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A B S T R A C T   

This study investigates how deep-learning can be configured to optimise the prediction of 2D maximum water 
depth maps in urban pluvial flood events. A neural network model is trained to exploit patterns in hyetographs as 
well as in topographical data, with the specific aim of enabling fast predictions of flood depths for observed rain 
events and spatial locations that have not been included in the training dataset. A neural network architecture 
that is widely used for image segmentation (U-NET) is adapted for this purpose. Key novelties are a systematic 
investigation of which spatial inputs should be provided to the deep learning model, which hyper- 
parametrization optimizes predictive performance, and a systematic evaluation of prediction performance for 
locations and rain events that were not considered in training. We find that a spatial input dataset of only 5 
variables that describe local terrain shape and imperviousness is optimal to generate predictions of water depth. 
Neural network architectures with between 97,000 and 260,000,000 parameters are tested, and a model with 
28,000,000 parameters is found optimal. U-FLOOD is demonstrated to yield similar predictive performance as 
existing screening approaches, even though the assessment is performed for natural rain events and in locations 
unknown to the network, and flood predictions are generated within seconds. Improvements can likely be ob
tained by ensuring a balanced representation of temporal and spatial rainfall patterns in the training dataset, 
further improved spatial input datasets, and by linking U-FLOOD to dynamic sewer system models.   

1. Introduction 

Maps of pluvial urban flood hazard with high resolutions finer than 
10 m are used for planning city layouts and water infrastructure, as well 
as in flood warning systems that are used to direct emergency services. 
For planning purposes, it is increasingly recognized that a variety of 
flood adaptation options need to be evaluated in a variety of scenarios 
of, for example, climate change and city development, to identify cost- 
effective and robust solutions (Bach et al., 2020; Löwe et al., 2017; 
Webber et al., 2019). Participatory planning approaches (Voinov et al., 
2016) require fast and easy-to-use flood screening solutions, that enable 
non-experts such as architects to assess hazards for different city layouts. 
In addition, flood warning systems need to generate hazard maps from 
rainfall forecasts within a few minutes and possibly also quantify the 

effect of uncertain rainfall forecasts (Hofmann and Schüttrumpf, 2019; 
Li and Willems, 2020; Meneses et al., 2015). 

Hydrodynamic models are the state-of-the-art for the assessment of 
urban pluvial flood hazard and are available in a variety of commercial 
software packages (Deltares, 2017; DHI, 2016; Innovyze, 2020). These 
models dynamically simulate the movement of water on the terrain 
surface in space and time, and are frequently linked to a dynamic 
simulation of water movement in the sewer network. All of the appli
cations named in the previous paragraph demand short simulation times 
that are difficult to achieve with these models. A number of screening 
methods were therefore developed. Following the classification in 
Jamali et al. (2019), these can be divided into approaches that distribute 
surface water through a network of connected topographic depressions 
(Balstrøm and Crawford, 2018; Jamali et al., 2018; SCALGO, 2020), and 
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approaches that apply cellular automata to distribute water on a raster 
surface (Guidolin et al., 2016; Jamali et al., 2019). These approaches can 
achieve substantial speedup factors up to 1000, but they are challenged 
by not considering time dynamics. Thus they have difficulties in dis
tinguishing, for example, the effects of rain events with the same rainfall 
depth but different hyetographs. Approaches that do consider time dy
namics achieve lower speedup factors in the order of 2 to 8 (Guidolin 
et al., 2016). 

A third group of screening approaches that address flood hazard from 
a data-driven rather than a conceptual viewpoint has arisen in recent 
years. Roughly, these can be grouped into approaches that predict flood 
hazard based on rainfall input only, and approaches that consider 
physical catchment characteristics as input to the model. The former 
group of models can only be applied for locations that were included in 
the training dataset. Recent examples for such approaches are Berkhahn 
et al. (2019), who successfully trained feed-forward neural networks 
against urban pluvial flood maps generated by a hydrodynamic model; 
Bermúdez et al. (2018), who used a combination of feed forward net
works to detect flooding from the sewer system and simulate maximum 
flood volume, which is then used to choose a discrete pre-simulated 
flood map; and Kabir et al. (2020) and Lin et al. (2020), who pre
dicted fluvial urban flood maps using convolutional and feed-forward 
neural networks, respectively. 

Data-driven approaches can also consider static catchment proper
ties as input, and in this way be used to generate predictions for areas 
that were not included in the training dataset. Kratzert et al. (2019) were 
able to outperform established hydrological models in such a setting 
when simulating river flows using long short-term memory neural net
works. Urban pluvial flooding occurs scattered throughout a city and 
data-driven prediction models therefore need to consider rather large 
amounts of data that characterize the urban layout. Deep learning, in 
particular using convolutional neural networks, can extract spatio- 
temporal features from data and is therefore attractive for predicting 
pluvial flood hazards. Originally developed for computer vision (e.g. He 
et al., 2016; Isola et al., 2017; Ronneberger et al., 2015), these tech
niques were also successfully applied for a number of problems in Earth 
sciences (Reichstein et al., 2019) and related applications such as wind 
power prediction (Zhu et al., 2020). Examples from hydrology include 
Pham et al. (2020), who used deep belief networks which, based on 15 
discrete input variables that characterize the catchments, classify the 
degree to which a location is susceptible to flooding, and Zhao et al. 
(2020), who used convolutional neural networks with 9 continuous 
input variables for the same purpose. Considering the prediction of 
pluvial flood water depths in urban areas, Guo et al. (2021) trained a 
convolutional autoencoder with 4 input variables describing topography 
against 2D flood depth maps that were simulated by a hydrodynamic 
model. In a similar setting, Zahura et al. (2020) trained random forest 
regression models that predict flood water depth on discrete street 
sections based on 3 variables that characterize topography. 

Extending the aforementioned work, our study makes three main 
contributions:  

1. We use deep learning to predict flooding for locations and rain events 
that have not been included in the training dataset, and we only 
consider historical hyetographs for training and validation. While 
studies focussing on flood susceptibility validated their models on 
datasets that included new locations, the studies focussing on pluvial 
urban flood depths tested their models for rain events that were not 
considered in the training datasets, but not new locations. An out-of- 
sample evaluation of prediction performance is therefore not avail
able so far. In addition, many of the existing flood screening tools 
(Berkhahn et al., 2019; Jamali et al., 2019; Thrysøe et al., 2021) were 
only tested on design storms, which may lead to optimistic 
conclusions.  

2. We perform a comprehensive evaluation of which spatial input 
variables should be considered in the deep learning model when 

predicting 2D flood maps. Studies that considered comprehensive 
sets of input variable candidates focused on flood susceptibility in 
natural catchments (Avand et al., 2020; Pham et al., 2020; Zhao 
et al., 2020), i.e. not water depth maps, and a larger spatial scale than 
for the urban case. Studies focusing on water depth prediction in 
urban areas have not considered topographic input (Berkhahn et al., 
2019), or focussed on a very limited set of variables (Guo et al., 2021; 
Zahura et al., 2020). Only Zahura et al. (2020) evaluated the 
importance of different input features, however, in a context of 
predicting water depth on selected street segments instead of 2D 
flood maps.  

3. We systematically analyse the predictive performance of different 
deep learning configurations with varying complexity. While the 
studies focussing on flood susceptibility did perform meta- 
optimization or compared different network architectures (Avand 
et al., 2020; Pham et al., 2020; Zhao et al., 2020), this assessment is 
missing for the prediction of pluvial urban flood maps. 

The aim of our study was to develop a deep learning network that can 
be used to predict 2D maps of maximum flood depth based on readily 
available geodata and rainfall input. If successful, this approach enables 
the creation of fast and accurate flood screening tools that can be trained 
based on a limited number of simulations from detailed physical models, 
and that avoid problems in distinguishing effects from rain events with 
similar rainfall depth but different hyetographs. To facilitate further 
research based on our work, we exclusively used openly available geo
data for training the deep learning models that we made available along 
with our computer code. 

2. Material and methods 

To create a deep-learning approach for predicting pluvial flood 
hazards, we proceeded in three steps:  

1. Identify the (spatial) input variables that are likely to yield the best 
prediction of flood hazard from a set of potential variables.  

2. Evaluate the required complexity of the neural network to achieve 
reliable flood predictions.  

3. Validate the predictive performance of the network in a k-fold cross 
validation procedure to obtain a reliable estimate of out-of-sample 
prediction capacity. 

Note that in steps 1 and 2 model performance was also evaluated on a 
validation dataset using a simple holdout procedure. In the following 
subsections we first describe the considered case area and training data, 
then we illustrate the applied deep learning setup and finally we 
describe which experiments were performed in each of the three steps 
outlined above and how model performance was assessed. 

2.1. Materials 

2.1.1. Case area, flood simulations and geodata 
We considered the city of Odense in Denmark as a case study. The 

city has approximately 200,000 inhabitants and is located in a typical 
moraine landscape close to the sea. We obtained terrain and landuse 
data from the Danish geodata portal Kortforsyningen (Agency for Data 
Supply and Efficiency, 2020; Agency for Data Supply and Efficiency and 
Danish Municipalities, 2020). 

Fig. 1 shows the study area. The entire area covered 3740 × 4273 
pixels in a resolution of 5 m. This resolution was deemed sufficient for 
flood screening purposes (Berkhahn et al., 2019; Löwe and Arnbjerg- 
Nielsen, 2020) and was applied for all datasets in the hydrodynamic 
simulation as well as the neural networks. Elevations in the terrain 
dataset were raised by 5 m in building locations. Only the urban areas 
(highlighted red and blue in Fig. 1) were considered when training and 
validating the neural networks, as the focus of the study was pluvial 
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urban flood hazard. Further, flooded areas related to natural streams 
and marine flooding were excluded from the analysis as these types of 
flooding are related to different physical processes and spatio-temporal 
scales than pluvial flooding. The area was subdivided into 119 squares to 
mark areas for model validation. Squares marked in red were used for 
validation in steps 1 and 2 of the model development procedure, while 
random subsets of all 119 squares were used for validation in step 3 
(Sections 2.1.3 and 2.2.4). 

We performed hydrodynamic flood simulations in 2D for the entire 
area shown in Fig. 1 using MIKE 21 (DHI, 2016). Following the same 
approach as Guo et al. (2021), Kaspersen et al. (2017) and Webber et al. 
(2019), we considered rainfall on each pixel of the 2D surface and 
performed a runoff computation for each individual pixel as outlined in 
the following. For each pixel the pervious and impervious area inside the 
pixel was computed, assuming that buildings and roads are 100% 
impervious and that all other areas are pervious. We assumed a wetting 
loss of 0.6 mm for each rain event, a maximum sewer system capacity of 
12 mm/hr for precipitation on impervious areas (Webber, 2019), and a 
constant infiltration capacity of 29.3 mm/hr for precipitation on 
pervious areas (Kaspersen et al., 2017). In each simulation time step (1 
s), separate effective precipitation rates were computed for pervious and 
impervious areas by subtracting the above losses from the observed 
rainfall. In each pixel, the two effective precipitation rates were multi
plied by the impervious and pervious area inside the pixel, and then 
summed up to obtain the total runoff from the pixel. Subsequently, 
runoff was then routed over the terrain surface by the 2D hydrodynamic 
simulation. This approach to runoff computation generates realistic 
flood maps that can be used to demonstrate the feasibility of our deep 
learning approach. The sewer system, however, is represented in a 
simplified manner that does not necessarily reflect the effect of, for 
example, bottlenecks in the sewer pipes. We have chosen this approach, 
because it enables us to make all the data used in our study accessible. 
This would not be the case when performing 1D-2D flood simulations 
where proprietary information on the sewer network is required. 

Hydrodynamic simulations were performed for each of the 53 rain 
events described in the following section. Fig. 1 shows an example of the 
generated flood maps. When training the deep learning models for the 
prediction of flood depths, we set any flood depths below 0.05 m to 0 as 
these water depths are not relevant for neither economic damage as
sessments nor warning systems. We have in addition removed puddles, 
defined as flooded areas consisting of less than 5 connected pixels, by 
applying a sieve filter (GDAL Development Team, 2020). Terrain data 
used for the simulations and flood maps are available from (Löwe, 
2021). 

2.1.2. Rainfall data 
We considered rainfall observations in 1 min resolution from ten rain 

gauges distributed across Denmark that have been in continuous oper
ation for at least 40 years. For each of the stations we identified rain 
events. Rain events were defined to start when a dry weather threshold 
for the rain intensity of 0.1 mm/h was exceeded, and to end when this 
threshold had not been exceeded for at least six hours. From each station 
we extracted the five rain events with the highest average rainfall in
tensity over a 30 min period. Where events were observed at multiple 
stations on the same day, we kept only the most intense event. This 
process resulted in a dataset of 43 rain events that were assumed 
representative for the types of events that can lead to pluvial flooding in 
Denmark. 

A data-driven model needs to not only predict flood depth in extreme 
events, but also to distinguish events when flooding does or does not 
occur. We have therefore extended the rainfall dataset with an addi
tional 10 events with medium to small rain intensities. These events had 
maximum rain intensities of 10 to 30 mm/hr averaged over a 30 min 
period. One such event was manually selected from each station, 
resulting in a total of 53 events. 

Section S1 in the Supporting Information includes a table of key 
characteristics for each of the rain events, a time series plot of rain in
tensities for each event, as well as a histogram of the rain intensities in 

Fig. 1. Case study area in the city of Odense (Denmark). Highlighted squares are 256x256 pixels (1280x1280m). Only flooding occurring within the simulation area 
(marked blue and red) was considered in the training and validation of the neural network. Input data and flood depths were set to 0 for all other areas. The entire 
study area comprises 3740x4273 pixels with an edge length of 5 m. The area was subdivided into 119 squares to mark areas for model validation. Squares marked in 
red were used for validation in steps 1 and 2 of the model development procedure. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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the dataset. Rain intensities were averaged to 10 min intervals, to limit 
the required storage for the hydrodynamic simulations, where rainfall 
input needed to be provided as a time series of 2D maps, each with a 
spatial extent of 3740x4273 pixels. 

2.1.3. Training and validation data 
Our dataset consisted of 53 flood maps covering the entire study area 

shown in Fig. 1 (one map per rain event). For training and validation, the 
network was presented with square “snapshots” of these maps that had a 
fixed spatial extent of 256x256 pixels (5 m resolution). For pixels outside 
the simulation area (neither red nor blue in Fig. 1), both input and 
output data were set to zero. The procedures for generating training and 
validation datasets for steps 1 and 2 of the model development pro
cedure are outlined below. Separate datasets were generated for cross- 
validation in step 3 as detailed in Section 2.2.4. 

2.1.3.1. Training dataset. The training dataset was created by randomly 
sampling combinations of rain events and spatial patches of 256x256 
pixels. Other than the so-called squares used for validation (see below), 
these patches were placed randomly throughout the simulation area. We 
sampled 10,000 times by a) randomly selecting one of the 48 rain events 
not used for validation (with repetition, i.e. irrespective of whether the 
event was selected in a previous iteration), b) sampling a patch 
(256x256 pixels) at a random location anywhere in the study area. We 
then checked if the patch contained if the patch contained areas outside 
the blue areas in Fig. 1. Such areas were either not part of the simulation 
area or part of the validation data (red in Fig. 1) and should not be used 
for training. Input data and flood depths were set to 0 in the corre
sponding pixels. If the patch contained less than 20% valid pixels, it was 
discarded and a new patch was sampled. Otherwise, the patch was 
added to the training dataset. 

The 10,000 patches corresponded to randomly located extracts of the 
48 flood maps. 

Each patch covered a unique part of the study area, but overlapped 

with other patches. Similar “data augmentation” procedures are 
commonly applied in image classification to reduce over-fitting (Rawat 
and Wang, 2017). The Supporting Information S4 contains an illustra
tion of how often different parts of the study area were sampled in the 
training dataset. 

2.1.3.2. Validation dataset for steps 1 and 2 of the model development 
procedure. We sub-divided the study area into 119 squares of 256x256 
pixels with fixed locations (Fig. 1). All squares contained at least 20% 
pixels inside the simulation area (blue and red in Fig. 1). Subsequently, 
we a) randomly selected 29 of these squares (1/4 of the study area) 
(marked red in Fig. 1), b) manually selected five rain events that re
flected varying rain intensities and temporal rainfall patterns. We have 
highlighted these events in Table S1 in the Supporting Information. 

Flood maps within the 29 squares were never presented to the neural 
network in the training phase (in any rain event). Similarly, flood maps 
for the five rain events were never presented during training (in any 
location). Model validation was thus performed on locations and rain 
events that were unknown to the network. In total, the validation 
dataset consisted of 29*5 = 145 flood maps. 

2.2. Data-driven model development 

2.2.1. Modelling setup 
Fig. 2 illustrates the deep learning setup applied in our study. 2D 

arrays of spatial inputs with a fixed extent of 256 × 256 pixels are 
processed through an encoder/decoder structure consisting of pairs of 
convolutional layers (panel A). Rainfall input is pre-processed and 
concatenated at the bottleneck of the spatial convolution (panel B). After 
the last decoding block, the network generates a prediction of maximum 
water depth in each individual pixel of within the considered patch for a 
given rain event. 

The overall structure resembles the framework proposed by Guo 
et al. (2021), but we have made a number of distinct changes: 

Fig. 2. Schematic of the applied modelling setup. Panel A: Spatial inputs are processed through a sequence of 2D convolutional blocks that are linked through 
average pooling. The network depth d corresponds to the number of encoding steps. The first convolutional block considers a number of bf filters. Panel B: Rainfall 
series are converted to 9 rainfall statistics. These are processed by a fully connected layer and concatenated to the spatial convolution at the narrowest part of 
the network. 
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1. Skip connections concatenate the output from an encoding block in 
the spatial convolution to the input of the corresponding decoding 
block, thus bypassing encoding steps in the deeper parts of the 
network. Skip connections were demonstrated to support smooth 
objective function landscapes and thus better convergence of deep 
neural networks (Li et al., 2018). With this modification, the spatial 
convolution in our framework strongly resembles the U-Net archi
tecture (Ronneberger et al., 2015) which is widely applied for image 
segmentation.  

2. We converted the input rainfall series into a set of 9 rain event 
characteristics before feeding it into the neural network. Preliminary 
work showed that such characterizations in combination with simple 
feed forward networks (Böhm, 2020; Eriksen and Dichmann, 2019) 
achieve strong performance in predicting flood extents. Directly 
feeding the rainfall series into a dense layer (Guo et al., 2021) leads 
to an excessive number of parameters when long rain events should 
be considered (up to 34 h in our dataset), and creates difficulties 
during training when the rainfall peak does not always occur at the 
same time point in the rain series.  

3. We applied average pooling (Amidi and Amidi, 2019) in the 
encoding part of our network as it yielded stronger performance in 
initial tests (Supporting Information, Section S6) than the maximum 
pooling applied in other works (Guo et al., 2021; Ronneberger et al., 
2015). 

We considered three hyper-parameters for our setup:  

• d –depth of the network - corresponds to the number of encoding / 
decoding steps,  

• bf –number of filters considered in the convolutional layers of the 
first encoding step - In line with similar architectures (Ronneberger 
et al., 2015), the number of filters is increased by a factor of 2 in each 
encoding step. We have, however, considered a maximum number of 
512 filters to limit the computational requirements, and  

• k – edge length in pixels of the kernels applied in the convolution 
operations. 

Leaky-ReLU activation functions (Maas et al., 2013) were considered 
for all layers with an activation threshold of 0.2. Like other works with 
similar architectures (Badrinarayanan et al., 2017; Chattopadhyay et al., 
2020; Höhlein et al., 2020), we applied dropout regularization to the 
convolutional layers with a dropout rate of 0.5. 

A patch size of 256x256 pixels (1280x1280m) was considered for the 
spatial input data and the generated flood maps. This size is frequently 
applied with convolutional networks, because it is a power of 2 and 
repeated pooling operations (that divide the size of the images by 2) can 
thus be performed without padding the pooling outputs. Patches with an 
edge length of above one kilometer should be sufficiently large to cap
ture the most important effects leading to urban pluvial flooding that 
occurs on a very local scale (Löwe et al., 2020), while at the same time 
being sufficiently small to not cause memory problems during model 
training. A potential downside of working with fixed size images is that 
hydrological objects such as sinks will be cut off when located near the 
edge of a patch. This problem is mitigated by considering training 
patches that are not placed regularly (as in Fig. 1) but randomly 
throughout the study area. 

2.2.2. Model development step 1 – feature definition and selection 

2.2.2.1. Rainfall input. Urban pluvial flooding is linked to small spatial 
scales and short time scales. The amount of runoff varies depending on 
the shape and intensity of the specific rain event (e.g. Davidsen et al. 
(2017); Müller et al. (2017)). These characteristics need to be provided 
to enable the neural network to distinguish the effects of different rain 
events. Urban hydrologists have a long tradition of characterizing 

natural rain events with standardized characteristics that can be used to 
test the design of sewer systems with representative design storms (Jean 
et al., 2018). Inspired by rainfall characterizations from German design 
guidelines, Wartalska et al. (2020) used the following set of statistics to 
characterize the temporal distribution of rain depths during an event, 
which we have considered as input to our model:  

• rp – time index of the rainfall peak relative to the total duration of the 
event  

• rcg – time index of the median accumulated rainfall relative to the 
total duration of the event  

• m1 – ratio of cumulative precipitation before vs. after the rainfall 
peak  

• m2 – ratio of maximum rain intensity (10 min interval) vs. total 
rainfall depth  

• m3 – ratio of rainfall depth in the first third of an event vs. total 
rainfall depth  

• m5 – ratio of rainfall depth in the first half of an event vs. total rainfall 
depth  

• ni – ratio of maximum rain intensity (10 min interval) vs. average 
rain intensity 

In addition to the above, we included the accumulated rainfall depth 
Ptot and its duration dur to characterize the magnitude and duration of 
an event. The statistics computed for each rain event are available in 
Section S1 of the Supporting Material. 

2.2.2.2. Spatial input. When training a neural network against 
maximum water depth maps, the network does not learn the dynamics of 
water movement on terrain and spatial inputs that condense the hy
drological characteristics of the catchment are likely to yield higher 
predictive power than elevation data alone. Based on expert reasoning 
and previous studies, we defined a set of 11 spatial variables that we 
considered potentially relevant for the prediction of urban pluvial 
flooding in a data-driven model. Table 1 summarizes these variables and 
the reasoning for their inclusion. Common for all input variables was 
that they must be possible to derive from geodata using standard raster 
processing operations to ensure that the deep learning model, once 
fitted, can be readily applied to new locations. 

Several spatial datasets were characterized by long-tailed, right- 
skewed distributions where flood hazard does not change much whether 
the explanatory variable takes medium-large or extreme values. In line 
with standard mathematical modelling procedures (Brockhoff et al., 
2018; Madsen, 2008), we applied data transformations in these cases. 
Subsequently, all variables were scaled to the intervals [-1,1] if negative 
values were present and [0,1] otherwise. Visualizations of all variables 
are provided in the Supporting Information, while the actual datasets 
can be obtained from Löwe (2021). 

For the spatial inputs it is particularly relevant to consider only the 
datasets that actually improve prediction performance of the model. Too 
many model inputs will increase the computational demand in the 
training phase and the risk of overfitting. Based on the selection of input 
variables in Table 1, we employed two approaches:  

1. Spearman’s ranked correlation (Dodge, 2008) 
We computed the ranked correlation between simulated water 
depths and the input variables in Table 1. The computation was done 
on a pixel-by-pixel basis for the entire area highlighted in Fig. 1, and 
a separate correlation coefficient was estimated for each of the 
considered rain events, i.e. 53 correlation coefficients were obtained 
for each input variable. This approach provided insight on whether 
an input variable would be directly related to simulated water depths 
in a monotonic manner. However, it could not provide information 
on whether a variable enhances the predictive capacity of another 
variable. In addition, the pixel-by-pixel comparisons imply that the 
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method could not capture effects where the input variable, for 
example, needs to be aggregated in space before an impact on the 
water depths becomes clear.  

2. Forward selection 
To address the above short-comings, we employed a procedure that 
was inspired by stepwise regression modelling procedures (Brockhoff 
et al., 2018; Pardoe et al., 2020). We used the model illustrated in 
Fig. 2 with hyper-parameters depth d = 4, number of filters in the 
first encoding block bf = 32 and kernel size k = 3. This configuration 
was considered as a reasonable starting point as it performed well in 
initial tests and as it has a similar complexity as the setup employed 
by Guo et al. (2021). We trained 11 different neural networks with 
this configuration, each of the them considering a single spatial input 
from Table 1. We evaluated each networks’ predictive performance 
based on the scores described in Section 2.3 and selected the one that 
performed best. Based on this network, we created 10 new networks, 
all of which considered the successful input from step 1 and one of 
the remaining 10 inputs. The procedure was repeated until a sub
jective inspection of the results suggested that the inclusion of 
additional input variables no longer improves predictive perfor
mance on the validation dataset. 

2.2.3. Model development step 2 – network complexity 
To evaluate what is a parsimonious neural network for obtaining 

reliable predictions of flood water depth, we performed a grid search on 
the hyper parameters listed in Section 2.2.1. We varied  

• the network depth d between 2 and 6, where a network with d = 6 
consists of 6 encoding blocks and six decoding blocks, each consist
ing of two convolutional layers,  

• the number of filters bf in the first convolutional layer between 16, 
32 and 64, and  

• the size k of the kernels applied in the convolution layers between 3, 
5 and 7. 

Larger values for d and bf increase the number of parameters in the 
network that need to be estimated, but increase its flexibility to repro
duce patterns. Larger kernel sizes enable the convolutional layers to 
make use of spatial information from a larger area, but strongly increase 
computational expense. Many recent popular network architectures 
employ k = 3 (Chen et al., 2018; He et al., 2016; Ronneberger et al., 
2015). The hyper-parameter ranges outlined above led to neural net
works that had from 97,000 up to 260,000,000 parameters that needed 
to be estimated. 

2.2.4. Model development step 3 – k-fold cross-validation 
To obtain a more robust estimate of predictive model performance, 

we selected the best performing model architecture from step 2, and 
trained it in a k-fold cross-validation procedure with five folds. For this 
purpose, we created five non-overlapping validation datasets, each 
consisting of 10 rain events and 24 of the squares shown in Fig. 1. The 
squares were randomly assigned to the validation datasets. A stratified 

Table 1 
Spatial explanatory variables used for the deep learning model for urban pluvial 
flood hazard.  

Variable Data adjustments (listed in 
order of application) 

Reasoning 

DEM Scaled to [0,1] Surface elevation including buildings. 
Used in Guo et al. (2021); Pham et al. 
(2020); Zahura et al. (2020); Zhao et al. 
(2020) 

ASP Scaled to [-1,1] Characterizes flow direction on terrain. 
Considered as 2 separate raster datasets 
(cosine and sine of aspect) to handle 
cyclic behaviour of flow direction (Guo 
et al., 2021). 
Used in (Guo et al., 2021; Pham et al., 
2020) 

CURV Cuberoot transformed 
Scaled to [0,1] 

Characterizes concaveness / convexity of 
terrain. Transformation is applied to 
reduce extremely leptokurtic distribution 
of values. 
Used in (Guo et al., 2021; Pham et al., 
2020) 

DEM_L Scaled to [0,1] DEM minus the focal mean of DEM 
within 100 m radius. 
Pluvial urban flooding is linked to spatial 
scales <1 km (Löwe et al., 2020) and 
should therefore be linked to local 
variations in elevation, rather than 
elevation above sea level, i.e. the 
elevation signal for a flat urban area in 
the mountains should be the same as for a 
flat urban area close to the coast. Not 
used in any previous studies. 

SDEPTH Scaled to [0,1] Water depth in terrain sinks. Computed 
as difference between elevation of the 
outlet point of a sink and terrain 
elevation. 0 for all cells located outside 
sinks. Not used in any previous studies. 

IMP – Imperviousness in each raster cell, 
ranging from 0 to 1. Affects amount of 
runoff generated from the cell. Computed 
from building and road data that are both 
assumed 100% impervious. 
(Zhao et al., 2020) used a related index 
based on Landsat data. 

SLOPE Scaled to [0,1] Terrain slope, computed based on the 
focal mean of terrain elevation within 
100 m radius to ensure that the 
hydrologic behaviour of an area is 
captured, not the location of edges of 
buildings, curbs or similar. These features 
should already be captured by DEM, ASP 
and CURV. Used in (Guo et al., 2021; 
Pham et al., 2020; Zhao et al., 2020) 

FLACC Cutoff at 250ha 
Cuberoot transformed 
Scaled to [0,1] 

Number of cells flowing into a given 
pixel. Describes the likelihood of a 
depression to be flooded. Very large 
accumulation values are linked to natural 
streams. We have therefore defined an 
upper cutoff at 250 ha. Values follow a 
leptokurtic distribution and are therefore 
transformed. Previously used by (Pham 
et al., 2020). 

FLIMP Cutoff at 25ha 
Cuberoot transformed 
Scaled to [0,1] 

Total impervious area upstream from a 
given cell. Computed by weighting the 
computation of FLACC with IMP value 
between 0 and 1 in each cell. Defines the 
amount of runoff that should be expected 
in small rain events. Very large values are 
linked to natural streams, so a cutoff was 
defined at 25 ha. Values follow a 
leptokurtic distribution and are therefore 
transformed. Not used in any previous 
studies. 

FLSLO Cutoff at 250 ha Cuberoot 
transformed Scaled to [0,1] 

Flow accumulation weighted by the 
SLOPE in each cell. Used as expression of 
average flow velocity on the path  

Table 1 (continued ) 

Variable Data adjustments (listed in 
order of application) 

Reasoning 

towards a cell that could quantify ratio 
between infiltration and runoff. Not used 
in any previous studies. 

TWI Squareroot transformed. 
Scaled to [0,1] 

Defined as ln(α/tan(β)) with α being the 
contributing area per unit contour length 
and β the local terrain slope (Beven and 
Kirkby, 1979). Measures the tendency of 
an area to accumulate runoff. Used by ( 
Pham et al., 2020; Zahura et al., 2020; 
Zhao et al., 2020).   
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sampling approach was applied for the rain events. We sorted the rain 
events by their maximum 30 min rainfall intensity and then divided 
them into 10 groups, each containing 5 events (the three least intense 
events were not used for validation). Each of the 5 events in each group 
was then randomly assigned to a different validation set. For each of the 
five folds, a separate training dataset was sampled following the same 
procedure as outlined in Section 2.1.3. We did again consider permu
tations of size n = 10,000. 

2.2.5. Objective function and optimization 
All networks were fitted by minimizing the mean-squared error 

(MSE) between the maximum depth flood maps predicted by the neural 
network and those generated in the hydrodynamic simulation. In this 
process, a square root transform was applied to the flood depths to 
reduce the skewedness of the distribution of simulated flood depths. 

We applied the Adam optimizer over 500 epochs. As suggested by 
Smith (2017), a triangular learning rate schedule was considered where 
the learning rate over a period of 10 epochs varied between an upper 
limit and a lower limit of 5⋅10− 5. The upper limit exponentially 
decreased from a starting value of 10− 3 as a function of 0.95epochnumber. 
The implementation of the learning rate scheduler is available in Löwe 
(2021). The triangular learning rate could avoid divergence of the net
works during initial tests where skip connections had not been imple
mented. Once a suitable architecture had been implemented, it was not 
deemed essential. 

2.3. Performance evaluation 

To assess the performance of the data-driven models in the various 
steps of the model development procedure, we compared maximum 
flood depth maps generated by the hydrodynamic simulation against 
flood maps predicted by the neural network and computed the score 

values shown in Table 2. Score values were computed considering only 
those pixels where either the hydrodynamic model (HD) or the neural 
network (NN) predicted flooding. Similar to Jamali et al. (2019), a depth 
threshold thr of 0.05 m was applied for all scores. For the critical success 
index (CSI), separate score values were computed for thresholds of 0.05 
m and 0.3 m to distinguish prediction accuracy in areas with greater 
water depth. 

2.4. Technical implementation 

Neural networks were implemented in Tensorflow version 2.3.1 
(Abadi et al., 2016) using the interface with Python 3.8.2. Model 
training was performed in a high performing computing environment 
using Nvidia Tesla V100-PCIE GPU’s with 16 and 32 GB memory. 

3. Results 

3.1. Step 1 – feature selection 

3.1.1. Spearman correlation 
Fig. 3 illustrates the ranked correlation coefficients between the 

candidate input datasets introduced in Table 1, and the simulated water 
depths in the 53 considered rain events. One correlation coefficient was 
computed per input dataset and per rain event. 

Not very surprisingly, the figure suggests a clear correlation between 
the datasets characterising local deformations of the terrain and water 
depth. Pluvial flood water accumulates in local depressions, and thus 
locations with elevations that are lower than the neighbourhood average 
(DEM_L) and locations inside sinks (identified by positive values of 
SDEPTH as well as TWI) are good predictors of high water depths. For 
the same reason, we could identify a strong correlation between water 
depth and the CURV dataset, which distinguishes concave and convex 
regions of the terrain (Supporting Information, Figure S12). In addition, 
it was noticeable that DEM_L exhibits a substantially stronger correla
tion with water depth than DEM. 

Slightly lower correlations were observed for the input variables that 
characterize the size of the upstream area contributing to the water flow 
at a given location (FLACC, FLIMP, FLSLO). These variables should be 

Table 2 
Score values used for measuring the level of agreement between maximum water 
depths predicted by neural network and simulation from the hydrodynamic 
model. References indicate related studies where the indices were used.  

Score Purpose Equation Range Best 
value 

RMSE[m] ( 
Jamali 
et al., 
2019)  

Average 
deviation of 
prediction 
water depths 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

∑5
j=1

(
YNN

i − YHD
i

)2
√

0 − ∞  0 

CSIthr[%] ( 
Bennett 
et al., 
2013; 
Davidsen 
et al., 
2017b; 
Jamali 
et al., 
2019, 
2018)  

Binary 
comparison 
on pixel to 
pixel basis 

CSIthr =
Hthr

Hthr + Mthr + FAthr  

0 − 1  1 

NSE[-] ( 
Berkhahn 
et al., 
2019)  

Create maps 
for variation 
of prediction 
accuracy in 
space 

NSE =

1 −

∑n
i=1

∑5
j=1

(
YNN

i,j − YHD
i,j

)2

∑n
i=1

∑5
j=1

(
YNN

i,j − YHD
i

)2  

− ∞ − 1  1 

ANN/AHD[-]  Ratio of total 
area flooded 
>0.05 m 

ANN

AHD
=

H0.05 + FA0.05

H0.05 + M0.05  

0 − ∞  1 

YNN
i ,YHD

i - water depths predicted in i-th pixel by neural network (NN) and hy
drodynamic model (HD) in validation rain event j (5 events in total). 
Hthr , Mthr ,FAthr – hits (water depth in pixel above threshold thr in NN and HD), 
misses (water depth in pixel above threshold only in HD), false alarms (water 
depth in pixel above threshold only in NN). 
YHD

i – average of the maximum water depths computed for pixel i in all 5 vali
dation rain events j. 

Fig. 3. Spearman ranked correlation between simulated water depth and 
candidate input datasets for the neural network models. Correlation values 
were computed separately for each of the considered rain events, and the 
boxplot shows the spread of correlation values across events. 
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useful to explain the amount of water and thus the frequency of flooding 
at a given location, but the main flow paths form narrow lines in these 
datasets that are not linked to, for example, the extent of sinks in which 
water will spread out. In a direct pixel-to-pixel comparison, these vari
ables therefore have lower predictive power. In a similar manner, SLOPE 
can be used to identify flat regions where water is likely to accumulate, 
and IMP contains some information on the amount of runoff generated 
in an area, but neither can be used to point out the exact extent and 
locations of the flood areas. Finally, considering Fig. 3, the relationship 
between the ASP variables and water depth would need to be assumed to 
be random. 

The results in Fig. 3 have to be interpreted carefully with regards to 
choosing the inputs that should be included in the data-driven model. 
Several of the input datasets are correlated (e.g. SDEPTH, DEM_L, TWI) 
and are therefore less likely to supplement each other when combined in 
a predictive model. Further, input data that do not exhibit correlation 

with the water depth maps in a pixel-by-pixel comparisons, may increase 
the predictive power of other variables, or gain predictive power due to 
spatial aggregation in the convolutional blocks of the neural network. 
For example, IMP may be useful to distinguish the water depth in 
different sinks with similar SDEPTH values, and the two ASP datasets 
can only characterize the terrain when considered in combination. 

3.1.2. Forward selection 
The aim of the forward selection procedure was to mitigate the 

limitations outlined in the previous section by assessing whether an 
input dataset actually increases the predictive power of a neural 
network. Fig. 4 illustrates the score values computed in the different 
steps of this procedure. In each panel, the top row corresponds to the 
first step of the procedure (network with only one input dataset), and the 
colours in different columns illustrate the score value computed when 
considering the corresponding dataset as model input. The second row 

Fig. 4. Score values obtained in the forward selection procedure. From top to bottom row, models included an increasing number of input datasets, and each column 
shows the score values obtained when adding the corresponding input dataset to the model. For example, all models in the 4th row included ASP, SDEPTH and FLSLO 
and score values reflect the effect of including any of the other datasets. Panels A and B: CSI scores for water depth thresholds of 0.05 and 0.3 m. Panel C: RMSE for 
pixels were either hydrodynamic model or neural network predicted water depths above 0.05 m. Panel D: Ratio of total area flooded with depths >0.05 m in the 
neural network and the hydrodynamic model. Note that color scales vary between panels. 
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then shows the results for the second step of the procedure, where the 
best performing input from step 1 was included in the model and com
bined with each of the other inputs. Note that we considered the two 
ASP datasets as a single combined entity, as their individual inclusion as 
input variables has no physical justification. Thus, whenever ASP was 
included in the model, two datasets (cosine and sine) were included. 

Fig. 4 illustrates that, considering a model with only one type of 
spatial input, the ASP data yielded the best score values on the valida
tion dataset. In addition, the DEM variable yielded similar predictive 
power as the DEM_L variable. These results are in direct contradiction to 
the conclusions drawn based on Fig. 3. However, the neural network can 
process information in a different way than the pixel-by-pixel compar
isons performed when computing Spearman correlation or similar 
measures such as information gain (e.g. Pham et al. (2020)). This un
derlines that it is important not to solely rely on such measures when 
choosing the inputs for deep learning algorithms. The ASP data are at an 
advantage over other variables, as they are represented by two separate 
datasets and thus provide greater flexibility to represent different trends. 
Nevertheless, these data consistently yielded an improvement in pre
dictive power, also in experiments where we added them to models with 
other inputs (not documented), and they were also selected as a key 
input for modelling water depths by Guo et al. (2021). 

As the selection process proceeded, we obtained slight improvements 
in predictive power. We were not able to achieve a further increase in 
predictive power once five datasets had been included in the model and 
stopped the process at this point. The selected input datasets were (in 
this order) ASP, SDEPTH, FLSLO, IMP and CURV. In the evaluation of 
predictive power, we focused on panels A-C in Fig. 4, while the ratio of 
total flooded areas was considered only for information reasons. All 
neural networks consistently underestimated the total flooded area (see 
Section 3.4). Networks that performed better in terms of total flooded 
area, usually achieved this improvement at the cost of an increased 
number of false predictions, and thus a reduced prediction skill. 

Fig. 4 further highlights the correlation between the four datasets 
characterizing surface flow paths. Neither TWI, FLIMP or FLACC yielded 
improved prediction skill once FLSLO had been included in the model. 
For reference, we considered a model where principal component 
analysis was used to reduce the number of spatial inputs from 11 to 7 
orthogonal datasets. This model yielded comparable performance as the 
one obtained by forward selection (Supporting Information S6). 

3.2. Step 2 – optimization of hyper-parameters and residual analysis 

3.2.1. Effect of hyper-parameters on model performance 
Fig. 5 shows CSI0.05m values computed for different combinations of 

the hyper-parameter values k, bf and d, considering a water depth 
threshold thr = 0.05 m. Fig. 6 illustrates the training time per epoch for 
the same combinations of hyper-parameters. A total of 45 hyper- 
parameter combinations was considered with training times that, for 
500 epochs, ranged from 6.5 h to 5 days. The variation of RMSE scores 
for different hyper-parameter settings is consistent with CSI0.05m. An 
overview of all score values for different hyper-parameter combinations 
is enclosed in the Supporting Information, Section S5. 

From Fig. 5 and Fig. 6 it is clear that kernel edge lengths k>3 do not 
in general improve the predictive performance of the network, while 
increasing the computational expense. When considering small network 
depths (d = 2 and 3), a small increase of CSI with increasing kernel sizes 
was apparent for some models. The probable reason would be that larger 
kernel sizes increase the region over which the network can perform 
spatial aggregation, which is otherwise quite limited for shallow net
works. The trend was, however, not very pronounced. 

An increasing number of filters in the convolutional layers (param
eter bf) generally improved the model results, but the computational 
expense also increased roughly linearly with the number of filters. We 
experienced memory issues when considering bf > 64, and have there
fore considered this as an upper limit. 

Increasing network depth generally led to higher CSI values. How
ever, this was generally only true until depths in d = 4 or 5. Deeper 
networks were over-fitted and thus led to lower CSI values. For bf = 16 
we also tested greater network depths d = 7 which, however, led to a 
further decline in performance compared to d = 6 (Supporting Infor
mation S5). 

The best performing model was identified to have parameters k = 3, 
bf = 64 and d = 5. This model can perform spatial aggregation over a 
region of approximately 500x500 m. Löwe and Arnbjerg-Nielsen (2020) 
could obtain robust estimates of average imperviousness in an urban 
area from high-resolution building data at a similar spatial scale. 

3.2.2. Flood maps and residual analysis 
Fig. 7 compares predicted maximum water depths generated by 

MIKE 21 and the neural network with k = 3, bf = 64 and d = 5. The 
displayed water depths were taken from the validation dataset for rain 

Fig. 5. CSI scores computed for a water depth threshold of 0.05 m when considering different combinations of the network hyper-parameters depth (d), number of 
filters in the first convolutional block (bf) and edge length of the convolutional kernels (k). 
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Fig. 6. Training time per epoch (tepoch) when considering different combinations of the network hyper-parameters depth (d), number of filters in the first con
volutional block (bf) and edge length of the convolutional kernels (k). 

Fig. 7. Water depths predicted by neural network and the hydrodynamic model MIKE 21 in rain event no. 10 (see Supporting Information). Blue colors illustrate 
different water depths predicted by the two models. Cells where the NN failed to predict water depths >0.05 m are highlighted red, cells where the neural network 
falsely predicted water depths >0.05 m are highlighted yellow. The two figures on the left depict a scene in the city center, while the figures on the right show an area 
in the outskirts. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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event no. 10 for an area in the centre of Odense. Areas where the neural 
network failed to predicted water depths > 0.05 m are highlighted red, 
while areas where the neural network falsely predicted water depths >
0.05 m are highlighted yellow. Fig. 8 shows pixel-wise NSE values 
computed for the validation rain events for the same area as in Fig. 7, 
and for a more rural area. From the two figures, several characteristics of 
the neural network predictions are evident:  

1. The neural network did not predict water depths that are entirely 
unreasonable. We did also not identify any such issues in other lo
cations or for other rain events. This is important, because the 
mathematical formulation of the neural network does not account for 
physical constraints such as mass balances.  

2. The neural network could identify hotspots of flooding where water 
accumulates, and it did also generate accurate predictions of water 
levels in these locations.  

3. The network was not able to accurately represent shallow flooding 
along transport stretches, i.e. outside sinks. This behaviour is 
particularly evident from Fig. 8, where low NSE values cluster along 
roads and flow paths leading through backyards, and it explains the 
consistent underestimation of total flooded area by the neural 
network (Fig. 4). The five input datasets considered in this model 
were thus not sufficient to identify these locations. 

To characterize the behaviour of the model in different rain events, 
we plotted the water volumes that the sinks (or terrain depressions) in 
our validation dataset contained based on the maximum water depths 
predicted by the neural network (NN) and the hydrodynamic model 
MIKE 21 (HD) (Fig. 9). We plotted blue spot volumes for all five rain 
events in the validation dataset, but only three of the events generated 
flooding in either of the models. This implies that the neural network 
was able to determine that no flooding should occur in events no. 44 and 
47. This was the case even though these events had rather high 
maximum rain intensities of 34 and 16 mm/hr (averaged over a 30 min 
period). 

However, while the predictions of water volumes could be 

considered accurate for event no. 9 and 10, we could also identify a clear 
underestimation of water volumes in event 39. This event had a 
maximum rain intensity of 42 mm/hr (averaged over a 30 min period). 
Several events with such intensities were included in the training 
dataset. However, event 39 was characterized by two pronounced 
rainfall peaks with similar intensity. It was the only event with this 
characteristic in our dataset and it is therefore reasonable to assume that 
the network simply did not learn to distinguish this type of rain event. 

3.3. Step 3 – k-fold cross validation 

Table 3 shows the score values computed for the water depth pre
dictions generated by the neural networks in the 5-fold cross validation 
approach, and compares them against the score values obtained for the 
best performing model in step 2 of the model development procedure. 

A clear increase in prediction error can be observed when comparing 
the score values obtained during model validation in the five folds 
against the best performing model from step 2. The same hyper- 
parameters were considered in both steps and all models were trained 
on 10,000 patches. However, in step 3 these patches were sampled from 
a smaller number of rain events but a bigger part of the study area than 
in step 2. The increased error can thus be attributed to an insufficient 
representation of rainfall patterns in the training phase, which un
derlines the need to present the network with a representative sample of 
rain events in the training phase. 

4. Discussion 

4.1. Model configuration and performance 

Our results show similar RMSE scores (0.08 m) for predicted flood 
water depths as existing screening approaches (Jamali et al., 2019) with 
lower CSI scores in the order of 0.5. It should be noted that our results 
were obtained for natural rain events and locations not considered in the 
training phase, unlike other studies which focused on artificial design 
storms (Jamali et al., 2019; Jamali et al., 2018) or known locations (Guo 

Fig. 8. NSE computed for predicted water depth in each pixel during 5 validation rain events. Panel A shows a rural-dominated area, while panel B shows the same 
urbanized area as Fig. 7. Only pixels where either U-FLOOD or MIKE 21 predicted water depths >5 cm in any of the 5 rain events were considered. 
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et al., 2021). Water depths in depressions were generally predicted well, 
while the prediction of shallow flooding on surface flow paths outside 
depressions remains a challenge. 

The forward selection procedure resulted in a model with five spatial 
input datasets. This procedure can account for interactions between 
variables and exploit the neural networks ability to perform spatial ag
gregation. It is therefore preferred over methods that perform one- 
variable-at-a-time comparisons between model inputs and the output 
variable such as ranked correlation or mutual information. It was also 
clear that considering too many model inputs increased the prediction 
error of the neural network due to overfitting in the training phase. Note 
that the forward selection procedure is not exhaustive. It adds variables 
one at a time and may therefore not discover all relevant combinations 
of variables. In addition, the selection of model inputs and hyper- 
parameters is entangled, because different models can exploit spatial 
information in different ways. More extensive procedures for selecting 
input variables and hyper-parameters will, however, pose computa
tional challenges. 

Our model was able to accurately predict water depths for many rain 
events, as well as to distinguish situations where no flooding should 
occur. However, the increased prediction error for the double-peak 
event no. 39 also illustrated a vulnerability in appropriately capturing 
the temporal dynamics of the rain events. The number of rain events that 
could be considered in the training dataset is limited, because time- 
consuming hydrodynamic simulations need to be performed for each 
rain event, and because the best performing network with d = 5, k = 3 
and bf = 64 required a training time of up to 35 h (for 500 epochs) using 
a high-end GPU. Other studies applying data-driven models with a 
similar complexity have similarly not considered this issue (Berkhahn 

et al., 2019; Guo et al., 2021; Zahura et al., 2020), or focused on tem
poral resolutions of one day and above (Pham et al., 2020; Zhao et al., 
2020). Different ways of specifying rainfall input to the neural network 
may also lead to higher prediction performance of the model. Based on 
previous experiences (Böhm, 2020; Eriksen and Dichmann, 2019), we 
experimented with neural networks that considered statistical rainfall 
characteristics based on average rain intensities for varying time in
tervals, as well as with 1D convolutional layers that extract temporal 
patterns from the rainfall time series. None of these so far yielded a 
better model performance than the setup outlined in Fig. 2 (Supporting 
Information S6). 

4.2. Technical modelling setup 

In line with the common approach for image segmentation and 
previous work of Guo et al. (2021), we have applied a modelling setup 
that generates predictions of water depth for a fixed-size patch of 
256x256 pixels. This approach is counter-intuitive from a hydrological 
perspective, because hydrological features such as flow paths or sinks 
will be cut on the edge of the image. It is important to note that the 
model input inside an image is calculated based on the entire catchment 
before it is provided to the network. For example, flow accumulation 
values will not be affected by the cutting operation, because they are 
calculated on the entire terrain dataset, not on the 256x256 patch. In the 
prediction phase, the prediction window can be flexibly positioned in 
the desired location. In principle, the convolutional network enables the 
consideration of images of varying sizes in the training and the predic
tion phase. The image size could then be adjusted to the hydrological 
features in a specific location. However, challenges in setting up efficient 
input pipelines for the neural network may arise. 

4.3. Limitations 

U-FLOOD was trained based on hydrodynamic simulation results 
generated for a city in a moraine, coastal landscape. The hydrodynamic 
simulations considered a uniform distribution of rainfall in space, a 
simplified representation of the sewer system in the form of reducing the 
effective rainfall, and a constant, uniform infiltration rate for runoff 
computation on green areas. In addition, we excluded fluvial flooding 
from the training data. These factors limit the transferability of U- 
FLOOD in its current configuration as outlined below:  

1. Different landscape types (e.g. alpine), different soil conditions - The 
consideration of varying infiltration rates requires an additional 
spatial input dataset that was not included in our work. Training the 

Fig. 9. Scatter plot of water volumes in sinks predicted by neural network (NN) and MIKE 21 (HD). Results are shown only for events 9, 10 and 39 (see Supporting 
Information), as neither model predicted flooding in events 44 and 47. 

Table 3 
Score values obtained in a 5-fold cross validation procedure as compared to the 
validation results obtained for the best performing model in step 2 of the model 
development procedure. The same hyper-parameters were used in steps 2 and 3, 
but different training and validation datasets were considered. ANN and AHD 

corresponded to the total flooded area with water depths >0.05 that were pre
dicted by the neural network and the hydrodynamic model, respectively.   

RMSE CSI0.05m  CSI0.3m  ANN/AHD  

Step 2 0,080 0,583 0,592 71% 
Fold 1 0,130 0,453 0,235 60% 
Fold 2 0,121 0,447 0,438 50% 
Fold 3 0,103 0,459 0,276 70% 
Fold 4 0,111 0,451 0,272 86% 
Fold 5 0,196 0,474 0,353 81%  
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model for different infiltration rates would also enable the consid
eration of antecedent rainfall which reduces the infiltration capacity 
of the soil (Davidsen et al., 2017a). Different landscape types might 
require revisiting the spatial input variables to the model. For 
example, terrain slope may well play a more prominent role in alpine 
regions than in our study.  

2. Non-uniform distribution of rainfall in space – U-FLOOD uses simple 
rainfall statistics (or alternatively 1D hyetographs) as input to pre
dict flood depth. This approach cannot be used when spatial varia
tions of rainfall are relevant. Instead, setups that learn 
spatiotemporal rainfall dynamics would likely be required (e.g. Zhu 
et al. (2020)) and training efforts would increase substantially. Note 
that U-FLOOD was trained to predict pluvial flooding in catchments 
with extents in the order of 2 km. At such scales, spatially uniform 
rainfall is commonly assumed for flood screening in infrastructure 
design and weather models (as input to flood warning systems) 
hardly generate forecasts with resolutions finer than some km.  

3. Non-uniform sewer system capacity – We assumed that the sewer 
system has a capacity of 12 mm/h in all locations in the catchment. 
This assumption will not be valid in many situations. A more dy
namic consideration of network capacity could be achieved by 
training U-FLOOD to consider surcharge volumes from a 1D sewer 
model as input, similar to (Jamali et al., 2019; Jamali et al., 2018). 
This could be implemented by considering a spatial input dataset 
where flow paths are weighted according to the surcharge volume 
encountered along the flow path (similar to FLSLO), and it would 
also allow for the consideration of spatial rainfall variation in the 1D 
sewer model. 

4.4. Outlook 

As outlined in the previous section, future research should focus on 
generating increased training datasets that make U-FLOOD applicable to 
a wider range of situations. Technical improvements to consider are, in 
particular, the development of spatial input data that yield information 
on shallow water depths on flow paths (e.g. elevation above the nearest 
flow path, or potential water depth based on rough Manning calcula
tions as demonstrated by Thrysøe et al. (2021)), and the implementation 
of stratified sampling schemes that consider the temporal dynamics of 
rain events. Finer model resolutions than 5 m are relevant for many 
practical situations and could be achieved with multi-scale neural net
works (Nah et al., 2017) that process different input datasets at different 
resolutions. Finally, deep learning offers the possibility to consider 
multiple reference datasets when training. We can therefore envision 
models that learn from both hydrodynamic simulations and sparse flood 
observations, possibly enabling the calibration of flood models across 
catchments. 

5. Conclusions 

We have presented a setup for predicting urban pluvial flood hazards 
in high resolution and on short time scales using convolutional neural 
networks that are inspired by the widely applied U-NET architecture. 
Based on our results, we draw the following conclusions:  

1. Neural networks that consider topographic inputs can be used for 
predicting pluvial flood hazards, also in spatial locations and for rain 
events that were not included in the training dataset, because they 
learn to associate terrain properties with the likelihood of flood 
occurrence.  

2. The spatial input data provided to the neural network need to be 
selected in a setting that is similar to the final model used for pre
diction. This ensures that interactions between different input 
datasets and the ability of the neural network to perform spatial 
aggregation are considered when selecting input data.  

3. Neural networks with topographic input data need to be designed in 
a parsimonious manner. Too many input datasets lead to overfitting 
and increased prediction error. In our study, a combination of five 
datasets describing terrain aspect and curvature, the depth of terrain 
depressions, imperviousness and flow accumulation yielded the best 
performing model.  

4. Deeper networks improve prediction accuracy only up to a certain 
level. In our study, this level was reached with a model that had 28 
million trainable parameters. Once trained, this network generated 
predictions of maximum water depth for an area of 1280x1280 m in 
less than one second.  

5. The rain events presented to the neural network during training need 
to reflect the range of rain events for which the model should 
generate predictions. This applies not only for event depth and in
tensities, but also the temporal evolution of events. The computa
tional demands for training deep neural networks limit the number 
of rain events than can be considered, thus creating a demand for 
stratified sampling schemes that consider the temporal evolution of 
events. 

Our study contributes to a so far limited literature, where only two 
studies have applied similar approaches for predicting 2D urban flood 
maps in high resolution and on short time scales, and no evaluations of a 
large set of potential model inputs and of predictive performance on 
historical rainfall data are available. Interesting opportunities arise, for 
example, by considering our setup to train neural networks for flood 
prediction based on a simultaneous consideration of simulation results 
and flood observations from different cities, or by using U-FLOOD to 
minimize the number of hydrodynamic simulations required to assess 
expected flood damages. 
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Löwe, R., Arnbjerg-Nielsen, K., 2020. Urban pluvial flood risk assessment – data 
resolution and spatial scale when developing screening approaches on the 
microscale. Nat. Hazards Earth Syst. Sci. 20 (4), 981–997. https://doi.org/10.5194/ 
nhess-20-981-2020. 
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