fcast CNN, MLP Wang et al. [138]C

Air pressure systems reg, fcast random forest Prytz et al. [139]

Gearboxes class least squares-SVM, k-NN Taie et al. [140]

Electric motor bearings reg SVR, least squares Lee et al. [141]

Electric vehicle capacitors clust, reg fuzzy c-means clustering and Markov
model

Al-Dahidi et al. [142]C
Fig. 4. Overview of research methodology for the selection of papers for the survey.
In [41], Chen et al. proposed an approach to predict the time
between failures of a vehicle, with the aim to optimize the maintenance
strategy of a fleet management company with repair shops across the
UK. The approach combines the repair shops’ historical maintenance
data with geographical information around the repair shops (weather,
terrain and traffic). In a supervised regression setting, an ANN, SVR,
random forest and the deep tree-based model gcForest [145] were used,
with gcForest reported to yield the best results.

Khoshkangini et al. [90] used a massive data set from a manufac-
turer’s entire vehicle population with the aim to forecast the ratio of
failures per month over the population. Two general approaches were
compared: The first one uses claim data about parts and components
that were repaired or changed in workshops. With linear regression,
a forecast of the failure ratio is conducted for the entire population.
The second approach combines the claim data with logged vehicle data
(configuration and usage of vehicle) into a sequence per vehicle. Then
8

gradient boosting is used to classify whether the specific vehicle will
have a failure in a given month. The classifications are then combined
to obtain the forecast for the entire population. From their experiments
they concluded, that initially the claim-data based regression approach
performs better up to a point when the vehicles have been in service
for a longer time. Then the combined approach with gradient boosting
outperforms the first one.

5.3. Condition-based predictive maintenance

As opposed to statistical PdM, condition-based PdM uses operating
data from individual vehicles in order to derive either the state of
the overall system, or of one or more components. Based on this, a
component-related maintenance decision can be made.

A fundamental approach to predict failures is the detection of faults.
Early detection of a fault can prevent its propagation, hence actions
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can be taken prior to breakdowns. Thereby, condition-based PdM is
often achieved by means of anomaly detection or classification. In
general, unsupervised, semi-supervised and supervised learning can be
utilized, depending on the availability of data and labels. Due to the
high number of papers in this subfield, the papers are grouped into
subsections relating to different use cases, or more specifically vehicle
key components on which condition-based PdM was applied.

5.3.1. Faults in engines
Wong et al. [91] propose a method for the detection of faults

in engines focusing on simultaneous faults, i.e. multiple single faults
occurring concurrently. They used an ensemble of Bayesian extreme
learning machines (ELM) in a supervised classification setup. While
the base classifiers were solely trained on different single faults, their
experiments on data from a vehicle show that the ensemble is capable
of detecting single as well as simultaneous faults. One novelty is, that
they set the output of a base classifier to zero if it was not trained
for a specific fault type. Zhong et al. [92] addressed a similar problem
as Wong et al. [91]. While both research groups used similar classifiers
– ensembles of Bayesian ELMs – they differ in the way the signals
are decomposed and features are extracted. In addition, Zhong et al.
[92] used weighting of the base classifiers w.r.t. their performance. The
approach is evaluated with real data from a vehicle utilizing the signals
of the engine sound, air-ratio, and ignition.

Wang et al. [93] researched the detection of engine faults from
vibration signals. They propose a novel variant of an ANN for that
purpose. They refer to their method as extension neural network type-
1, and state that it is computationally more efficient than a standard
ANN. Their method measures the distances between new data points
and cluster centres of fault types. The approach is compared with a
standard ANN and evaluated with faults in the spark plug and fuel
injection of one vehicle.

Zabihihesari et al. [94] presented a hybrid approach for combustion
fault detection of a 12-cylinder 588 kW diesel engine. Their combined
method is based on vibration signature analysis using fast Fourier
transform, discrete wavelet transform, and ANNs. Their results reliably
distinguish between normal and faulty conditions.

Jung and Sundström [95] proposed a residual selection algorithm
to monitor the air path through an internal combustion engine. In that
context, a residual generator 𝑟(𝑧) of a system is a function of a sensor or
other actuator data 𝑧 where a fault-free system implies that the residual
output 𝑟(𝑧) = 0. Jung and Sundström [95] used a hybrid approach
to detect faults and isolate, i.e. classify, them. Using a mathematical
model, they generated the residuals. From these residuals a subset is
selected in a feature selection step. Following that, a logistic regression
classifier is trained on the selected residuals. In the fault isolation step
they used t-SNE to project the data to a two-dimensional space. The
underlying data are sensor signals such as pressure before throttle,
pressure in intake manifold, temperature before throttle, engine speed
and throttle position. In essence, their proposed approach finds residual
generator candidates with specific fault properties and thereby allows
to establish a direct link between faults and residuals.

Wolf et al. [96] on the other hand, focused solely on pre-ignition
faults in turbocharged petrol engines. They used data extracted from
electric control units (ECU) of a vehicle fleet. The authors introduced
a deep learning architecture with four CNN layers, two LSTM layers
and one softmax layer. In addition, different subsets of features were
selected. The proposed approach identified faults with an F1-score of
0.9 and was superior to stand-alone CNNs and LSTMs as well as to
linear SVMs, logistic regression and a random forests.

Jung [97] used one-class SVMs enhanced by Weibull calibration to
model fault classes individually. The goal was to detect both, known
and unknown fault classes — the latter being faults not present in the
training data. The approach was evaluated with data from a combus-
tion engine and shown to detect seven known fault types as well as
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previously unseen fault types.
Wang et al. [98] classified faults in engines based on sound mea-
surements. They used wavelets to extract discriminative features which
they used to train an ANN. With their approach, they could successfully
classify data from an engine on a test bed into fault-free and any of 8
faults.

5.3.2. Faults and state-of-health for EV batteries
Pan et al. [99] addressed state-of-health (SoH) estimation, i.e. ca-

pacity degradation, for batteries of electric vehicles. The crucial step
is the identification – in ML wording this would be feature extraction
and selection – of two health indicators from the battery’s internal
resistance using correlation analysis. In a second step, they trained an
extreme learning machine (ELM) on the identified features. To train and
test the approach, they generated a data set with batteries with different
levels of capacity loss. They compared the ELM with a standard ANN
and concluded that for their application, ELM is easier to use, faster to
train and yields better accuracy.

You et al. [100] offered a solution to the problem of diagnosing bat-
tery states in real-world driving patterns. Their data-driven approach
uses measurable data from electric vehicles, such as current (I) and
voltage (V), and can thereby monitor the SoH. They simulated the oper-
ation in vehicles for more than 70 battery cells: The data was obtained
with a battery cycler, which is used to charge and discharge batteries by
imposing a varying current. While other data-driven approaches divide
the entire available region of 𝐼∕𝑉 into multiple subregions and judge
the ageing based on the varying density distributions, they analyse
𝐼∕𝑉 instantiation patterns over short periods. They used a LSTM as
the estimation model, which can handle time-variant data such as the
charge sequence and also memorize long-term information.

Yang et al. [101] proposed an approach to detect external short
circuits in batteries, which is a safety-relevant fault in electric vehicles.
In a first step they compared two physical models, estimating their
parameters with a genetic algorithm. Following that, they used their
domain knowledge to identify features that allow to identify the fault.
As the final step, they trained a random forest classifier in a super-
vised manner. The approach was tested with real batteries in a lab
environment.

Quintián et al. [102] presented a hybrid model for fault detection
of a LFP (Lithium Iron Phosphate — LiFePO4) power cell type, used in
electric vehicles. A k-means clustering algorithm was used to identify
groups of data with the same behaviour. Then, three different regres-
sion techniques were tested for each group: polynomial regression, ANN
and SVR. Their approach was able to classify all the fault situations as a
battery fault; however, they report that their model cannot distinguish
between erroneous measurements.

5.3.3. Faults in electric vehicle powertrain
Sankavaram et al. [103] investigated data-driven fault detection and

diagnosis for regenerative braking systems of hybrid electric vehicles.
Therefore, The authors modelled the overall powertrain of a two mo-
tor series–parallel hybrid vehicle mathematically and conducted fault
injection experiments in order to simulate the most common system
faults. During the simulations 25 system state variables, including for
example wheel speed, engine torque and battery state of charge, were
monitored. To minimize the computational costs, the state space was
reduced using multi-way principal component analysis and multi-way
partial least squares. Based on the reduced data, the authors imple-
mented algorithms including SVMs, a probabilistic ANN, partial least
squares and k-NN to classify the faults into 12 classes, e.g. ‘‘Battery
SOC Fault’’, ‘‘Wheel Inertia Fault’’ or ‘‘Motor1 Current Sensor Fault’’

reaching an accuracy of up to 100% with SVM and k-NN.
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5.3.4. Full vehicle fault detection
Using data from the in-vehicle network, Theissler [104] proposed

an ensemble of one-class and two-class classifiers for fault detection
in recordings from road trials. The one-class classifiers are trained on
recordings from normal operation mode, the two-class classifiers are
trained on normal data and faults. This semi-supervised setting allows
to detect known and unknown fault types, while a standard classifica-
tion approach would be limited to only detect known fault types. As one
crucial base classifier, support vector data description (SVDD) [62] is
utilized and enhanced by a heuristic to tune the hyperparameters solely
from normal data (see also [7,60]). The approach is evaluated on data
from multiple vehicles.

Shafi et al. [105] propose an architecture and a procedure for fault
detection in a vehicle fleet. They acquired signals from the in-vehicle
network via the OBD interface, i.e. without additional sensors. This data
is transferred to a common backend, where a knowledge base of the
entire fleet is built. Fault detection for different vehicle subsystems is
achieved with decision trees, SVM, k-NN, and random forests. They
state that faults identified in one vehicle will also be used to warn
drivers of vehicles with similar conditions. The approach was evaluated
with data from 70 vehicles.

Tagawa et al. [106] proposed a method they refer to as structured
denoising autoencoders, which is a variant of denoising autoencoders.
As a main contribution, their method allows to incorporate partial
knowledge about relations between variables and about faults. In a
driving scenario, their approach outperformed methods such as one
class-SVM, vanilla denoising autoencoders, and LOF. As a limitation,
they did not use real faults: they recorded different driving scenarios
assuming one of them to represent the normal condition and scenarios
like going down a slope to simulate a fault.

Routray et al. [107] introduced a data-driven fault detection frame-
work utilizing unsupervised independent component analysis (ICA) and
principal component analysis (PCA) for data reduction and clustering
based on feature distance and mutual information. While their ap-
proach does not focus on a specific component, they demonstrated it
for anomaly detection in automotive MAF sensors.

5.3.5. Faults in air pressure systems
Rengasamy et al. [108] demonstrated the impact of weighted loss

functions used in neural network architectures to increase the fault
detection accuracy in air pressure systems of heavy trucks. They worked
on a truck manufacturer’s (Scania) data set and evaluated ANNs, CNNs,
LSTMs and gated recurrent units (GRU). With that said, the authors
were able to reach a prediction accuracy of 98.8% with the evaluated
CNN and an adapted loss function. Also working on a Scania truck air
pressure system data set, Cerqueira et al. [109] implemented boosted
trees to successfully classify air pressure faults. Both authors did not
directly refer to the source of the data set, but most probably used the
open-source data set published by Lindgren and Biteus [146].

In another work, Nowaczyk et al. [110] introduced a fuzzy rule-
based algorithm with relaxed prediction horizon to classify air pressure
failures. Unlike the previous works, the authors worked on a manu-
facturer’s internal data set (Volvo). They compared their approach to
classical approaches like k-NN, decision trees and random forests. The
authors found that the fuzzy rule-based algorithm performed particu-
larly well on unbalanced data, meaning that the amount of available
training data is not equally distributed over the classification labels.

5.3.6. Faults in the gearbox
Heidari Bafroui and Ohadi [111] used a supervised ML setting to

classify data of gearboxes into healthy, and three types of faults: chip,
worn 10%, worn 5%. A continuous wavelet transform is applied on
the vibration signals and statistical features are extracted. Following
that, the energy and Shannon entropy is used for feature reduction and
the resulting features are classified with an ANN. In their experiments,
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their proposed feature reduction was superior in accuracy and training
time, compared to classifying the non-reduced feature space. For a
similar problem setting, Gharavian et al. [112] classify the vibration
data of a gearbox. Their focus is on the comparison of feature extraction
methods. A continuous wavelet transform is applied on the signals,
followed by feature extraction with PCA and Fisher discriminant anal-
ysis (FDA). They classified the resulting feature vectors with k-nearest
neighbours (k-NN) and Gaussian mixture models. In their experiments
with a gearbox operating at constant speed, feature extraction with FDA
was superior to PCA.

Also focusing on automotive gearboxes, Zhang et al. [113] intro-
duced a hybrid deep belief network (DBN) architecture in order to
classify common faults in planetary gearboxes, like (partially) broken
teeth. Therefore, an experimental setup consisting of a healthy and
several fault injected gearboxes, a BLDC motor, braker and several
sensors was built up. The tracked sensor data included, among others,
motor current and voltage, torque, vibration and rotational speed. After
preprocessing and segmentation of the measurements, the hybrid DBN
was trained and compared to methods like a classic deep belief network
(DBN), CNN, SVM, an autoencoder and a LSTM. In their results, the
authors showed that their hybrid DBN performed superior compared
to the other classification strategies.

5.3.7. Faults in suspension systems
In Wang and Yin [115] and Yin and Huang [114] a research

group investigated fault detection in vehicle suspension systems. More
precisely, faults in springs are detected using acceleration sensors at the
four corners of the vehicle body. In Wang and Yin [115], they proposed
a semi-supervised approach, starting with an initial cluster of normal
data. Newly occurring faults are then detected in an online-manner
using possibilistic c-means clustering (a modification of fuzzy c-means
clustering). In Yin and Huang [114] they enhanced their work and
proposed an unsupervised approach. From a data set with a majority
of normal data and potentially some faults, the number of potential
clusters is manually identified using a PCA transformation. With a
variant of fuzzy c-means, the data is then subdivided into clusters. Both
papers used Fisher discriminant analysis to isolate the faults in a final
step. Their methods avoid the classification of underlying faults with
different intensities into different fault types, rather classifying them
into the same fault type using so-called fault lines. In both papers the
approach was evaluated with simulation data from a full car suspension
model.

Capriglione et al. [117] approximated the stroke sensor of the rear
suspension in motorcycles by a soft sensor. In a supervised setup,
the true sensor values were used as the target variables and an au-
toregressive model was trained on the time series data. They used
a combination of ‘‘Nonlinear Auto-Regressive with exogenous inputs’’
(NARX) and an artificial neural network (ANN). While their main focus
was to approximate the true sensor, they propose to use the soft sensor
to detect faults in the actual sensor. This work was later enhanced
in Capriglione et al. [118] focusing on fault detection.

In [119], Jeong et al. used a combination of a physical model and
an ML model to detect faults in suspension systems. They first extract
residuals based on the physical model and then apply a SVM to detect
faults.

Zehelein et al. [116] injected faults into a vehicle’s damping system
by manipulating the respective damper currents and therefore reducing
damping force. Based on that, the authors collected wheel speed, yaw
rate as well as longitudinal and lateral acceleration data from the
vehicle’s electronic stability control during typical driving scenarios
with varying trunk weight and tyre type (winter and summer). After
pre-processing the data with selected methods, like fast Fourier trans-
formation and short time Fourier transformation, they trained a CNN in
order to classify the suspension system into one intact and three fault
classes, each relating to the position of the defect dampers. The results
were compared to the classification results of a classical ANN, yielding a
classification accuracy of up to 92.22% for the CNN, compared 87.27%

for the ANN.
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5.3.8. Faults in the brake system
Jegadeeshwaran and Sugumaran [120] propose an approach for the

detection of faults in the brake system. Vibration signals are acquired
from a brake test rig with an additional accelerometer. From these
signals, statistical features are extracted and a subset is algorithmi-
cally selected. Classification is then conducted with a clonal selection
classification algorithm.

In [121], the research group around Jegadeeshwaran preprocessed
the vibration data from the brake test rig via wavelet analysis. Based
on that they evaluated a set of classification approaches, namely best
first trees, Hoeffding trees, SVMs and an ANN, to detect and classify
ten different hydraulic brake states, ranging from ‘‘Good’’ over ‘‘Drum
Brake Pad Wear’’, ‘‘Air in Brake Fluid’’, up to failure states like ‘‘Brake
Oil Spill’’ and ‘‘Reservoir Leak’’. The best classification results were
achieved with the Hoeffding trees.

5.3.9. Faults in the electric power steering
Ghimire et al. [122] developed a physics-based model of an electric

power steering system. Through a series of fault injection experiments
they were able to derive fault-sensor measurement dependencies to
isolate the faults. They used support vector regression (SVR) to estimate
the severity of faults. In the later work Ghimire et al. [123], the same
main author enhanced the previous work. In a first step, a physical
model was built and simulations were conducted under different fault
conditions. In addition to physical models, the authors evaluated data-
driven approaches, namely k-NN, a probabilistic ANN, SVM, decision
trees as well as rough set-theory. According to the authors, the rough-
set theory method performed superior on sparse data compared to the
other methods.

5.3.10. Sensor fault detection
Although this application mainly concerns autonomous vehicles, we

categorize it here since it focuses on sensors. The methods of Fang et al.
[124], based on sensor monitor cluster, allows not only sensor fault
detection but also fault location. They used extreme learning machine
based autoencoder applied to anomaly detection. Their framework has
three parts which allow sensor monitor cluster, anomaly detection and
fault location, respectively. The monitoring part is basically dedicated
to determine normality of the data, this is carried out through discrete
wavelet transform. It allows de-noising and extracting features from the
sensor data to analyse the health conditions of each sensor. They then
performed anomaly detection using an autoencoder. Finally to carry
out the fault location, ANNs are used for actuator fault tests. To this
end, they used a fuzzy PID controller. They validate their method with
both experiments and simulations.

5.3.11. Tyre monitoring
In two papers, the same main author addressed tyre monitoring.

The research group took an approach that – in addition to the ML part
– implemented the entire mobile communication infrastructure. Siegel
et al. [125] utilized GPS and acceleration data from a mobile phone,
which was mounted in a vehicle, in order to classify a 20% increase
or decrease of the vehicles’ tyre pressure. Therefore, the authors used
PCA to reduce the dimensionality of the data and decision trees as a
classifier, reaching a classification accuracy of 80%.

In the later work [126], Siegel et al. proposed an approach for visual
tyre inspection. The main idea relies on pattern matching based on
features present in tyres with cracked sidewalls. CNNs were chosen
for being particular suitable for textures [147]. Using mobile phones,
pictures of the tyres are sent to a cloud-based system, where the ML
model evaluates the pictures. The ML model was trained with a variety
of images of tyres both in good and bad conditions. Human assistance
was used to verify the labelling for training and to help calculating the
baseline accuracy. They used two CNN models: a baseline model and
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one constructed by densely connected blocks.
5.3.12. Fuel cell vehicles
Mohammadi et al. [127] implemented an ANN in order to conduct

water management fault classification for automotive fuel cells. They
trained the neural network based on a mathematical model, which
was again validated by experimental measurement data. The ANN
successfully classified and localized drying and flooding faults among
nine modelled cells.

Zuo et al. [128] utilized LSTMs and gated recurrent units (GRUs)
to predict the terminal voltage of a fuel cell depending on degradation
and load current. In order to do so the authors conducted long-term
dynamic load durability tests with a proton exchange membrane fuel
cell (PEMFC). In the subsequential test phase, the best prediction results
could be achieved by the attention-based LSTM with a coefficient of
determination of up to 0.89.

5.3.13. Faults in electric motors, generators and starter
Wu and Kuo [129] utilized an adaptive neuro-fuzzy inference sys-

tems (ANFIS) – a combination of an ANN with fuzzy logic – to classify
faults of automotive generators. In order to create the data set, they
used an experimental setup with an engine and a generator as core
components. They ingested synthetic failures in the generator and
applied a discrete wavelet transformation (DWT) to its output voltage
signal. Extracting the DWT coefficients as features, the ANFIS was
trained to identify different fault classes under different engine speeds,
resulting in an classification accuracy of 98.8%.

Şimşir et al. [131] performed real-time monitoring and diagnosis of
the faults of a hub motor. They measured main system parameters and
trained an ANN. Different faults were diagnosed: coil open circuit, coil
short circuit, fault in hall effect sensor, short circuit between coils and
damaged bearing faults. The model was embedded into an Arduino Due
microcontroller card to allow mobile real-time monitoring and fault
diagnosis.

Peters et al. [130] addressed the classification of multiple, inter-
acting fault modes and the determination of the corresponding health
states. Following a feature extraction step, an ensemble of multinomial
regression models was trained. The approach was evaluated for the
engine starter system, which comprises the battery and the starter
motor. The authors state that while the methodology is applicable to
common industrial systems, knowledge about the diagnosable faults
and about system health indicators is necessary. The approach was
evaluated with data from an engine test-rig.

In electric vehicles, induction motors are widely used. In this con-
text, Seera et al. [132] developed a hybrid condition monitoring model
that consists of an ensemble of a fuzzy min–max ANN and a random for-
est. They examined the efficacy of their model in monitoring multiple
incipient faults from induction motors using information from only one
source (i.e., stator currents) in both noise-free and noisy environments.
An important contribution is, that they take interpretability of the
model into account and extract a decision tree in order to explain
the model predictions to domain users. An experiment was conducted,
to monitor and predict three different induction motor conditions:
fault-free, stator winding faults, and eccentricity problems.

5.3.14. Health state of autonomous or automated vehicles
Jeong et al. [133] presented a self-diagnosis system for autonomous

vehicles utilizing an IoT infrastructure and deep learning models. In
their work they propose a detailed communication network to read
data from the vehicle and to transfer data to a backend in a cloud.
An ANN, more precisely a multilayer perceptron (MLP), is used in a
supervised learning scenario where the number of nodes and layers is
dynamically adapted. The condition of vehicle components is classified
as ‘‘normality’’, ‘‘inspection’’, or ‘‘danger’’ using this information to
warn the driver in the case of a risk.

In [134], van Wyk et al. combined a CNN and well-established
anomaly detection methods to detect and identify anomalous behaviour
in connected and automated vehicles. They showed, using real data that
a combined approach of feature extraction and classification outper-
forms the use of either of these two alone. The proposed system can be

applied to any motor data.
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5.4. Remaining useful life

The remaining useful life (RUL) is the continuous estimation of the
future time span in which a component is still considered operational
— in addition to the aforementioned approaches which yield a crisp
decision whether a maintenance action is necessary or not. This is
precious to avoid premature costly repairs, e.g. in the natural case of
signs of wear, a repair is not necessarily instantaneously required.

Electric vehicle batteries have been the subject of a number of
studies aiming to quantify the SoH and predict their RUL. Rezvani
et al. [135] compared two methods for a publicly available data set: an
adaptive version of an ANN and the linear prediction error method (L-
PEM) were trained in a supervised manner on time series obtained over
the battery cycles. They report that the ANN yielded a higher accuracy
in capacity estimation but L-PEM showed a better performance in RUL
prediction. Last et al. [136] proposed an own tree-based algorithm,
namely multi-target Info-Fuzzy Network, which was utilized to identify
rules in order to predict probability distributions of battery failure
and remaining useful lifetime based on features like the open-circuit
voltage, state of charge or battery temperature. The algorithm was
tested on synthetically generated data and was able to outperform
classic Weibull statistics. More recently, Wu et al. [137] used LSTMs
to determine the SoH of lithium-ion batteries in electric vehicles. They
state that the extraction of healthy features prior to the use of ML
methods were crucial for their application.

Wang et al. [138] developed a prediction method for voltage and
lifetime of lead–acid batteries in electric vehicles. They used a CNN
and a standard ANN (a MLP). The data was recorded from 10 lead–
acid batteries over a time span of 155 weeks. Different voltages were
used as features and the CNN and MLP were compared, where the CNN
achieved a higher accuracy.

Unlike the aforementioned works that addressed batteries, Prytz
et al. [139] estimated the RUL of air compressor systems. In a large-
scale study on real-world data from trucks and buses, they aimed to
schedule repair shop visits. To address this, they estimated the RUL and
compared it with the time of the next planned service visit. The key is
the combination of two data sources: (a) the vehicles’ usage patterns,
which are read-out during repair shop visits, and (b) the repair shops’
service records. They focused on four failures of the air compressor
which were detected using a random forest classifier in a supervised
learning setting. Prytz et al. state that the use of feature selection
methods were crucial.

Taie et al. [140] proposed a general vehicle remote diagnosis plat-
form analysing vehicle sensory data with a least squares-SVM and
demonstrated it on gearbox data. Expert knowledge was utilized to
label the gearbox condition based on engine speed, wheel speed, and
gearbox temperature as input features. Based on that, the least squares-
SVM was trained to classify a gearbox into ‘‘NOK’’, ‘‘10% RUL’’, ‘‘40%
RUL’’ and ‘‘OK’’, reaching a classification accuracy of 93%, which was
more accurate than k-NN reaching 82%. This use case can be consid-
ered as borderline case between condition-based PdM and RUL predic-
tion, since the RUL prediction is solely based to two crisp classification
labels.

Lee et al. [141] predicted the RUL of an electric motor’s rotary
bearing by training and evaluating ordinary least squares, feasible
generalized least squares and support vector regression (SVR), based
on experimentally generated vibration data. While the SVR was the
computationally most expensive algorithm, it outperformed the other
methods.

Lastly, in a promising approach, Al-Dahidi et al. [142] estimated
the RUL from a ‘‘fleet of equipment’’, rather than solely relying on
data from an individual unit. In a first step, the approach identifies
the degradation levels with unsupervised ensemble clustering. These
are then used as the states for a homogeneous discrete-time finite-state
semi-Markov model. The approach is evaluated with two case studies,
where one is from the automotive domain: In an artificial case study,
the RUL of capacitors in a fleet of electric vehicles was estimated.
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Fig. 5. Number of publications on ML in general (blue) and on ML-based predictive
maintenance for automotive systems (green). To allow comparison, the publications are
scaled as percentages w.r.t. 2020, the absolute numbers for 2020 are given on the top
right. While the field of ML keeps increasing, ML-enabled PdM for automotive systems
has experienced a boost starting in 2017.

5.5. Bibliometric analysis

A brief bibliometric analysis was conducted to deduce further in-
sights. The number of Scopus-indexed publications was observed for
general machine learning topics (search terms see Table 2, criterion
‘‘ML’’) and for ML-based PdM for automotive systems (search terms
see Table 2, criteria ‘‘automotive’’ AND ‘‘PdM’’ AND ‘‘ML’’, prior to
application of exclusion criteria). Interestingly, while the field of ML
keeps increasing, ML-enabled PdM for automotive systems has experi-
enced an additional boost starting in 2017 (see Fig. 5), underlining the
increasing importance of the field.

In addition, from the paper list 𝐴 (see Fig. 4), the Top-5 influential
papers (measured by number of citations on Scopus), the authors with
the most contributions, the most frequently addressed use cases, and
the most frequently used ML methods were extracted — this analysis
is shown in Table 5. From the author’s contributions (second column),
two research groups can be identified as most active: the group around
Sankavaram and the group of Nowaczyk, Rönvaldson, Prytz, Byttner
and others. The most investigated uses cases are concerned with the
engine as well as electric vehicle batteries, followed by full vehicle use
cases.

The – by far – most frequently used ML methods are ANNs, where
we categorized standard neural networks like MLPs and their variants
as ANN. In addition, an increasing number of papers uses neural
network architectures like CNNs, LSTMs, ELMs and autoencoders. Fol-
lowing neural networks, SVMs have been widely used. This can be
partially explained by the available reformulation of standard SVMs for
anomaly detection, i.e. one-class SVMs. Furthermore, the wide use of
ensembles should be noted.

6. Challenges and research directions

In addition to surveying a broad range of automotive use cases,
this paper contributes by identifying challenges, open questions, and
research gaps. The aim is to inspire researchers by identifying potential
research directions. Based on the use case survey and the authors’
experience the following challenges were identified:

6.1. Non-availability of public real-word data sets

As opposed to data set repositories for general ML problems (e.g.
[148] for computer vision or [149,150] for time series), public real-
world data sets for automotive data are very rare. One main reason
is, that the data is considered as highly confidential by the automotive
industry — understandably since for predictive maintenance the data
contains faults or wear in their products. This has severe consequences
on the research in this field, shown by following observations:
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Table 5
Top-5 influential papers (measured by number of citations), Top-5 most active authors, most frequently addressed use cases, and most
frequently used ML methods. Extracted from the paper list 𝐴 (see Fig. 4).

Influential papers Authors Use cases ML method

1 Yin and Huang [114] 1 Pattipati, K. (4 papers) 1 Engine 1 ANN
2 Heidari Bafroui and Ohadi [111] 2 Sankavaram C. (3 papers) 2 EV battery 2 SVM
3 Zhao et al. [11] 3 Nowaczyk S. (3 papers) 3 Full vehicle 3 Ensemble
4 Pan et al. [99] 4 Rögnvaldsson, T. (3 papers) 4 Air pressure system 4 Decision tree
5 Theissler [104] 5 12 authors with 2 papers 5 Gearbox 5 ELM, fuzzy c-means, k-NN
Table 6
Categorization of surveyed approaches by PdM and machine learning subcategories.
Note that some papers were assigned to multiple levels of supervision, since they
evaluated different approaches.

Unsupervised ML Semi-supervised
ML

Supervised ML

Statistical PdM [11,12,86,87,89] [85,88] [41,84,89,90]

Condition-based
PdM

[95,106,107] [97,104,114,115,
132,134]

[91–94,96,98–
103,105,108–113,116–
123,125–131,133]

RUL [139,142] [135–138,140,141]

• Lack of continuous lines of research: Due to the non-
availability of public real-world data, research is typically con-
ducted by academia in collaboration with automotive manufac-
turers or suppliers, or within the automotive companies them-
selves. When a research project is finished, the researchers –
often Ph.D. students – take on different positions in academia
or industry. As a consequence, access to the underlying data is
no longer given, hence, that line of research is not continued.
This observation is backed by researching publications by various
researchers publishing frequently for 3-5 years in a certain field
of the automotive domain, before moving on to publish different
topics or not publishing any further.

• Non-efficiency in follow-up research: Follow-up research by
further researchers building on data from prior research is usually
not possible. The costly phase of data acquisition needs to be
repeated by new researchers entering the field.

• Lack of reproducible research: The described non-accessibility
of data prevents published research from being reproduced and
possibly built on.

• Limitation in research rigour: Proposed approaches are usually
presented with results on own data sets (e.g. [97,104,139]).
Quantitatively comparing a new approach with state-of-the-art
results is not possible due to the non-availability of the data sets
previous approaches were tested on.

• High cost for data acquisition: Researchers of data-driven topics
in the automotive industry typically face the problem of having to
acquire data themselves or getting granted access to confidential
data. While the latter is more of a political issue, acquiring data
is an enormous effort. Measurements from different operation
modes are required in order to have a representative data set. In
order to train models, or at the minimum in order to test models,
recordings of systems with different types of faults or signs of
wear are required. Due to the enormous effort, some researchers
need to rely on simulated data.
One option to get access to a large amount of data is to use
recordings from vehicles that are tested during pre-series or end-
of-line tests. In some cases – especially for commercial vehicles –
data is also recorded from customer vehicles during operation in
the field.
In the vast majority of the surveyed papers, the data had to be
acquired by the researchers, e.g. in Pan et al. [99], Heidari Bafroui
and Ohadi [111], Gharavian et al. [112], Wong et al. [91], Wu
et al. [137], Theissler [104], You et al. [100]. Other researchers,
e.g. Wang and Yin [115], Last et al. [136], Al-Dahidi et al.
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[142], had to rely on simulated data. Tagawa et al. [106] had to
rely on assumed faults simulated by different driving scenarios,
e.g. going down a slope or driving in the neutral gear. Zhong
et al. [92] and Wong et al. [91] explicitly mention the high cost to
obtain the data for their problem setting of simultaneous engine
faults. Zhong et al. [92] had to take an enormous effort to gener-
ate data: 10 types of single faults and four types of simultaneous
faults were generated in the test vehicle. Recording for each of
these faults were repeated 200 times for each of two operation
modes. Next to Cerqueira et al. [109] and Rengasamy et al. [108],
who most probably worked on a publicly available data set of
air pressure system faults [146], Rezvani et al. [135] could use a
publicly available data set for their research on batteries.

Open question: Need for public real-world data sets. As a consequence,
we state that there is a need for more public real-word data sets from
the automotive domain. This would be a boost in the research of
data-driven methods in the automotive industry and would allow for
continuous lines of research exploiting previous results. In addition,
it would also yield more accurate, robust and general solutions, being
able to evaluate methods on a variety of different data sets.

6.2. Lack of labelled data

Working with real-world data offers the chance of being able to
evaluate developed methods in practise. On the downside, real-world
data is often not or only partially labelled, since annotating the large
amount of data is time-consuming and requires expert knowledge.
While there are unsupervised methods not requiring labels (see Ta-
ble 6), semi-supervised or supervised methods usually yield more ro-
bust results. As a minimum, labelled data is required to test models,
even if having trained them on unlabelled data.

The vast majority of the surveyed use cases in Section 5 relied on
labelled data, e.g. Pan et al. [99], Heidari Bafroui and Ohadi [111],
Capriglione et al. [118], Jeong et al. [119], Chen et al. [41]. Zhao et al.
[11] proposed an unsupervised approach. In the absence of labels, they
had to evaluate their approach against other unsupervised methods in
contrast to an evaluation w.r.t. ground truth.

Research direction: Efficient labelling processes. While there are simple
statistical methods to determine outliers in the statistical sense, only
a human expert can decide whether some subset of the data is to be
considered a true anomaly, i.e. a fault or a sign of wear. For that
reason it appears to be natural to incorporate expert knowledge in
the labelling process, with the aim to move beyond the prohibitively
costly way of manually labelling the entire data set. Visual interactive
labelling (VIAL) [151–154] is a promising approach, where Active
Learning [155,156] is used in combination with expert knowledge to
interactively select subsets of data to be labelled. For anomaly detection
problems, VIAL-AD was proposed in [157], discussing a number of open
research questions specific to anomaly detection.

6.3. Complexity of problem setting

Several challenges can be traced back to the complex problem set-
ting caused by the fact, that the automotive industry supplies long-term
products for a wide range of application areas.
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• High number and variety of vehicles: Due to the enormous
number and variety of vehicles (e.g. discussed in [7]), it is a
challenge to acquire a representative data set for ML models to
be trained on. In addition, vehicles have a long life time, e.g. a
commercial vehicle manufactured today, can be assumed to still
be in operation in 20–30 years, adding to the variability of data
seen during operation.
Research direction: enhancing the representativeness of the training
set.
One option to improve the representativeness of the training set
is to – in addition to real-world data – use simulated data from
hardware- or software-in-the-loop systems. Another option is to
artificially create data that resembles the original data. This is
a common approach in deep learning termed data augmenta-
tion [158] and can lead to a boost in accuracies e.g. in computer
vision applications by creating images with different rotations or
zoom-ins. For PdM, care must be taken to ensure the data is not
falsified in such a way that incorrect classification occurs.

• Rarity of faults and wear: During the operation of vehicles,
faults are very rare and wear occurs only after a long period of
time. Hence, obtaining data from vehicles yields a data set that is
highly imbalanced and is not likely to contain all faults [97,104]
and signs of wear.
Research direction: Methods for learning from imbalanced data.
The imbalanced data requires the use of ML models that are
robust to class imbalances, cost functions that do not optimize
towards the majority class, and resampling methods for the
data [77,159].

• Concept drift: In ML, there is an underlying assumption, that
the data a model was trained on is representative for the data
the model will see during operation. Despite enormous efforts
during quality assurance, this assumption is not fulfilled in the
automotive industry. Reasons are the high number and variety of
vehicles, the manifold locations the vehicles are used in (e.g. dif-
ferent weather conditions and territories), and the different usage
of vehicles. Further reasons are the long life time and the resulting
wear, replacement of parts, and software updates. Hence, it is
highly likely that an ML model will encounter situations during
operation that it was initially not trained on. This phenomenon is
termed concept drift [160,161]. There are different taxonomies
in literature, one categorization divides it into virtual and real
concept drift:

– A virtual concept drift, also referred to as covariate shift,
refers to a change of the data distribution, e.g. caused by
the vehicle being operated in a different way, at different
locations or in different applications. Formally it can be
described as

𝑃 (𝑋𝑜𝑝) ≠ 𝑃 (𝑋𝑡𝑟) (1)

where 𝑃 (𝑋𝑡𝑟) denotes the distribution of the training data
and 𝑃 (𝑋𝑜𝑝) the distribution of the data encountered during
operation.

– With a real concept drift, situations that were initially
viewed as anomaly may become normal during the life time
of a vehicle, or vice versa. Formally a real concept drift is
expressed as:

∃𝑥𝑖 → 𝑦𝑖 ∶ 𝑃 (𝑌𝑜𝑝|𝑋𝑜𝑝) ≠ 𝑃 (𝑌𝑡𝑟|𝑋𝑡𝑟) (2)

where 𝑥𝑖 refers to a subset of the data, 𝑦𝑖 to the correspond-
ing label, 𝑌𝑡𝑟 and 𝑌𝑜𝑝 to the labels, 𝑋𝑡𝑟 to the training set and
𝑋𝑜𝑝 to the data seen during operation. In other words, the
correct assignment of 𝑥𝑖 → 𝑦𝑖 may change w.r.t. time. This
problem setting was for example addressed with domain
adaptation for RUL in [83].
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Research direction: Addressing concept drift.
There appears to be no silver bullet to cope with concept drift in
automotive PdM. A virtual concept drift was implicitly addressed
by [97,104], by assuming that the distribution of faults in the
training set is not representative for the unseen data. For real
concept drift, an obvious option is to incorporate the driver or
an expert into the decision process, in case of uncertainty. This
requires, however, that the model is aware of its uncertainty
about a decision. For ML in general, this has been addressed
e.g. in [162]. A further option is to continuously update the
models using the knowledge acquired from the entire vehicle
population, thereby adapting to changes that are not specific to an
individual vehicle or to unforeseen situations that appear in the
field. The research field of federated learning [163] is a promising
direction in that context.

6.4. Acceptance of ML-based maintenance

In general, the acceptance of ML-based methods for an application
area that is used to the predominant use of physical models or models
defined by domain experts is strongly connected with the experts’ and
users’ trust in these models. Trust in turn is related to the reliability
and interpretability of models [164], as well as the understanding how
one’s personal data is used by the models:

• Non-interpretability of complex ML models: Manufacturers,
repair shops and customers demand explanations for the replace-
ment of parts. With interval-based maintenance the explanation
is trivial, however, with the use of sophisticated ML models,
e.g. deep learning models [53], explanation and interpretation
of the models and their decisions become a challenge. From the
surveyed papers, Phillips et al. [84] emphasized the importance
of understanding the ML models in order for industry experts to
trust the models. They favoured an interpretable model opting for
logistic regression. In addition, only Seera et al. [132] and Gard-
ner et al. [89] have explicitly addressed the interpretability of the
models.
Research directions: explainable AI and interpretable models.
The field of explainable AI (XAI) has emerged in recent years
[165,166], e.g. with methods to explain the inner workings of
models or to explain a black box model with an interpretable
model. As opposed to that, there is also some research advocating
not to use black box models for ‘‘high stake decisions’’ [167].

• Data privacy: Vehicles are moving sensors, measuring data from
the vehicle, the driving behaviour, the environment, and the
current location. On the one hand, from a technical point of view
the ideal solution would be to transfer the data of all vehicles
to a common backend, in order to build, improve, and adapt
ML models. Each vehicle would then benefit from the knowledge
extracted from all vehicles. For example ML models could adapt
to unforeseen breakdowns occurring in the field.
On the other hand, the aforementioned approach allows to de-
termine how, where, and when a vehicle was operated, which is
not desired by many vehicle owners.2 As opposed to a common
backend, the other extreme is to have the models work locally
solely considering the vehicle and the knowledge that was built in
during manufacturing. However, due to considering only a single
vehicle, the added value is not as high.
Research direction: addressing data privacy.
In general, anonymization can help to build trust, but prevents
to make potentially important links between the same vehi-
cle or vehicles within the same region. Pseudonymization is

2 Note, that data privacy is viewed differently in different regions of the
orld.
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a practical compromise. However, it has been shown that al-
legedly anonymized or pseudonymized data can in some cases be
used to uncover individuals, e.g. using location information (see
e.g. [168]), unique usage patterns or data fusion. A promising
research direction is federated learning, where not the data is
transferred in a distributed environment, but rather the model
parameters. In [163] a secure federated learning framework is
proposed, with the aim to preserve data privacy.

.5. Increasing complexity due to transformations in the automotive indus-
ry

• Maintenance of ML-based automotive systems: While tradi-
tionally, mechanical and electrical parts were the target of pre-
dictive maintenance (e.g. vee-belt or suspension system), for ML-
based advanced driver assistance systems and autonomous driv-
ing systems, the ML models might become additional items for
predictive maintenance — although not likely on the vehicle
level, rather on the level of all vehicles with an ML model of a
certain version. Reasons for ML models to be updated or replaced
are improved accuracies of new model generations, higher effi-
ciency, lower latency, or improved robustness against adversarial
attacks [169–171]. In the use case survey, Jeong et al. [133]
addressed PdM for autonomous vehicles. In addition, in [172] an
ANN is used to detect data injection attacks on the cooperative
adaptive cruise control of connected vehicles.

• Transformation of the drive train: The advent of alternative
drive trains brings along new vehicle components requiring main-
tenance. Specifically for full electric vehicles, hybrid vehicles as
well as fuel cell vehicles, the monitoring of batteries is crucial.
A lot of research has recently been conducted in this field, as
shown by the surveyed use cases You et al. [100], Wu et al. [137],
Wang et al. [138], Rezvani et al. [135] and others. Due to the
ongoing transformation of the drive train, it is highly likely that
this research direction will become increasingly important.

. Discussion

In this section, we draw overriding conclusions from the findings of
he literature survey and the identified open challenges:

L has become a pivotal approach for the field of maintenance modelling.
L has earned its place among the most used and useful methods

urrently employed within maintenance modelling. The availability of
ata as well as developments in computing power have the potential
o keep boosting the field in years to come. Addressing open questions
nd challenges will enrich this research area.

L-enabled PdM accompanies the transformation of the drive train. From
he surveyed uses cases the use of PdM for components of the drive
rain stands out (see Tables 4 and 5). It is no surprise that the engine as
ne of the vehicle’s core components in terms of cost and complexity
as been researched in many papers. We find it noteworthy that the
ransformation of the drive train brings along new challenges visible
y the number of publications in that field. A high number of papers
ddress batteries of electric vehicles due to the fact that the battery
s safety-relevant and an enormous cost driver for electric vehicles. In
ddition, the electric motor and fuel cell vehicles were investigated in
ome papers.

he combination of condition-based pdm and the available big data in
tatistical PdM solutions offers enormous potential. Another finding is,
hat statistical PdM appears to be the key approach when using data
rom vehicle fleets or entire populations. We believe that data fusion
rom different sources can lead to a boost in the accuracy and pave
he way for new applications. Examples could be the combination of
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tatistical PdM using data like historical maintenance data and trends
in a vehicle population in connection with condition-based PdM using
individual vehicle related data, e.g. its current state and usage patterns.
In Section 5 some promising approaches using data fusion were dis-
cussed: Prytz et al. [139] and Khoshkangini et al. [90] combined usage
patterns with service records and Chen et al. [41] combined historical
maintenance data with geographical information like weather, terrain
and traffic. In addition, Shafi et al. [105] used data from within single
vehicles and also from the entire fleet.

Artificial neural networks dominate the field, however, currently not with
massively deep architectures. Analysing the use of ML methods, neural
networks were by far used most frequently. In Table 4 we categorized
standard neural networks like MLPs and their variants as ‘‘ANN’’. In
addition to these, an increasing number of papers use neural network
architectures like CNNs, LSTMs, ELMs and autoencoders. This is con-
sistent to the increased use of neural networks in general machine
learning, i.e. in deep learning. Since in many of the papers the men-
tioned neural network architectures were used with a small number
of layers – i.e. one hidden layer in some of the papers – they should
not automatically all be assigned to deep learning. By definition deep
learning comprises ‘‘deep’’ neural networks. However, the transition is
not sharp and we expect to see an increase in the use of deep networks
applied to PdM. While the accuracy achieved by deep learning is often
superior to other methods, really deep networks were only used in
a small number of the surveyed PdM use cases. One reason might
be, that deep learning methods require enormous computing power
due to a wide range of hyperparameters and a tremendous number of
tuneable weights. In addition, deep learning requires large amounts of
data. Hence, the engineering effort of a deep learning solution might
be higher, as discussed in [173]. Furthermore, the use of a trained
model in operation (in the inference step), requires powerful hardware,
where specific hardware is nowadays offered by various manufacturers.
Besides neural networks, different variants of support vector machines
and ensembles are used in a number of publications.

Most approaches use black box models, calling for research in explainability
and interpretability of the models. With the observed wide use of neural
networks in the surveyed papers and the expected increase in the use
of deeper networks, we argue that model interpretability will become
a branch of the research field of ML-enabled PdM: A (deep) neural
network is not interpretable by itself, they are often considered as black
boxes. The fields of explainable AI (XAI) and interpretable ML address
this shortcoming, as discussed in Section 6.4.

An overwhelming majority of papers rely on a fully labelled data set,
making the availability of labelled data a major bottleneck. In Table 6
the surveyed use cases are categorized by their level of supervision, as
discussed in Section 4, and by their categorization within PdM as it was
shown in Fig. 3. It is noticeable that most papers used methods that
rely on fully or partially labelled data. While the results are usually
more reliable with (semi-)supervised learning, these methods require
the labels to be available. In Section 6.2 some approaches were named
that are promising for the generation of labelled data in an efficient
way [151–156]. Note that, while for data recorded from a test bed
labelled data can be obtained by injecting e.g. faults or wear, this
is not possible when working on data recorded in the field. Hence,
the necessity of a fully labelled data set is a major bottleneck when
applying ML for predictive maintenance.

None of the surveyed papers used reinforcement learning, pointing to a
potential research gap. As mentioned in Section 4, based on our search
terms and exclusion criteria, no works on PdM and reinforcement
learning applied to automotive applications are contained in the survey.
However, there is research on reinforcement learning for PdM, with a
potential to apply it in an automotive context. For example Ding et al.
[174] tested their method on rotating machinery, which employs raw
vibration signals under different health states and working conditions.
More examples are discussed in Ran et al. [13]. These methods are
promising, one reason being that they do not require a fully labelled

data set.
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Table A.7
List of the common abbreviations in machine learning and maintenance
used in this paper.
Acronym Topic

AI Artificial intelligence
ML Machine learning
DL Deep learning
PdM Predictive maintenance
CBM Condition-based maintenance
CM Condition-monitoring
EV Electrical Vehicle
IoT Internet of things
RUL Remaining useful life
SoH State of health
PHM Prognostics and Health Management

Machine learning will not entirely replace physical models, but rather
accompany them. The advantages of ML-solutions in PdM such as major
cost savings, higher predictability, and the increased availability of the
16
systems have attracted more and more researchers’ and manufacturers’
attention to adopting it. Currently, enormous expectations are set on
ML. While it is undeniable that ML is transforming PdM, it is our opin-
ion that it will not entirely replace classical methods. However, even
in those cases where physical models are used, ML can be leveraged
to build hybrid models, e.g. to model the dynamic behaviour of highly
nonlinear components.

8. Conclusion

In this work we surveyed and categorized recent research contribu-
tions on ML-enabled PdM for automotive systems. In order to do so,
a systematic literature research on Scopus was conducted, using a re-
producible research methodology with defined exclusion and inclusion
criteria. This yielded 62 papers which were surveyed and categorized
with respect to (a) the corresponding use cases (in terms of the ex-
amined vehicle components), (b) the applied ML methods, (c) the ML
tasks (e.g. classification, regression and clustering), and finally (d) the

respective predictive maintenance categories, which where identified
Table A.8
Brief explanation of the machine learning methods predominantly used in the surveyed papers.
Method Explanation

ANN, MLP An artificial neural network (ANN) [53] consists of interconnected nodes organized in layers. A node’s
output is determined by the weighted sum of the input with some (typically non-linear) activation
function applied on the sum. During training, the weights are tuned, such that some error function is
minimized. There is a variety of different network architectures, making ANNs applicable for different
data types and for different problem settings like classification, regression and anomaly detection. A
common ANN architecture is the feed-forward multilayer perception (MLP) which consists of several
layers where the nodes of layer 𝐿𝑖 are solely connected with the nodes of layer 𝐿𝑖+1.

Auto-encoder An autoencoder [74] is an unsupervised ANN that learns to reproduce the input data at the output
layer. It thereby learns to capture the characteristics of the data, minimizing the reproduction error.
In the test phase, data with different characteristics is reproduced with a high reproduction error,
making an autoencoder applicable to anomaly detection.

CNN A convolutional neural network (CNN) [175,176] is an ANN that exploits the neighbourhood between
data points, e.g. in images, spectrograms or time series [177]. In the convolution layers, windows are
moved over the data in order to learn filters that capture the characteristic features.

DL (Deep Learning) Deep learning [53] comprises a variety of methods based on ANNs with a high number of layers, e.g.
CNN, LSTM, MLP, Autoencoder. Deep learning has led to a boost in the accuracies of many ML
applications.

ELM Extreme learning machines (ELMs) are a variant of ANNs that are less computationally expensive to
tune compared to standard ANNs. This is achieved by randomly assigning constant weights in the
lower layers, solely tuning the weights in the upper layers.

ensemble methods Ensemble methods combine multiple ML models, so-called base models (also called weak learners).
The base models’ decisions are combined to one overall decision. A famous example is a random
forest, combining multiple decision trees.

gcForest Deep forest algorithm which uses a multi-grain scanning approach for data slicing and a cascade
structure of multiple random forests layers (see [145]).

LSTM, RNN To model sequential data like time series, ANNs with a memory are used. Recurrent neural networks
(RNN) model feed a node’s output back into the network. Hence, an output depends not only on the
current input but also on the previously determined output, which allows to model sequences. A
commonly used variant of RNNs are long short-term memory (LSTM) networks [178], which solve
issues in the training process of the original RNNs. LSTM can be used for classification [179],
forecasting, and anomaly detection [180].

Random forest A random forest is an ensemble method [54], combining multiple decision trees. The aim is to have
diverse trees which is achieved by using different subsets of the training data and the feature space.
The overall output is then determined by a majority vote over all trees. Random forests can be used
for classification and regression and can cope with high-dimensional feature spaces.

SVM, SVR For classification problems, support vector machines (SVM) (see e.g. [52]) determine the decision
function by finding the hyperplane that maximizes the distance between the classes. SVMs can be
enhanced to learn non-linear decision functions by transforming the data to a higher-dimensional
space, where the data can be separated by the hyperplane. This is achieved by the so-called kernel
trick, where the inner product of the data points is replaced by a kernel function. For regression
problems, support vector regression (SVR) can be used, where the optimization problem is
reformulated in order not to separate classes, but to minimize the error between the data and the
hyperplane.

SVDD, one-class SVM SVMs were reformulated as one-class classifiers and are frequently used for semi-supervised anomaly
detection. There are two variants: 𝜈-SVM [63] and support vector data description (SVDD) [62]. The
𝜈-SVM [63] learns a hyperplane to separate normal data points and anomalies. SVDD finds a
hypersphere around the normal data points such that the radius is minimized. Both methods are
usually used in their soft-margin variant with kernel functions, allowing for flexible decision functions.
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in advance with regard to maintenance benefit and complexity. As a
complement to the survey, we conducted a bibliometric analysis to
reveal influential papers, active authors, frequently addressed use cases
and frequently utilized ML methods.

By addressing researchers and practitioners with a background ei-
ther in machine learning, maintenance, or automotive engineering the
paper aims to create the basis for interdisciplinary collaborations. A key
contribution is the identification of open challenges and research direc-
tions, which may serve researchers to identify open research questions.
A number of overriding conclusions can be drawn: (1) more publicly
available data for automotive systems would lead to a boost in research
activities, (2) ML-based PdM methods are promising to accompany the
transformation of the drive train, (3) combining data from multiple
sources can improve accuracies and enable new applications, (4) the
use of deep learning methods in PdM is likely to increase further, but
this requires tailored methods in terms of efficiency and interpretability
as well as the availability of data.

While new insights were brought to light in this paper, the work is
not without limitations. One limitation is, that the literature survey did
not allow for a quantitative comparison of the results, due to entirely
different problem settings and data sets. Consequently, we decided not
to include the reported performance metrics (e.g. accuracy) in the com-
parison in order not to mislead readers to favour a supposedly superior
ML method, which might be superior only due to the differences in the
data set. A second limitation is, that we did not evaluate the surveyed
approaches in terms of implementability, e.g. on constrained hardware
resources when used as an on-board solution in a vehicle or regarding
bandwidth requirements when used in a connected vehicle setting. A
third limitation, also recognized in other reviews, is the variety of terms
used to refer to ML approaches, particularly in older literature. This
inevitably led to systematic searches overseeing relevant papers. We
attempted to target this by extending our criteria, although there is
always the chance to have missed some important contributions.

Future research could address the transferability of general PdM
achievements to automotive use cases. For example in PdM there are
benchmark data sets like CWRU or C-MAPPS, with a variety of pub-
lications. In addition, some of the research on PdM in manufacturing
has the potential to be applicable for vehicles. As a concrete further
step, we plan to use state-of-the art time series models like Inception
Time [181], LSTM-FCN [182] and ROCKET [183] for PdM tasks.

Finally, in a more general context, we argue that ML has brought
about a call for modification. At the same time that new technologies
in the vehicle appear every day, new approaches to maintenance are
being developed, from undertaking maintenance through the internet
to computing complex calculations in-vehicle, such as sophisticated
driving manoeuvres. These approaches are shifting maintenance away
from error-prone models by utilizing data generated by the car to
identify potential signs that could lead to downtime or failure. The
ultimate goal is to conduct effective predictive maintenance before
occurring issues impact the system as a whole. The surveyed use cases
presented in this work show that ML can indeed effectively predict
failures or abnormalities in a wide range of applications. As a final
remark, we believe that machine learning has enhanced the set of
tools for predictive maintenance and will continue to do so. This does,
however, not mean, that ML will fully replace other approaches. In
some cases hybrid models or pure physical models will still be the most
reasonable choice.
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Appendix. Abbreviations and reference of ML methods
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reference of the machine learning methods that are predominantly used
in the surveyed papers is given in Table A.8.
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