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Abstract

Systems Medicine is an interdisciplinary field of study that brings together clinicians, biolo-
gists, statisticians, data- and computer scientists. By bringing expertise from different fields,
Systems Medicine employs complex algorithmic approaches to integrate various biological
data and provide a holistic understanding of the human body. Ultimately, Systems Medicine
aims to redefine disease phenotypes based on molecular mechanisms rather than symptoms.
Substantial attention has been directed towards the extraction of disease modules based on
the aggregation of protein-protein interaction (PPI) networks and transcriptomics data.

While a large number of methods have been developed for disease module extraction, two
open questions remain which I will address in this thesis. First, existing methods extract
disease modules in a supervised fashion and are thus limited in their capacity to detect new
endophenotypes together with the mechanisms that drive them. Second, it remains unclear
to what extent these methods leverage prior knowledge about functional interactions in PPI
networks as remarkably few studies have sought to examine the exact informational gain that
PPI networks provide.

This cumulative thesis comprises three original publications addressing this unmet need
and examining Systems Medicine approaches to bridge data from different molecular layers.
The first publication describes the only unsupervised disease module extraction method,
BiCoN (Biclustering Constrained by Networks). BiCoN performs simultaneous patient
clustering and protein module extraction to obtain a potential mechanistic explanation of
a studied condition. The obtained results conclusively showed that PPI integration made
clustering results more resistant to noise and batch effects in transcriptomics data compared
to results of regular clustering and biclustering methods. In light of these findings, the second
publication attempts to numerically evaluate the influence of different properties of PPI
networks (such as node degree distribution, individual node’s degree, hub node presence) on
the results of disease module extraction methods. The analysis demonstrated that disease
module extraction methods could often not exploit the actual PPIs but instead relied on
a degree of a particular protein. This conclusion is particularly alarming due to previous
research showing that protein degree in PPI networks correlates with the number of studies
conducted on a protein and does not necessarily reflect the actual number of interactions.

While the field of module discovery is currently very much focused on transcriptomics data,
the third publication gives a different perspective where epigenomic regulation patterns are
used as potential disease mechanisms. In this review paper, we have explored the potential
for integrating epigenomics information using machine learning-based approaches for DNA
methylation deconvolution, gene expression prediction, and multi-omics integration on a
single-cell level. In the future, such efforts can help integrate knowledge about gene-regulatory
relations in the disease module discovery process in a true systems medicine fashion.
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Abstract

Taken together, the findings suggest various directions that can improve disease module
mining quality. Improvements are suggested on the algorithmic side, data acquisition, and
modeling of the problem. These findings can shape the future of the disease mechanisms
extraction and eventually contribute to safer treatments, better diagnostics, and efficient drug
design.
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Kurzfassung

Systemmedizin ist ein interdisziplinäres Forschungsfeld, das WissenschaftlerInnen aus der
Klinik, Biologie, Statistik und Informatik zusammenbringt. Mit der Expertise aus verschiede-
nen Disziplinen nutzt die Systemmedizin komplexe Algorithmen, um biologische Daten zu
integrieren und ein gesamtheitliches Verständnis des menschlichen Körpers zu ermöglichen.
Die Systemmedizin zielt darauf ab, Krankheits-Phänotypen neu zu definieren, basierend
auf molekularen Mechanismen anstatt durch Symptome. Ein wichtiger Teil, der in der For-
schung viel Aufmerksamkeit erfahren hat, ist die Extraktion von Krankheitsmodulen, die
Protein-Protein Interaktionsnetzwerke (PPI) mit Transkriptomik Daten integrieren.

Viele Methoden für die Extraktion von Krankheitsmodulen wurden bereits entwickelt.
Zwei wichtige Fragestellungen blieben dabei aber bisher unbeantwortet, welche in dieser
Dissertation adressiert werden. Erstens, existierende Methoden arbeiten ausschließlich mit
überwachtem Lernen, nicht aber mit unüberwachten. Das schränkt sie in ihrer Möglichkeit
ein, neue Endophänotypen mit entsprechenden Mechanismen zu finden. Zweitens, bisher ist
nicht klar, welchen Einfluss die Struktur von PPI Netzwerken auf die Algorithmen haben.
Nur sehr wenige Studien haben versucht diesen Informationsgehalt zu untersuchen.

Diese kumulative Dissertation beinhaltet drei Originalpublikationen, welche diese Fragen
untersuchen und systemmedizinische Methoden zur Verbindung von verschiedenen mo-
lekularen Ebenen diskutieren. Die erste Publikation beschreibt die einzige veröffentlichte
Methode zur unüberwachten Krankheitsmodul Extraktion, BiCoN (Biclustering Constrained
by Networks). BiCoN führt ein simultanes Gruppieren von Patienten und Extrahieren von
Proteinmodulen durch, um eine potentiell mechanistische Erklärung einer untersuchten
Krankheit zu finden. Die Resultate dieser Studie zeigten, dass PPI Integration das Gruppieren
der Patienten robuster gegenüber Rauschen und Batch Effekten in Transkriptomik Daten
macht. Ausgehend von diesen Ergebnissen, untersuchte ich in der zweiten Publikation den
Einfluss von verschiedenen Charakteristika der Netzwerke auf Methoden zur Extraktion
von Krankheitsmodulen. Die Analyse zeigte, dass die Methoden oft nicht von den ganzen
Netzwerken profitieren, sondern sich nur auf den Knotengrad einzelner Proteine fokussieren.
Dieses Fazit ist alarmierend, weil in vorherigen Studien bereits gezeigt wurde, dass der
Knotengrad mit der Anzahl der Studien, in denen das jeweilige Protein untersucht wurde,
korreliert und nicht die wirkliche Anzahl der Interaktionen widerspiegelt.

Da sich das Feld der Modulextraktion in Krankheiten sehr auf Transkriptomik Daten
fokussiert, gibt die dritte Publikation einen Blick auf epigenetische Regulationsmuster, welche
für die Erklärung von Krankheitsmechanismen genutzt werden können. In diesem Review
Artikel, untersuchte ich das Potential der Integration von epigenetischen Information mit
Methoden des maschinellen Lernens, zur Dekonvolution von DNA methylierung, Vorhersage
von Transkription, und Integration von Multi-Omik Daten auf der Einzelzell Ebene. In der
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Kurzfassung

Zukunft können diese Methoden dabei helfen, Wissen über genetische Regulation in den
Prozess der Extraktion von Krankheitsmodulen zu integrieren.

Die hier vorgestellten Ergebnisse zeigen verschiedene Wege, mit welchen die Erkennung
von Krankheitsmodulen verbessert werden kann. Diese umfassen Algorithmen, Daten Aquise,
und Modellierung des Problems. Damit können Methoden zur Modulextrakion in der Zukunft
verbessert werden und zu besseren Diagnosen, Behandlungen und Medikamenten Design
beitragen.

vi



Contents

Acknowledgments ii

Abstract iii

Kurzfassung v

1. General Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Background 4
2.1. Molecular Biology and Human Disease . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Molecular data and technologies . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Single cell technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Molecular data integration and interpretation . . . . . . . . . . . . . . . . . . . 14
2.2.1. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2. Data repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Artificial intelligence in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1. Classic heuristic approaches . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2. Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3. Artificial neural networks in biomedicine . . . . . . . . . . . . . . . . . . 22
2.3.4. Common challenges in machine learning . . . . . . . . . . . . . . . . . . 23

2.4. Network and Systems Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1. Molecular networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2. De novo endophenotyping . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3. Active Module Identification . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5. Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. General Methods 32
3.1. BiCoN algorithmic framework description . . . . . . . . . . . . . . . . . . . . . 32

3.1.1. Metaheuristic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2. Active module identification methods evaluation . . . . . . . . . . . . . . . . . 34

3.2.1. PPI networks and randomizations . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2. Gene sets evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



Contents

4. Publications 38
4.1. Publication 1: BiCoN: network-constrained biclustering of patients and omics

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2. Publication 2: On the limits of active module identification . . . . . . . . . . . . 48
4.3. Publication 3: Machine learning for deciphering cell heterogeneity and gene

regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5. General Discussion and Outlook 72
5.1. PPI networks as a prior knowledge source . . . . . . . . . . . . . . . . . . . . . 72
5.2. Unsupervised learning approaches have a potential to overcome PPI biases . . 73
5.3. Algorithmic roadblocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A. Appendix 81
A.1. Assessment of BiCoN with the AMI testing suite . . . . . . . . . . . . . . . . . 81

Acronyms 82

References 83

viii



1. General Introduction

1.1. Motivation

Rich molecular data availability provides invaluable opportunities to improve human health
and make medicine more precise, personalized, and safe. While data from different molecular
levels (multi-omics data, e.g., transcriptomics, proteomics, etc.) is available, every single level
provides a limited understanding of the undergoing pathological processes. Two strategies are
often considered together or separately to systematically understand a disease: integration of
multi-omics data and integration of prior information relevant to the whole population. The
prior information consists of, for instance, the knowledge about disease pathways, metabolic
pathways, protein structures, or protein interactions. Multi-omics data integration presumes
the availability of different omics data types for the same set of patients. Multi-omics data
acquisition can be very expensive and therefore less common in practice. On the other hand,
prior information integration usually does not require additional costs as various databases
provide this information publicly.

Both strategies are often applied in Systems Medicine [1, 2, 3]. Systems medicine is a field
of study that looks at the human body as a whole [4]. To obtain the holistic perspective,
Systems Medicine relies on complex molecular interactions within the human body that
can mechanistically explain patients’ phenotype. Mechanistic explanations are essential for
moving on from symptom-based disease definitions that are often unable to offer disease treat-
ment, but only partly successful symptoms management [5]. Extraction of the mechanistically
connected molecular entities capable of phenotype explanation is often referred to as disease
modules mining tasks [6, 7]. A disease module can consist of various entities such as genes,
proteins, metabolites, and some others. The connectivity requirement implies that the module
is not only an indicator of a specific process but the molecular mechanism that explains the
undergoing pathological process. This mechanism might be further used in clinical practice
for diagnostics, risk prediction, and drug development. Despite the vast potential of disease
module mining, there are currently no gold standards methods to decipher molecular data
and extract a disease mechanism. Nevertheless, many methods attempt to extract disease
mechanisms, but they have certain limitations related to the fact that disease module mining
is algorithmically and conceptually challenging [8].

Bridging Systems medicine with Artificial Intelligence (AI) is vital for large-scale disease
module mining. Therefore, the main goal of the Dissertation is to explore AI methods’
contribution to Systems Medicine. In particular, I will focus on whether the integration
of protein-protein interaction (PPI) prior information and bulk transcriptomics studies can
increase the quality of the disease module discovery. The underlying hypothesis is that
the integration of PPI networks can provide a mechanistic explanation of differences in

1



1. General Introduction

transcriptomic profiles between different conditions and thus contribute to understanding the
condition on the molecular level.

The first publication [9] provides a new method (BiCoN) that performs disease module min-
ing and simultaneous patient clustering into clinically-relevant groups, using transcriptomics
data and PPI networks. The simultaneous search for disease modules and corresponding
patient clusters allows BiCoN to perform patient stratification from a mechanistic perspective.
Clustering and disease module extraction are usually done sequentially (first clustering and
then PPI analysis), and thus the results are more likely to be driven by batch effects and
noise in transcriptomics data [9] . BiCoN is the first unsupervised disease module mining
algorithm that is capable of reproducing known disease subtypes as well as novel, clinically
relevant patient subgroups [9]. BiCoN performance demonstrated two essential points on
which further research was built: PPI networks indeed make results more robust to noise, and
thus the developed algorithm demonstrated superiority to the state-of-the-art clustering and
biclustering methods (i), cell-composition might be a strong confounder and drive patients
separation into high and low immune response groups rather than into different cancer
subtypes (ii).

The first conclusion (i) has led to further questions about information gain provided by
PPI networks. Despite the wide application of PPI networks in bioinformatics, their exact
contribution is poorly understood. To address this issue, I developed the Active Module
Identification (AMI) testing suite [10] to systematically assess the influence of PPI networks
on the disease module mining task. The analysis was performed by running multiple
available tools for the identification of disease modules in PPI networks. The networks were
randomized to a different degree, measuring differences in tools’ results on randomized and
original networks. Several different conditions and PPI networks were tested to ensure that
the observed effects are consistent across all available PPI networks and are not dependent on
a particular disease. The comparison questioned the biological value of PPI networks and
suggested potential bias originating from highly studied proteins.

The second conclusion (ii) suggested that cell type composition is an important confounding
factor in the unsupervised analysis, and bulk studies do not fully account for it. Given the
conclusions from the AMI testing suite, I explored methods for single-cell multi-omics analysis
and integration. Bridging data of different origins and scales requires comprehensive machine
learning methods. Thus the third publication [11], was developed to review the state-of-the-art
machine learning methods in multi-omics data integration on a single-cell level.

The performed review suggested many opportunities to further increase the quality of
disease module discovery methods. Prior information is not limited to PPI data but also
might include regulatory interactions, metabolic networks, and other information obtained
from curated databases. The reliability of complex algorithms results can be increased when
evidence is observed on several molecular levels and/or supported by available database
entries. Given the exponential development of machine learning methods and, particularly,
methods that aim to network analysis (such as graph neural networks), it is of paramount
importance to employ these methods to advance human health and disease approaches.

2



1. General Introduction

1.2. Outline

The background Chapter presents essential concepts from molecular biology and AI. In
section 2.1 I describe the role of different molecular layers in an organism and how they can
be affected by diseases. Next, section 2.2 elaborates further on the advantages of integration
of multiple molecular layers and the use of prior biological knowledge. Popular algorithms
and the largest multi-omics data repositories are also described.

To understand the necessary computational background, section 2.3 explains the basics of
machine learning, statistics, and algorithmics and their application in computational biology.
The next section (section 2.3) discusses the role of Systems Medicine and its potential for
disease mechanisms extraction.

The discussed topics provide the essential background for the Methods chapter (chapter 3),
where the algorithmic framework of BiCoN and the AMI testing suite is introduced. Next,
chapter 4 provides summaries of all three publications and precisely describes my contribution.
The full versions of the papers are embedded in the text.

In the Discussion (chapter 5), I describe the main roadblocks of Systems Medicine. In
particular, I focus on limitations of PPI networks usage for Systems Medicine tools and
assessment of those tools in terms of reproducibility and interpretability. I also suggests
different opportunities to overcome the described constraints and provide conclusions about
the conducted Ph.D. project.

3



2. Background

2.1. Molecular Biology and Human Disease

James Watson and Francis Crick discovered the structure of deoxyribonucleic acid (DNA)
in 1953 [12] (based on data from Maurice Wilkins and Rosalind Franklin [13]). Three years
later, Crick proposed the "central dogma of molecular biology" that describes how genetic
information flows from DNA to ribonucleic acid - RNA (through transcription) and then from
RNA to proteins (through translation) [14] (Figure 2.1). Thus the dogma suggests that DNA
has all information needed to make functional products (proteins). Proteins are biological
molecules that keep cells in an organism functional. Proteins consist of amino acids. The
instruction to build a protein from amino acids is transcribed from DNA using messanged
RNA (mRNA). Then ribosomes translate mRNA into proteins.

Figure 2.1.: The central dogma of biology. Genetic information flow goes from DNA to mRNA
through transcription and then from mRNA to proteins through translation.

This model allowed molecular biologists to better understand the functioning of living
organisms and how perturbations at one molecular level can have affects on the whole
system and drastically influence a phenotype. Mutations in DNA are often considered as
an example of how information flow can be disturbed. While some mutations do not have
known influence on the protein sequence, others can largely affect protein function by letting
it loss or gain additional functions [15]. Loss-of-function implies that less of a protein is
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2. Background

produced or its function has been compromised. For instance, a loss-of-function mutation in
the CFTR gene, which is involved in the production of sweat, mucus, and digestive fluids
[16] leads to the development of cystic fibrosis. When CFTR is not functional, body liquids
become thicker, affecting the function of lungs, pancreas, kidneys, and intestines. Excess of
mucus in the lungs leads to breathing difficulties and frequent lung infections and can even
lead to the necessity of a lung transplant. Cystic fibrosis is a monogenic diseases (i.e., caused
by mutations in one gene), as well as sickle cell anemia, Huntington’s disease, polycystic
kidney disease, and many others. The majority of diseases are not monogenic but have a
more complex nature [17]. They are caused by a combination of genetic variations that can
occur in various locations and due to different environmental factors. Such diseases include
cancer, asthma, mental disorders, infertility, and many others.

2.1.1. Molecular data and technologies

In this section I discuss different levels of molecular data following the central dogma of
molecular biology. I start with discussing the DNA level (genome) and then move down to
RNA (transcriptome), then to proteins and metabolites. Additionally, we discuss omics data
that goes beyond the central dogma of molecular biology such as epigenomics. All described
molecular layers are represented in Figure 2.2 as well as their proximity to genome and the
extend of environmental influence.

Figure 2.2.: The interplay between various omics layers. Molecular entities are represented
with circles and colourful arrows represent some examples of possible interplay
between the layers. The thick black arrows represent the influence of environmen-
tal factors and genetics.
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2. Background

Genomics

DNA sequencing All DNA contained in one cell is called a genome. A genome of a
particular person is approximately 99.8% identical to all other humans [18] and understanding
the variations in that other 0.2% is important to discriminate health and disease [19]. Modern
sequencing methods allow for efficient analysis of the whole genome instead of focusing
on single genes. These methods allow for finding variations that can lead to a disease or
protect from one [20]. We can separate possible genomic variation into two groups: Single
Nucleotide Variations (SNVs) and Structural Variations (SVs) [21]. SNVs are characterized
by either single nucleotide variations (also called Single nucleotide polymorphisms- SNPs)
or small insertions and deletions (indels). SVs are more complex and can represent large
(100-1k bp) insertions/deletions, gene copy-number variations (CNVs), inversions, and even
sequence relocation to another chromosomal region. Both SNVs and SVs can occur in coding
and non-coding regions of the genome. A variation in a coding region usually affects the
protein sequence while alterations in non-coding regions affect gene expression and splicing
[22].

With sequencing costs going down from 100 million dollars per genome (year 2001) to 1000
dollars (year 2015), genomics analysis was experiencing rapid growth at the beginning of the
twenty-first century [23]. Availability of full-genome sequences led to the development of
Genome-Wide Association Studies (GWAS) that aim to find variations at a single position
in DNA (SNPs) associated with particular traits or conditions. GWAS revealed insights in
conditions like Alzheimer’s disease by identifying disease-associated genes [24] and loci
associated with increased risk of developmenting the condition [25]. GWAS aim to provide a
comprehensive catalog of SNPs-condition associations, making the connection of genotype to
phenotype relatively straightforward. Despite the promise of GWAS, many limitations have
also been identified, such as difficulties in studying rare variants [26], statistical challenges
when testing for over millions of SNPs [27], and underrepresentation of racial and ethnic
minorities [23].

Based on whole-genome sequencing, CNV analysis determines repetitions of some genome
sections. These repetitions can vastly vary among individuals and can also be a reason
for many genetic diseases [28]. Studies of CNVs demonstrate that CNVs can be used for
diagnostic purposes, such as efficient stratification of patients with gastric cancer into HER2-
positive and HER2-low patients and thus determining those patients who can benefit from
HER2 inhibitors-based therapy [29].

Classic technologies to capture genetic variants include sanger sequencing [30], microarrays
[31] and Next Generation Sequencing (NGS) [22]. Sanger sequencing is performed base-by-
base of a given locus that represents a researcher’s interest. DNA microarrays are using a set
of predefined oligonucleotide probes that hybridize DNA. The oligonucleotide probes can
be distributed over the entire genome or be concentrated in an area of interest. Finally, NGS
allows splitting the genome into pieces that are subsequently sequenced and then aligned to
a reference genome. NGS is considered to be a much more sensitive technology compared to
microarrays.
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2. Background

Transcriptomics

RNA sequencing During transcription, an RNA copy of a gene sequence is created. This
copy is called messenger RNA (mRNA) and its main purpose is to direct the synthesis of a
particular protein that the gene sequence encodes. Other commonly studied types of RNA
are transfer RNA (tRNA) and ribosomal RNA(rRNA). tRNA and rRNA are present in all
organisms, and together with mRNA, they participate in protein formation [32].

Similar to genome capturing technologies, it is also possible to measure the whole transcrip-
tome using microarray, and sequencing technologies [33]. Microarrays have a clear advantage
in terms of the price of an experiment but require pre-designed probes, and if a transcript is
not included in the designed probe set, it will not be captured by the microarray [34]. RNA
sequencing, on the other hand, takes advantage of the fragmentation of RNA and then aligns
the fragments to a reference sequence [35]. Gene expression is measured based on the number
of reads mapped to each locus in the assembly step.

Post hoc analysis of RNA-seq or microarray data allows performing numerous kinds of
quantitative analysis, gaining insights into various biological processes. Several popular
analysis perspectives are:

• Differential expression analysis: one of the most commonly used methods to determine
gene expression differences between conditions [36, 37]. The most traditional application
case is a design with two conditions, where one represents a phenotype of interest
(case), and another represents healthy donors (control). However, designs with multiple
conditions are also possible. The analysis result is usually a list of genes that have
significantly different expression patterns in different conditions.

• Coexpression networks: coexpression networks are built based on gene-to-gene correla-
tion and can be used to provide functional annotation based on the guilt-by-association
principle [38]. Assuming that a gene with an unknown role is densely connected with
genes involved in a certain biological processes or a pathways, a hypothesis about the
unknown gene can be generated.

• Alternative splicing (AS analysis): AS is a process that allows a single gene to code for
multiple different proteins [39]. It largely contributes to protein diversity as it happens
in over 90% of genes [39]. One of the primary goals of AS analysis is to identify how
AS events differ between conditions.

• Variant discovery: Variant calling in RNA-seq is mainly similar to DNA variant calling,
except for covering only expressed regions of the genome [40]. Additionally, RNA-seq
based variant calling allows performing allele-specific expression analysis [41].

It is also possible to connect gene expression with genetic variations, bridging RNA-level
data and DNA-level data. This type of analysis is commonly referred to as expression
quantitative trait loci (eQTL) mapping. We will discuss various other ways of connecting data
from multiple omics layers in Chapter 1.2.

7



2. Background

Proteomics

Proteome Proteins are often referred to as functional units of a cell as they are required for
the regulation and functioning of all bodies, tissues, and organs. Proteins are produced in the
process of translation when nucleotide triplets are translated into amino acids. Then, primary
sequence polypeptides are folded in a particular way to produce a functional protein [33].
While there are 5 nucleotides in DNA and RNA sequences, over 20 different amino acids
can make up a protein. Protein formation is also subject to much variability partly due to
different folding possibilities, effect of alternative splicing on the primary sequence, and other
factors, making proteomics a very challenging field for quantification.

The proteomics field often relies on mass spectrometry technologies (MS) [42] that allow
measuring the mass-to-charge ratio of ions to identify and quantify molecules in simple and
complex mixtures [43]. Mass-spectrometry allows to perform high-throughput proteome
analysis, study complex protein mixtures and perform large-scale protein characterization
with high sensitivity. Various other techniques are also available, including chromatography-
based (also in combination with MS), enzyme-linked immunosorbent assay for selective
protein analysis, protein microarrays or chips for high-throughput and rapid expression
analysis, gel-based approaches for separation of complex protein samples [44].

Proteomics analysis tackles a broad set of research questions, including (i) inference of a
protein’s molecular function, (ii) connection of variations in protein structures and diseases,
(iii) drug development, (iv) protein-protein interactions (PPIs), and many others.

With the available high throughput technologies, massive proteomics data have been
collected in databases for bioinformatics analysis. The tools that have been developed are
aiming to predict and analyze protein interactions, 3D protein structures, protein domains
(and their interactions), and motifs [44]. Various alignment tools of protein sequences allowed
to establish evolutionary relationships.

Thus, proteomics offers comprehensive approaches to characterize a biological system [45].
One of the very successful recent applications is a structural comparison of coronavirus spike
proteins that allowed to drastically improve understanding of the origin and evolution of
SARS-CoV-2 virus [46].

Novel applications of Artificial Intelligence for proteomics have led to a breakthrough in
the field. A novel approach AlphaFold 2 [47, 48] can predict a 3D protein structure based on a
1d amino acid sequence. This achievement is particularly impressive given that the number of
ways a protein could theoretically fold before settling into its final 3D structure is estimated to
be approximately 10300 [49]. AlphaFold 2 predictions provided a boost for the field in many
ways, including the advance of understanding of known diseases and drug design [50].

Protein Interactions A protein’s biological function depends on various characteristics
such as protein sequence and structure, expression profile, post-translational modifications,
intracellular localization, interactions with other proteins, and many others [51]. Up to the
21st century, researchers tended to ignore protein interactions and instead studied individual
proteins. Later on it became evident that many proteins require interactions with other
proteins to carry out their biological function [51].
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Protein interactions are usually separated into two types: stable and transient. Stable
interactions form a stable protein complex while transient (or temporal) interactions are
involved in various cellular processes, including protein modification, transport, folding,
signaling, apoptosis, and cell cycling [51]. Depending on an interaction’s type and strength,
protein interactions can be measured using co-immunoprecipitation (stable or strong inter-
actions), pull-down assays (stable or strong interactions), crosslinking protein interaction
analysis (transient or weak interactions), label transfer protein interaction analysis (transient
or weak interactions), far–western blot analysis (moderately stable interactions) [51]. Yeast
two-hybrid (Y2H) screens are considered to be the most common approach to determine
protein interaction due to its scalability and ability to detect transient interactions (although
with a limited power due to a high false positive rate) [52]. Another high-throughput method
is the tandem affinity purification run in conjunction with mass spectroscopy (TAP-MS). The
classic TAP-MS approach was unable to detect transient interactions, however Worthington
et al. demonstrated how the use of chemical crosslinking can be applied to enable transient
interactions detection [53].

Protein-Protein Interactions (PPIs) aggregated in a single interactome network represent
complex relationships between proteins. Researchers often use these networks to predict
disease-associated mechanisms based on the guilt-by-association principle, i.e., physically
interacting proteins are likely sharing similar functions and participate in shared biological
processes [54]. Various databases [55, 56, 57] store PPIs based on different levels of evidence:
experimentally validated interactions, literature-based or de novo predicted interactions.

Beyond the central dogma of biology

Epigenetics Only 2-3% of DNA is coding for proteins [58] while the remaining 98% are
usually referred to as nonprotein coding RNA (ncRNA). The central dogma of molecular
biology tells us how proteins are made, but it is missing the explanation of the purpose of that
98% consisting of ncRNA. Moreover, there is an observation that an organism’s complexity
is not correlated with the number of protein-coding genes; instead, it is correlated with the
relative amount of non-protein-coding DNA regions [58]. These regions can regulate gene
expression and thus organize the development and maintenance of complex life. They can
also control the timing and rates of the protein manufacturing processes.

Epigenetics can be defined as a study of changes in gene expression that occur without a
change in DNA sequence and are meiotically or mitotically heritable [59]. These changes occur
between the so-called open and closed frames of chromatin conformation, which, respectively,
lead to an increase or a shut down of the transcriptional activity of genes [60]. Epigenetic
changes largely depend on environmental factors such as stress, pollution, nutrition, tobacco
consumption, and many others.

Studies show that many complex diseases such as schizophrenia can be triggered not only
by mutations in protein-coding genes but also ncRNA regulation of disease-related risk genes
[58]. There are many other complex diseases in which epigenetic mechanisms play a crucial
role: cancer, bipolar disorder, systemic lupus erythematosus, autism, and many others [59].

The primary profiling techniques in epigenetics can be roughly separated into two cate-
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gories: techniques for DNA methylation profiling and techniques for chromatin accessibility
and histone modification profiling [61]. Several mechanisms that regulate gene expression by
DNA methylation include proteins that are involved in gene repression, as well as inhibition
of the binding of transcription factor(s) to DNA [62]. The most popular technique to measure
DNA methylation is the Illumnia Methylation EPIC BeadChip Microarray(previously 27k,
450k and now 850k methylation sites) [61]. Chromatin accessibility is the degree to which
DNA is physically accessible [63]. The physical accessibility of DNA is a crucial factor for
promoters, enhancers, insulators, and other factors to regulate gene expression. Chromatin
accessibility is usually measured with the following techniques: Chromatin Immunoprecipi-
tation (ChIP), Digital deoxyribonuclease (DNase), Nucleosome Occupancy and Methylome
sequencing (NOMe-seq), Assay for Transposase-Accessible Chromatin using sequencing
(ATAC-seq) and Chromosome Conformation Capture (3C, 4C, 5C, Hi-C) [61].

The following two sections (Metabolomics and Microbiomics) describe two other omics
layers that the Central Dogma of Molecular Biology does not cover. Despite their importance
and rapidly developing applications, they are not related to my own work. They are provided
here to offer a more complete description of the role of different omics layers.

Metabolomics Metabolomics gives another perspective on how a combination of environ-
mental and genetic factors contribute to health and disease. Measurable changes in human
metabolites can occur due to complex or monogenic disorders, and these changes can be
tissue-specific or have temporal dynamics [64]. Not only genome perturbations lead to
changes in the metabolome, but also the perturbation on the transcriptome and proteome
level [65]. Many common human diseases have a distinct metabolic "fingerprint" either on
the organism level or on the cell level. The most common example of a metabolic disorder is
diabetes, but metabolic perturbations can also cause rare and lethal diseases. An example of
such a condition is Gaucher’s disease that is caused by a lack of enzymes responsible for the
accumulation of glucosylceramide into reticuloendothelial cells [66]. This leads to swelling of
the lung, spleen, liver, or other organs and has fatal consequences.

Since metabolomics is a relatively young field, substantial effort is currently being made
in order to create databases with associations between metabolite structure and function,
biomarker-disease associations, mechanisms of actions, and networks [65].

Microbiomics The whole set of microorganisms in the human gut (or any other location) is
called microbiota [67]. All the genetic material within the microbiota is called microbiome.
Each person has approximately 10-100 trillion symbiotic microbial cells, and thus the human
microbiome consists of the genes these cells harbor [67]. The goals of microbiome studies
usually include the identification of environmental and genetic factors that contribute to
microbiome composition and the influence of microbiome on the health of a host [68].
Microbiota has influence over a large number of conditions such as infectious diseases [69],
liver diseases [70], gastrointestinal malignancy [71], metabolic disorders [72], allergic diseases
[73] and even psychiatric diseases [74].
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2.1.2. Single cell technologies

Single cell sequencing

Traditional NGS sequencing (bulk sequencing) usually considers an average of a mixture
of cells and does not allow to differentiate behavior of different cell subpopulations [75].
Therefore, bulk sequencing has a severe limitation in various scenarios, for instance, when
only a small population of cells carries a disease-related signal. In contrast to bulk sequencing,
single-cell technologies allow to capture over a million cells per sample which can significantly
improve understanding of various diseases [76].

Most prevalent, single-cell sequencing includes single-cell DNA sequencing (to discover
mutations and CNVs), single-cell RNA sequencing (scRNA-seq), single-cell DNA methylome
sequencing, single-cell assay for transposase-accessible chromatin with sequencing (scATAC-
seq). For every type of data, various analysis methods have been developed.

scRNA-seq analysis usually aims for the following tasks: cell population identification,
regulatory network inference, and trajectories identification [76]. Cell population identification
is necessary to separate cell groups into clusters that can be annotated with different cell
types. This is usually done using reference marker genes that are known to be expressed for
certain cell types. Usually, these methods also perform dimensionality reduction, such as
PCA [77], UMAP [78], t-SNE [79] or variational autoencoders [80], in order to visualize cell
clusters.

Another large family of methods that is relying on scRNA-seq is network inference meth-
ods [81, 82]. They analyze gene co-expression to infer regulatory relationships between
transcription factors and their targets. This allows to see regulatory mechanisms for various
cell types and learn how those can be disturbed by various diseases.

scRNA-seq also allows performing trajectory inference analysis, which describes the tem-
poral evolution of cells. It can infer shapes of trajectories and align cells on those typologies
[83, 84].

Single-cell whole-genome sequencing (scWGS) is performed to identify CNVs and single-
nucleotide variations (SNVs) [85]. These methods do not differ significantly from bulk analysis
but require modifications to address the low coverage of the genome found in scWGS data
[86].

Single-cell epigenomics data, similarly to bulk, is used to identify open chromatin and
DNA methylation sites. Compared to bulk data analysis, the main challenge is a very low
sequencing depth, making it difficult to robustlly identify peaks or methylation sites. Mostly,
the methods rely on various data aggregation strategies. For instance, the data can be
aggregated among small groups of cells, and then the conclusion (peak presence) is verified
for each cell individually [87]. Alternatively, genome binning can be used to identify regions
with high read counts that can be considered as potential peaks or methylation sites [88].

Single-cell sequencing is applied to study various conditions [75], but it is particularly
beneficial in cancer-related studies as cancer tissues are known to be highly heterogeneous
[89]. Therefore, an averaged signal of all cells cannot provide the same level of understanding
as single-cell technologies. Promising examples of a single-cell technology application in
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cancer include a paper published by Bian et al. [90]. Bian et al. demonstrated a relationship of
genomic copy number variation, DNA methylation abnormality, and gene expression change
on a single cell level during the occurrence and metastasis of human colorectal cancer.

Another example demonstrated by Nguyen et al. [91, 92, 93] when they used single-cell
sequencing to understand the early signs of breast cancer and thus provide criteria for early
diagnostics and treatment.

Puram et al. [94] also published their findings in head and neck cell carcinoma, where they
defined head and neck tumors based on single-cell sequencing. This subtyping allows one to
understand the disease, its causes, metastasis spreading and provides new gene targets to
block metastasis development.

Several studies [95, 96] provided an immunological map of liver and lung cancer that
revealed tumor heterogeneity, tissue characteristics, and drug target gene expression of
immune cells. These findings contributed to understanding of the immune microenvironment
of liver and lung cancer which is crucial for biomarker discovery and efficient treatment.

Mass Spectrometry based single cell omics

The section above discussed single-cell sequencing technologies, but not all omics data
is measured using sequencing. Proteomics and metabolomics play an essential role in a
molecular interplay in health and disease but are often measured using MS technologies [97].

MS analysis allows to identify and characterize known and unknown chemical compounds
using their molecular weight [98]. Although advancements in MS technologies led to various
scientific discoveries in the last two decades, bulk MS suffers from the same main limitation
as bulk sequencing: an averaged mixture of various cells has resolution limitations.

In the last years, MS technologies allowed measurement of spatial proteomics and metabolomics
on a single cell scale [99]. For the metabolomics field, it allowed precise measurement of
small molecules, lipids, and drugs [98]. Studies demonstrate a crucial role of single-cell
metabolomics to understand and prevent viral outbreaks via unveiling the host-virus inter-
actions [100]. Many other applications of single-cell metabolomics are surely coming in the
future, but the field still has many technological and computational challenges to overcome
[99].

Single-cell proteomics holds an immense promise to revolutionize our understanding of
diseases by providing a possibility to identify pathological mechanisms in heterogeneous
tissues [101], pinpointing microenvironmental factors that promote or inhibit tumor growth
[102] and determining novel cellular subpopulations [103] or developmental trajectories
[104, 105]. Technologically, single-cell proteomics is challenging due to absence of protein
equivalent to PCR amplification of DNA [106]. Nevertheless, more than 1000 protein groups
can now be reliably profiled from single cells, and more than 6000 protein groups can be
profiled from samples consisting of just a few hundred cells [105].

Cytometry by time of flight, or CyTOF is another MS-based technique that allows to profile
single cells by chemically attaching to them heavy metal isotopes and then use an atomic
mass cytometer to detect the time-of-flight (TOF) of each metal [107]. As a part of the Ph.D.,
I was involved in a project where we used CyTOF to measure platelet marker expression
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in response to COVID-19 infection [108], as well as after receiving the vaccination against
COVID-19 [109]. The studies suggested a pro-thrombotic phenotype in COVID-19 patients
and then verified a lack of it for patients that received a vaccine against COVID-19.
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2.2. Molecular data integration and interpretation

2.2.1. Goals

Diseases affect various molecular layers of the human body. Independent analysis of each
molecular layer usually provides researchers with a list of differences associated with a
phenotype in question. These differences can be used as biomarkers, but usage of only one
omics data type on its own is risky as we might be able to observe reactive processes rather
than causative ones [110]. Multi-omics approaches have the potential to discover not only
the consequences of a condition but its whole complex molecular mechanism. Figure 2.2
shows all described molecular levels and also emphasizes how additional insights about the
complex nature of a disease can be acquired by combining different omics layers. Learning
from these insights is critical if we aim to advance our understanding. Moreover, a single
omics dataset can be subject to noise and biases, while incorporating different layers allows
for more robust results.

2.2.2. Data repositories

Generation of multi-omics data for a fixed set of samples allows connecting disease pertur-
bation at different molecular levels. Availability of public multi-omics data is of paramount
importance as it allows the community to benchmark novel algorithms based on well-studied
datasets. Moreover, multi omics-data collection and processing can be costly. Luckily, several
large consortiums provide well-curated public datasets that can be freely used for data
analysis and algorithms benchmarking.

Most of the large data consortiums are focused on cancer due to its prevalence, lethality, and
complex causes that combine environmental and genetic reasons. Several largest consortiums
that aim to provide the data publicly will be discussed.

The Cancer Genome Atlas The Cancer Genome Atlas (TCGA; https://cancergenome.nih.
gov/) aims to collect, analyze and interpret RNA-Seq, DNA-Seq, miRNA-Seq, SNV, CNV,
DNA methylation, and reverse phase protein arrays (RPPA) data from 33 different types
of cancer. It is one of the largest data repositories with over 20 000 individual tumor
samples. Additionally, TCGA data can be visualized by various independent platforms [111,
112, 113]. Corresponding proteomics data for TCGA samples are available from Clinical
Proteomic Tumor Analysis Consortium (CPTAC) (https://cptac-data-portal.georgetown.
edu/cptacPublic/).

Cancer Cell Line Encyclopedia Cancer Cell Line Encyclopedia (CCLE; (https://portals.
broadinstitute.org/ccle) is a project that aims to provide well-defined and annotated,
large-scale cancer cell lines models. CCLE provides metabolomics, proteomics, epigenetic
and histone modification, RNA expression, and genetic data for various cancer cell lines.
Visualization of the data is possible using DepMap portal [114].
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Molecular Taxonomy of Breast Cancer International Consortium Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC; http://molonc.bccrc.ca/aparicio-lab/
research/metabric/) is a project that focuses on the classification of breast tumors into novel
data-driven subtypes based on multi-omics data. METABRIC has data about clinical traits, ex-
pression, single-nucleotide polymorphism (SNP), and CNV data derived from breast tumors.
The data can be explored and visualized using cBioPortal [115].

Therapeutically Applicable Research To Generate Effective Treatments (TARGET; https:
//ocg.cancer.gov/programs/target) aims to provide various multi-omics data for pediatric
cancers. TARGET has public and protected datasets of 24 molecular types of cancer. The data
include microarray gene expression, CNV, methylation, miRNA data, whole genome, exome,
and mRNA sequencing data. The data can also be visualized using Xena browser [113].

2.2.3. Tools

Analysis of single omics data provides valuable insights into ongoing biological processes, but
it might not allow capturing a cross-talk between different molecular layers [116]. Different
data types can represent several properties of a system, and an independent analysis would
not allow capturing a common signal [117]. On the other hand, conjoint multi-omics analysis
in a single algorithmic framework brings more interpretability to the analysis but indeed
represents a challenging task. The challenges can be split into the following categories:

• Large data volumes: practically all molecular data is highly dimensional, and even
a single omics data matrix can take gigabytes of storage [118]. The combination of
multiple data sources makes computations, even more time and memory-consuming.

• Different data features: multi-omics technologies aim to measure different molecular
entities, which means that reducing to a simple feature × samples matrix is not always
possible. Features are often not easily mapped as they might be genes (genomics/tran-
scriptomics) or genetic coordinates (ATAC-seq, ChIP-seq) or CPGs (methylation) or
miRNAs or other molecular features [119].

• Various data distributions: molecular data can come from various data distributions; it
can be continuous (gene expression), discrete (CNV), and even binary (SNPs). Combin-
ing the data such that the most variable data types do not overshadow the least variable
ones might be a very challenging task [119].

• Results interpretation: biological interpretation of algorithmic results is often challeng-
ing even for single omics analysis. Interpretation of multi-omics analysis results requires
a deep understanding of undergoing biological processes and conditions [120].

Despite the mentioned above challenges, multi-omics data integration still attracts researchers
that develop algorithms to unravel the mechanistic aspects of the information flow in a cell.
Subramanian et al. [121] collected information about various multi-omics approaches and
separated them into three categories based on their purpose: disease subtyping, disease
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insights, and biomarker prediction. Subramanian et al. described 34 multi-omics methods
most of which aggregate CNV, gene expression, DNA methylation, and sometimes also
miRNA and protein expression.

Methods covered by Subramanian et al. are still primarily not developed for combining
single-cell/bulk data with epigenomics data. To fill this gap, the third publication of this
Dissertation [11] provides a review of multi-omics methods that employ epigenetics data on
bulk and single-cell level.

Lastly, another aspect that was not previously covered is microbiome-metabolome relation-
ships. Several studies demonstrated influence of microbiome on metabolome and general
health of a host [122, 123]. In particular. MiMeNET [124] is a neural networks based approach
that provides insights into the causes of dysregulations in disease by analyzing microbe-
metabolite interaction. Furthermore, to study potential host-microbe interplay, methods like
AMON (Annotation of Metabolite Origins via Networks) help to evaluate pathway enrichment
of host versus microbial metabolites [125].
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2.3. Artificial intelligence in biology

Artificial intelligence is often portrayed as a set of technologies that mimic natural human or
animal intelligence. By intelligence we often assume problem-solving skills, abilities to learn
from mistakes, and the ability to generalize previous experience to new problems [126].

The growth of biological data was nearly exponential starting from the end of the 20th
century [127]. High throughput technologies made it practically impossible to analyze
and interpret molecular data without advanced algorithmic techniques [128]. One of the
first computational problems that arose from the development of sequencing techniques
was multiple sequence alignment [129]. It concerns pairs of highly similar sequences (i.e.,
originated from the same genome) that deviate in some locations due to mutations. The
goal is to align sequences such that the maximal number of base pairs is matched. Multiple
sequence alignment is an example of an implicit hitting set problem, which is classified as a
polynomial-time problem, meaning that its running time is upper bounded by a polynomial
expression in the size of input of the algorithm [129]. Polynomial run-time usually means
that searching for an exact solution is not feasible within a reasonable time frame. Therefore,
for this task (and many other biological problems), so-called heuristic approaches must be
used. Heuristic algorithms allow finding nearly optimal solutions relatively fast due to tuning
an algorithm to expected characteristics of the data [129].

2.3.1. Classic heuristic approaches

Heuristic algorithms are often used for NP-hard (not computable in polynomial time) prob-
lems when an exact solution extraction is not feasible under the given constraints [130].
Therefore, heuristic approaches attempt to limit the solution search space by incorporating
prior information about the nature of a problem. The main limitation of heuristic approaches
is the impossibility of proving that the solution is optimal. Therefore the "goodness" of a
solution largely depends on the correctness of initial assumptions. For validation of heuris-
tic approaches, researchers often use bootstrap-based statistical techniques to verify that a
produced solution is significantly better than a random one.

According to Blum and Roli [131], heuristic algorithms can be split into the following
categories:

• Nature-inspired vs. non-nature-inspired: some heuristic algorithms were inspired by
biological processes; for instance, genetic algorithms are inspired by natural selection,
ant colony optimization (ACO) algorithms are inspired by the behavior of ants in
a search for the shortest path to food. Other methods are not nature-inspired, e.g.,
simulated annealing is inspired by annealing in metallurgy. Simulated annealing
attempts to decide at every time point which movements will lead the system to the
lowest energy state.

• Population-based vs. single point search: based on the number of solutions that
develop over an algorithm run. Some methods, such as local search, attempt to find a
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development trajectory for a single solution. Other algorithms like ACO initialize a set
of solutions and iterate until their convergence to a single nearly optimal solution.

• Dynamic vs. static objective function: based on the ability of an algorithm to change the
objective function during the optimization process. This behavior might be desirable to
avoid stagnation at a local minimum.

• One vs. various neighborhood structures: based on usage of a single search space or an
ability to switch between several ones.

• Memory usage vs. memory-less methods: based on how much information an algorithm
can utilize from previous iterations to make the next step. This can vary from simple
Markov models when only one last step is remembered to a complex long-term memory
that is often possible when using neural networks.

First heuristic algorithms in computational biology were developed for sequence analysis
(FASTA - Lipman and Pearson 1985 [132], Clustal - Higgins et al. 1988 [133], BLAST - Altschul
et al. 1990 [134]).

Another common domain for heuristic algorithms is the analysis of protein-protein in-
teraction (PPI) networks [129]. A common assumption behind PPI networks is that the set
of proteins with a similar function is expected to induce a densely connected subgraph. In
contrast, the set of proteins occurring in a signal transduction pathway is expected to induce a
simple path graph with high-weighted edges [129, 135, 136, 137]. PPI analysis can be framed
in multiple optimization problems; here are several examples:

• Maximum clique problem: find the largest fully connected set of proteins.

• Dense subgraph problem: find the largest densely connected set of proteins.

• Heavy path problem: find a simple path of a given length such that edges have the
highest possible weight.

There are many other applications of heuristic algorithms in modern computational biology,
including one of the papers published as a part of the dissertation (BiCoN [9]) — more details
on it will be provided in the Methods section.

2.3.2. Machine learning

Development of Machine Learning

Artificial intelligence (AI), Machine Learning (ML), Artificial Neural Networks (ANNs), and
Deep Learning (DL) are terms that are often used interchangeably. In fact, the terms can be
displayed as a hierarchy as shown in the Figure 2.4. To be more precise, distinguishing AI
from ML, AI usually presumes any kind of intelligent behavior that a machine can resemble.
At the same time, ML algorithms are supposed to learn how to be intelligent based on the
given data and not explicitly given rules [138].
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Figure 2.3.: Hierarchy of the discussed Artificial Intelligence (AI) related terms. AI is an
umbrella category that covers all intelligent machine behavior. Heuristic methods
assume the usage of environmental information in order to speed up computa-
tions. Machine Learning (ML) usually implies learning from the data. Neural
Networks (NN) are ML algorithms that use a particular architecture that resem-
bles a human brain to learn complex relationships in the data. Finally, Deep
Learning is a type of NN with several hidden layers that make a network capable
of learning very complex patterns in data.

Neural networks The beginning of neural networks is commonly attributed to the develop-
ment of the perceptron in 1957 [139]. Perceptron was the first neural network that consists of
input values, weights, biases, summation, and activation function [139]. At first, the input
values are multiplied by their weights (random at first iteration), then all these values are
summed up together, and the sum is scaled to the necessary range by an activation function.
After the prediction is made, the deviation of the prediction from a target class is used to
readjust weights. A very simple version with no biases is shown in Algorithm 1.

When the perceptron was developed, it was considered to be a groundbreaking achievement,
but soon several limitations of the method were acknowledged [140]. First, the perceptron
only worked for a binary classification case, but even more restrictive was the fact that the
perceptron only was capable of separating linearly separable classes. The latter was a direct
consequence of the fact that the perceptron had only one set of weights (i.e., one layer of
weights between input and output). Therefore only linearly separable classes could have
been handled accurately. This made the perceptron unusable in many complex tasks such
as object recognition, until multilayer perceptron (MLP), was developed later in 1960, which
allowed learning even non-linearly separable classes stratification [140]. MLP took advantage
of organizing single perceptrons into multiple layers to address non-linearity in the data and
recognize complex patterns. Moreover, different activation functions were used to scale the
output for binary classification and multi-class classification and regression (prediction of a
continuous variable). Another essential step was the introduction of backpropagation that
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Algorithm 1 Perceptron Learning Algorithm

P← inputs with label 1
N ← inputs with label 0
Initialize w randomly
while no convergence do

Pick random x ∈ P
⋃

N
if x ∈ P and w · x < 0 then

w = w + x
end if
if x ∈ N and w · x ≥ 0 then

w = w− x
end if

end while
the algorithm converges when no more improvements to predictions can be made

allowed to adjust the layers of neurons by correcting them with respect to their previous
mistakes.

Even though backpropagation is still used to train Artificial Neural Networks (ANN),
back in 1970th the field was stagnating until massive data sets and computational power
became available to researchers [141]. Only in 1990th ANN research started flourishing again,
discovering novel algorithms and applications such as speech recognition, natural language
processing, image analysis, and computational biology.

Statistics Many common machine learning methods originate from discoveries made by
statisticians and mathematicians starting from the 18th century. Thus 1763 Bayes’ Theorem
was published as a part of a book "An essay towards solving a problem in the doctrine of chances"
[142], and it allowed to estimate a probability of an event based on prior knowledge about
other conditions, relevant for the event. Bayes’ Theorem laid the foundation for many modern
machine learning techniques such as Bayes classifier and Bayesian neural networks.

Later, in 1805 Adrien-Marie Legendre described the least square method, that described a
line fitting through a set of observation, allowing to make predictions about specific variable
behavior, based on a set of conditions [143]. This is a widely used technique for the least
square regression, commonly used due to its interpretability and speed.

In 1967, the nearest neighbor algorithm was published, and it allowed to assign an unclassi-
fied sample point to a class based on its similarity to a set of previously classified points [144].
The nearest neighbor algorithm was the first step towards pattern recognition. It resulted in
many modern machine learning techniques such as the nearest neighbor classification and
the nearest neighbor clustering for pattern discovery with unknown classes.

Many other famous and widely used approaches that shaped modern machine learning
have been developed in the 90s, such as the Random Forest algorithm [145], Support-Vector
Machines [146] and Boosting methods [147]. These methods significantly contributed to
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classification for complex, multidimensional, and non-linearly separable data.

Modern approaches and applications in Computational Biology

Modern machine learning algorithms are usually split into three categories: supervised
learning (or semi-supervised), unsupervised learning, and reinforcement learning [148]
(Figure 2.4).

Figure 2.4.: Main categories of machine learning approaches and their application in
biomedicine

Supervised learning Supervised learning presumes a prediction task which can be a clas-
sification or regression [148]. In computational biology, classification might be applied to
predict risk and diagnosis [149], early or late-stage relapse [150], disease subtyping [151] and
many other applications. Regression is usually used to predict continuous variables such as
gene expression [152] or survival time [153].

Unsupervised learning Unsupervised learning is applied when labels can not be used
or not needed for the analysis [148]. Unsupervised learning is often applied in the data
exploration stage when researchers aim to get more insights and understanding of their
high-dimensional data. Dimensionality reduction techniques such as PCA [154], UMAP
[155], or t-SNE [156] are used to represent high dimensional data in a low dimensional space
in order to visualize the data structure [157]. Clustering is used to separate samples in a
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data-driven way (without labels). This is useful for cell annotation [158], patient stratification
[159] and gene clustering [160].

Reinforcement learning Reinforcement learning forms an interplay between an AI and a
real or simulated environment [148]. Certain interactions get reinforced, and others "punished"
based on a user-established "reward policy". Reinforcement learning is commonly used in
computer vision [161], portfolio optimization [162], traffic control [163] and many other
settings. Since reinforcement learning usually presumes a continuous input data stream, its
application in computational biology is limited. The most common cases are Brain-Machine
Interfaces [164] and recommendations based on Electronic Health Records [165].

2.3.3. Artificial neural networks in biomedicine

Separation of the essential information from all available information is necessary for any
decision-making process. In biomedicine, this task can be executed manually in some cases
(analysis of radiology images, for example). However, for high dimensional numerical data,
annotation with a bare eye is not achievable. Not to mention that even when a manual
annotation is feasible, it is still a very resource-demanding task.

The ability of ANNs to extract informative features from complex, noisy, high-dimensional
data is one of the main reasons why ANNs are so beneficial for the biomedical field [166]. With
numerous applications to medical image analysis, genomic sequencing and gene expression
analysis, protein structure prediction, and many other fields, ANNs are quickly becoming
one of the main tools for biomedical data analysis.

ANNs can be separated into different categories based on the architecture they are using
and the type of input data:

• Convolutional Neural Networks (CNN): CNNs can be perceived as a form of regularized
MLPs. By design, MLP are fully connected and therefore quite sensitive to noise and
prone to overfilling (do not generalize well on previously unseen data) [167]. CNNs
exploit hierarchical patterns in the data and try to split them into smaller patterns
using filtering approaches. CNNs are shift and rotation invariant, and this makes them
extremely useful for extracting features from imaging data [168]. An example of such
an application can be the detection of brain hemorrhage based on cross-sectional CT
image [169].

• Autoencoders (AE): AEs are neural networks that aim to compress an input and then
restore it as close to the original as possible [170]. The compressed representation is
commonly used for dimensionality reduction of images, sequences, and numerical
data. The restored output can be used for imputation of missing values and denoising.
Concrete examples include denoising of medical images [171], biomedical image feature
extraction [172] and imputation of missing values in single-cell RNA-seq datasets [171].

• Recurrent neural networks (RNN): RNNs are usually applied to data with temporal or
sequential structure [173]. While MLP does not consider the order in which a network
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processes samples, RNNs assume that output for a currently considered sample is
directly related to the output of a previous sample. RNNs vary in memory capacity, e.g.,
the number of previous samples that influence the current sample. In the biomedical
field, RNNs are often used to analyze unstructured natural language texts in order to
provide patients with automated recommendations [174] or to extract medical events
from Electronic Health Records [175]. Another common application of RNNs concerns
sequencing data for various tasks, including identification of short viral sequences from
metagenomes [176] and detection of DNA base modifications [177].

• Graph Neural Networks (GNN): GNNs are applied to graphs to exploit topological
relationships between entities. GNNs are used to predict missing links, classify nodes or
classify graphs themselves. Missing link prediction was successfully shown for miRNAs
and diseases association prediction [178] or for scRNA-seq based cell interaction predic-
tion [179] and many other applications [180]. An example of graph classification can be
a framework from Gligorijević et al. for protein function prediction [181].

• Transformers: Transformers were developed to improve the performance of RNNs
on sequence-to-sequence prediction and to replace the memory mechanism with an
attention mechanism. ANN uses attention mechanism to remember which part of
the sequential information is important. Thus, transformers embed input and output
sequences, apply attention mechanism to identify the important fragments and only
then actually use classic MLP layers to predict the output. Transformers are also used
in bioinformatics, for instance, to predict genome-wide regulatory elements based on
up and downstream nucleotide contexts [182].

2.3.4. Common challenges in machine learning

Machine learning (ML) is a complex discipline that requires knowledge of statistics, mathe-
matics, programming, and an in-depth understanding of the application domain. ML research
is often criticized for its complexity and lack of transparency to people outside of the field
and even other researchers [183, 184]. The main challenges that ML researchers are facing are:

• Poor quality of data: to make reliable predictions, the model must be trained on data
representative of the modeled system. If the data is subject to biases and errors, the
same biases will be propagated to the model.

• Underfitting of training data: underfitting means that the model cannot understand the
pattern in the data. Figure 2.5 A demonstrates an example of underfitting when the
true relationship between x and y is quadratic, yet a linear function was fitted.

• Lack of training data: the relationship can not be modeled reliably without enough
observations (Figure 2.5 B).

• Overfitting of training data: overfitting happens when the model is caught up on
minor deviations in the data and unable to make reliable predictions for unseen data
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Figure 2.5.: Common issues with ML models. A: underfitting means that the complexity of
the data is underestimated; B: missing data leads to an inability of a model to
understand patterns in the data; C: overfitting means that the model is unable to
generalize.

(Figure 2.5 C). This situation is usually characterized by excellent performance on the
training data and very bad performance on new data, i.e., the model is unable to
generalize the learned information and memorizes the training data instead.

• Resource demanding: while simple statistical models are easy to implement and use,
deep learning methods might require a lot of computational resources, making the
training process extremely time and money consuming.

An additional challenge that is particularly relevant for the biomedical field is a so-called
"curse of dimensionality", i.e., the inability of ML models to perform adequately in the presence
of multi-dimensional data [185]. In the biomedical field, one sample is often characterized by
thousands of genes or proteins, metabolites, or other molecular entities usually referred to
as "features". When the number of features is equal to or larger than a number of samples,
many models can not obtain a robust solution and avoid overfitting. Multiple strategies can
be applied to combat this issue, such as feature selection, data augmentation, or the use
of methods that do not exploit all features simultaneously (like random forest or gradient
boosting).
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2.4. Network and Systems Medicine

Two philosophical positions: reductionism and holism have been subjects to heated arguments
in the scientific community for at least 30 years [186]. Reductionism presumes that complex
behavior can be explained by examining simpler behavior patterns of separate components.
Holism, on the other hand, presumes that a system’s complex behavior is more than just
a sum of its components, and individual components analysis might not have any value.
Even though reductionistic approaches lead to many breakthroughs in molecular biology
in the 20th century, an increasing number of novel research findings have shown that the
molecular-reductionist approach cannot fully explain the complexity of biological systems
[187]. Network and Systems Medicine offer holistic approach to human health and gained
popularity in the 21st century.

Network medicine is a field that applies graph theory (or network science) to study complex
biological relationships. The term was first introduced by Albert-László Barabási. Barabási
describes several examples of "network thinking" that led to novel scientific insights [188].
One of the examples discusses that a social network (e.g., friends, family members, neighbors,
etc.) has a larger influence on the probability of becoming obese compared to a genetic
influence [189]. The reconstruction of the social network allowed to conclude that chances of
obesity for a friend of an obese person increase by 171%. The authors also studied the effect
of having an obese sibling, neighbor, or friend of a friend and concluded that obesity forms
dense network communities. The role of a person’s social network structure is even more
prominent when it comes to infectious diseases such as influenza and HIV.

2.4.1. Molecular networks

Social networks are representing a very high level of possible interactions. However, we can
increase the focus down to disease networks [190], organ networks [191] and ultimately down
to molecular networks.

The knowledge about genes that were perturbed by disease is not enough to understand
the mechanism of the disease. On the other hand, networks allow understanding how the
perturbed genes are related to each other and other genes and thus provide a more holistic
understanding of a molecular system. [188].

A simplified overview of molecular networks is shown in Figure 2.6. Apart from the edge
types shown in Figure 2.6, various other connections are possible (enhancer interactions,
metabolic feedback, etc.), and this makes network biology an extremely heterogeneous and
complex subject [192].

The following types of networks are often researched in the context of network biology:

• DNA interaction networks: the dogmatic view on transcription states is that gene
promoters drive transcriptional initiation, while most enhancers are localized in the
proximity of gene promoters and are rarely beyond gene boundaries [193]. The most
recent research shows that many DNA binding transcription factors bind to genomic
loci that can be far away from their regulated genes [194]. The DNA looping model
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Figure 2.6.: A simplified overview of molecular interactions on different cellular levels.

was thus proposed to explain long-distance enhancer-promoter interactions. Another
perspective on DNA-DNA interaction include SNP-SNP interaction - an effect when
a single SNP does not affect a phenotype, but a combination of SNPs might have a
significant effect [195]

• Regulatory networks: Regulatory networks usually consist of genes and transcription
factors (TF) where TFs can activate or inhibit gene expression. TFs are also subject to
regulation. Cellular function is controlled by gene regulation, and therefore regulatory
networks have a remarkable explanatory power for analysis of complex human traits
[196].

• Protein-Protein Interaction networks: PPI networks depict interactions between proteins
based on physical contacts. The interaction might include electrostatic forces, hydrogen
bonding, and the hydrophobic effect [197]. PPI network analysis is widely used in
interpretation of phenotype-relevant gene sets, as it allows to map genes in question onto
the interactome and extract an entire interacting mechanism using guilt-by-association
principle [198].

• Metabolic networks consist of small molecules (metabolites) and enzymes (proteins)
where enzymes catalyze biochemical reactions [199]. Metabolic networks show all
biochemical reactions that enzymes can catalyze in a cell. Metabolic pathways and
regulatory interactions can be mapped onto the networks.

• Association networks: Association networks can model any kind of relationship based
on similarity measures and not direct evidence of a physical connection. Examples
of association networks include gene co-expression networks and protein similarity
networks [192].
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2.4.2. De novo endophenotyping

Two important terms that are crucial for this section are an endophenotype and a biomarker.
Endophenotype is a stable phenotype with a clear genetic connection [200], while a biomarker
is "an indicator of medical state observed from outside the patient" [201]. Many studies are

Figure 2.7.: Active Module Identification Methods (AMIMs) and pathway-based analysis
tools stratification based on input and output options (solid lines). Dashed lines
indicate optional input.

focused on finding stable biomarkers that allow stratifying patients into different disease
subtypes, different survival probability groups, response to treatment, and other character-
istics [202, 203, 204]. A set of genes that can serve as biomarkers of a particular process is
commonly referred to as gene signatures. Despite a vast promise of gene signatures discovery
for high throughput molecular data, they can be inconsistent across data sets [205]. Moreover,
some studies show that random signatures are capable of providing same-quality patient
stratification as published gene signatures [206]. This effect can be explained by the fact
that some phenotypes might lead to immense changes in the transcriptome [207]. Therefore,
signal-carrying genes suitable for patient stratification might not be directly related to a
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phenotype itself.
In order to derive more reliable signatures, many researchers try to integrate prior biological

information and increase the meaningfulness of the results. As a part of the PhD project, I
also performed a review of methods that approach to solve this problem by integrating gene
expression/methylation/CNV and other phenotype-specific data with prior information in a
form of a network [208]. The methods were separated into two groups: those that attempt
to use known phenotype-related pathways (i), and those that use PPI network as a source
of prior information (ii). The first approach (i) uses known disease-associated pathways as
features. This analysis is usually limited to only known pathways, and therefore, it does not
allow the extraction of novel disease-related pathways. The second set of approaches (ii) here
and further will be referred to as Active Module Identification Methods (AMIMs). AMIMs
have a clear advantage over pathway-based methods: they consider the whole interactome as
a possible solution space and, therefore, aim to discover functionally connected genes relevant
to the phenotype in question. Numerous studies showed how AMIMs allow gaining valuable
biological insights in various conditions such as diabetes mellitus [209], chronic obstructive
pulmonary disease, and idiopathic pulmonary fibrosis [210], asthma, and many others [211].

2.4.3. Active Module Identification

AMIMs aim to extract condition-specific modules from large molecular networks. Over the
years, a plethora of AMIMs was developed [212, 213, 214, 215, 216]. Since AMIMs usually
attempt to solve an NP-hard task, they require heuristic algorithms to reduce the runtime.
Batra et al. [8] have stratified the methods based on the employed algorithmic strategy: (1)
aggregate score optimization methods, (2) module cover approaches, (3) score propagation
approaches, and (4) clustering-based approaches. Aggregate score optimization methods
aim to map predefined activity scores (such as fold change, for instance) to nodes or edges
and retrieve a subnetwork with the highest scores. Module cover approaches employ a
statistical test to find a relevant set of genes and then use various algorithmic techniques to
extract the most relevant subnetwork. Score propagation approaches also use predefined
scores for nodes/edges, but then they defuse them through the network topology using
random walk procedures or diffusion-flow. Then the subnetwork with the highest weights
is extracted. Clustering-based approaches are based on clustering of a network or cuts into
densely connected components.

Evaluation of AMIMs is very challenging due to a lack of the gold standard. Batra et al. [8]
developed an artificial gold standard for methods evaluation, but naturally, data simulation
procedures are limited by our current understanding of biological processes. To perform an
objective evaluation, we require a complete gene set that is certainly known to be associated
with a specific condition. While molecular pathways such as KEGG [217, 218, 219] are often
used to evaluate AMIMs, it is important to acknowledge that they are not complete.
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Supervised and unsupervised approaches

Active module identification is often perceived as a supervised analysis task where patients’
omics data represents a feature matrix, PPI network plays the role of regularizer (by restricting
the search space), and a phenotype is the target variable. For example, Grand Forest approach
[220] is using classic supervised learning technique random forest [221] (RF) where tree nodes
represent the genes (restricted by PPIs) and RF aims to select a set of nodes that can predict
the phenotype of patients in the best possible way. Supervised approaches like Grand Forest
are widely used by the community and discussed in the previously mentioned review paper
by Lazareva et al. [208]. A limitation of those methods is that phenotypic information might
be incomplete, missing, or not supported by the data. The described methods do not allow
data-driven patient stratification, which can also be perceived as simultaneous unsupervised
analysis of patients’ omics data and PPI networks. Unsupervised active model identification
has the potential to discover novel patients subgroups along with the molecular mechanism
that explains the stratification.

In Figure 3.2, a clear difference is demonstrated between unsupervised AMIMs, supervised
AMIMs and pathway-based methods.
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2.5. Objective

The section provided the necessary background to understand all needed components for
Systems Medicine approaches for disease module mining. The introduction to molecular
biology section described what genetic information flow (Figure 2.1) is and what molecular
levels are observed in the flow (Figure 2.2). Next, I discussed the connection between
molecular layers and how they can be modeled as a complex network (Figure 2.6) and
examined computational methods that are essential for data analysis and integration. Finally,
the Active Module Identification task was discussed to elaborate on why it is essential and
what are the main roadblocks in the process.

Figure 2.8.: Overview of published peer-reviewed research. Papers marked with a red start are
first author research articles described and provided in the Dissertation. Papers
are written with black font, but without a star, are the first author papers that will
not be further discussed. Papers written in a grey font are not first-author papers.

The main objective of the Dissertation is to bridge Artificial Intelligence with a Systems
Biology perspective for robust and meaningful disease modules identification based on
PPI networks and transcriptomics data. Therefore, three papers are presented (section 4)
that attempts to quantify the role of biological networks for robust patients stratification
and disease modules extraction. Th first publication - an unsupervised AMIM BiCoN that
simultaneously clusters patients and discovers molecular mechanisms by aggregating patient
specific omics data with PPI networks [9]. Second, inspired by the promising results of
the first approach, an investigation of PPI networks’ quantitative properties was made to
understand the biological value of general AMIMs results [10]. The third publication reviews
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machine learning-based methods capable of using single-cell epigenomics data to increase
the resolution of multi-omics analysis [11].

In the Figure 2.8 the contribution of the conducted research is summarized. All produced
papers can be separated into three categories: first author papers with full text provided in the
Dissertation section; first author papers that are not fully discussed in the Dissertation, other
papers written during the Ph.D. that are still relevant for the discussed topic. Unplanned
research relevant to the COVID-19 pandemic is also mentioned since two years of the Ph.D.
project happened during the global pandemic. Certain adjustments to the initial plan have to
be made to contribute to understanding of hypercoagulation risks during the infection and
after the vaccination. This research will not be discussed in further detail but available in
open access [108, 109]. The full list of published papers is given in chapter 5.4.
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3.1. BiCoN algorithmic framework description

The main algorithmic framework of the first publication [9] is based on Ant Colony Optimiza-
tion algorithm, applied to a heterogeneous graph. The graph contains two types of nodes:
gene nodes and patient nodes; and two types of edges: gene-to-patients (through expression)
and gene-to-gene (through protein interaction). The main goal of the algorithm is to find 2
(n in a general case) subnetworks that maximize expression differences between clusters of
patients. The framework is summarized in Figure 3.1.

3.1.1. Metaheuristic approach

Heuristic algorithms are often applied to find subnetworks with certain qualities in a large
graph when the search space is too large to enumerate all possible options. As discussed in
the Introduction (subsection 2.3.1), a plethora of heuristic methods have been developed to
address computationally complex tasks. Thus, a metaheuristic framework has been developed
that uses Ant Colony Optimization for the search space exploration and Local Search to
ensure local optimality of the final solution.

Ant Colony Optimization

Ant Colony Optimization (ACO) is a nature-inspired framework often used when a problem
can be reduced to finding an optimal path in a graph [222]. As we aim to discover gene
subnetworks optimal for patient clustering, ACO was a natural choice for the task.

The ACO algorithm in its classic form usually starts with computation of the initial
transition probability matrix, which is defined as a combination of heuristic information
(prior information defined by a user) and a pheromone matrix which is random at the
beginning. Then the following steps are executed:

1. A set of semi-random solutions are computed based on the transition probability matrix.
These solutions are further referred to as "ant walks";

2. Each of the ants walks is evaluated with respect to an objective function;

3. The pheromone matrix is recomputed based on the scores of the ant walks;

4. The transition matrix is also recomputed with respect to the new pheromone matrix,
such that the most successful transitions are promoted and the least successful are
downgraded.
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Figure 3.1.: Algorithmic framework of BiCoN. Described in Bioinformatics as "(Step 1) Gene
expression data X is converted to a bipartite graph B and PPI interactions (black)
are added as additional edges between genes to form a joint graph J. (Step 2)
ACO determines the most relevant features for each patient where edges are
annotated with patient IDs. The selected genes are used for patient clustering
in Step 3. Next, (Step 4) genes are reassigned from individual patients to their
corresponding clusters. Multiple possible solutions are computed in parallel and
then evaluated and reinforced. As a result (Step 5), patients are stratified-based
only on subnetworks that can be interpreted as disease mechanisms"

The steps are executed until the full convergence, i.e., until no more improvements are
possible. For the full adaptation of the ACO to BiCoN, please refer to the supplementary
material of the corresponding publication [9].
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Local Search

Local Search is a heuristic approach that uses an assumption that a solution to a computation-
ally difficult problem can be found by application of small local changes to a given solution
(which is usually random at the start) until no more local improvements are possible [223].
Local Search has been known to perform well with Ant Colony Optimization algorithms
[224] as ACO allows to explore very large search spaces but might be oblivious to finding the
best possible solution in the most promising region of a graph.

Once ACO derives promising subnetworks, Local Search explores whether addition, sub-
stitution, or deletion of individual nodes to the solution, can improve the objective function
value. The search goes on until no more local improvements are possible.

3.2. Active module identification methods evaluation

The main goal of the AMI testsuite [ami] is to establish a testing strategy for AMI methods.
The expected behavior for such a method is that biologically meaningful results can be
achieved only with the real PPI network, while network perturbations will lead to a decline in
results quality. To systematically evaluate the results of AMI methods, the AMI suite performs
assessments of the derived gene sets for ten different methods. Namely, ClustEx2 [212],
COSINE [225], DIAMOnD [213], DOMINO [214], GiGA [226], GXNA [227], KeyPathwayMiner
[215, 228, 229], GrandForest [220], Hierarchical HotNet [216] and NetCore [230]. Several
different conditions were analyzed: non-small cell lung cancer, amyotrophic lateral sclerosis,
ulcerative colitis, Chron’s disease and Huntington’s disease. All datasets were acquired from
Gene Expression Omnibus [231]. The testsuite is summarized in Figure 3.2.

3.2.1. PPI networks and randomizations

Five widely used PPI networks were used to evaluate method’s performance: BioGRID
[232], APID [233, 234], STRING [56] with high confidence interactions only (score ≥ 0.7),
HPRD [235] and IID [57] with experimentally validated interactions only. We performed five
randomizations of the original networks to evaluate the expected drop in the algorithm’s
performance. The randomizations were performed such that they gradually alter more
qualities of the original PPI networks. Summary of the alternations is provided in Table 3.1,
and detailed explanation is given in the original publication [10] and cited without alterations
bellow:

"REWIRED: degree preserving generator. Repeatedly swaps pairs of edges and non-edges to produce
random networks whose degree sequences are identical to the degree sequences of the original PPI
networks. Preserves the individual node degrees and hence the hub-genes.

EXPECTED_DEGREE: expected degree preserving generator. Creates networks with randomly
sampled edges where the sampling probabilities are chosen such that the expected node degrees
correspond to the node degrees in the original PPI networks. Preserves individual node degrees and
hub-genes in expectation.
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Figure 3.2.: AMI testing suite

SHUFFLED: topology preserving generator. Shuffles the gene IDs. Preserves the degree sequence
and the topology but not the individual node degrees and the hub-genes.

SCALE_FREE: scale-free generator. Produces scale-free networks using the Barabási–Albert model.
The parameters are chosen such that the numbers of nodes and edges in the random networks match
the numbers of nodes and edges in the original PPI network. Preserves neither the topology nor the
individual node degrees or the hub-genes, but produces networks that are structurally similar to the
original PPI networks, since PPI networks are usually scale-free.

UNIFORM: uniform generator. Produces random graphs using the Erdős–Rényi model. The
parameters are chosen such that the numbers of nodes and edges in the random networks matches the
numbers of nodes and edges in the original PPI network. The produced networks are very different
from the original PPI networks. In particular, their degrees are binomially distributed, whereas PPI
networks tend to have power law degree distributions."
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Table 3.1.: Summary of the performed randomizations

Preserves the node
degree exactly
(preserves hubs)

Preserves the expected
node degree
(preserves hubs)

Preserves the network
node-degree
distribution exactly
(does not preserve
hubs)

Preserves the scale-free
node-degree
distribution
(does not preserve
hubs)

REWIRED yes yes yes yes
EXPECTED_DEGREE no yes no yes
SHUFFLED no no yes yes
SCALE-FREE no no no yes
UNIFORM no no no no

3.2.2. Gene sets evaluation

Evaluation of algorithms for biomarker discovery is challenging due to a lack of complete
knowledge of disease-associated gene sets. Nevertheless, several approaches can be used as a
proxy of relevance to a condition. These approaches can be separated into those based on
similarity of the retrieved genes to a known disease-associated pathway and those that can
accurately predict a patient’s phenotype.

Association with disease-related genes

Disease-associated pathways can be retrieved through different databases such as KEGG
[217, 218, 219], which collects pathway maps for various diseases, and DisGeNet [236], which
collects information from GWAS catalogs, animal models, and the scientific literature. Gene
set over-representation analysis (GSOA) allows to estimate a probability of observing by
chance the overlap of a gene set in question with a known disease-associated gene set, given
the size of both. GSOA is usually performed based on the hypergeometric test. The test
estimates the probability of a certain number of "events" happening given how many events
are observed in a population by chance. In the case of gene set overrepresentation analysis, the
hit would represent an overlap between a gene set in question and a known disease-associated
gene set. Thus, a probability of a gene set s to be associated with a disease-associated pathway
d is equal to:

pX(k) =
(K

k)(
N−K
n−k )

(N
n )

(3.1)

where N is a population size, i.e. the size of the background gene set from where the subset s
was extracted,
K is the size of the disease-associated pathway d,
n is the size of the gene set s,
k is the size of the overlap of s and d, i.e. |s ⋂ d|.

For AMI test suite we performed enrichment of KEGG pathways with the retrieved gene
modules. Additionally, we also computed overlap between the retrieved gene set and a
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disease specific gene set from DisGeNet:

o =
k

min(K, n)
(3.2)

, using the same notation as in Equation 3.1.

Association with the phenotype

Evaluation of a gene set based on its ability to predict patients’ phenotype allows estimating a
predictive power of the biomarker set. Predictive gene sets are usually called "gene signatures"
and might be used to predict disease subtype [237], survival [238] or a treatment outcome
[239]. Various supervised machine learning models can be used to make the prediction based
on the given gene set.

AMI test suite measures the strength of association using mean mutual information
that quantifies how much information can be obtained about one variable (phenotype) by
observing the other variables (gene expression). Mutual information is computed between
expression of the obtained gene set s and a vector with patient phenotype information
(case/control indication) y: ∑g∈s

MI(xg,y)
n , where xg in expression of a gene g.
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4.1. Publication 1: BiCoN: network-constrained biclustering of
patients and omics data

Citation

The article titled "BiCoN: network-constrained biclustering of patients and omics data" has
been published online at OUP Bioinformatics on 26 December 2020 (in print on 15 August
2021).
Full citation:
"Olga Lazareva, Stefan Canzar, Kevin Yuan, Jan Baumbach, David B Blumenthal, Paolo
Tieri, Tim Kacprowski, Markus List, BiCoN: network-constrained biclustering of patients
and omics data, Bioinformatics, Volume 37, Issue 16, 15 August 2021, Pages 2398–2404,
https://doi.org/10.1093/bioinformatics/btaa1076".

Summary

Unsupervised approaches for patients stratification into clinically relevant groups are neces-
sary for data-driven patient stratification. Label-driven stratification (i.e., supervised learning)
is easier to interpret as it uses the known patient groups, but it is oblivious to previously
unknown group characteristics. Given that most diseases were defined before the availability
of rich molecular data and therefore are based on symptoms, it is of paramount importance
to contribute to novel, data-driven disease definitions.

We developed BiCoN to derive stable patient phenotypes from molecular data by aggre-
gating patient-specific data (e.g., gene expression, methylation, copy-number variation) and
prior knowledge in the form of Protein-Protein Interaction (PPI) network. BiCoN attempts to
cluster patients and extract connected subnetworks from PPI network simultaneously. This
allows BiCoN to infer molecular mechanisms that explain patient stratification directly.

BiCoN results were verified using Breast and Lung Cancer data and have shown robust
reproduction of known molecular subtypes and potential novel subtypes that might have
clinical relevance. The results were also exhaustively compared to known clustering and
biclustering methods. Our benchmarking results demonstrated that BiCoN outperforms bi-
clustering methods in a task of patient subtyping and outperforms clustering and biclustering
methods in batch effect and noise robustness.

BiCoN achieves its performance by using Ant Colony Optimization to find nearly-optimal
gene subnetwork that allows to cluster patients in the best possible way. In the final step,
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we apply Local Search to fine-tune the solution and allow local changes to the subnetwork
that might improve the objective function score. The two-step optimization function ensures
result robustness and quality.

Availability

BiCoN is available and maintained as a Python package https://pypi.org/project/bicon
and a web-interface https://exbio.wzw.tum.de/bicon. The data described in the manuscript
is publicly available: Non-Small-Cell Lung cancer dataset is available trough GEO: https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219 and the breast cancer dataset
(BRCA) is a part of The Cancer Genome Atlas https://www.cancer.gov/about-nci/organization/
ccg/research/structural-genomics/tcga.

Contribution

I had the leading role in algorithmic framework design, wrote all the code for the algorithm
and experiments, obtained and processed the data, and ran and adjusted competing methods
for a fair comparison. I, together with Dr. M. List, co-supervised K. Yuan for the web interface
development. I also wrote the first draft of the manuscript and generated all the figures. All
project-related activities were supervised by Prof. T. Kacprowski, Prof. J. Baumbach, and Dr.
M. List. Prof. D.B. Blumenthal provided his feedback on the algorithmic framework and the
written manuscript. Prof. T. Kacprowski and Dr. M. List revised the manuscript. All authors
provided their feedback on the final manuscript.

Rights and permissions

The original article is embedded with permission of Oxford Academic Press. All rights belong
to Oxford Academic Press.

Additional supplementary material

Supplementary data are available at Bioinformatics online https://doi.org/10.1093/bioinformatics/
btaa1076.
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Abstract

Motivation: Unsupervised learning approaches are frequently employed to stratify patients into clinically
relevant subgroups and to identify biomarkers such as disease-associated genes. However, clustering and
biclustering techniques are oblivious to the functional relationship of genes and are thus not ideally suited
to pinpoint molecular mechanisms along with patient subgroups.
Results: We developed the network-constrained biclustering approach BiCoN (Biclustering Constrained
by Networks) which (i) restricts biclusters to functionally related genes connected in molecular interaction
networks and (ii) maximizes the difference in gene expression between two subgroups of patients. This
allows BiCoN to simultaneously pinpoint molecular mechanisms responsible for the patient grouping.
Network-constrained clustering of genes makes BiCoN more robust to noise and batch effects than typical
clustering and biclustering methods. BiCoN can faithfully reproduce known disease subtypes as well
as novel, clinically relevant patient subgroups, as we could demonstrate using breast and lung cancer
datasets. In summary, BiCoN is a novel systems medicine tool that combines several heuristic optimization
strategies for robust disease mechanism extraction. BiCoN is well-documented and freely available as a
python package or a web interface.
Availability and Implementation: PyPI package: https://pypi.org/project/bicon
Web interface: https://exbio.wzw.tum.de/bicon
Contact: olga.lazareva@tum.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomarkers are essential for stratifying patients for diagnosis, prognosis,
or treatment selection. Currently, individual or composite molecular
biomarkers based on, e.g., expression, methylation, mutation status, or

†Joint last authorship

copy number variation are used. Biomarker discovery has greatly benefited
from supervised methods that identify molecular features that have a
strong association with disease-relevant variables such as drug response,
relapse, survival time, or disease subtype. However, supervised methods
are strongly biased by our current understanding of diseases, in particular
by disease definitions that were established before rich molecular data
became available. While classical unsupervised methods such as clustering
have been successfully applied in the past, e.g., to reveal gene signatures

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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predicting breast cancer subtypes (Parker et al., 2009; Nielsen et al., 2010),
they group patients based on the entire molecular profile, and overlook
meaningful differences limited to a subset of genes.

Biclustering aims to discover rows in a matrix which exhibit similar
behaviour across a subset of columns and vice versa (Hartigan, 1972). It is
suited for identifying disease-associated genes from gene expression data
while stratifying patients at the same time (Prelic, 2006). As an NP-hard
problem (Tanay et al., 2002), biclustering is typically solved via heuristics.
A gene expression matrix describes the expression of genes (rows) across
samples (columns), which can reflect individual patients, time points or
conditions. In patient stratification (i.e. splitting patients into clinically
relevant subgroups), samples typically stem from different patients with
a disease phenotype. In gene expression data, a bicluster defines a set
of genes and a set of patients for which these genes are co-expressed
(Cheng and Church, 2000). Gene co-expression does not imply a direct
functional connection and, hence, genes identified by biclustering are often
difficult to interpret. In contrast, molecular interaction networks such as
protein-protein-interaction (PPI) networks capture direct and functional
interactions.

Many diseases are caused by aberrations in molecular pathways
or modules of functionally related genes (Berg et al., 2002). This
suggests to focus on gene modules for delivering more interpretable
and robust mechanistic explanations of disease phenotypes. Network
enrichment methods leverage prior information of molecular interactions
for identifying gene modules as subnetworks (Batra et al., 2017). Gene
modules are robust features for classification and disease subtyping
(Alcaraz et al., 2017). Few methods exist that can utilize molecular
interaction networks along with gene expression for patient stratification.
Two integer linear programming methods were suggested (Yu et al., 2017,
Liu et al., 2014) both of which rely on the GeneRank (Morrison et al.,
2005) algorithm to incorporate network information. GeneRank depends
on a parameter θ describing the influence of the network whose choice is
not straight-forward and was shown to have a notable impact on the results
(Yu et al., 2017). While these methods propagate the gene expression
signal among the connected genes in a network, they generally do not
produce connected subnetworks. Thus, they are not suited for discovering
disease modules with mechanistic interpretation. To overcome this issue,
we present BiCoN, a tool that accepts gene expression data as input and
stratifies patients into two subgroups while identifying, for each group,
a subnetwork of genes that can be interpreted as a shared molecular
mechanism. In contrast to the classical definition of biclustering, BiCoN
extracts a fixed number of non-overlapping biclusters, which are connected
in a molecular interaction network. BiCoN delivers meaningful results on
real-world datasets on par with other state-of-the art methods. We have
validated our results on breast cancer (TCGA Pan-Cancer) and non-small
cell lung carcinoma (NSCLC) datasets (Rousseaux et al., 2013) and found
that BiCoN is robust to batch effects and delivers biologically interpretable
mechanistic insights into disease subtypes.

2 BiCoN Approach

2.1 Problem statement

BiCoN aims at stratifying patients into two subgroups while extracting
two sets of genes which are connected in a molecular interaction network
and show opposite behaviour (i.e. similar to conventional differential
expression analysis). The resulting subnetwork can thus be interpreted
as a biological function jointly carried out by these genes which is active
in one patient group and inactive in the other one. This assumption is
reflected in our objective function and formally described below.

Consider a matrix of expression values Xn×m with n genes and m

patients as well as G = (V,E), a molecular interaction network of gene

Fig. 1: The algorithmic framework of BiCoN. (1) Gene expression data
X is converted to a bipartite graph B and PPI interactions (black) are
added as additional edges between genes to form a joint graph J . (2)
ACO determines the most relevant features for each patient where edges
are annotated with patient ids. The selected genes are used for patient
clustering in step (3). Next, (4) genes are reassigned from individual
patients to their corresponding clusters. Multiple possible solutions are
computed in parallel and then evaluated and reinforced. As a result (5),
patients are stratified based only on subnetworks that can be interpreted as
disease mechanisms.

setV and protein-protein or gene-gene interactionsE. We further consider
P as the set of m patients (samples) and construct a complete bipartite
graph B = ((V, P ), Ew) with genes V and patients P as node types
connected by weighted edges Ew . Edge weights reflect the expression
strength for a given patient from expression values Xn×m. We construct
a joint graphJ = ((V, P ), (E,Ew)) by mappingG ontoB via the shared
genes in V . Our goal is to partition P into clusters P1, P2, and to find 2
connected subnetworks G1(V1, E,1 ), G2(V2, E2) each of minimal size
Lmin and of maximal sizeLmax. Size constraints can be adapted by users
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to the expected size of the molecular pathways, i.e. small subnetworks will
represent more specific and large subnetworks more general molecular
functions or biological processes. Thus, we aim to derive patient groups
(clusters P1 and P2) which are characterised by maximally differential
expression in the extracted subnetworks:

f(X,V, P, c) =
∑

(i,j)∈(1,2),(2,1)

wi(X̄[Vi, Pi]− X̄[Vi, Pj ]) (1)

Where X̄[Vi, Pj ] is the average expression of genes of module i for
patients in cluster j, wi is a weight for Gi(Vi, Ei) which penalizes too
small or too large, disconnected solutions:

wi =





|LCCGi(Vi,Ei)
|

Lmin
if |LCCGi(Vi,Ei)

| ≤ Lmin

Lmax
|LCCGi(Vi,Ei)

| if |LCCGi(Vi,Ei)
| ≥ Lmax

1 otherwise

(2)

Where |LCCGi(Vi,Ei)
| is the size of the largest connected component

(LCC) in a subnetwork Gi(Vi, Ei). Thus, wi is always equal to 1 if the
size of LCC corresponds to the user defined Lmin and Lmax and wi < 1

means that the obtained solution does not fit into the desired range. Smaller
wi means larger deviation from a user’s preferences. The motivation for
implementing a fuzzy threshold is that the user-selected Lmin and Lmax

parameters may not always lead to a viable solution, i.e. if wi < 1 BiCoN
could not find any differentially expressed subnetworks of the selected size
in the given data.

To obtain more than two clusters, BiCoN can in principle be applied
recursively to further split clusters as also shown in the application in
Section 4.2.

2.2 BiCoN algorithm

BiCoN is a heuristic algorithm that finds differentially expressed
subnetworks that can mechanistically explain patient stratification. This
combinatorial problem can be addressed by various metaheuristic
frameworks such as e.g. Genetic Algorithm (Banzhaf et al., 1998) or
Swarm Intelligence (Eberhart and Kennedy, 1995). We have chosen Ant
Colony Optimization (ACO) (Stützle, 2009) as the main framework that
performs exploration of the search space and Local Search (Aarts et al.,
2003) to ensure local optimality of the final solution. The combination
of ACO and Local Search was shown to be very efficient in finding near-
optimal solutions to hard combinatorial optimization problems (Stützle
and Hoos, 1999) and leads to significant improvements compared to ACO
or local search alone (Stutzle and Hoos, 1997). As we already had good
prior experiences with ACO on similar problems (Alcaraz et al., 2012)
we expected that combination with local search will lead to high quality
results.

ACO is a nature-inspired probabilistic technique for solving
computational problems which can be reduced to finding optimal paths
through graphs. We use ACO to identify a set of relevant genes for
each patient which we subsequently aggregate into a global solution. A
full description of the algorithm and the pseudo-code can be found in
the Supplementary Material, section "Algorithm description". We also
describe the full workflow on Figure 1. Briefly, ants travel the joint graph
J in three phases which are repeated until convergence:

1. An ant performs a random walk within nodes that are highly connected
to a patient-node and makes greedy choices according to the objective
function (Equation 1) by choosing genes which are most relevant to a

patient (orange edges on Figure 1 step 2). The probability of selecting
a gene for a certain patient depends on the combined information
from gene expression values (which are encoded in the heuristic
information matrix) and the ant’s “memories” on whether the choice
of this gene has led to a quality solution in the previous rounds
(pheromone matrix). More details about the implementation can be
found in Supplementary Material, section “Algorithm description”.

2. The selected genes are then used for clustering patients with the k-
means algorithm where k = c = 2 (step 3, Figure 1). Relevant genes
for each patient cluster are extracted at step 4 (Figure 1). A candidate
solution is evaluated by the objective function score.

3. The best solution is used for updating the pheromone and probability
matrices for the next iteration.

When the best solution is obtained we perform local search for possible
local improvements, i.e. iteratively apply changes to subnetworks (such
as node insertion, deletion or substitution) and keep changes that lead
to objective function maximization. This allows us to retrieve robust and
stable solutions as well as to ensure local optimality.

Even though BiCoN uses several hyperparameters, our experiments
have shown that those do not have a large impact on the results and the
optimal combination is determined automatically based on the dimension
and distribution of the expression matrix. Therefore, the user only has to
specify the desired size of the solution subnetworks (Lmin and Lmax).

3 Methods

3.1 Data collection and processing

3.1.1 Gene expression data
TCGA breast cancer data was obtained through the UCSC Xena
browser (https://xenabrowser.net/). The NSCLC dataset (accession
number GSE30219, (Rousseaux et al., 2013) was obtained using GEO2R
(https://www.ncbi.nlm.nih.gov/geo/geo2r/). Both datasets were retrieved
together with the corresponding metadata which contained annotated
cancer subtypes.

For the NSCLC dataset, gene probes were mapped to Entrez gene IDs.
If multiple probes corresponded to a single gene, the median value was
used. We applied a log2 transformation to account for skewness of the
data. Data was z-score transformed to indicate the magnitude of changes
in gene expression in individual samples and conditions compared to the
background. In most gene expression datasets, a majority of genes is lowly
expressed and does not vary to a larger extent. To account for this and to
improve run-time, BiCoN filters out genes with a small variance preserving
only the n most variant genes (here n = 3000).

3.1.2 Molecular interaction network
We used physical and genetic protein-protein interactions (PPI) in H.
Sapiens from BioGRID (version 3.5.176). The network consisted of
343,563 unique interactions between 16,830 genes.

3.2 Simulation of Batch Effects

Batch effects are technical variations that have been introduced by
external factors during handling of the samples (e.g. personnel effects,
environmental conditions, different experiment times) (Luo et al., 2010;
Goh et al., 2017). While some of those effects can be minimised,
batch effects are still almost inevitable in practice (Chen et al., 2011).
Many methods have been proposed for removing batch effects from
data (Lazar et al., 2012). However, removing batch effects may also
remove biologically relevant group differences from the data. Batch effect
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Fig. 2: Robustness analysis. a) Objective function score versus the percentage of noisy data. b) Matthews Correlation Coefficient (MCC) with respect to
the known classes versus the percentage of noisy data. c) Correlation of objective function scores and MCC.

correction methods that are designed to retain group differences can lead
to exaggerated confidence in downstream analyses (Nygaard et al., 2016).
In unsupervised analysis, this issue is critical, since we, by definition, do
not know the relevant sample or patient groups a priori.

To demonstrate that BiCoN is robust to batch effects, we simulate
data using a linear mixed effect model. We consider two variables: cluster
and batch. The variable cluster indicates whether a gene is part of the
foreground (cluster = 1 or cluster = 2) or the background (cluster = 0),
i.e. it is not differentially expressed. The variable batch indicates the study
or batch of expression values (batch = 1 or batch = 2). The expression
values are simulated as follows:

gi = 1+2×batch+2×cluster+γ1×cluster+γ2×batch+εi (3)

where the first part of the equation (1 + 2 × batch + 2 × cluster)
is fixed and shared by all genes. Errors εi are independent and identically
distributed (with zero mean). The random effects parameters γ1 and γ2
follow a bivariate normal distribution with zero mean, and variance 1 and
2 respectively, i.e. the technical variance is twice the biological variance.

The network was simulated as three disjoint Barabasi-Albert graphs
(one for each of genes biclusters and one for background genes) (Barabási
and Albert, 1999) which were connected by random edges until they have
reached the same density as the BioGRID network (0.0013). Barabasi-
Albert graphs have similar node degree distribution as the BioGRID
network and were thus considered suitable for the simulation study.

3.3 Benchmarking

To show how BiCoN results compare to commonly used clustering and
biclustering algorithms, we selected several popular biclustering and
clustering methods (listed in Supplementary Table S3) and performed
multiple assessments:

• To show how BiCoN can recover PAM50 annotated breast cancer
subtypes (using TCGA data as a source), we computed Jaccard index
(an intersection of two sets over the union) between the known subtypes
and the resulting patients clusters/biclusters.

• To show how BiCoN can handle batch effect in comparison to other
methods, we simulated data as described in section 3.2 and computed
the overlap between known classes of patients and the resulting
clusters/biclusters. To avoid favouring the assumption of genes
connectivity used by BiCoN, we also repeated the simulation such that
the signal-carrying foreground genes are randomly distributed over the
network.

As a metric for comparison we used Jaccard index rather than MCC
as it allows to measure relationship between resulting biclusters and the

actual classes even when the patients biclusters overlap and do not include
all patients. All data was normalized and processed as described in Section
3.1 for all methods (including BiCoN).

Even though we use classical clustering methods for benchmarking, we
emphasise key differences between the suggested approach and classical
clustering. BiCoN extracts biological mechanisms that explain patient
stratification. Even though subnetworks extraction after clustering of
patients is feasible, to our knowledge there is no gold standard for
this procedure. While it is possible to extract subneworks and disease
mechanisms subsequent to clustering or by relying on known disease
subtypes (Alcaraz et al., 2017), we argue that such clusters are driven by
global differences and not by the activity of a single disease mechanism.
Hence, extracting disease mechanisms along with patient stratification
is better suited to identify patient subgroups affected by key disease
mechanisms. Moreover, clustering performed on the whole genome is
also not advisable as the use of multidimensional data can lead to multiple
negative effects, which are often referred to as "curse of dimensionality"
(Thangavelu et al., 2019).

For all selected algorithms, we chose parameters that maximize
performance for each of the methods.

4 Results and Discussion

We evaluated BiCoN on simulated and real data with respect to the
robustness of patient clustering and gene selection as well as robustness
to batch effects. Furthermore, two application cases illustrate the practical
use of BiCoN.

4.1 Noise robustness

To introduce varying levels of noise to a data set, we randomly select
between 0 and 90% of the genes and randomly permute their expression
values. A noise level of 0.1 means that the expression vectors of 10% of
genes were permuted. For each noise level, we average results over 10
independent runs.

We use the NSCLC data set with two annotated subtypes as gold
standard: adenocarcinoma and squamous cell carcinoma. As evaluation
metrics, we consider the value of BiCoN objective function as well
as Matthews Correlation Coefficient (MCC) (Matthews, 1975) between
the proposed clusters and cancer subtype labels. The latter is meant
to demonstrate that BiCoN is able to recover cancer subtypes while
inferring a mechanistic explanation for the subtype differences. For all
described results, we retain the 3000 most variant genes and set parameters
Lmin = 10 and Lmax = 25 to control the size of the solution.

Figure 2(a) shows a consistent decline in the objective function with
increasing noise, indicating that the algorithm is reacting reasonably to
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Fig. 3: a) Hierarchical clustering of two data sets with different distributions due to batch effects.b) The merged data sets after z-scores normalization.
The batch effect vanishes, but the disease phenotype is still not distinguishable. c) BiCoN is able to recover the initial disease phenotypes with Jaccard
index of 0.92 (in average after 10 runs) while extracting the 40 foreground genes out of 1000 background genes. d) The resulting subnetworks for two
corresponding patient clusters.

the decline in data quality. Figure 2(b) shows that the algorithm is able to
recapture the cancer subtypes almost perfectly (average MCC higher than
0.9) up to a noise level of 0.5 where 50% of the data have been permuted.
Figure 2(c) shows a strong positive correlation between the objective
function value and MCC, which confirms that the objective function is
high when cancer subtypes are well separated.

4.2 Batch effect robustness

BiCoN is a graph-based method and, hence, it is not as strongly affected by
the global distribution of expression values as classical clustering methods.
Pre-processing methods that scale data to a certain range enforce it to
have certain mean and variance (e.g. z-scores) or make the distribution
more symmetrical (e.g. log2 transformation) are not ideal for batch effect
correction as they do not differentiate between signal and noise. In this
scenario, a graph-based method benefits from the assumption that the joint
signal of the genes in a subnetwork is stronger than that of individual genes.

To study if BiCoN can indeed tolerate batch effects, we simulate gene
expression data (see Methods for details) where we introduce a batch effect
with a larger variance than for the group difference. Our aim is to show
that BiCoN can leverage the network to recover the signal even if it is
overshadowed by batch effects.

We have simulated expression data for 2 × 20 foreground genes (two
biclusters) and for 1000 background genes. We also tested the performance
with 2 × 30, 2 × 40 and 2 × 60 foreground genes.

Figure 3(a) shows that the batches differ in their distribution, causing
hierarchical clustering to group samples by batch rather than by disease
phenotype. Figure 3(b) shows that differences due to batch effects are
eliminated after z-score normalization. We can also see that the difference
between the sample groups is now lost and can not be recovered by
hierarchical clustering. Figure 3(c) shows that in spite of this noise, BiCoN
can recover the disease phenotype together with the foreground genes.
Thus, when two datasets can be normalized separately (e.g. z-scores are
applied to each dataset), BiCoN is uniquely suited to cluster patients where
individual gene modules are disturbed. Even when the signal is obscured
by batch effects, the functional connection of solution genes in the network
(Figure 3 (d)) helps to robustly recover the signal.

To show how BiCoN results align with other clustering and biclustering
methods, we have simulated 10 datasets with batch effect and evaluated
the performance. To make sure that we do not put BiCoN in favour by
enforcing connectivity of genes, we also performed simulations with a

single Barabasi-Albert graph, where foreground genes were randomly
distributed (Figure 4).

Among the considered biclustering algorithms (Supplementary Table
S3), only Bimax was capable of finding any clusters, while Plaid and
QUBIC could not find any structure in the given data regardless of chosen
parameters and therefore was excluded from further assessment. The
experiments showed that even though the quality of the results drops when
the foreground genes are not directly connected, BiCoN still performs
significantly better than other methods. The simulated network had power-
law node degree distribution which means that the network diameter
is rather small and therefore many foreground genes are still reachable
through hub-nodes even when they are not directly connected. Thus,
BiCoN performance dropped when using random networks (due to the
noise of the hub nodes) but still outperformed other methods that are not
network-restricted.

4.3 Application to TCGA breast cancer data

We applied BiCoN to the TCGA breast cancer dataset. We expected BiCoN
to be able to recover known subtypes assigned via the PAM50 gene panel
(Parker et al., 2009; Nielsen et al., 2010) which is a gold standard in breast
cancer subtype prediction. For the analysis, we focused on patients with
the most common molecular subtypes, luminal (estrogen-receptor and/or
progesterone-receptor positive) and basal (hormone-receptor-negative and
HER2 negative).

As a proof of concept, we first showed that BiCoN can separate
patients into the two clinically well distinguishable subtypes luminal
and basal. Next, we applied BiCoN separately for patients with luminal
and basal subtype to investigate how patients are stratified in a more
challenging scenario. For each subgroup, we ran the algorithm 10 times
and selected a solution with the highest score based on the previous
observation that the highest objective function score corresponds to the
highest correlation between the resulting biclusters and the expected
patient groups. We conducted gene set enrichment using genes from both
subnetworks together using the KEGG (Kyoto Encyclopedia of Genes and
Genomes) (Kanehisa and Goto, 2000) as a background. We used the same
hyperparameters as for our previous analysis: 3000 the most variant genes
and Lmin = 10 and Lmax = 25 to control the size of the solution.

4.3.1 Luminal versus basal separation
As expected, the separation between patients with luminal and basal breast
cancer subtypes is straightforward. The clusters correspond to the subtype
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Fig. 4: Jaccard indices between the patients clusters and actual subgroups (class 1 or class 2) as well as with batches of patients (batch 1 and batch 2) for
10 simulated datasets with a strong batch effect. a) When foreground genes are connected in a network, BiCoN clusters patients almost perfectly based
on the actual signal. b) When the foreground genes are randomly distributed in the network, BiCoN still achieves higher performance than other methods
that were capable to find any clusters. Plaid and QUBIC were not able to find any clusters and were excluded from further assessment.

labels and the separation between patients groups matches the PAM50
classification (average Jaccard index is equal to 0.99, Supplementary
Figure S1 (a)). BiCoN not only performs as well as methods like
hierarchical clustering (Figure 5, where the Jaccard index is 0.96 for the
luminal and basal subtypes) but also yields two differentially expressed
subnetworks (Supplementary Figure S1 (b)). The extracted subnetworks
explain subtype differences with a vastly lower number of genes than
a classical clustering method while offering a mechanistic explanation
of subtype differences. Note that while BiCoN restricts genes inside a
bicluster to be connected, it does not impose any relationships between two
biclusters. As a consequence, it is possible that the resulting subnetworks
overlap.

In contrast to methods yielding gene signatures such as PAM50, BiCoN
focuses on revealing specific pathways. Enrichment analysis of cancer-
related pathways (Supplementary Material Figure S6) confirms strong
association of the resulting genes with breast cancer subtype-specific
signalling, in particular estrogen signaling pathway (adjusted p-value =
0.018) and ErbB signaling pathway (adjusted p-value = 0.025).

Random-walks on scale-free networks are biased towards hub nodes
since these have a high degree (Gillis et al., 2014). BiCoN avoids this
hub bias as it performs random walks on the joint graph of a PPI and
expression data which is not scale-free. Consequently, the selected nodes
have approximately the same degree distribution as the input network
(Supplementary Materials Figure S4).

4.3.2 Luminal patient stratification
Next, we consider only patients that were originally classified as luminal
subtype to see if we can further stratify them into subtypes luminal
A and luminal B which are known to be difficult to separate on the
level of gene expression. Here, our solution does not agree with the
PAM50 classes (Figure 5, mean Jaccard index 0.49 for the luminal A
(lumA) and luminal B (lumB) subtypes), although we observe two clearly
separable groups and that most of the luminal B patients were placed in
cluster 1 (Supplementary Figure S2). We hypothesize that contributions
of the tumor-microenvironment may explain the observed clusters. To
test this hypothesis, we used the signature-based deconvolution method
xCell (Aran et al., 2017) to estimates contributions of 64 immune and
stromal cell types in the two clusters. xCell summarizes the contribution
of tumor-infiltrating leukocytes to the microenvironment via aggregated
scores such as an immune score, a stromal score and a microenvironment
score. Clusters reported by BiCoN show significant differences between
cell types scores. The strongest difference between patients is found in
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Fig. 5: TCGA breast cancer subtypes identification by various algorithms
(for 10 runs). Jaccard index was computed as a best match between
produced patients clusters and the known breast cancer subtypes for BiCoN
and other well-known clustering and biclustering algorithms. BiCoN
shows performance which is comparable with other clustering algorithms
while also revealing functionally connected subnetworks which explain
the phenotype.

the stromal score (−log10 p-value is over> 55), hematopoietic stem
cells (−log10 p-value > 50) and CLP cells (−log10 p-value > 50). See
Supplementary Figures S7(a), S8(a) for details. These results indicate
that some of the luminal A and luminal B patients share similar tumor
microenvironments and, consequently, the further stratification of luminal
subtypes is not straightforward. These results are corroborated by other
studies which investigate immune-related subtypes of luminal breast
cancer (Zhu et al., 2019; Jiang et al., 2020).

4.3.3 Basal patients stratification
Bertucci et al., 2012 characterised basal, also known as triple negative,
breast cancer as the most challenging breast cancer subtype with poor
prognosis despite relatively high chemosensitivity. Currently, there is
no targeted therapy and no routine diagnostic procedure specifically for
this subtype. Although no clinically relevant subgroups of the basal
subtype are known, BiCoN achieved a clear separation into two subgroups
(Supplementary Figure S3).

Derived subnetworks show robust correlation with immune system
response functions which is reasonable given that tumour samples
are infiltrated with leukocytes. All 3 enriched pathways (Primary
immunodeficiency, Hematopoietic cell lineage, B cell receptor signaling
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pathway) have a direct connection to the immune response (Figure S5(a)
Supplementary Material). Molecular function enrichment also confirms
the relation between the selected genes and immune response (Figure
S5(b) Supplementary Material). Cell type deconvolution analysis with
xCell shows a high correlation of the clusters with aDC, CD4+ memory
T-cells, B-cells, CD8+ T-cells and other immune response related cells
(Supplementary material Figures S7(b) and S8(b)). Similar to the results
in luminal patients, our results indicate that basal breast cancer patients can
be clustered by the contribution of tumor-infiltrating leukocytes, which is
a clinical key factor for prognosis and treatment via immunotherapy.

5 Conclusion and Outlook

Classical biclustering methods were shown to perform sub-optimally when
non-intersecting, large patient subgroups are of interest as is often the
case in patient stratification. Clustering methods, on the other hand,
are more suited for this task, but they use the whole gene set and do
not provide a mechanistic explanation of patient stratification (Figure 5).
Therefore BiCoN is uniquely suited to cluster patients along with extracting
fixed-size subnetworks capable of mechanistically explaining the patient
stratification. Moreover, simultaneous clustering of gene expression and
networks makes BiCoN robust to noise and more robust to batch effect
than typical clustering and biclustering methods.

BiCoN leverages molecular interaction networks in the analysis of
gene expression data to faithfully produce known subtypes as well as novel,
clinically relevant patient subgroups, as we could demonstrate using data
from TCGA. We stress that BiCoN and the concept of network-constrained
biclustering are not limited to gene expression data or protein-protein
interaction networks. We plan to apply BiCoN to other types of omics data
such as DNA methylation, copy number variation or single nucleotide
polymorphisms. We envision BiCoN to be useful for single-cell RNA-
seq data for uncovering differences in signalling between clusters of cells
and for the discovery of novel cell types. BiCoN, which is available as
a web-interface and a PyPI package, has great potential to enhance our
understanding of diseases, cellular heterogeneity and putative drug targets.
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Summary

Identification of active modules in PPI networks based on gene expression data is often
used to find mechanisms potentially responsible for a given phenotype. The connection of
transcriptome with proteome appears intuitively correct and, as shown in the first publication
(BiCoN), increases the computational robustness of results. An important question to those
results is whether they were achieved due to the biological value of PPI networks or due to
possible technical or selection bias. As PPI networks are widely used in many developed
Systems Medicine approaches, it is of paramount importance to investigate possible biases
and determine informational gain provided by PPI networks.

We developed a testing framework that allowed us to disentangle various properties of PPI
networks (such as diameter, node degree distribution, hub nodes distribution, and others)
and evaluate their influence on the results of active module identification methods (AMIMs).
Several meaningfulness scores have been developed to systematically evaluate results in terms
of functional gene relation to a phenotype in question, ability to predict patient phenotype,
and survival prognosis.

We have established that most AMIMs do not produce more meaningful results on actual
PPI compared to PPIs with random edges and preserved node degrees. This conclusion
implies that AMIMs are mostly oblivious to biological knowledge coming from PPIs and
prioritize proteins based on their degrees. The consequence of this conclusion is a necessity
to reconsider the field of active module identification and employ the developed testing
procedure to eliminate systematic biases when using biological networks.
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48

https://doi.org/10.1093/bib/bbab066
https://www.genome.jp/kegg/disease/
https://www.genome.jp/kegg/disease/
http://iid.ophid.utoronto.ca/
https://www.ncbi.nlm.nih.gov/geo/geo2r/


4. Publications

test-suite (Python environment, tool executables, PPI networks, expression datasets) is available at
https: // github. com/ dbblumenthal/ amim-test-suite/ ."

Contributions

I developed the hypothesis and a general testing strategy, processed the data and collected,
aggregated, and analyzed methods results. Together with Prof. D.B. Blumenthal, I wrote the
code for the testing framework and implemented the Active Module Identification Methods.
Prof. D.B. Blumenthal, Dr. M. List and Prof. J. Baumbach supervised the project. All
authors contributed to writing of the manuscript and provided their feedback. I finalized the
manuscript and produced the figures.

Rights and permissions

The original article is embedded with permission of Oxford Academic Press. All rights belong
to Oxford Academic Press.

Additional supplementary material

Supplementary data are available online at Briefings in Bioinformatics https://doi.org/10.
1093/bib/bbab066.

49

https://github.com/dbblumenthal/amim-test-suite/
https://doi.org/10.1093/bib/bbab066
https://doi.org/10.1093/bib/bbab066


1

Briefings in Bioinformatics, 00(0), 2021, 1–11

doi: 10.1093/bib/bbab066
Method Review

On the limits of active module identification

Olga Lazareva , Jan Baumbach, Markus List † and David B. Blumenthal †

Corresponding author: David B. Blumenthal, Chair of Experimental Bioinformatics, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354
Freising, Germany, phone: +49 8161 71 2712; E-mail: david.blumenthal@wzw.tum.de
†Joint senior authors.

Abstract

In network and systems medicine, active module identification methods (AMIMs) are widely used for discovering candidate
molecular disease mechanisms. To this end, AMIMs combine network analysis algorithms with molecular profiling data,
most commonly, by projecting gene expression data onto generic protein–protein interaction (PPI) networks. Although active
module identification has led to various novel insights into complex diseases, there is increasing awareness in the field that
the combination of gene expression data and PPI network is problematic because up-to-date PPI networks have a very small
diameter and are subject to both technical and literature bias. In this paper, we report the results of an extensive study
where we analyzed for the first time whether widely used AMIMs really benefit from using PPI networks. Our results clearly
show that, except for the recently proposed AMIM DOMINO, the tested AMIMs do not produce biologically more meaningful
candidate disease modules on widely used PPI networks than on random networks with the same node degrees. AMIMs
hence mainly learn from the node degrees and mostly fail to exploit the biological knowledge encoded in the edges of the
PPI networks. This has far-reaching consequences for the field of active module identification. In particular, we suggest that
novel algorithms are needed which overcome the degree bias of most existing AMIMs and/or work with customized,
context-specific networks instead of generic PPI networks.

Key words: active module identification; de novo network enrichment; network and systems medicine; systems biology

Introduction
Because of massive advances in high-throughput technologies,
large amounts of gene expression data have become available
over the past decades. This has raised hopes to identify new
molecular mechanisms that might provide valuable insights
into cellular function and the pathobiology of diseases [1–3].
However, gene expression data tend to be overdetermined and
noisy and, as a result, the discovery of disease genes via purely
statistical means is often unstable, since the reported genes
are often just surrogates of the actual disease genes and hence
functionally not necessarily related to the disease of interest
[4, 5].
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To mitigate these problems, active module identifica-
tion methods (AMIMs) leverage additional biological knowl-
edge encoded in protein–protein interaction (PPI) networks
[6–9]. These methods project gene expression data onto PPI
networks and then use network algorithms to identify disease
modules consisting of small subnetworks. This dramatically
decreases the size of the search space and prioritizes disease
modules consisting of functionally related genes, which, in turn,
positively affects both stability and functional relevance of the
discovered modules [10]. AMIMs have been successfully used for
providing novel pathobiological insights into complex diseases
such as pulmonary arterial hypertension [11], coronary heart

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab066/6189770 by guest on 06 April 2021



2 Lazareva et al.

disease [12], diabetes mellitus [13], liver fibrosis [14], chronic
obstructive pulmonary disease and idiopathic pulmonary
fibrosis [15], as well as asthma [16].

Despite these impressive results, there is increasing aware-
ness in the field that the combination of gene expression data
and PPI networks is subject to technical and literature bias. PPI
networks suffer from technical bias [17] e. g. since the ‘bait’
proteins used for measuring new interactions often have signif-
icantly more interactions. Moreover, literature bias [18], where
research focuses on proteins with already known characteristics
(e. g. biological function), leads to a strong correlation between
the number of studies conducted on a protein and the protein’s
degree in the PPI network.

The node degree distribution of PPI networks typically fol-
lows a power law. As a consequence, perturbances of cellular
programs (e. g. via mutations or other mechanisms) typically
have a cascading effect when observed on the level of gene
expression. As a result, differential gene expression analysis
often reveals hundreds or thousands of genes to be disease-
associated. By projecting these noisy gene expression data on
PPI networks with a small diameter, disease-associated genes
can easily be combined into subnetworks or disease modules,
most of which may not contain a single disease-causative gene.
Although such network modules may be well suited as robust
biomarkers for a disease, they may be less suited to pinpoint a
disease mechanism.

To account for network-related biases, some recently pro-
posed methods such as Hierarchical HotNet [19] and NetCore [20]
integrate data and network randomization steps into their work-
flows. These permutation-based methods extract subnetworks
whose associations with the disease are significantly stronger in
the original PPI networks than in the randomized counterparts.
Levi et al. further reported that gene ontology enrichment of sev-
eral state-of-the-art AMIMs on randomly permuted input data
produced similar results, questioning the context-specificity of
existing AMIMs. To address this issue, Levi et al. [21] propose a
new method DOMINO.

Although the effect of random permutations of the input
omics data was systematically tested by Levi et al. [21], the
question if AMIMs also benefit from the biological knowledge
captured in PPI networks remains unanswered (cf. Figure 1).
In this study, we close this gap. For this, we developed a test
suite for AMIMs, which studies the effect of different types of
network randomization on the results. Our test suite, which is
openly available at https://github.com/dbblumenthal/amim-te
st-suite/, expects a network and expression data (or input that
can be derived from expression data) as input and produces
a set of candidate disease modules as output. These modules
are then evaluated using mutual information (MI) and gene
set enrichment analysis (GSEA) with known disease signatures
(see ‘Methods’ for details). Since further AMIMs can easily be
integrated by implementing a well-defined interface, our test
suite can be used not only to reproduce the results reported in
this paper, but also to objectively test novel AMIMs with respect
to their robustness against network randomization.

In a large-scale empirical evaluation on gene expression
data for five different diseases, we ran eight classical and two
permutation-based AMIMs on five different widely used PPI
networks as well as on randomized counterparts generated by
five different random network generators (more than 10 000
runs in total). The most striking result of our analysis is that all
except one of the tested AMIMs did not yield significantly more
meaningful subnetworks if run on the original PPI networks than
if run on random networks with matching node degrees. Most

AMIMs hence pick up on the number of interactions a protein
is involved in, but do not benefit from the biological knowledge
captured in the PPIs themselves.

The remainder of this paper is organized as follows: In the
‘Results’ section, we briefly describe the protocol implemented
by our test suite and present the results of our analyses. In the
‘Discussion’ section, we discuss the implications of our findings
for the field of active module identification. In the ‘Methods’ sec-
tion, we provide a more detailed description of our test protocol
and also elaborate on how developers of new AMIMs can use our
test suite to evaluate their methods.

Results
Test protocol

Figure 2 visualizes our protocols for method evaluation (cf.
‘Methods’ section for details). We selected eight classical
AMIMs, also referred to as de novo network enrichment tools
in the literature [6] (ClustEx2 [22], COSINE [23], DIAMOnD [24],
DOMINO [21], GiGA [25], GXNA [26], KeyPathwayMiner [27–29]
and GrandForest [30]) and two permutation-based methods
(Hierarchical HotNet [19] and NetCore [20]). Although the
classical methods were run with the full protocol (Figure 2A),
we used a subset of the protocol for the two permutation-based
methods (Figure 2B) since their runtime prohibits large-scale
evaluation.

For the full protocol, we compared five widely used PPI net-
works (BioGRID [31], APID [32, 33], STRING [34], HPRD [35] and IID
[36]), as well as gene expression and case/control data for five
complex diseases: amyotrophic lateral sclerosis (ALS), non-small
cell lung cancer (LC), ulcerative colitis (UC), Chron’s disease (CD)
and Huntington’s disease (HD). For ALS and LC, we had access
to survival data that we used for an additional evaluation. More-
over, we used five different random network generators, which
produce randomized networks that preserve selected properties
of the original PPI networks. For each PPI network, we generated
10 randomized counterparts with each generator. We then ran
each classical AMIM on each of the 1275 network-disease pairs.

For each subnetwork produced for a network-disease pair, we
measured two dimensions of meaningfulness: Firstly, predictive
power quantified as mean MI [37] with (i) the phenotype and (ii)
the survival data. Secondly, functional relevance quantified via
(i) GSEA [38] w. r. t. Kyoto Encyclopedia of Genes and Genomes
(KEGG) [39] pathways associated with the disease of interest
and (ii) overlap coefficient w. r. t. disease-associated DisGeNET
[40] gene sets. Finally, we used the one-sided Mann–Whitney
U-test to assess whether the results obtained for the original
PPI networks were significantly better than the results obtained
for the randomized counterparts. Note that since AMIMs are
intended for discovering yet unknown disease modules, the four
meaningfulness scores employed in this paper should not be
viewed as direct measures of performance but rather as proxy
indicators for biological plausibility of the results.

For the slower permutation-based methods, we employed a
restricted protocol using only the smallest PPI network (HPRD),
the two smallest gene expression datasets (CD and HD) and
the degree preserving network generator REWIRED. We selected
this generator, because it produces the randomized networks
that are most similar to the original PPI networks. We ran both
permutation-based methods on each network-disease pair (in
total 22 runs per method) and used the one-sided one-sample
t-test to assess whether the subnetworks obtained for the orig-
inal PPI networks were significantly more meaningful than the
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Figure 1. The limitation of AMIMs motivating this study. Since PPI networks suffer from technical and study bias, they usually contain hub-nodes with very high node

degrees. In this study, we test the hypothesis whether AMIMs merely learn from the node degrees instead of exploiting the PPIs relevant to the disease of interest.

Figure 2. Test protocols employed in this study. (A) Large-scale protocol for classical methods. (B) Restricted protocol for slow permutation-based methods.
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Figure 3. Log-transformed P-values for all classical AMIMs and all random network generators computed with the one-sided Mann–Whitney U-test. For each AMIM

and each meaningfulness score, we computed a validity score (range from 0 to 1) as the fraction of the original network/condition pairs where the AMIM yielded a

score ≥ τ on the original PPI network. For the log-transformed GSEA P-values, we employed the cutoff τ = − log10 0.05; for all other scores, we used the cutoff τ = 0.2.

The larger the validity scores, the larger the corresponding semi-transparent shapes.

subnetworks obtained for the random networks with prescribed
node degrees.

Results for classical methods

Figure 3 visualizes the P-values obtained when comparing the
results on the original PPI network to those on randomly gen-
erated networks for eight classical AMIMs separately (cf. Sup-
plementary Figure 1 for visualizations of the distributions of the
meaningfulness scores).

For the two scores quantifying predictive power (i. e. mean MI
w. r. t. phenotype and survival times), we observe that, for most
AMIMs, the scores of the candidate disease modules obtained
on the original PPI networks are not significantly better than the
scores obtained when using random graphs generated by any of
the generators. This is the case even for the UNIFORM generator
that produces networks that are structurally very different from
the original PPI networks. For mean MI w. r. t. survival times
(Figure 3D), no AMIM reaches the significance threshold of 0.05.
For mean MI w. r. t. the disease phenotypes (Figure 3C), DIAMOnD
produces significant results compared with all random network
generators but its solution on the original PPI receives a validity
score of 0.0 (i. e. there was not a single original network-disease
pair for which DIAMOnD computed a candidate module whose
mean MI with the phenotype reached 0.2). Notably, DOMINO
produced significantly better solutions compared with all ran-
dom network generators but SHUFFLED. DOMINO results are
also slightly more meaningful, as they have a validity score >

0.0. Most of the tested classical AMIMs hence fail to exploit
the biological knowledge encoded in generic PPI networks for
mining disease modules with high predictive power. DOMINO
is the only tool to show potential w. r. t. the phenotype albeit
with very low predictive power where the validity score does
not exceed 0.1. All tools fail to produce disease modules that are
predictive of survival time.

The two scores quantifying functional relevance (GSEA
P-values w. r. t. disease-associated KEGG pathways and overlap
coefficients w. r. t. disease-associated DisGeNET gene sets)
present a different picture. Here, we observe that most

methods produce significantly more meaningful results on the
original network compared with the SHUFFLED, SCALE_FREE
and UNIFORM generators. However, when compared with
structurally similar networks generated by the REWIRED
and the EXPECTED_DEGREE generators, only DOMINO shows
good performance. For KEGG gene set enrichment (Figure 3A),
GrandForest and DOMINO reach the significance threshold,
whereas DIAMOnD and DOMINO do so for DisGeNET enrichment
(Figure 3B) when compared with the two degree-preserving
generators REWIRED and EXPECTED_DEGREE. Notably, DOMINO
is the only tool to produce very significant results on degree-
preserving random network generators. However, the valid-
ity scores are low in all cases and never exceed 0.3. Our
results hence indicate that although most AMIMs are guided
toward functionally relevant disease modules, the interactions
themselves seem to be largely irrelevant.

To evaluate the effect of the five original PPI networks and
the gene expression datasets for the five diseases, we also split
the results along the PPI network dimension and along the
disease dimension (cf. Supplementary Figures 2 and 3 for
visualizations of the distributions of the meaningfulness scores).
Figures 4 and 5 visualize the obtained P-values. These results
suggest that HPRD is the best performing network in terms of
KEGG gene set enrichment and DisGeNET overlap. This finding
may be explained by the fact that HPRD is the smallest and least
frequently updated network and contains mostly well-studied
proteins that are more likely to overlap with KEGG pathways or
DisGeNET genes.

We also observe that, in terms of functional relevance (espe-
cially DisGeNET overlap), the results for the CD dataset were
much better than for the other datasets. This may be due to the
fact that inflammation is a well-understood process and the Dis-
GeNET disease gene annotation for CD is therefore better suited
compared with other diseases. Note that the same argument
does not apply to the UC dataset, since DisGeNET only reports
on the more general inflammatory bowel disease as a proxy (cf.
‘Methods’ for details).

The results reported above suggest that, except for DOMINO,
the tested AMIMs largely learn from the degree distributions
rather than exploiting the biological knowledge encoded in the
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Figure 4. Log-transformed P-values for all PPI networks and all random network generators computed with the one-sided Mann–Whitney U-test.

Figure 5. Log-transformed P-values for all diseases and all random network generators computed with the one-sided Mann–Whitney U-test.

interactions themselves. Figure 6 shows the outcomes of further
analyses we carried out to find possible explanations for these
results. The first interesting finding is that the topologies of the
active modules DOMINO and COSINE computed on the original
PPI networks are different from the topologies of the other
AMIMs’ modules (Figure 6A): DOMINO and COSINE’s modules
tend to have larger maximum pairwise distances, i. e. they tend
to include fewer hub-nodes that would ensure a high connec-
tivity. This is reflected by the fact that the mean degrees of the
result sets and the two scores quantifying functional relevance
are less strongly correlated for DOMINO and COSINE than for
the other AMIMs (Figure 6E). These observations indicate that
DOMINO and COSINE are less influenced by the node degrees
than the other AMIMs. Although we expected this finding for
DOMINO, it is somewhat surprising for COSINE. One possible
explanation is that COSINE performed poorly even on the orig-
inal PPI networks and hence neither learned from the node
degrees nor from the interactions effectively.

We also observe several global trends in the results of the
full protocol, which indicate that when aggregating across
all tested AMIMs, the degrees on the genes contained in the

result sets are predictive of KEGG gene set enrichment P-
value and DisGeNET overlap: Firstly, the mean degrees drop
very significantly only for the SHUFFLED, the SCALE_FREE
and the UNIFORM generators (Figure 6B). This reflects the
results visualized in Figures 3–5, where significant drops
in performance compared with the original PPI networks
where observed mostly for these generators. Secondly, both
the negative log-transformed KEGG gene set enrichment P-
value and the DisGeNET overlap coefficient increase with
increasing mean degrees (Figure 6C and D). Thirdly, we observe
a very strong global correlation between the Mann–Whitney
U-test P-values for the mean degrees, on the one side, and for
two measures quantifying functional relevance, on the other
side (last column in heat map in Figure 6E).

Results for permutation-based methods

Figure 7 shows the results for the two permutation-based AMIMs
NetCore and Hierarchical HotNet (cf. Supplementary Figure 4 for
visualizations of the distributions of the meaningfulness scores).
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6 Lazareva et al.

Figure 6. Detailed analyses explaining the results for the functional relevance scores. (A) Maximum pairwise distances of genes contained in result sets for original PPI

networks for each AMIM. (B) Mean degrees in original PPI networks of genes contained in result sets for each generator. (C) Linear trend of KEGG gene set enrichment

P-values versus mean degrees in original PPI networks aggregated across all generators and AMIMs. (D) Linear trend of DisGeNET overlap coefficient versus mean

degrees in original PPI networks aggregated across all generators and AMIMs. (E) AMIM-specific and global correlation coefficients between Mann–Whitney U-test

P-values for mean degrees in original PPI networks, on the one side, and the two functional relevance scores, on the other side (cf. ‘Methods’ for details).

Figure 7. Log-transformed P-values for permutation-based AMIMs computed with the one-sided one-sample t-test. Mean MI w. r. t. survival times is not reported,

because no survival data are available for the HD and CD datasets employed by the restricted protocol. The validity scores are binary here, because the restricted

protocol uses only one original PPI network and the P-values are computed separately for the two diseases.

Recall that, because of their high computational costs, these
methods were run with the restricted protocol visualized in
Figure 2B, which only uses one PPI network (HPRD), two diseases
(CD and HD), and one random network generator (REWIRED).
Surprisingly, the results for the permutation-based methods are
not better than the results for the classical AMIMs reported in
the previous subsection: Both NetCore and Hierarchical HotNet
clearly fail to reach the significance threshold of 0.05 for all three
meaningfulness scores.

Discussion
It is commonly believed that prior biological knowledge captured
in PPI networks can be leveraged for extracting functionally and
mechanistically interpretable disease modules by AMIMs. How-
ever, an open question in the field is what characteristic of a PPI
network makes these methods successful. Since PPI networks
are known to suffer from a considerably node degree bias, we
hypothesize here that AMIMs may use the node degree as prior

information rather than the connectivity of the network i. e. the
biological knowledge captured in the interactions themselves.
To test this hypothesis, we compared 10 state-of-the-art AMIMs
on original as well as randomly generated networks. Although
a few methods produced meaningful results w. r. t. functional
enrichment, none of the methods produced disease modules
with appreciable predictive power w. r. t. to both phenotype as
well as survival. This demonstrates that results of AMIMs are
not directly suited for such tasks without further refinement
through e. g. supervised machine learning as shown by Alcaraz
et al., where disease modules were used successfully as features
for disease subtyping in a random forest classifier [10].

To investigate which network properties are exploited by
AMIMs, we compared the results against different types of ran-
dom network generators. Our results clearly show that most
methods do not yield more meaningful candidate disease mod-
ules on randomized networks if these are constructed such that
the (expected) node degrees match the node degrees of the
original networks. Unexpectedly, permutation-based methods
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Active module identification 7

that include steps to correct for PPI network characteristics in
their workflow did not produce more meaningful results on the
original PPIs.

Only one tested tool benefits from the PPI networks

The only tool to produce more meaningful results on the original
network was the recently proposed method DOMINO [21]. Inter-
estingly, DOMINO’s development was motivated by the observa-
tions that existing methods are not sensitive to permutations
of the input data. Our finding that most existing methods are
also not sensitive to network randomization suggests that these
two issues are related. Considering the small diameter of a PPI
network, AMIMs sensitive to high-degree nodes are likely to
produce subnetworks that are enriched for similar biological
functions. Given this, we see several possibilities to advance the
field, namely (i) further algorithmic improvements to overcome
PPI network biases, (ii) the integrative use of complementary
omics data that increase the signal to noise ratio, which is inher-
ently low in gene expression data and (iii) the use of more fine-
grained tissue-specific, condition-specific or even personalized
networks.

Further algorithmic improvements are needed

The encouraging results of DOMINO indicate that algorithmic
improvements to overcome the node bias of PPI networks
are possible. From an algorithmic point of view, DOMINO
differs from all other tested AMIMs in that it discards some
of the disease-associated genes in a partially unsupervised
manner. We hypothesize that this is the key to DOMINO’s
success, because it makes hub-genes other AMIMs include
into their modules to connect the disease-associated genes
less attractive for DOMINO (cf. Figure 6A). Consequently, we
expect algorithmically improved AMIMs to be either partially
unsupervised such as DOMINO or even fully unsupervised [41].
Importantly, newly developed AMIMs need to be tested with
respect to their sensitivity to network randomization. One way
to do this systematically is to evaluate them with the test suite
presented in this paper.

Different types of omics data and context-specific
networks should be considered

For this study, we evaluated the performances of AMIMs
when run on gene expression data and PPI networks, which
is currently the most common use case. Consequently, our
findings are restricted to this use and cannot be generalized
to other types of omics data and biological networks. In fact,
we expect that using different types of omics data and context-
specific networks introduces new opportunities for AMIM users
and developers. For instance, promising directions for future
research include using microbiome data in combination with
metabolic networks, using DNA methylation data with gene
regulatory networks [42], or inferring condition- or tissue-
specific gene regulatory networks from expression data [43].
Next-generation AMIMs might even integrate the inference
of context-specific networks with disease module mining.
Although all of these strategies come with their own challenges
and limitations, we believe that they could help to overcome
some of the biases of PPI networks (especially, the literature
bias).

Quantitative measures of functional relevance need to
be used carefully

The most widely used method for quantitatively assessing the
functional relevance of candidate disease modules is to compare
them against known disease-associated genes. In fact, we also
follow this strategy in our test suite (recall that we use KEGG
GSEA P-value and DisGeNET overlap as our measures of func-
tional relevance). However, this approach is severely limited and
biased by our current knowledge. In particular in the light of
the results shown here, it must hence always be kept in mind
that such quantitative measures are at best proxy indicators for
functional relevance. Alternatively, the simulation of synthetic
gold standard datasets could be considered, but this approach is
limited by our understanding and assumptions on network and
disease module characteristics [6].

Cross-disciplinary research is key to success

Since quantitative measures of functional relevance are biased,
it is unlikely that simply reporting on disease modules will yield
novel insights into complex diseases. Interestingly, studies that
report successful applications of active module identification are
usually co-authored by cross-disciplinary teams of researchers
that include not only bioinformaticians but also domain experts
for the disease of interest [11–16]. We argue that this is no
coincidence and promote cross-disciplinary research. To this
end, AMIM developers should follow best practices for devel-
oping usable software [44], allowing domain experts without a
background in computer science to run the tools on their data
and to leverage their domain knowledge in the interpretation
of the results. Ideally, such interfaces should follow the expert-
in-the-loop paradigm and provide functionality for all three
steps of active module identification (data integration, network
construction, disease module mining). To the best of our knowl-
edge, such an integrated active module identification platform
is available only for COVID-19 [45].

Conclusions
A plethora of tools for identifying disease modules via the inte-
gration of gene expression data and PPI networks have been
developed over the years. Here, we could show conclusively that
most AMIMs do not produce more meaningful results on the
original compared with randomized PPI networks in which the
(expected) node degrees do not change. Our results indicate that
classical but also supposedly bias-aware AMIMs extract disease
modules based on the node degree rather than benefiting from
the interactions of the nodes. Only a single recently proposed
method, DOMINO, showed significantly better results on the
original PPI network, suggesting that the development of better
algorithmic approaches as well as less biased, context-specific
networks are urgently needed to provide the biomedical com-
munity with the necessary tools to deliver on the promises that
the field of active (disease) module identification and de novo
network enrichment made almost two decades ago.

Methods
PPI networks and random network generators

We ran our test protocol on five widely used PPI networks:
BioGRID [31], APID [32, 33], STRING [34] with high confidence
interactions only (score ≥ 0.7), HPRD [35] and IID [36] with
experimentally validated interactions only. Key properties of the
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PPI networks are summarized in Supplementary Table 1. All
networks have one giant largest connected component with a
very small diameter. Note that although BioGRID, APID, STRING
and IID are continuously updated, HPRD is no longer maintained
and has not been updated since 2010. However, HPRD is still
useful for our study, because it is smaller and focuses on well-
studied interactions. Moreover, some of the tested AMIMs were
designed with HPRD in mind, which was the largest network
available at the time of implementation.

We used five different random network generators, which
were chosen to produce randomized networks that preserve
selected properties of the original PPI networks:

REWIRED: degree preserving generator. Repeatedly swaps pairs of
edges and non-edges to produce random networks whose degree
sequences are identical to the degree sequences of the original
PPI networks [46, 47]. Preserves the individual node degrees and
hence the hub-genes.

EXPECTED_DEGREE: expected degree preserving generator. Creates
networks with randomly sampled edges where the sampling
probabilities are chosen such that the expected node degrees
correspond to the node degrees in the original PPI networks
[48, 49]. Preserves individual node degrees and hub-genes in
expectation.

SHUFFLED: topology preserving generator. Shuffles the gene IDs.
Preserves the degree sequence and the topology but not the
individual node degrees and the hub-genes.

SCALE_FREE: scale-free generator. Produces scale-free networks
using the Barabási–Albert model [50]. The parameters are cho-
sen such that the numbers of nodes and edges in the random
networks match the numbers of nodes and edges in the original
PPI network. Preserves neither the topology nor the individual
node degrees or the hub-genes, but produces networks that
are structurally similar to the original PPI networks, since PPI
networks are usually scale-free [51, 52].

UNIFORM: uniform generator. Produces random graphs using the
Erdős–Rényi model [53]. The parameters are chosen such that the
numbers of nodes and edges in the random networks matches
the numbers of nodes and edges in the original PPI network.
The produced networks are very different from the original
PPI networks. In particular, their degrees are binomially dis-
tributed, whereas PPI networks tend to have power law degree
distributions [51, 52].

Expression, phenotype and survival data

For testing we considered gene expression datasets for five
different diseases: ALS, non-small cell LC, UC, CD and HD. For all
datasets, case/control phenotype data are available, whereas for
ALS, LC and HD, survival data are also reported. Gene probes were
mapped to Entrez gene IDs, and if multiple probes corresponded
to a single gene, the median value was used. Key properties of the
expression datasets are summarized in Supplementary Table 3.

In the LC dataset, we only considered non-small cell LC
patients due to their significant biological difference from small
cell LC and the larger number of available samples. For the HD
dataset, we preselected samples such that the most distinct
gene expression difference is present. To achieve this, we only
used samples from caudate nucleus, since this region has been
reported to have the largest change in gene expression [54].
As a case group, only patients with Vonsattel grades 2–4 were

considered, whereas samples with Vonsattel grade 0–1 were
discarded.

AMIMs and method-specific preprocessing

In the past years, various AMIMs have been presented (cf. Batra
et al. [6] for a benchmarking paper and Lazareva et al. [9] for a sys-
tematic review). Here, we selected 10 tools, namely ClustEx2 [22],
COSINE [23], DIAMOnD [24], DOMINO [21], GiGA [25], GXNA [26],
KeyPathwayMiner [27–29], GrandForest [30], Hierarchical HotNet
[19] and NetCore [20] (cf. Supplementary Table 4 for details).
These tools were selected for three reasons:

• They require expression data and phenotypes or input for-
mats that can be derived from these data.

• They return a gene set representing a candidate disease
module.

• They are available online and sufficiently bug-free and doc-
umented to allow integration in our test suite.

Hierarchical HotNet and NetCore are permutation-based
methods, i. e. they include data or network randomization steps
in their workflows to correct for typical PPI network biases.
All other tools use the PPI networks without applying any
corrections.

To set the hyper-parameters of the AMIMs, we used default
values whenever available. For parameters where no default
values are provided in the implementations, we used the values
chosen in the tutorials, READMEs, or original publications.
For tools that return several candidate disease modules, we
always used the union of all reported subnetworks. We hence
did not carry out hyper-parameter tuning. The reason for this
is 3-fold: Firstly, hyper-parameter tuning would have been
computationally infeasible, since already without our protocol
required more than 10 000 AMIM runs. Secondly, our aim is
not to obtain the optimal results but to test if equally good
results can be obtained using a random network. Thirdly,
because of the large number of AMIM runs, small changes in
the results for a specific AMIM have little effect on the overall
conclusions. Note, however, that since we did not optimize the
tools, our findings should not be interpreted as a benchmark
but rather as an evaluation of the effect of network biases on
AMIMs.

Although COSINE, GXNA and GrandForest can be run directly
on the normalized expression data, the other tools require dif-
ferent input formats. More specifically, ClustEx2, DIAMOnD and
DOMINO expect a list of disease-associated seed genes, Hierar-
chical HotNet and NetCore expect gene scores, GiGA expects a
sorted list of genes, and KeyPathwayMiner expects an indicator
matrix of genes that are differentially expressed in the case
samples.

For each gene g, let x1
g and x0

g be the vectors of expression
values for all case and control samples, and xg,s be the expression
value for sample s. Furthermore, let n be the number of genes
contained in the expression dataset and m be the number of
case samples. To derive gene scores, seed genes and sorted
gene lists from the expression data, we evaluated the two-
sided Mann–Whitney U-test on x1

g and x0
g to obtain P-values

Pg of differential expression for all genes g. We then defined
gene scores as − log10(Pg), used all genes g with Pg < 0.001/n
as seed genes, and obtained sorted lists of genes by sorting
the genes in non-decreasing order of pg. The indicator matrix
M = (mg,s) ∈ {0, 1}n×m required by KeyPathwayMiner was defined
as mg,s = [|xg,s − mean(x0

g)| > 1.5 · std(x0
g)], where s is a case

sample, [·] is the Iverson bracket (i. e. [true] = 1 and [false] = 0),

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab066/6189770 by guest on 06 April 2021



Active module identification 9

and the operators mean(·) and std(·) denote mean and standard
deviation, respectively.

Evaluation metrics

Quantitative measures are needed to evaluate how well AMIMs
perform on the original and on the randomized PPI networks.
That is, we need to quantify the meaningfulness of the gene
sets S returned by the tools. For this, we distinguish two dimen-
sions of meaningfulness: predictive power w. r. t. the phenotype
and survival time, and functional relevance for the disease of
interest.

For quantifying predictive power, we employed MI, which is
widely used for selecting features with high predictive power.
More precisely, let y be the vector of case/control disease pheno-
types and xg be the vector of expression values of all samples for
a gene g ∈ S. We computed the mean MI w. r. t. the phenotype∑

g∈S MI(xg, y)/|S| between y and xg across all genes g ∈ S. Anal-
ogously, the mean MI w. r. t. the survival times was computed
as

∑
g∈S MI(xg, t)/|S|, where t denotes the vector of survival times.

The larger the mean MI, the stronger the association between the
expression data for the genes contained in S and, respectively,
the disease phenotypes and the survival times.

To quantify functional relevance, we computed the mean
negative log-transformed GSEA P-values between the result sets
S and the KEGG [39] pathways related to the disease of interest.
The disease-to-pathway mappings are shown in the Supplemen-
tary Table 2. Moreover, we computed the overlap coefficients
|S ∩ D|/ min{|S|, |D|} between the results sets S and the disease-
associated DisGeNET [40] gene sets D. These gene sets were
obtained by taking all genes connected to the condition of inter-
est in DisGeNET. Only for the UC dataset there was no exact
match. Therefore, we used genes associated with inflammatory
bowel disease of which UC is a subtype. The full DisGeNET
diseases IDs mapping to the conditions is shown in the Supple-
mentary Table 2. Note that, for all four meaningfulness scores,
larger means better.

Let O be a batch of meaningfulness scores obtained for one
of the original PPI networks and R be a batch of scores obtained
for randomized counterparts generated by one of the random
network generators described above. In the large-scale protocol
used for the classical AMIMs (Figure 2A), we used the one-sided
Mann–Whitney U-test to assess whether the scores contained
in O are significantly larger than the scores contained in R. In
the restricted protocol used for the permutation-based methods
(Figure 2B), the Mann–Whitney U-test is not applicable, because
we have |O| ≤ 4 for each partitioning of the results (there are only
four runs on the original PPI networks). Consequently, we parti-
tioned the results along the methods and disease dimensions to
ensure |O| = 1 and instead used the one-sided one-sample t-test.

Although the P-values from the one-sided Mann–Whitney
U-test and the one-sided one-sample t-test tell us whether the
candidate disease modules computed for the original PPI net-
works are significantly more meaningful than those obtained
for the randomized counterparts, they are oblivious to the ques-
tion if the candidate disease modules for the original PPI net-
works are sufficiently meaningful in absolute terms. Assume,
for instance, that O and R contain negative log-transformed
GSEA P-values, that the values contained in O fall into the range
[0.5, 1] and that the values contained in R fall into the range
[0.2, 0.5]. Then the one-sided Mann–Whitney U-test will return
a significant P-value, which, however, should be treated with
extreme caution because the scores in O are themselves not
significant. To account for this fact, we computed a validity score

|{o ∈ O | o ≥ τ }|/|O| for each P-value computed by the one-sided
Mann–Whitney U-test and the one-sided one-sample t-test. For
the negative log-transformed GSEA P-values, the threshold was
set to τ = − log10 0.05; for all other scores, we used τ = 0.2. In
Figures 3 and 7 and Supplementary Figures 1 and 2, the validity
scores are visualized as the sizes of the shapes corresponding to
the P-values.

Let O be a batch of result sets obtained for one of the original
PPI networks, R be a batch of result sets obtained for randomized
counterparts, and avdeg(S) denote the mean degree of a gene set
S, computed w. r. t. the original PPI network. For further analyzing
the results of the full protocol, we used the one-sided Mann–
Whitney U-test to asses whether the mean degrees {avdeg(S) |
S ∈ O} of the gene sets for the original networks are significantly
larger than the mean degrees {avdeg(S) | S ∈ R} obtained for the
randomized counterparts (cf. Figure 6B and E). By splitting along
the AMIM dimension, we obtain an array of P-values for each
AMIM with entries for each network generator. The correlation
coefficients of these arrays with the arrays of AMIM-specific
P-values obtained for the meaningfulness scores visualized in
Figure 3 indicate to which extent the AMIMs merely learn from
the degree distributions of the PPI networks. The larger the
correlation coefficient, the stronger the impact of the degrees
of the genes contained in the result sets on the meaningfulness
scores (cf. Figure 6E).

Implementation

The overall architecture of our test suite is implemented in
Python 3 and schematically visualized in Supplementary Fig-
ure 5. Each tested AMIM is wrapped into an implementation
of an abstract AlgorithmWrapper interface. The wrappers run
the AMIMs via system calls to the original executables. Graph
operations and random network generators are implemented
with NetworkX [55] and graph-tools [56]. GSEA is carried out via
the GSEApy interface of the Enrichr API [57], and statistical tests
are implemented with SciPy [58].

To reproduce the results reported in this paper, it suffices
to execute the top-level Python script run_tests.py, which is
shipped with our test suite. If developers of new AMIMs would
like to use our test suite for evaluating their methods, they
can provide a custom implementation of the AlgorithmWrapper
interface. Our test suite can hence be used to easily benchmark
new AMIMs against the 10 pre-implemented existing methods.
Our test suite is available at https://github.com/dbblumentha
l/amim-test-suite/, along with a detailed README and all data
needed to reproduce the experiments.

Key Points
• Most AMIMs only learn from the node degrees but not

from the biological knowledge encoded in the edges of
PPI networks.

• Only the recently presented AMIM DOMINO yields
significantly more meaningful disease modules if run
on original PPI networks rather than on randomized
counterparts with preserved node degrees.

• Better algorithmic approaches and less biased,
context-specific networks are urgently needed in
the field of active module identification and de novo
network enrichment.
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Availability
The KEGG pathways were obtained from KEGG: https://www.ge
nome.jp/kegg/disease/. BioGRID (v3.2.149), APID (v1.0), STRING
(version 11.0) and HPRD (release 9) as well as DisGeNET (v7.0)
were obtained using nDEx [59–61]. The IID network (v2018-11)
was downloaded from http://iid.ophid.utoronto.ca/. All gene
expression datasets and corresponding metadata were retrieved
from Gene Expression Omnibus [62], using the GEO2R R interface
(https://www.ncbi.nlm.nih.gov/geo/geo2r/). The associated GEO
accession codes are shown in Supplementary Table 2. The entire
test-suite (Python environment, tool executables, PPI networks,
expression datasets) is available at https://github.com/dbblume
nthal/amim-test-suite/.

Supplementary data
Supplementary data are available online at Briefings in
Bioinformatics.
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Summary

Epigenetics data availability has significantly improved in recent years, making the use of
machine learning technologies possible. The limitations of PPI networks pushed towards
discovery of stable epigenetic mechansims to bring additional value and robustness to disease
mechanism discovery. Thus, in this publication we aimed to describe state of the art in
epigenomics level machine learning and discuss possible future improvements. We have
collected information about 53 methods, separated into three different categories:

• methods that aim to address cell-type heterogeneity and in particular contribute to
deconvolution of DNA methylation;

• methods for prediction of gene expression using epigenomic data;

• methods that contribute to gene regulation understanding on a single-cell level.

The methods differ in terms of the input data (e.g., open chromatin data, ChIP-seq, DNA
methylation, transcriptomics data) and the used computational approaches.

We identified several main limitations of the field: lack of technology for single-cell
ChIP-seq analysis, single-cell-based signatures are not yet used for deconvolution analysis,
transcriptional and post-transcriptional gene regulation remain a serious challenge in the
field as well as the effect of post-translational modifications on the level of proteins. Machine
learning field also needs to rise to the challenge and make better use of the available data
and known prior information. All in all, we observed a rising demand in the scientific
community for robust and interpretable epigenomics data analysis methods that can push
the field forward, helping to obtain the essential knowledge about epigenomic regulation.
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DNA is the molecular basis of the genome and relies on a 
four-letter code of the nucleobases adenine, cytosine, gua-
nine and thymine to store information. These nucleobases 

are combined with a sugar backbone and a phosphate group, yield-
ing four corresponding nucleotides, which are concatenated to form 
the DNA. Information units called genes are transcribed into RNA 
and serve as a blueprint for the assembly of proteins during transla-
tion. In contrast to bacteria, which have a small circular genome, 
eukaryotic cells afford a much larger genome; for example, a human 
cell fits DNA of 2 m in length into a nucleus of only a few microm-
eters in diameter1. This is feasible since only a fraction of the genome 
is needed at any given time, allowing cells to compact most of the 
DNA. Compaction is achieved by tightly wrapping DNA around 
histone protein complexes, known as nucleosomes. Compacted 
DNA is referred to as chromatin, which can exist in a dense state 
known as heterochromatin or a more accessible state referred to as 
euchromatin (Fig. 1a). A complex regulatory machinery can selec-
tively unpack DNA from hetero- into euchromatin. The degree of 
openness is also referred to as chromatin accessibility and influences 
the level of gene expression, that is, the amount of messenger RNA 
(mRNA) that can be translated into protein or serves some other 
function. Importantly, this allows cells to express the genes they need 
at the correct dosage1. The importance of gene regulation cannot be 
overstated, since only an estimated 2–3% of the human genome is 
protein coding, leaving the rest for putatively regulatory purposes2.

Epigenetics studies the various mechanisms that, without 
altering the DNA sequence itself, have evolved to regulate access 
and compaction of DNA, for example, to regulate gene expres-
sion. Apart from mechanisms influencing chromatin accessibil-
ity, modifications to the DNA itself can have regulatory function. 
For instance, specific patterns of methyl groups added to cytosines  
followed by a guanine (CpG dinucleotides) in the DNA, referred to 

as DNA methylation, can lead to gene repression. The main field of 
epigenetic research focuses on DNA methylation, modifications of 
histone proteins and the regulation of DNA compaction and chro-
matin accessibility. Once established, epigenetic modifications can 
be inherited in cell division but they can also be passed on to off-
spring via trans-generational epigenetic inheritance. Understanding 
epigenetic changes is central to understanding changes in cellular 
programs during important processes such as development and 
aging, but also in diseases. Similarly, epigenetic factors are responsi-
ble for repressing the expression of mobile elements of DNA and for 
the protection of the genomic sequence. For example, DNA meth-
ylation can be used to estimate the epigenetic age of a cell using 
statistical models3,4. The epigenome is severely altered in tumors, 
which can be leveraged to predict subtypes of, for instance, breast 
cancer5, tumors of the central nervous system6, colon adenocarci-
noma7, sarcoma8, and to identify tumors of unknown origin9. In 
several cancer types, such as Ewing sarcoma10 and glioblastoma11, 
epigenetic changes have been identified as major drivers of the dis-
ease. Furthermore, epigenome-wide association studies (EWAS) 
have revealed DNA regions associated with, for instance, multiple 
sclerosis12, type 1 diabetes13 and schizophrenia14.

Advances in array-based DNA methylation profiling and 
next-generation DNA sequencing technology have allowed national 
and international consortia such as ENCODE2 and the International 
Human Epigenome Consortium (IHEC)15 to gather large-scale 
datasets to unravel the complexity of epigenetic modifications 
of different cell types and in the context of diseases. Here, the 
term epigenomics refers to genome-wide interrogation of diverse 
aspects of gene regulation. It comprises diverse mechanisms such 
as DNA methylation measured via, for instance, whole-genome/
reduced-representation bisulfite sequencing (WGBS/RRBS)16, 
and histone modifications such as H3K9me3 or H3K27ac (ref. 17) 
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Epigenetics studies inheritable and reversible modifications of DNA that allow cells to control gene expression throughout their 
development and in response to environmental conditions. In computational epigenomics, machine learning is applied to study 
various epigenetic mechanisms genome wide. Its aim is to expand our understanding of cell differentiation, that is their spe-
cialization, in health and disease. Thus far, most efforts focus on understanding the functional encoding of the genome and on 
unraveling cell-type heterogeneity. Here, we provide an overview of state-of-the-art computational methods and their underly-
ing statistical concepts, which range from matrix factorization and regularized linear regression to deep learning methods. We 
further show how the rise of single-cell technology leads to new computational challenges and creates opportunities to further 
our understanding of epigenetic regulation.
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measured via, for instance, chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq). Chromatin accessibility can be 
mapped using methods such as ATAC-seq or DNAseI-seq (Fig. 1). 
Recently, it has also become possible to map the 3D conformation 
of DNA to suggest interactions between distal genomic loci18,19.  
A number of data portals and web resources offer access to raw and 
processed epigenomic profiles as well as annotations of regulatory 
DNA regions such as promoters, enhancers and repressors (see 
Supplementary Table 1 for an overview).

However, due to the diversity of experimental protocols and the 
complexity of epigenomic modifications, computational methods 
for epigenomic data analysis are manifold. For an introduction to 
basic data formats or (pre)processing steps, such as mapping/align-
ment to a reference genome, peak calling, normalization or differ-
ential analysis (peaks or methylation), we refer to the literature20–22. 
Rather than considering well established methods for annotating 
chromatin states via hidden Markov models23 or for functional 
enrichment analysis24,25, we focus here on machine-learning tools 
that allow for the interpretation of large-scale epigenomic data 
in the study of gene regulation and cellular heterogeneity (see 
Supplementary Table 2 for an overview).

In complex organisms, cells do not act in isolation but interact 
as part of a community with contributions from different cell types. 
However, the vast majority of epigenomics data is obtained through 
bulk profiling, where each sample represents an inhomogeneous 
mixture of cell states and cell types with unique epigenomic pro-
files. This introduces additional complexity in the molecular pro-
files that occlude condition-specific changes. In this Review, we first 
show how cell-type heterogeneity can be quantified using in silico 
approaches. Next, we consider the use of epigenomic data in mod-
els that predict transcriptomic (gene expression) profiles generated 
through RNA sequencing (RNA-seq, Fig. 1b).

To avoid the computational challenges of analyzing convoluted 
epigenomic profiles, cell types can be physically split using cell 

sorting technologies prior to sequencing. Alternatively, single-cell 
sequencing technology has matured to a degree that allows studying 
gene regulation at the resolution of individual cells. In the third part 
of this Review, we highlight emerging single-cell methods that study 
gene regulation. Finally, we discuss expected future developments, 
challenges and opportunities.

Dissecting cell-type heterogeneity
In bulk samples, the data matrices obtained represent a mixture of 
contributions of individual cell types with potentially distinct epig-
enomic profiles, which poses challenges for the interpretation of 
epigenomic datasets. However, the presence and abundance of cell 
types is in itself an important feature, for instance, for understand-
ing the response of the immune system against pathogens or can-
cerous cells26. Computational methods, including linear regression, 
non-negative matrix factorization, and Bayesian approaches, can 
help to estimate cellular proportions from a mixture of cell types.

DNA methylation is a highly cell-type-specific epigenetic modi-
fication, and thus a premier candidate for deconvolving complex 
tissue samples with a heterogeneous (convoluted) mixture of signals 
(here, cell types in a bulk tissue) into their basic constituents. While 
such methods also exist for bulk RNA-seq data27,28, we focus here on 
DNA methylation. Further work is required for deconvolution of 
other epigenomic layers such as histone modifications or chromatin 
accessibility data29,30. Challenges in using epigenomic data beyond 
DNA methylation for deconvolution include the read-count-based 
structure of the data, and the dynamic range of the abundance esti-
mates. Notably, DNA methylation heterogeneity is not only driven 
by (homeostatic) cellular composition, but also by other sources of 
heterogeneity including pathological cell infiltration (for example, 
immune cell infiltration into tumors), DNA methylation erosion, 
and allele- and strand-specific methylation (Fig. 2a).

DNA-methylation-based deconvolution tools use as input a  
data matrix Dm×n (m CpGs × n samples, see also Fig. 1b) that is 
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Fig. 1 | Chromatin organization and epigenomic readouts. a, DNA stores the genetic information of the cell. It is densely packed in a structure called 
heterochromatin, where DNA is tightly wrapped around complexes of histone proteins. The degree of compaction is controlled by chemical modifications to 
the tails of the histones, where DNA is selectively unpacked to increase chromatin accessibility and thus to allow regulatory proteins known as transcription 
factors to bind to the DNA. These regulate the transcription of RNA, which is then translated into a protein. The activity of DNA-binding proteins is further 
controlled by chemical modifications of the DNA, for example, via selective methylation of cytosines followed by guanine (methylated CpGs, indicated by 
full circles attached to the DNA). b, Many epigenetic modifications can be detected via next-generation sequencing and other high-throughput techniques. 
For instance, chromatin accessibility is detected by sequencing DNA fragments that are accessible for DNA-cutting enzymes (ATAC and DNase1-seq). In 
chromatin immunoprecipitation sequencing (ChIP-seq), antibodies are used to capture DNA-binding proteins together with their related DNA fragments, 
prior to sequencing. The captured short fragments are then mapped to a reference genome, where their aggregated signal forms peaks. DNA methylation 
of CpG dinucleotides can be detected after bisulfite treatment (WGBS, RRBS), which converts unmethylated cytosines via uracil to thymine, detectable 
as a deviation from the expected sequence. Finally, RNA abundances (gene expression) can be measured after converting RNA to DNA and sequencing 
(RNA-seq). These molecular readouts each yield a feature (position-specific peaks, CpGs or genes) by sample matrix, which is used as input for 
machine-learning approaches.
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decomposed into the major sources of variation in the data and 
into their proportions across the samples. The computational 
approaches can be broadly divided into three categories: (i) purity/
infiltration estimation methods (for example, the LUMP estimate31),  
(ii) reference-based, and (iii) reference-free deconvolution tools 
(Fig. 2b). Tumor purity can be estimated via simple score-based 
methods that consider CpGs that are specifically unmethylated in 
immune cells in the tumor sample. We will hence focus on the other 
two categories that require more complex methods.

Reference-based deconvolution. Rather than adjusting for cellu-
lar composition, which is common in EWAS32,33, reference-based 
deconvolution methods use modifications of linear least squares to 
estimate the proportions of provided DNA methylation profiles of 
reference cell types in a given dataset. Given the input DNA meth-
ylation matrix and a matrix of reference profiles, the objective of 
reference-based methods is to determine the proportions of the ref-
erence profiles in the observed matrix Dm×n. Reference-based meth-
ods use constrained projection34, robust partial correlations35,36, 
least trimmed squares regression37, or other statistical learning 
methods, such as support vector regression38, to solve this problem. 
A comparison study across these methods39 found that the con-
strained projection method implemented in the minfi R-package40 
had superior performance. From our experience, reference-based 
methods perform best when high-quality DNA methylation data 

exist for purified cell types and when the constituting cell types 
of a bulk sample are known. This is the case for whole blood sam-
ples, where cell-type-specific reference profiles exist41. In tumor 
samples, reference-free methods have been used to dissect the  
cellular composition42.

Reference-free deconvolution. By contrast, reference-free decon-
volution methods predict both the reference profiles and the pro-
portions of these estimated reference profiles across the samples 
using unsupervised statistical learning. They are hence ideal to 
account for cell types where a suitable reference is not available 
or for samples where the contributing cell types are not known. A 
common computational approach for this problem is non-negative 
matrix factorization (NMF), which dissects the input DNA meth-
ylation data matrix (Dm×n) into the estimated reference profiles 
(Tm×k) and the proportions matrix (Ak×n). The profiles Tm×k are 
often referred to as latent methylation components (LMCs). k is the 
number of latent components to be determined, m the number of 
CpGs and n the number of samples. This approach for the analysis 
of DNA methylation data is implemented in various computational 
tools43–45 (Supplementary Table 2), which formulate a constrained 
version of NMF. Compared with reference-based deconvolution 
methods, biological interpretation of reference-free deconvolu-
tion results is more challenging and a dedicated preprocessing of 
DNA methylation data is required. The preprocessing includes 
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Fig. 2 | Deconvolution of complex DNA methylation data. a, Five potential sources of variation in DNA methylation data exist. Homeostatic cellular 
composition refers to a mixture of cell types (cell-type heterogeneity) with potentially distinct epigenetic patterns in a bulk sample. Pathological cellular 
composition is the cellular heterogeneity that is caused by the state of a biological system, which includes infiltration of immune cells into tumors. 
DNA methylation erosion refers to the stochastic loss of DNA methylation during cell division. Allele-specific methylation is the methylation of only 
one of the two alleles in a diploid organism, and hemimethylation refers to the methylation of only one of the strands of the DNA. b, Three classes of 
deconvolution tools exist: immune-cell infiltration or sample-purity estimation methods return a prediction of the overall immune cell content of a sample. 
Reference-based deconvolution requires reference profiles for the estimation of cellular proportions and reference-free deconvolution methods do not 
require such references.
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accounting for potential confounding factors, data normalization, 
and quality filtering42. We point out that data processing is crucial 
for both reference-free and reference-based methods, and that the 
processing steps including filtering, normalization, and accounting 
for confounding factors need to be considered. We refer to related 
publications for details42,46,47.

Hybrid deconvolution methods. There are also computational 
approaches that borrow concepts both from reference-based and 
reference-free methods. For instance, semi-reference-free meth-
ods48 use a Bayesian prior to improve NMF results. Additional 
frameworks combine differential DNA methylation analysis with 
deconvolution using standard NMF49. Furthermore, the paradigm 
of a single latent methylation components matrix Tm×k can be 
replaced by sample-specific components (that is, T1

m ´ k; ¼ ;Tn
m ´ k

I
;  

one T for each sample), which can be induced by a cell type changing 
its biological identity in response to a disease. To solve this problem, 
tensor composition analysis can be used to obtain sample-specific 
reference profiles50. Since confounding factors can strongly influ-
ence the DNA methylation landscape, canonical correlation analy-
sis employs multiple DNA methylation data matrices as input to 
discern technical from biological sources of variation associated 
with cell-type heterogeneity51.

Leveraging bisulfite read heterogeneity. Most of the aforemen-
tioned methods use as input the DNA methylation data obtained 
from microarrays, which use color intensities as a readout and 
return an aggregate methylation state over various cellular states. 
By contrast, bisulfite sequencing provides sequence information for 
single molecules encoded in the sequencing reads. Heterogeneity in 
sequencing reads observed in a biological sample (within-sample 
heterogeneity) can be leveraged for deconvolution of the cel-
lular composition of the sample. Genome-wide estimates of 
within-sample heterogeneity can be used to reliably estimate tumor 
purity or for segmenting the genome into highly and lowly vari-
ably methylated regions52. Additionally, read-level information can 
be used for DBSCAN clustering according to the cell-of-origin and 
used for computational deconvolution53.

Understanding gene expression using epigenomic data
Gene expression is a result of a complex machinery that involves 
chromatin remodeling complexes for opening the chromatin, fol-
lowed by the recruitment of a transcriptional machinery consisting 
of proteins referred to as transcription factors (TFs), which act in a 
cell-type and condition-specific manner. Likewise, histone modifi-
cations, DNA methylation and other epigenetic modifications occur 
in a cell-type and condition-specific context, known as epigenomic 
signatures54. Associating TF binding information and epigenomic 
data with gene expression readouts thus allows the regulatory role 
of both epigenetic modifications and of DNA-binding proteins to 
be elucidated. Furthermore, such models allow researchers to inter-
pret genetic variants in non-coding parts of the genome identified, 
for instance, with genome-wide association studies. In predictive 
models, such genetic data is an important feature for improving our 
understanding of diseases55.

A prerequisite for almost all of the gene expression prediction 
approaches discussed in this section is the association of epig-
enomic signals to genes to generate a feature matrix X, which 
is typically used for constructing (regularized) linear or logistic 
regression models. An important factor to consider is the linking 
strategy, that is, how to select putative target genes for a regulatory 
region identified via the epigenomic signal, which is essential for  
feature generation.

Linking regulatory elements to their putative target genes. 
Several strategies have been proposed to link regulatory elements 

in the DNA to their putative target genes (Fig. 3a). These methods 
either consider peaks of histone or chromatin accessibility data, or 
sites of hyper/hypo (that is, significantly increased or decreased) 
methylation as input. In window-based approaches, all candidate 
regulatory elements that lie within a predefined area around a gene 
are considered as regulatory elements56. In nearest-gene approaches, 
each potential regulatory element is assigned to its closest gene in 
genomic distance57. If sufficient data are available, correlation-based 
approaches can be used to assign candidate regulatory elements to 
their most likely target genes.

All of these strategies can be complemented using experimen-
tally determined chromatin contacts. These inform about the pres-
ence of long-range regulatory interactions58,59. The same kind of 
data can be used to determine topologically associated domains, 
which define the genomic borders of regulatory interactions60. 
Finally, literature curated databases can be used to obtain previously 
reported and often experimentally validated regulatory elements  
per gene61.

Insights on tissue- and cell-type-specific regulators. Early studies 
have demonstrated that gene expression can be accurately predicted 
in silico from epigenomic data. Ouyang et al. demonstrated using 
principal component regression that TF ChIP-seq is able to explain 
65% of the variation in gene expression in mouse embryonic stem 
cells56. Subsequently, it was shown that chromatin accessibility data 
combined with predicted TF binding sites can be as good as or even 
more accurate than models relying on TF ChIP-seq data when it 
comes to predicting gene expression62,63. Indeed, in a study of CD4+ 
T-cell differentiation, Costa et al. illustrated that regression coef-
ficients inferred by a linear model using predicted TF binding sites 
allow for a biologically insightful interpretation64.

In light of those promising results, scalable software solutions 
that could integrate and interpret the increasing amounts of epig-
enomic data produced, for instance within ENCODE2 or IHEC15, 
have been developed. They are able to integrate epigenomic datasets 
on the cell-type/tissue level, making predictions across genes and 
thereby inferring general cell-type/tissue-specific regulatory infor-
mation (Fig. 3b).

Mathematically, these algorithms build a feature matrix X com-
posed of m features derived from epigenetic data, assessed for n 
different genes within one sample. To identify biological relevant 
signals, these feature matrices are usually used in linear models 
that exploit various regularization methods to fit a sparse vec-
tor of regression coefficients β predicting gene expression y. The 
vector of regression coefficients β can then be used for biological 
interpretation.

Some of those methods have been developed in the context of 
cancer biology, for instance RACER65 and RABIT66. Both meth-
ods are designed to address apparent confounders such as copy 
number variations, which frequently occur in cancer. RACER 
builds a linear regression model using lasso regularization of TF 
data, copy number variations, DNA methylation and microRNA 
(miRNA) expression signals as features to predict gene expression. 
RACER thus leverages sample-specific regulatory activities of TFs 
together with information about post-transcriptional regulation 
with miRNAs to generate gene-specific TF and miRNA interac-
tion scores. RABIT follows a similar goal as RACER but uses the 
Frisch–Waugh–Lovell method of linear regression to generate a 
candidate set of TFs, while controlling for confounders such as copy  
number variations.

While RACER and RABIT are especially well suited to ana-
lyze cancer datasets, their dependence on TF ChIP-seq data limits 
their general applicability. The TEPIC framework uses putative TF 
binding sites predicted in accessible genomic loci to estimate gene 
expression and to infer tissue-specific regulators67. TEPIC uses lin-
ear regression with elastic net regularization to provide a sparse 
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solution that retains correlated features, which is important to model  
coregulation events. The latest version of TEPIC also supports the 
incorporation of chromatin contacts, defined for instance using 
Hi-C data. Although the addition of Hi-C data could improve model 
performance, it also complicates the optimization problem even fur-
ther by increasing dimensionality of the feature matrix58. Hi-C data 
are also used in TargetFinder59 to define promoter–enhancer pairs 
across various cell lines. TargetFinder uses an ensemble of boosted 
decision trees to reconstruct the three-dimensional regulatory land-
scape, spanned by multiple epigenomic signatures to uncover inter-
actions among TFs and other epigenetic modifications.

In addition to those aforementioned approaches, tools such 
as Efilter68, which solves a linear regression problem consider-
ing genome-wide epigenetic data using the EDC2 criterion, and 
DeepChrome69, a deep convolutional neural network approach 
that considers histone modification ChIP-seq data as input, further 
improved the accuracy of gene expression prediction within a sam-
ple. Unfortunately, these tools do not provide interpretable models.

Gene-specific regulatory information. The methods described 
thus far are trained across all genes within one sample to deduce 
general regulatory effects. However, with constantly increasing 
sample numbers in epigenomic data portals70,71, per-gene models 
have become feasible to infer gene-specific regulatory information 
across cell-types or tissues (Fig. 3b). The inferred sets of regulatory 
gene interactions pose a valuable resource complementing experi-
mentally determined associations as included, for instance, in the 
GeneCards database61. Similar to per-sample models, (regularized) 
linear and logistic regression models are employed by most meth-
ods. However, in per-gene models the feature matrix X is com-
posed of m measurements of epigenetic data for one particular gene 
assessed for n different patients.

One of the first methods, JEME72, extracts all enhancers within 
1 MB around a gene’s transcription start site (TSS) and generates a 
feature matrix using a measure of enhancer activity, for example, 
chromatin accessibility data. Next, a lasso linear regression model 
across many samples returns regression coefficients for each TSS 
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Fig. 3 | Feature generation and modeling options for gene expression prediction using epigenomics data. a, The many strategies to link regulatory elements 
(REMs) to putative target genes: (i) assignment using a search window assigned to a gene; (ii) assignment using genomic distance of a REM to a gene; 
(iii) correlation testing-based assignment between activity of regulators and gene expression; (iv) extension of methods (i–iii) using chromatin contacts as 
derived from Hi-C data; (v) restriction of (i–iv) to interactions occurring within topologically associated domains (TADs) and (vi) literature-based promoter–
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and enhancer. Sample-specific promoter-enhancer pairs are deter-
mined in a second step using random forests. Hence, the final out-
put of JEME is cell-type-specific enhancer-target networks, which 
are available as a resource.

The FOCS approach73 also aims at identifying promoter-enhancer 
pairs, but it omits the generation of sample-specific promoter- 
enhancer pairs as performed in JEME. Instead, a feature matrix 
consisting of the top ten closest candidate regulatory elements is 
constructed for each gene and used to predict gene-expression/pro-
moter activity. The regulator selection is refined in an elastic net 
regression model.

Unlike JEME or FOCS, which rely on a universe of predefined 
regulatory elements (Fig. 3a), the STITCHIT approach74 detects 
novel regulatory elements and links them to their target genes in 
a single optimization step that uses the minimum description  
length principle to find the optimal set of regulatory elements 
that explain gene-expression variance of an individual target 
gene. STITCHIT’s regulator-gene associations are available via the 
EpiRegio web server75.

The plethora of available methods (Supplementary Table 2) pro-
vides researchers with versatile options to integrate various epig-
enomic datasets in gene-expression prediction models to infer 
transcriptional regulators and regulatory elements at an unprec-
edented level of accuracy. With ongoing improvements in experi-
mental protocols at single-cell resolution, even more fine-grained 
predictions can be expected in the future. In the next section, we 
discuss several of the already available methods that attempt to deci-
pher regulatory landscapes on a single-cell level.

Gene regulation on single-cell level
In classical bulk sequencing, individual cell types have to be isolated 
a priori or deconvolution methods need to be applied to disentangle 
possible contributions of different cell types. Both approaches are 
not ideally suited for studying the heterogeneity of cellular com-
munities and the complexity of cellular differentiation. Methods 
for studying the epigenetic state of individual cells are imperative 
for understanding community effects, for example, in the tumor 
microenvironment where the epigenetic state of immune cells plays 
a decisive role in immunotherapy treatment response. Single-cell 
epigenome and transcriptome sequencing technology have suc-
cessfully addressed these issues and have already revolutionized 
our understanding of cellular differentiation and gene regulation. 
Existing computational methods for single cell epigenomics focus 
mostly on single-cell ATAC-seq (scATAC-seq) profiles of chro-
matin accessibility alone or in combination with scRNA-seq gene 
expression profiles. By contrast, single-cell epigenomic profiling 
of DNA methylation and ChIP-seq is still faced with technologi-
cal challenges, but will likely become available for integration in the 
near future. Common applications are unsupervised machine learn-
ing methods for clustering, trajectory inference and gene regulatory 
network inference (Fig. 4).

Clustering and dimensionality reduction. Due to its low coverage, 
current single-cell sequencing protocols, in particular scATAC-seq, 
generate extremely sparse and noisy datasets. To account for this, 
a common analysis step following preprocessing is dimensionality 
reduction and/or clustering of the data. This allows for extracting 
meaningful mechanisms that can distinguish between cell types and 
differentiation stages across conditions or treatments. Moreover, 
this helps to account for confounders such as batch effects, experi-
mental artefacts or the cell cycle76. Unsupervised methods such as 
weighted k-medoids77, matrix factorization78, topic modeling79, deep 
generative neural networks80, weighted principal component analy-
sis81 and k-nearest neighbor82 are often used for clustering cells with 
similar epigenetic patterns and for identifying key features specific 
to each cluster.

Epigenomic data integration. Integrating scATAC and scRNA-seq 
data further offers the opportunity to study gene regulation on a 
cell-type-specific level. As assays that capture both readouts from 
the same cells have only recently become available, several meth-
ods have been proposed to link these data types or to project them 
into a shared embedding space. An example of a linkage approach 
is SOMatic83, which constructs independent low-dimensional rep-
resentations using self-organizing maps for RNA-seq experiments 
and for ATAC-seq peaks and then links them using information 
about nearest genes. Another linkage approach is Conos84, which 
applies nearest-neighbor or mutual nearest-neighbor mapping to 
different samples and different data modalities to retrieve conjoint 
clustering of cells.

Linkage of independent low-dimensional representa-
tions, though flexible, might be problematic due to the fact that 
scATAC-seq and scRNA-seq data may capture different aspects of 
biology and do thus not necessarily agree with respect to individual 
cell types85. An alternative approach is to perform clustering of the 
cells such that scRNA-seq embedding benefits from scATAC-seq 
data, and vice versa. Many of the methods in this category are based 
on NMF. For instance, Duren et al86. proposed a method that utilizes 
a coupled clustering approach that systematically maps scATAC-seq 
peaks to genes for downstream analysis such as inferring gene regu-
latory networks at the single-cell level.

MATCHER87 uses NMF to determine shared and dataset-specific 
metagenes across datasets and then uses the resulting factor space 
for a conjoint clustering of all cells. scAI88 learns three sets of 
low-dimensional representations of high-dimensional data: the 
gene, locus, and cell-loading matrices describing the relative con-
tributions of genes, loci, and cells in the inferred factors as well 
as the cell–cell similarity matrix used for aggregating sparse epig-
enomic data. MOFA+89 is a generally applicable tool for integrating 
multi-omics data, which infers K latent factors with associated fea-
ture weight matrices (per data modality) that explain the major axes 
of variation across the datasets. Similarly, LIGER90 uses integrative 
NMF91 to find shared and dataset-specific cell identities that can be 
further used as co-embedding.

Methods not based on NMF are MAESTRO92, UnionCom93 and 
SCIM94. MAESTRO computes a common embedding from two 
independent embeddings based on canonical correlation analy-
sis and then maps the cells from two representations based on 
mutual nearest neighbors. UnionCom and SCIM are more generic 
approaches that allow integrating any single cell multi-omics data: 
they produce a single co-embedding space from independent sam-
ples and technologies. UnionCom is based on an adjusted version of 
generalized unsupervised manifold alignment and SCIM employs 
autoencoders for data compression and then bipartite graph match-
ing for aggregation.

Trajectory inference. Studying cell differentiation is another chal-
lenging task in single-cell data analysis. Here, we leverage the fact 
that cells at all possible differentiation stages exist in parallel. This 
allows us to map a trajectory from undifferentiated stem cells to 
fully differentiated cells along with all intermediate states and possi-
ble branch points or metastable states where cell fate is decided76. To 
quantify the degree of differentiation, the concept of a pseudotime 
is commonly used. STREAM95 reconstructs complex trajectories 
along with pseudotime estimation from both single-cell transcrip-
tomic and chromatin-accessibility data. There are also approaches 
such as APEC82 that cluster cells based on scATAC-seq, and inte-
grate Monocle96,97 to reconstruct trajectories.

Regulatory network inference. As shown in Fig. 3a, the linkage 
between distal regulatory sequences and their target genes is not 
straightforward and remains an open issue also in single-cell epig-
enomics. Cicero98 constructs putative cis-regulatory maps from 
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single-cell chromatin accessibility data and thus contributes to the 
understanding of eukaryotic gene regulation. In addition, Cicero 
can be used to identify target genes affected by genetic variants 
in regulatory regions that do not code for proteins and are often 
neglected in genome-wide association studies.

The large number of available methods (Supplementary Table 2) 
shows that the field of single-cell epigenomics evolves rapidly, lead-
ing to a more refined understanding of how epigenetic processes 
interact with one another to control gene expression. Ultimately, this 
has the potential to transform our knowledge about how the phe-
notype of the cell is maintained and how it is perturbed in disease.

Conclusions and future perspectives
The vast majority of the methods presented here utilize 
well-established, unsupervised machine-learning algorithms such 
as NMF, self-organizing maps, k-medoids or KNN. For supervised 
machine learning, regularized linear and logistic regression are a 
common choice. While they employ similar strategies, computa-
tional epigenomics methods differ largely in their unique combina-
tion of (1) the type of molecular data they leverage (for example, 
histone ChIP-seq, chromatin accessibility or DNA methylation, 
or combinations thereof) and how they have been processed (for 
example, ChIP-seq peak calling versus signal-based approaches); 
(2) the prior knowledge they consider (for example, TF-binding 
sites, known regulatory regions from public databases); and, for 
gene-based methods, (3) the way putative regulatory regions are 
linked to genes (for example, nearest-gene versus window-based 
approaches). New sequencing-based molecular profiling techniques 
are currently developed at a breathtaking rate and can be used to 

improve computational inference. For instance, recent methods 
have begun to incorporate high-resolution 3D conformation data 
(for example, Hi-C) to refine the association of distal regulatory 
regions to their target genes.

While we have seen the first successful attempts at leveraging 
deep learning for analyzing these complex datasets (for example, 
DeepChrome69), artificial neural networks and autoencoders do not 
currently show a dramatically improved performance compared to 
classical methods, and, at the same time, exhibit more limited inter-
pretability. However, we expect that the exponential growth in the 
available epigenomic data and the constant technological improve-
ment will work in favor of more advanced machine-learning 
methods, such as deep learning, and eventually give them an edge 
over classical methods. As gene regulation takes place on multiple 
epigenetic levels, we further expect that advances in multi-omics 
integration will lead to an improvement in method performance, 
in particular once multi-omics profiling techniques (for example, 
profiling of the methylome and transcriptome99) become more 
widely used. Moreover, the field still lacks a robust technology for 
ChIP-seq to interrogate histone modifications and TF-binding on 
a single-cell level, currently leaving us ignorant to an important 
aspect of epigenetic regulation. Cell-type deconvolution analysis is 
currently based mostly on bulk samples and does not yet profit from 
single-cell-based signatures to the same extent as the field of tran-
scriptomics, although Teschendorff et al. have recently proposed a 
promising approach to close this gap by inferring methylome pro-
files from single-cell transcriptomics data36.

Beyond the consideration of the different levels of epigenome 
profiles, more ambitious integration efforts will be needed to 
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understand how gene regulation affects the phenotype and behav-
ior of a cell. For instance, the interplay of epigenetic, transcrip-
tional and post-transcriptional (for example, RNA epigenomics) 
gene regulation needs to be considered just as much as the effect of 
post-translational modifications on the level of proteins and inter-
actions with the environment, including the microbiome100. All of 
these factors require the development of new powerful data integra-
tion methods and multi-omics machine-learning strategies such as 
multi-view learning101.
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5. General Discussion and Outlook

The availability of massive amounts of biological data came with immense promise, and it
is undoubtedly valuable for the improvement of our understanding of complex biological
systems. However, unlike in many other fields where big data might be more easily inter-
pretable, biological data represents a snippet of a system in a very particular moment and
under certain assumptions. The data comes with biases, noise and it is, indeed, very big.

Despite these challenges, the field keeps progressing and slowly moving away from
outdated disease definitions derived before rich molecular data availability. The International
Classification of Diseases (ICD) [243] definitions are often based on the symptoms and simple
biomarkers and therefore do not reflect mechanisms of diseases that might be patient-specific.
For instance, conditions such as primary hypertension are usually treated with blood vessel-
dilating drugs, allowing to normalize the elevated blood pressure. However, the real cause for
high blood pressure remains unknown [5]. For some conditions, such as rheumatoid arthritis,
we know that little, that even symptomatic treatment is often unsuccessful, leaving patients
to deal with pain, destruction of joints, and resulting disability [244, 245]. Understanding of
molecular mechanisms of diseases could allow personalized treatment, early diagnostics, or
even prevention.

The purpose of this thesis is to study application of complex machine learning methods
to diverse molecular data in order to understand the contribution of different data types to
meaningful disease modules discovery. In particular, I focus on combining PPI networks
with transcriptomics data [9, 10], but also epigenetic mechanisms are reviewed [11]. Critical
assessment is performed with regards to limitations on the side of the data (using AMI
test-suite [10]), on the side of the machine learning methods [11], and the produced results
are systemized.

5.1. PPI networks as a prior knowledge source

PPI networks analysis has been extensively used for disease mechanisms identification in the
last 10 years, but there is still no one right way to learn from PPI networks. As shown in the
first publication (BiCoN), some data types (such as transcriptomics and PPI networks) can
provide excellent results and be perfectly sound in theory, yet in practice, the results are not as
biologically meaningful as expected due to protein’s degree bias, algorithmic limitations and
evaluation difficulties. This conclusion only became possible after exhaustive computational
assessment (over 10 000 algorithm executions) to eliminate different explanations of poor
performance such as bad quality of a particular network, extreme complexity of a particular
condition, or inappropriate algorithmic approaches. We also assessed the performance
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5. General Discussion and Outlook

from the standpoint of the functional relevance of the retrieved gene sets and phenotype
prediction accuracy. Both metrics confirmed that the ability of algorithmic frameworks to find
meaningful subnetworks aided by transcriptomics data should be carefully reviewed.

While it is easy to suggest that we just need better PPI networks that are not affected
by aforementioned biases, the issue can be also addressed from other perspectives. The
correlation between a number of studies conducted on a protein and its degree is only one
of the reasons that make PPI networks challenging for computational analysis. However,
studying the most promising topics (proteins, in this case) is the fundamental nature of
scientific cognition, and we can not expect scientists to pay equal attention to all proteins
because scientific resources are limited. Instead, three possible solutions can break the
acknowledged bias:

• Advancement of PPI measurement. Luck et al. recently proposed a novel "all-by-all"
reference interactome map of human binary protein interactions (HuRi) [246]. To
provide a uniform genome coverage, Luck et al. screened human proteome nine times
with a panel of three yeast two-hybrid assays. This experimental protocol allows
covering 90% of the protein-coding genome. Due to the "all-by-all" strategy, HuRi covers
the proteome more uniformly and does not bias highly expressed proteins.

• Advancement of computational methods to improve quality of PPI networks: Al-
phaFold 2 has successfully demonstrated that modern computational algorithms have
the capacity of solving large scale biological problems [47]. Identification of protein
structures was mainly done experimentally, and therefore, many proteins did not
have fully identified structures. AlphaFold 2 makes it possible to estimate all protein
structures from a sequence. Moreover, AlphaFold 2 model allows to identify residue
conservation and co-evolution directly from the sequence alignment which is useful for
protein interaction prediction [247]. This reseach is still in its early stage, but it gives a
hope that soon computational methods might be able to fill the knowledge gap in PPI
networks, reducing human and technical bias.

• Multi-omics approaches to diseases: Independent omics layers should be used for
confirmation of findings. As most diseases "leave a trace" on various molecular levels,
the derived gene set can be usually confirmed using information about mutations,
methylation, chromatin accessibility, copy number variation, or metabolomics assess-
ment. This approach would naturally increase the cost of an experiment but also make
the results reliable and reproducible.

5.2. Unsupervised learning approaches have a potential to
overcome PPI biases

The key messages of BiCoN publication and the AMI testing suite look conflicting as one
offers a novel network-constrained clustering method, and another suggests a limited value
of PPI networks.
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The AMI testing suite did not include BiCoN since only supervised methods fitted into
benchmark criteria. In the case of unsupervised methods, clustering results do not have to cor-
respond to the known phenotype. This makes BiCoN results not directly comparable to other
Active Module Identification Methods (AMIMs) as supervised methods have an additional
information source (patient groupings), and this gives them an advantage. Nevertheless, it
was still possible to evaluate BiCoN with the same testing strategy. BiCoN performance was
comparable to the best method in our benchmark study (DOMINO) in terms of gene set
enrichment. However, BiCoN demonstrated a far better reaction to network permutations in
task of identifying genes, predictive of a phenotype. These results can be explained by the
fact that as an unsupervised method, BiCoN does not struggle with overfitting and, therefore,
its results are more reliable. The results of the comparison are provided in the Appendix
(Figure A.1).

To summarize, it would be wrong to suggest that PPI networks do not have any value
for the disease module mining. However, it is easy to be misled by promising and sound
strategies and thus lose a critical perception of algorithmic results. It is indeed hard to take
into consideration all possible sources of bias, but with or without PPI networks, researchers
are required to employ in silico control approaches to assess their results critically.

In silico control means that algorithmic results should be tested for different sources of
biases. The AMI testing suite demonstrated the strategy for PPI value evaluation but did not
cover all possible computational problems. For example, overfitting is a severe problem in
bioinformatics as the data is usually highly dimensional and thus affected by a so-called curse
of dimensionality. Cross-validation is a common approach to evaluate methods on previously
unseen data that should be used for all supervised methods. Label permutation can help
evaluate if a model overfitting and bootstrapping is extremely useful when the number of
samples is not large enough.

On my side, to make the evaluation easier for PPI-based disease module mining methods,
the code and all documentation for the AMI testing suite are made public and available for
reuse.

5.3. Algorithmic roadblocks

The application of machine learning methods to the biomedical field is challenging. In classic
computer science, the methods are usually developed to model a system that is mostly
intuitively understood by a developer, such as a road system, book recommendation system,
or text classification system. In the biomedical field, we apply machine learning to improve
our understanding. However, given how much we yet do not know about complex organisms,
it is very challenging to apply algorithms wisely. Several main limitations are discussed
bellow:

Reproducibility crisis Reproducibility crisis is not specific to machine learning in biology,
but affects the whole biomedical field [248]. Reproducibility issues can stem from poor
models quality that leads to not reproducible results, as well as from poor software reporting
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that leads to the publishing of unusable software [249]. In highly interdisciplinary fields
like bioinformatics, the problem is particularly severe as researchers often combine roles
of a software engineer, a machine learning engineer, and a biologist while lacking formal
training in some of those disciplines. Therefore, sometimes not the best practices are used
and several data limitations such as high dimensionality, low sample count and excessive
noise are overlooked. This leads to non-reliable models that are unable to generalize to new
data and therefore are useless for the community. The community can take full advantage
of AI only if it was done wisely and its results are comprehensively reported while there is
enough information about the data and the model itself that would allow other researchers to
assess the experimental setup and reproduce it exactly.

During the conducted Ph.D. project, I have actively participated in the creation of a
community reporting standard, "The AIMe registry for artificial intelligence in biomedical
research" (AIMe) [250]. AIMe registry is supposed to address the reproducibility issue by
providing a registry that allows to quality-check an AI model and provides all necessary
information for other researchers to reproduce the results.

While the issue with AI reporting is widely recognized in the biomedical community, many
steps are required to overcome the problem. Plenty of effort has been invested in creating
checklists for reporting, but those checklists are diverse and do not make AI reports accessible
to the scientific community. Therefore, we created our reporting standard, assembled a
team of more than 20 researchers from different institutions to provide their feedback, and
created the first community-driven AI registry. AIMe allows authors of new biomedical AIs
to generate accessible, browsable, and citable reports that can be examined and reviewed by
the scientific community https://aime-registry.org.

Interpretability Even when AI model is trained following all standards, there are still
possibilities of mistakes due to "black box" nature of many AI models. Understanding the
logic of a model, i.e. why the model makes exactly this prediction is essential for clinical
usage. As models are trained on human collected data they can inherit its bias. An example
of such bias can be a number of protein interactions (Publication 2). Other often mentioned
biasses are related to data collection and might result in underrepresentation certain ethnic
groups or genders.

One of the motivations behind BiCoN was to provide users with an interpretable set of
genes forming a disease mechanism, responsible for the patients stratification. Thus results
can be more easily examined with respect to possible confounders. Classic clustering methods
such as kmeans [251], DBSCAN [252] and other usually do not provide any interpretation of
their results.

The above mentioned AIMe registry also contributes to AI models interpretability, by
making developers aware of possible limitations of their methods and suggesting approaches
to interpret provided predictions.

Usability and trust Even reproducible and interpretable AI models are still often not used in
clinical practice. Lack of communication between clinical practitioners and bioinformaticians,
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difficult to comprehend models and complex interfaces (or an absence of thereof) are another
roadblocks that do not make it easier for AI to enter into the clinical practice.

This issue can be addressed by embracing collaboration between bioinformaticians and
clinicians and biologists. It is challenging to both sides to level with one another for a
productive conversation, but yet it is the only way for AI to contribute to biomedical field.

During the course of my PhD, four collaborative projects with clinicians were successfully
completed [109, 108, 253, 254]. Moreover, for BiCoN a web interface has been developed to
accelerate its usage by biomedical researchers. To make the interface more accessible, several
biologists have been surveyed to insure that the interface can be used by them in future.

Methods evaluation without gold standards In classic computer science, scientists often
rely on gold standard data sets that are designed for specific domains, such MNIST for
hand digits recognition [255], ImageNet for objects classification, or "Amazon reviews" for
sentiment analysis. Bioinformaticians do not have the gold-standard diseases that can be
used to benchmark their methods. While some methods can rely on human assistance
(for instance in biomedical imaging analysis), genomic data can not be understood with a
bare eye. Therefore, bioinformatics analysis often relies on different proxies that are often
oversimplified and do not represent reality in all its complexity.

For the AMI testing suite, a particular challenge was to derive "biological meaningfulness"
measures of the obtained gene modules. Evaluation of gene set’s ability to predict a phenotype
in question was a relatively easy choice, while the use of gene set over-representation
analysis (with databases such as KEGG and DisGeNet) leaves more space for interpretation.
Comparison of differentially expressed genes to KEGG pathways is a very conventional
evaluation choice [256, 257, 258], but it also has several limitations mostly related to the
fact that the current state of knowledge about disease-associated pathways is far from being
complete [259].

5.4. Outlook

The field of biology made significant progress in the last 60 years due to the active use of
algorithmic approaches for complex biological problems. The first bioinformatics software
was created in the early 1960s - long before the success of next-generation sequencing (NGS).
Since then, advancements in biology and computer science have allowed the application of
highly complex algorithms to growing volumes of heterogeneous data. While many positive
bioinformatics results are published every day, it is possible that sometimes, imperfect
algorithms and incomplete databases will overlap and lead to inaccurate results.

A common example of such an issue is overfitting models trained on high-dimensional
biological data [260]. Another relevant issue is the poor performance of published gene
signatures on novel datasets [261]. However, while overfitting and irreproducibility are
relatively well-known issues, more complex issues are hard to discover and evaluate precisely.

The main focus of this dissertation was to study PPIs network influence on disease module
mining. This influence was particularly hard to fully understand because PPI networks
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can also improve algorithms’ performance. The benchmarks of BiCoN demonstrated that
PPI networks increase the robustness of results to noise, batch effects, and other biases in
transcriptomics data. Additionally, by focusing on only interacting proteins, the search space
of an algorithm can be drastically reduced. This can compensate for the high dimensionality
of the data (i.e., lifting the curse of dimensionality) and decrease the runtime of an algorithm.

Additionally, many of AMIMs were benchmarked using relatively small PPI networks (such
as HPRD). Naturally, by restricting results to well-known proteins, the PPI network-based
methods could outperform traditional differential expression methods by providing smaller
gene sets consisting of more familiar genes.

It is possible that many other examples of such situations did not end up published but
were just marked as unsuccessful experiments. Even though publication of the AMI testing
suite [10] challenged the value of the previously conducted study (BiCoN [9]), discussion
over negative results is absolutely necessary for the community as it allows to find the way
out of the acknowledged problem.

I see the way out by continuously questioning existing results and exploring other methods
to derive mechanistic definitions of patients’ phenotypes. In particular, unsupervised methods
should be prioritized because they can extract complex patterns without knowing to which
group a patient initially belongs. This would allow the extraction of truly data-driven disease
definitions which are not biased by pre-defined groupings. As we previously discussed,
BiCoN outperforms other Active Module Identification Methods in terms of the ability to
find predictive gene sets that actually take advantage of PPI interactions since BiCoN is an
unsupervised method. This is indeed an inspiring result, once again demonstrating the power
of unsupervised analysis.

Another critical point is that negative results are not as valuable if they do not help other
academics to improve their research. Thus, a significant amount of time was invested in
making the AMI testing suite usable by other researchers. Reproducible computational
environments, documentation, and well-written programming code are crucial to ensure
that other researchers can reuse, modify, and extend the testing approach. At this moment,
several independent researchers are already working on an extension of the developed testing
procedure to evaluate information gained from other molecular networks.

With the exponential development of AI for network analysis, we have a unique opportunity
to analyze complex heterogeneous networks consisting of not only PPIs but also gene
regulations, metabolic feedback, DNA interactions, binding, and other molecular interactions.
The third publication reviewed several methods that combine single-cell ATAC-seq data with
single-cell RNA-seq to extract regulatory networks for individual samples. While the typical
number of samples in a single-cell study is still significantly lower than for bulk studies, this
number is consistently increasing. Aggregation, analysis, and disease module mining in the
single-cell sample-specific regulatory networks is an exciting challenge for the field.

Novel technologies are also developing at a fascinating speed. Just this year, the first
single-cell metabolomics experimental method became available [262] . Given the role of
metabolites in epigenetics, regulation of the immune system, inflammation control, and
carcinogenesis [263], it is indeed thrilling to see how single-cell metabolomics will improve
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our understanding of disease mechanisms.
To make complex AI algorithms ready for these exciting opportunities, the quality of

the methods should be improved. AI must be transparent, interpretable and continuously
challenged by the scientific community. At the moment, AI-based bioinformatics methods are
used mainly by bioinformaticians and not by medical practitioners due to a lack of trust and
understanding of modern AI methods. However, precision medicine of the future can not
function this way, and therefore the changes are required on both sides.
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A. Appendix

A.1. Assessment of BiCoN with the AMI testing suite

To assess the ability of BiCoN to learn from actual PPIs and not protein degrees, I evaluated
its response to network perturbations and compared it to the leading AMIM DOMINO. Since
PPI network choice did not affect methods performance, only one network was used in the
comparison (HPRD). Three metrics were used for the assessment: mean mutual information
wrt the phenotype, KEGG gene set enrichment p-values (negative and log-transformed), and
overlap with DisGeNet disease-related gene sets (see Methods section for more details). I
also used the most conservative network perturbation method: rewiring of a network while
preserving its degree. This type of perturbation was the most challenging for all methods
due to their inability to distinguish the actual PPI from its rewired version.

Figure A.1 demonstrates that BiCoN consistently outperforms DOMINO in all considered
metrics. It also shows the decrease in scores in response to network rewiring even for the
mean mutual information network that was the most challenging for all methods, including
DOMINO.

Figure A.1.: Comparison of BiCoN performance to the leading AMIM DOMINO from the
AMI testing suite. Across all three metrics, BiCoN consistently performs better
than DOMINO while demonstrating a decrease of the scores with respect to
network perturbations. Unlike DOMINO, BiCoN also demonstrates a response
to perturbations for the mean mutual information metric. This shows that BiCoN
is the only method that finds disease modules predictive of a phenotype that
actually relies on information from edges in PPI networks.
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Acronyms

AI Artificial Intelligence.

AMIM Active Module Identification Methods.

ANN Artificial Neural Networks.

CNN Convolutional Neural Network.

DNA Deoxyribonucleic acid .

GNN Graph Neural Network.

miRNA Micro ribonucleic acid.

ML Machine Learning.

MLP Multilayer perceptron.

mRNA Messenger ribonucleic acid .

RF Random Forest.

RNA Ribonucleic acid .

RNN Recurrent neural network.

rRNA Ribosomal ribonucleic acid .

tRNA Transfer ribonucleic acid .
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Y. Luo, D. Rogers, A. N. Brooks, et al. “Visualizing and interpreting cancer genomics
data via the Xena platform”. In: Nature biotechnology 38.6 (2020), pp. 675–678.

90



References

[114] M. Ghandi, F. W. Huang, J. Jané-Valbuena, G. V. Kryukov, C. C. Lo, E. R. McDonald,
J. Barretina, E. T. Gelfand, C. M. Bielski, H. Li, et al. “Next-generation characterization
of the cancer cell line encyclopedia”. In: Nature 569.7757 (2019), pp. 503–508.

[115] J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer, Y. Sun, A.
Jacobsen, R. Sinha, E. Larsson, et al. “Integrative analysis of complex cancer genomics
and clinical profiles using the cBioPortal”. In: Science signaling 6.269 (2013), pl1–pl1.

[116] R. Chen, G. I. Mias, J. Li-Pook-Than, L. Jiang, H. Y. Lam, R. Chen, E. Miriami, K. J.
Karczewski, M. Hariharan, F. E. Dewey, et al. “Personal omics profiling reveals dynamic
molecular and medical phenotypes”. In: Cell 148.6 (2012), pp. 1293–1307.

[117] M. R. Corces, J. D. Buenrostro, B. Wu, P. G. Greenside, S. M. Chan, J. L. Koenig, M. P.
Snyder, J. K. Pritchard, A. Kundaje, W. J. Greenleaf, et al. “Lineage-specific and single-
cell chromatin accessibility charts human hematopoiesis and leukemia evolution”. In:
Nature genetics 48.10 (2016), pp. 1193–1203.

[118] F. C. Navarro, H. Mohsen, C. Yan, S. Li, M. Gu, W. Meyerson, and M. Gerstein.
“Genomics and data science: an application within an umbrella”. In: Genome biology
20.1 (2019), pp. 1–11.

[119] M. Krassowski, V. Das, S. K. Sahu, and B. B. Misra. “State of the field in multi-omics
research: From computational needs to data mining and sharing”. In: Frontiers in
Genetics 11 (2020).

[120] G. T. Jung, K.-P. Kim, and K. Kim. “How to interpret and integrate multi-omics data
at systems level”. In: Animal cells and systems 24.1 (2020), pp. 1–7.

[121] I. Subramanian, S. Verma, S. Kumar, A. Jere, and K. Anamika. “Multi-omics data
integration, interpretation, and its application”. In: Bioinformatics and biology insights 14
(2020), p. 1177932219899051.

[122] Z.-Z. Tang, G. Chen, Q. Hong, S. Huang, H. M. Smith, R. D. Shah, M. Scholz, and
J. F. Ferguson. “Multi-omic analysis of the microbiome and metabolome in healthy
subjects reveals microbiome-dependent relationships between diet and metabolites”.
In: Frontiers in Genetics 10 (2019), p. 454.

[123] M. Y. Lim, S. Hong, B.-M. Kim, Y. Ahn, H.-J. Kim, and Y.-D. Nam. “Changes in
microbiome and metabolomic profiles of fecal samples stored with stabilizing solution
at room temperature: a pilot study”. In: Scientific reports 10.1 (2020), pp. 1–9.

[124] D. Reiman, B. T. Layden, and Y. Dai. “MiMeNet: Exploring microbiome-metabolome re-
lationships using neural networks”. In: PLoS Computational Biology 17.5 (2021), e1009021.

[125] M. Shaffer, K. Thurimella, K. Quinn, K. Doenges, X. Zhang, S. Bokatzian, N. Reisdorph,
and C. A. Lozupone. “AMON: annotation of metabolite origins via networks to
integrate microbiome and metabolome data”. In: BMC bioinformatics 20.1 (2019), pp. 1–
11.

[126] N. J. Nilsson. Principles of artificial intelligence. Morgan Kaufmann, 2014.

91



References

[127] R. B. Altman, M. Buda, X. J. Chai, M. W. Carillo, R. O. Chen, and N. F. Abernethy.
“RiboWeb: An ontology-based system for collaborative molecular biology”. In: IEEE
Intelligent Systems and Their Applications 14.5 (1999), pp. 68–76.

[128] V. D’Argenio. “The high-throughput analyses era: are we ready for the data struggle?”
In: High-throughput 7.1 (2018), p. 8.

[129] R. M. Karp. “Heuristic algorithms in computational molecular biology”. In: Journal of
Computer and System Sciences 77.1 (2011), pp. 122–128.

[130] S. Consoli and K. Darby-Dowman. Combinatorial optimization and metaheuristics. Tech.
rep. Brunel University, 2006.

[131] Blum and Roli. “Metaheuristics in Combinatorial Optimization: Overview and Con-
ceptual Comparison”. In: CSURV: Computing Surveys 35 (2003).

[132] W. R. Pearson and D. J. Lipman. “Improved tools for biological sequence comparison”.
In: Proceedings of the National Academy of Sciences 85.8 (1988), pp. 2444–2448.

[133] D. G. Higgins and P. M. Sharp. “CLUSTAL: a package for performing multiple
sequence alignment on a microcomputer”. In: Gene 73.1 (1988), pp. 237–244.

[134] S. F. Altschul and D. J. Lipman. “Protein database searches for multiple alignments.”
In: Proceedings of the National Academy of Sciences 87.14 (1990), pp. 5509–5513.

[135] J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and S. Batzoglou. “Graemlin:
general and robust alignment of multiple large interaction networks”. In: Genome
research 16.9 (2006), pp. 1169–1181.

[136] B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R. Stockwell, and T. Ideker.
“Conserved pathways within bacteria and yeast as revealed by global protein network
alignment”. In: Proceedings of the National Academy of Sciences 100.20 (2003), pp. 11394–
11399.

[137] C. Lund and M. Yannakakis. “On the hardness of approximating minimization prob-
lems”. In: Journal of the ACM (JACM) 41.5 (1994), pp. 960–981.

[138] I. Arel, D. C. Rose, and T. P. Karnowski. “Research frontier: deep machine learning–
a new frontier in artificial intelligence research”. In: IEEE computational intelligence
magazine 5.4 (2010), pp. 13–18.

[139] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell
Aeronautical Laboratory, 1957.

[140] B. Widrow and M. A. Lehr. “30 years of adaptive neural networks: perceptron, mada-
line, and backpropagation”. In: Proceedings of the IEEE 78.9 (1990), pp. 1415–1442.

[141] B. G. Buchanan. “A (very) brief history of artificial intelligence”. In: Ai Magazine 26.4
(2005), pp. 53–53.

[142] F. Bayes. “An essay towards solving a problem in the doctrine of chances”. In: Biometrika
45.3-4 (1958), pp. 296–315.

92



References

[143] M. Merriman. “On the history of the method of least squares”. In: The Analyst 4.2
(1877), pp. 33–36.

[144] T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE transactions on
information theory 13.1 (1967), pp. 21–27.

[145] T. K. Ho. “Random decision forests”. In: Proceedings of 3rd international conference on
document analysis and recognition. Vol. 1. IEEE. 1995, pp. 278–282.

[146] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine learning 20.3 (1995),
pp. 273–297.

[147] R. E. Schapire. “The strength of weak learnability”. In: Machine learning 5.2 (1990),
pp. 197–227.

[148] E. Alpaydin. Introduction to machine learning. MIT press, 2020.

[149] H. Asri, H. Mousannif, H. Al Moatassime, and T. Noel. “Using machine learning
algorithms for breast cancer risk prediction and diagnosis”. In: Procedia Computer
Science 83 (2016), pp. 1064–1069.

[150] L. Pan, G. Liu, F. Lin, S. Zhong, H. Xia, X. Sun, and H. Liang. “Machine learning
applications for prediction of relapse in childhood acute lymphoblastic leukemia”. In:
Scientific reports 7.1 (2017), pp. 1–9.

[151] L. Macyszyn, H. Akbari, J. M. Pisapia, X. Da, M. Attiah, V. Pigrish, Y. Bi, S. Pal,
R. V. Davuluri, L. Roccograndi, et al. “Imaging patterns predict patient survival and
molecular subtype in glioblastoma via machine learning techniques”. In: Neuro-oncology
18.3 (2015), pp. 417–425.

[152] F. Schmidt, F. Kern, P. Ebert, N. Baumgarten, and M. H. Schulz. “TEPIC 2—an extended
framework for transcription factor binding prediction and integrative epigenomic
analysis”. In: Bioinformatics 35.9 (2019), pp. 1608–1609.

[153] C. M. Lynch, B. Abdollahi, J. D. Fuqua, R. Alexandra, J. A. Bartholomai, R. N. Balge-
mann, V. H. van Berkel, and H. B. Frieboes. “Prediction of lung cancer patient survival
via supervised machine learning classification techniques”. In: International journal of
medical informatics 108 (2017), pp. 1–8.

[154] K. P. F.R.S. “LIII. On lines and planes of closest fit to systems of points in space”.
In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11
(1901), pp. 559–572. doi: 10.1080/14786440109462720.

[155] L. McInnes, J. Healy, and J. Melville. “Umap: Uniform manifold approximation and
projection for dimension reduction”. In: arXiv preprint arXiv:1802.03426 (2018).

[156] L. Van der Maaten and G. Hinton. “Visualizing data using t-SNE.” In: Journal of machine
learning research 9.11 (2008).

[157] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput, G. Srivastava,
and T. Baker. “Analysis of dimensionality reduction techniques on big data”. In: IEEE
Access 8 (2020), pp. 54776–54788.

93

https://doi.org/10.1080/14786440109462720


References

[158] V. Y. Kiselev, T. S. Andrews, and M. Hemberg. “Challenges in unsupervised clustering
of single-cell RNA-seq data”. In: Nature Reviews Genetics 20.5 (2019), pp. 273–282.

[159] S. R. Newcomer, J. F. Steiner, and E. A. Bayliss. “Identifying subgroups of complex
patients with cluster analysis.” In: The American journal of managed care 17.8 (2011),
e324–32.

[160] M. J. Lercher, A. O. Urrutia, and L. D. Hurst. “Clustering of housekeeping genes
provides a unified model of gene order in the human genome”. In: Nature genetics 31.2
(2002), pp. 180–183.

[161] A. Bernstein and E. Burnaev. “Reinforcement learning in computer vision”. In: Tenth
International Conference on Machine Vision (ICMV 2017). Vol. 10696. International Society
for Optics and Photonics. 2018, 106961S.

[162] S. Almahdi and S. Y. Yang. “An adaptive portfolio trading system: A risk-return
portfolio optimization using recurrent reinforcement learning with expected maximum
drawdown”. In: Expert Systems with Applications 87 (2017), pp. 267–279.

[163] A. L. Bazzan. “Opportunities for multiagent systems and multiagent reinforcement
learning in traffic control”. In: Autonomous Agents and Multi-Agent Systems 18.3 (2009),
pp. 342–375.

[164] J. DiGiovanna, B. Mahmoudi, J. Fortes, J. C. Principe, and J. C. Sanchez. “Coadaptive
brain–machine interface via reinforcement learning”. In: IEEE transactions on biomedical
engineering 56.1 (2008), pp. 54–64.

[165] L. Wang, W. Zhang, X. He, and H. Zha. “Supervised reinforcement learning with
recurrent neural network for dynamic treatment recommendation”. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2018, pp. 2447–2456.

[166] C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, and Z. Xie. “Deep
learning and its applications in biomedicine”. In: Genomics, proteomics & bioinformatics
16.1 (2018), pp. 17–32.

[167] S. Lawrence, C. L. Giles, and A. C. Tsoi. “Lessons in neural network training: Overfit-
ting may be harder than expected”. In: AAAI/IAAI. Citeseer. 1997, pp. 540–545.

[168] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Understanding of a convolutional
neural network”. In: 2017 International Conference on Engineering and Technology (ICET).
Ieee. 2017, pp. 1–6.

[169] K. Jnawali, M. R. Arbabshirani, N. Rao, and A. A. Patel. “Deep 3D convolution
neural network for CT brain hemorrhage classification”. In: Medical Imaging 2018:
Computer-Aided Diagnosis. Vol. 10575. International Society for Optics and Photonics.
2018, p. 105751C.

[170] J. Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural networks
61 (2015), pp. 85–117.

94



References

[171] L. Gondara. “Medical image denoising using convolutional denoising autoencoders”.
In: 2016 IEEE 16th international conference on data mining workshops (ICDMW). IEEE.
2016, pp. 241–246.

[172] S. Sharma, I. Umar, L. Ospina, D. Wong, and H. R. Tizhoosh. “Stacked autoencoders
for medical image search”. In: International Symposium on Visual Computing. Springer.
2016, pp. 45–54.

[173] A. Sherstinsky. “Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network”. In: Physica D: Nonlinear Phenomena 404 (2020), p. 132306.

[174] X. Zhou, Y. Li, and W. Liang. “CNN-RNN based intelligent recommendation for online
medical pre-diagnosis support”. In: IEEE/ACM Transactions on Computational Biology
and Bioinformatics (2020).

[175] A. N. Jagannatha and H. Yu. “Bidirectional RNN for medical event detection in
electronic health records”. In: Proceedings of the conference. Association for Computational
Linguistics. North American Chapter. Meeting. Vol. 2016. NIH Public Access. 2016, p. 473.

[176] F. Liu, Y. Miao, Y. Liu, and T. Hou. “RNN-VirSeeker: a deep learning method for
identification of short viral sequences from metagenomes”. In: IEEE/ACM Transactions
on Computational Biology and Bioinformatics (2020).

[177] Q. Liu, L. Fang, G. Yu, D. Wang, C.-L. Xiao, and K. Wang. “Detection of DNA base
modifications by deep recurrent neural network on Oxford Nanopore sequencing
data”. In: Nature communications 10.1 (2019), pp. 1–11.

[178] X. Pan and H.-B. Shen. “Inferring disease-associated microRNAs using semi-supervised
multi-label graph convolutional networks”. In: Iscience 20 (2019), pp. 265–277.

[179] J. Wang, A. Ma, Y. Chang, J. Gong, Y. Jiang, R. Qi, C. Wang, H. Fu, Q. Ma, and D. Xu.
“scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses”.
In: Nature communications 12.1 (2021), pp. 1–11.

[180] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang. “Graph neural networks and their
current applications in bioinformatics”. In: Frontiers in Genetics 12 (2021).
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