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Abstract

Energy consumption in data centers has a high impact on both budget and environment.
Unfortunately, much energy is wasted by servers running idle for long periods of time.
Therefore, it makes sense to power down these servers so as to dynamically right-size
the data center such that the number of active servers matches the arriving job volume.
However, powering up also causes costs, so running a server idle for a short period of
time is cheaper than powering it down and up immediately thereafter. Hence, algorithms
are needed to decide when a server should be powered down.

In this PhD thesis, we study the discrete setting of the data center right-sizing problem
where the number of active servers must be integral. Thereby, we gain truly feasible
solutions. In general, the operating cost of a server is modeled by a time-dependent
convex function of its load. We analyze both the offline and the online version of this
problem. In the former one, all information is known in advance. In the latter one, the
job volumes arrive one-by-one and the algorithm has to decide immediately if servers
should be powered down or up.

First, we investigate data centers with identical servers and show how to calculate an
optimal offline schedule in polynomial time. Regarding the online problem, we present
a 3-competitive deterministic algorithm and show that no deterministic algorithm can
achieve a better competitive ratio. Furthermore, we develop a randomized algorithm that
is 2-competitive against an oblivious adversary and prove that no smaller competitive
ratio is achievable. As a side result, we obtain a lower bound of 2 for the fractional
setting. All lower bounds still hold in a more restricted model where the operating cost
function is fixed in time. In addition, we show that the lower bounds are not affected if
the online algorithm has a prediction window with constant length.

In the second part, we analyze heterogeneous data centers with d different server
types. We present a (1 + ϵ)-approximation algorithm that calculates an offline schedule
in polynomial time if d is a constant. We develop different online algorithms depending
on the definition of the operating cost. If each server has the same computational power
and if its operating cost is time- and load-independent (so it only depends on the server
type), then we obtain a competitive ratio of 2d with a deterministic algorithm. The
algorithm can be randomized such that it achieves a competitive ratio of e

e−1d ≈ 1.582d
against an oblivious adversary. Afterwards, we consider operating costs that depend
on the load of a server. For time-independent operating cost functions, we develop a
(2d + 1)-competitive deterministic algorithm. A modified version of this algorithm is
able to handle time-dependent operating cost functions and achieves a competitive ratio
of 2d + 1 + ϵ for any ϵ > 0. Finally, we show a lower bound of 2d for deterministic
algorithms. The underlying problem instance uses constant operating cost functions, so
the lower bound applies to all three variants.
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Zusammenfassung

Das Senken des Energieverbrauchs in Rechenzentren ist sowohl aus ökonomischen als auch
ökologischen Gründen wichtig. Leider wird viel Energie durch Server verschwendet, die für
lange Zeiträume ungenutzt laufen. Daher ist es sinnvoll, die Größe eines Rechenzentrums
dynamisch an den Bedarf anzupassen, indem ungenutzte Server heruntergefahren werden.
Jedoch verursacht auch das Hochfahren erhöhte Kosten. Daher ist es günstiger, einen
Server kurzzeitig im Leerlauf zu lassen, anstatt ihn herunter- und sofort danach wieder
hochzufahren. Aus diesem Grund werden Algorithmen benötigt, die entscheiden, wann
Server heruntergefahren werden sollen.

In dieser Dissertation erforschen wir diese Fragestellung in der diskreten Variante,
bei der die Anzahl aktiver Server stets ganzzahlig sein muss. Dadurch erhalten wir
Lösungen, die direkt in der Praxis eingesetzt werden könnten. Im Allgemeinen werden
dabei die Betriebskosten eines Servers durch eine zeitabhängige konvexe Funktion der
Last modelliert. Das Problem kann sowohl in der Offline- als auch in der Online-Version
betrachtet werden. Bei der Ersteren ist im Voraus bekannt, wann wie viele Jobs in
Zukunft eintreffen werden. Bei der Letzteren dagegen muss der Algorithmus sofort nach
Eintreffen neuer Jobs entscheiden, welche Server hoch- oder heruntergefahren werden
sollen.

Zunächst untersuchen wir Rechenzentren mit identischen Servern und präsentieren
einen optimalen Polynomialzeit-Algorithmus für die Offline-Version. Anschließend ent-
wickeln wir einen 3-kompetitiven deterministischen Online-Algorithmus und zeigen,
dass kein deterministischer Algorithmus ein besseres Resultat erzielen kann. Außerdem
entwerfen wir einen 2-kompetitiven randomisierten Online-Algorithmus und beweisen
dessen Optimalität. Als Zwischenresultat erhalten wir eine untere Schranke von 2 für
die fraktionale Variante. Alle unteren Schranken gelten auch für ein eingeschränktes
Modell, bei dem die Betriebskosten-Funktion zeitlich konstant ist.

Im zweiten Teil der Arbeit analysieren wir heterogene Rechenzentren mit d ver-
schiedenen Server-Typen. Wir präsentieren einen (1 + ϵ)-Approximationsalgorithmus
mit polynomieller Laufzeit (sofern d konstant ist). Abhängig von der Definition der
Betriebskosten entwickeln wir mehrere Online-Algorithmen. Falls alle Server dieselbe
Rechenleistung haben und die Betriebskosten zeit- und lastunabhängig sind (also nur
von dem Server-Typ abhängen), erreichen wir einen kompetitiven Faktor von 2d. Durch
Randomisierung lässt sich dieses Ergebnis auf e

e−1d ≈ 1.582d verbessern. Anschließend
betrachten wir lastabhängige Betriebskosten und präsentieren einen (2d+1)-kompetitiven
deterministischen Online-Algorithmus. Eine modifizierte Version ist in der Lage zeitab-
hängige Betriebskosten-Funktionen zu verarbeiten und erreicht dabei einen kompetitiven
Faktor von 2d + 1 + ϵ für ein beliebiges ϵ > 0. Zum Abschluss beweisen wir für alle drei
Varianten eine untere Schranke von 2d für deterministische Algorithmen.
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1 Introduction

Energy management in data centers is a major issue for both operators and environment.
In 2019, worldwide about 350 TWh of electricity were consumed in data centers [RPSS20].
This exceeds the total power consumption in the UK [Baw16] and is about 1.5% of the
global electricity production in 2019 [Ene20,VHLL+14]. Other sources even determined
that about 3% of the worldwide produced electricity was used in data centers [Baw16].

Since about 18–28% of a data center’s budget is invested in power [Ham08,Bri07],
energy conservation can reduce the total cost of a data center significantly. There
are data centers where the power-related costs even exceed the cost of purchasing the
hardware [RSR+07]. It is expected that the worldwide power consumption of data
centers will further increase [SSS+16,VHLL+14]. Andrae and Edler [AE15] estimated
that the global power consumption of data centers will increase by at least 13% per
year in the best-case scenario or up to 21% in the worst-case scenario. They expect that
data centers will use 3%–13% of the worldwide electricity in 2030. Since 63% of the
global electricity comes from fossil fuels like coal and gas [Rit20], reducing the energy
consumption in data centers is not only important for economical but also for ecological
reasons. Depending on the location of the data center, increasing its energy efficiency
can reduce greenhouse gas emissions drastically.

The server utilization in a data center can be quite low. In fact, a common data center
only achieves an average server utilization of 12%–18% [Dea14]. Other publications
give even lower values of 10%–50% [BH07, Mit14] or 5%–20% [AFG+09]. Only for a
few days a year there are activity bursts which require full processing power [Mit14].
However, the energy consumption of a server does not increase proportional with the
load. Idle servers still consume 30%–50% of their peak power [SR09]. Lu et al. [LCA13]
even states an energy consumption of more than 60% while being idle. This waste of
energy can be reduced by powering down servers that are currently not needed so that
the capacity of the data center is dynamically right-sized. However, powering up also
causes costs like an increased power consumption for restarting the operating system
and all required services [LWAT11a]. Furthermore, each state toggling causes a delay
cost. When migrating a large virtual machine, this can be equivalent to running a server
for several minutes [CFH+05]. Finally, power down and up operations lead to increased
wear and tear of the hardware, so there is the risk that the server does not work properly
after restarting. This wear-and-tear cost is in the order of the cost to run a server for an
hour [BAC+08]. Therefore, holding an idle server in the active state for a short period
of time is cheaper than powering it down and up again shortly after. Algorithms are
needed to decide when it is beneficial to power down idle servers.
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1 Introduction

Modern data centers often consist of heterogeneous servers [GZ16]. For example,
in 2020, about 30% of the Top 500 supercomputers use heterogeneous architectures
[MSD+20]. Usually, heterogeneity results from servers with GPUs which perform massive
parallel calculations much faster than common CPUs [MV15]. However, tasks that
contain many branches are unsuitable for GPUs [Enc21a] and should be executed on a
CPU. Heterogeneous architectures also include field-programmable gate arrays (FPGA)
or other specialized hardware [Enc21b]. If the capacity of a data center is not sufficient
any more, it is common practice to extend it with new servers. These new servers mostly
use the same instruction set architecture, so from a programmer’s point of view they
behave equally. However, for deciding which server should be powered down (or up), the
higher efficiency and the different switching cost of the new servers must be considered.
We will see that the right-sizing problem for heterogeneous data centers is much harder
than right-sizing a homogeneous data center where all servers are equal.

Modern hardware has several low-power states [UF21]. Instead of completely shutting
down a server, it can be transferred to a sleep state where the main memory is still
supplied with power to retain its data while most of the other hardware is powered
down. Powering up from such a sleep state is much cheaper and faster than booting the
server. In this work, we only investigate two-state problems where each server has an
active and one inactive state.

The energy consumption of a server in the active state is not constant, but increases
with the load [ALW10]. If a modern CPU runs with low load or is idle, its frequency
is lowered to save energy [Mit14]. For high frequencies, the CPU voltage has to be
raised, which leads to a superlinear increase in energy consumption [WAT09]. In general,
the power consumption of a single server can be modeled by a non-negative increasing
convex function of the load. For example, a commonly used function is f(z) = zα + β
for the constants α > 1 and β > 0 [BGK+15]. More complicated models can be found
in [DWF16] and [IM20].

1.1 Problem formulation

In this work, we study different variations of the data center right-sizing problem. In
general, we consider a data center with d different server types. The data center contains
mj servers of type j ∈ {1, . . . , d}. Each server has an active state where it is able to
process jobs and an inactive state where no cost occurs. If a server of type j is powered
up, i.e., it is switched from the inactive to the active state, it causes a cost of βj , called
switching cost. Powering down does not cost anything. We consider a discrete finite
time horizon consisting of the time slots {1, . . . , T}. For each time slot t ∈ {1, . . . , T},
a convex function gt models the operating cost of the data center depending on the
number of active servers. More precisely, gt(x1, . . . , xd) is the incurred cost if there are
xj active servers of each server type j. The function gt models the arriving job volume,
the best distribution of this job volume to the active servers as well as the individual
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1.1 Problem formulation

cost of each server depending on its load. In Chapter 3, we will see how gt can be defined
in detail.

The goal is to determine a schedule, specifying the number of active servers for each
time slot, that minimizes the total cost. Formally, a schedule X is a sequence x1, . . . ,xT

with xt = (xt,1, . . . , xt,d) where each xt,j denotes the number of active servers of type j
at time t. At the beginning and the end of the time horizon all servers are inactive, so
x0 = xT +1 = 0 where 0 is the d-dimensional zero vector. The total cost of the schedule
X is given by

C(X) :=
T∑

t=1
gt(xt,1, . . . , xt,d) +

T∑
t=1

d∑
j=1

βj(xt,j − xt−1,j)+ (1.1)

where (x)+ := max{x, 0}. As already mentioned, the switching cost is only paid for
powering up. However, this is not a restriction, since at the beginning and the end of
the time horizon all servers are inactive, so the cost for powering down can be folded
into the cost for powering up.

1.1.1 Offline and online problems
The data center right-sizing problem described above can be studied in the offline and
the online version. In the offline version, all operating cost functions gt are known in
advance. The goal is to calculate an optimal schedule as fast as possible. For NP-hard
problems an optimal solution cannot be calculated in polynomial time (unless P=NP). In
this case, we are interested in approximation algorithms that calculate an approximation
of the optimal solution in polynomial time. Formally, an algorithm that determines, for
any input, a solution whose cost is at most c times larger than the cost of the optimal
solution is called c-approximation. An algorithm that takes a parameter ϵ and calculates
a (1 + ϵ)-approximation in polynomial time is called polynomial time approximation
scheme (PTAS). If the runtime is not only polynomial in the problem size, but also in
1/ϵ, then the approximation algorithm is a fully polynomial time approximation scheme
(FPTAS) [Vaz13].

An algorithm whose runtime is polynomial in the largest numeric value of the input,
but not in the encoding length, has a pseudo-polynomial runtime [GJ79]. For example,
if the runtime of an algorithm depends linearly on the number m of available servers, it
does not run in polynomial time since encoding m only requires ⌈log2 m⌉ bits.

In the online version of the data center right-sizing problem, the operating cost
functions gt arrive one-by-one. After receiving gt, the algorithm has to choose the
number of active servers xt for the current time slot t without the knowledge of the
future cost functions gt+1, gt+2, . . . . In the worst case, a server is powered down at
time t, then a huge job volume arrives so that the server has to be powered up again to
process the incoming jobs. In the online setting, a schedule is compared with the best
offline solution. An algorithm is called c-competitive if it is always guaranteed that the
cost of the calculated schedule is at most c times larger than the cost of the optimal
offline solution.

3



1 Introduction

More formally, let CI(XA) denote the cost of a deterministic online algorithm A on
the problem instance I and let CI(X∗) be the cost of the optimal offline solution. Let
α ≥ 0 be any constant independent of I. Algorithm A is said to be c-competitive if the
inequality

CI(XA) ≤ c · CI(X∗) + α (1.2)

is satisfied for any problem instance I [BEY98]. The factor c is also called competitive
ratio. The runtime of an online algorithm is usually not analyzed.

The competitive ratio can be improved by taking random choices. To analyze the
competitive ratio of a randomized online algorithm, an adversary is used which generates
the input sequence and tries to maximize the ratio between the cost of the algorithm and
its own cost. One distinguishes between different adversary models depending on the
knowledge of the random choices. An oblivious adversary knows the online algorithm
and solves the problem instance offline, but has no knowledge about the random choices
of the algorithm. A randomized online algorithm A is said to be c-competitive against
an oblivious adversary if, for any problem instance I, its expected cost satisfies the
inequality

E[CI(XA)] ≤ c · CI(X∗) + α (1.3)

for a constant α ≥ 0 independent of I. There are other adversary models, namely the
adaptive online adversary and the adaptive offline adversary [BDBK+94]. In this work,
we only consider the oblivious adversary which is the most common adversary model1.

It is not only interesting to design an algorithm with a small competitive ratio, but
also to show that no algorithm exists that is able to beat a certain competitive ratio. If
such a lower bound matches the competitive ratio of an algorithm, we know that this
algorithm is optimal.

In the field of online learning, the regret is used to measure the performance of an
online algorithm. The regret is the difference of the cost caused by the algorithm and the
cost of the best static offline solution that never changes the number of active servers. In
this work, we will only consider the competitive ratio which is the common performance
measure for online algorithms [Kar92,BEY98].

1.1.2 Discrete and fractional setting

The data center right-sizing problem can be analyzed in the discrete and in the fractional
setting. In the discrete setting, the number of active servers must be an integer, i.e.,
xt,j ∈ {0, 1, . . . , mj}. This setting leads to truly feasible solutions.

On the other hand, there is the fractional setting where the number of active servers
can be any real number, i.e., xt,j ∈ [0, m]. This setting is reasonable, since the total
number of servers in a data center is usually very large [LWAT13]. However, in practice
the calculated schedule has to be rounded which may increase the competitive ratio

1In November 2021, Google Scholar [LLC21] found 845 publications containing the phrases “oblivious
adversary” and “online algorithm”, but only 157 or 92, if “oblivious adversary” is replaced by
“adaptive offline adversary” or “adaptive online adversary”, respectively.
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1.2 Related work

significantly. For example, in the fractional setting, there is a (d + 1)-competitive
algorithm for the right-sizing problem with arbitrary convex operating cost functions
[Sel20], while the best achievable competitive ratio in the discrete setting is at least
exponential (see Section 3.2.5). The design and especially the analysis of algorithms
solving the fractional setting can be quite different from algorithms for the discrete
setting. In this work, we mostly study the discrete setting, since only integral schedules
are feasible in practice.

1.2 Related work
Energy conservation in processors, mobile devices and especially data centers has received
much attention in recent years, see for example [IP05] and [SBM+14] and references
therein. One successful approach is dynamic power management (DPM), where unused
components are powered down or where the performance of components is adapted to
the current load [BD97,PBBDM98]. In case of a data center, servers can be shut down
or transferred to a sleep state with low power consumption. Furthermore, the speed of
the servers’ processors can be decreased which is called speed scaling [ISG07].

In the following, we will first introduce publications examining dynamic power man-
agement on a single machine. Then, we present DPM literature for homogeneous and
heterogeneous data centers and related problems. Afterwards, we show how the problem
of right-sizing a data center is related to metrical task systems. Finally, we give an
overview of other related problems and applications.

1.2.1 Single machine
The data center right-sizing problem for only one server with two states and constant
operating cost is equivalent to the famous Ski-Rental problem. Each day, the online
player can rent skis at cost r per day or buy it at cost β. At some day, it starts to
rain and skiing is not possible any more. The optimal deterministic strategy is to
rent the skis for β/r − 1 days and then to buy them if the weather is still fine. This
results in a competitive ratio of 2 which is optimal [KMRS88]. The cost of renting skis
corresponds to the constant operating cost of a server. Buying skis is equivalent to
powering down a server. The best randomized algorithm achieves a competitive ratio of
e/(e − 1) ≈ 1.582 [KKR01].

Irani et al. [ISG03] analyzed the power management of a single server with multiple
sleep states in a continuous-time setting. In their model, the state transition costs are
additive, i.e., switching form state i to j and then switching from j to k is as expensive
as switching from i directly to k. They developed the 2-competitive deterministic lower
envelope algorithm (LEA). Furthermore, they give a randomized version of LEA that
achieves a competitive ratio of e/(e − 1) ≈ 1.582. Both competitive ratios are optimal,
since the problem is a generalization of the Ski-Rental problem.

For non-additive transition costs, Augustine et al. [AIS08] give a simple algorithm
achieving a competitive ratio of 5.828. Furthermore, they developed an algorithm that
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1 Introduction

produces a deterministic strategy for a given problem instance that is arbitrarily close
to the optimal competitive ratio achievable for this problem instance. A related problem
is the capital investment problem analyzed by [ABF+99] and [Dam03]. One has to
buy devices with different purchase and operating costs. In general, not all devices
are available at the beginning. If a new device is bought, the old one is powered down
and causes no cost any more. In [ABF+99], at specific times an order arrives and one
machine has to process it immediately by paying the operating cost. In [Dam03], there
is always exactly one active device that causes the operating cost. Contrary to the
right-sizing problem, it is not possible to power down the device; the only way to reduce
the operating cost is to replace the machine by a cheaper one. Further generalizations
of the Ski-Rental problem are for example analyzed in [FI05,LPSR12,FKF16].

1.2.2 Homogeneous data centers

Lin et al. [LWAT11a,LWAT13] analyzed the right-sizing problem for homogeneous data
centers in the fractional setting, i.e., there is only one server type and the number of
active servers can be fractional. In the conference version of their work [LWAT11a], the
operating cost of a single server is modeled by a convex function f . Due to convexity,
it is optimal to distribute the arriving job volume λ equally to the active servers, so
the total operating cost at time t is given by x · f(λ/x) where x is the number of active
servers. They developed an algorithm called Lazy Capacity Provisioning (LCP) that
achieves a competitive ratio of 3. Furthermore, they tested their algorithm with real
workloads and showed that it achieves nearly optimal results and leads to significant
energy conservation. In the journal version [LWAT13], they showed that their results
still hold in a generalized model where the operating costs at each time t are modeled
by arbitrary convex functions gt(x). Further theoretical and empirical analyses of the
LCP algorithm can be found in [WLC+15]. They combined stochastic models with the
cost guarantees of the LCP algorithm.

Bansal et al. [BGK+15] developed a 2-competitive algorithm for the right-sizing
problem on homogeneous data centers and showed a lower bound of 1.86. In [AQ18a],
we showed that there is a lower bound of 2 for the fractional setting, so Bansal et
al.’s algorithm is optimal (see Section 2.4.2). This result was independently found by
Antoniadis and Schewior [AS17].

Andrew et al. [ABL+13] analyzed both the competitive ratio and the regret of
online algorithms for the right-sizing problem. They showed that no algorithm can
simultaneously achieve a constant competitive ratio and a sublinear regret. Furthermore,
they developed a (1 + γ)-competitive algorithm called Randomly Biased Greedy (RBG)
that achieves a regret of O(max{T/γ, γ}) for γ ≥ 1. By setting γ = 1, RBG achieves
the optimal competitive ratio of 2. In the original paper [ABL+13], there is an error in
the analysis of the RBG algorithm [ABN+16]. A revised version of the proof can be
found in [ABL+15].

6



1.2 Related work

Gandhi et al. [GHBA10,GHB11] model a data center with m identical servers as a
M/M/m queuing system. The arrivals of the jobs are modeled by a Poisson process and
the job service times are exponentially distributed.

1.2.3 Heterogeneous data centers

The online version of the right-sizing problem for heterogeneous data centers in the
fractional setting is a special case of convex function chasing (CFC) [Sel20], also known
as smoothed online convex optimization (SOCO) [GCW17]. For each time slot t, a
convex function gt : Rd → R arrives. The online algorithm has to choose a point xt ∈ Rd

and pays the operating cost gt(xt) plus the movement cost ∥xt − xt−1∥ where ∥ · ∥ is
any metric. In case of data center right-sizing, ∥ · ∥ is a Manhattan metric where each
dimension is scaled by the switching cost.

A special case of CFC is convex body chasing (CBC) [Sel20]. Instead of a function gt,
a convex body Ft arrives at each time slot. The online algorithm has to choose a
point inside this body, i.e., xt ∈ Ft. It can be shown that CFC in d dimensions can be
reduced to CBC in d + 1 dimensions. Let ∥ · ∥CFC be the metric of the original CFC
problem instance I. Let x,y ∈ Rd+1 be points in the (d + 1)-dimensional space and let
∥x−y∥CBC := ∥(x1, . . . , xd) − (y1, . . . , yd)∥CFC + 1

2∥xd+1 − yd+1∥ be the metric used for
the CBC problem instance J . Each function gt is replaced by its epigraph (i.e., the
point set lying above the graph of gt), followed by the hyperplane Rd × {0}. For an
optimal solution X∗

J , the movement cost along the (d + 1)-th dimension in J is equal to
the operating cost in I. Therefore, the cost of the optimal solutions of both problems
are equal. A schedule for the CBC problem instance J can be converted to a schedule
for I without increasing the cost by only considering the points lying on the epigraphs
and ignoring the (d + 1)-th dimension. Therefore, a f(d)-competitive algorithm for J
implies a f(d + 1)-competitive algorithm for the CFC problem instance I [BLLS19].
Note that the alternative reduction proof from CFC to CBC in [ABN+16] contains an
error [Pru21].

Convex body chasing was introduced by Friedman and Linial in 1993 [FL93]. They
conjectured that there is a competitive algorithm for all metric spaces. This conjecture
was unsolved for a long time. In 2018, Bansal et al. [BBE+18] found a competitive
algorithm for a special case of CBC, namely the nested convex body chasing problem
where each arriving body is located inside the previous one, i.e., Ft ⊂ Ft−1. The
exponential competitive ratio of [BBE+18] was drastically improved in [ABC+19] and
[BKL+20]. Bubeck et al. [BLLS19] found the first competitive algorithm for the general
convex body chasing problem, however, the competitive ratio depends exponentially
on d. Recently, Sellke [Sel20] developed a d-competitive algorithm for convex body
chasing and a (d + 1)-competitive algorithm for convex function chasing. A similar
result was independently found by Argue et al. [AGGT20]. For CBC in a general metric,
there is a lower bound of d, so the algorithms by Sellke and Argue et al. for the CBC
problem are optimal. The proof uses the ℓ∞ metric and is based on chasing the faces of
a d-dimensional cube. For the Manhattan metric which is related to the data center
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right-sizing problem, the best known lower bound is Ω(log d) [ABC+19], so there is still
a large gap.

Chen et al. [CGW18] studied a special case of convex function chasing in Euclidean
space where the arriving functions are locally α-polyhedral. A function g : Rd → R with
minimizer v is called locally α-polyhedral if there exists some ϵ > 0 such that for all
x ∈ Rd with ∥x − v∥ ≤ ϵ, the inequality g(x) − g(v) ≥ α∥x − v∥ holds. In other words,
the arriving functions grow at least linearly with slope α as one moves away from their
minimizer. Chen et al. developed an online algorithm called Online Balanced Descent
(OBD) that achieves a competitive ratio of 3 + O(1/α).

Goel and Wierman [GW19] showed that OBD achieves a competitive ratio of 3 +
O(1/µ), if the arriving functions are µ-strongly convex. A differentiable function
f : Rd → R is called µ-strongly convex, if for all x, y ∈ Rd, the inequality f(y) ≥
f(x) + ∇f(x)T · (y − x) + m

2 ∥y − x∥ is satisfied [Nes03]. For d = 1 and a twice
continuously differentiable function f , this is equivalent to f ′′(x) ≥ m for all x ∈ R.
In [GLSW19], Goel et al. further analyzed different variants of the OBD algorithm.

Another algorithm that received much research is Receding Horizon Control (RHC)
[LWAT11b]. It has a long history in control theory literature, see for example [KP77,
MM88]. Lin et al. [LWAT11b] analyzed the data center right-sizing problem for online
algorithms with a prediction window. The online algorithm knows not only the operating
cost function for the current time slot, but also for the following w time slots. Lin et
al. showed that RHC achieves a competitive ratio of 1 + β

(w+1)gmin for homogeneous
data centers where β is the switching cost and gmin is the minimal operating cost (if
the operating cost functions are increasing, this is mint∈{1,...,T } gt(0)). Note that the
algorithm performs badly if the switching cost is much larger than the minimal operating
cost. For heterogeneous data centers, RHC has a poor performance, so they used a
modified version of RHC called Averaging Fixed Horizon Control (AFHC) to achieve a
competitive ratio of 1 + maxj∈{1,...,d}

βj

(w+1)gmin
j

where gmin
j is the minimal operating cost

of server type j.
Chen et al. [CAW+15] analyzed AFHC under stochastic prediction error models. They

developed a general prediction model that makes neither assumptions on the stochastic
process modeling the jobs arrivals nor on the design of the predictor. They prove that
AFHC achieves a constant competitive ratio and a sublinear regret which is only possible
by using predictors [ABL+13]. Further algorithms using predictions are, for example,
presented in [CCL+16,LQL18]. Lin et al. [LGW20] developed a randomized algorithm
called Synchronized Fixed Horizon Control that is able to handle non-convex operating
cost functions if two basic conditions between the operating and switching costs are
satisfied. It achieves a competitive ratio of 1 + O(1/w) for a prediction window of
length w.

Albers [Alb19] analyzed the offline version of the right-sizing problem for heterogeneous
data centers with load-independent operating costs in the discrete setting. For the two-
state problem, she presented a polynomial-time algorithm based on a minimum-cost
flow computation. If the servers have multiple sleep states, there is a d-approximation
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algorithm that uses a fractional two-commodity minimum-cost flow combined with a
rounding technique to gain an integral schedule. In [Sch18], it is shown that this problem
is NP-hard if the number of server types and sleep states are unbounded.

For the fractional setting, in [BGK+15] it is mentioned that for homogeneous data
centers the offline problem can be solved in polynomial time. However, this does not hold
for heterogeneous data centers in general (unless P=NP), as several NP-hard problems
can be formulated as a convex optimization problem [DKP02], so finding the minimum
of gt might be NP-hard.

1.2.4 Metrical task systems

The data center right-sizing problem in the discrete setting is a special case of metrical
task systems. A metrical task system is defined by a finite set of n states S = {s1, . . . , sn}
and a distance function d : S × S → R≥0. For each time slot t, a cost function
gt : S → R≥0 ∪ {∞} arrives. Afterwards, the online algorithm has to choose a state
xt ∈ S causing a cost of gt(xt) + d(xt−1, xt).

For general metrical task systems there is a (2n − 1)-competitive deterministic
online algorithm and no deterministic algorithm can achieve a better competitive
ratio [BLS92]. For randomized algorithms, there exists an algorithm with competi-
tive ratio O(log2 n) against an oblivious adversary [BCLL21] and a lower bound of
Ω(log n/ log log n) [BLMN03]. There are many results for special cases of metrical
task systems. A famous special case is the k-server problem that was first mentioned
in [MMS88]. There are k servers in a metric space S that have to serve requests
consisting of a single point in S by moving any server to the request. Koutsoupias and
Papadimitriou [KP95] showed that the deterministic Work Function Algorithm (WFA)
has a competitive ratio of 2k − 1. It is an open question if there is any deterministic
online algorithm that achieves the optimal competitive ratio of k [MMS90]. There
are many results for randomized algorithms with polylogarithmic competitive ratios,
see for example [BBMN15,BCL+18,Lee18]. Furthermore, many publications studied
specializations of the general k-server problem, for example, the 2-server problem [Sit14]
or the CNN-problem [KT04].

As already mentioned, the discrete setting of the data center right-sizing problem is
also a special case of a metrical task system. The state set is the set of all possible server
configurations, the distance function is equivalent to the switching cost and the cost
functions gt must be convex. Formally, S = {x = (x1, . . . , xd) | ∀j ∈ {1, . . . , d} : xj ∈
{0, 1, . . . , mj}} and d(x,y) :=

∑d
j=1 βj(yj − xj)+. For homogeneous data centers with

m servers, this simplifies to S = {0, 1, . . . , m} and d(x, y) = β(y − x)+. Note that the
optimal deterministic algorithm for general metrical task systems achieves a competitive
ratio of 2m − 1, however, this competitive ratio is not desirable since it depends on the
number of available servers. We will see in Chapter 2 that a much better competitive
ratio is achievable for this special metrical task system.
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1.2.5 Other related problems

There are many problems that are related to the data center right-sizing problem. One
generalization is Geographical Load Balancing (GLB) with several data centers located
at different places [LLW+11]. At each data center, a job volume λt,j arrives at time t.
The jobs can be distributed to other data centers by paying delay and energy costs
depending on the source and destination data center. Liu et al. [LLWA12] analyzed
the algorithms RHC and AFHC for the GLB problem and got the same competitive
ratios as [LWAT11b] for right-sizing heterogeneous data centers. They also gave some
experimental results and compared RHC and AFHC on real data with the optimal
offline solution and a local solution without any load balancing. More experimental
results for other GLB algorithms can be found in [GP13,LLW+15,ZZS18].

In this thesis, we always assume that the arriving jobs are very small and can be
distributed arbitrarily to the active servers. Although this is common practice when
analyzing large data centers [Alb19], in general this is not the case. There is a large
variety of scheduling problems, where arriving jobs with different processing times have to
be assigned to a set of machines [GLLK79,Alb03,PST04]. The jobs may have deadlines,
i.e., a job must be finished before a specific time slot. Preemption, i.e., suspending a job
and resuming it on another machine, may or may not be allowed. Depending on the
problem, the machines can be identical, related or unrelated. If each machine has its
individual speed, the machines are called related. On unrelated machines, each job has
its individual processing time on each machine. Scheduling problems can be analyzed
offline or online. There are many different objectives, for example, minimizing the
makespan (this is the completion time of the last job) or the total energy consumption.

Baptiste [Bap06] combined a basic scheduling problem with dynamic power man-
agement where machines can be powered down to save energy. He analyzed offline
scheduling for a single machine with a sleep state. The jobs have an arrival time, a
deadline and a unit-sized processing time. The switching cost equals the cost of running
the machine for one time slot. Baptiste developed a polynomial time algorithm that
minimizes the total energy consumption. Later it was shown that the problem is still
solvable in polynomial time for arbitrary processing times and switching costs [BCD12].
Demaine et al. [DGH+13] studied offline scheduling for identical machines with a sleep
state and unit-sized jobs. They developed a polynomial time algorithm that minimizes
the total power consumption and another one minimizing the number of gaps in the
schedule. Antoniadis et al. [AGKK20] analyzed the generalization where the jobs have
arbitrary processing times. They developed a 2-approximation for a single machine and
a 3-approximation for m machines. Both algorithms have pseudo-polynomial runtimes,
however, the running time can be made polynomial by only increasing the cost by a
factor of 1 + ϵ.

Another technique to save energy is speed scaling where the frequency of a processor
is reduced to decrease its energy consumption. Yao et al. [YDS95] investigated the
speed scaling problem on a single machine. The energy consumption is modeled by a
convex function of the machine’s frequency. Again, the arriving jobs are described by
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their arrival time, processing time and deadline. They developed a polynomial time
algorithm that minimizes the energy consumption. Irani et al. [ISG07] extended the
problem by adding a sleep state to the server. They gave a 2-approximation algorithm
for the offline case and an online algorithm with a constant competitive ratio. Albers
and Antoniadis [AA14] showed the NP-hardness of this problem and improved the
approximation factor to 4/3. Finally, Antoniadis et al. [AHO15] developed a FPTAS for
this problem.

Khuller et al. [KLS10] analyzed a similar problem where one has to select (related or
unrelated) machines with different activation costs. The algorithm has an activation
cost budget and wants to minimize the makespan. A generalization of this problem can
be found in [LK11].

1.2.6 Other applications
In this thesis, we always consider the problem described by equation (1.1) in the context
of right-sizing a data center. Nevertheless, the underlying mathematical problem has
many other applications. For example, in portfolio management [Das14], one wants to
maximize the profit while each purchase or sale of assets causes a transaction cost that is
equivalent to the switching cost of the data center right-sizing problem. Another example
is electric vehicle charging where the prices (xt) are adapted to smooth the energy
consumption and to reduce peak loads [KG14]. To avoid rapid price changes, a switching
cost is added to the objective function. Further applications are listed in [CGW18]
and [LLWA12] including, e.g., video streaming [JDV12], speech animation [KYTM15]
and power generation with varying demand [BLW15].

1.3 Contributions
In this work, we analyze different variants of the data center right-sizing problem in the
discrete setting. In Chapter 2, we study homogeneous data centers where all servers are
identical, i.e., d = 1. First, we investigate the offline problem and present a polynomial-
time algorithm that relies on a grid-structured graph representation. The shortest path
in that graph corresponds to an optimal schedule and is calculated with a binary search
approach.

Regarding the online problem, we show that the deterministic LCP algorithm by Lin
et al. [LWAT13] is still 3-competitive for the discrete setting. Our analysis is completely
different from that by Lin et al. who studied the fractional setting and used methods that
are not applicable to the discrete setting. Furthermore, we developed a 2-competitive
randomized algorithm. It uses the algorithm of Bansal et al. [BGK+15] for fractional
setting to obtain a 2-competitive fractional schedule. This schedule is rounded randomly
in a specific way such that the resulting integral schedule is 2-competitive against an
oblivious adversary.

In Section 2.4, we present several lower bounds for online algorithms. Initially, we show
that no deterministic online algorithm can obtain a competitive ratio smaller than 3,
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so the LCP algorithm is optimal in the discrete setting. For the fractional setting, we
prove that there is no deterministic online algorithm that is better than 2-competitive.
Based on this lower bound, we show that the smallest achievable competitive ratio for
randomized algorithms in the discrete setting is 2. Hence, our randomized algorithm
is optimal too. We prove that all lower bounds still hold for a more restricted model
introduced by Lin et al. [LWAT11a]. In this model, the operating cost of a single server
is given by a time-independent convex function f(z) of the load z. All lower bounds
still apply if the online algorithm has a prediction window with a constant length w,
i.e., at time t, it knows the operating cost functions gt, gt+1, . . . , gt+w.

In Chapter 3, we analyze heterogeneous data centers with d different server types.
The operating cost of a single server of type j running with load z at time t is modeled
by a non-negative increasing convex function ft,j(z). First, we study the offline problem
and describe an algorithm that calculates an optimal schedule by converting the problem
instance to a graph and determining a shortest path. However, the runtime of this
algorithm is only pseudo-polynomial. Therefore, we developed a (1 + ϵ)-approximation
algorithm that uses a polynomial-sized subset of the vertices and has a polynomial
runtime if d is a constant. Both the optimal offline and the approximation algorithm
still work if the number of available servers depends on time.

Section 3.2 examines the online problem. We begin with the most simple case where
all servers have the same computational power and their operating cost is time- and
load-independent, i.e., ft,j(z) = rj = const. Furthermore, we exclude inefficient server
types, i.e., a server with a higher switching cost has a lower operating cost and vice versa.
For this simplified model, we devise a 2d-competitive deterministic online algorithm and
prove that no deterministic algorithm can achieve a smaller competitive ratio. Thus,
our algorithm is optimal. Furthermore, we give a randomized version of our algorithm
that achieves a competitive ratio of e

e−1d ≈ 1.582d.
Afterwards, we study load-dependent operating costs and allow inefficient server types.

The operating cost functions are still fixed in time (i.e., ft,j = fj), but they are able
to model server types with different computational power. For this setting, we devise
a (2d + 1)-competitive deterministic online algorithm. If the operating cost is load-
independent, our algorithm achieves the optimal competitive ratio of 2d. Additionally, we
demonstrate how our algorithm can be modified such that it can process time-dependent
operating cost functions ft,j(z). We achieve a competitive ratio of 2d + 1 + ϵ for any
ϵ > 0. Note that our lower bound uses the most restricted model (ft,j(z) = const), so all
presented deterministic algorithms are almost optimal. Finally, we show that arbitrary
convex operating cost functions gt lead to an at least exponential competitive ratio.

1.4 Outline and publication summary

This PhD thesis is publication based, so it only contains short proof ideas. The
corresponding peer-reviewed papers including the full proofs were published as open
access and are included in the appendix.
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Chapter 2 handles homogeneous data centers. The underlying paper was published in
the conference proceedings of the 30th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA) in 2018 and is presented in Appendix B. Due to space
limitations, the paper does not contain all proofs. A full version was submitted to the
ACM journal Transactions on Parallel Computing on 16th March 2021, but has not yet
been accepted. A preprint of this version can be found on arXiv, see [AQ18b].

Chapter 3 examines heterogeneous data centers. The presented results were published
in two conference papers that can be found in Appendix C and D. The first one was
published in the proceedings of the 12th International Conference on Algorithms and
Complexity (CIAC) in 2021. The second one appeared in the proceedings of the 33rd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) in 2021. Again,
due to space limitations, some proofs are missing. A full version of the CIAC paper was
recently published in a special issue of Theoretical Computer Science [AQ21a]. A freely
accessible preprint can be found on arXiv [AQ21b]. A full version of the SPAA paper
was recently submitted to a special issue of the ACM journal Transactions on Parallel
Computing, but has not yet been accepted. A preprint of this version was uploaded on
arXiv [AQ21d].

Chapter 4 concludes the results and presents several open questions for future work.

1.5 Notation
In this work, we use the following notation. By N we denote the set {1, 2, . . . } of positive
integers. For k ∈ N, let [k] := {1, 2, . . . k} and [k]0 := {0, 1, . . . k} be the sets of positive
integers up to k excluding or including 0, respectively. Let [k : l] := {k, k + 1, . . . , l}
with k, l ∈ Z denote the integers from k to l. For x ∈ R, let (x)+ := max{0, x}, i.e., for
a negative x, (x)+ equals 0. Let [x]ba := max{a, min{b, x}} be the projection of x into
the interval [a, b]. We write d-dimensional vectors in bold face, for example, xt or β.
Let E[Z] be the expected value of the random variable Z.

A tabular overview of the variables used in this work is shown in Appendix A.
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In this chapter, we study the right-sizing of homogeneous data centers where all servers
are identical. Formally, we consider the problem formulation presented in Section 1.1
for only one server type, i.e., d = 1. In this case, the index j of several variables that
represents the server type is not needed any more. To simplify the notation, let m := m1
be the number of available servers and let β := β1 be the switching cost. A schedule is a
sequence X = (x1, . . . , xT ) where xt denotes the number of active servers during time
slot t. At the beginning and the end of the workload, all servers are powered down, i.e.,
x0 = xT +1 = 0. The operating cost is modeled by non-negative convex functions gt for
any t ∈ [T ]. More precisely, xt active servers cause an operating cost of gt(xt) during
time slot t. The total cost of a schedule X is given by

C(X) :=
T∑

t=1
gt(xt) +

T∑
t=1

β(xt − xt−1)+.

A problem instance is defined by the tuple I = (T, m, β, G) with G = (g1, . . . , gT ). To
simplify the notation, let gT +1(x) := 0.

For our lower bounds, we resort to a more restricted model introduced by Lin,
Wierman, Andrew and Thereska [LWAT11a]. In this model, at each time slot t a job
volume λt ∈ R≥0 arrives that can be arbitrarily distributed to the active servers. The
operating cost of a single server is modeled by a non-negative convex function f that is
fixed for the whole time horizon. A single server that runs with a load z ∈ [0, 1] causes
an operating cost of f(z). Since f is a convex function, it is optimal to distribute the
arriving job volume equally to the active servers [AQ21e, Lemma 2.2]. Therefore, the
operating cost of a single server at time t is equal to f(λt/xt) and the total operating
cost at time t is given by gt(xt) := xt · f(λt/xt). Note that in contrast to heterogeneous
data centers (see Chapter 3), the function f is not required to be increasing. Formally,
a problem instance of the restricted model is defined by the tuple I = (T, m, β, f, Λ)
with Λ = (λ1, . . . , λT ).

In the following sections, we present our results for both the offline and online version
of this problem. If nothing else is mentioned, we consider the discrete setting where the
number of active servers must be integral, i.e., xt ∈ [m]0 for all t ∈ [T ].

First, we examine the offline version and present a polynomial-time algorithm based
on a binary search approach (Section 2.1). Afterwards, we investigate the online version.
In Sections 2.2 and 2.3, we present a 3-competitive deterministic and 2-competitive
randomized online algorithm, respectively. Section 2.4 examines lower bounds for the
discrete and fractional setting. First, we give a lower bound of 3 for deterministic
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algorithms in the discrete setting. Then, we show a lower bound of 2 for the fractional
setting where the number of active servers is allowed to be fractional, i.e., xt ∈ [0, m].
Based on this lower bound, we are able to prove that no randomized algorithm in the
discrete setting is better than 2-competitive against an oblivious adversary. All lower
bounds hold for the more restricted model introduced by Lin et al. [LWAT11a]. Finally,
we show that prediction windows with a constant length cannot improve the competitive
ratio of an algorithm.

Most results presented in this chapter were published in the conference proceedings
of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
[AQ18a] that is shown in Appendix B. This conference paper does not include the
2-competitive randomized algorithm of Section 2.3 as well as the lower bound for
randomized online algorithms (Section 2.4.3). Furthermore, several proofs are missing
due to space limitations. An extended version containing all proofs as well as the results
for randomized algorithms can be found on arXiv [AQ18b].

The notation introduced above slightly differs from the notation in [AQ18a] and
[AQ18b] where the operating cost functions are denoted by ft. Furthermore, in this
thesis a problem instance is denoted by I instead of P . We choose the different notation
to make it consistent with Chapter 3 and our other publications.

2.1 Optimal offline algorithm

In this section, we present an offline algorithm that calculates an optimal schedule in
O(T log m) time. The basic idea is to convert the problem instance into a grid-structured
graph and then calculate a shortest path. The graph contains m + 1 vertices for each
time slot, so calculating a shortest path directly would only lead to a pseudo-polynomial
runtime, since the encoding length of the problem instance depends logarithmically on
m. To achieve a polynomial time, we first use only a constant number of vertices for
each time slot. Then, we improve the solution iteratively using binary search such that
we finally obtain an optimal schedule.

More precisely, a problem instance I can be represented as a directed, acyclic, weighted
graph G = (V, E). For each time slot t ∈ [T ] and for each possible number of active
servers x ∈ [m]0, there is a vertex vt,x. Furthermore, the graph contains two vertices
v0,0 and vT +1,0 for the beginning and the end of the time horizon where all servers are
powered down. For any x ∈ [m]0, the vertex set Rx = {vt,x ∈ V | t ∈ [T ]} is called
row x, and for any t ∈ [T ], the vertex set {vt,x ∈ V | x ∈ [m]0} is called column t.

For each time slot t ∈ [T + 1] and for each x, y ∈ [m]0, there is a directed edge from
vt−1,x to vt,y with weight gt(y)+β(y −x)+ (if the vertices exist). The weight corresponds
to the operating cost for y active servers at time t plus the switching cost for powering
up y − x servers if y > x. The structure of G is visualized in Figure 2.1.

Each path from v0,0 to vT +1,0 represents one specific schedule and vice versa. Due to
the grid structure, a path contains exactly one vertex of each column. If the path passes
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Figure 2.1: Construction of the graph G. Each path from v0,0 to vT +1,0 corresponds
to a schedule and vice versa. For example, if the path passes through the
vertex v2,1, then the corresponding schedule uses one active server during
time slot 2.

through vt,x, then the corresponding schedule uses xt = x active servers at time t. The
total weight of a path is equal to the cost of the corresponding schedule.

A shortest path in G can be calculated in O(Tm) time by using dynamic programming.
However, as already mentioned, this runtime is only pseudo-polynomial, since the
encoding length of the problem instance is in O(T + log m). Therefore, we devise an
algorithm that determines a shortest path using binary search. We assume that the
total number of available servers m is a power of two. If this is not the case, the problem
instance can be extended by increasing the number of available servers to next greater
power of two and expanding the domain of the operating cost functions such that it is
never beneficial to use more than m active servers (see [AQ18a] for more information).

Our algorithm runs in log2 m − 1 iterations denoted reversely by k = K := log2 m − 2
for the first iteration and k = 0 for the last one. The number of active servers considered
in iteration k is always a multiple of 2k. The problem instance solved in iteration k
is denoted by Ik = (T, m, β, G, Mk) where Mk := {n ∈ [m]0 | n mod 2k = 0} is the
set of allowed states, i.e., a feasible schedule X for this problem instance has to satisfy
xt ∈ Mk for all t ∈ [T ]. Note that the original problem instance is given by I = I0.

In the first iteration, we only use the rows R0, Rm/4, Rm/2, R3m/4, Rm. The cor-
responding graph contains 5 vertices per column, so a shortest path can be com-
puted in O(T ) time by dynamic programming. After determining an optimal schedule
X̂k = (x̂k

1, . . . , x̂k
T ) for Ik, we use the neighborhood of each state x̂k

t for the next iteration.
More precisely, in column t of the next iteration k − 1, we consider the vertices vt,x with
x ∈ {x̂k

t + ξ · 2k−1 ∈ [m]0 | ξ ∈ {−2, −1, 0, 1, 2}}. The vertices with ξ ∈ {−2, 0, 2} were
already used in the previous iteration, so we just add the intermediate vertices with
ξ = −1 and ξ = 1. If x̂k

t = 0 or x̂k
t = m, then there are only three instead of five vertices

in column t of iteration k − 1. Figure 2.2 shows an example of one iteration. Since there
are at most five vertices in each column, we achieve a runtime of O(T ) per iteration
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and therefore a total runtime of O(T log m). The following pseudo code clarifies how
our algorithm works. The set V k contains the vertices considered in iteration k.

Algorithm 1 GraphBasedBinarySearch
Input: I = (T, m, β, G)
Output: Optimal offline schedule

1: Extent the problem instance such that m is a power of two
2: K := log2 m − 2
3: for k := K down to 0 do
4: if k = K then
5: V k := {v0,0, vT +1,0} ∪

{
vt,x ∈ V | t ∈ [T ], x ∈ MK

}
6: else
7: Mt :=

{
x̂k

t + ξ · 2k−1 ∈ [m]0 | ξ ∈ {−2, −1, 0, 1, 2}
}

for all t ∈ [T ]
8: V k := {v0,0, vT +1,0} ∪ {vt,x ∈ V | t ∈ [T ], x ∈ Mt}
9: Gk := (V k, E ∩ (V k × V k))

10: Calculate a shortest path from v0,0 to vT +1,0 in Gk

11: Set X̂k to the schedule corresponding to the shortest path
12: return X̂0

Correctness. So far, we have not proven that the schedule calculated by GraphBased-
BinarySearch is actually optimal. Here, we only give a short proof idea, for more
information see [AQ18a]. We consider the continuous extension Ī = (T, m, β, Ḡ, [0, m]) of
the original problem instance where the operating cost functions ḡt are defined as piece-
wise linear functions such that ḡt(x) = gt(x) for all x ∈ [m]0. Formally, Ḡ := (ḡ1, . . . , ḡT )
with

ḡt(x) :=
{

gt(x) if x ∈ [m]0
(⌈x⌉ − x) · gt(⌊x⌋) + (x − ⌊x⌋) · gt(⌈x⌉) else.

(2.1)

In other words, Ī is the fractional setting of the original problem instance I. Let Ω(J )
be the set of the optimal schedules for a given problem instance J .

An optimal fractional solution for Ī can be converted to an integral one without
increasing the cost, as the following lemma shows.

Lemma 2.1 [AQ18a, Lemma 2.4]. Let X∗ ∈ Ω(Ī). Then, the schedule ⌊X∗⌋ :=
(⌊x∗

1⌋, . . . , ⌊x∗
T ⌋) is optimal , i.e., ⌊X∗⌋ ∈ Ω(Ī).

The correctness of this statement follows from the piecewise linear definition of ḡt

and its convexity. The lemma implies that both the original problem instance I and
its continuous extension Ī have a common optimal solution whose cost is equal for
both instances. Lemma 2.1 is quite important, as it is not only required to show the
correctness of GraphBasedBinarySearch, but also later for analyzing our randomized
online algorithm as well as for proving the lower bound of randomized online algorithms.
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Figure 2.2: Visualization of one iteration of GraphBasedBinarySearch. The dashed
blue line shows the schedule X̂K of the first iteration (k = K) where only
the states 0, m/4, m/2, 3m/4 and m are available. The light blue area and
the thick dots indicate the allowed states for the next iteration k = K − 1.
The schedule X̂K−1 calculated in this iteration is visualized by the solid
blue line. The optimal schedule is drawn in green. Note that it always stays
inside the blue area. The vertical distance between the solid blue and green
line is at most m/16 (i.e., the distance between two neighboring dots) as
proven by Lemma 2.3.

For each iteration k and each optimal schedule X̂k ∈ Ω(Ik), there exists an optimal
schedule X∗ for the continuous extension Ī such that the distance between X̂k and X∗

is smaller than 2k for all time slots. Formally, this is expressed by the following lemma.

Lemma 2.2 [AQ18a, Lemma 2.3].

∀k ∈ [K]0 : ∀X̂k ∈ Ω(Ik) : ∃X∗ ∈ Ω(Ī) : ∀t ∈ [T ] : |x̂k
t − x∗

t | < 2k.

Proof idea. This lemma is proven by contradiction. We assume that there exists an
optimal schedule X̂k ∈ Ω(Ik) such that for all optimal schedules X∗ ∈ Ω(Ī), the
condition |x̂k

t − x∗
t | < 2k is violated for at least one time slot t. Given a fractional

schedule X, let J(X) be the set of the inclusion maximal time intervals with |xt−x∗
t | ≥ 2k

or xt /∈ Mk, i.e., xt violates the condition or is not a multiple of 2k. We define a
transformation ϕ that reduces the number of time slots in J(X) by at least one without
increasing the cost of the schedule. For each time interval in J(X), we move towards
the optimal schedule, but do not exceed it, so the sign of xt − x∗

t does not change after
transforming xt.

Beginning from X̂k, we apply the transformation several times, until we eventually
obtain a schedule Z whose states are multiples of 2k and that fulfills the condition
|zt − x∗

t | < 2k for all time slots t ∈ [T ]. Since the operating and switching costs are
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2 Homogeneous data centers

convex functions and since we are moving towards the optimum, the cost of Z is smaller
than or equal to the cost of the original schedule X̂k. Since X̂k is optimal for Ik, the
cost of the schedules X̂k and Z must be equal. Furthermore, convexity implies that the
cost of Z equals the cost of X∗ regarding the continuous problem instance Ī. Therefore,
X̂k is an optimal schedule for Ī satisfying the condition |x̂k

t − x∗
t | < 2k for all time slots

t ∈ [T ]. This contradicts our assumption that no such schedule exists, so the statement
of the lemma must be correct.

In simple terms, Lemma 2.2 proved that for each optimal schedule X̂k, there exists an
optimal fractional schedule X∗ ∈ Ω(Ī) within a distance of 2k for each time slot. The
following lemma expands this statement. Given an optimal schedule for Ik, there is an
optimal schedule for the subsequent iteration k − 1 such that the distance between both
schedules is at most 2k for each time slot.

Lemma 2.3 [AQ18a, Lemma 2.5].

∀k ∈ [K]0 : ∀X̂k ∈ Ω(Ik) : ∃X̂k−1 ∈ Ω(Ik−1) : ∀t ∈ [T ] : |x̂k
t − x̂k−1

t | ≤ 2k

Proof idea. First, we apply Lemma 2.2 with an appropriately scaled version of the
original problem instance I. Afterwards, we use the fact that a fractional schedule can
be rounded down to an integral one without increasing its cost, as shown by Lemma 2.1.
The resulting integral schedule still fulfills the distance condition. By undoing the
scaling, we finally get an optimal schedule X̂k−1 for the problem instance Ik−1 that
satisfies |x̂k

t − x̂k−1
t | ≤ 2k for all time slots t ∈ [T ].

Now, we are able to prove the correctness of GraphBasedBinarySearch.

Theorem 2.1 [AQ18a, Theorem 2.6]. The algorithm GraphBasedBinarySearch
calculates an optimal schedule for the homogeneous data center right-sizing problem in
O(T log m) time.

Proof. The runtime was already analyzed above, so it is sufficient to prove the optimality
of the returned schedule. Let X̂k be the schedule calculated in iteration k. We will show
by induction that X̂k is optimal for the problem instance Ik.

In the first iteration, the algorithm calculates an optimal schedule for IK , since all
states of MK are considered. Assume that the schedule X̂k calculated in iteration k is
optimal for Ik. In the next iteration, the algorithm only considers the states xt ∈ Mk−1

with |x̂k
t − xt| ≤ 2k. By Lemma 2.3, there exists an optimal schedule X for Ik−1 with

exactly this property. Therefore, the schedule X̂k−1 calculated in iteration k − 1 is
optimal for Ik−1. Finally, by induction, the algorithm returns a schedule that is optimal
for I0 which is the original problem instance.

2.2 Deterministic online algorithm
In the online version of the data center right-sizing problem, the operating cost func-
tions gt arrive one-by-one. The online algorithm has to determine the number xt of
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2.2 Deterministic online algorithm

active servers at time t without the knowledge of the future operating cost functions
gt+1, gt+2, . . . . In this section, we adapt the Lazy Capacity Provisioning (LCP) algorithm
by Lin et al. [LWAT13] to the discrete setting and show that it still achieves a competitive
ratio of 3 as in the fractional setting. Although the algorithm is quite similar, our
analysis is completely different from that by [LWAT13]. Later, in Section 2.4.1, we will
see that no deterministic algorithm can achieve a better competitive ratio in the discrete
setting, so the LCP algorithm is optimal.

Roughly, the LCP algorithm works as follows. We define a lower and an upper bound
denoted by xL

t and xU
t , respectively. The LCP algorithm stays lazily between these

bounds, i.e., xL
t ≤ xLCP

t ≤ xU
t holds for all time slots t ∈ [T ]. It only changes its state

if it is necessary to satisfy this condition. The lower bound xL
t is the last state of the

optimal offline solution for the shortened problem instance that ends at time slot t.
For the upper bound, we pay the switching cost for powering down, while power-up
operations do not cost anything. Similarly to the lower bound, we consider the problem
instance up to time t. The upper bound xU

t is the last state of an optimal offline solution
for this problem instance.

More precisely, let XL
τ = (xL

τ,1, . . . , xL
τ,τ ) be the schedule that minimizes

CL
τ (X) :=

τ∑
t=1

gt(xt) + β
τ∑

t=1
(xt − xt−1)+ (2.2)

with X = (x1, . . . , xτ ). Similarly, let XU
τ = (xU

τ,1, . . . , xU
τ,τ ) be the schedule that mini-

mizes
CU

τ (X) :=
τ∑

t=1
gt(xt) + β

τ∑
t=1

(xt−1 − xt)+. (2.3)

The only difference between equations (2.2) and (2.3) is the definition of the switching
cost. The lower and upper bound are the last states of XL

τ and XU
τ , respectively, so

xL
τ := xL

τ,τ and xU
τ := xU

τ,τ . If there are several optimal schedules XL
τ or XU

τ , then xL
τ is

the smallest and xU
τ is largest possible value.

Let [x]ba := max{a, min{b, x}} be the projection of x into the interval [a, b]. The LCP
algorithm is defined by

xLCP
τ :=

0 if τ = 0,
[xLCP

τ−1 ]x
U
τ

xL
τ

if τ ≥ 1.

Figure 2.3 visualizes how the LCP algorithm works. The lower and upper bound can
be calculated with the offline algorithm GraphBasedBinarySearch presented in the
previous section. This requires O(t log m) time per arriving function. Alternatively, one
can use a dynamic program that is updated when a new function arrives. In this case,
we only need to store the minimal cost of the shortest path to the vertices of the last
column, but not the operating cost functions. This leads to a runtime of O(m) per time
slot.

Theorem 2.2 [AQ18a, Theorem 3.13]. The LCP algorithm is 3-competitive.
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Figure 2.3: Visualization of the LCP algorithm. The pink and brown plot show the
lower and upper bound. The LCP schedule (printed in blue) stays lazily
between them. Similarly, the optimal schedule (shown in green) stays lazily
between them backwards in time.

The proof consists of several lemmas. Here, we only present the most important ones.
First, we observe that an optimal offline schedule always stays between the lower and
upper bound.

Lemma 2.4 [AQ18a, Lemma 3.1]. Given an optimal schedule X∗, the inequality

xL
τ ≤ x∗

τ ≤ xU
τ

holds for all τ ∈ [T ].

The lemma can be proven by using the definitions of xL
τ and xU

τ . The next lemma
shows that an optimal schedule can be constructed by staying lazily between the lower
and upper bounds backwards in time.

Lemma 2.5 [AQ18a, Lemma 3.6]. The schedule X∗ = (x∗
1, . . . , x∗

T ) defined by

x∗
t :=

0 if t = T + 1
[x∗

t+1]x
U
t

xL
t

if t ∈ [T ]

is optimal.

This lemma can be proven by induction in reserve time. The proof uses Lemma 2.4
as well as the convexity of the operating and switching costs.

In the following, let X∗ be the optimal schedule given by Lemma 2.5. When comparing
the schedules XLCP and X∗, we observe that there are time intervals where LCP has
more active servers than the optimal schedule (i.e., xLCP

t > x∗
t ) and others where it has
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2.2 Deterministic online algorithm

less active servers (i.e., xLCP
t < x∗

t ). Between these intervals, there is at least one time slot
where both schedules use the same number of servers, i.e., xLCP

t = x∗
t [AQ18a, Lemma 3.7].

During the time intervals with xLCP
t > x∗

t , the number of active servers of both XLCP

and X∗ are non-increasing [AQ18a, Lemma 3.8], i.e., xt ≥ xt+1 holds for both schedules.
We call these intervals decreasing. Analogously, during so called increasing intervals
with xLCP

t < x∗
t , both xLCP

t and x∗
t are non-decreasing, i.e., xt ≤ xt+1. This implies

that the switching cost of the LCP algorithm must be equal to the switching cost of the
optimal offline solution.

Lemma 2.6 [AQ18a, Lemma 3.9]. Let S(X) :=
∑T

t=1 β(xt+1 − xt)+ be the switching
cost of the schedule X. It holds that S(XLCP) = S(X∗).

Note that in the original paper, only S(XLCP) ≤ S(X∗) was shown. However, the
case xLCP

T < x∗
T during an increasing interval can never occur, since x∗

T +1 = 0 and thus
x∗

T = xL
T ≤ xLCP

T .
We still need to analyze the operating cost given by R(X) :=

∑T
t=1 gt(xt). The

following lemma estimates the operating of the LCP algorithm.

Lemma 2.7 [AQ18a, Lemmas 3.11 and 3.12]. It holds that

R(XLCP) ≤ R(X∗) + 2 · S(X∗).

Proof idea. Let
ĈY

τ (x) := min
x1,...,xτ−1

CY
τ ((x1, . . . , xτ−1, x))

with Y ∈ {L, U} be the minimal cost up to time τ achievable for a schedule that ends
in the state x at time τ . The functions ĈY

τ (x) are convex [AQ18a, Lemma 3.3]. Based
on this property, it can be shown that during increasing intervals,

ĈL
τ (xLCP

τ ) + gτ+1(xLCP
τ+1 ) ≤ ĈL

τ+1(xLCP
τ+1 ) (2.4)

holds. Analogously, for decreasing intervals, we have

ĈU
τ (xLCP

τ ) + gτ+1(xLCP
τ+1 ) ≤ ĈU

τ+1(xLCP
τ+1 ). (2.5)

We add the inequalities given by (2.4) or (2.5) for all time slots t of an interval I. By
using the fact that both XLCP and X∗ are in the same state at the beginning and the
end of an interval and by transforming the result appropriately, we get∑

t∈I

gt+1(xLCP
t+1 ) ≤

∑
t∈I

gt+1(x∗
t+1) +

∑
t∈I

β|x∗
t+1 − x∗

t |.

We add the operating cost of all time intervals and finally get

R(XLCP) ≤ R(X∗) +
T∑

t=1
β|x∗

t+1 − x∗
t |.

The term β|x∗
t+1 − x∗

t | describes the switching cost when both powering up and powering
down cause a cost of β. Since all servers are powered down at the end of the workload,∑T

t=1 β|x∗
t+1 − x∗

t | = 2 · S(X∗).
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2 Homogeneous data centers

Now, we are able to prove Theorem 2.2.

Proof of Theorem 2.2. By using Lemmas 2.6 and 2.7, we get

C(XLCP) = R(XLCP) + S(XLCP) ≤ R(X∗) + 3 · S(X∗) ≤ 3 · C(X∗).

Interestingly, the LCP algorithm can achieve a much better performance if the
operating cost of the optimal schedule is large in comparison to its switching cost. For
example, for a problem instance where both R(X∗) and S(X∗) are equal, LCP achieves
a competitive ratio of 2. If the ratio S(X∗)/R(X∗) approaches zero (i.e., the operating
cost is much larger than the switching cost), then the LCP algorithm calculates an
almost optimal schedule.

2.3 Randomized online algorithm

In the previous section, we saw that the LCP algorithm is 3-competitive in the discrete
setting. The competitive ratio can be improved by using randomization. Bansal et
al. [BGK+15] developed a 2-competitive deterministic online algorithm for the right-sizing
problem of homogeneous data centers in the fractional setting. We use this algorithm
to obtain a 2-competitive fractional schedule for a given integral problem instance. By
rounding the number of active servers properly, our algorithm RandomizedRounding
creates an integral schedule while still achieving a competitive ratio of 2 against an
oblivious adversary.

We will see that our competitiveness proof only uses the 2-competitiveness of the
underlying algorithm. Therefore, any 2-competitive algorithm for the fractional setting
can be used, for example, the algorithm Randomly Biased Greedy (RBG) by Andrew et
al. [ABL+13] with γ = 1.

Formally, our algorithm works as follows. Let Ī be the continuous extension of
the original problem instance as defined in Section 2.1 and let X̄ = (x̄1, . . . , x̄T ) be a
2-competitive online schedule for Ī. In the following, we describe how Randomized-
Rounding converts this solution into an integral schedule XR = (xR

1 , . . . , xR
T ).

First, we define a modified version of the ceiling operator. Let ⌈x⌉∗ := min{n ∈ Z |
n > x} be the smallest integer that is greater than x, so for an integer k ∈ Z we have
⌈k⌉∗ = k + 1 and for a non-integral number x ∈ R \ Z, we have ⌈x⌉∗ = ⌈x⌉. This
definition ensures that the identity ⌈x⌉∗ = ⌊x⌋ + 1 holds for all numbers x ∈ R. Let
frac(x) := x − ⌊x⌋ be the fractional part of x.

The pseudo code below describes how the states xR
t are determined. After calculating

x̄t in line 2, the algorithm checks whether the number of active servers in the fractional
schedule X̄ increases (line 4) or decreases (line 10). In the first case, we have x̄t−1 ≤ x̄t.
If xR

t−1 is already in the upper state ⌈x̄t⌉∗, we do not change the number of active servers,
so xR

t := ⌈x̄t⌉∗. Otherwise, x̄t is rounded up with probability p↑
t := x̄t−x′

t−1
1−frac(x′

t−1) where

x′
t−1 := [x̄t−1]⌈x̄t⌉∗

⌊x̄t⌋ is the projection of the last fractional state x̄t−1 into the unit size
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2.3 Randomized online algorithm

Algorithm 2 RandomizedRounding
Input: I = (T, m, β, G)

1: for t := 1 to T do
2: Determine x̄t with a 2-competitive algorithm for the fractional setting
3: x′

t−1 := [x̄t−1]⌈x̄t⌉∗

⌊x̄t⌋
4: if x̄t−1 ≤ x̄t then
5: if xR

t−1 = ⌈x̄t⌉∗ then
6: xR

t := ⌈x̄t⌉∗

7: else
8: p↑

t := x̄t−x′
t−1

1−frac(x′
t−1)

9: xR
t :=

{
⌈x̄t⌉∗ with probability p↑

t

⌊x̄t⌋ with probability 1 − p↑
t

10: else
11: if xR

t−1 = ⌊x̄t⌋ then
12: xR

t := ⌊x̄t⌋
13: else
14: p↓ := x′

t−1−x̄t

frac(x′
t−1)

15: xR
t :=

{
⌊x̄t⌋ with probability p↓

t

⌈x̄t⌉∗ with probability 1 − p↓
t

interval [⌊x̄t⌋, ⌈x̄t⌉∗] defined by the current state x̄t. The second case, i.e., x̄t−1 > x̄t, is
symmetrical (see lines 11–15).

Theorem 2.3 [AQ18b, Theorem 3]. The RandomizedRounding algorithm is 2-
competitive against an oblivious adversary.

Before we prove this theorem, we show an important relationship between the rounded
schedule XR and the fractional schedule X̄.

Lemma 2.8 [AQ18b, Lemma 18]. The probability that the RandomizedRounding
algorithm uses the upper state ⌈x̄t⌉∗ at time t is equal to the fractional part of x̄t.
Formally, Pr[xR

t = ⌈x̄t⌉∗] = frac(x̄t) holds for all t ∈ [T ].

Proof idea. The lemma can be proven by induction over t. In the induction step, we
differentiate whether or not x̄t−1 ≤ x̄t holds (line 4). Here, we only consider x̄t−1 ≤ x̄t,
since both cases are symmetrical. By the law of total probability, Pr[xR

t = ⌈x̄t⌉∗] can
be written as

Pr[xR
t = ⌈x̄t⌉∗] = Pr[xR

t = ⌈x̄t⌉∗ | xR
t−1 = ⌈x̄t⌉∗] · Pr[xR

t−1 = ⌈x̄t⌉∗]
+ Pr[xR

t = ⌈x̄t⌉∗ | xR
t−1 ≤ ⌊x̄t⌋] · Pr[xR

t−1 ≤ ⌊x̄t⌋].

The probabilities Pr[xR
t−1 = ⌈x̄t⌉∗] and Pr[xR

t−1 ≤ ⌊x̄t⌋] are given by our induction
hypothesis. The conditional probabilities are defined by our algorithm (line 6 and 8–9,
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respectively). Inserting the definition of p↑
t and simplifying the resulting expression gives

us the equation Pr[xR
t = ⌈x̄t⌉∗] = frac(x̄t).

Now, we are able to prove Theorem 2.3.

Proof idea of Theorem 2.3. Let CJ (X) be the cost of the schedule X regarding the
problem instance J ∈ {I, Ī}. We have to show that the expected cost of Randomized-
Rounding is smaller than two times the cost of the optimal offline schedule, i.e.,

E[CI(XR)] ≤ 2 · CI(X∗).

First, we will show that the expected cost of RandomizedRounding equals the
cost of the fractional online schedule X̄. The definition of the continuous operating
cost functions ḡt (see equation (2.1)) in combination with Lemma 2.8 implies that the
expected operating cost of XR equals the operating cost of X̄ regarding the fractional
problem instance Ī [AQ18b, Lemma 19]. Formally, E[RI(XR)] = RĪ(X̄) holds where
RJ (X) denotes the operating cost of X regarding the problem instance J .

For the analysis of the switching cost, we distinguish between the cases (1) x̄t−1 < ⌊x̄t⌋
and (2) x̄t−1 ∈ [⌊x̄t⌋, x̄t]. Note that x̄t−1 > x̄t implies that no servers are powered up in
X̄ and XR, so we do not need to consider this case as there is no switching cost. By
applying Lemma 2.8, it can be shown that in both cases E[β(xR

t −xR
t−1)+] = β(x̄t−x̄t−1)+

holds [AQ18b, Lemma 20]. By summing over all time slots, we get E[SI(XR)] = SĪ(X̄)
where SJ (X) denotes the switching cost of X regarding the problem instance J .
Therefore, E[CI(XR)] = C Ī(X̄) holds.

Let X̄∗ be an optimal offline solution for the continuous problem instance Ī. The
fractional schedule X̄ is 2-competitive regarding Ī, so we have C Ī(X̄) ≤ 2 · C Ī(X̄∗).
By Lemma 2.1, an optimal fractional schedule can be rounded to an integral schedule
without increasing its cost. Therefore, we have C Ī(X̄∗) = CI(X∗). All in all, we get

E[CI(XR)] = C Ī(X̄) ≤ 2 · C Ī(X̄∗) = 2 · CI(X∗).

2.4 Lower bounds for online algorithms
In this section, we present several lower bounds for deterministic and randomized online
algorithms. First, we will prove that no deterministic online algorithm can achieve a
competitive ratio smaller than 3 in the discrete setting (Section 2.4.1). Afterwards,
we switch to the fractional setting and show that the smallest achievable competitive
ratio is 2 (see Section 2.4.2). Based on this result, we show in Section 2.4.3 that no
randomized online algorithm for the discrete setting is better than 2-competitive.

Each lower bound is first shown for the general model where the operating costs are
given by arbitrary non-negative convex functions gt. Then we switch to the restricted
model and show how f and λt have to be chosen such that the particular lower bound
still holds. Recall that the operating cost of the restricted model at time t is given by
gt(xt) := xt · f(λt/xt). The inequality xt ≥ λt must be satisfied for all time slots t ∈ [T ].
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Finally, in Section 2.4.4, we prove that all lower bounds still hold if the online algorithm
has a prediction window whose length does not depend on the problem instance.

To simplify the analysis, we pay the switching cost for both powering up and powering
down. Remember that this is not a restriction, since at the beginning and at the end of
the time horizon all servers are powered down. We set β = 2, so changing the state of a
server causes a cost of β/2 = 1. Hence, the total cost of a schedule X is given by

C(X) :=
T∑

t=1
gt(xt) +

T +1∑
t=1

|xt − xt−1|

with x0 := xT +1 := 0.

2.4.1 Discrete setting, deterministic algorithms
Theorem 2.4 [AQ18a, Theorem 4.1]. There is no deterministic online algorithm that
achieves a competitive ratio of c < 3 for the general model of the homogeneous data
center right-sizing problem in the discrete setting.

Proof idea. We consider a data center with only one server, so m = 1. Let A be an
arbitrary deterministic online algorithm generating the schedule XA. The adversary
uses the functions φ0(x) = ϵ|x| and φ1(x) = ϵ|1 − x| with ϵ → 0. If A has an active
server, the adversary sends φ0 as operating cost function. Otherwise, φ1 is used, so A
always has to pay the operating cost ϵ except for the time slots where it changes its
state. The total cost of A depends on the length T of the problem instance and is given
by C(XA) = (T − S)ϵ + S where S is the switching cost of A.

We use two strategies to find an upper bound for the cost of the optimal schedule X∗.
In the first strategy, we remain in one state for the whole time horizon. If the adversary
sends φ0 more often than φ1, this is state x = 0, otherwise it is state x = 1. The
operating cost is at most Tϵ/2 and the switching is at most 2 (for powering up and
down one server at the beginning and the end of the workload if necessary). The
second strategy avoids any operating cost by always choosing the state without any cost.
However, it causes a switching cost of at most S + 2. Therefore, the total cost of an
optimal schedule is at most

C(X∗) ≤ min{Tϵ/2 + 2, S + 2}.

By distinguishing between the cases S ≥ Tϵ/2 and S < Tϵ/2, it can be shown that
the competitive ratio is

C(XA)
C(X∗) ≥ 3 − ϵ − 2(1 − ϵ) + 4

Tϵ/2 + 2 .

We set the length of our problem instance to T ≥ 1/ϵ2. If ϵ goes to zero, the competitive
ratio converges to 3. Therefore, no algorithm can achieve a competitive ratio smaller
than 3.
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Theorem 2.4 still holds in the restricted model.

Theorem 2.5 [AQ18a, Theorem 4.2]. There is no deterministic online algorithm that
achieves a competitive ratio of c < 3 for the restricted model of the homogeneous data
center right-sizing problem in the discrete setting.

Proof idea. We adapt the proof of Theorem 2.4, but use m = 2 instead of one server.
The basic idea is to force the online algorithm to switch between the states 1 and 2
instead of 0 and 1. To achieve this, the adversary uses the job volumes v0 := 0.5 and
v1 := 1 instead of φ0 and φ1. In combination with the fixed operating cost function
f(z) := ϵ|1 − 2z|, this results in the same operating cost as in the proof of Theorem 2.4.
Formally, xtf(vk/xt) = φk(xt − 1) for all xt ∈ {1, 2} and k ∈ {0, 1}. Note that it is not
allowed to use xt = 0 for t ∈ [T ], because in the restricted model xt ≥ λt ≥ 0.5 must
always be fulfilled. The additional switching cost of 1 at the beginning and the end of
the workload does not influence the competitive ratio if we set T ≥ 1/ϵ2 and ϵ → 0.

2.4.2 Fractional setting
Before we analyze the lower bound of randomized online algorithms in the discrete
setting, we switch to the fractional setting where the number of active servers is not
required to be integral. In fact, we need the results of the fractional setting to derive
a lower bound for randomized online algorithms in the discrete setting. Bansal et
al. [BGK+15] did not only develop a 2-competitive online algorithm for the fractional
setting, but also show a lower bound of 1.86. Although they conjectured that a better
online algorithm exists, we found a lower bound of 2, so Bansal et al.’s algorithm is
actually optimal. This result was independently found by [AS17]. In addition to [AS17],
we will extend our lower bound to the restricted model.

Theorem 2.6 [AQ18b, Theorem 6]. There is no online algorithm that achieves a
competitive ratio of c < 2 for the general model of the homogeneous data center right-
sizing problem in the fractional setting.

Bansal et al. [BGK+15] proved that in the fractional setting, a randomized online
algorithm can be derandomized without increasing the competitive ratio. Therefore, it
is sufficient to determine a lower bound for deterministic algorithms.

Proof idea. We use a data center with m = 1 server. As in the proof of Theorem 2.4,
the adversary uses the functions φ0(x) := ϵ|x| and φ1(x) := ϵ|1 − x|. The theorem is
proven in two steps. First, we define an algorithm B whose competitive ratio is greater
than 2 − δ for any δ > 0. Then, we show that any online algorithm A that differs from
B has a greater competitive ratio than B.

Algorithm B moves in small steps of size ϵ/2 towards 0 or 1 if the adversary sends
φ0 or φ1, respectively. It can be shown that this strategy results in a competitive ratio
of 2 − ϵ. In fact, for any input sequence that only contains the functions φ0 and φ1,
algorithm B behaves exactly like the 2-competitive algorithm of Bansal et al. [BGK+15].
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Let A be an arbitrary deterministic online algorithm and let at and bt denote the
number of active servers of algorithm A and B, respectively. If the state of algorithm A is
smaller than that of B, i.e., at−1 < bt−1, then the adversary sends gt = φ1. If at−1 > bt−1,
the adversary chooses φ0.

Assume that the adversary sends gt = φ1, but A stays below B, i.e., at < bt. Then,
A has to pay a greater operating cost, but reduces the switching cost in comparison
to B. However, the adversary continues sending φ1, so at some point, A has to reach
(or exceed) the state of B to avoid infinite operating costs. However, this nullifies the
switching cost savings and the greater operating cost of A results in a higher total cost.

On the other hand, if the adversary sends φ1 and A tries to minimize the operating
cost by using a state greater than the state of B, i.e., at > bt, then the adversary will
use φ0 for the next time slot causing an additional switching cost for A in comparison
to B. This switching cost is greater than the saved operating cost, so again, the total
cost of A is greater than the total cost of B.

For gt = φ0, the argumentation is analogous. All in all, we get

C(A) ≥ C(B) ≥ (2 − ϵ) · C(X∗)

for any ϵ > 0, so there is no deterministic online algorithm that achieves a competitive
ratio of c < 2.

Similar to the previous section, Theorem 2.6 still holds in the restricted model.

Theorem 2.7 [AQ18b, Theorem 7]. There is no online algorithm that achieves a
competitive ratio of c < 2 for the restricted model of the homogeneous data center
right-sizing problem in the fractional setting.

Proof idea. We choose f(z) := ϵ|1 − kz| with k → ∞ and ϵ → 0. Instead of φ0 and φ1,
the adversary uses the job volumes v0 = 0 and v1 = 1/k leading to the same operating
cost, i.e., xtf(vk/xt) = φk(xt) for k ∈ {0, 1}. Therefore, the lower bound remains the
same.

2.4.3 Discrete setting, randomized algorithms

Based on the lower bound for the fractional setting, we are now able to prove lower
bounds for randomized online algorithms in the discrete setting.

Theorem 2.8 [AQ18b, Theorem 8]. There is no randomized online algorithm that
achieves a competitive ratio of c < 2 against an oblivious adversary for the general model
of the homogeneous data center right-sizing problem in the discrete setting.

Proof idea. Let A be an arbitrary randomized online algorithm and let XA be the
generated schedule. Let x̄A

t be the probability that A is in state 1 at time slot t. It can
be shown that the expected cost of XA is at least as large as the cost of the fractional
schedule X̄A := (x̄A

1 , . . . , x̄A
T ) regarding the continuous extension of the original problem
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instance [AQ18b, Lemma 24]. For this, the expected operating and switching costs of
XA are analyzed separately. Formally, we get

E[CI(XA)] ≥ C Ī(X̄A).

By Theorem 2.6, we know that a deterministic online algorithm that generates
the fractional schedule X̄A cannot achieve a competitive ratio smaller than 2, i.e.,
C Ī(X̄A) ≥ 2 · C Ī(X̄∗). Furthermore, Lemma 2.1 states that the optimal schedules of I
and Ī have the same cost, so C Ī(X̄∗) = CI(X∗). Altogether, we get

E[CI(XA)] ≥ C Ī(X̄A) ≥ 2 · C Ī(X̄∗) ≥ 2 · CI(X∗),

i.e., the competitive ratio of A is at least 2.

Theorem 2.9 [AQ18b, Theorem 9]. There is no randomized online algorithm that
achieves a competitive ratio of c < 2 against an oblivious adversary for the restricted
model of the homogeneous data center right-sizing problem in the discrete setting.

Proof idea. Similar to the proof of Theorem 2.5, we set m = 2, f(z) := ϵ|1−2z|, v0 := 0.5
and v1 := 1 such that xtf(vk/xt) = φk(xt − 1) for xt ∈ {1, 2} and k ∈ {0, 1}.

2.4.4 Online algorithms with prediction window
So far, we always assume that the online algorithm only knows the current operating
cost function gt. An online algorithm with a prediction window of length w can access
the functions gt, . . . , gt+w to choose the next state xt. We assume that the length of
the prediction window is constant, i.e., it is independent of the problem instance. The
following theorem shows that a prediction window with a constant length does not
improve the competitive ratio of the respective algorithm.

Theorem 2.10 [AQ18a, Theorem 4.5], [AQ18b, Theorem 10]. Let w ∈ N. There is
no deterministic online algorithm with a prediction window of length w that achieves a
competitive ratio of c < 3 in the discrete setting or c < 2 in the fractional setting. There
is no randomized online algorithm with a prediction window of length w achieving a
competitive ratio of c < 2 against an oblivious adversary.

Proof idea. The basic idea is to replace each function gt with a sequence of n · w equal
functions g′

t,i(x) := 1
nw gt(x) with n ∈ N and i ∈ [nw]. By choosing n sufficiently large,

the advantage of the prediction window gets arbitrarily small, so the lower bounds
proven in the previous sections still hold.
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Modern data centers often consist of different server types. This can be different archi-
tectures, like servers that use the GPU instead of the CPU for computing. Heterogeneity
also appears if a data center is extended by new servers while the old ones are kept
running. In this chapter, we study the right-sizing problem of a heterogeneous data
center with d different server types in the offline and online version. We consider the
problem formulation presented in Section 1.1, but restrict the operating cost functions
to gain results with more practical relevance. In fact, arbitrary convex operating cost
functions without further restrictions lead to an exponential lower bound as we will see in
Section 3.2.5. Therefore, we resort to the model introduced by Lin et al. [LWAT11a] and
generalize it for heterogeneous data centers. In this model, the operating cost of a single
server is modeled by a non-negative increasing convex function of its load. Furthermore,
for each time slot, a job volume λt arrives that can be distributed arbitrarily to the
active servers. We generalize the model by defining an individual operating cost function
for each server type. Additionally, we have to consider how the arriving job volume is
distributed to the server types.

The operating cost of a single server of type j that runs with load z ∈ [0, zmax
j ] at

time t is modeled by a non-negative increasing convex function ft,j(z). The variables
zmax

j model the computational power of a single server of type j. More precisely, zmax
j

is the maximal job volume that a server of type j can process per time slot. Hence, we
define ft,j(z) := ∞ for z > zmax

j . Let qt,j be the job fraction assigned to all servers of
type j at time t. Since ft,j is convex, it is optimal to distribute the job fraction equally
to the active servers [AQ21e, Lemma 2.2]. Formally,

gt,j(xt,j , qt,j) :=


xt,jft,j

(
λtqt,j

xt,j

)
if xt,j > 0

∞ if xt,j = 0 and λtqt,j > 0
0 if xt,j = 0 and λtqt,j = 0

(3.1)

is the operating cost of server type j during time slot t. Remember that xt,j is the
number of active servers of type j at time t. The quotient λtqt,j

xt,j
is the job volume

assigned to a single server of type j. We apply the operating cost function to get the
operating cost of a single server. Multiplying with the number of active servers gives us
the total operating cost of server type j at time t. The second case of equation (3.1)
(i.e., xt,j = 0 and λtqt,j > 0) describes the situation where a job volume is assigned to
server type j, however, all servers of type j are inactive, so the job volume cannot be
processed and we set the operating cost to infinity. In the last case (i.e., xt,j = 0 and
λtqt,j = 0), there are no jobs and no active servers, so there is no operating cost.
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Let Q := {(q1, . . . , qd) ∈ [0, 1]d |
∑d

j=1 qj = 1} be the set of all possible job assignments.
The total operating cost during time slot t is given by

gt(x1, . . . , xd) := min
(q1,...,qd)∈Q

d∑
j=1

gt,j(xj , qj). (3.2)

Remember that we already defined the total cost of a schedule X = (x1, . . . ,xT ) in
equation (1.1) (see Section 1.1). A problem instance is defined by the tuple I =
(T, d,m,β, F, Λ) with m = (m1, . . . , md), β = (β1, . . . , βd), F = (f1,1, . . . , fT,d) and
Λ = (λ1, . . . , λT ). Note that zmax

j is implicitly defined by the operating cost functions.
Finding the optimal job assignment, i.e., calculating the value of gt for a given

server configuration x is a convex optimization problem. In general, such problems
are NP-hard [DKP02], however, in our case it is solvable in polynomial time, since
the objective function

∑d
j=1 gt,j(xj , qj) is additively separable [Chu16]. A function

H : Rd → R is called additively separable if there exists h1, . . . , hd : R → R such that
H(x1, . . . , xd) =

∑d
j=1 hj(xj) which is true in our case. In this thesis, we do not deepen

the problem of calculating gt, we just assume that there is an oracle that calculates gt

for a given server configuration x in O(1) time.
In this chapter, we first consider the offline problem and present an optimal offline

algorithm that generalizes the graph-based approach of Section 2.1 to an arbitrary
number of server types. However, even for a constant d, the runtime of this algorithm is
only pseudo-polynomial. By using a polynomial-sized subset of the vertices, we obtain a
(1 + ϵ)-approximation algorithm.

Section 3.2 investigates the online problem. First, we examine the special case where
all servers have the same computational power and constant operating costs, i.e., the
operating cost does neither depend on time nor on the load of the server. We present
a 2d-competitive deterministic and a 1.582d-competitive randomized online algorithm
for this setting. Then we consider load-dependent, but time-independent operating
costs and develop a (2d + 1)-competitive deterministic algorithm. For time- and load-
dependent operating costs, we present a deterministic online algorithm that achieves
a competitive ratio of 2d + 1 + ϵ for any ϵ > 0. Finally, we prove a lower bound of 2d
for deterministic algorithms that only uses constant operating costs, so it is a lower
bound for all three algorithms. Furthermore, we show that handling arbitrary convex
operating cost functions gt (that do not necessarily satisfy equation (3.2)) leads to an at
least exponential competitive ratio for deterministic algorithms.

The lower bound of 2d as well as the 2d- and 1.582d-competitive algorithms for constant
operating costs were published in the proceedings of the 12th International Conference
on Algorithms and Complexity (CIAC) [AQ21c] that is shown in Appendix C. Due to
space limitations, several proofs are missing. A full version of this paper has recently
been published in a special issue of the journal Theoretical Computer Science [AQ21a].
A freely accessible preprint of this version can be found on arXiv [AQ21b].

The offline algorithms as well as the online algorithms for load-dependent operating
costs were published in the conference proceedings of the 33rd ACM Symposium on Par-
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allelism in Algorithms and Architectures (SPAA) [AQ21e] that is shown in Appendix D.
Again, a full version containing all proofs can be found on arXiv [AQ21d].

The notation introduced above slightly differs from the published papers in the
appendix. In [AQ21e], both the job fraction qt,j and the maximal load zmax

j are denoted
with z (i.e., zt,j and zmax

j ). To avoid this overload of variables, we denote the job fraction
with qt,j . The constant operating cost of [AQ21c] will be denoted by rj instead of lj ,
similar to [Alb19].

3.1 Offline problem

The grid-structured graph for homogeneous data centers introduced in Section 2.1 can
be generalized for heterogeneous data centers. We use one dimension for each server
type, so a problem instance can be represented by a (d + 1)-dimensional grid (remember
that one dimension is used for time). The optimal schedule can be determined by finding
a shortest path in the graph. However, it is not possible to generalize the binary search
approach for multiple server types as the example in Figure 3.1 shows. Therefore, we
focused on developing an approximation algorithm.

As a preparation, we first devise an optimal offline algorithm that calculates a
shortest path by using dynamic programming (Section 3.1.1). However, its runtime
is not polynomial since the graph contains Θ(T ·

∏d
j=1 mj) vertices. By using only a

polynomial-sized subset of the vertices, we gain a (1 + ϵ)-approximation algorithm that
runs in polynomial time if d is a constant (Section 3.1.2). Before we start explaining our
algorithms, we give an overview on previous results in the literature regarding specialized
or related problems.

It is an open question whether or not the problem is NP-hard. If the operating cost is
load- and time-independent and if each server type has the same computational power, i.e.,
ft,j(z) = rj = const for z ∈ [0, 1] and ft,j(z) = ∞ for z > 1, then there is a polynomial-
time algorithm based on a minimum-cost flow computation [Alb19, Theorem 3.1].
Actually, the algorithm presented in [Alb19] was designed for m unique servers. Note
that the total number of servers m =

∑d
j=1 mj is not polynomial in the encoding length

of the problem instance that is given by O(T +
∑d

j=1 log mj). Hence, using the algorithm
directly leads to an exponential runtime. The graph consists of one component for each
server representing its state (active or inactive). The construction can be extended by
increasing the capacity of the edges in each component from 1 to the number mj of
available servers of the particular server type so that each component represents one
server type. The proofs presented in [Alb19] are not affected by this change, so we gain
a polynomial runtime.

It is even possible to determine a minimum-cost flow where the edge weights are
modeled by a convex function of the flow passing through the edge [Vég16]. One
may think that this approach can be used to generalize the algorithm by [Alb19] for
load-dependent operating costs. However, it is not sufficient to replace each edge weight
by a convex function, because the operating cost of a server type depends on the job
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Figure 3.1: Demonstration why GraphBasedBinarySearch (GBBS) cannot be gen-
eralized for two or more server types. Both plots show one problem instance
each with d = 2, (m1, m2) = (8, 8), T = 1, λ1 = 8 and ft,j(z) = 0 for
z ∈ [0, zmax

j ] (and ft,j(z) = ∞ for z > zmax
j ). In the left plot, we have

(β1, β2) = (7.5, 1) and (zmax
1 , zmax

2 ) = (8, 1). The colors represent the cost of
the corresponding schedule as shown in the color bar below the plot. A white
color indicates an infeasible server configuration. The cheapest schedule is
x∗

1 = (x∗
1,1, x∗

1,2) = (1, 0) (highlighted with a white star) causing a total cost
of C(X∗) = 7.5. However, in the first iteration, the algorithm only checks
a 5 × 5 grid indicated by the large black circles, so it will find x1 = (0, 8)
with a cost of 8 (marked with a large cross). A natural generalization of
GBBS would be to assume that the optimal schedule is inside [0 : 4] × [4 : 8]
(marked with small dots). However, this is not the case, so GBBS does not
find the optimal schedule. The right plot presents another problem instance.
Here, we have β = (1.1, 1) and zmax = (8/7, 1), so x∗

1 = (7, 0) is optimal,
although GBBS again finds x1 = (0, 8) in its first iteration.
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fraction qt,j assigned to this server type. This job fraction depends on the number of
active servers of all types. Therefore, the problem cannot be solved by a minimum-cost
flow computation any more.

3.1.1 Optimal offline algorithm

As already mentioned, we use a (d + 1)-dimensional grid-structured graph to represent
a given problem instance I. There is one dimension for each server type and one
dimension for time. To avoid a quadratic number of edges between two time slots as in
the construction presented in Section 2.1, we use two vertices for each time slot, one for
the beginning and one for the end of a time slot. Between these vertex pairs, we have an
edge weighted with the corresponding operating cost. The vertices at the beginning of a
time slot are interconnected with edges that allows us to power up servers. Similarly, at
the end of a time slot there are edges for powering down.

Formally, a problem instance I can be represented by a directed acyclic graph G(I).
For each time slot t ∈ [T ] and each server configuration x ∈ X :=×d

j=1[mj ]0, there are
the vertices v↑

t,x and v↓
t,x. Let ej = (δj=1, . . . , δj=d) (with δj=i = 1 if i = j and δj=i = 0

otherwise) be the standard unit vectors. There is an edge from v↑
t,x to v↑

t,x+ej
with

weight βj for all t ∈ [T ], j ∈ [d] and x,x + ej ∈ X representing the power-up operation
of a single server. Similarly, we have an edge from v↓

t,x to v↓
t,x−ej

with weight 0 for
all t ∈ [T ], j ∈ [d] and x,x − ej ∈ X representing the power-down operations. The
operating cost for the server configuration x ∈ X at time t ∈ [T ] is modeled by an edge
from v↑

t,x to v↓
t,x with weight gt(x). Finally, there are edges from v↓

t,x to v↑
t+1,x with

weight 0 for all t ∈ [T − 1] and x ∈ X to switch to the next time slot. The construction
is visualized in Figure 3.2.

Each schedule can be represented by a path from v↑
1,0 to v↓

T,0 and vice versa. Given
the server configurations xt of a schedule X, the corresponding path passes through
the edges from v↑

t,xt
to v↓

t,xt
. By choosing an arbitrary shortest sub path from v↓

t,xt
to

v↑
t+1,xt+1 for each t ∈ [T − 1], we obtain a path whose total weight is equal to the total

cost of the schedule X.
On the other hand, each path from v↑

1,0 to v↓
T,0 represents a schedule. If the path

passes through the edge from v↑
t,x to v↓

t,x, then the corresponding schedule uses the
server configuration x at time t. Note that the total weight of a path can be greater
than the total cost of the corresponding schedule, if any sub path from v↓

t,xt
to v↑

t+1,xt+1
does not contain the minimal number of edges. For example, when replacing the edge
from v↓

1,(1,0) to v↑
2,(1,0) by the sub path (v↓

1,(1,0), v↓
1,(0,0), v↑

2,(0,0), v↑
2,(1,0)), the resulting path

still represents the same schedule, however its total weight increases by β1. Nevertheless,
an optimal schedule can be determined by calculating a shortest path.

The algorithm OptimalGraphSearch calculates a shortest path in G(I) by dynamic
programming. Its pseudo code is shown below. The variable d(v) stores the distances
from the start vertex v↑

1,0 to v. Lines 3 and 4 calculate the cost for powering up. For each
vertex v of the current time slot, we access the neighbors and update the distance d(v).
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The condition xj ≥ 1 ensures that we only access valid server configurations, i.e.,
x − ej ∈ X . Line 5 applies the operating cost. In lines 6 and 7, servers can be powered
down and line 9 switches to the next time slot (if t < T ). Afterwards, we know the
shortest distance from v↑

1,0 to each vertex, so we can reconstruct the shortest path by
traversing the graph backwards from v↓

T,0 to v↑
1,0 using the distance values d. Finally,

the algorithm returns the corresponding schedule of the shortest path.

Algorithm 3 OptimalGraphSearch
Input: I = (T, d,m,β, F, Λ)
Output: Optimal schedule

1: d(v↑
1,0) := 0 and d(v↑

1,x) := ∞ for all x ∈ X \ {0}
2: for t := 1 to T do
3: for x := 0 to (m1, . . . , md) do
4: d(v↑

t,x) := min
{

d(v↑
t,x), min{d(v↑

t,x−ej
) + βj | j ∈ [d], xj ≥ 1}

}
5: d(v↓

t,x) := d(v↑
t,x) + gt(x) for all x ∈ X

6: for x := (m1, . . . , md) down to 0 do
7: d(v↓

t,x) := min
{

d(v↓
t,x), min{d(v↓

t,x+ej
) | j ∈ [d], xj ≤ mj − 1}

}
8: if t < T then
9: d(v↑

t+1,x) := d(v↓
t,x) for all x ∈ X

10: Construct the shortest path by traversing backwards from v↓
T,0 to v↑

1,0

11: return schedule X that corresponds to the shortest path

The inner for-loops in lines 3 and 6 must be executed in lexicographical order such
that we only take the minimum of values that were already updated. More precisely, in
line 3, x must be updated before y if xj ≤ yj holds for all j ∈ [d]. In line 7, we access
the vertices in the other way round.

The runtime of OptimalGraphSearch is given by O(T · d ·
∏d

j=1 mj). The factor d
appears, since the minimum calculations in lines 4 and 7 access d + 1 values. However,
if we assume that d is constant, the runtime simplifies to O(T ·

∏d
j=1 mj). Note that

this runtime is still only pseudo-polynomial, since the encoding length of the problem
instance is O(T +

∑d
j=1 log mj).

We summarize our findings in the following theorem.

Theorem 3.1 [AQ21e, Section 4.1]. The algorithm OptimalGraphSearch calculates
an optimal offline solution for the heterogeneous data center right-sizing problem in
O(T · d ·

∏d
j=1 mj) time.

3.1.2 (1 + ϵ)-approximation

The optimal offline algorithm does not have a polynomial runtime. Therefore, we
developed a (1+ϵ)-approximation algorithm that runs in polynomial time if the number d
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Figure 3.2: Graph representation of a problem instance with d = 2 server types and
T = 2 time slots. There are m1 = 2 servers of type 1 and m2 = 1 server
of type 2. The algorithm OptimalGraphSearch calculates a shortest
path from v↑

1,(0,0) (highlighted in red) to v↓
2,(0,0) (highlighted in blue). The

shortest path is drawn in green and corresponds to the optimal schedule
x1 = (1, 1) and x2 = (2, 0).

of server types is constant. The basic idea is to use only a polynomial-sized subset of
the vertices in the graph presented above. The number of active servers can take on
only specific values. For example, we gain a 3-approximation if we only consider the
values xt,j ∈ {0, 1, 2, 4, 8, . . . , mj} for each server type j, i.e., each power of two up to
mj as well as 0 and mj .

In the following, we first construct a reduced graph that depends on a parameter
γ > 1. The resulting approximation factor is analyzed afterwards. Formally, let Mγ

j

denote the set of values that the number of active servers of type j can take on. The
ratio between two consecutive values in Mγ

j is at most γ, if the difference between these
values is greater than 1. If γ is an integral number, then we can just take the powers of γ
to achieve this property. If γ has a fractional value, the construction is more complicated,
since the elements of Mγ

j must be integral. In our original paper [AQ21e], we use both
the rounded down and rounded up values of γk to ensure that the ratio between two
consecutive values is at most γ. Formally, Mγ

j := {0, 1, ⌊γ1⌋, ⌈γ1⌉, ⌊γ2⌋, ⌈γ2⌉, . . . , mj}.
An alternative way to calculate Mγ

j is shown in Algorithm 4. Beginning with x = 1,
we iteratively add values to Mγ

j by multiplying with γ and rounding down. For small
values of x, this may result in the same value, so we add 1 if this is the case.

Note that both methods for calculating Mγ
j result in the same asymptotic size, namely

|Mγ
j | ∈ O(logγ mj). However, the iterative method has more practical relevance, since

the original method needs up to twice as much states for each server type to achieve the
same approximation factor.
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3 Heterogeneous data centers

Algorithm 4 Alternative calculation of Mγ
j

Input: mj , γ
Output: Mγ

j

1: M := {0, mj}
2: x := 1
3: while x < mj do
4: M := M ∪ {x}
5: x := max{⌊γx⌋, x + 1}
6: return M

The reduced graph Gγ contains the vertices vs
t,x for s ∈ {↑, ↓}, t ∈ [T ] and x ∈ X γ

where X γ :=×d
j=1 Mγ

j is the set of server configurations considered for the approximation.
Analogously to the original graph of the previous section, we have edges from v↑

t,x

to v↓
t,x with weight gt(x) for all t ∈ [T ] and x ∈ X γ as well as edges from v↓

t,x to
v↑

t+1,x with weight 0 for all t ∈ [T − 1] and x ∈ X γ . The edges for changing the
number of active servers must be changed, since several vertices are missing. Let
Nj(xj) := min{x ∈ Mγ

j | x > xj} denote the next greater value of xj in Mγ
j . For each

j ∈ [d] and for each x ∈ X γ with xj ̸= mj , let x′ = (x1, . . . , xj−1, Nj(xj), xj+1, . . . , xd).
There is an edge from v↑

t,x to v↑
t,x′ with weight βj(Nj(xj) − xj) and an edge from v↓

t,x to
v↓

t,x′ with weight 0.
The OptimalGraphSearch algorithm can be adapted to work on the reduced

graph Gγ . We call the new algorithm ApproximateGraphSearch (AGS). The
following lemma shows that the schedule calculated by AGS is a (2γ − 1)-approximation.

Lemma 3.1 [AQ21e, Theorem 4.1]. Let Xγ be a schedule that corresponds to a shortest
path in Gγ and let X∗ be an optimal schedule for the original problem instance. Then,
the inequality

C(Xγ) ≤ (2γ − 1) · C(X∗) (3.3)

is always satisfied, i.e., Xγ is a (2γ − 1)-approximation.

To achieve an approximation factor of 1 + ϵ, we set γ = 1 + ϵ/2. If the number of
server types d is constant, then the resulting runtime is polynomial in both the input
length and ϵ as the following theorem shows. Therefore, AGS is a fully polynomial time
approximation scheme.

Theorem 3.2 [AQ21e, Theorem 4.2]. The algorithm ApproximateGraphSearch
calculates a (1 + ϵ)-approximation in O(T · d · ϵ−d ·

∏d
j=1 log mj) time.

Analysis. In the following, we present the proof ideas of Lemma 3.1 and Theorem 3.2.

Proof idea of Lemma 3.1. Let α := 2γ − 1 be the approximation factor. Instead of
directly analyzing the shortest path Xγ , we construct an alternative schedule X ′ that
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t

xt,j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
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10

Figure 3.3: Construction of X ′ (shown in blue) for one specific server type j. In this
example, we have γ = 2 and mj = 10, so the allowed states for X ′ are
Mγ

j = {0, 1, 2, 4, 8, 10} (indicated by the dashed horizontal lines). The
optimal schedule X∗ is printed in green. The red line shows the value of
min{mj , α · x∗

t,j} with α = 2γ − 1 = 3. Note that the schedule X ′ always
stays between the red and green line and only changes the number of active
servers to satisfy the invariant x∗

t,j ≤ x′
t,j ≤ α · x∗

t,j .

also only uses the server configurations in X γ . The schedule X ′ might not correspond
to a shortest path in Gγ , however, we will show that it satisfies the inequality C(X ′) ≤
α · C(X∗). The optimality of Xγ regarding Gγ implies C(Xγ) ≤ C(X ′) and therefore
inequality (3.3) is satisfied.

X ′ lazily stays between the optimal solution x∗
t,j and α · x∗

t,j while only using the
states in Mγ

j . Formally, x′
t,j is defined by

x′
t,j :=


min{x ∈ Mγ

j | x ≥ x∗
t,j} if x′

t−1,j ≤ x∗
t,j

x′
t−1,j if x∗

t,j < x′
t−1,j ≤ α · x∗

t,j

max{x ∈ Mγ
j | x ≤ α · x∗

t,j} if α · x∗
t,j < x′

t−1,j

An example of the construction of X ′ can be found in Figure 3.3.
In the schedule X ′, there are always more active servers of each type than in X∗.

Therefore, the operating cost of a single server is reduced (or remains equal), as ft,j

are increasing functions. The number of active servers of each type is at most α times
greater than the number in X∗. Thus, the operating cost of X ′ is a α-approximation,
i.e., R(X ′) ≤ α · R(X∗) where R(X) is the operating cost of X [AQ21d, Lemma 19].

The analysis of the switching cost uses the fact that the ratio between two consecutive
states in Mγ

j is at most γ. Together with the inequality x∗
t,j ≤ x′

t,j ≤ α · x∗
t,j , it can be

shown that the switching cost of X ′ is a α-approximation, i.e., S(X ′) ≤ α · S(X∗) where
S(X) is the switching cost of X [AQ21d, Lemma 20].

By adding both inequalities, we get C(X ′) = R(X ′) + S(X ′) ≤ αR(X∗) + αS(X∗) =
αC(X∗).
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Proof idea of Theorem 3.2. The approximation factor directly follows form Lemma 3.1
with γ = 1+ ϵ/2. We still have to analyze the runtime. AGS uses |Mγ

j | = O(log1+ϵ/2 mj)
different states for server type j. By Theorem 3.1, this leads to a runtime of O(T · d ·∏d

j=1 log1+ϵ/2 mj). By using the estimation ln(x) ≥ 1 − 1/x, we can transform the term
log1+ϵ/2 mj as follows:

log1+ϵ/2 mj = ln mj

ln(1 + ϵ/2) ≤ ln mj

1 − 1
1+ϵ/2

=
(

1 + 1
ϵ/2

)
ln mj ∈ O(ϵ−1 log mj).

Therefore, we get a total runtime of O(T · d · ϵ−d ·
∏d

j=1 log mj).

Time-dependent data center size. The size of a real data center usually changes over
time. If hardware fails or if old servers are shut down permanently, then the number
mj of available servers decreases. If a data center is extended by new servers, then mj

increases. Let mt,j denote the number of servers of type j that are available during time
slot t. This can be modeled by removing the corresponding vertices from the graph Gγ .
The AGS algorithm can simply be adapted for this setting leading to the following
result.

Theorem 3.3 [AQ21e, Theorem 4.3]. Let I be an instance of the heterogeneous data
center right-sizing problem where the number of available servers depends on time. A
(1 + ϵ)-approximation can be calculated in

O

d · ϵ−d ·
T∑

t=1

d∏
j=1

log mt,j

 ⊆ O

T · d · ϵ−d ·
d∏

j=1
log max

t∈[T ]
mt,j


time.

3.2 Online problem
In this section, we investigate the online problem and present different results depending
on the complexity of the operating cost functions. We begin with the most simple case
where the operating costs are time- and load-independent, so they only depend on the
server type. Furthermore, we assume that all servers have the same computational power
and we exclude inefficient server types, so a server with a higher switching cost always
has a lower operating cost. For this simplified setting, we present a 2d-competitive
deterministic and a 1.582d-competitive randomized online algorithm.

Afterwards, we handle operating costs that depend on the load of the server, but are
still fixed in time. We drop the other restrictions, i.e., we allow different computational
power as well as inefficient server types. For this case, we develop a deterministic
algorithm that achieves a competitive ratio of 2d + 1 (see Section 3.2.2). The algorithm
can be modified such that it is able to process time-dependent operating cost functions
while still achieving a competitive ratio of 2d + 1 + ϵ for any ϵ > 0 (see Section 3.2.3).
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Finally, in Sections 3.2.4 and 3.2.5, we investigate lower bounds. First, we prove
that no deterministic online algorithm can achieve a competitive ratio that is smaller
than 2d. The problem instance used for this proof only contains constant operating
cost functions, so the lower bound holds for all problem variants. Especially, it shows
that the deterministic algorithm presented in Section 3.2.1 is optimal and the other
algorithms are nearly optimal. In Section 3.2.5, we investigate the data center right-
sizing problem with arbitrary convex operating cost functions gt (that do not necessarily
satisfy equation (3.2)) and prove a lower bound of 2d + 2d−1

d . This exponential lower
bound was the reason, why we only developed online algorithms for the case where each
server type has its own operating cost function.

3.2.1 Time- and load-independent operating cost

The most simple case are time- and load-independent operating costs and servers with
equal computational power. Formally, we have ft,j(z) := rj = const with z ∈ [0, 1],
i.e., each server of type j can process a job volume of at most zmax

j = 1 per time slot
and causes a constant operating cost of rj regardless of its load. Furthermore, for our
algorithm we have to exclude inefficient server types. A server is called inefficient, if
there is another server with both lower switching and operating costs. The exclusion
of inefficient servers implies that a server with a higher switching cost always has a
lower operating cost. W.l.o.g., let β1 ≤ · · · ≤ βd and r1 ≥ · · · ≥ rd, so the server types
are sorted ascending by their switching cost and descending by their operating cost. A
reasonable online algorithm would usually first power up a server of type 1, since it has
the lowest switching cost. If it is needed for a long period of time, then at some point,
it is replaced with a higher server type that has a lower operating cost.

Note that the exclusion of inefficient server types is only a small restriction, since
an inefficient server would only be powered up if all more efficient servers are already
running. However, if an inefficient server is active, but not needed any more, then
the decision whether the inefficient or an efficient server should be powered down is
non-trivial. On the one hand, the inefficient server has a higher operating cost, so it
should be avoided to run it idle. On the other hand, it may be necessary to restart the
server that was powered down, since a large job volume arrives after a short time. In
this case, powering the efficient server down and up is cheaper due to its lower switching
cost.

The exclusion of inefficient servers is similar to the convex case in capital investment
[Dam03] where the online player can purchase devices with different prices and operating
costs. In the convex case, a higher purchase price implies a lower operating cost. Another
example is the exclusion of inefficient sleep states in [AIS08] when operating a single
server.

The simplification with constant operating costs seems to be related to the Parking
Permit Problem introduced by Meyerson [Mey05]. There are d permits which cost
βj and have a duration of Dj with j ∈ [d]. Certain days are driving days where at
least one permit is needed. The switching cost in the data center right-sizing problem

41



3 Heterogeneous data centers

corresponds to the purchase price of the permits. Driving days can be modeled by
setting the arriving job volume to λt = 1. However, the Parking Permit Problem has no
operating cost. Furthermore, there is no analogy for the duration Dj of the permits.
If a given problem instance of the data center right-sizing problem is transferred to
the Parking Permit Problem by replacing each server type with an infinite number of
permits with duration t and cost βj + t · rj , then we still have a different problem, as the
online algorithm has to decide how long a server will run already when it is powered up.

In the introduction of this thesis, we mentioned the Online Balanced Descent (OBD)
algorithm that achieves a competitive ratio of 3 + O(1/µ) if the arriving operating cost
functions are µ-strongly convex [GW19]. In our case, gt is a (piecewise) linear function,
so µ = 0. Hence, the result of Goel and Wierman would lead to an infinite competitive
ratio (besides the problem that the switching cost is not Euclidean). A similar result
was achieved by [CGW18] who showed that OBD is (3 + O(1/α))-competitive if the
arriving functions are locally α-polyhedral. After replacing xt,j with x′

t,j/βj such that
the switching cost is equal in each direction, the minimal slope of gt is rj/βj , so it can
be arbitrarily small, especially if there is a server type with a tiny operating and huge
switching cost. Then, α is almost zero and the resulting competitive ratio of OBD is
quite large.

Contribution. In this section, we present a 2d-competitive deterministic and a 1.582d-
competitive randomized online algorithm for the problem described above. The basic
idea of both algorithms is to calculate an optimal schedule for the problem instance
that ends at the current time slot. The algorithms ensure that the types of their active
servers are at least as large as the server types in the optimal schedule. If this is not
the case, such servers are powered down and replaced by the server types used in the
optimal schedule. If a server is idle for a specific time depending on the server types
used in the previous optimal schedules, it is powered down. The randomized algorithm
improves the competitive ratio by randomizing the running time of a server similar to
the Ski-Rental problem.

Preliminaries. Before we can explain our algorithms in detail, we have to introduce an
alternative way to describe a schedule. A schedule can be separated into m :=

∑d
j=1 mj

lanes such that there is at most one server in each lane. The arriving job volume is
distributed to the λt lowest lanes, i.e., one job each to the lanes 1 to λt and no jobs
for the lanes λt + 1 to m. The server types of a given schedule are always sorted in
descending order, so the server with the greatest switching cost is in the lowest lane.

Given a schedule X, let yt,k be the server type used in lane k ∈ [m] at time t. If there
is no active server, we set yt,k to 0. Formally, yt,k is defined by

yt,k :=

max{j ∈ [d] |
∑d

j′=j xt,j′ ≥ k} if k ∈
[∑d

j=1 xt,j

]
0 else.
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Figure 3.4: Example of the alternative schedule representation. The upper plot shows a
job sequence. A feasible schedule is printed in the middle with the common
notation xt,j . The alternative representation of X is shown in the lower
plot. Outside of the colored rectangles, the value of yt,k is 0. Note that the
colored rectangles of a feasible schedule always cover the job sequence plot.

The tuple of all yt,k for t ∈ [T ] and k ∈ [m] is an alternative representation of a schedule.
Given yt,k, the number xt,j of active servers of type j at time t can be determined by

xt,j = |{k ∈ [m] | yt,k = j}|.

Figure 3.4 shows an example schedule in both notations.
A problem instance is described by the tuple I = (T, d,m,β, r, Λ) with r =

(r1, . . . , rd). In contrast to problem instance definition of the general problem at the
beginning of this chapter, we replaced the operating cost function vector F with the
vector r containing the constant operating costs. Let It = (t, d,m,β, r, Λt) with
Λt := (λ1, . . . , λt) be the shortened problem instance that ends at time slot t. Let
X̂t be an optimal schedule for It. For the alternative representation of X̂t, we use
the symbols ŷt

t′,k. There are potentially several optimal schedules for a given problem
instance. Our algorithm requires that X̂t does not use smaller server types in any lane
than the previous optimal schedule X̂t−1, i.e., ŷt

t′,k ≥ ŷt−1
t′,k must hold for all t′ ∈ [t] and

k ∈ [m] with ŷt
t′,k > 0. We will later describe how such a schedule can be constructed.

Deterministic algorithm. Now, we are able to describe how our deterministic online
algorithm A works. Let XA be the schedule calculated by our algorithm and let yA

t,k

denote its lane representation. When a new job volume λt arrives, first of all an optimal
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schedule X̂t with the desired property (ŷt
t′,k > 0 → ŷt

t′,k ≥ ŷt−1
t′,k ) is calculated. Then,

beginning from the lowest lane k = 1, the algorithm ensures that the server type in
lane k is at least as large as the corresponding server type in the optimal schedule. If
this is not the case (i.e., yA

t−1,k < ŷt
t,k), the old server of type yA

t−1,k is powered down
and a server of type j = ŷt

t,k is powered up. The server will run for t̄j := ⌊βj/rj⌋ time
slots (providing that it is not replaced by another server). If the optimal schedule uses
a smaller or an equal server type, i.e., yA

t−1,k ≥ ŷt
t,k, then the particular server will stay

active for at least t̄j time slots with j = ŷt
t,k. Note that this operation never decrease

the running time of a server.
The pseudocode below summarizes how the algorithm works. The variables ek store

the time slot when the server running in lane k will be powered down. Figure 3.5 shows
an example how the schedule changes from t − 1 to t.

Algorithm 5 Algorithm A [AQ21c]
Input: I = (T, d,m,β, r, Λ)
Output: XA = (xA

1 , . . . ,xA
T )

1: ek := 0 for all k ∈ [m]
2: for t := 1 to T do
3: Calculate X̂t such that ŷt

t′,k > 0 → ŷt
t′,k ≥ ŷt−1

t′,k for all t′ ∈ [t] and k ∈ [m]
4: for k := 1 to m do
5: if yA

t−1,k < ŷt
t,k or t ≥ ek then

6: yA
t,k := ŷt

t,k

7: ek := t + t̄yA
t,k

8: else
9: yA

t,k := yA
t−1,k

10: ek := max{ek, t + t̄ŷt
t,k

} where t̄0 := 0

So far, we did not explain how the optimal schedule with the desired property can
be determined. As mentioned earlier, an optimal schedule X̂t can be calculated in
polynomial time by a modified version of the minimum-cost flow computation presented
in [Alb19]. To ensure that ŷt

t′,k > 0 implies ŷt
t′,k ≥ ŷt−1

t′,k , we determine the so called max-
imum schedule. Given the optimal schedules X̂t−1 and X̂t, let ymax

t′,k := max{ŷt−1
t′,k , ŷt

t′,k}
be the maximal server type of both schedules. To avoid immediate server changes
(that cannot happen in an optimal schedule [AQ21a, Lemma 3]), we replace the lower
server type with the greater one if the server type changes immediately. Formally, if
ymax

t′−1,k ̸= ymax
t′,k and ymax

t′−1,k > 0 and ymax
t′,k > 0, then we set both ymax

t′−1,k and ymax
t′,k to the

greater value max{ymax
t′−1,k, ymax

t′,k }. This procedure is repeated until ymax
t′−1,k > 0 ∧ ymax

t′,k > 0
implies ymax

t′−1,k = ymax
t′,k for all t′ ∈ [t]. The feasibility and optimality of the resulting

schedule is shown in [AQ21c, Lemmas 1–2].
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Figure 3.5: Example of an update in algorithm A from time slot t−1 to t. The schedule
of A (upper plot) at t − 1 is shown in blue, the changes after reacting to λt

are printed in red. The lower plot displays the optimal schedule X̂t in green.
In this example, the running times are defined as t̄j := j. In the lowest lane
k = 1, we have yA

t,1 = 5 ≥ 4 = ŷt
t,1, so server type yA

t,1 will run for at least
t̄4 = 4 further time slots (including the current time slot t), i.e., it will be
powered down after time slot t + 3. In lane k = 2, server type yA

t−1,2 = 2 is
powered down and replaced by ŷt

t,2 = 3, since yA
t−1,2 < ŷt

t,2. In lane k = 3,
there is no active server at time slot t − 1, so server type ŷt

t,3 = 2 is powered
up.

Theorem 3.4 [AQ21c, Theorem 1]. Given the heterogeneous data center right-sizing
problem with time- and load-independent operating costs, no inefficient servers and equal
computational power for all server types, algorithm A achieves a competitive ratio of 2d.

Before we can prove the competitive ratio, we have to show that the schedule is
actually feasible. This is not trivial, since each lane is handled separately and it is not
clear, why algorithm A will never use more servers of a given type than available.

Lemma 3.2 [AQ21c, Lemma 4]. Algorithm A calculates a feasible schedule.

Proof idea. We have to show that (1) there are enough active servers to handle the
arriving job volume (i.e.,

∑d
j=1 xA

t,k ≥ λt) and that (2) there are not more active servers
than available (i.e., xA

t,j ∈ [mj ]0). The first property directly follows from the invariant
yA

t,k ≥ ŷt
t,k that is always satisfied. The proof of the second property is more complicated.

The order of the server types and the exclusion of inefficient servers imply that the
running times t̄j are sorted in ascending order, i.e., t̄1 ≤ · · · ≤ t̄d. This fact is used
to prove that the server types in the lanes of XA are sorted in descending order, i.e.,
yA

t,1 ≥ · · · ≥ yA
t,m [AQ21c, Lemma 3]. To deduce a contradiction, we assume that the

condition xA
t,j ≤ mj is violated at some point. This can happen in line 6 or 9. In both

cases, we obtain a contradiction, so XA must be a feasible schedule.
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To analyze the competitive ratio of algorithm A, we divide its schedule into blocks
At,k with t ∈ [T ] and k ∈ [m]. There are two types of blocks: new blocks and extended
blocks. If a new server is powered up at time slot t in lane k, then there is the new
block. If the running time of an active server is extended, then we call At,k an extended
block. If neither the running time is extended nor a new server is powered up at time t
in lane k, then the block At,k does not exist.

Let C(At,k) denote the cost caused by At,k. The cost of a new block is upper bounded
by βj + t̄j · rj where j = ŷt

t,k is the server type that was powered up. This term is at
most 2βj due to the definition of t̄j [AQ21c, Lemma 5]. For an extended block, the cost
depends on how many time slots the running time was increased. If At,k does not exist,
we set C(At,k) = 0. For a more precise definition of At,k and its cost C(At,k), we refer
to [AQ21c].

For our analysis, we have to introduce further notations. Let

Ct,k(X) :=


fyt,k

(0) + βyt,k
if yt−1,k ̸= yt,k > 0

fyt,k
(0) if yt−1,k = yt,k > 0

0 otherwise.

be the cost of the schedule X at time t in lane k. Note that the total cost of an arbitrary
schedule X can be written as C(X) =

∑T
t=1

∑m
k=1 Ct,k(X).

Let ỹu
t,k := maxt′∈[t:u] ŷt′

t′,k denote the largest server type used in lane k by the schedule
X̂t′ at its last time slot t′ for t′ ∈ [t : u]. For example, a value of ỹ10

5,k = 4 means that
during the time interval from t = 5 up to the current time slot u = 10, our algorithm
has never accessed a server type in lane k that was greater than 4.

Given the optimal schedules X̂u and X̂v with u < v, it is clear that
m∑

k=1

u∑
t=1

Ct,k(X̂u) ≤
m∑

k=1

u∑
t=1

Ct,k(X̂v)

since X̂u is optimal for the problem instance that ends at time u. The following quite
technical lemma shows that this property still holds if the cost Ct,k(·) is scaled by the
factor ỹu

t,k.
Lemma 3.3 [AQ21c, Lemma 7]. Let u, v ∈ [T ] with u < v. It holds that

m∑
k=1

u∑
t=1

ỹu
t,kCt,k(X̂u) ≤

m∑
k=1

u∑
t=1

ỹu
t,kCt,k(X̂v).

The proof uses monotony properties of ỹu
t,k in combination with the optimality of X̂u.

The next lemma demonstrates how the cost of a block can be folded into the term
2
∑v−1

t=1 ỹv−1
t,k Ct,k(X̂v).

Lemma 3.4 [AQ21c, Lemma 8]. For all lanes k ∈ [m] and time slots v ∈ [T ], it holds
that

2
v−1∑
t=1

ỹv−1
t,k Ct,k(X̂v) + C(Av,k) ≤ 2

v∑
t=1

ỹv
t,kCt,k(X̂v). (3.4)
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We will only show the proof idea for new blocks. For extended blocks the proof is
quite similar and can be found in [AQ21b]. If Av,k does not exist, then C(Av,k) = 0 and
equation (3.4) is obviously fulfilled by the definition of ỹv

t,k.

Proof idea. If Av,k is a new block, then we know that its corresponding server type
j := ŷv

v,k was not used in the last time slot of the last t̄j optimal schedules. Therefore,
ỹv−1

t,k ≤ ỹv
t,k − 1 must hold for t ∈ [v − t̄j : v − 1]. The cost of X̂v in lane k during

the last t̄j time slots is at least βj , since yA
v,k = j implies that a server of type j was

either powered up during the last t̄j time slots or runs for more than t̄j time slots.
In the former case, there is the switching cost βj , and in the latter case, we have an
accumulated operating cost of rj · (t̄j + 1) ≥ βj . Furthermore, we already noticed that
the cost caused by Av,k is at most 2βj . By putting these facts together, we finally obtain
inequality (3.4).

Now, we are able to prove the competitive ratio of algorithm A.

Proof idea for Theorem 3.4. We will prove the inequality

Cv(XA) ≤ 2
m∑

k=1

v∑
t=1

ỹv
t,kCt,k(X̂v) (3.5)

by induction. For v = 0, the inequality is obviously fulfilled. Assume that inequality (3.5)
holds for v − 1. The cost of XA up to time v can be split into the cost up to time v − 1
plus the cost for the blocks created at time slot v. For the first term, we can apply the
induction hypothesis and transform the resulting sum with Lemma 3.3. Afterwards, we
apply Lemma 3.4 for each lane k to eliminate the cost of the blocks. Formally, we get

Cv(XA) = Cv−1(XA) +
m∑

k=1
C(Av,k)

I.H.
≤ 2

m∑
k=1

v−1∑
t=1

ỹv−1
t,k Ct,k(X̂v−1) +

m∑
k=1

C(Av,k)

L3.3
≤ 2

m∑
k=1

v−1∑
t=1

ỹv−1
t,k Ct,k(X̂v) +

m∑
k=1

C(Av,k)

L3.4
≤ 2

m∑
k=1

v∑
t=1

ỹv
t,kCt,k(X̂v).

Remember that ỹv
t,k represents a server type, so ỹv

t,k ≤ d. Thus, at the end of the time
horizon (v = T ), we get C(XA) ≤ 2d · C(X̂T ).
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Randomization. The competitive ratio of algorithm A can be improved by random-
ization. Similar to the Ski Rental problem where the time point for buying skis can
be randomized to achieve a better competitive ratio, we will randomize the running
time of a server. More precisely, at the beginning we choose σ ∈ [0, 1] according to the
probability density function fσ(x) = ex/(e − 1) for x ∈ [0, 1]. Then, we redefine the
running times as t̄j := ⌊σ · βj/rj⌋. Afterwards, we execute algorithm A with these new
running times. We call this new procedure algorithm B. Note that σ is determined at
the beginning of the algorithm and is not changed afterwards. The pseudo code below
summarizes how algorithm B works.

Algorithm 6 Algorithm B
Input: I = (T, d,m,β, r, Λ)
Output: XB = (xB

1 , . . . ,xB
T )

1: Choose σ ∈ [0, 1] according to density fσ(x) = ex/(e − 1) for x ∈ [0, 1]
2: Set t̄j := ⌊σ · βj/lj⌋ for all j ∈ [d]
3: Execute algorithm A and set xB

t := xA
t after each iteration

Theorem 3.5 [AQ21b, Theorem 2]. Given the heterogeneous data center right-sizing
problem with time- and load-independent operating costs, no inefficient servers and equal
computational power for all server types, algorithm B achieves a competitive ratio of

e
e−1 · d ≈ 1.582d against an oblivious adversary.

Proof idea. Most parts of the proof of the determiinistic algorithm can be reused without
any changes, since they do not depend on the exact values of t̄j . Instead of the cost of
a block, we now consider its expected cost E[C(At,k)]. Afterwards, we have to adapt
Lemma 3.4 by proofing the inequality

e

e − 1 ·
v−1∑
t=1

ỹv−1
t,k Ct,k(X̂v) + E[C(Av,k)] ≤ e

e − 1 ·
v∑

t=1
ỹv

t,kCt,k(X̂v).

The final proof of Theorem 3.5 is analogous to the proof of Theorem 3.4. More details
can be found in [AQ21b].

3.2.2 Time-independent operating cost
Usually, different server types can process different amounts of jobs per time slot. Fur-
thermore, the energy consumption depends on the load. As we learn in the introduction,
an idle server usually consumes only half of its peak power [SR09]. Hence, the model
analyzed in the previous section greatly simplifies the reality. Therefore, in this section,
we handle load-dependent operating cost functions whose domain is no longer restricted
to [0, 1]. Formally, we have ft,j(z) := fj(z) with z ∈ [0, zmax

j ]. This makes the problem
much harder. Interestingly, we still achieve a competitive ratio of 2d + 1 which is only
slightly greater than the competitive ratio of the deterministic algorithm presented in
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the previous section. In fact, the new algorithm C is 2d-competitive for load-independent
operating costs, even if there are inefficient server types. Nevertheless, the results of the
previous section are still valuable, as the randomized algorithm B obtains a competitive
ratio of 1.582d. It is an open question whether the competitive ratio of algorithm C can
also be improved by randomization.

Note that algorithm C introduced in this section was called algorithm A in the original
paper [AQ21e]. This renaming was necessary because both the algorithm of the previous
section and the one of this section were called algorithm A in [AQ21c] and [AQ21e],
respectively.

Let X̂t be an arbitrary optimal schedule for the problem instance that ends at time
slot t. Such a schedule can be calculated with the optimal offline algorithm presented
in Section 3.1.1. In practice, it might make sense to use the approximation algorithm
of Section 3.1.2 to avoid an exponential runtime. In contrast to algorithms A and B,
we do not need the alternative schedule representation, but directly use the number of
active servers x̂t

t′,j .
Algorithm C calculates its schedule XC as follows. At any time, it ensures that the

number of active servers of each type is always at least as large as the number of active
servers of the same type in the optimal schedule X̂t during its last time slot. If this is
not the case, servers are powered up such that the inequality xC

t,j ≥ x̂t
t,j is satisfied for

all server types j ∈ [d]. The running time of a server is given by t̄j := ⌈βj/fj(0)⌉, so a
server is powered down after its accumulated idle operating cost exceeds its switching
cost for the first time. Note that the workload of a server does not influence its running
time.

A formal definition of algorithm C is shown in the pseudocode below. The variables
wt,j store the number of servers of type j that were powered up at time slot t. Thus,
wt−t̄j ,j is the number of servers of type j that has to be powered down at the beginning
of time slot t. Figure 3.6 shows an example how algorithm C operates.

Algorithm 7 Algorithm C [AQ21e]
Input: I = (T, d,m,β,f , Λ) with f = (f1, . . . , fd)
Output: XC = (xC

1 , . . . ,xC
T )

1: xC
0,j := 0 for all j ∈ [d]

2: wt,j := 0 for all t ∈ Z and j ∈ [d]
3: for t := 1 to T do
4: Calculate X̂t

5: for j := 1 to d do
6: xC

t,j := xC
t−1,j − wt−t̄j ,j

7: if xC
t,j < x̂t

t,j then
8: wt,j := x̂t

t,j − xC
t,j

9: xC
t,j := x̂t

t,j
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t

xC
t,j

0 1 2 3 4 5 6 7 8 9 10 11

t

x̂t
t,j

0 1 2 3 4 5 6 7 8 9 10 11

Figure 3.6: Visualization of algorithm C for one server type j with t̄j = 4. The upper
plot shows the values of x̂t

t,j that are needed to determine the schedule XC

displayed in the lower plot. Note that the upper plot is not an optimal
schedule, but the last state of each optimal schedule X̂1, X̂2, . . . , X̂T . Each
colored square in the upper plot indicates that C has to power up a server
to satisfy the invariant x̂C

t,j ≥ x̂t
t,j . The running time of the activated server

is visualized with the same color in the lower plot.

The feasibility of the calculated schedule XC directly follows from the invariant
xC

t,j ≥ x̂t
t,j that is always fulfilled [AQ21e, Lemma 2.1].

Theorem 3.6 [AQ21e, Theorem 2.7]. Algorithm C solves the heterogeneous data center
right-sizing problem with time-independent operating cost functions and achieves a
competitive ratio of 2d + 1.

Analysis. For the analysis of the competitive ratio, we divide the operating cost into
an idle and a load-dependent part and analyze them separately. The idle operating cost
of an active server of type j running for a single time slot is given by fj(0). Given a
schedule X, the load-dependent operating cost of all active servers of type j during time
slot t is defined as

Lt,j(X) := xt,j

(
fj

(
λtqt,j

xt,j

)
− fj(0)

)
(3.6)

where qt,j is the job ratio assigned to server type j at time slot t, implicitly given by
equation (3.2). Formally, these values are defined by

(qt,1, . . . , qt,d) := argmin
(q1,...,qd)∈Q

d∑
j=1

gt,j(xt,j , qj).

Note that Lt,j(X) ≥ 0, since fj is an increasing function. The next lemma gives us an
upper bound for the total load-dependent operating cost caused by algorithm C.
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Lemma 3.5 [AQ21e, Lemma 2.4]. The total load-dependent operating cost of algorithm C
is bounded by the cost of the optimal schedule. Formally,

T∑
t=1

d∑
j=1

Lt,j(XC) ≤ C(X̂T ). (3.7)

Proof idea. First of all, it is shown that the load-dependent operating cost of server
type j at time slot t in the schedule XC never exceeds the load-dependent operating
cost in the optimal schedule X̂t, i.e., Lt,j(XC) ≤ Lt,j(X̂t) [AQ21e, Lemma 2.3]. This
fact follows from the invariant xC

t,j ≥ x̂t
t,j and from the convexity of fj . Afterwards,

inequality (3.7) can be proven by induction over t.

To analyze the switching and idle operating cost, we divide the schedule XC into
blocks. A block begins when a server is powered up and ends when it is powered down.
Let nj be the total number of power-up operations1 of server type j. The blocks are
denoted by Aj,i with j ∈ [d] and i ∈ [nj ]. Note that the length of a block only depends
on the server type j and is given by t̄j . Thus, its switching and idle operating costs
are C(Aj,i) = βj + t̄jfj(0). In the following lemma, we estimate the switching and idle
operating costs of one server type.

Lemma 3.6 [AQ21e, Lemma 2.6]. The cost of all blocks of server type j ∈ [d] is at
most two times as large as the cost of the optimal schedule. Formally,

nj∑
i=1

C(Aj,i) ≤ 2 · C(X̂T ) (3.8)

holds for all j ∈ [d].

Proof idea. First, we notice that the cost of a block is bounded by

C(Aj,i) ≤ 2 · min{βj + fj(0), t̄j · fj(0)}

due to the definition of t̄j [AQ21e, Lemma 2.5]. To simplify the notation, we abbreviate
the minimum term as min{. . .}.

For each server type j, we define special time slots so that each block Aj,i, i ∈ [nj ],
is covered by exactly one special time slot as shown in Figure 3.7. Furthermore, we
ensure that at least one server is powered up during each special time slot. The distance
between two special time slots is at least the running time t̄j of a server. If there are
n blocks covered by a special time slot τ , then we know that their cost is bounded
by n · 2 · min{. . .}. On the other hand, the optimal schedule X̂τ also uses exactly n
servers of type j at time τ , because otherwise algorithm C would not have powered up
any server at time τ or even more servers to ensure the invariant xC

τ,j ≥ x̂τ
τ,j . During

1If a server is powered down in line 6 and powered up in the same time slot in line 9, the algorithm
does not have to pay a switching post. However, here we count this as a power-up operation to
simplify the analysis and assume that the switching cost has to be paid.
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Aj,1

Aj,2

Aj,3

Aj,4

Aj,5

Aj,6

Aj,7

t0 τj,1 τj,2 τj,3

≥ t̄j ≥ t̄j

Figure 3.7: Visualization of the special time slots for one specific server type j. The
special time slots are marked with dashed lines. The rectangles represent
the blocks Aj,i. Each block is covered by exactly one special time slot, as
indicated by the colors. The distance between two consecutive special time
slots is always greater than or equal to t̄j .

the time interval between the previous and the current special time slot, the servers
of type j in the optimal schedule X̂τ cause a switching cost of βj or an idle operating
cost of t̄jfj(0). Formally, this is n · min{. . .}, i.e., half of the cost caused by the covered
blocks. By induction over the special time slots, we can prove that the cost of the
blocks of a specific server type created during or before the special time slot τ is at most
2 · C(X̂τ ). For the last special time slot, we finally obtain inequality (3.8).

Now, Theorem 3.6 directly follows from Lemmas 3.5 and 3.6.

Proof of Theorem 3.6. The total cost of algorithm C is at most

C(XC) =
d∑

j=1

nj∑
i=1

C(Aj,i) +
T∑

t=1

d∑
j=1

Lt,j(XC)

L3.5
L3.6
≤

d∑
j=1

2 · C(X̂T ) + C(X̂T )

= (2d + 1) · C(X̂T ).

Since X̂T is an optimal schedule for the original problem instance I, algorithm C is
(2d + 1)-competitive.

If the operating cost of all server types is constant (i.e., fj(z) = rj = const for
z ∈ [0, zmax

j ]), then the load-dependent operating cost Lt,j(X) is always zero, so the
total cost of algorithm C is bounded by 2d · C(X̂T ). We gain the same result as of
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Theorem 3.4, but without the exclusion of inefficient server types. Furthermore, the
server are not required to have the same computational power. We summarize this
finding in the following corollary.

Corollary 3.1 [AQ21e, Corollary 2.8]. Algorithm C achieves a competitive ratio of 2d, if
the operating cost does not depend on the load, i.e., fj(z) := rj = const for z ∈ [0, zmax

j ].

3.2.3 Time-dependent operating cost
In practice, the operating cost may change over time, for example, due to varying
energy prices. We can extend our algorithm of the previous section such that it can
handle time-dependent operating cost functions ft,j . The extension consists of two steps.
First, we only adjust the running time of a server which leads to a competitive ratio
of 2d + 1 + c(I) as an intermediate result. The constant c(I) depends on the problem
instance I and is defined as c(I) :=

∑d
j=1 maxt∈[T ]

ft,j(0)
βj

. Unfortunately, this constant
can be arbitrarily large. Therefore, in the second step, we modify the problem instance
by dividing each time slot into several sub time slots. The resulting schedule is adapted
without increasing the cost such that it fits to the original problem instance. By choosing
the number of sub time slots properly, we can make the constant arbitrarily small and
achieve a competitive ratio of 2d + 1 + ϵ for any ϵ > 0.

When handling time-dependent operating cost functions, the idle operating cost ft,j(0)
changes over time, so we have to adapt the running time of a server. Nevertheless, the
basic idea stays the same: a server is powered down when its accumulated idle operating
cost exceeds its switching cost. However, the operating cost of the first time slot at
which the server was powered up is ignored. More precisely, in algorithm D, a server of
type j that was powered up at time slot t runs for

t̄t,j := max

t̄ ∈ [T − t] |
t+t̄∑

u=t+1
fu,j(0) ≤ βj


further time slots, so it is kept in the active state for a total of t̄t,j + 1 time slots. Note
that this definition differs from the previous section where a server stays active for t̄j

time slots.
The pseudo code below clarifies how algorithm D operates2. Only lines 6 and 7 change

in comparison to algorithm C. Again, wt,j are the number of servers of type j that were
powered up at time t. The set Wt contains the time slots u with u + t̄u,j + 1 = t. Hence,
the number of servers of type j that have to be powered down at time slot t is given
by
∑

u∈Wt
wt,j . Figure 3.8 shows an example of algorithm D including the values of t̄t,j

and Wt.

Theorem 3.7 [AQ21e, Theorem 3.4]. Algorithm D solves the heterogeneous data
center right-sizing problem with time-dependent operating cost functions and achieves a
competitive ratio of 2d + 1 + c(I) with c(I) =

∑d
j=1 maxt∈[T ]

ft,j(0)
βj

.
2In the original paper [AQ21e], this algorithm was called algorithm B.
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Algorithm 8 Algorithm D [AQ21e]
Input: I = (T, d,m,β, F, Λ)
Output: XD = (xD

1 , . . . ,xD
T )

1: xD
0,j := 0 for all j ∈ [d]

2: wt,j := 0 for all t ∈ Z and j ∈ [d]
3: for t := 1 to T do
4: Calculate X̂t

5: for j := 1 to d do
6: Wt :=

{
u ∈ [t − 1]|

∑t−1
v=u+1 fv,j(0) ≤ βj <

∑t
v=u+1 fv,j(0)

}
7: xD

t,j := xD
t−1,j −

∑
u∈Wt

wu,j

8: if xD
t,j < x̂t

t,j then
9: wt,j := x̂t

t,j − xD
t,j

10: xD
t,j := xt

t,j

Analysis of the competitive ratio. The proof of Theorem 3.7 is quite similar to that
of Theorem 3.6. In the definition of the load-dependent operating cost (equation (3.6)),
we can just replace fj with ft,j . Lemma 3.5 still holds since it is based on the invariant
xD

t,j ≥ x̂t
t,j that is still satisfied. Therefore, we only have to adapt Lemma 3.6 that

estimates the switching and idle operating costs. The cost of a block is now bounded by
C(Aj,i) ≤ 2βj + fs,j(0) where s is the first time slot of the block Aj,i. This term can be
estimated by C(Aj,i) ≤ βj(2 + cj) with cj := maxt∈[T ] ft,j(0)/βj . We define the special
time slots like in the proof of Lemma 3.5, conduct the induction and finally obtain the
inequality

nj∑
i=1

C(Aj,i) ≤ (2 + cj) · C(X̂T ).

In contrast to the original lemma, we have the factor 2 + cj instead of 2. This results in
a competitive ratio of 2d + 1 +

∑d
j=1 cj = 2d + 1 + c(I).

Improving the competitive ratio. It is possible to modify the problem instance such
that the constant c(I) gets arbitrarily small. For this, we split each time slot into
ñt sub time slots to allow intermediate state changes. The arriving operating cost
functions ft,j are distributed evenly to these sub time slots. Then we execute ñt time
slots of algorithm D on the modified problem instance. Given the server configurations
calculated by D, we choose the one that minimizes the operating cost. To achieve a
competitive ratio of 2d + 1 + ϵ, we set the number of sub time slots to

ñt := d

ϵ
· max

j∈[d]

ft,j(0)
βj

.

Formally, the modified problem instance Ĩ := (T̃ , d,m,β, F̃ , Λ̃) is defined as follows.
Each time slot t of the original problem instance I = (T, d,m,β, F, Λ) is represented
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x̂t
t,j = 1 2 1 3 0 0 1 2 0 0

ft,j(0) = 3 1 3 1 2 1 1 1 4 3
t̄t,j = 3 2 4 4 3 2 2 1 . . . . . .

Wt = ∅ ∅ ∅ ∅ {1, 2} ∅ ∅ {3} {4,5,6}{7,8}

t

xD
t,j

0 1 2 3 4 5 6 7 8 9 10

Figure 3.8: Visualization of algorithm D for one specific server type j with βj = 5.
The plot shows the number of active servers xD

t,j . The colors indicate the
running time of each server. The values of x̂t

t,j (that are needed to determine
when a server has to be powered up) and the idle operating costs ft,j(0) as
well as the resulting values of t̄t,j and Wt are shown below the plot. The
running time t̄t,j of a server that is powered up at time slot t is indicated
by the arrows, e.g., a server that is powered up at time slot t = 2 runs for
t̄2,j = 2 additional time slots, so it is powered down at the end of time slot
t + t̄t,j = 4. The values t̄t,j are the maximal number of time slots after t
such that the accumulated idle operating cost does not exceed the switching
cost βj . For example, t̄2,j = 2, because f3,j(0)+f4,j(0) = 3+1 = 4 ≤ βj = 5,
but f3,j(0) + f4,j(0) + f5,j(0) = 6 > βj . At time slot t, the servers that were
powered up at time u ∈ Wt are shut down, e.g., W5 = {1, 2}, so both the
blue and red server are powered down at time slot 5. For t ≥ 9, the values
of t̄t,j are not known yet, because they depend on f11,j(0).

by ñt time slots in Ĩ given by U(t) := [u + 1 : u + ñt] with u =
∑t−1

t′=1 ñt′ . We denote
time slots in I by the symbols t or t′, while u and u′ indicate time slots in Ĩ. The
total number of time slots in Ĩ is equal to T̃ :=

∑T
t=1 ñt. Given a time slot u ∈ [T̃ ],

let t = U−1(u) be the corresponding time slot in the original problem instance I, i.e.,
u ∈ U(t). The operating cost functions of Ĩ are defined as f̃u,j(z) := 1

ñt
ft,j(z) with

t = U−1(u). The job volumes remain unchanged, so λ̃u := λU−1(u).
The pseudocode below summarizes how the new algorithm E works3. In line 6, we

choose the server configuration xD
u with u ∈ U(t) that minimizes the operating cost g̃u.

Theorem 3.8 [AQ21e, Theorem 3.6]. Algorithm E solves the heterogeneous data cen-
ter right-sizing problem with time-dependent operating cost functions and achieves a
competitive ratio of 2d + 1 + ϵ for any ϵ > 0.

3In the original paper [AQ21e], this algorithm was called algorithm C.
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Algorithm 9 Algorithm E [AQ21e]
Input: I = (T, d,m,β, F, Λ)
Output: XE = (xE

1 , . . . ,xE
T )

1: Initialize algorithm D
2: for t := 1 to T do
3: ñt := d/ϵ · maxj∈[d] ft,j(0)/βj

4: Create the next ñt time slots of the modified problem instance Ĩ
5: Execute ñt time slots of algorithm D
6: xE

t := xD
µ(t) with µ(t) := argminu∈U(t) g̃u(xD

u )

Proof idea. Let CJ (X) be the cost of the schedule X regarding the problem instance
J ∈ {I, Ĩ}. Furthermore, let X∗

J be an optimal schedule for J . It can be shown that

CI(XE) ≤ C Ĩ(XD),

so the total cost of E cannot be greater than the total cost of D [AQ21e, Lemma 3.5].
By Theorem 3.7, algorithm D achieves a competitive ratio of 2d + 1 + c(Ĩ), i.e.,

C Ĩ(XD) ≤ (2d + 1 + c(Ĩ)) · C Ĩ(X∗
Ĩ).

By the definition of ñt = d
ϵ · maxj∈[d]

ft,j(0)
βj

, we get

c(Ĩ) =
d∑

j=1
max
u∈T̃

f̃u,j(0)
βj

=
d∑

j=1
max
t∈T

ft,j(0)
ñtβj

≤
d∑

j=1
max
t∈T

ϵ

d
= ϵ.

Finally, we notice that an optimal schedule for I can be easily converted to a schedule
for Ĩ, so

C Ĩ(X∗
Ĩ) ≤ CI(X∗

I).

All in all, we get CI(XE) ≤ (2d + 1 + ϵ) · CI(X∗
I).

3.2.4 Lower bound for constant operating costs

In the previous sections, we have developed several online algorithms solving different
variations of the heterogeneous data center right-sizing problem. In this section, we will
derive a lower bound for deterministic online algorithms showing that no algorithm can
beat a certain competitive ratio.

Theorem 3.9 [AQ21e, Theorem 3]. There is no deterministic online algorithm that
achieves a competitive ratio smaller than 2d for the heterogeneous data center right-sizing
problem with constant operating costs, no inefficient servers and equal computational
power for all server types.
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This lower bound does not only holds for algorithm A presented in Section 3.2.1,
but also for the algorithms C, D and E presented in Sections 3.2.2 and 3.2.3, as they
solve more general problems. Algorithm A achieves the optimal competitive ratio of 2d.
Furthermore, algorithms C and E with a competitive ratio of 2d + 1 and 2d + 1 + ϵ,
respectively, are almost optimal.

To prove Theorem 3.9, we consider the following problem instance with d server types.
There is mj = 1 server of each type. The switching and operating costs are given by
βj = N2j and rj := 1/N2j where N is a large number that we will define later. Let A
be an arbitrary deterministic online algorithm generating the schedule XA. Whenever
A has an active server, the adversary sends no jobs (λt = 0). If all servers of A are
inactive, then the adversary sends a job (λt = 1). The following lemma presents an
important intermediate result.

Lemma 3.7 [AQ21c, Lemma 9]. Let k ∈ [d]. If XA only uses servers of type lower than
or equal to k and if the cost of A is at least C(XA) ≥ Nβk, then the cost of A is at least

C(XA) ≥ (2k − ϵk) · C(X∗)

with ϵk = 9k2/N and N ≥ 6k.

Proof idea. The statement is proven by induction over k. The base case k = 1 is similar
to the well known Ski-Rental problem. For k ≥ 2, we divide the schedule XA into
phases L0, K1, L1, . . . , Kn, Ln. W.l.o.g., we assume that A has never two or more active
servers. In the phases Ki (also called K-phases), the server type k is used exactly once,
so a server of type k is powered up at the beginning of the phase and powered down at
the end of it. During the phases Li (also called L-phases), algorithm A only uses server
types smaller than k. It is possible that an L-phase is empty if a server of type k is
powered down and up immediately thereafter. The L-phases are divided into short and
long L-phases. If the cost during Li is smaller than βk/N , then Li is a short L-phase,
otherwise it is long.

We use two strategies to derive an upper bound for the cost of an optimal schedule
(see Figure 3.9). In the first strategy, a server of type k is powered up at t = 1 and
runs for the whole time. Only for K-phases where the total operating cost exceeds the
switching cost, the server is switched to the inactive state from the second time slot of
the phase up to its end, since this is cheaper than keeping the server active.

The behavior in second strategy depends on the phases. For the K-phases, server
type 1 runs for exactly one time slot. This is sufficient because only for the first time
slot of a K-phase λt = 1 holds. In the short L-phases, we behave like algorithm A.
Since these phases are “short”, the portion of the total cost is small. The long L-phases
fulfill all conditions to apply the induction hypothesis (i.e., Lemma 3.7 for k − 1), as
algorithm A only uses servers whose types are smaller than or equal to k − 1 and its
cost is at least βk/N = Nβk−1 during this phase. The induction hypothesis implicitly
gives a strategy whose cost is at most 1/α times the cost of A during this phase where
α = 2k − 2 − ϵk−1.
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L0 K1 L1 K2 K3 L3

server type k

1/α A 1/α

XA

λt

Strategy 1

Strategy 2

Figure 3.9: Visualization of the two strategies used to determine an upper bound for the
cost of an optimal schedule. The arriving job volumes λt and the schedule
of algorithm A are shown in the middle. Long L-phases are marked in red,
short L-phases are highlighted in blue. Note that L2 is a short L-phase
with zero length. Strategy 1 starts a server of type k and keeps it active for
the whole time. During the short L-phases, strategy 2 exactly behaves like
algorithm A. For the long L-phases, there exists a solution that only causes
1/α of the cost of algorithm A. The small green rectangles in strategy 2
indicate that server type 1 runs for exactly one time slot.

We want to find a lower bound for the competitive ratio C(XA)
C(X∗) . The cost of A is split

into the cost during the K- and L-phases denoted by CK(XA) and CL(XA), respectively.
For the K-phases, C(X∗) is estimated by the first strategy. The cost of the first strategy
during the L-phases is negligible, since operating server type k only causes a cost of at
most 1/N2 times the cost of A during the L-phases. In contrast to the first strategy,
the online algorithm has to pay the switching cost βk for each K-phase. Similar to
the Ski-Rental problem, this results in a competitive ratio of 2 regarding the K-phases.
Formally, we get

CK(XA)
C(X∗) ≥ 2 − O

(
k

N

)
.

The term O (k/N) results from the small cost of X∗ during the L-phases.
To estimate CL(XA)/C(X∗), we use the second strategy. Here, the cost of X∗ during

the K-phases and short L-phases are negligible. For the long L-phases, we can use the
induction hypothesis resulting in a competitive ratio of α. Formally, we get

CL(XA)
C(X∗) ≥ α − O

(
k

N

)
.

Adding both inequalities and using the definitions of α and ϵk finally gives us

C(XA)
C(X∗) ≥ 2k − ϵk.

A complete and precise calculation of the quotient C(XA)
C(X∗) (including the estimation of

the small terms) can be found in [AQ21a].
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Now, we are able to proof Theorem 3.9.

Proof idea of Theorem 3.9. Assume that A is a (2d−ϵ)-competitive deterministic online
algorithm. Let N := max{6d, ⌈9k2/ϵ + 1⌉}. We construct a workload as described above
until the cost of A exceeds Nβd. This is always the case at some point, since A has
to pay either a switching or an operating cost for each time slot and both of them are
greater than zero. By Lemma 3.7 with k = d, we get

C(XA) ≥ (2d − ϵd) · C(X∗) > (2d − ϵ) · C(X∗).

For the last step, we use the definitions of ϵd and N . The final result is a contradiction
to the assumption that A is (2d − ϵ)-competitive.

In the proof of Theorem 3.9, we only use one server of each type. Therefore, we get a
lower bound of 2m for a data center with m unique servers. We summarize this result
in the following corollary.

Corollary 3.2 [AQ21a, Corollary 19]. Given a data center with m unique non-inefficient
servers with equal computational power and constant operating costs, there is no deter-
ministic online algorithm that achieves a competitive ratio smaller than 2m.

3.2.5 Lower bound for arbitrary convex operating cost functions

At the beginning of this chapter, we claimed that no deterministic online algorithm
handling arbitrary convex operating cost functions gt can achieve a sub-exponential
competitive ratio. In this setting, gt is not restricted to the form given by equation (3.2),
but it can be an arbitrary convex function. In the following, we want to prove this claim.

Theorem 3.10. There is no deterministic online algorithm for the heterogeneous data
center right-sizing problem with arbitrary convex operating cost functions gt that achieves
a competitive ratio smaller than 2d + 2d−1

d .

The proof of this theorem was not published yet. Therefore, the complete proof
is shown below. A weaker, but still exponential lower bound of 2d−1

d was mentioned
in [AQ21c] and [AQ21e]. For a homogeneous data center with only one server type
(i.e., d = 1), Theorem 3.10 gives us a lower bound of 3 which is tight by Theorem 2.2
(showing the 3-competitiveness of the LCP algorithm).

Proof of Theorem 3.10. We consider a data center with mj = 1 server of each type. To
simplify the analysis, the switching cost is paid for both power-up and power-down
operations. Switching the state of any server always causes a cost of βj = 1. We use 2d

different operating cost functions denoted by hy with y ∈ {0, 1}d. The functions are
defined as

hy(x) =
{

ϵ if x = y

0 else
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with ϵ > 0.
Let A be an arbitrary deterministic online algorithm with the schedule XA. At time

slot t, the adversary will send the function hy with y = xA
t , so if the online algorithm

will keep its state, it has to pay the operating cost ϵ. Let S be the number of time slots
where algorithm A changes the state of at least one server. Hence, the total operating
cost of algorithm A is given by (T − S)ϵ. The switching cost of A is at least S, as
switching the state of any server causes a cost of βj = 1. Therefore, the total cost of
algorithm A is at least

C(XA) ≥ Tϵ + S(1 − ϵ). (3.9)

If algorithm A switches its state very often, a good offline strategy is to stay at
one state for the whole workload. There exists one state whose cost is at most Tϵ/2d.
Reaching this state and going back to 0 at the end of the time horizon, produces a
switching cost of at most 2d. If A performs only a few state changes, a good offline
strategy is to switch to the state that A does not visit for the longest time. So after
2d − 1 state changes of A, the offline algorithm will switch its state causing a cost of
at most d. Again, we have to add 2d for the beginning and the end of the workload.
Therefore, the cost of the optimal offline solution is at most

C(X∗) ≤ min
{

Tϵ/2d + 2d
d

2d−1 · S + 2d
(3.10)

We want to find a lower bound for the competitive ratio given by C(XA)
C(X∗) . Let κ := d

2d−1
be the coefficient of S in equation (3.10) and let ν := 2d be the number of states. We
distinguish whether or not the inequality

Tϵ ≥ Sκν + 2dν + 2d/κ · (1 − ϵ) (3.11)

holds.
If it holds (case 1), we estimate the cost of the optimal solution with C(X∗) ≤ Sκ+2d

and get

C(XA)
C(X∗)

(3.9)
(3.10)

≥ Tϵ + S(1 − ϵ)
Sκ + 2d

(3.11)
≥ Sκν + 2dν + 2d/κ · (1 − ϵ) + S(1 − ϵ)

Sκ + 2d

= ν + 1 − ϵ

κ
.

In the second step, we use inequality (3.11) to estimate Tϵ. In the last step, we just
simplify the term. If ϵ goes to 0, we get

lim
ϵ→0

C(XA)
C(X∗) ≥ ν + 1

κ
= 2d + 2d − 1

d
.
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In case 2, we have Tϵ < Sκν + 2dν + 2d/κ · (1 − ϵ) which is equivalent to

S > Tϵ/(κν) − 2d/κ − 2d/(κ2ν) · (1 − ϵ). (3.12)

We estimate the cost of the optimal solution with C(X∗) ≤ Tϵ/ν + 2d and get

C(XA)
C(X∗)

(3.9)
(3.10)

≥ Tϵ + S(1 − ϵ)
Tϵ/ν + 2d

(3.12)
≥

Tϵ +
(
Tϵ/(κν) − 2d/κ − 2d/(κ2ν) · (1 − ϵ)

)
· (1 − ϵ)

Tϵ/ν + 2d

= ν + 1 − ϵ

κ
− 2dν + 4d/κ + 2d/(κ2ν) · (1 − ϵ)

Tϵ/ν + 2d
· (1 − ϵ) (3.13)

By setting T := 1
ϵ2 , we get limϵ→0 Tϵ = ∞. Since the ν and κ only depend on d, the

whole subtrahend in (3.13) converges to 0. Therefore, we get

lim
ϵ→0

C(XA)
C(X∗) ≥ ν + 1

κ
= 2d + 2d − 1

d

which is the same value as in case 1.
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4 Conclusions
Energy conversation in data centers is an important issue for both economical and
ecological reasons. In this thesis, we examined the data center right-sizing problem
where idle servers can be powered down to save energy. In contrast to related work
such as [LWAT13,BGK+15,Sel20], we studied the discrete setting where the number of
active servers must be integral. Thereby, we gain truly feasible solutions. We analyzed
both the offline and the online version of the data center right-sizing problem. In the
following, we conclude our results and present some open questions for future work.

4.1 Results
For homogeneous data centers (Chapter 2), we presented an optimal offline algorithm
that runs in O(T log m) time. For the online setting, we developed a 3-competitive
deterministic and a 2-competitive randomized algorithm. We showed that no algorithm
can achieve better results, so our online algorithms are optimal. Furthermore, we
proved that no algorithm for the fractional setting exists whose competitive ratio is
smaller than 2. All lower bounds still hold for the restricted model introduced by Lin et
al. [LWAT11a]. Finally, we showed that the lower bounds do not change if the online
algorithm has a prediction window with constant length.

In Chapter 3, we analyzed heterogeneous data centers with d different server types. The
operating cost of server type j at time t is modeled by a non-negative increasing convex
function ft,j of the load. First, we analyzed the offline version. We presented an optimal
offline algorithm that runs in O(T ·

∏d
j=1 mj) time. However, this runtime is only pseudo-

polynomial since the encoding length of the problem depends logarithmically on mj .
We developed a (1 + ϵ)-approximation algorithm that runs in O(T · ϵ−d∏d

j=1 log mj)
time which is polynomial if d is a constant. Our algorithm still works if the number of
available servers depends on time.

Afterwards, we analyzed the online version. First, we studied the simplified problem
where the operating cost is time- and load-independent, i.e., ft,j(z) = rj = const.
Furthermore, we had to exclude inefficient server types and assumed that all servers have
the same computational power (zmax

j = 1). We developed a 2d-competitive deterministic
online algorithm for this setting and showed a lower bound of 2d. Hence, our algorithm is
optimal. We were able to improve the competitive ratio by randomization and obtained
a 1.582d-competitive randomized algorithm. For load-dependent, but time-independent
operating cost functions ft,j(z) = fj(z), we developed a (2d+1)-competitive deterministic
online algorithm. Each server type had its own computational power and the exclusion
of inefficient server types was no longer necessary. We extended our algorithm such
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that it can handle time-dependent operating cost functions and achieved a competitive
ratio of 2d + 1 + ϵ for any ϵ > 0. Note that the lower bound of 2d still holds for these
generalizations, so our online algorithms are almost optimal. Finally, we proved that
arbitrary convex operating cost functions gt lead to an at least exponential competitive
ratio.

4.2 Open questions

Although we obtained several new results, there are still many open questions, especially
regarding the discrete setting of the data center right-sizing problem. The most important
one is the missing NP-hardness proof for heterogeneous data centers with a constant
number of server types. For homogeneous data centers we presented a polynomial time
algorithm, however, extending this algorithm to d ≥ 2 dimensions does not lead to
optimal schedules any more. The polynomial-time algorithm by [Alb19] only works
for load-independent operating costs and cannot be extended to convex operating cost
functions. On the other hand, the NP-hardness proof in [Sch18] requires multiple sleep
states and cannot be adapted to our problem.

Our results for deterministic online algorithms are almost optimal. We gained an
upper bound of 2d + 1 + ϵ and a lower bound of 2d, so there is only little room for
improvements. However, for randomized algorithms there is still a large gap between
the best known upper and lower bound. For time- and load-independent operating
cost functions, we developed a 1.582d-competitive online algorithm, while the best
known lower bound is e

e−1 ≈ 1.582 given by the Ski-Rental problem [KKR01]. The
randomization of our online algorithm only affects the running time of a server, but
not the selection of the server types itself. Therefore, it might be possible to achieve a
sublinear competitive ratio by choosing the server types randomly.

Another open question is whether, and if so, how our algorithms for load-dependent
operating costs can be randomized to improve the competitive ratio. We tried to
randomize the algorithm for time-independent operating cost functions fj presented in
Section 3.2.2 by randomizing the running time of a server, however, we were not able to
prove a better competitive ratio.

We have shown that the competitive ratio of a deterministic algorithm for general
operating cost functions gt is at least exponential. It is an open question if this still
holds for randomized algorithms. Since there is a (d + 1)-competitive algorithm in the
fractional setting by [Sel20], it might be possible to achieve a linear competitive ratio by
randomly rounding the fractional solution properly.

Convex function chasing on an arbitrary metric has a lower bound of d, so the (d + 1)-
competitive online algorithm by [Sel20] is almost optimal for this general case. The
proof of the lower bound uses the maximum metric. However, for the Manhattan metric
which is related to the data center right-sizing problem, the best known lower bound is
Ω(log d) [ABC+19]. It would be interesting if one can improve the lower bound or the
competitive ratio for this metric.
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Another generalization are time-dependent switching costs βt,j . One could inves-
tigate whether the binary search approach of our polynomial time offline algorithm
for homogeneous data centers still leads to an optimal schedule. Furthermore, it is
unclear if the approximation algorithm for heterogeneous data centers still produces a
(1 + ϵ)-approximation. For the online version further restrictions are needed, since in
general there is no competitive algorithm for time-dependent switching costs.

In this work, we only consider the two-state problem, where each server has an
active and exactly one inactive state. Multiple sleep states were, for example, analyzed
by [ISG03, AIS08] for a single machine in the online setting and by [Alb19] for a
heterogeneous data center in the offline setting. It would be interesting to combine the
results from [ISG03,AIS08] with our algorithms for homogeneous and heterogeneous
data centers. Regarding the offline problem, it is unclear if the right-sizing problem of a
homogeneous data center with constant operating costs and multiple sleep states can be
solved in polynomial time. For a heterogeneous data center with two states, this is the
case [Alb19], but for an unbounded number of sleep states and server types the problem
is NP-hard [Sch18].

Heterogeneity often results from different architectures like GPUs and CPUs. The
model introduced in Chapter 3 can handle multiple server types with different operating
cost functions and computational speeds. However, we assumed that the incoming job
volume is homogeneous. In reality, this is not the case. There might be branchless jobs
with massive parallel calculations designed for the GPUs that would run quite slow on a
pure CPU server. Thus, the processing time does not only depend on the server type,
but also on the job types assigned to a server. A single one-dimensional operating cost
function per server type is not sufficient to model this situation. Given e different job
types, one possibility is to use e-dimensional operating cost functions ft,j(z1, . . . , ze)
where zk denotes the job volume of type k processed by a single server of type j at
time t. Regarding the online problem, it would be interesting to see how the upper and
lower bounds change when handling, for example, e = 2 job types.

A prediction window with constant length does not improve the competitive ratio
of any online algorithm as shown in Section 2.4.4, since the time slots can be made
arbitrarily short such that the advantage of the prediction window is nullified. Thus, one
may consider a prediction window whose length depends on the operating and switching
costs. For example, given a fixed fraction η > 0, at time t the online algorithm knows
the operating cost functions for all t′ ≥ t satisfying the inequality

∑t′
u=t fu,j(0) ≤ η · βj .

In other words, the algorithm knows the next t′ − t operating cost functions, if their
accumulated idle operating cost does not exceed the fraction η of the switching cost.

In practice, more information about the job distribution is known. For example, a
data center usually receives more jobs during the day than at night, and at the weekends
the workload is usually lower than on working days. There are publications investigating
the data center right-sizing problem under stochastic models like [CAW+15, LQL18],
however, they only analyze the fractional setting. Regarding the discrete setting, nothing
is known yet.
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Another large open research area is the combination of scheduling problems with
the data center right-sizing problem. In this case, we do not have a job volume λt

that can be distributed arbitrarily, but we have single jobs with different processing
times and deadlines. There are some publications handling the offline problem, e.g.,
[BCD12, DGH+13, AGKK20], however, not much is known yet regarding the online
problem.

In this PhD thesis, we analyzed the data-center right-sizing problem from a theoretical
point of view proving competitive ratios, lower bounds and approximation factors. From
a practical point of view, it would be interesting to see how the algorithms perform on
real data centers. Some experimental results of the algorithms developed in this work
can be found in the bachelor thesis of Jonas Hübotter [Hüb21]. However, there is still
room for further investigation.
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Appendix A

Variables

The following table gives an overview of the variables defined in this work.

A.1 Latin lowercase letters

Variable Description
c(I) Constant that depends on the problem instance. Formally, c(I) :=∑d

j=1 maxt∈[T ]
ft,j (0)

βj
.

d Number of server types.
f(z) Operating cost in the restricted model for a single server in a homogeneous

data center running with load z ∈ [0, 1] for a single time slot.
fj(z) Operating cost for a single server of type j running with load z ∈ [0, zmax

j ] for
one time slot.

ft,j(z) Operating cost for a single server of type j running with load z ∈ [0, zmax
j ]

during time slot t.
gt(xt) Operating cost for the server configuration xt during time slot t.
ḡt(x) Continuous extension of gt, see equation (2.1).
gt,j(x, q) Operating cost of x servers of type j processing the fraction q of the incoming

job volume at time t.
m Total number of servers, m :=

∑d

j=1 mj .
m Number of servers for each type. Formally, m = (m1, . . . , md).
mj Number of servers of type j.
mt,j Number of available server of type j at time t.
ñt Number of sub time slots for time slot t in algorithm E .
qt,j Job fraction assigned to server type j at time slot t.
rj Constant operating cost of server type j.
t̄j , t̄t,j Running time of a single server of type j (at time t). The precise definition

depends on the particular algorithm.
wt,j Number of servers of type j that were powered up at time slot t.
xt, x∗

t , x̂k
t , x̄t, xΞ

t Number of active servers in a homogeneous data center at time t in the sched-
ule X, X∗, X̂k, X̄ or XΞ with Ξ ∈ {LCP, R}, respectively.

xt Server configuration at time slot t. Formally, xt = (xt,1, . . . , xt,d).
xL

τ , xU
τ Last state of XL

τ and XU
τ , respectively. Formally, xL

τ := xL
τ,τ and xU

τ := xU
τ,τ .
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Appendix A Variables

Variable Description
xt,j , x∗

t,j , x̂u
t,j , xΞ

t,j Number of active servers of type j at time t in the schedule X, X∗, X̂u or XΞ

with Ξ ∈ {A, B, C, D, E}, respectively.
yt,k, yA

t,k, ŷu
t,k Server type used in the k-th lane at time t in the schedule X, XA or X̂u,

respectively.
ỹu

t,k Largest server type used in lane k by the schedule X̂t′
at time slot t′ for

t′ ∈ [t : u]. Formally, ỹu
t,k := maxt′∈[t:u] ŷt′

t′,k.
zmax

j Maximal amount of jobs that a single server of type j can process per time
slot.

A.2 Latin uppercase letters

Variable Description
Aj,i The i-th block for server type j in the schedule XC or XD.
At,k Block at time slot t in lane k of the schedule XA or XB.
C(X) Total cost of the schedule X, see equation (1.1).
CJ (X) Total cost of the schedule X regarding the problem instance J .
Ct,k(X) Switching and operating cost of the schedule X at time t in lane k.
G, G(I) Graph representing the problem instance I.
G Operating cost function sequence. Formally, G = (g1, . . . , gT ).
I Problem instance.
I =(T,m,β,G) Problem instance of a homogeneous data center in the general model.
I =(T,m,β,f,Λ) Problem instance of a homogeneous data center in the restricted model.
I =(T,d,m,β,G) Problem instance of a heterogeneous data center with arbitrary convex operat-

ing cost functions gt.
I =(T,d,m,β,r,Λ) Problem instance of a heterogeneous data center with constant operating

costs r = (r1, . . . , rd).
I =(T,d,m,β,F,Λ) Problem instance of a heterogeneous data center with operating cost functions

F = (f1,1, . . . , fT,d).
Ī Continuous extension of the problem instance I.
Ik Problem instance solved in iteration k of GraphBasedBinarySearch. The

number of active servers must be a multiple of 2k.
It Problem instance that ends at time slot t.
K Index of the first iteration in GraphBasedBinarySearch. The total number

of iterations is given by K + 1. Formally, K := log2 m − 2.
Mγ

j Set of values that the number of active servers of type j can take on in the
approximation algorithm with parameter γ.

Mk Considered states in iteration k of GraphBasedBinarySearch. Formally,
Mk := {n ∈ [m]0 | n mod 2k = 0}.

Lt,j(X) Load-dependent operating cost for server type j at time t in the schedule X,
see equation (3.6).

Q Set of all possible job assignments. Formally,
Q := {(q1, . . . , qd) ∈ [0, 1]d |

∑d

j=1 qj}.
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A.3 Greek letters

Variable Description
R(X), RJ (X) Operating cost of the schedule X (regarding the problem instance J ).
S(X), SJ (X) Switching cost of the schedule X (regarding the problem instance J ).
T Total number of time slots.
Wt Servers that were powered up at time slot u ∈ Wt in algorithm D will be

powered down at time slot t.
X An arbitrary schedule. Formally, X = (x1, . . . ,xT ) and xt = (xt,1, . . . , xt,d).
X∗ An optimal schedule.
XΞ Schedule calculated by algorithm Ξ ∈ {A, B, C, D, E , LCP, R}.
X̂k Optimal schedule calculated in iteration k in GraphBasedBinarySearch.

The number of active servers are always multiples of 2k.
XL

τ , XU
τ Lower and upper bound used for the LCP algorithm. Formally,

XL
τ = (xL

τ,1, . . . , xL
τ,τ ) and XU

τ = (xU
τ,1, . . . , xU

τ,τ ).
X̂t Optimal schedule for the problem instance It that ends at time t.
X Set of all possible server configurations. Formally, X :=×d

j=1[mj ]0.
X γ Set of considered server configurations in the approximation algorithm with

parameter γ.

A.3 Greek letters

Variable Description
β Switching cost of a single server in a homogeneous data center.
β Switching cost vector. Formally, β = (β1, . . . , βd).
βj Switching cost of server type j.
γ Parameter of the approximation algorithm. The algorithm calculates a (2γ − 1)-

approximation.
λt Job volume that arrives at time slot t.
Λ Sequence of job volumes. Formally, Λ = (λ1, . . . , λT ).
Ω(J ) The set of all optimal schedules for the problem instance J .
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Appendix B

Optimal Algorithms for Right-Sizing Data
Centers, SPAA 2018

This chapter has been published as peer-reviewed conference paper [AQ18a].

Susanne Albers and Jens Quedenfeld. Optimal algorithms for right-sizing
data centers. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures (SPAA’18), pages 363–372. ACM, 2018.

An extended version that contains all proofs and some additional results was submitted
to the ACM journal Transactions on Parallel Computing on 16th March 2021, but the
reviewing process has not yet been finished. A preprint of the extended version can be
found on arXiv [AQ18b], see https://arxiv.org/abs/1807.05112.

Synopsis. We analyze the right-sizing problem of homogeneous data centers in the
discrete setting where the number of active servers must be integral. First, we present
an offline algorithm that calculates the optimal schedule in polynomial time. Afterwards,
we investigate the online setting and show that the LCP algorithm is 3-competitive
in the discrete setting. We prove that no deterministic online algorithm can achieve
a competitive ratio smaller than 3, so LCP is optimal. Furthermore, we show a lower
bound of 2 for the fractional setting. Finally, we prove that all lower bounds still hold
for a more restricted model introduced by Lin et al. [LWAT11a].

Contributions of thesis author. The thesis author developed the algorithms and lower
bounds including all proofs. He wrote the whole manuscript except for the abstract and
the introduction.
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ABSTRACT
Electricity cost is a dominant and rapidly growing expense in data
centers. Unfortunately, much of the consumed energy is wasted
because servers are idle for extended periods of time. We study
a capacity management problem that dynamically right-sizes a
data center, matching the number of active servers with the vary-
ing demand for computing capacity. We resort to a data-center
optimization problem introduced by Lin, Wierman, Andrew and
Thereska [17, 19] that, over a time horizon, minimizes a combined
objective function consisting of operating cost, modeled by a se-
quence of convex functions, and server switching cost. All prior
work addresses a continuous setting in which the number of active
servers, at any time, may take a fractional value.

In this paper, we investigate for the first time the discrete data-
center optimization problem where the number of active servers,
at any time, must be integer valued. Thereby we seek truly feasible
solutions. First, we show that the offline problem can be solved
in polynomial time. Our algorithm relies on a new, yet intuitive
graph theoretic model of the optimization problem and performs
binary search in a layered graph. Second, we study the online prob-
lem and extend the algorithm Lazy Capacity Provisioning (LCP)
by Lin et al. [17, 19] to the discrete setting. We prove that LCP
is 3-competitive. Moreover, we show that no deterministic online
algorithm can achieve a competitive ratio smaller than 3. Hence,
while LCP does not attain an optimal competitiveness in the con-
tinuous setting, it does so in the discrete problem examined here.
We prove that the lower bound of 3 also holds in a problem variant
with more restricted operating cost functions, introduced by Lin et
al. [17].

Finally, we address the continuous setting and give a lower bound
of 2 on the best competitiveness of online algorithms. This matches
an upper bound by Bansal et al. [5]. A lower bound of 2 was also
recently shown by Antoniadis and Schewior [3]. We develop an
independent proof that extends to the scenario with more restricted
operating cost.
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1 INTRODUCTION
Energy conservation in data centers is a major concern for both
operators and the environment. In the U.S., about 1.8% of the total
electricity consumption is attributed to data centers [22]. In 2015,
more than 416 TWh (terawatt hours) were used by the world’s data
centers, which exceeds the total power consumption in the UK [7].
Electricity cost is a significant expense in data centers [9]; about
18–28% of their budget is invested in power [8, 13]. Remarkably,
the servers of a data center are only utilized 20–40% of the time
on average [4, 6]. Even worse, when idle and in active mode, they
consume about half of their peak power [21]. Hence, a promising
approach for energy conservation and capacity management is to
transition idle servers into low-power sleep states. However, state
transitions, and in particular power-up operations, also incur en-
ergy/cost. Therefore, dynamically matching the number of active
servers with the varying demand for computing capacity is a chal-
lenging optimization problem. In essence, the goal is to right-size a
data center over time so as to minimize energy and operation costs.

ProblemFormulation.We investigate a basic algorithmic prob-
lem with the objective of dynamically resizing a data center. Specif-
ically, we resort to a framework that was introduced by Lin, Wier-
man, Andrew and Thereska [17, 19] and further explored, for in-
stance, in [1–3, 5, 18, 20, 23].

Consider a data center withm homogeneous servers, each of
which has an active state and a sleep state. An optimization is
performed over a discrete, finite time horizon consisting of time
steps t = 1, . . . ,T . At any time t , 1 ≤ t ≤ T , a non-negative
convex cost function ft (·) models the operating cost of the data
center. More precisely, ft (xt ) is the incurred cost if xt servers are
in the active state at time t , where 0 ≤ xt ≤ m. This operating
cost captures, e.g., energy cost and service delay, for an incoming
workload, depending on the number of active servers. Furthermore,
at any time t there is a switching cost, taking into account that
the data center may be resized by changing the number of active
servers. This switching cost is equal to β (xt − xt−1)+, where β is a
positive real constant and (x )+ = max(0,x ). Here we assume that
transition cost is incurred when servers are powered up from the
sleep state to the active state. A cost of powering down servers
may be folded into this cost. The constant β incorporates, e.g., the
energy needed to transition a server from the sleep state to the
active state, as well as delays resulting from a migration of data and
connections. We assume that at the beginning and at the end of the
time horizon all servers are in the sleep state, i.e. x0 = xT+1 = 0.
The goal is to determine a vector X = (x1, . . . ,xT ) called schedule,
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specifying at any time the number of active servers, that minimizes
T∑

t=1
ft (xt ) + β

T∑

t=1
(xt − xt−1)

+. (1)

In the offline version of this data-center optimization problem, the
convex functions ft , 1 ≤ t ≤ T , are known in advance. In the online
version, the ft arrive over time. At time t , function ft is presented.
Recall that the operating cost at time t depends for instance on the
incoming workload, which becomes known only at time t .

All previous work on the data-center optimization problem as-
sumes that the server numbers xt , 1 ≤ t ≤ T , may take fractional
values. That is, xt may be an arbitrary real number in the range
[0,m]. From a practical point of view this is acceptable because a
data center has a large number of machines. Nonetheless, from an
algorithmic and optimization perspective, the proposed algorithms
do not compute feasible solutions. Important questions remain if
the xt are indeed integer valued: (1) Can optimal solutions be com-
puted in polynomial time? (2) What is the best competitive ratio
achievable by online algorithms? In this paper, we present the first
study of the data-center optimization problem assuming that the
xt take integer values and, in particular, settle questions (1) and (2).

Previous Work. As indicated above, all prior work on the data-
center optimization problem assumes that the xt , 1 ≤ t ≤ T , may
take fractional values in [0,m]. First, Lin et al. [19] consider the
offline problem. They develop an algorithm based on a convex
program that computes optimal solutions. Second, Lin et al. [19]
study the online problem. They devise a deterministic algorithm
called Lazy Capacity Provisioning (LCP) and prove that it achieves
a competitive ratio of exactly 3. Algorithm LCP, at any time t ,
computes a lower bound and an upper bound on the number of
active servers by considering two scenarios in which the switching
cost β is charged, either when a server is powered up or when
it is powered down. The LCP algorithm lazily stays within these
two bounds. The tight bound of 3 on the competitiveness of LCP
also holds if the algorithm has a finite prediction windoww , i.e. a
time t it knows the current as well as the nextw arriving functions
ft , . . . , ft+w . Furthermore, Lin et al. [19] perform an experimental
study with two real-world traces evaluating the savings resulting
from right-sizing in data centers.

Bansal et al. [5] presented a 2-competitive online algorithm and
showed that no deterministic or randomized online strategy can
attain a competitiveness smaller than 1.86. Recently, Antoniadis
and Schewior [3] improved the lower bound to 2. Bansal et al. [5]
also gave a 3-competitive memoryless algorithm and showed that
this is the best competitive factor achievable by a deterministic
memoryless algorithm. The data-center optimization problem is an
online convex optimization problem with switching costs. Andrew
et al. [1] showed that there is an algorithm with sublinear regret but
that O (1)-competitiveness and sublinear regret cannot be achieved
simultaneously. Antoniadis et al. [2] examine generalized online
convex optimization, where the values xt selected by an algorithm
may be points in a metric space, and relate it to convex body chasing.

Further work on energy conservation in data center includes, for
instance, [14, 15]. Khuller et al. [14] introduce a machine activation
problem. There exists an activation cost budget and jobs have to
be scheduled on the selected, activated machines so as to minimize

the makespan. They present algorithms that simultaneously ap-
proximate the budget and the makespan. A second paper by Li and
Khuller [15] considers a generalization where the activation cost
of a machine is a non-decreasing function of the load. In the more
applied computer science literature, power management strategies
and the value of sleep states have been studied extensively. The
papers focus mostly on experimental evaluations. Articles that also
present analytic results include [10–12].

Our Contribution. We conduct the first investigation of the
discrete data-center optimization problem, where the values xt ,
specifying the number of active servers at any time t ∈ {1, . . . ,T },
must be integer valued. Thereby, we seek truly feasible solutions.

First, in Section 2 we study the offline algorithm. We show that
optimal solutions can be computed in polynomial time. Our al-
gorithm is different from the convex optimization approach by
Lin et al. [19]. We propose a new, yet natural graph-based rep-
resentation of the discrete data-center optimization problem. We
construct a grid-structured graph containing a vertex vt, j , for each
t ∈ {1, . . . ,T } and j ∈ {0, . . . ,m}. Edges represent right-sizing oper-
ations, i.e. changes in the number of active servers, and are labeled
with operating and switching costs. An optimal solution could be
determined by a shortest path computation. However, the resulting
algorithm would have a pseudo-polynomial running time. Instead,
we devise an algorithm that improves solutions iteratively using
binary search. In each iteration the algorithm uses only a constant
number of graph layers. The resulting running time is O (T logm).

The remaining paper focuses on the online problem and develops
tight bounds on the competitiveness. In Section 3 we adapt the LCP
algorithm by Lin et al. [19] to the discrete data-center optimization
problem. We prove that LCP is 3-competitive, as in the continuous
setting. We remark that our analysis is different from that by Lin et
al. [19]. Specifically, our analysis resorts to the discrete structure of
the problem and identifies respective properties. The analysis by
Lin et al. [19] relates to their convex optimization approach that
characterizes optimal solutions in the continuous setting.

In Section 4 we devise lower bounds. We prove that no determin-
istic online algorithm can obtain a competitive ratio smaller than 3.
Hence, LCP achieves an optimal competitive factor. Interestingly,
while LCP does not attain an optimal competitiveness in the con-
tinuous data-center optimization problem (where the xt may take
fractional values), it does so in the discrete problem. We prove that
the lower bound of 3 on the best possible competitive ratio also
holds for a more restricted setting, originally introduced by Lin et
al. [17] in the conference publication of their paper. Specifically,
the problem is to find a vector X = (x1, . . . ,xT ) that minimizes

T∑

t=1
xt f (λt /xt ) + β

T∑

t=1
(xt − xt−1)

+, (2)

subject to xt ≥ λt , for t ∈ {1, . . . ,T }. Here λt is the incoming
workload at time t and f (z) is a non-negative convex function
representing the operating cost of a single server running with
load z ∈ [0, 1]. Since f is convex, it is optimal to distribute the
jobs equally to all active servers, so that the operating cost at time
t is xt f (λt /xt ). This problem setting is more restricted in that
there is only a single function f modeling operating cost over the
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Figure 1: Construction of the graph.

time horizon. Nonetheless it is well motivated by real data center
environments.

Furthermore, in Section 4 we address the continuous data-center
optimization problem and prove that no deterministic online al-
gorithm can achieve a competitive ratio smaller than 2. The same
result was shown by Antoniadis and Schewior [3]. We develop an
independent proof that can again be extended to the more restricted
optimization problem stated in (2), i.e. the lower bound of 2 on the
best competitiveness holds in this setting as well.

Finally, in Section 4 we analyze online algorithms with a finite
prediction window, i.e. at time t an online algorithm knows the
current as well as the nextw arriving functions ft , . . . , ft+w . We
show that all our lower bounds, for both settings (continuous and
discrete) and both models (general and restricted), still hold.

2 AN OPTIMAL OFFLINE ALGORITHM
In this section we study the offline version of the discrete data-
center optimization problem. We develop an algorithm that com-
putes optimal solutions in O (T logm) time.

2.1 Graph-based approach
Our algorithm works with an underlying directed, weighted graph
G = (V ,E) that we describe first. Let [k] B {1, 2, . . . ,k } and [k]0 B
{0, 1, . . . ,k } with k ∈ N. For each t ∈ [T ] and each j ∈ [m]0, there is
a vertex vt, j , representing the state that exactly j servers are active
at time t . Furthermore, there are two verticesv0,0 andvT+1,0 for the
initial and final states x0 = 0 and xT+1 = 0. For each t ∈ {2, . . . ,T }
and each pair j, j ′ ∈ [m]0, there is a directed edge from vt−1, j to
vt, j′ having weight β (j ′−j )++ ft (j ′). This edge weight corresponds
to the switching cost when changing the number of servers between
time t−1 and t and to the operating cost incurred at time t . Similarly,
for t = 1 and each j ′ ∈ [m]0, there is a directed edge from v0,0
to v1, j′ with weight f1 (j ′) + β (j ′)+. Finally, for t = T and each
j ∈ [m]0, there is a directed edge from vT , j to vT+1,0 of weight 0.
The structure of G is depicted in Figure 1.

In the following, for each j ∈ [m]0, vertex set Rj = {vt, j | t ∈
[T ]} is called row j. For each t ∈ [T ], vertex set Ct = {vt, j | j ∈
[m]0} is called column t .

A path between v0 and vT+1 represents a schedule. If the path
visits vt, j , then xt = j servers are active at time t . Note that a path
visits exactly one vertex in each column Ct , 1 ≤ t ≤ T , because the
directed edges connect adjacent columns. The total length (weight)
of a path is equal to the cost of the corresponding schedule. An opti-
mal schedule can be determined using a shortest path computation,
which takes O (Tm) time in the particular graphG. However, this
running time is not polynomial because the encoding length of an

input instance is linear in T and logm, in addition to the encoding
of the functions ft .

In the following, we present a polynomial time algorithm that
improves an initial schedule iteratively using binary search. In each
iteration the algorithm constructs and uses only a constant number
of rows of G.

2.2 Polynomial time algorithm
An instance of the data-center optimization problem is defined by
the tuple P = (T ,m, β , F ) with F = ( f1, . . . , fT ). We assume that
m is a power of two. If this is not the case we can transform the
given problem instance P = (T ,m, β, F ) to P ′ = (T ,m′, β , F ′) with
m′ = 2 ⌈logm ⌉ and

f ′t (x ) =

ft (x ) x ≤ m

x · ( ft (m) + ϵ ) otherwise

with ϵ > 0. The term x · ft (m) ensures that f ′t (x ) is a convex
function, since the greatest slope of ft is ft (m)− ft (m−1) ≤ ft (m).
The inequality holds because ft (x ) ≥ 0 for all x ∈ [m]0. The
additional term x · ϵ ensures that it is adverse to use a state x > m,
because the cost of ft (m) is always smaller.

Our algorithm uses logm − 1 iterations denoted reversely by
k = K B logm − 2 for the first iteration and k = 0 for the last
iteration. The states used in iteration k are always multiples of 2k .
For the first iteration we use the rows R0,Rm/4,Rm/2,R3m/4,Rm ,
so that the graph of the first iteration contains the vertices

VK B {v0,0,vT+1,0} ∪
{
vt,ξ ·m/4 | t ∈ [T ], ξ ∈ {0, 1, 2, 3, 4}

}
.

The optimal schedule for this simplified problem instance can be
calculated in O (T ) time, since each column contains only five states.
Given an optimal schedule X̂k = (x̂k1 , . . . , x̂

k
T ) of iteration k , let

V k−1
t B

{
x̂kt + ξ · 2k−1 | ξ ∈ {−2,−1, 0, 1, 2}

}
∩ [m]0

be the states used in the t-th column of the next iteration k − 1.
Thus the iteration k − 1 uses the vertex set

V k−1 B {v0,0,vT+1,0} ∪
{
vt, j | t ∈ [T ], j ∈ V k−1

t
}
.

Note that the states with ξ ∈ {−2, 0, 2} were already used in
iteration k and we just insert the intermediate states ξ = −1 and
ξ = 1. If x̂kt = 0 (or x̂kt =m), then ξ ∈ {−2,−1} (or ξ ∈ {1, 2}) leads
to negative states (or to states larger thanm), thus the set V k−1

t is
cut with [m]0 to ensure that we only use valid states.

The last iteration (k = 0) provides an optimal schedule for the
original problem instance as shown in the next section. The runtime
of the algorithm is O (T · logm) and thus polynomial.

2.3 Correctness
To prove the correctness of the algorithm described in the previous
section we have to introduce some definitions:

Given the original problem instance P = (T ,m, β , F ), we define
Pk (with k ∈ [K]0 B [logm − 2]0) as the data-center optimiza-
tion problem where we are only allowed to use the states that are
multiples of 2k . Let Mk B {n ∈ [m]0 | n mod 2k = 0}, so X is a
feasible schedule for Pk if xt ∈ Mk holds for all t ∈ [T ]. To ex-
press Pk as a tuple, we need another tuple element calledM which

Session 9 SPAA’18, July 16-18, 2018, Vienna, Austria

365



describes the allowed states, i.e. xt ∈ M for all t ∈ [T ]. The origi-
nal problem instance can be written as P = (T ,m, β, F , [m]0) and
Pk = (T ,m, β, F ,Mk ). Note that P0 = P. Let X̂k = (x̂k1 , . . . , x̂

k
T ) de-

note an optimal schedule for Pk . In general, for any given problem
instance Q = (T ,m, β , F ,M ), let Φk (Q ) B (T ,m, β , F ,M ∩ {i · 2k |
i ∈ N}), so Φk (P) = Pk .

Instead of using only states that are multiple of 2k we can also
scale a given problem instance Q = (T ,m, β, F ,M ) as follows. Let

Ψl (Q ) B (T ,m/2l , β · 2l , F ′,M ′)
with M ′ B {x/2l | x ∈ M }, F ′ = ( f ′1 , . . . , f

′
T ) and f ′(x )t B

ft (x ·2l ). Given a scheduleX = (x1, . . . ,xT ) forQ with costCQ (X ),
the corresponding schedule X ′ = (x1/2l , . . . ,xT /2l ) for Ψl (Q ) has
exactly the same cost, i.e. CQ (X ) = CΨl (Q ) (X ′). Note that the
problem instance Ψk (Pk ) uses all integral states less than or equal
tom/2l , so there are no gaps.

Furthermore, we introduce a continuous version of any given
problem instance Q where fractional schedules are allowed. Let
Q̄ = (T ,m, β, F̄ , [0,m]) with F̄ = ( f̄1, . . . , f̄T ) be the continuous
extension of the problem instance Q = (T ,m, β , F ,M ), where xt ∈
[0,m], f̄t : [0,m]→ R≥0 and

f̄t (x ) B

ft (x ) if x ∈ M
(⌈x⌉ − x ) ft (⌊x⌋) + (x − ⌊x⌋) ft (⌈x⌉) else.

The operating cost of the fractional states is linearly interpolated,
thus f̄t is convex for all t ∈ [T ]. Let X ∗ = (x∗1 , . . . ,x

∗
T ) ∈ [0,m]T

be an optimal schedule for P̄.
The set of all optimal schedules for a given problem instance Q

is denoted by Ω(Q ). LetCQ[a,b] (X ) B
∑b
t=a ft (xt ) +

∑b
t=a+1 β (xt −

xt−1)+ be the cost during the time interval {a,a + 1, . . . ,b}. We
define f0 (x ) B 0, so CQ[0,T ] (X ) = CQ (X ).

Now, we are able to prove the correctness of our algorithm. We
begin with a simple lemma showing the relationship between the
functions Φ and Ψ.

Lemma 2.1. The problem instances Φk−l (Ψl (Pl )) and Ψl (Pk ) are
equivalent.

The lemma can be proven by simple calculations using the defi-
nitions of Φ and Ψ as shown in the full version of this paper. The
next technical lemma will be needed later. Informally, it demon-
strates that optimal solutions of the reduced discrete problem and
the above continuous problem behave similarly.

Lemma 2.2. Let Y ∈ Ω(Pk ) be an optimal schedule for Pk with
k ∈ [K]0. There exists an optimal solution X ∗ ∈ Ω(P̄) such that

(yt − yt−1) · (x∗t − x∗t−1) ≥ 0 (3)

holds for all t ∈ [T ] with |yt − x∗t | ≥ 2k or |yt−1 − x∗t−1 | ≥ 2k .

The proof (see full paper) consists of a careful case distinction
according to the relations of yt−1,yt ,xt−1 and xt . By using this
lemma, we can show that an optimal solution for a discrete problem
instance Pk cannot be very far from an optimal solution of the
continuous problem instance P̄.

Lemma 2.3. Let X̂k ∈ Ω(Pk ) be an arbitrary optimal schedule for
Pk with k ∈ [K]0. There exists an optimal schedule X ∗ ∈ Ω(P̄) for
P̄ such that |x̂kt − x∗t | < 2k holds for all t ∈ [T ]. Formally,

∀k ∈ [K]0 : ∀X̂k ∈ Ω(Pk ) : ∃X ∗ ∈ Ω(P̄) : ∀t ∈ [T ] : |x̂kt −x∗t | < 2k .

Proof. To get a contradiction, we assume that there exists a
X̂k ∈ Ω(Pk ) with k ∈ [K]0 such that for all optimal schedules
X ∗ ∈ Ω(P̄) there is at least one t ∈ [T ] with |x̂kt − x∗t | ≥ 2k . Let
X ∗ ∈ Ω(P̄) be arbitrary. Given the schedule X̂k , let J1, . . . , Jl ⊆ [T ]
be the inclusion maximal time intervals such that |x̂kt − x∗t | ≥ 2k

holds for all t ∈ Jj and the sign of x̂kt − x∗t remains the same during
Jj . The set of all Jj with j ∈ [l] is denoted by J . If J is empty, then
the condition |x̂kt − x∗t | < 2k is fulfilled for all t ∈ [T ]. We divide
J into the disjunct sets J+ and J− such that J+ contains the
intervals where x̂kt − x∗t is positive and J− the others.

Given a schedule X , the corresponding interval set is denoted by
J (X ), the set of all time slots by S (X ) B {t ∈ J | J ∈ J (X )}, and
the number of time slots in J by L(X ) B |S (J (X )) | = ∑

J ∈J |J |.
We will use a recursive transformation ϕ that reduces L(X ) at

least by one for each step, while the cost of X is not increased. For-
mally, we have to show that L(ϕ (X )) ≤ L(X ) − 1 and C P̄ (ϕ (X )) ≤
C P̄ (X ) holds. The first inequality ensures that the recursive pro-
cedure will terminate. The transformation described below will
produce fractional schedules, however for each t ∈ [T ] \ S (X ) it is
ensured that xt ∈ Mk . Therefore, if L(X ) = 0, the corresponding
schedule fulfills |xt − x∗t | < 2k and xt ∈ Mk for all t ∈ [T ].

To describe the transformation, we will use the following no-
tation: A given schedule Y = (y1, . . . ,yT ) with L(Y ) > 0 is trans-
formed to Z = ϕ (Y ) = (z1, . . . , zT ).

Let J B (ti + 1, . . . , ti+1 − 1) ∈ J (Y ). We differ between two
cases, in case 1 we handle the intervals in J+, i.e. yt > x∗t + 2k
holds for all t ∈ J and in case 2 we handle the intervals in J−, i.e.
yt < x∗t − 2k . We will handle case 1 first.

Let ⌈x⌉n B n · ⌈x/n⌉ with x ∈ R and n ∈ N be the smallest value
that is divisible by n and greater than or equal to x . The schedule Y
is transformed to Z with

zt B

yt if t < J
λ · yt + (1 − λ) · x∗t if t ∈ J

where λ ∈ [0, 1] is as small as possible such that zt ≥ ⌈x∗t ⌉2k holds
for all t ∈ J , so at least one time slot t= ∈ J satisfies this condition
with equality. This transformation ensures that L(Z ) ≤ L(Y ) − 1
holds, because the interval J is split into at least two intervals and
one time slot (t=) between them that fulfills |zt= − x∗t= | < 2k .

We still have to show that the total cost is not increased by this
operation. The total cost can be written as

C P̄ (X ) = C P̄[0,ti ] (X ) + β (xti+1 − xti )+ +C P̄[ti+1,ti+1−1] (X )

+ β (xti+1 − xti+1−1)
+ +C P̄[ti+1,T ] (X ).

(4)

We have C P̄[0,ti ] (Y ) = C
P̄
[0,ti ]

(Z ) and C P̄[ti+1,T ] (Y ) = C
P̄
[ti+1,T ] (Z ).

Consider the time slot ti . By the definition of the interval J ,
the condition |yti+1 − x∗ti+1 | ≥ 2k is fulfilled. Thus we can apply
Lemma 2.2 which says that the terms (yti+1 −yti ) and (x∗ti+1 −x∗ti )
are both either non-negative or non-positive, so in Equation (4) the
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term β (xti+1 − xti )
+ can be replaced by β (xti+1 − xti ) or zero,

respectively. Analogously, for the time slot ti+1, the condition
|yti+1−1 − x∗ti+1−1 | ≥ 2k is fulfilled, so by Lemma 2.2 the term
β (xti+1 − xti+1−1)+ in Equation (4) can be replaced by β (xti+1 −
xti+1−1) or zero. In the former cases, the cost function is

C P̄ (X ) = C P̄[0,ti ] (X ) + βxti+1 − βxti +C P̄[ti+1,ti+1−1] (X )

+ βxti+1 − βxti+1−1 +C
P̄
[ti+1,T ] (X ).

Given a scheduleX = (x1, . . . ,xt ), we defineX[a,b] B (xa , . . . ,xb )
and X J = X[ti+1,ti+1−1]. Since there is no summand that contains
both xti and xti+1, the function

DX ∗ ((x
′
ti+1, . . . ,x

′
ti+1−1)) B C P̄[0,ti ] (X

∗) − βx∗ti
+ βx ′ti+1 +C

P̄
[ti+1,ti+1−1] (X

′) + βx ′ti+1

− βx∗ti+1−1 +C
P̄
[ti+1,T ] (X

∗)

with x ′ti+1 ≥ x∗ti+1 and x ′ti+1−1 ≥ x∗ti+1−1 is convex and has a mini-
mum at Xmin

J B (x∗ti+1, . . . ,x
∗
ti+1−1).

Due to convexity, DX ∗ (YJ ) ≥ DX ∗ (Z J ) ≥ DX ∗ (X
min
J ), because

Z J = λYJ + (1 − λ)Xmin
J . Therefore C P̄ (Z ) ≤ C P̄ (Y ) holds. If

β (xti+1 − xti )+ = 0 or β (xti+1 − xti+1−1)+ = 0 we can use the same
argument.

We still have to handle the second case, i.e. yt < x∗t . The proof
works almost analogously, the difference is that we choose λ as
small as possible such that zt ≤ ⌊x∗t ⌋2k (where ⌊x⌋n B n · ⌊x/n⌋).
Then we have a time slot t= with zt= = ⌊x∗t=⌋2k , so L(Z ) ≤ L(Y ) − 1.
The proof that shows C P̄ (Z ) ≤ C P̄ (Y ) holds for both cases.

We use the transformationϕ until L(Z ) = 0. ThenJ (Z ) is empty,
so all states of Z are multiples of 2k , i.e. zt ∈ Mk for all t ∈ [T ].
Since X̂k was defined to be optimal, C P̄ (X̂k ) = C P̄ (Z ) holds. By
our assumption, Z , X̂k holds (because otherwise |x̂kt − x∗t | < 2k
would be fulfilled for all t ∈ [T ]), so there was a transformation
with λ < 1. Thus we moved towards the optimal schedule, however
by C P̄ (X̂k ) = C P̄ (Z ), the cost does not change. As DX ∗ (X

′) is a
convex function,C P̄ (X̂k ) = C P̄ (Z ) implies thatC P̄ (Z ) = C P̄ (X ∗),
because X ∗ minimizesC P̄ . In this case X̂k is also optimal for P̄, so
the condition |x̂kt − x∗t | < 2k is already fulfilled.

In all cases we get a contradiction, so our assumption was wrong
and the lemma is proven. □

The next lemma shows how an optimal fractional schedule can
be rounded to an integral schedule such that it is still optimal.

Lemma 2.4. Let X ∗ ∈ Ω(P̄). The schedules ⌊X ∗⌋ B (⌊x∗1⌋, . . . ,⌊x∗T ⌋) and ⌈X ∗⌉ B (⌈x∗1⌉, . . . , ⌈x∗T ⌉) are optimal too, i.e. ⌊X ∗⌋, ⌈X ∗⌉
∈ Ω(P̄).

Proof. Let X ∗ ∈ Ω(P̄) be arbitrary. Let I (X ∗) = {I1, . . . , Il } be
the set of time intervals such that for each Ii B {ai ,ai + 1, . . . ,bi }
with i ∈ [l] the following conditions are fulfilled

(1) All states of X ∗ have the same value during Ii , i.e. x∗t = vi
for all t ∈ Ii .

(2) The value is fractional, i.e. vi < N.
(3) Each Ii is inclusion maximal, i.e. x∗ai−1 , vi and x

∗
bi+1 , vi .

(4) The intervals are sorted, i.e. bi < ai+1 for all i ∈ [l − 1].
IfI (X ∗) = ∅, thenX ∗ is an integral schedule, so ⌊X ∗⌋ = X ∗ = ⌈X ∗⌉.
Otherwise let Ii ∈ I (X ∗) be an arbitrary interval. Wewill transform
X ∗ to X ′ by changing the states at Ii such that |I (X ′) | < |I (X ∗) |
and ⌊x∗t ⌋ ≤ x ′t ≤ ⌈x∗t ⌉ for all t ∈ Ii . Let д(x ) B

∑bi
t=ai f̄t (x ). Since

each f̄t (x ) is linear for x ∈ [⌊vi ⌋, ⌈vi ⌉], the slope of д(x ) is constant
for x ∈ [⌊vi ⌋, ⌈vi ⌉] and denoted by д′(vi ). According to Ii , we have
to differ between different cases:

(1) x∗ai−1 < vi < x∗bi+1
Let x̃∗ai−1 B max{x∗ai−1, ⌊vi ⌋} and x̃∗bi+1 B min{x∗bi+1, ⌈vi ⌉}.
By using any schedule with x ′ai = x ′ai+1 = · · · = x ′bi ∈
[x̃∗ai−1, x̃

∗
bi+1] (and x ′t = x∗t otherwise), the switching cost is

unchanged. Since Ii is inclusion maximal and X ∗ is optimal,
we can conclude that д′(vi ) = 0, soC (X ′) = C (X ∗). To show
that ⌊X ∗⌋ is optimal, we set x ′t = x̃∗bi+1 for all t ∈ Ii . To show
that ⌈X ∗⌉ is optimal, we set x ′t = x̃∗ai−1 for all t ∈ Ii .

(2) x∗ai−1 > vi > x∗bi+1
This case works analogously to the first case

(3) x∗ai−1 > vi < x∗bi+1
Let v+ = min{x∗ai−1,x

∗
bi+1, ⌈vi ⌉}. Let v ′i ∈ [⌊vi ⌋,v+]. By

using the schedule x ′ai = x ′ai+1 = · · · = x ′bi = v ′i for all
t ∈ Ii , the switching cost is increased by β (vi − v ′i ), but
the operating cost is reduced by д′(vi ) · (vi −v ′i ). Since vi
is fractional, vi < {x∗ai−1,x

∗
bi+1}. As X ∗ is optimal, we can

conclude that д′(vi ) = β , so the total cost of X ′ does not
change forv ′i ∈ [⌊vi ⌋,v+]. To show that ⌊X ∗⌋ is optimal, we
set x ′t = ⌊vi ⌋ for all t ∈ Ii . To show that ⌈X ∗⌉ is optimal, we
set x ′t = v+ for all t ∈ Ii .

(4) x∗ai−1 < vi > x∗bi+1
This case works analogously to the third case, but ⌊x⌋ and
⌈x⌉ are swapped as well as min andmax. Furthermore,д′(vi )
= −β and we replace (vi −v ′i ) with (v ′i −vi ).

By using the transformation described above, we can reduce the
number |I | of fractional intervals is at least reduced by 1. By ap-
plying the transformation several times until |I | = 0, we receive
⌊X ∗⌋ or ⌈X ∗⌉. The total cost is not increased by the operations. □

So far, we have shown in Lemma 2.3 that for each optimal solu-
tion of the discrete problem instance Pk there is an optimal solution
of the continuous problem instance P̄ that is not far away. In the
following lemma we expand this statement: Given an optimal so-
lution for Pk , there is not only a fractional solution for P̄ that is
not far away, but also an optimal solution of the discrete problem
instance Pl for the subsequent iterations l < k .

Lemma 2.5. Let k > l with k, l ∈ [K]0. Let X̂k ∈ Ω(Pk ) be an
arbitrary optimal schedule for Pk with k ∈ [K]0. There exists an
optimal schedule X̂ l ∈ Ω(Pl ) for Pl such that |x̂kt − x̂ lt | ≤ 2k for all
t ∈ [T ]. Formally, ∀k ∈ [K]0 : ∀l ∈ [k − 1] : ∀X̂k ∈ Ω(Pk ) : ∃X̂ l ∈
Ω(Pl ) : ∀t ∈ [T ] : |x̂kt − x̂ lt | ≤ 2k .

Proof. Consider the reduced problem instance Q B Ψl (Pl ) as
well as the problem instance Qk−l B Φk−l (Ψl (Pl )) which is equiv-
alent to Ψl (Pk )) due to Lemma 2.1. Let X̂k−l

Q = (x̂k1 /2
l , . . . , x̂kT /2

l )

be an optimal schedule for Qk−l . We apply Lemma 2.3, but we
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use X̂k−l
Q and Q instead of X̂k and P. By Lemma 2.3, there exists

an optimal fractional schedule X ∗Q = (x∗1 , . . . ,x
∗
T ) for Q̄ such that

|x̂kt /2l − x∗t | ≤ 2k−l . By Lemma 2.4, ⌊X ∗Q⌋ is also an optimal sched-
ule for Q̄ and therefore it is also optimal for Q. The inequality
|x̂kt /2l − ⌊x∗t ⌋ | ≤ 2k−l still holds, because the terms x̂kt /2l and 2k−l
are integral and therefore adding a value less than 1 to the left side
cannot invalidate the inequality. Let X̂ l B (⌊x∗1⌋ · 2l , . . . , ⌊x∗T ⌋ · 2l ).
As ⌊X ∗Q⌋ is optimal for Q, X̂ l must be optimal for Pl . Furthermore
⌊x∗t ⌋ = x̂ lt /2l holds, so we can insert it into the above inequality and
get |x̂kt /2l −x̂ lt /2l | ≤ 2k−l which is equivalent to |x̂kt −x̂ lt | ≤ 2k . □

Now, we have proven all parts to show the correctness of our
polynomial-time algorithm:

Theorem 2.6. The algorithm described in Section 2.2 is correct.

Proof. We will show the correctness by induction. In the first
iteration, the algorithm finds an optimal schedule for PK , because
all states ofMK are considered.

Given an optimal schedule X̂k , in the next iteration the algorithm
only considers the states xt with |x̂kt − xt | ≤ 2k . By Lemma 2.5,
there exists an optimal schedule X̂ l with l = k − 1 such that |x̂kt −
x̂ lt | ≤ 2k holds. Therefore the schedule found in iteration k − 1
must be optimal for Pk−1 (although some states are ignored by the
algorithm). Thus, by induction, the algorithm will find an optimal
schedule for P0 = P in the last iteration. □

3 AN OPTIMAL ONLINE ALGORITHM
Lin et. al. [17, 19] developed an algorithm called Lazy Capacity
Provisioning (LCP) that achieves a competitive ratio of 3 for the
continuous setting (i.e. xt ∈ R). In this section we adapt LCP to the
discrete data-center optimization problem and prove the algorithm
is 3-competitive for this problem as well.

The general approach of our proof is similar to the proof of the
continuous setting in [17]. Some lemmas (e.g., Lemma 3.1 and 3.6)
were adopted, however, their proofs are completely different. Lin et.
al. use the properties of the convex program, especially duality and
the complementary slackness conditions. This approach cannot be
adapted to the discrete setting.

3.1 Algorithm
First, we will define lower and upper bounds for the optimal offline
solution that can be calculated online. For a given time slot τ let
XL
τ B (xLτ ,1, . . . ,x

L
τ ,τ ) be the vector that minimizes

CL
τ (X ) =

τ∑

t=1
ft (xt ) + β

τ∑

t=1
(xt − xt−1)

+ (5)

with X = (x1, . . . ,xτ ). This term describes the cost of a workload
that ends at τ ≤ T . For τ = T this equation is equivalent to (1) . Let
xLτ B xLτ ,τ be the last state for this truncated workload. If there is
more than one vector that minimizes (5), then xLτ is defined as the
smallest possible value.

Similarly, letXU
τ B (xUτ ,1, . . . ,x

U
τ ,τ ) be the vector that minimizes

CUτ (X ) =
τ∑

t=1
ft (xt ) + β

τ∑

t=1
(xt−1 − xt )+. (6)

The difference to the equation (5) is that we pay the switching cost
for powering down. Powering up does not cost anything. The last
state is denoted by xUτ B xUτ ,τ . If there is more than one vector
that minimizes (6), then xUτ is the largest possible value.

Define [x]ba B max{a,min{b,x }} as the projection of x into the
interval [a,b]. The LCP algorithm is defined as follows:

xLCPτ B


0, τ = 0
[xLCPτ−1 ]x

U
τ

xLτ
, τ ≥ 1

(7)

Before we can prove that this algorithm is 3-competitive, we
have to introduce some notation.

3.2 Notation
LetX ∗ = (x∗1 , . . . ,x

∗
T ) be an optimal offline solution that minimizes

equation (1) (i.e. the whole workload). Note that CL
τ (X

∗) indicates
the cost of the optimal solution until τ .

Let Rτ (X ) B
∑τ
t=1 ft (xt ) with X = (x1, . . . ,xτ ) denote the

operating cost until τ , let SLτ (X ) B β
∑τ
t=1 (xt − xt−1)+ denote

the switching cost in CL
τ (X ) and let SUτ (X ) B β

∑τ
t=1 (xt−1 − xt )+

denote the switching cost in CUτ (X ). Note that CL
τ (X ) = Rτ (X ) +

SLτ (X ) and CUτ (X ) = Rτ (X ) + SUτ (X ). Furthermore,

SLτ (X ) = SUτ (X ) + βxτ (8)

as well as CL
τ (X ) = CUτ (X ) + βxτ holds, because in CL

τ we have
to pay the missing switching cost to reach the final state xτ . Note
that βxτ equals the cost for powering up in CL

τ minus the cost for
powering down in CUτ .

Given an arbitrary function f : [m]→ R, we define
∆f (x ) B f (x ) − f (x − 1)

as the slope of f at x . Let

ĈYτ (x ) B min
x1, ...,xτ−1

CYτ ((x1, . . . ,xτ−1,x ))

with Y ∈ {L,U } be the minimal cost achievable with xτ = x .

3.3 Competitive ratio
In this section we prove that the LCP algorithm described by equa-
tion (7) achieves a competitive ratio of 3. First, we show that the
optimal solution is bounded by the upper and lower bounds defined
in the previous section.

Lemma 3.1. For all τ , xLτ ≤ x∗τ ≤ xUτ holds.

Proof. We prove both parts of the inequality by contradiction:
Part 1 (xLτ ≤ x∗τ ): Assume that xLτ > x∗τ . By the definition of

the lower bound, CL
τ (X

L
τ ) < CL

τ (X
∗) holds and we can replace

(x∗1 , . . . ,x
∗
τ ) by (xLτ ,1, . . . x

L
τ ,τ ). This reduces the total cost of x∗,

because the cost up to τ is reduced and for τ + 1 there are no
additional switching costs because xLτ > x∗τ holds. Thus x∗ would
not be an optimal solution which is a contradiction, so xLτ ≤ x∗τ
must be fulfilled.

Part 2 (x∗τ ≤ xUτ ): Assume that x∗τ > xUτ . By definition of the
upper bound, CUτ (XU

τ ) < CUτ (X ∗) and, thus,

Rτ (X
U
τ ) + SUτ (XU ) < Rτ (X

∗) + SUτ (X ∗) (9)
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holds. The cost of the optimal solution until τ is Rτ (X ∗)+SLτ (X ∗). If
the states (x∗1 , . . . ,x

∗
τ ) are replaced byXU

τ and afterwards x∗τ −xUτ ,τ
servers are powered up (to ensure that we end in the same state),
then the cost is Rτ (XU

τ ) + SLτ (X
U ) + β (x∗τ − xUτ ,τ ). This cost must

be greater than or equal to the cost of the optimal solution, so

Rτ (X
U
τ ) + SLτ (X

U ) + β (x∗τ − xUτ ,τ ) ≥ Rτ (X
∗) + SLτ (X ∗)

holds. By using equation (8), we get

Rτ (X
U
τ )+SUτ (XU )+βxUτ ,τ +β (x

∗
τ −xUτ ,τ ) ≥ Rτ (X

∗)+SUτ (X ∗)+βx∗τ .

We eliminate identical terms and get

Rτ (X
U
τ ) + SUτ (XU ) ≥ Rτ (X

∗) + SUτ (X ∗)

which is a contradiction to inequality (9). Therefore our assumption
was wrong, so x∗τ ≤ xUτ must be fulfilled. □

The following four lemmas show important properties of ĈL
τ (x ).

First, we prove that the relation between CL
τ (X ) and CUτ (X ) de-

scribed by equation (8) still holds for ĈL
τ (x ) and ĈUτ (x ).

Lemma 3.2. For all τ , ĈL
τ (x ) = Ĉ

U
τ (x ) + βx holds.

Proof. Let XL be a corresponding solution for ĈL
τ (x ) such that

CL
τ (X

L ) = ĈL
τ (x ) and letXU be a corresponding solution for ĈUτ (x )

such thatCUτ (XU ) = ĈUτ (x ). Note that the last state of XL and XU

is x . Since XU is optimal forCUτ , the inequalityCUτ (XU ) ≤ CUτ (X )
holds for all X = (x1, . . . ,xτ−1,x ). By equation (8), we get

CL
τ (X

U ) − βx ≤ CL
τ (X ) − βx

which is equivalent to CL
τ (X

U ) ≤ CL
τ (X ). With X B XL we get

CL
τ (X

U ) ≤ CL
τ (X

L ). SinceXL is optimal forCL
τ ,XU must be optimal

too, so CL
τ (X

U ) = CL
τ (X

L ) holds. All in all, we get

ĈL
τ (x ) = C

L
τ (X

L ) = CL
τ (X

U ) = CUτ (XU ) + βx = ĈUτ (x ) + βx . □

Obviously, the cost functionsCL
τ (X ) andCUτ (X ) are convex, since

convexity is closed under addition. The following lemma shows
that also ĈL

τ (x ) and ĈUτ (x ) are convex.

Lemma 3.3. For all τ and Y ∈ {L,U }, ĈYτ (x ) is a convex function.

Lemma 3.4. The slope of ĈL
τ (x ) is at most β for x ≤ xUτ and at

least β for x > xUτ , i.e. ∆ĈL
τ (x

U
τ ) ≤ β and ∆ĈL

τ (x
U
τ + 1) ≥ β

The proof of Lemma 3.3 and 3.4 can be found in the full paper.

Lemma 3.5. For x ≤ xUτ , the slope of ĈL
τ (x ) is at most β , i.e.

∆ĈL
τ (x ) ≤ β holds.

Proof. By Lemma 3.4 ∆ĈL
τ (x

U
τ ) ≤ β holds and by Lemma 3.3

ĈL
τ is convex, so ∆ĈL

τ (x ) ≤ β for x ≤ xUτ . □

The next lemma characterizes the behavior of the optimal solu-
tion backwards in time.

Lemma 3.6. A solution vector (x̂1, . . . , x̂T ) that fulfills the follow-
ing recursive equality for all t ∈ {1, . . . ,T } is optimal:

x̂t B


0, t = T + 1
[x̂t+1]x

U
t

xLt
, t ≤ T

Proof. We will prove the lemma by induction in reverse time.
Powering down does not cost anything, so setting x̂T+1 = 0, does
not produce any additional costs. Assume that (x̂τ+1, . . . , x̂T ) can
lead to an optimal solution, i.e. there exists an optimal solution X ∗
with x∗t = x̂t for t ≥ τ+1.Wewill show that the vector (x̂τ , . . . , x̂T )
can still lead to an optimal solution.

We have to examine three cases:
Case 1: If x̂τ+1 < xLτ , then x̂τ = xLτ . By Lemma 3.1, x∗τ ≥ xLτ

holds. Since XL
τ minimizes CL

τ , we know that CL
τ (X

L
τ ) ≤ CL

τ (X ) for
all X = (x1, . . . ,xτ ). Thus there is no benefit to use a state x ′ ≥ xLτ ,
because afterwards we have to power down some servers to reach
x̂τ+1. Therefore x̂τ = xLτ can still lead to an optimal solution.

Case 2: If x̂τ+1 > xUτ , then x̂τ = xUτ . By Lemma 3.1, x∗τ ≤ xUτ
holds. Since XU

τ minimizes CUτ , we know that CUτ (XU
τ ) ≤ CUτ (X )

for all X . By using the solution XU
τ and then switching to state

x̂τ+1, the resulting cost is

CL
τ (X

U
τ ) + β (x̂τ+1 − xUτ ) + fτ+1 (x̂τ+1)

= CUτ (XU
τ ) + βx̂τ+1 + fτ+1 (x̂τ+1)

≤ CUτ (X ) + βx̂τ+1 + fτ+1 (x̂τ+1)

= CL
τ (X ) + β (x̂τ+1 − xτ ) + fτ+1 (x̂τ+1).

The last line describes the cost until τ + 1 by using the vector
X = (x1, . . . ,xτ ) with xτ ≤ xUτ instead of XU

τ . The cost is not
reduced by usingX , so x̂τ = xUτ can still lead to an optimal solution.

Case 3: If xLτ ≤ x̂τ+1 ≤ xUτ , then x̂τ = x̂τ+1. Assume that there
is a better state x̂−τ < x̂τ with ĈL

τ (x̂
−
τ ) < ĈL

τ (x̂τ ). Since x̂τ+1 leads
to an optimal solution, after the time slot τ we have to power up
x̂τ − x̂−τ servers, so even ĈL

τ (x̂
−
τ ) + β (x̂τ − x̂−τ ) < ĈL

τ (x̂τ ) holds. By
Lemma 3.5, we know that the slope of ĈL

τ (x ) is at most β for x ≤ xUτ .
This leads to the contradiction ĈL

τ (x̂τ ) ≤ ĈL
τ (x̂
−
τ ) + β (x̂−τ − x̂τ ).

Therefore there is no x̂−τ with the desired properties.
The other direction is more simple: Assume that there is a better

state x̂+τ > x̂τ with ĈL
τ (x̂
+
τ ) < ĈL

τ (x̂τ ), then xLτ (which minimizes
ĈL
τ ) must be greater than x̂τ , because by Lemma 3.3, ĈL

τ is a convex
function. However, this is a contradiction to xLτ ≤ x̂τ+1 = x̂τ . □

In the following X ∗ = (x∗1 , . . . ,x
∗
T ) denotes an optimal solution

that fulfills the recursive equality of Lemma 3.6. The next lemma de-
scribes time slots where XLCP and X ∗ are in same state. Informally,
the lemma says that if the LCP curve cuts the optimal solution, then
there is one time slot τ where both solutions are in the same state.

Lemma 3.7. If xLCPτ−1 < x∗τ−1 and xLCPτ ≥ x∗τ , then xLCPτ = x∗τ .
If xLCPτ−1 > x∗τ−1 and xLCPτ ≤ x∗τ , then xLCPτ = x∗τ .

Proof. Wewill only show the first statement of the lemma, since
the other one works exactly analogously. Assume that xLCPτ−1 < x∗τ−1
and xLCPτ ≥ x∗τ holds. We differ between two cases.

Case 1: If xLCPτ−1 < xLCPτ , then xLCPτ = xLτ (by the definition of
the LCP algorithm). By xLCPτ ≥ x∗τ and Lemma 3.1 (which says that
xLτ ≤ x∗τ ), we get xLCPτ = x∗τ .

Case 2: If xLCPτ−1 ≥ xLCPτ , then x∗τ−1 > x∗τ . By Lemma 3.6, x∗τ−1 =
xLτ−1 holds which is a contradiction to x∗τ−1 > xLCPτ−1 ≥ xLτ−1. □

The time slots where xLCPt = x∗t are denoted by 0 = t0 < t1 <
· · · < tκ . Between these time slots it is not possible that XLCP
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powers one or more servers down and X ∗ powers servers up or
vice versa. In the following [a : b] with a,b ∈ N denotes the set
{a,a+1, . . . ,b}. Analogously, we define [a : b[ B {a,a+1 . . . ,b−1},
]a : b] B {a + 1,a + 2, . . . ,b} and ]a : b[ B {a + 1,a + 2, . . .b − 1}.

Lemma 3.8. For all time intervals ]ti : ti+1[ with i ≥ 0, either
(i) xLCPτ > x∗τ and both xLCPτ and x∗τ are non-increasing for all

τ ∈]ti : ti+1[, or
(ii) xLCPτ < x∗τ and both xLCPτ and x∗τ are non-decreasing for all

τ ∈]ti : ti+1[.

Proof. First, we consider the case (i), i.e. xLCPτ > x∗τ .
If xLCPτ+1 > xLCPτ , then xLτ+1 = xLCPτ+1 by the LCP algorithm and

x∗τ+1 ≥ xLτ+1 by Lemma 3.1. By Lemma 3.6, we get xUτ = x∗τ which
leads to the contradiction xUτ = x∗τ < xLCPτ ≤ xUτ (the last in-
equality uses the definition of the LCP algorithm). Thus xLCPτ is
non-increasing for all τ ∈]ti : ti+1[.

If x∗τ+1 > x∗τ , then x∗τ = xUτ by Lemma 3.6 which is a contra-
diction to xUτ ≥ xLCPτ > x∗t , so x∗τ is also non-increasing for all
τ ∈]ti : ti+1[. By Lemma 3.7 the inequality xLCPτ > x∗τ is fulfilled
for all τ ∈]ti : ti+1[.

Case (ii) works analogously. □

Now we can calculate the switching cost of the LCP algorithm.

Lemma 3.9. SLT (X
LCP) ≤ SLT (X

∗)

Proof. By Lemma 3.8, bothxLCPτ andx∗τ are either non-increasing
or non-decreasing until there is a time slot t with xLCPt = x∗t .
Therefore, the switching cost during the time interval [ti : ti+1]
is β (x∗ti − x∗ti−1

)+ for both XLCP and X ∗. At the end of the work-
load, XLCP and X ∗ are maybe in different states. If xLCPT < x∗T , then
xLCPτ and x∗τ are non-decreasing in the corresponding time interval
[tκ : T ], so the switching cost of LCP is less than the switching
cost of the optimal solution. If the xLCPT > x∗T , both xLCPτ and x∗τ
are non-increasing, so there are no switching costs for this time
interval. All in all, we get SLT (X

LCP) ≤ SLT (X
∗). □

Lemma 3.8 divides the intervals [ti : ti+1[ into two sets: Intervals
of case (i) are called decreasing intervals, the set of those intervals is
denoted by T −. Intervals of case (ii) are called increasing intervals
and the set is denoted by T +. The following lemma is needed to
estimate the operating cost of the LCP algorithm.

Lemma 3.10. For all τ ∈ [ti : ti+1[∈ T +,
ĈL
τ (x

LCP
τ ) + fτ+1 (x

LCP
τ+1) ≤ ĈL

τ+1 (x
LCP
τ+1). (10)

Analogously, for all τ ∈ [ti : ti+1[∈ T −,
ĈUτ (xLCPτ ) + fτ+1 (x

LCP
τ+1) ≤ ĈUτ+1 (x

LCP
τ+1). (11)

The lemma can be proven by using the properties of ĈL
τ and ĈUτ

shown in Lemma 3.3 and 3.5, the detailed proof can be found in the
full version of this paper. We can use Lemma 3.10 to estimate the
operating cost of the LCP algorithm.

Lemma 3.11. RT (XLCP) ≤ RT (X
∗) + β ∑T

t=1 |x∗t − x∗t−1 |

Proof. Consider the time interval [ti : ti+1[∈ T +. By adding
the inequalities of Lemma 3.10 for τ ∈ [ti : ti+1[, we get

ti+1−1∑

t=ti

ĈL
t (x

LCP
t ) +

ti+1−1∑

t=ti

ft+1 (x
LCP
t+1 ) ≤

ti+1−1∑

t=ti

ĈL
t+1 (x

LCP
t+1 )

Subtracting the first sum gives
ti+1−1∑

t=ti

ft+1 (x
LCP
t+1 ) ≤ ĈL

ti+1 (x
LCP
ti+1 ) − ĈL

ti (x
LCP
ti )

= ĈL
ti+1 (x

∗
ti+1 ) − ĈL

ti (x
∗
ti ) =

ti+1−1∑

t=ti

ft+1 (x
∗
t+1) + β (x

∗
ti+1 − x∗ti ) (12)

The first equality holds because xLCPti = x∗ti and xLCPti+1
= x∗ti+1

.
Considering the time interval [ti : ti+1[∈ T − yields to the following
inequality:

ti+1−1∑

t=ti

ft+1 (x
LCP
t+1 ) ≤ ĈUti+1 (x

LCP
ti+1 ) − ĈUti (xLCPti )

= ĈUti+1 (x
∗
ti+1 ) − ĈUti (x∗ti ) =

ti+1−1∑

t=ti

ft+1 (x
∗
t+1) + β (x

∗
ti − x∗ti+1 ) (13)

In both (12) and (13) the factor after β is positive, so we can write
ti+1−1∑

t=ti

ft+1 (x
LCP
t+1 ) ≤

ti+1−1∑

t=ti

ft+1 (x
∗
t+1) + β |x∗ti+1 − x∗ti |

=

ti+1−1∑

t=ti

ft+1 (x
∗
t+1) + β

ti+1−1∑

t=ti

|x∗t+1 − x∗t |

By adding all intervals in T + ∪ T − we get
T∑

t=1
ft (x

LCP
t ) ≤

T∑

t=1
ft (x

∗
t ) + β

T∑

t=1
|x∗t − x∗t−1 | □

The term β
∑T
t=1 |x∗t − x∗t−1 | in Lemma 3.11 is upper bounded by

twice the switching cost of the optimal schedule:

Lemma 3.12. β ∑T
t=1 |x∗t − x∗t−1 | ≤ 2 · SLT (X ∗)

This lemma can be proven with simple calculations (see full
paper). Now, we are able to show that LCP is 3-competitive.

Theorem 3.13. The LCP algorithm is 3-competitive.

Proof. By using Lemma 3.9, 3.11 and 3.12 we get
CL
T (X

LCP) = RT (X
LCP) + SLT (X

LCP)

≤ RT (X
∗) + β

T∑

t=1
|x∗t − x∗t−1 | + SLT (X ∗)

≤ RT (X
∗) + 3 · SLT (X ∗) ≤ CL

T (X
∗). □

4 LOWER BOUNDS
In this section we will show lower bounds for both the discrete
and continuous data-center optimization problem. First, we prove
that there is no deterministic online algorithm that achieves a com-
petitive ratio better than 3 for the discrete problem. This lower
bound demonstrates that the LCP algorithm analyzed in the previ-
ous section is optimal. Afterwards, we show that this lower bound
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also holds for Lin’s model (introduced in [17]) that is a bit more re-
stricted than the general model investigated in the previous sections.
A formal definition of Lin’s model is given in Section 4.2. Moreover,
we give a lower bound for the continuous setting and show that
this lower bound holds again for Lin’s model. A lower bound of 2
for the general continuous setting was independently shown by
Antoniadis et. al. [3]. Finally, we extend our lower bounds to the
scenario that an online algorithm has a finite prediction window.

To simplify the analysis, the switching costs are paid for both
powering up and powering down. At the end of the workload all
servers have to be powered down. This ensures that the total cost
remains the same. We will set β = 2, so changing a server’s state
will cost β/2 = 1. Thus the cost of a schedule is defined by

C (X ) B
T∑

t=1
ft (xt ) +

T+1∑

t=1
|xt − xt−1 |

with x0 B xT+1 B 0.

4.1 Discrete setting
First, we analyze the discrete setting.

Theorem 4.1. There is no deterministic online algorithm that
achieves a competitive ratio of c < 3 for the discrete data-center
optimization problem.

Proof. Assume that there is a deterministic algorithmA that is
(3−δ )-competitive with δ > 0. The adversary will use the functions
φ0 (x ) = ϵ |x | and φ1 (x ) = ϵ |x − 1| with ϵ → 0, so we only need the
states 0 and 1, there is no benefit to use other states. IfA is in state
0 or 1, the adversary will send φ1 or φ0, respectively.

Let S be the number of time slots where algorithm A changes
the state of a server, i.e. S is the switching cost ofA. LetT be length
of the whole workload (we will define T later), so for T − S time
slots the operating costs of A are ϵ . Thus, the total cost of A is

C (A) = (T − S )ϵ + S .
The cost of the optimal offline schedule can be bounded by the

minimum of the following two strategies. The first strategy is to
stay at one state for the whole workload. If φ0 is sent more often
than φ1, then this is state 0, else it is state 1. The operating cost
is at most Tϵ/2, the switching cost is at most 2, because if we use
state 1, we have to switch the state at the beginning and end of
the workload. The second strategy is to always switch the state,
such that there are no operating costs. In this case the switching
cost is at most S + 2, because we switch the state after each timeA
switches its state as well as possibly at the beginning and the end
of the workload. Thus, the cost of the optimal offline schedule is

C (X ∗) ≤ min(Tϵ/2 + 2, S + 2). (14)

We want to find a lower bound for the competitive ratio C (A)
C (X ∗ ) .

We distinguish between S ≥ Tϵ/2 (case 1) and S < Tϵ/2 (case 2).
In case 1 the competitive ratio of A is

C (A)

C (X ∗)
(14)≥ (T − S )ϵ + S

Tϵ/2 + 2 = 2 + S (1 − ϵ ) − 4
Tϵ/2 + 2

≥ 2 + (Tϵ/2) (1 − ϵ ) − 4
Tϵ/2 + 2 = 2 + (1 − ϵ ) − 2(1 − ϵ ) + 4

Tϵ/2 + 2

The last inequality uses S ≥ Tϵ/2 that holds for case 1. By setting
T ≥ 1

ϵ 2 , we get limϵ→0Tϵ = ∞ and thus limϵ→0
C (A)
C (X ∗ ) = 3.

In case 2, we get

C (A)

C (X ∗)
(14)≥ (T − S )ϵ + S

S + 2 = (1 − ϵ ) + Tϵ − 2(1 − ϵ )
S + 2

≥ (1 − ϵ ) + Tϵ − 2(1 − ϵ )
Tϵ/2 + 2 = 3 − ϵ − 2(1 − ϵ ) + 4

Tϵ/2 + 2

Again, we set T ≥ 1
ϵ 2 and get limϵ→0

C (A)
C (X ∗ ) = 3.

Therefore there is no algorithm with a competitive ratio that is
less than 3. We can set T to an arbitrarily large value, so the total
cost of A converges to infinity. □

4.2 Discrete setting: Lin’s model
Lin et. al. [17] introduced a more restricted setting as described by
equation (2). In this section we show that the lower bound of 3 still
holds for this model. The essential differences of Lin’s model to the
general model are: (1) There is only one convex function for the
whole problem instance and (2) there is the additional condition
that xt ≥ λt . The different definition of the switching cost does not
influence the total cost as already mentioned in the beginning of
Section 4.

Theorem 4.2. There is no deterministic online algorithm for the
discrete setting of Lin’s model with a competitive ratio of c < 3.

Proof. The general model (examined in the previous sections)
is denoted by G and Lin’s model is denoted by L. The states of the
model X ∈ {G,L} are indicated by xXt . We will use the same idea
as in the proof of Theorem 4.1, but we have to modify it such that
it fits for Lin’s model.

We use 2 servers, so the states are xLt ∈ {0, 1, 2}. Instead of
switching between the states 0 and 1 in G, we will switch between
1 and 2 in L, so for t ∈ {1, . . . ,T } we have xLt = xGt + 1. In L the
state 0 is only used at the beginning (t = 0) of the workload. This
leads to additional switching costs of 1 for both the optimal offline
solution and the online algorithm. However, for a sufficiently long
workload the total cost converges to infinity, so the constant extra
cost does not influence the competitive ratio.

We will apply the same adversary strategy used in the proof of
Theorem 4.1. Let f (z) B ϵ |1 − 2z | with ϵ → 0, let β = 2. If the
adversary in G sends φ0 (x ) = ϵ |x | as function, then we will use
λt = l0 B 0.5 which leads to operating cost of

xLt f
(
l0/x

L
t

)
= xLt · ϵ

������1 −
1
xLt

������ = ϵ ���xLt − 1��� = ϵ ���xGt ���
If the adversary sends φ1 (x ) = ϵ |1−x |, then we will use λt = l1 = 1
which leads to operating cost of

xLt f
(
l1/x

L
t

)
= xLt · ϵ

������1 −
2
xLt

������ = ϵ ���xLt − 2��� = ϵ ���1 − xGt ���
Thus the difference (1) between both models is solved.

For t ≥ 1 it is not allowed to use the state xLt = 0, because both
l0 and l1 are greater than 0. For xLt ∈ {1, 2} the inequality xt ≥ λt
is always fulfilled, so the difference (2) is solved too. □
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4.3 Continuous setting
In this section we analyze the continuous setting of the data-center
optimization problem.

Theorem 4.3. There is no deterministic online algorithm for the
continuous data-center optimization problem that achieves a compet-
itive ratio that is less than 2.

The proof consists of two parts. First we will construct an al-
gorithm B whose competitive ratio is greater than 2 − δ for an
arbitrary small δ . Then we will show that the competitive ratio of
any deterministic algorithm that differs from B is greater than 2.

For the first part we use an adversary that uses φ0 (x ) = ϵ |x |
and φ1 (x ) = ϵ |1 − x | as functions where ϵ → 0. Let bt be the
state of B at time t . If the function φ0 arrives, then the next state
bt+1 is max{bt − ϵ/2, 0}. If φ1 arrives, the next state is bt+1 B
min{bt + ϵ/2, 1}. The algorithm starts at b0 = 0, so bt ∈ [0, 1] is
fulfilled for all t . Note that algorithm B is equivalent to Bansal’s
algorithm given in [5] for the special case of φ0 and φ1 functions.
As shown in the full version of this paper, the competitive ratio of
B is at least 2.

For the second part we use the following adversary strategy. Let
at be the state of A at time t . If at < bt or at = 0, the adversary
sends φ1 as next function. If at > bt or at = 1, the adversary
sends φ0. For the other cases the adversary can choose an arbitrary
function. By doing this, it can be shown that the cost ofA is always
greater than or equal to the cost of B, so the competitive ratio of
A is at least 2. The detailed analysis can be found in the full paper.

4.4 Continuous setting: Lin’s model
Analogously to the discrete setting, in this section we want to show
that the lower bound of 2 for the continuous data-center optimiza-
tion problem still holds for Lin’s model described in Section 4.3.

Theorem 4.4. There is no deterministic online algorithm for the
continuous setting of Lin’s model with a competitive ratio of c < 2.

To prove this theorem we will apply the same adversary strategy
used in the previous section.We set f (z) B ϵ |1−kz |with ϵ → 0 and
k → ∞. If the adversary in the general model sends φ0 (x ) = ϵ |x |
as function, then we will use λt = 0, if it sends φ1 (x ) = ϵ |1 − x |,
then we will use λt = 1/k . As shown in the full paper, this leads to
the same operating cost functions as in the general model.

4.5 Online algorithms with prediction window
So far, we have considered online algorithms that at time t only
know the arriving function ft in determining the next state. In
contrast, an offline algorithm knows the whole function sequence F .
There are models between these edge cases. An online algorithm
with a prediction window of length w , at any time t , can not only
use the function ft but the function set { ft , . . . , ft+w } to choose
the state xt . This problem extension was also defined by Lin et
al. [17, 19]. Ifw has a constant size (i.e.w is independent ofT ), then
the lower bounds developed in the previous sections still holds as
the following theorem shows. We develop the lower bounds for
Lin’s model so that they hold for the general model as well.

Theorem 4.5. Letw ∈ N and δ > 0 be arbitrary constants. There
is no deterministic online algorithm with a prediction window of

length w that achieves a competitive ratio of 3 − δ in the discrete
setting or 2 − δ in the continuous setting for Lin’s model.

The basic idea for proving this theorem is to use a worst case
workload for online algorithms without prediction window and
send a scaled version of each function several times (dependent
on w), such that there is no advantage in knowing the next w
functions. Details can be found in the full version of this paper.
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Appendix C

Algorithms for Energy Conservation in
Heterogeneous Data Centers, CIAC 2021

This chapter has been published as peer-reviewed conference paper [AQ21c].

Susanne Albers and Jens Quedenfeld. Algorithms for energy conservation in
heterogeneous data centers. In Algorithms and Complexity - 12th Interna-
tional Conference, CIAC 2021. Springer, 2021.

A full version of this paper containing all proofs was recently published in a special
issue of the journal Theoretical Computer Science [AQ21a]. A freely accessible preprint
of the extended version can be found on arXiv [AQ21b], see https://arxiv.org/abs/
2107.14672.

Synopsis. We analyze the right-sizing problem of heterogeneous data centers with d
different server types. We consider the discrete setting, i.e., the number of active servers
must be integral. The operating cost of a server is load- and time-independent, so it
only depends on the server type. Each server can process one job per time slot. We
develop a 2d-competitive deterministic online algorithm for this problem and show that
no deterministic online algorithm can achieve a better competitive ratio. Furthermore,
we devise a randomized version of our algorithm that attains a competitive ratio of

e
e−1d ≈ 1.582d against an oblivious adversary.

Contributions of thesis author. The thesis author developed the algorithms and the
lower bound including all proofs. Furthermore, he wrote the manuscript.
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in Heterogeneous Data Centers
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Abstract. Power consumption is the major cost factor in data centers.
It can be reduced by dynamically right-sizing the data center according
to the currently arriving jobs. If there is a long period with low load,
servers can be powered down to save energy. For identical machines, the
problem has already been solved optimally by [25] and [1].

In this paper, we study how a data-center with heterogeneous servers
can dynamically be right-sized to minimize the energy consumption.
There are d different server types with various operating and switch-
ing costs. We present a deterministic online algorithm that achieves a
competitive ratio of 2d as well as a randomized version that is 1.58d-
competitive. Furthermore, we show that there is no deterministic online
algorithm that attains a competitive ratio smaller than 2d. Hence our
deterministic algorithm is optimal. In contrast to related problems like
convex body chasing and convex function chasing [17,30], we investi-
gate the discrete setting where the number of active servers must be an
integral, so we gain truly feasible solutions.

1 Introduction

Energy management is an important issue in data centers. A huge amount of a
data center’s financial budget is spent on electricity that is needed to operate the
servers as well as to cool them [12,20]. However, server utilization is typically
low. In fact there are data centers where the average server utilization is as
low as 12% [16]; only for a few days a year is full processing power needed.
Unfortunately, idle servers still consume about half of their peak power [29].
Therefore, right-sizing a data center by powering down idle servers can save a
significant amount of energy. However, shutting down a server and powering it
up immediately afterwards incurs much more cost than holding the server in
the active state during this time period. The cost for powering up and down
does not only contain the increased energy consumption but also, for example,
wear-and-tear costs or the risk that the server does not work properly after
restarting [26]. Consequently, algorithms are needed that manage the number
of active servers to minimize the total cost, without knowing when new jobs
will arrive in the future. Since about 3% of the global electricity production

Work supported by the European Research Council, Grant Agreement No. 691672.

c© The Author(s) 2021
T. Calamoneri and F. Corò (Eds.): CIAC 2021, LNCS 12701, pp. 75–89, 2021.
https://doi.org/10.1007/978-3-030-75242-2_5
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is consumed by data centers [11], a reduction of their energy consumption can
also decrease greenhouse emissions. Thus, right-sizing data centers is not only
important for economical but also for ecological reasons.

Modern data centers usually contain heterogeneous servers. If the capacity
of a data center is no longer sufficient, it is extended by including new servers.
The old servers are still used however. Hence, there are different server types
with various operating and switching costs in a data center. Heterogeneous data
centers may also include different processing architectures. There can be servers
that use GPUs to perform massive parallel calculations. However, GPUs are not
suitable for all jobs. For example, tasks with many branches can be computed
much faster on common CPUs than on GPUs [31].

Problem Formulation. We consider a data center with d different server
types. There are mj servers of type j. Each server has an active state where it is
able to process jobs, and an inactive state where no energy is consumed. Powering
up a server of type j (i.e., switching from the inactive into the active state) incurs
a cost of βj (called switching cost); powering down does not cost anything. We
consider a finite time horizon consisting of the time slots {1, . . . , T}. For each
time slot t ∈ {1, . . . , T}, jobs of total volume λt ∈ N0 arrive and have to be
processed during the time slot. There must be at least λt active servers to process
the arriving jobs. We consider a basic setting where the operating cost of a server
of type j is load and time independent and denoted by lj ∈ R≥0. Hence, an active
server incurs a constant but type-dependent operating cost per time slot.

A schedule X is a sequence x1, . . . ,xT with xt = (xt,1, . . . , xt,d) where each
xt,j indicates the number of active servers of type j during time slot t. At the
beginning and the end of the considered time horizon all servers are shut down,
i.e., x0 = xT+1 = (0, . . . , 0). A schedule is called feasible if there are enough
active servers to process the arriving jobs and if there are not more active servers
than available, i.e.,

∑d
j=1 xt,j ≥ λt and xt,j ∈ {0, 1, . . . ,mj} for all t ∈ {1, . . . , T}

and j ∈ {1, . . . , d}. The cost of a feasible schedule is defined by

C(X) :=

T∑

t=1

⎛
⎝

d∑

j=1

ljxt,j +

d∑

j=1

βj(xt,j − xt−1,j)
+

⎞
⎠ (1)

where (x)+ := max(x, 0). The switching cost is only paid for powering up.
However, this is not a restriction, since all servers are inactive at the begin-
ning and end of the workload. Thus the cost of powering down can be folded
into the cost of powering up. A problem instance is specified by the tuple
I = (T, d,m,β, l, Λ) where m = (m1, . . . ,md), β = (β1, . . . , βd), l = (l1, . . . , ld)
and Λ = (λ1, . . . , λT ). The task is to find a schedule with minimum cost.

We focus on the central case without inefficient server types. A server type j
is called inefficient if there is another server type j′ �= j with both smaller (or
equal) operating and switching costs, i.e., lj ≥ lj′ and βj ≥ βj′ . This assumption
is natural because a better server type with a lower operating cost usually has
a higher switching cost. An inefficient server of type j is only powered up, if all
servers of all types j′ with βj′ ≤ βj and lj′ ≤ lj are already running. Therefore,
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excluding inefficient servers is not a relevant restriction in practice. In related
work, Augustine et al. [6] exclude inefficient states when operating a single server.

Our Contribution. We analyze the online setting of this problem where
the job volumes λt arrive one-by-one. The vector of the active servers xt has
to be determined without knowledge of future jobs λt′ with t′ > t. A main
contribution of our work, compared to previous results, is that we investigate
heterogeneous data centers and examine the online setting when truly feasible
(integral) solutions are sought.

In Sect. 2, we present a 2d-competitive deterministic online algorithm, i.e.,
the total cost of the schedule calculated by our algorithm is at most 2d times
larger than the cost of an optimal offline solution. Roughly, our algorithm works
as follows. It calculates an optimal schedule for the jobs received so far and
ensures that the operating cost of the active servers is at most as large as the
operating cost of the active servers in the optimal schedule. If this is not the
case, servers with high operating cost are replaced by servers with low operating
cost. If a server is not used for a specific duration depending on its switching
and operating costs, it is shut down.

In Sect. 3, we devise a randomized version of our algorithm achieving a com-
petitive ratio of e

e−1d ≈ 1.582d against an oblivious adversary.
In Sect. 4, we show that there is no deterministic online algorithm that

achieves a competitive ratio smaller than 2d. Therefore, our algorithm is optimal.
Additionally, for a data center that contains m unique servers (that is mj = 1
for all j ∈ {1, . . . , d}), we show that the best achievable competitive ratio is 2m.

Related Work. The design of energy-efficient algorithms has received quite
some research interest over the last years, see e.g. [3,10,21] and references therein.
Specifically, data center right-sizing has attracted considerable attention lately.
Lin and Wierman [25,26] analyzed the data-center right-sizing problem for data
centers with identical servers (d = 1). The operating cost is load dependent and
modeled by a convex function. In contrast to our setting, continuous solutions
are allowed, i.e., the number of active server xt can be fractional. This allows
for other techniques in the design and analysis of an algorithm, but the created
schedules cannot be used directly in practice. They gave a 3-competitive deter-
ministic online algorithm for this problem. Bansal et al. [9] improved this result
by randomization and developed a 2-competitive online algorithm. In our previ-
ous paper [1] we showed that 2 is a lower bound for randomized algorithms in
the continuous setting; this result was independently shown by [4]. Furthermore,
we analyzed the discrete setting of the problem where the number of active
servers is integral (xt ∈ N0). We presented a 3-competitive deterministic and
a 2-competitive randomized online algorithm. Moreover, we proved that these
competitive ratios are optimal.

Data-center right-sizing of heterogeneous data centers is related to convex
function chasing, which is also known as smoothed online convex optimization
[15]. At each time slot t, a convex function ft arrives. The algorithm then has
to choose a point xt and pay the cost ft(xt) as well as the movement cost
‖xt − xt−1‖ where ‖ · ‖ is any metric. The problem described by Eq. (1) is a
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special case of convex function chasing if fractional schedules are allowed, i.e.,
xt,j ∈ [0,mj ] instead of xt,j ∈ {0, . . . ,mj}. The operating cost

∑d
j=1 ljxt,j in

Eq. (1) together with the feasibility requirements can be modeled as a convex

function that is infinite for
∑d

j=1 xt,j < λt and xt,j /∈ [0,mj ]. The switching cost
equals the Manhattan metric if the number of servers is scaled appropriately.
Sellke [30] gave a (d + 1)-competitive algorithm for convex function chasing. A
similar result was found by Argue et al. [5].

In the discrete setting, convex function chasing has at least an exponential
competitive ratio, as the following setting shows. Let mj = 1 and βj = 1 for
all j ∈ {1, . . . , d}, so the possible server configurations are {0, 1}d. The arriving
convex functions ft are infinite for the current position xt−1 of the online algo-
rithm and 0 for all other positions {0, 1}d\{xt−1}. After T := 2d − 1 functions
arrived, the switching cost paid by the algorithm is at least 2d − 1 (otherwise it
has to pay infinite operating costs), whereas the offline schedule can go directly
to a position without any operating cost and only pays a switching cost of at
most d.

Already for the 1-dimensional case (i.e. identical machines), it is not trivial
to round a fractional schedule without increasing the competitive ratio (see [26]
and [2]). In d-dimensional space, it is completely unclear, if continuous solutions
can be rounded without arbitrarily increasing the total cost. Simply rounding
up can lead to arbitrarily large switching costs, for example if the fractional
solution rapidly switches between 1 and 1 + ε. Using a randomized rounding
scheme like in [2] (that was used for homogeneous data centers) independently
for each dimension can result in an infeasible schedule (for example, if λt = 1
and xt = (1/d, . . . , 1/d) is rounded down to (0, . . . , 0)). Therefore, Sellke’s result
does not help us for analyzing the discrete setting. Other publications handling
convex function chasing or convex body chasing are [8,13,17].

Goel and Wierman [19] developed a (3 + O(1/μ))-competitive algorithm
called Online Balanced Descent (OBD) for convex function chasing, where the
arriving functions were required to be μ-strongly convex. We remark that the
operating cost defined by Eq. (1) is not strongly convex, i.e., μ = 0. Hence their
result cannot be used for our problem. A similar result is given by Chen et al. [15]
who showed that OBD is (3 + O(1/α))-competitive if the arriving functions are
locally α-polyhedral. In our case, α = minj∈{1,...,d} lj/βj , so α can be arbitrarily
small depending on the problem instance.

Another similar problem is the Parking Permit Problem by Meyerson [28].
There are d different permits which can be purchased for βj dollars and have a
duration of Dj days. Certain days are driving days where at least one parking
permit is needed (λt ∈ {0, 1}). The permit cost corresponds to our switching cost.
However, the duration of the permit is fixed to Dj , whereas in our problem the
online algorithm can choose for each time slot if it wants to power down a server.
Furthermore, there is no operating cost. Even if each server type is replaced by
an infinite number of permits with the duration t and the cost βj + lj · t, it is
still a different problem, because the algorithm has to choose the time slot for
powering down in advance (when the server is powered up).
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Data-center right-sizing of heterogeneous data centers is related to geograph-
ical load balancing analyzed in [24] and [27]. Other applications are shown in
[7,14,18,22,23,32,33].

2 Deterministic Online Algorithm

In this section we present a deterministic 2d-competitive online algorithm for
the problem described in the preceding section. The basic idea of our algorithm
is to calculate an optimal schedule for the problem instance that ends at the
current time slot. Based on this schedule, we decide when a server is powered
up. If a server is idle for a specific time, it is powered down.

Formally, given the original problem instance I = (T, d,m,β, l, Λ), the
shortened problem instance It is defined by It := (t, d,m,β, l, Λt) with Λt =
(λ1, . . . , λt). Let X̂t denote an optimal schedule for It and let XA be the schedule
calculated by our algorithm A.

W.l.o.g. there are no server types with the same operating and switching
costs, i.e., βj = βj′ and lj = lj′ implies j = j′. Furthermore, let l1 > · · · > ld,
i.e., the server types are sorted by their operating costs. Since inefficient server
types are excluded, this implies that β1 < · · · < βd.

Let [n] := {1, . . . , n} where n ∈ N. We separate a problem instance into

m :=
∑d

j=1 mj lanes. At time slot t, there is a single job in lane k ∈ [m], if
and only if k ≤ λt. We can assume that λt ≤ m holds for all t ∈ [T ], because
otherwise there is no feasible schedule for the problem instance. Let X be an
arbitrary feasible schedule with xt = (xt,1, . . . , xt,d). We define

yt,k :=

{
max{j ∈ [d] | ∑d

j′=j xt,j′ ≥ k} if k ∈
[∑d

j=1 xt,j

]

0 else
(2)

to be the server type that handles the k-th lane during time slot t. If yt,k = 0,
then there is no active server in lane k at time slot t. By definition, the values
yt,1, . . . , yt,m are sorted in descending order, i.e., yt,k ≥ yt,k′ for k < k′. Note that
yt,k = 0 implies λt < k, because otherwise there are not enough active servers

to handle the jobs at time t. For the schedule X̂t, the server type used in lane
k at time slot t′ is denoted by ŷt

t′,k. Our algorithm calculates yA
t,k directly, the

corresponding variables xA
t,j can be determined by xA

t,j = |{k ∈ [m] | yA
t,k = j}|.

Our algorithm works as follows: First, an optimal solution X̂t is calculated.
If there are several optimal schedules, we choose a schedule that fulfills the
inequality ŷt

t′,k ≥ ŷt−1
t′,k for all time slots t′ ∈ [t] and lanes k ∈ [m], so X̂t

never uses smaller server types than the previous schedule X̂t−1. We will see in
Lemma 2 that such a schedule exists and how to construct it.

If there is a server type j with lj = 0, then in an optimal schedule such a
server can be powered up before it is needed, although λt = 0 holds for this
time slot. Similarly, such a server can run for more time slots than necessary.
W.l.o.g. let X̂t be a schedule where servers are powered up as late as possible
and powered down as early as possible.
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Beginning from the lowest lane (k = 1), it is ensured that A uses a server
type that is not smaller than the server type used by X̂t, i.e., yA

t,k ≥ ŷt
t,k must be

fulfilled. If the server type yA
t−1,k used in the previous time slot is smaller than

ŷt
t,k, it is powered down and server type ŷt

t,k is powered up. A server of type j that
is not replaced by a greater server type stays active for t̄j := �βj/lj	 time slots.

If X̂t uses a smaller server type j′ ≤ j in the meantime, then server type j will
run for at least t̄j′ further time slots (including time slot t). Formally, a server

of type j in lane k is powered down at time slot t, if ŷt′
t′,k �= j′ holds for all server

types j′ ≤ j and time slots t′ ∈ [t − t̄j′ + 1 : t] with [a : b] := {a, a + 1, . . . , b}.
The pseudocode below clarifies how algorithm A works. The variables ek for

k ∈ [m] store the time slot when the server in the corresponding lane will be
powered down.

Algorithm 1. Algorithm A
1: for t := 1 to T do
2: Calculate X̂t such that ŷt

t′,k ≥ ŷt−1
t′,k for all t′ ∈ [t] and k ∈ [m]

3: for k := 1 to m do
4: if yA

t−1,k < ŷt
t,k or t ≥ ek then

5: yA
t,k := ŷt

t,k

6: ek := t + t̄yA
t,k

7: else
8: yA

t,k := yA
t−1,k

9: ek := max{ek, t + t̄ŷt
t,k

} where t̄0 := 0

Structure of Optimal Schedules. Before we can analyze the competitive-
ness of algorithm A, we have to show that an optimal schedule with the desired
properties required by line 2 actually exists. First, we will investigate basic prop-
erties of optimal schedules. In an optimal schedule X̂, a server of type j that
runs in lane k does not change the lane while running. Formally, if ŷt−1,k = j and
ŷt,k �= j, then there exists no other lane k′ �= k with ŷt−1,k′ �= j and ŷt,k′ = j.
Furthermore, a server is only powered up or powered down if the number of jobs
is increased or decreased, respectively. Finally, in a given lane k, the server type
does not change immediately, i.e., there must be at least one time slot, where
no server is running in lane k. These properties are proven in the full version of
this paper.

Given the optimal schedules X̂u and X̂v with u < v, we construct a minimum

schedule Xmin(u,v) with y
min(u,v)
t,k := min{ŷu

t,k, ŷv
t,k}. Furthermore, we construct a

maximum schedule Xmax(u,v) as follows. Let zl(t, k) be the last time slot t′ < t
with ŷu

t′,k = ŷv
t′,k = 0 (no active servers in both schedules) and let zr(t, k) be the

first time slot t′ > t with ŷu
t′,k = ŷv

t′,k = 0. The schedule Xmax(u,v) is defined by

y
max(u,v)
t,k := max

t′∈[zl(t,k)+1:zr(t,k)−1]
{ŷu

t′,k, ŷv
t′,k}. (3)
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Another way to construct Xmax(u,v) is as follows. First, we take the maximum
of both schedules (analogously to Xmin(u,v)). However, this can lead to situa-
tions where the server type changes immediately, so the necessary condition for
optimal schedules would not be fulfilled. Therefore, we replace the lower server
type by the greater one until there are no more immediate server changes. This
construction is equivalent to Eq. (3).

We will see in Lemma 2 that the maximum schedule is an optimal schedule for
Iv and fulfills the property required by algorithm A in line 2, which says that
the server type used in lane k at time t never decreases when the considered
problem instance is expanded. To prove this property, first we have to show that
Xmin(u,v) and Xmax(u,v) are feasible schedules for the problem instances Iu and
Iv, respectively.

Lemma 1. Xmin(u,v) and Xmax(u,v) are feasible for Iu and Iv, respectively.

The proof can be found in the full version of this paper. Now, we are able to
show that the maximum schedule is optimal for the problem instance Iv.

Lemma 2. Let u, v ∈ [T ] with u < v. Xmax(u,v) is optimal for Iv.

The works roughly as follows (the complete proof can be found in the full
paper). First, we prove that the sum of the operating costs of X̂u and X̂v is
greater than or equal to the sum of the operating cost of Xmin(u,v) and Xmax(u,v).
Each server activation in Xmin(u,v) and Xmax(u,v) can be mapped to exactly one
server activation in X̂u and X̂v with the same or a greater server type. Therefore,
C(Xmin(u,v))+C(Xmax(u,v)) ≤ C(X̂u)+C(X̂v) holds and by using Lemma1, it
is shown that Xmax(u,v) is optimal for Iv.

Feasibility. In the following, let {X̂1, . . . , X̂T } be optimal schedules that
fulfill the inequality ŷt

t′,k ≥ ŷt−1
t′,k for all t, t′ ∈ [T ] and k ∈ [m] as required

by algorithm A. Lemma 2 ensures that such a schedule sequence exists (and
also shows how to construct it). Before we can prove that algorithm A is 2d-
competitive, we have to show that the computed schedule XA is feasible. In an
optimal schedule X̂t, the values ŷt

t′,1, . . . , ŷ
t
t′,m are sorted in descending order by

definition. This also holds for schedule calculated by our algorithm.

Lemma 3. For all time slots t ∈ [T ], the values yA
t,1, . . . , y

A
t,m are sorted in

descending order, i.e., yA
t,k ≥ yA

t,k′ for k < k′.

The proof uses the fact that the running times t̄j are sorted in ascending
order, i.e., t̄1 ≤ · · · ≤ t̄d, because l1 > · · · > ld and β1 < · · · < βd. In other
words, the higher the server type is, the longer it stays in the active state. See
the full paper for more details. By means of Lemma3, we are able to prove the
feasibility of XA.

Lemma 4. The schedule XA is feasible.

Proof Idea. A schedule is feasible, if (1) there are enough active servers to handle

the incoming jobs (i.e.,
∑d

j=1 xA
t,j ≥ λt) and (2) there are not more active servers
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than available (i.e., xA
t,j ≤ mj). The first property directly follows from the

definition of algorithm A, since
∑d

j=1 xA
t,j ≥ ∑d

j=1 x̂t
t,j ≥ λt. Lemma 3 is used

to prove that xA
t,j ≤ mj is always fulfilled after setting yA

t,k in line 5 or 8. The
complete proof is presented in the full paper. 
�

Competitiveness. To show the competitiveness of A, we divide the schedule
XA into blocks At,k with t ∈ [T ] and k ∈ [m]. Each block At,k is described by its
creation time t, its start time st,k, its end time et,k, the used server type jt,k and
the corresponding lane k. The start time is the time slot when jt,k is powered
up and the end time is the first time slot, when jt,k is inactive, i.e., during the
time interval [st,k : et,k − 1] the server of type jt,k is in the active state.

There are two types of blocks: new blocks and extended blocks. A new block
starts when a new server is powered up, i.e., lines 5 and 6 of algorithm A are
executed because yA

t−1,k < ŷt
t,k or t ≥ ek ∧ yA

t−1,k > ŷt
t,k ∧ ŷt

t,k > 0 (in words:

the previous block ends and X̂t has an active server in lane k, but the server
type is smaller than the server type used by A in the previous time slot). It ends
after t̄yA

t,k
time slots. Thus st,k := t and et,k := t + t̄yA

t,k
(i.e., et,k equals ek after

executing line 6).
An extended block is created when the running time of a server is extended,

i.e., the value of ek is updated, but the server type remains the same (that is
yA

t−1,k = yA
t,k). We have et,k := t+ t̄ŷt

t,k
(i.e., the value of ek after executing line 9

or 6) and st,k := et′,k, where At′,k is the previous block in the same lane. Note
that an extended block can be created not only in line 9, but also in line 6, if
t = ek and yA

t−1,k = ŷt
t,k. If line 8 and 9 are executed, but the value of ek does

not change (because t + t̄ŷt
t,k

is smaller than or equal to the previous value of

ek), then the block At,k does not exist.
Let dt,k := et,k − st,k be the duration of the block At,k and let C(At,k) be

the cost caused by At,k if the block At,k exists or 0 otherwise. The next lemma
describes how the cost of a block can be estimated.

Lemma 5. The cost of the block At,k is upper bounded by

C(At,k) ≤
{

2βjt,k
if At,k is a new block

ljt,k
dt,k if At,k is an extended block

(4)

The lemma follows from the definition of t̄j (see the full paper for more
details). To show the competitiveness of algorithm A, we introduce another
variable that will be used in Lemmas 7 and 8. Let

ỹu
t,k := max

t′∈[t:u]
ŷt′

t′,k

be the largest server type used in lane k by the schedule X̂t′
at time slot t′ for

t′ ∈ [t : u]. The next lemma shows that ỹu
t,k is monotonically decreasing with

respect to t as well as k and increasing with respect to u.

Lemma 6. Let u′ ≥ u, t′ ≤ t and k′ ≤ k. It is ỹu
t,k ≤ ỹu′

t′,k′ .
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This lemma follows from the definition of ỹu
t,k. A proof can be found in the

full paper. The cost of schedule X in lane k during time slot t is denoted by

Ct,k(X) :=

⎧
⎪⎨
⎪⎩

lyt,k
+ βyt,k

if yt−1,k �= yt,k > 0

lyt,k
if yt−1,k = yt,k > 0

0 otherwise.

(5)

The total cost of X can be written as C(X) =
∑T

t=1

∑m
k=1 Ct,k(X). The technical

lemma below will be needed for our induction proof in Theorem1. Given the
optimal schedules X̂u and X̂v with u < v, the inequality

∑m
k=1

∑u
t=1 Ct,k(X̂u) ≤∑m

k=1

∑u
t=1 Ct,k(X̂v) is obviously fulfilled (because X̂u is an optimal schedule

for Iu, so X̂v cannot be better). The lemma below shows that this inequality
still holds if the cost Ct,k(·) is scaled by ỹu

t,k.

Lemma 7. Let u, v ∈ [T ] with u < v. It holds that

m∑

k=1

u∑

t=1

ỹu
t,kCt,k(X̂u) ≤

m∑

k=1

u∑

t=1

ỹu
t,kCt,k(X̂v). (6)

The proof is shown in the full paper. The next lemma shows how the cost of
a single block Av,k can be folded into the term 2

∑v−1
t=1 ỹv−1

t,k Ct,k(X̂v) which is
the right hand side of Eq. (6) given in the previous lemma with u = v − 1.

Lemma 8. For all lanes k ∈ [m] and time slots v ∈ [T ], it is

2

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v) + C(Av,k) ≤ 2

v∑

t=1

ỹv
t,kCt,k(X̂v). (7)

Proof. If the block Av,k does not exists, Eq. (7) holds by Lemma 6 and C(Av,k) =
0.

If Av,k is a new block, then C(Av,k) ≤ 2βj with j := jv,k = ŷv
v,k by Lemma 5.

Since Av,k is a new block, server type j was not used in the last time slot of the

last t̄j schedules, i.e., ŷt
t,k ≤ j − 1 for t ∈ [v − t̄j : v − 1]. If ŷ

v−t̄j

v−t̄j ,k = j would

hold, then yA
v−1,k = j and there would be an extended block at time slot v. By

using the facts above and the definition of t̃vt,k, for t ∈ [v − t̄j : v − 1], we get

ỹv−1
t,k = max

t′∈[t:v−1]
ŷt′

t′,k ≤ j − 1 = ŷv
v,k − 1 ≤ max

t′∈[t:v]
ŷt′

t′,k − 1 = ỹv
t,k − 1. (8)

By using Lemma 6 and Eq. (8), we can estimate the first sum in (7):

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v)

L6,(8)

≤
v−t̄j−1∑

t=1

ỹv
t,kCt,k(X̂v) +

v−1∑

t=v−t̄j

(ỹv
t,k − 1)Ct,k(X̂v)

≤
v∑

t=1

ỹv
t,kCt,k(X̂v) − βj . (9)
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For the second inequality, we add (ỹv
v,k − 1) · Cv,k(X̂v) ≥ 0 and use∑v

t=v−t̄j
Ct,k(X̂v) ≥ βj which holds because either j was powered up in X̂v

during [v − t̄j : v] (then there is the switching cost of βj) or j runs for t̄j + 1
time slots resulting in an operating cost of lj · (t̄j + 1) = lj · (�βj/lj	 + 1) ≥ βj .
Altogether, we get (beginning from the left hand side of Eq. (7) that has to be
shown)

2

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v) + C(Av,k)

(9),L5

≤ 2

v∑

t=1

ỹv
t,kCt,k(X̂v) − 2βj + 2βj

≤ 2

v∑

t=1

ỹv
t,kCt,k(X̂v).

If Av,k is an extended block, the proof of Eq. (7) is quite similar (see the full
version of this paper for more details). 
�

Theorem 1. Algorithm A is 2d-competitive.

Proof. The feasibility of XA was already proven in Lemma 4, so we have to show
that C(XA) ≤ 2d · C(X̂T ). Let Cv(XA) :=

∑v
t=1

∑m
k=1 C(At,k) denote the cost

of algorithm A up to time slot v. We will show by induction that

Cv(XA) ≤ 2

m∑

k=1

v∑

t=1

ỹv
t,kCt,k(X̂v) (10)

holds for all v ∈ [T ]0.
For v = 0, we have no costs for both XA and X̂v, so inequality (10) is

fulfilled. Assume that inequality (10) holds for v − 1. By using the induction
hypothesis as well as Lemmas 7 and 8, we get

Cv(XA) = Cv−1(X
A) +

m∑

k=1

C(Av,k)

I.H.
≤ 2

m∑

k=1

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v−1) +

m∑

k=1

C(Av,k)

L7,L8

≤ 2
m∑

k=1

v∑

t=1

ỹv
t,kCt,k(X̂v). (11)

Since ỹv
t,k ≤ d, we get

CT (XA)
(11)

≤ 2

m∑

k=1

T∑

t=1

ỹT
t,kCt,k(X̂T ) ≤ 2d

m∑

k=1

T∑

t=1

Ct,k(X̂T ) ≤ 2d · C(X̂T ).

The schedule X̂T is optimal for the problem instance I, so algorithm A is 2d-
competitive. 
�



Algorithms for Energy Conservation in Heterogeneous Data Centers 85

3 Randomized Online Algorithm

The 2d-competitive algorithm can be randomized to achieve a competitive ratio
of e

e−1d ≈ 1.582d against an oblivious adversary. The randomized algorithm B
chooses γ ∈ [0, 1] according to the probability density function fγ(x) = ex/(e−1)
for x ∈ [0, 1]. The variables t̄j are set to �γ · βj/lj	, so the running time of a
server is randomized. Then, algorithm A is executed. Note that γ is determined
at the beginning of the algorithm and not for each block.

Theorem 2. Algorithm B is e
e−1d-competitive against an oblivious adversary.

The complete proof of this theorem is shown in the full paper. Most lemmas
introduced in the previous section still hold, because they do not depend on
the exact value of t̄j , only Lemmas 5 and 8 have to be adapted. For the proof
of Theorem 2, we first give an upper bound for the expected cost of block At,k

(replacing Lemma 5). This bound is used to show that

e

e − 1
·

v−1∑

t=1

ỹv−1
t,k Ct,k(X̂v) + E[C(Av,k)] ≤ e

e − 1
·

v∑

t=1

ỹv
t,kCt,k(X̂v)

holds for all lanes k ∈ [m] and time slots v ∈ [T ] (similar to Lemma 8). Finally,
Theorem 2 is proven by induction.

4 Lower Bound

In this section, we show that there is no deterministic online algorithm that
achieves a competitive ratio that is better than 2d.

We consider the following problem instance: Let βj := N2j and lj := 1/N2j

where N is a sufficiently large number that depends on the number of servers
types d. The value of N will be determined later. The adversary will send a
job for the current time slot if and only if the online algorithm has no active
server during the previous time slot. This implies that the online algorithm has
to power up a server immediately after powering down any server. Note that
λt ∈ {0, 1}, i.e., it is never necessary to power up more than one server. The
optimal schedule is denoted by X∗. Let A be an arbitrary deterministic online
algorithm and let XA be the schedule computed by A.

W.l.o.g. in XA there is no time slot with more than one active server. If
this were not the case, we could easily convert the schedule into one where the
assumption holds without increasing the cost. Assume that at time slot t a new
server of type k is powered up such that there are (at least) two active servers
at time t. If we power up the server at t + 1, the schedule is still feasible, but
the total costs are reduced by lk. We can repeat this procedure until there is at
most one active server for each time slot.

Lemma 9. Let k ∈ [d]. If XA only uses servers of type lower than or equal to
k and if the cost of A is at least C(XA) ≥ Nβk, then the cost of A is at least
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C(XA) ≥ (2k − εk) · C(X∗) (12)

with εk = 9k2/N and N ≥ 6k.

Proof Idea. We will prove the lemma by induction. The base case k = 1 is shown
in the full version of this paper, so we assume that Lemma 9 holds for k − 1.

We divide the schedule XA into phases L0,K1, L1,K2, . . . , Ln such that in
the phases K1, . . . ,Kn server type k is used exactly once, while in the interme-
diate phases L0, . . . , Ln the other server types 1, . . . , k − 1 are used. A phase Ki

begins when a server of type k is powered up and ends when it is powered down.
The phases Li can have zero length (if the server type k is powered up immedi-
ately after it is powered down, so between Ki and Ki+1 an empty phase Li is
inserted).

The operating cost during phase Ki is denoted by δiβk. The operating and
switching costs during phase Li are denoted by piβk. We divide the intermediate
phases Li into long phases where pi > 1/N holds and short phases where pi ≤
1/N . Note that we can use the induction hypothesis only for long phases. The
index sets of the long and short phases are denoted by L and S, respectively.

To estimate the cost of an optimal schedule we consider two strategies: In
the first strategy, a server of type k is powered up at the first time slot and
runs for the whole time except for phases Ki with δi > 1, then powering down
and powering up are cheaper than keeping the server in the active state (βk vs.
δiβk). The operating cost for the phases Ki is δ∗

i βk with δ∗
i := min{1, δi} and

the operating cost for the phases Li is at most 1
N2 piβk, because algorithm A

uses servers whose types are lower than k and therefore the operating cost of A
is at least N2 times larger. Thus, the total cost of this strategy is at most

βk

(
1 +

n∑

i=1

δ∗
i +

∑

i∈L∪S

1

N2
pi

)
≥ C(X∗).

In the second strategy, for the long phases L we use the strategy given by our
induction hypothesis, while for the short phases S we behave like algorithm A
and in the phases Ki we run the server type 1 for exactly one time slot (note
that in Ki we only have λt = 1 in the first time slot of the phase). Therefore the
total cost is upper bounded by

βk

(∑

i∈L

1

α
pi +

∑

i∈S
pi + 2nβ1/βk

)
≥ C(X∗)

with α := 2k − 2 − εk−1.
The total cost of A is equal to βk

(∑n
i=1(1 + δi) +

∑
i∈L∪S pi

)
, so the com-

petitive ratio is given by

C(XA)

C(X∗)
≥

∑n
i=1(1 + δi) +

∑
i∈L∪S pi

C(X∗)/βk
.
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By cleverly separating the nominator into two terms and by estimating C(X∗)

with strategy 1 and 2, respectively, it can be shown that C(XA)
C(X∗) ≥ 2+α− 16k

N ≥
2k − εk. The complete calculation including all intermediate steps is shown in
the full paper. 
�

Theorem 3. There is no deterministic online algorithm for the data-center
optimization problem with heterogeneous servers and time and load independent
operating costs whose competitive ratio is smaller than 2d.

Proof Idea. Assume that there is an (2d − ε)-competitive deterministic online
algorithm A. We construct a workload as described at the beginning of this
section until the cost of A is greater than Nβd (note that lj > 0 for all j ∈
[d], so the cost of A can be arbitrarily large). By using Lemma 9 with k = d
and N := max{6d, 
9k2/ε + 1�}, we get C(XA) > (2d − ε) · C(X∗) which is a
contradiction to our assumption. See the full paper for more details. 
�

The schedule constructed for the lower bound only uses at most one job in
each time slot, so there is no reason for an online algorithm to utilize more than
one server of a specific type. Thus, for a data center with m unique servers (i.e.
mj = 1 for all j ∈ [d]), the best achievable competitive ratio is 2d = 2m.
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ABSTRACT
Power consumption is a dominant and still growing cost factor in
data centers. In time periods with low load, the energy consumption
can be reduced by powering down unused servers. We resort to a
model introduced by Lin, Wierman, Andrew and Thereska [23, 24]
that considers data centers with identical machines, and generalize
it to heterogeneous data centers with d different server types. The
operating cost of a server depends on its load and is modeled by
an increasing, convex function for each server type. In contrast to
earlier work, we consider the discrete setting, where the number
of active servers must be integral. Thereby, we seek truly feasible
solutions. For homogeneous data centers (d = 1), both the offline
and the online problem were solved optimally in [3, 4].

In this paper, we study heterogeneous data centers with general
time-dependent operating cost functions. We develop an online
algorithm based on a work function approach which achieves a
competitive ratio of 2d + 1 + ϵ for any ϵ > 0. For time-independent
operating cost functions, the competitive ratio can be reduced to
2d + 1. There is a lower bound of 2d shown in [5], so our algorithm
is nearly optimal. For the offline version, we give a graph-based
(1+ϵ )-approximation algorithm. Additionally, our offline algorithm
is able to handle time-variable data-center sizes.
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1 INTRODUCTION
Energy conservation in data centers is important for both eco-
nomical and ecological reasons [14]. A huge amount of the en-
ergy consumed in data centers is wasted because many servers
run idle for long time periods, while still consuming half of their
peak power [18, 28]. The power consumption can be reduced by
powering down servers that are currently not needed. However, a
power-up operation of a server causes increased energy consump-
tion. Hence, holding an idle server in active mode for a short period
of time is cheaper than powering it down and up again shortly after.
Furthermore, power-up and -down operations generate delay and
wear-and-tear costs [24]. Therefore, algorithms are needed that
dynamically right-size a data center depending on incoming jobs
so as to minimize the energy consumption.

In this paper, we consider data centers with heterogeneous
servers. This can be different architectures, for example, servers
that use the GPU to performmassive parallel calculations. However,
tasks that contain many branches are not suitable for GPUs and can
be processed much faster on a common CPU [30]. Heterogeneity
may also result from old and new servers. It is a common practice
that a data center is extended by new servers while the old ones
are kept in use.

In practice, the energy consumption of a server is not constant
but increases with load [6]. If a machine is idle, the CPU frequency
is lowered in modern hardware to save energy [27]. For high fre-
quencies, the CPU voltage has to be raised, which results in a
superlinear increase in power consumption [32]. Therefore, in our
model, the energy consumption of each server type j is modeled
by an increasing convex function fj of the load z. The operating
cost of an idle server is given by fj (0). By setting the value of fj
to infinity for large load values z, it is possible to model different
server capacities. For example, there may be a slow server type with
a maximum load of 1 and a fast server type with a maximum load
of 4 that can process four times as many jobs as the slow server.

Our model described below is a generalization of the model
presented by Lin, Wierman, Andrew and Thereska [23, 24] for
homogeneous data centers where all servers are identical.

Problem formulation. We consider a data center with d dif-
ferent server types andmj servers of type j. The servers have two
states, an active one where they are able to process jobs and an
inactive one without energy consumption. Powering up a server
of type j, i.e., switching it from the inactive to the active state, pro-
duces cost of βj (called switching cost). Power-down operations do
not incur any cost. We consider a time horizon consisting of the
time slots {1, . . . ,T }. For each time slot t ∈ {1, . . . ,T }, a job volume
of λt arrives and has to be processed during the time slot. The
jobs can be arbitrarily distributed to the servers. Let zmax

j denote
the maximum job volume that can be processed by one server of
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type j during a single time slot. If a server of type j works with load
z ∈ [0, zmax

j ], it causes cost in the amount of ft, j (z) where ft, j (z) is
a convex increasing non-negative function. Since ft, j is convex, the
cost is minimized if each active server of type j runs with the same
load (see Lemma 2.2 for a formal proof). Therefore, the operating
cost for server type j during time slot t is given by

дt, j (x , z) B


x ft, j

( λt z
x

)
if x > 0

∞ if x = 0 and λtz > 0
0 if x = 0 and λtz = 0

where x is the number of active servers of type j and z is the
fraction of the job volume λt that is assigned to server type j. The
total operating cost during time slot t is denoted by

дt (x1, . . . ,xd ) B min
(z1, ...,zd )∈Z

d∑

j=1
дt, j (x j , zj ) (1)

where Z B {(z1, . . . , zd ) ∈ [0, 1]d | ∑d
j=1 zj = 1} is the set of all

possible job assignments.
A scheduleX is a sequence x1, . . . ,xT with xt = (xt,1, . . . ,xt,d )

where each xt, j ∈ {0, 1, . . . ,mj } indicates the number of active
servers of type j during time slot t . We assume that at the be-
ginning and end of the considered time horizon, all servers are
in the inactive state, i.e., x0 = xT+1 = (0, . . . , 0). A schedule is
called feasible, if there are not more active servers than available
and if the maximum load of the active servers is not exceeded,
i.e., xt, j ∈ {0, 1, . . . ,mj } and ∑d

j=1 xt, jz
max
j ≥ λt holds for all

t ∈ {1, . . . ,T } and j ∈ {1, . . . ,d }. The total cost of a schedule is
defined by

C (X ) B
T∑

t=1

*.,дt (xt,1, . . . ,xt,d ) +
d∑

j=1
βj (xt, j − xt−1, j )

++/- (2)

where (x )+ B max(x , 0). Note that the switching cost is only paid
for powering up. However, this is not a restriction, since all servers
are inactive at the beginning and end of the workload. Thus, the
cost for powering down can be folded into the cost for powering up.

A problem instance is specified by the tupleI = (T ,d,m, β , F ,Λ)
withm = (m1, . . . ,md ), β = (β1, . . . , βd ), F = ( f1,1, . . . , fT ,d ) and
Λ = (λ1, . . . , λT ). The task is to find a schedule with minimal cost.

In the online version of this problem, the job volumes λt and
the operating cost functions ft, j arrive one-by-one, so xt has to be
determined without the knowledge of future jobs λt ′ and functions
ft ′, j with t ′ > t .

Our contribution. We investigate both the online and the of-
fline version of this problem. In contrast to previous results, we
consider the discrete setting where the number of active servers
xt, j has to be integral. Thereby, we obtain truly feasible solutions.

For the online problem, we first examine a simplified version
where the operating cost functions ft, j are time-independent (i.e.,
ft, j = fj for all t ∈ {1, . . . ,T }) and present a (2d + 1)-competitive
deterministic online algorithm (Section 2). The basic idea is to
calculate an optimal schedule for the problem instance that ends at
the current time slot. For each server type, the algorithm ensures
that the number of active servers is at least as large as the number
of active servers in the optimal schedule. A server is powered down
if its accumulated idle operating cost fj (0) exceeds its switching

cost βj . Since the operating cost is time-independent, the runtime
of a server can be determined in advance.

In Section 3, we demonstrate how our algorithm can be modified
to handle time-dependent operating cost functions ft, j . We achieve
a competitive ratio of 2d + 1 + ϵ for any ϵ > 0. The basic idea of
the algorithm is unchanged. However, in contrast to the previous
section, the runtime of a server now depends on the time slot when
it is powered up, since the idle operating cost ft, j (0) varies over time.
Thus, the runtime of a server is not known in advance any more.
The analysis results in a competitive ratio of 2d + 1 + c (I) where
c (I) is a constant that depends on the switching and operating costs
of the problem instance I. By allowing state changes at any time
during a time slot and repairing the resulting schedule afterward
(such that there are no intermediate state changes any more), we
are able to make the constant c (I) arbitrarily small.

In Section 4, we consider the offline version of the problem and
present a (1 + ϵ )-approximation algorithm that runs in polynomial
time if d is a constant. First, we present an optimal algorithm that
uses a natural graph representation. The graph is structured in a
(d + 1)-dimensional grid and contains a vertex vt,x for each time
slot t ∈ {1, . . . ,T } and server configuration x . The vertices are
connected with weighted edges that represent the switching and
operating costs. By calculating a shortest path, we obtain an optimal
schedule. For our approximation algorithm, we only use a small
polynomial-sized subset of all vertices depending on the desired
approximation factor. Our (1 + ϵ )-approximation algorithm runs
in O

(
T · ϵ−d ·∏d

j=1 logmj
)
time. At the end of Section 4, we show

that our algorithm still works if the total number of servers varies
over time, i.e.,mj is time-dependent.

Related work. In recent years, energy conservation in data
centers has received much attention, see for example [1, 8, 33] and
references therein.

Regarding the online version, Lin et al. [23, 24] analyzed the
problem described above for homogeneous data centers where
all servers are identical, i.e., d = 1. The minimum function in
equation (1) disappears, so the operating cost at time slot t is given
by дt (x ) = x f (λt /x ), which makes the problem much easier. They
presented a 3-competitive online algorithm for the fractional setting
where the number of active servers does not need to be integral.
This result was improved by Bansal et al. [13] who developed a
2-competitive algorithm. In our previous paper [3, 4], we analyzed
the discrete setting for homogeneous data centers. We developed a
3-competitive deterministic and 2-competitive randomized online
algorithm and showed that these algorithms are optimal (i.e., there is
no algorithm that achieves a better competitive ratio). Furthermore,
we proved that 2 is a lower bound for the fractional setting (this
result was independently found in [9]).

The data-center right-sizing problem on heterogeneous data cen-
ters is related to convex function chasing, also known as smoothed
online convex optimization [17]. At each time slot, a convex func-
tion дt arrives and the algorithm has to choose a point xt ∈ Rd .
The cost at time slot t is given by дt (xt ) plus the movement cost
∥xt − xt−1∥ where ∥ · ∥ is any metric. Data-center right-sizing in
the fractional setting (i.e., the number of active servers can be any
real number) is a special case of convex function chasing where
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∥ · ∥ is a scaled Manhattan metric and the convex functions have
the form given in equation (1).

Goel and Wierman [20] developed a (3 + O (1/µ ))-competitive
algorithm called Online Balanced Descent (OBD) where the arriving
functions are µ-strongly convex. Chen et al. [17] showed that OBD
achieves a competitive ratio of 3 + O (1/α ) if the arriving functions
are locally α-polyhedral. However, if the operating cost functions
ft, j are load-independent, i.e., ft, j (z) = const, then дt is neither
strongly convex nor locally polyhedral, so µ = 0 and α = 0. Hence,
their results cannot be used for our problem.

Sellke [29] developed a (d + 1)-competitive online algorithm
for convex function chasing without any restrictions. A similar
result was found by Argue et al. [10]. The general convex func-
tion chasing problem in the discrete setting where дt can be any
convex function has (at least) an exponential competitive ratio as
the following example shows. For all j ∈ {1, . . . ,d }, let mj = 1
and βj = 1, so the feasible server configurations are {0, 1}d . The
arriving functions дt are infinite for the current position xt−1 of
the online algorithm and zero for all other positions {0, 1}d \ {xt−1}.
The online algorithm always has to change its position to avoid
the infinite operating cost (otherwise the online algorithm is not
competitive at all). Therefore, after T B 2d − 1 time slots, the
switching cost of the online algorithm is at least 2d − 1. The offline
schedule can go directly to a position in {0, 1}d \⋃T

t=1{xt−1} where
no operating cost occurs paying a switching cost of at most d . Thus,
the competitive ratio for general convex function chasing is at least
Ω(2d/d ). To gain a competitive ratio with more practical relevance,
we focus on operating cost functions described by equation (1).

It is an open problem how fractional solutions can be rounded
to achieve an integral schedule without significantly increasing
the total cost. If the number of active servers is simply rounded
up, the total switching cost can get arbitrarily large, for example if
the fractional schedule switches permanently between 1 and 1 + ϵ .
For homogeneous data centers, a randomized rounding scheme
achieving a competitive ratio of 2 was presented in [4]. However,
using this method for heterogeneous data centers independently
for each server type can lead to an infeasible schedule (e.g., if
λt = 1 and xt = (1/d, . . . , 1/d ) is rounded down to (0, . . . , 0)).
Thus, Sellke’s result does not help us in our analysis of the discrete
setting. Further publications examining the convex body or function
chasing problem are [7, 12, 15].

In [5], we analyzed the discrete setting for heterogeneous data
centers where the operating cost does neither depend on the load
nor on time , i.e., ft, j (z) = lj = const. In this case, the total oper-
ating cost at time t is given by дt (x1, . . . ,xd ) =

∑d
j=1 ljx j which

is much simpler than the general expression given in equation (1).
In addition, we assumed that there are no inefficient servers, i.e.,
a server with a higher switching cost always has a lower operat-
ing cost. We presented a 2d-competitive algorithm for this special
problem. Moreover, we gave a lower bound of 2d , which also holds
for the general problem that we consider in this paper. Thus, our
online algorithms presented in Sections 2 and 3 of this paper are
nearly optimal. If the operating cost functions are constant (i.e.,
ft, j (z) = const), we achieve the optimal competitive ratio of 2d .

The offline version of the discrete data-center right-sizing prob-
lem for homogeneous data centers can be solved in polynomial

time [3]. It is an open question whether the problem on hetero-
geneous data centers is NP-hard or not. For the special case of
load-independent operating costs (i.e., ft, j (z) = lj = const), a
polynomial-time algorithm based on a minimum-cost flow compu-
tation was shown in [1, 2]. However, the flow representation of the
problem cannot be generalized for load-dependent operating costs.

Right-sizing of heterogeneous data centers is related to geo-
graphical load balancing examined in [26] and [22]. For more works
handling related problems, refer to [11, 16, 19, 21, 25, 31, 33].

NOTATION
Let [k] B {1, 2, . . .k }, [k]0 B {0, 1, . . .k } and [k : l] B {k,k +
1, . . . , l } where k, l ∈ N.

2 ONLINE ALGORITHM FOR TIME-
INDEPENDENT OPERATING COST
FUNCTIONS

In this section we present a (2d + 1)-competitive deterministic
online algorithm for time-independent operating cost functions,
i.e., ft, j = fj for all time slots t ∈ [T ]. Roughly, our algorithmworks
as follows. For each time slot, it calculates an optimal schedule for
the job volumes received so far. Servers are powered up such that
the number of active servers of each type is at least as large as the
number of active servers of the same type in the optimal schedule.
A server runs for exactly ⌈βj/fj (0)⌉ time slots, then it is powered
down, regardless of whether or not it was used. This is similar to
the well-known ski rental problem where it is optimal to buy the
skis once the total renting cost would exceed the buy price.

Formally, given the problem instance I = (T ,d,m, β, F ,Λ), the
shortened problem instanceIt is defined byIt B (t ,d,m, β , F ,Λt )
with Λt = (λ1, . . . , λt ). Let X̂ t denote an optimal schedule for this
problem instance and let XA be the schedule calculated by our
algorithm A.

Our algorithm works as follows: After calculating X̂ t , the algo-
rithm ensures that the number of active servers of each type j ∈ [d]
is greater than or equal to the number of active servers of type j in
the last time slot of X̂ t . That is, in each time slot (x̂tt, j − xAt−1, j )

+,
servers of type j are powered up such that the inequality xAt, j ≥ x̂tt, j

is satisfied. A server of type j is powered down after t̄j =
⌈

βj
fj (0)

⌉
time slots. Note that fj (0) is the operating cost of a server being
idle. It does not matter if the server was used or not.

The pseudocode below clarifies how algorithm A works. The
schedule X̂ t can be calculated with the optimal offline algorithm

Algorithm 1 Algorithm A
1: wt, j B 0 for all t ∈ Z and j ∈ [d]
2: for t B 1 to T do
3: Calculate X̂ t

4: for j B 1 to d do
5: xAt, j B xAt, j −wt−t̄j , j
6: if xAt, j ≤ x̂tt, j then
7: wt, j B x̂tt, j − xAt, j
8: xAt, j B x̂tt, j
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t

xAt, j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t

x̂tt, j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1: (This figure is colored) Visualization of algorithm A
for one specific server type j with t̄j = 5. The upper plot
shows x̂tt, j , while the lower plot shows the resulting values
xAt, j . Note that the upper plot is not an optimal schedule, but
the last state of each optimal schedule X̂ 1, X̂ 2, . . . , X̂T . The
algorithm ensures that xAt, j ≥ x̂tt, j is always satisfied which
is visualized by the colors: Each colored square in the upper
plot causes a server to be powered up. The runtime of this
server is drawn in the same color in the lower plot. Addi-
tionally, the arrows indicate the time slot when a server is
powered down (e.g., at time slot 1, a server is powered up,
and t̄j = 5 time slots later, it is powered down).

presented in Section 4.1. The variableswt, j store how many servers
of type j were powered up at time slot t . A visualization of our
algorithm is shown in Figure 1.

2.1 Feasibility
Before we determine the competitive ratio of our algorithm, we
have to show that the calculated schedule is feasible.

Lemma 2.1. The schedule XA is feasible.

Proof. A schedule is feasible, if (1) ∑d
j=1 xt, jz

max
j ≥ λt and (2)

xt, j ∈ [mj ]0 holds for all t ∈ [T ] and j ∈ [d]. It is always ensured
that xAt, j ≥ x̂tt, j holds, so condition (1) is satisfied, since X̂ t is a
feasible schedule: ∑d

j=1 x
A
t, jz

max
j ≥ ∑d

j=1 x̂
t
t, jz

max
j ≥ λt .

Servers are powered up only in line 8. Since X̂ t is feasible, xAt, j ≤
mj is always satisfied. Servers are powered down only in line 5. Each
variablewt, j is accessed exactly once, so xAt, j never gets negative.
Therefore, condition (2) is satisfied. □

2.2 Competitiveness
In this section, wewill show that algorithmA is (2d+1)-competitive.

For our analysis, we split the operating cost into an idle and
a load-dependent part. The idle operating cost of an active server
of type j for a single time slot is fj (0), i.e., it does not depend on
the load. The load-dependent operating cost of all active servers of
type j at time slot t is defined by

Lt, j (X ) B xt, j

(
fj

(
λtzt, j

xt, j

)
− fj (0)

)
(3)

Aj,1

Aj,2

Aj,3

Aj,4

Aj,5

Aj,6

Aj,7

t0 τj,1 τj,2 τj,3

≥ t̄j ≥ t̄j

Figure 2: (This figure is colored) Example of the blocks Aj,i
(rectangles) and the corresponding special time slots τj,k
(dashed vertical lines) for one specific server type j. The dis-
tance between two consecutive special time slots is always
greater than or equal to t̄j . The index block sets Bj,k defined
in the proof of Lemma 2.6 are Bj,1 = {1, 2} (marked in red),
Bj,2 = {3, 4} (green), Bj,3 = {5, 6, 7} (blue).

where zt, j are the values zj that minimize the right term in equa-
tion (1). Formally,

(zt,1, . . . , zt,d ) B argmin
(z1, ...,zd )∈Z

d∑

j=1
дt, j (xt, j , zj ).

Since fj is an increasing function, Lt, j (X ) cannot be negative.
Let sj,1 ≤ · · · ≤ sj,nj denote the time slots when in XA a server

of type j is powered up. If n servers of type j are powered up at the
same time slot, there are n equal values in the sequence. The time
interval Aj,i B [sj,i : sj,i + t̄j − 1] is called block and contains the
time slots when the server is in the active state. The switching and
idle operating cost of a block Aj,i is at most1

Hj,i B βj + t̄j · fj (0). (4)

For each server type j ∈ [d] we define special time slots τj,1, . . . ,
τj,n′j that are constructed in reverse time as follows. τj,n′j is defined
as the last time slot when a server of type j is powered up in XA ,
i.e., τj,n′j B sj,nj . Given τj,k , the previous time slot τj,k−1 is the last
powering up of a server of type j before time slot τj,k − t̄j . Formally,
for k < n′j , τj,k is defined by τj,k B max{sj,i | i ∈ [nj ], sj,i ≤
τj,k+1 − t̄j }. Figure 2 visualizes the definition of τj,k . Since the
runtime of a single server is exactly t̄j , this definition ensures that
each block Aj,i contains exactly one time slot τj,k , k ∈ [n′j ].

As already mentioned in the problem description section, the
operating costs of all active servers of type j are minimized if the
jobs assigned to type j are equally distributed to the servers of
type j. This is formally stated in the lemma below.

1If there are two consecutive blocks without a gap between them, there is no switching
cost for the second block, so Hj,i gives an upper bound for the switching and idle
operating cost of Aj,i .
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Lemma 2.2. Let f be a convex function, x ∈ N, λ, z ∈ R and let∑x
i=1 ai = 1 with ai ≥ 0 for all i ∈ [x]. It holds

x f (λz/x ) ≤
x∑

i=1
f (λzai ).

The proof uses Jensen’s inequality and is shown in full version
of this paper. The following lemma states that the load-dependent
operating cost of XA at time t is less than or equal to that of X̂ t .

Lemma 2.3. For all t ∈ [T ] and j ∈ [d], it holds

Lt, j (X
A ) ≤ Lt, j (X̂

t ).

Proof. For i ∈ [xAt, j ], let

ai B


1/x̂tt, j if i ≤ x̂tt, j
0 otherwise.

By using the definition of Lt, j (equation (3)) and Lemma 2.2, we get

Lt, j (X
A ) = xAt, j fj (λtzt, j/x

A
t, j ) − xAt, j fj (0)

L2.2≤
xAt, j∑

i=1
fj (λtzt, jai ) − xAt, j fj (0)

=

x̂ tt, j∑

i=1
fj (λtzt, j/x̂

t
t, j ) +

xAt, j∑

i=x̂ tt, j+1
fj (0) − xAt, j fj (0)

= x̂tt, j fj (λtzt, j/x̂
t
t, j ) − x̂tt, j fj (0)

= Lt, j (X̂
t ).

In the third step, we simply use the definition of ai and split the
sum into two parts. The second sum is equal to (xAt, j − x̂tt, j ) fj (0).
At the end, we use the definition of Lt, j , again. □

By using Lemma 2.3, we can show that the load-dependent oper-
ating cost of XA is at most as large as the total cost of the optimal
schedule.

Lemma 2.4. It holds
T∑

t=1

d∑

j=1
Lt, j (X

A ) ≤ C (X̂T ).

Proof. We will prove the inequality ∑t
t ′=1

∑d
j=1 Lt ′, j (X

A ) ≤
C (X̂ t ) by induction. For t = 0, both terms are zero. Assume that∑t−1
t ′=1

∑d
j=1 Lt ′, j (X

A ) ≤ C (X̂ t−1) holds. Let

CM (X ) B
∑

t ∈M
*.,дt (xt,1, . . . ,xt,d ) +

d∑

j=1
βj (xt, j − xt−1, j )

++/-
be the switching and operating cost of X for all time slots t ∈ M .
Note that the total cost of a schedule is given by C[1:T ] (X ) = C (X ).

Since X̂ t−1 is an optimal schedule for It−1, the cost of X̂ t up to
the time slot t−1 is greater than or equal toC (X̂ t−1), i.e.,C (X̂ t−1) ≤
C[1:t−1] (X̂

t ). By using this fact as well as the induction hypothesis
and Lemma 2.3, we get

t∑

t ′=1

d∑

j=1
Lt ′, j (X

A )
I .H .≤ C (X̂ t−1) +

d∑

j=1
Lt, j (X

A )

L2.3≤ C[1:t−1] (X̂
t ) +

d∑

j=1
Lt, j (X̂

t )

≤ C[1:t−1] (X̂
t ) +C {t } (X̂ t )

≤ C (X̂ t ). □

So far, we found an upper bound for the load-dependent oper-
ating cost of XA . The following lemma is needed to estimate the
switching and idle operating cost of XA in Lemma 2.6.

Lemma 2.5. The switching and idle operating cost of the blockAj,i
is bounded by

Hj,i ≤ 2 min{βj + fj (0), t̄j · fj (0)}.
The inequality directly follows from equation (4). The complete

calculation is shown in the full paper. The next lemma shows that
the switching and idle operating cost of all servers of type j in XA
is at most two times the total cost of the optimal schedule.

Lemma 2.6. For all j ∈ [d], it following inequality holds
nj∑

i=1
Hj,i ≤ 2 ·C (X̂T ). (5)

Proof. Let Bj,k B {i ∈ [nj ] | Aj,i ∋ τj,k } with k ∈ [n′j ] be the
indices of the blocks containing the time slot τj,k (see Figure 2).
As already mentioned, each block Aj,i contains exactly one time
slot τj,k , so

⋃
k ∈[n′j ] Bj,k = [nj ] and Bj,k ∩ Bj,k ′ = ∅ for k , k ′.

Therefore, ∑nj
i=1 Hj,i =

∑n′j
k=1

∑
i ∈Bj,k Hj,i .

We will prove equation (5) by induction. To simplify the notation,
let τj,0 B 0. We will show that

n∑

k=1

∑

i ∈Bj,k
Hj,i ≤ 2C (X̂ τj,n ) (6)

holds for alln ∈ [n′j ]0. Forn = 0, the inequality is obviously satisfied
(the sum is empty and X̂ 0 is an empty schedule with zero cost).
Assume that inequality (6) holds for n− 1, i.e., ∑n−1

k=1
∑
i ∈Bj,k Hj,i ≤

2C (X̂ τj,n−1 ).
For I ⊆ [T ], let

CI (X ) B
∑

t ∈I
*.,дt (xt ) +

d∑

j=1
βj (xt, j − xt−1, j )

++/-
denote the cost of X during the time interval I . We begin from the
left-hand side of equation (6), use our induction hypothesis and get

n∑

k=1

∑

i ∈Bj,k
Hj,i

IH≤ 2C (X̂ τj,n−1 ) +
∑

i ∈Bj,n
Hj,i

≤ 2C[1:τj,n−1] (X̂
τj,n ) +

∑

i ∈Bj,n
Hj,i (7)

The last inequality holds because X̂ τj,n−1 is an optimal schedule for
Iτj,n−1 , so C (X̂ τj,n−1 ) ≤ C[1:τj,n−1] (X̂

τj,n ).
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By the definition of τj,k , at time t B τj,n at least one server of
type j is powered up, so

x̂tt, j = xAt, j = |Bj,n |. (8)

Furthermore, the cost of X̂ t during the time interval I B [τj,n−1+1 :
τj,n] is at least

CI (X̂
τj,n ) ≥ x̂tt, j ·min{βj + fj (0), fj (0) · t̄j } (9)

because each server of type j that is active at time slot t was powered
up during the time interval I (so there is the switching cost βj as well
as the operating cost for at least one time slot) or it was powered up
before I , so it was active for |I | = τj,n −τj,n−1 ≥ t̄j time slots. Since
fj is an increasing function, the operating cost is at least fj (0) for
each time slot.

By using Lemma 2.5 and the equations (8) and (9), we can trans-
form the term (7) to

2C[1:τj,n−1] (X̂
τj,n ) +

∑

i ∈Bj,n
Hj,i

L2.5≤ 2C[1:τj,n−1] (X̂
τj,n ) + |Bj,n | · 2 min{βj + fj (0), fj (0) · t̄j }

(8)≤ 2C[1:τj,n−1] (X̂
τj,n ) + 2x̂tt, j min{βj + fj (0), fj (0) · t̄j }

(9)≤ 2C[1:τj,n−1] (X̂
τj,n ) + 2C[τj,n−1+1:τj,n ] (X̂

τj,n )

≤ 2C (X̂ τj,n ).

Therefore, equation (6) is satisfied for all n ∈ [n′j ]0. For n = n′j , we
get

nj∑

i=1
Hj,i =

n′j∑

k=1

∑

i ∈Bj,k
Hj,i ≤ 2C (X̂ τj ,n′j ) ≤ 2C (X̂T ). □

Now, we are able to prove the competitive ratio of algorithm A.

Theorem 2.7. Algorithm A is (2d + 1)-competitive.

Proof. The total cost of XA is the switching and idle operating
cost given by ∑d

j=1
∑nj
i=1 Hj,i plus the load-dependent operating

cost given by ∑T
t=1

∑d
j=1 Lt, j (X

A ). By using Lemmas 2.6 and 2.4,
we get

C (XA ) =
d∑

j=1

nj∑

i=1
Hj,i +

T∑

t=1

d∑

j=1
Lt, j (X

A )

L2.6
L2.4≤

d∑

j=1
2 ·C (X̂T ) +C (X̂T )

= (2d + 1) ·C (X̂T ).

The schedule X̂T is optimal for the problem instance I, so algo-
rithm A is (2d + 1)-competitive. □

If the operating costs are load independent, i.e., fj (z) = lj =
const for all j ∈ [d], then the load-dependent operating cost
Lt, j (X

A ) is always zero. Thus, the competitive ratio of algorithmA
is 2d , so it matches the lower bound given in [5]. In contrast to the
deterministic 2d-competitive online algorithm presented in [5], our
algorithm can handle inefficient server types, which were excluded
in [5].

Corollary 2.8. If the operating cost functions are load- and time-
independent, algorithmA achieves an optimal competitive ratio of 2d .

3 ONLINE ALGORITHM FOR TIME-
DEPENDENT OPERATING COST
FUNCTIONS

In this section, we present a modified version of algorithm A that
is able to handle time-dependent operating cost functions ft, j and
achieves a competitive ratio of 2d + 1+ϵ for any ϵ > 0. The proof is
divided into two parts. First, as an intermediate result we introduce
algorithm B that is

(
2d + 1 +∑d

j=1 maxt ∈[T ]
ft, j (0)
βj

)
-competitive.

Then, in Subsection 3.2 we show how the given problem instance I
can bemodified tomake the constant c (I) B ∑d

j=1 maxt ∈[T ]
ft, j (0)
βj

arbitrarily small. Finally, the resulting schedule is adapted to the
original problem instance without increasing its cost.

3.1 Obtaining a competitive ratio of 2d+1+c (I)
To handle time-dependent operating cost functions, algorithm A
has to be modified, as the idle operating cost ft, j (0) is no longer
constant over time. Similar to algorithmA, in algorithm B a server
is powered down when its accumulated idle operating cost ft, j (0)
exceeds its switching cost. Formally, let lt, j B ft, j (0) be the idle
operating cost of server type j during time slot t and let

t̄t, j B max
t̄ ∈ [T − t] |

t+t̄∑

u=t+1
lu, j ≤ βj


be the maximal number of time slots such that the sum of the idle
operating costs beginning from time slot t + 1 is smaller than or
equal to βj . A server that is powered up at time slot t runs for t̄t, j
further time slots, i.e., it is powered down at time slot t + t̄t, j . This
definition differs from t̄j in algorithmA where a server is powered
down at t + t̄j − 1. Note that the idle operating cost at time slot t
does not influence the runtime of a server. The power-up policy of
algorithm B is the same as in algorithmA, i.e., it is always ensured
that the number of active servers of type j is at least as large as
the corresponding number in an optimal schedule for the problem
instance that ends at the current time slot. Formally, xBt, j ≥ x̂tt, j
holds for all t ∈ [T ] and j ∈ [d].

In contrast to algorithmA, the runtime of a server is not known
when it is powered up, because the future operating cost functions
did not arrive yet, so t̄t, j cannot be calculated at this time. However,
the runtime is known at the time slot when the server must be
powered down, so B is a valid online algorithm. The pseudocode
below clarifies how algorithm B works. Note that only lines 5 and 6
change in comparison to algorithm A. The setWt defined in line 5
contains all time slots u with u + t̄u, j + 1 = t . Servers that were
powered up at time slot u are shut down at time slot t . Figure 3
visualizes the definition of t̄t, j andWt and shows an example of
how algorithm B operates.

Before we analyze the competitive ratio of algorithm B, we have
to prove that the calculated schedule X B is feasible.

Lemma 3.1. The schedule X B is feasible.

The proof is similar to the feasibility proof of algorithm A. In
fact, the argumentations for ∑d

j=1 xt, jz
max
j ≥ λt and xt, j ≤ mj are
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x̂tt, j = 1 2 1 3 0 0 1 2 0 0 0 0
lt, j = 3 1 4 1 2 1 1 2 3 5 1 3
t̄t, j = 3 2 4 4 3 3 2 1 2 . . . . . . . . .
Wt = ∅ ∅ ∅ ∅ {1, 2} ∅ ∅ {3} {4,5}{6,7,8} ∅ {9}

t

xBt, j

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3: (This figure is colored) Visualization of algorithm B
for one specific server type j with βj = 6. The plot shows the
number of active servers xBt, j of algorithm B. The colors in-
dicate the running time of each server. The values x̂tt, j (that
are needed to determine when a server has to be powered
up) and the idle operating costs lt, j as well as the resulting
values of t̄t, j andWt are shown below the plot. The running
time t̄t, j of a server that is powered up a time slot t is indi-
cated by the arrows, e.g., a server that is powered up at time
slot t = 2 runs for t̄2, j = 2 additional time slots, so it is pow-
ered down at the end of time slot t + t̄t, j = 4. The values t̄t, j
are the maximal number of time slots after t such that the
idle operating costs do not exceed βj , e.g., t̄2, j = 2, because
l3, j + l4, j = 4 + 1 = 5 ≤ βj = 6, but l3, j + l4, j + l5, j = 7 > βj . At
time slot t , the servers that were powered up at time u ∈Wt
are shut down, e.g.,W5 = {1, 2}, so both the red and the blue
server are powered down at time slot 5. For t ≥ 10, the values
of t̄t, j are not known yet, because they depend on l13, j .

Algorithm 2 Algorithm B
1: wt, j B 0 for all t ∈ Z and j ∈ [d]
2: for t B 1 to T do
3: Calculate X̂ t

4: for j B 1 to d do
5: Wt B

{
u ∈ [t − 1]|∑t−1

v=u+1 lv, j ≤ βj <
∑t
v=u+1 lv, j

}
6: xBt, j B xBt, j −

∑
u ∈Wt wu, j

7: if xBt, j ≤ x̂tt, j then
8: wt, j B x̂tt, j − xBt, j
9: xBt, j B x̂tt, j

the same. To verify that xt, j ≥ 0, we show that the setsWt are
disjoint. This implies that eachwt, j is accessed at most once. The
complete proof can be found in the full version of this paper.

The analysis of the competitive ratio of algorithm B is quite sim-
ilar to that of algorithmA. Let Lt, j (X ) B xt, j

(
ft, j

(
λt zt, j
xt, j

)
− lt, j

)

denote the load-dependent operating cost of X . Lemmas 2.2 and 2.3
still hold, since in their proofs we can simply replace fj with ft, j .
Lemma 2.4 directly follows from Lemma 2.3, so it also remains
applicable.

The schedule X B is divided into blocks Aj,i B [sj,i : sj,i + t̄t, j ]
(the definition of sj,i remains the same). The switching and idle

operating cost of a block Aj,i is at most

Hj,i B βj +

s+t̄s, j∑

u=s
lu, j (10)

with s = sj,i . The special time slots τj,k are defined in the same way
as in the previous section. Formally, they are given by τj,n′j B sj,nj
and τj,k B max{sj,i | i ∈ [nj ], sj,i + t̄sj,i , j < τj,k+1} for 1 ≤ k < n′j
as well as τj,0 B 0. The definition of the index sets Bj,k = {i ∈
[nj ] | Aj,i ∋ τj,k } do not change. The following lemma replaces
Lemma 2.5 and gives an upper bound for Hj,i .

Lemma 3.2. The switching and idle operating cost ofAj,i is at most

Hj,i ≤ 2βj + max
t ∈[T ]

lt, j .

Proof. Let s B sj,i . By the definition of t̄s, j , we know that
∑s+t̄s, j
u=s+1 ≤ βj . We use this inequality in equation 10 and get Hj,i =

βj +
∑s+t̄s, j
u=s lu, j ≤ 2βj + ls, j ≤ 2βj +maxt ∈[T ] lt, j . □

The next lemma replaces Lemma 2.6 and shows that the switch-
ing and idle operating costs caused by server type j are at most
2 +maxt ∈[T ] lt, j/βj times larger than the total cost of an optimal
schedule.

Lemma 3.3. For all j ∈ [d], it holds
nj∑

i=1
Hj,i ≤

(
2 + max

t ∈[T ]

lt, j

βj

)
·C (X̂T ). (11)

The proof uses Lemma 3.2 and is very similar to that of Lemma 2.6.
See the full version of this paper for more details. Now, we are able
to prove the competitive ratio of algorithm B.

Theorem 3.4. Algorithm B is (2d + 1 + c (I))-competitive with
c (I) = ∑d

j=1 maxt ∈[T ]
lt, j
βj

.

The proof uses Lemmas 2.4 and 3.3 and is analogous to that of
Theorem 2.7. See the full version of this paper for more details.

3.2 Improving the competitive ratio to 2d + 1+ ϵ
In the following, we show how the competitive ratio can be reduced
to 2d + 1 + ϵ for any ϵ > 0. Given the original problem instance
I = (T ,d,m, β , F ,Λ), we consider the modified problem instance
Ĩ = (T̃ ,d,m, β , F̃ , Λ̃) where each time slot t of the original problem
instance is divided into ñt equal sub time slots. The values ñt ∈
N are defined later. The total number of time slots is given by
T̃ B

∑T
t=1 ñt . In the following, time slots in the original problem

instance I are denoted by t , whereas time slots in the modified
problem instance Ĩ are denoted by u. Let U (t ) be the set of time
slots in the modified problem instance Ĩ that corresponds to the
time slot t ∈ [T ] in the original problem instance I. Formally,
U (t ) B [u + 1 : u + ñt ] with u = ∑t−1

t ′=1 ñt ′ . Furthermore, we define
U −1 (u) with u ∈ [T̃ ] to be the time slot t ∈ [T ] such that u ∈ U (t ).
The operating cost functions of Ĩ are defined as

f̃u, j (z) B
1
ñt

ft, j (z)

with t = U −1 (u) for all u ∈ [T̃ ] and j ∈ [d], so the operating cost
during time slot t is divided into ñt equal parts. The idle operating
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cost is denoted by l̃u, j B f̃u, j (0) for u ∈ [T̃ ] and j ∈ [d]. The job
volumes do not change, so λu B λU −1 (u ) for all u ∈ [T̃ ]. In other
words, Ĩ matches the problem instance I where intermediate state
changes are allowed.

Let n ∈ N. We set ñt = n ·maxj ∈[d]
lt, j
βj

and apply algorithm B
on the corresponding problem instance Ĩ. Therefore, we get

c (Ĩ) =
d∑

j=1
max
u ∈T̃

l̃u, j

βj
=

d∑

j=1
max
t ∈T

lt, j

ñt βj
≤

d∑

j=1
max
t ∈T̃

1
n
=
d

n
. (12)

In the second step, we use that l̃u, j = lt, j/ñt with t = U −1 (u). The
inequality holds because ñt ≥ n · lt, jβj for all j ∈ [d]. To achieve a
competitive ratio of 2d + 1 + ϵ , we set n = d/ϵ . For n → ∞, the
competitive ratio converges to 2d + 1.

We still have to show how the resulting (2d + 1+ ϵ )-competitive
schedule for the modified problem instance Ĩ can be transformed
into a feasible schedule for the original problem instance I. LetX B
be the schedule created by B and let X C be the final schedule for I.
For each original time slot t ∈ [T ], let x Ct B xBµ (t ) with µ (t ) B

argminu ∈U (t ) д̃u (x
B
u ) be the server configuration that minimizes

the operating cost during the time interval U (t ).
The pseudocode below shows how the scheduleX C is calculated.

For each arriving operating cost function ft, j , the next ñt time slot
of Ĩ are created and passed to algorithm B. Afterward, the next
server configuration x Ct is determined. The whole schedule X B
cannot be calculated at once, because the state x Ct must be fixed
before the next function ft+1, j can be processed.

Algorithm 3 Algorithm C
1: Initialize algorithm B
2: for t B 1 to T do
3: Create the next ñt time slots of the modified problem

instance Ĩ with ñt B d/ϵ ·maxj ∈[d] lt, j/βj
4: Execute ñt time slots in algorithm B
5: x Ct B xBµ (t ) with µ (t ) B argminu ∈U (t ) д̃u (x

B
u )

The following lemma shows that this procedure does not increase
the cost of the schedule.

Lemma 3.5. The total cost of X C regarding the problem instance I
is smaller than or equal to the total cost of X B regarding the modified
problem instance Ĩ.

Proof. Let CJop (X ) be the operating cost of the schedule X re-
garding the problem instance J ∈ {I, Ĩ} and let CJsw (X ) denote
its switching cost.

First, we will compare the operating cost of both schedules. The
operating cost of X B is given by

C Ĩop (X B ) =
T̃∑

u=1
д̃u (x

B
u ) =

T∑

t=1

∑

u ∈U (t )

д̃u (x
B
u )

≥
T∑

t=1
ñt · min

u ∈U (t )
д̃u (x

B
u ).

For the last inequality, we estimate each summand by the minimum
of all summands. By using the definition of x Ct , we get

T∑

t=1
ñt · min

u ∈U (t )
д̃u (x

B
u ) =

T∑

t=1
ñt · min

u ∈U (t )
д̃u (x

C
t ).

The definition of f̃u, j implies that д̃u (x ) = 1
ñt
дt (x ) with t =

U −1 (u), so
T∑

t=1
ñt · min

u ∈U (t )
д̃u (x

C
t ) =

T∑

t=1
дt (x

C
t ) = C

I
op (X

C ).

Altogether we have shown that C Ĩop (X B ) ≥ CIop (X C ).
Next, we will compare the switching cost. To simplify the nota-

tion, let S (x ,x ′) B ∑d
j=1 βj (x

′
j − x j )+ be the switching cost from

the state x to x ′. The total switching cost of X B is given by

C Ĩsw (X B ) =
T̃∑

u=1
S (xBu−1,x

B
u ) =

T+1∑

t=1

µ (t )∑

u=µ (t−1)+1
S (xBu−1,x

B
u )

with µ (0) B 0 and µ (T + 1) B T̃ + 1. In the last step, the inter-
val [T̃ ] is partitioned into the sub-intervals [1 : µ (1)], [µ (1) + 1 :
µ (2)], . . . , [µ (T ) + 1 : T̃ + 1] (note that the switching cost from
time slot T̃ to T̃ + 1 is always 0, since xB

T̃+1
= 0 by definition).

The switching cost during each interval is at least as large as the
switching cost for jumping directly to the last state of the interval.
Therefore,

T+1∑

t=1

µ (t )∑

u=µ (t−1)+1
S (xBu−1,x

B
u ) ≤

T+1∑

t=1
S (xBµ (t−1) ,x

B
µ (t ) ).

By using the definition of x Ct , we get
T+1∑

t=1
S (xBµ (t−1) ,x

B
µ (t ) ) =

T+1∑

t=1
S (x Ct−1,x

C
t ) = C

I
sw (X

C ),

so C Ĩsw (X B ) ≥ CIsw (X C ). □

Now, we can prove that algorithm C is (2d + 1 + ϵ )-competitive.

Theorem 3.6. For any ϵ > 0, there is a (2d + 1 + ϵ )-competitive
algorithm for the data-center right-sizing problem with heterogeneous
servers and time-dependent operating cost functions.

Proof. Let X ∗J be an optimal schedule for the problem instance
J ∈ {I, Ĩ} and let CJ (X ) denote the total cost of X with respect
to J . We have to show that CI (X C ) ≤ (2d + 1 + ϵ ) · CI (X ∗I ).
By using Lemma 3.5, Theorem 3.4 and the competitive ratio of
algorithm B given by equation (12), we get

CI (X C )
L3.5≤ C Ĩ (X B )
T 3.4≤

(
2d + 1 + c (Ĩ)

)
·C Ĩ (X ∗Ĩ )

(12)≤ (2d + 1 + ϵ ) ·C Ĩ (X ∗Ĩ ) ≤ CI (X ∗I ).

The last inequality holds because each feasible schedule X for the
problem instance I can be converted into a feasible schedule X̃
for the modified problem instance Ĩ without increasing the cost.
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Formally, the definition x̃u B xU −1 (u ) for all u ∈ [T̃ ] implies
C Ĩ (X̃ ) = CI (X ). Therefore, an optimal schedule for I cannot have
a lower cost than an optimal schedule for Ĩ. □

4 APPROXIMATION ALGORITHM
In this section, we consider the offline version of the data-center
right-sizing problem and present a (1+ϵ )-approximation algorithm
that runs in O

(
T ·ϵ−d ·∏d

j=1 logmj
)
time, which is polynomial if d

is a constant. It is based on an optimal, graph-based algorithm that
is presented in the following subsection. Afterward, in Section 4.2,
we show how the optimal algorithm can be modified to obtain a
(1 + ϵ )-approximation in polynomial time.

To simplify the following calculations we introduce some nota-
tions. LetMj B [mj ]0 andM B�d

j=1 Mj be the set of all possible
server configurations. The operating cost is denoted by Cop (X ) B∑T
t=1 дt (xt ) and the switching cost is denoted by Csw (X ) B

∑T
t=1∑d

j=1 βj (xt, j − xt−1, j )+.

4.1 Optimal offline algorithm
An optimal schedule can be found by converting the problem in-
stance I to a graph and finding the shortest path.

The graphG (I) (or simply denoted byG) contains 2T ·∏d
j=1 (mj+

1) vertices arranged in a (d + 1)-dimensional grid (where the first
dimension has 2T layers). For each time slot t ∈ [T ] and each server
configuration x = (x1, . . . ,xd ) ∈ M, there are two vertices in the
graph denoted by v↑t,x and v↓t,x . There is an edge eopt,x from v↑t,x
to v↓t,x with weight дt (x ) representing the operating cost during
time slot t . For each j ∈ [d] and for each

x = (x1, . . . ,xd ) ∈ M1 × · · · × (Mj \ {mj }) × · · · ×Md

(note that x j = mj is excluded), let x ′ B (x1, . . . ,x j + 1, . . . ,xd ).
There is an edge e↑t,x , j from v↑t,x to v↑t,x ′ with weight βj (a server
of type j is powered up) and another edge e↓t,x ′, j from v↓t,x ′ to v

↓
t,x

with weight 0 (a server of type j is powered down). Furthermore,
for each t ∈ [T − 1] we need an edge e→t,x from v↓t,x to v↑t+1,x with
weight 0 to switch to the next time slot.

Let 0 B (0, . . . , 0) ∈ M. Each schedule X for the problem
instance I can be represented by a path PX between v↑1,0 and v

↓
T ,0.

For each t ∈ [T ], the path uses the edge eopt,x t . The vertices v
↓
t,x t

andv↑t+1,x t+1
(for t ∈ [T −1]) are connected by an arbitrary shortest

path between them. The same is done for the start and the end point.
Note that the sum of the weights of the path’s edges is equal to the
cost of the schedule.

On the other hand, a given path P between v↑1,0 and v
↓
T ,0 rep-

resents a schedule X P . If the path uses the edge e
op
t,x , then the

corresponding schedule uses the server configuration x during
time slot t . If P does not use a shortest path between v↓t,x t and
v↑t+1,x t+1

(for t ∈ [T − 1]), then the sum of the weights of the path’s
edges are greater than the cost of the corresponding schedule. How-
ever, by replacing the path’s vertices between v↓t,x t and v

↑
t+1,x t+1

for all t ∈ [T − 1] by a shortest sub-path, both values are equal.

v↑1, (0,0) v↓1, (0,0) v↑2, (0,0) v↓2, (0,0)
д1 (0, 0) 0 д2 (0, 0)

v↑1, (0,1) v↓1, (0,1) v↑2, (0,1) v↓2, (0,1)
д1 (0, 1) 0 д2 (0, 1)

v↑1, (1,0) v↓1, (1,0) v↑2, (1,0) v↓2, (1,0)
д1 (1, 0) 0 д2 (1, 0)

v↑1, (1,1) v↓1, (1,1) v↑2, (1,1) v↓2, (1,1)
д1 (1, 1) 0 д2 (1, 1)

v↑1, (2,0) v↓1, (2,0) v↑2, (2,0) v↓2, (2,0)
д1 (2, 0) 0 д2 (2, 0)

v↑1, (2,1) v↓1, (2,1) v↑2, (2,1) v↓2, (2,1)
д1 (2, 1) 0 д2 (2, 1)

β1 0

β1 0

β1 0

β1 0

β1 0

β1 0

β1 0

β1 0

β2 0

β2 0

β2 0

β2 0

β2 0

β2 0

Figure 4: (This figure is colored)Visualization of the graph rep-
resentation. This example shows two server types (d = 2) and
two time slots (T = 2). There arem1 = 2 servers of type 1 and
m2 = 1 server of type 2. The algorithm calculates a shortest
path from v↑1, (0,0) (red dot) to v↓2, (0,0) (blue dot). The short-
est path is drawn in green and corresponds to the optimal
schedule x1 = (2, 0) and x2 = (1, 1).

A shortest path betweenv↑1,0 andv
↓
T ,0 corresponds to an optimal

schedule. Owing to the graph structure, a shortest path can be
calculated with dynamic programming inO (T ·∏d

j=1mj ) time. Note
that this runtime is not polynomial (even if d is a constant), because
the encoding length of the problem instance is O (T +∑d

j=1 logmj ).
The graph structure and the relation between a shortest path and
an optimal schedule are visualized in Figure 4.

4.2 (1 + ϵ )-approximation
In this section, we develop a (1 + ϵ )-approximation which has a
polynomial runtime, if d and ϵ are constants. The basic idea is
to reduce the number of possible values for xt, j , that is, we will
calculate an optimal solution where the number of active servers
can only take specific values. Broadly speaking, the number of
active servers are powers of a constant γ > 1. For example, we
will see that using the values xt, j ∈ {0, 1, 2, 4, 8, . . . ,mj } (i.e., each
power of two up to mj as well as mj and 0) would result in a 3-
approximation. The set of values that will be used for the number
of active servers of type j is

M
γ
j B {0,mj } ∪ {⌊γk ⌋ ∈ Mj | k ∈ N} ∪ {⌈γk ⌉ ∈ Mj | k ∈ N}
= {0, 1, ⌊γ 1⌋, ⌈γ 1⌉, ⌊γ 2⌋, ⌈γ 2⌉, . . . ,mj }.

Using both the rounded down and rounded up values of γk ensures
that the ratio between two consecutive values is not larger than
γ . Note that |Mγ

j | ∈ O (logγ mj ). Furthermore, we defineMγ B
�d

j=1 M
γ
j as the set of server configurations that will be used in

our algorithm. For a given value x j < mj , let Nj (x j ) be the next
greater value of x j inM

γ
j , i.e., Nj (x j ) B min{x ∈ Mγ

j | x > x j }.
The reduced graph Gγ contains the vertices vst,x with s ∈ {↑,↓},

t ∈ [T ] and x ∈ Mγ . Similar to G there is an edge from v↑t,x to

Paper Presentation  SPAA ’21, July 6–8, 2021, Virtual Event, USA

56



t

xt, j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0
1
2

4

8

10

Figure 5: (This figure is colored) Visualization of the construc-
tion of X ′ (shown in green) for one specific server type j. In
this example,wehaveγ = 2 andmj = 10, so the allowed states
for X ′ areMγ

j = {0, 1, 2, 4, 8, 10} (dashed horizontal lines). The
optimal schedule X ∗ is shown in red. The dotted blue line
shows the value of min(mj , (2γ − 1)x∗t, j ). Note that the sched-
ule X ′ always stays between the red and the blue line and
only changes the number of active servers to ensure the in-
variant.

v↓t,x with weight дt (x ) (for all t ∈ [T ] and x ∈ Mγ ) and an edge
from v↓t,x to v↑t+1,x with cost 0 (for all t ∈ [T − 1] and x ∈ Mγ ).
For each j ∈ [d] and for each

x = (x1, . . . ,xd ) ∈ Mγ
1 × · · · × (M

γ
j \ {mj }) × · · · ×Mγ

d ,

let x ′ B (x1, . . . ,Nj (x j ), . . . ,xd ). There is an edge from v↑t,x to
v↑t,x ′ with weight βj (Nj (x j ) − x j ) and an edge from v↓t,x ′ to v

↓
t,x

with weight 0.

Theorem 4.1. Let Pγ be a shortest path in Gγ and Xγ the cor-
responding schedule. Let X ∗ be an optimal schedule for the original
problem instance. Then, the inequality

C (Xγ ) ≤ (2γ − 1) ·C (X ∗) (13)

is satisfied, i.e., Xγ is a (2γ − 1)-approximation.

To prove this theorem, we construct a path P ′ in Gγ with the
corresponding schedule X ′ that is not necessarily a shortest path,
however, it will satisfy the inequalityC (X ′) ≤ (2γ − 1) ·C (X ∗). The
cost of Xγ can only be smaller, because the corresponding path Pγ

is a shortest path in Gγ , so if X ′ is a (2γ − 1)-approximation, then
Xγ is a (2γ − 1)-approximation too.

Given the optimal solution X ∗ the states of X ′ are defined by

x ′t, j =


xmin if x ′t−1, j ≤ x∗t, j
x ′t−1, j if x∗t, j < x ′t−1, j ≤ (2γ − 1) · x∗t, j
xmax if (2γ − 1) · x∗t, j < x ′t−1, j

(14)

with xmin = min{x ∈ M
γ
j | x ≥ x∗t, j } and xmax = max{x ∈ M

γ
j |

x ≤ (2γ − 1) · x∗t, j } for all t ∈ [T ] and j ∈ [d] (with x ′0 = 0). Note
that the invariant

x∗t, j ≤ x ′t, j ≤ (2γ − 1) · x∗t, j (15)

is always satisfied. The construction of X ′ is visualized in Figure 5.

The complete proof of Theorem 4.1 is shown in the full version
of this paper. Roughly, it works as follows. First, we show that the
operating cost of X ′ is a (2γ − 1)-approximation of the operating
cost of X ∗, i.e., Cop (X ′) ≤ (2γ − 1) · Cop (X ∗). The proof uses the
definition of X ′, especially the invariant x ′t, j ≤ (2γ − 1) · x∗t, j , as
well as the fact that ft, j are non-negative increasing functions.
Afterward, it is shown that the switching cost of X ′ is (2γ − 1)-
approximation of the switching cost ofX ∗. For this, the scheduleX ′
is divided into phases such that in each phase servers are either
powered up or down. By using the invariant (15) and the fact that
the relative distance between two states in X ′ is at most γ , it is
shown that each phase is a (2γ − 1)-approximation according to
the switching cost. Finally, both parts combined with the inequality
C (Xγ ) ≤ C (X ′) lead to C (Xγ ) ≤ (2γ − 1) ·C (X ∗).

If we set γ = (1+ϵ/2), then 2γ −1 = (1+ϵ ), so we have a (1+ϵ )-
approximation. For server type j, there are |Mγ

j | ∈ O (logγ mj ) =

O (log1+ϵ mj ) different values that are used by our graph-based algo-
rithm. Thus the graph consists of O

(
T ·∏d

j=1 log1+ϵ mj
)
vertices

which is also the algorithm’s runtime. For ϵ < 1 (usually we are not
interested in ϵ-values that are bigger than 1) the term 1

log(1+ϵ ) can
be written as 1/ϵ+O (1), so the runtime isO

(
T · ϵ−d ·∏d

j=1 logmj
)
.

We summarize our results in the following theorem:

Theorem 4.2. Given the problem instance I, a (1 + ϵ )-approxi-
mation can be calculated in O

(
T · ϵ−d ·∏d

j=1 logmj
)
time.

4.3 Time-dependent data-center size
In practice, the size of a data center can change over time. If a data
center is extended with new servers of type j, thenmj increases.
If parts of the data center are shut down for maintenance,mj de-
creases temporarily. Letmt, j denote the total number of servers
of type j at time slot t . In the following, we will show that the
approximation algorithm still works in this setting.

LetMt, j B [mt, j ]0 andMt =
�d

j=1 Mt, j be the allowed server
configurations at time slot t . The vertices in G that represent un-
available server configurations are removed along with the incident
edges. The shortest path in the new graph represents an optimal
schedule. For the approximation, let

M
γ
t, j B {0,mt, j } ∪ {⌊γk ⌋ ∈ Mt, j | k ∈ N} ∪ {⌈γk ⌉ ∈ Mt, j | k ∈ N}

and letMγ
t B

�d
j=1 M

γ
t, j be the considered server configurations.

The resulting graph is denoted by Ḡγ . Theorem 4.1 still hold for the
modified graph, i.e., the schedule that corresponds to the shortest
path in Ḡγ is a (2γ − 1)-approximation. The following theorem
shows that a (1 + ϵ )-approximation can still be calculated in poly-
nomial time (if d is a constant). The proof is analogous to that of
Theorem 4.2.

Theorem 4.3. Given the problem instance I where the total num-
ber of available servers depends on time, a (1+ ϵ )-approximation can
be calculated in

O *.,ϵ
−d ·

T∑

t=1

d∏

j=1
logmt, j

+/- ⊆ O
*.,T · ϵ

−d ·
d∏

j=1
log max

t ∈[T ]
mt, j

+/-
time.
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