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Abstract
This paper presents the coupling of a state-of-the-art ride-pooling fleet simulation package with the mobiTopp travel demand
modeling framework. The coupling of both models enables a detailed agent- and activity-based demand model, in which trave-
lers have the option to use ride-pooling based on real-time offers of an optimized ride-pooling operation. On the one hand,
this approach allows the application of detailed mode-choice models based on agent-level attributes coming from mobiTopp
functionalities. On the other hand, existing state-of-the-art ride-pooling optimization can be applied to utilize the full potential
of ride-pooling. The introduced interface allows mode choice based on real-time fleet information and thereby does not
require multiple iterations per simulated day to achieve a balance of ride-pooling demand and supply. The introduced metho-
dology is applied to a case study of an example model where in total approximately 70,000 trips are performed. Simulations
with a simplified mode-choice model with varying fleet size (0–150 vehicles), fares, and further fleet operators’ settings show
that (i) ride-pooling can be a very attractive alternative to existing modes and (ii) the fare model can affect the mode shifts to
ride-pooling. Depending on the scenario, the mode share of ride-pooling is between 7.6% and 16.8% and the average
distance-weighed occupancy of the ride-pooling fleet varies between 0.75 and 1.17.

The transportation sector is facing several challenges,
especially in urban environments. Because of expected
growth in general population and increased urbanization,
offering a comparable level of mobility is likely to require
reshaping urban mobility. Space, whether it refers to
crowding in public transport, a location to park a private
vehicle, or the streets that these vehicles drive on, will be
an even more scarce resource.

Private vehicles are often identified as one of the prob-
lems. High parking demand combined with low occu-
pancy during trips result in a high space consumption of
private vehicles. Ride-hailing services (e.g., uber, Lyft,
Didi) offer similar mobility to users while removing the
necessity to look for parking; however, empty mileage
increases the required space on the streets and causes
congestion (1, 2).

The before-mentioned companies also offer ride-pool-
ing, that is, multiple customers with similar itineraries
share the same vehicle for a part of their trip. With higher
vehicle occupancy, the system could make up for the
empty mileage and the required space per person could
decrease below the level of private vehicles. Furthermore,
emissions per person kilometer (pkm) would also drop

compared with private vehicle usage. Unfortunately, the
ratio of pooled over non-pooled trips is rather small in
the mentioned companies (2).

German regulation therefore considers different rules
for ride-hailing and exclusive ride-pooling services. The
effects of introducing exclusive ride-pooling systems are
currently studied in small-scale pilots by public transport
companies in the largest cities with limited fleet sizes
(e.g., Berlkoenig in Berlin, ioki in Hamburg, Isartiger in
Munich). Additionally, the private-sector company
MOIA started operations in Hamburg and Hanover. In
Hamburg, the company offers the biggest ride-pooling
service for a city in Europe, having a fleet size of cur-
rently 330 vehicles. Up to 500 vehicles are allowed for
the service by the regulating city administration.

Ride-pooling services have positive scaling effects: the
larger the fleet sizes and demand for the service, the
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smaller the amount of empty travel and the larger the
potential to pool trips. The overall effects of a ride-pooling
service on the transportation system depend heavily on the
modal shift. It can be expected that the outcome is quite
different if all customers originate from the public trans-
port sector or if private vehicle trips can be replaced.

Before ride-pooling systems will be permitted without
fleet size limitations, simulations are necessary to predict
the consequences. The status quo (with limited fleet size)
needs to be captured by detailed demand and fleet con-
trol models to understand the current situation before
large-scale and long-term effects are studied.

This study contributes to the research about ride-
pooling by (1) combining two specialized software
packages, one for demand modeling and one for the
operation of a ride-pooling system, in a joint simulation
that by design balances demand and supply of the ride-
pooling service, and (2) testing sensitivities of fleet para-
meters like fleet size, pricing, and service model on travel
behavior, modal shift, and traffic impacts. For this pur-
pose, an example model of a small town (Leopoldshafen,
Germany) is used.

Literature Review

Narayanan reviewed many relevant aspects for shared
autonomous vehicle services (3). Many of the stated aspects
are also valid for (non-autonomous) ridesourcing services
with drivers, which can also be referred to as mobility-on-
demand (MoD) services. This study focuses on demand
modeling and fleet operation for such services.

Travel demand models are an essential tool to esti-
mate the effects of measures and changes in transporta-
tion systems (4). Beginning with classical four-step
models, travel demand was modeled very simply, target-
ing only the result of traffic while ignoring a lot of
behavior-related effects (5, 6). The transition from result-
based to reason-based modeling was enabled by disag-
gregation in travel demand, which is possible in various
dimensions (6). First, individual persons can be modeled
instead of groups or the whole population; these models
are called agent-based (7). Second, the study area can be
spatially disaggregated by using dedicated locations
instead of traffic analysis zones. Third, the investigation
period can be split into smaller chunks by using single
hours or minutes instead of the whole day. While prior
research focused on trip-based models, the findings of
Kutter proved that travel demand is the amount of loco-
motion people do to execute activities (8). Those findings
resulted in a broad spectrum of agent-based, activity-
based, or both, combined travel demand models. In most
of those models, the relationship between demand and
supply focuses on private individualized traffic in rela-
tion to route choice. The main goal of these models is to

capture the interrelation of increased travel times
induced by congestion and travel demand. For the other
modes, such as pedestrians, bicycles, and public trans-
port, the capacity constraints seldom affect the solution,
or network capacities have no direct effect on the travel
time of all passengers. Therefore, a lot of assignment algo-
rithms for macroscopic or microscopic models have been
developed. Nevertheless, most of those traffic assignment
models lack a direct feedback loop or integration into deci-
sions other than route choice. This issue is addressed by
agent-based models such as MATSim, SimMobility,
POLARIS, and mobiTopp (9–16). They provide the
potential to integrate demand directly into destination or
mode choice decisions of single agents and thus allow a
much closer integration of demand and supply.

On the supply side, the operation of MoD systems is
studied as part of the class of vehicle routing problems
(17). Different subclasses of vehicle routing problems
have already been studied for more than 40 years (18).
Because of a high degree of dynamism—that is, demand
information is revealed to the operator over time—
policies are unlikely to find an optimal solution (that
could be achieved if all demand information was avail-
able). Rule-based and optimization-based strategies have
been developed and evaluated in simulation frameworks
that model the operation of a fleet with flexible routes
(19–21). Several vehicle-request assignment policies for
fleets of thousands of vehicles were compared for ride-
hailing, for example, by Hörl et al. and Hyland and
Mahmassani (22, 23). The problem of matching various
requests into tours for vehicles is computationally far
more challenging. Key contributions for scaling
optimization-based solution approaches were made by
Santi et al. and Alonso-Mora et al., and computationally
further improved in Liu and Sumaranayake, and
Engelhardt et al. (24–27). The developed advanced con-
trol policies for ride-pooling can generate substantial
benefits over simpler heuristics; numerical experiments
conducted in Engelhardt et al. and Ruch et al. quantify
these benefits (28, 29). Moreover, the amount of possible
matches depends on the offered service parameters, that
is, reservation time, waiting time, and detour time (30,
31). The papers mentioned in this paragraph typically
assume exogenous demand and aim to serve this given
demand as efficiently as possible.

There are several approaches that combine demand
and MoD supply modeling. Typically, these are based
on stochastic user equilibrium approaches, where trave-
lers’ mode choices are adjusted day-to-day, where the
adjustments are based on within-day simulations of the
service (32). Djavadian and Chow extended their frame-
work to model the impact of elastic supply, where drivers
also adjust day-to-day in a two-sided platform (33). Liu
et al. integrate a heuristic ride-hailing control algorithm
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into an activity- and agent-based MATSim simulation
model, in which travelers make plans before the simula-
tion of a day and score their travel utility afterwards
(34). A co-evolutionary process is used over multiple
iterations to reach an equilibrium. This approach in
MATSim was improved by Hörl et al. with a more
advanced fleet control and a mode-choice model after
iterations of daily network simulations (35). A similar
approach is available in SimMobility, which models a
transportation system in three timescales (36). Activity
planning and mode choice—including the choice to use
MoD systems—are determined pre-day and the MoD
system is simulated in a stage called supply. Similarly to
MATSim, these stages are iterated in a learning loop.
Liu and Samaranayake extend this endogenous demand
loop by an operator loop to find an optimal fleet compo-
sition of vehicles with passenger capacity of 1, 4, and 10
(26). The latest versions of commercial transportation
software packages include mobility services in their
demand models and contain fleet operation modules that
work similarly to the described approaches (37, 38).

An idea to reduce the amount of required iterations
or remove them completely utilizes mode choice models
based on real-time information of various mobility
options, for example, public transport, private vehicle,
and MoD systems (39, 40). Dandl et al. use a rather sim-
ple demand model, whereas Wilkes et al. employ rather
simple ride-pooling control algorithms (39, 40). The goal
of this work is to combine the very detailed travel
demand modeling framework mobiTopp with the fleet
simulation and ride-pooling control algorithms from
Engelhardt et al., where ride-pooling demand and supply
are regulated by the availability of real-time information
(27).

Approach

The main idea behind the developed approach is the joint
simulation of ride-pooling demand and supply in one
simulation layer without iterations. mobiTopp applies
destination and mode choice models, and simultaneously
the fleet simulation mimics the operation of the ride-
pooling service to guarantee realistic ride-pooling choice
alternatives.

Being implemented in different programming lan-
guages, both frameworks are not integrated into each
other but coupled at various points during simulation.
First, the input data is fed into both frameworks at the
start. As shown in Figure 1, structural data, such as
demography of the inhabitants and the attractiveness of
different parts of the study area, is used by mobiTopp to
generate the population and to feed further choice mod-
els. The transportation network data is used by both fra-
meworks. Second, the exchange of dynamic data during

the simulation takes place during mode choice where
mobiTopp uses static information for all modes except
ride-pooling. For ride-pooling, it requests dynamic infor-
mation of the fleet simulation, that is, the ride-pooling
operator makes an offer based on the current fleet state.
Therefore, the demand to the ride-pooling system is
inherently limited by the fleet, as no new offers can be
made when the fleet operates at full capacity. Third, con-
trol commands are transferred at various points during
the simulation to synchronize both frameworks with
each other.

All together, in contrast to other modeling methods, it
is not necessary to run many simulation runs (iterations)
with the selected approach. This is because the mode
choice is undertaken based on live parameter values com-
bined with discrete choice models, and, consequently, a
self-regulating demand-supply balance for the ride-
pooling service is created. In the following, each part of
the coupling is explained in more detail.

mobiTopp

mobiTopp is an agent-based travel demand modeling
framework that models every person, household, and car
of the study area (15, 16). It is written in Java. The popu-
lation of the study area is modeled as agents following
the definition of Bonabeau (7). Agents are ‘‘autonomous
decision-making entities,’’ which ‘‘individually assess
their situation and make decisions on the basis of a set of
rules.’’ Moreover, mobiTopp is based on the concept of
‘‘simulating activity chains’’ (41). Activity programs in
mobiTopp are modeled for a whole week either by gath-
ered programs from representative empirical data or by
programs generated synthetically (42). While agents carry
out their activity programs, they decide where an activity
will take place and which mode to use. The modular
nature of mobiTopp allows to switch between different
models for destination and mode choice. Current

Figure 1. General overview of the simulation environment.
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implementations are based on discrete choice models,
namely logit and nested logit models (43). These imple-
mentations take into account sociodemographic attri-
butes of agents and households as well as network
characteristics such as travel time and cost. To distin-
guish between different times of the day, travel times can
be modeled on an hourly basis. Route choice is currently
only available for public transport (44). For other modes,
external tools such as Visum and MATSim can be used
(45).

mobiTopp consists of two stages: initialization (long-
term module) and simulation (short-term module). For
initialization, the long-term mobility aspects of agents
and households are defined. This includes population
synthesis, generating all agents and households based on
structural and empirical data. Also, locations for fixed
activities (home, work, and education), the activity pro-
grams, the ownership of private cars and public transport
passes, and the membership at various mobility providers
are modeled for each agent. These long-term decisions
form the foundation for the simulation of travel demand
in the short-term module. While all agents are simulated
simultaneously during this stage, the short-term module
applies the destination and mode choice models sequen-
tially for each trip of an agent. The destination choice dif-
ferentiates between two types of destinations: activities at
fixed locations (work, education, and home) and at flex-
ible locations (e.g., leisure and shopping). Fixed locations
are determined in the long-term module and are therefore
kept fixed during the short-term module, while flexible
locations are undefined after the long-term module and
have to be selected in the short-term module. The desti-
nation choice itself is separated into two parts. First, the
discrete choice model selects a traffic analysis zone where
the activity can be carried out. Second, a distinct location
inside the traffic analysis zone is selected. mobiTopp by
default supports fives modes: walking, cycling, public
transport, car as driver, and car as passenger. One of those
modes is selected using a discrete-choice model consider-
ing the travel time and cost as well as the current situa-
tion of the person in the household (15). In particular, a
car can only be selected if the household owns one and it
is not currently used by another member of the house-
hold. mobiTopp’s modular nature allows to replace desti-
nation and mode choice models depending on the study
area.

Because of its modular and open-source fashion,
mobiTopp has been extended several times. First, by
introducing electric and hybrid vehicles into a model of
the region of Stuttgart, which allows to replace all vehi-
cles either private or shared to be powered by electric or
combustion engines (46, 47). Further on, sharing systems
for cars have been introduced allowing inhabitants to
use cars other than their own (48). With the detailed

modeling of car passenger trips, pooling of car trips in
the context of the same household has been introduced
(49). Combining both methodologies allows a micro-
scopic model of on-demand mobility systems as
described by Wilkes et al. (40).

For the present study, mobiTopp was extended in sev-
eral aspects, partially building on the work presented by
Wilkes et al. (40). First of all, a new transport mode is
added to be capable of identifying trips performed by the
ride-pooling mode. Next, modifications to the handling
of these trips were required. This is because the regular
transport modes in mobiTopp use static travel time and
cost matrices and the values required for mode choice
parameters thus can be based on a query to these
matrices. For the present work, however, methods for
dealing with dynamic time and cost values are required.
Furthermore, to handle the requests and responses, and
to provide interfaces to communicate with the fleet simu-
lation, modifications were needed.

Interface

The communication between mobiTopp and the fleet
simulation framework is triggered at various points dur-
ing the simulation. At the beginning, mobiTopp verifies
that the fleet simulation framework is set up and the
socket communication is ready. During the simulation,
there are event- and time-triggered communications
between mobiTopp and the fleet simulation as illustrated
in Figure 2.

Each time an agent is about to perform a mode
choice, mobiTopp sends a request to the fleet simulation.
This request contains information on the origin and des-
tination of the agent. The fleet simulation’s response
contains information about the required travel time (split
in access, waiting, riding, and egress time) and costs
offered by the provider. This information is evaluated by
mobiTopp and the mode choice is performed, consider-
ing all available modes for the upcoming trip. In case the
agent’s decision is to use ride-pooling, a binding booking
is communicated to the fleet operator.

Further communication takes place after each simula-
tion time step. mobiTopp communicates to the fleet
simulation that a time step has finished and the next is
about to start. Then, the fleet simulation optimizes the
current fleet assignments. After that, the vehicles of the
fleet move according to the current assignments and cus-
tomers board and disembark the vehicles in the fleet
update step. As a result of this step, the list of agents,
which are about to arrive in the following time step, is
sent to mobiTopp.

Because of the separation of booking requests and
optimizing all requests, the fleet simulation is able to
respond to various requests with realistic, utilization-
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dependent offers, and optimize them in conjunction.
This two-stage approach enables mobiTopp and the fleet
simulation to balance ride-pooling demand and supply
in a single run.

Fleet Simulation

The fleet simulation module is implemented in Python
and represents an additional travel mode accessible for
each agent within mobiTopp. The task of the module is
to simulate the detailed interaction between agents using
ride-pooling for a certain trip and a ride-pooling fleet
operator offering the service. A travel request is defined
by a request ID i, a request time ti, the network origin
node oi, and the network destination node di. The fleet
operator controls a fleet of Nv vehicles with capacity cv.
The operator has two main tasks: First, offers for incom-
ing travel requests are created; the attributes of these
offers are the input for the discrete choice models of
mobiTopp. Second, agents that decided for the ride-
pooling service are included into the routing tasks of a
fleet’s vehicle.

Within this framework, a routing task c is defined by
an ordered list of stops at certain network nodes where
boarding processes are scheduled, charging processes are
conducted, or vehicles end their re-positioning tasks.
Stops are connected by the fastest route within the
underlying street network. After an update of the simula-
tion time by DT is communicated by mobiTopp, vehicle
movements and boarding processes are carried out
according to the currently assigned routing tasks for
each vehicle.

The following policy is applied to compute routing
tasks for vehicles: First, routing tasks have to fulfill a
maximum waiting time constraint for each agent that

should be picked up on the route, that is, the duration
between each agent’s request and pick-up is smaller than
or equal to twaitmax. Second, routing tasks have to fulfill an
in-vehicle time constraint for each agent; the in-vehicle
time is bound by a maximum detour parameter relative
to their fastest route travel time Ddet

max. Third, routing
tasks have to fulfill the constraint of vehicle capacity at
all times, that is, the number of on-board passengers can-
not exceed cv. Finally, the goal is to assign routing tasks
c to each vehicle v 2 Nv that minimize the global objec-
tive function

N=
X

v

r(cv), ð1Þ

with the objective function value of a single vehicle
routing task r(cv). Charging and re-positioning strategies
are not considered in this study.

In this study, an objective function is implemented,
which rewards serving as many requests as possible while
minimizing the overall service time of fleet vehicles:

r(cv)= tendc � tstartc � Nr
cg: ð2Þ

tendc and tstartc is the time the routing task cv is com-
pleted and started, respectively. Nr

c is the number of
requests assigned to the routing task. g is a large reward
parameter to prioritize serving requests.

At each simulation time step, a new set of agents
sequentially queries offers from the ride-pooling fleet
simulation module. Not all of these agents will later
choose the ride-pooling service as their travel mode. A
naive approach to deal with this issue could be to calcu-
late new vehicle assignments, for example, by using the
algorithm described in Engelhardt et al., for the whole
request batch (27). After that, the operator creates offers

Figure 2. Communication between the mobiTopp and fleet simulation framework.
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for the agents based on the the new assignment solution
and re-calculates the assignments once all agents con-
firmed or declined the booking of an offer. However, if
the batch size is large and only few of these agents will
later choose the ride-pooling service, a mutual optimiza-
tion might block capacity of the ride-pooling fleet pre-
venting the optimization algorithm from finding offers
for some agent requests. The employed strategy to cir-
cumvent this blocking of capacity is to deal with new
requests sequentially: for one request after another a new
assignment solution is computed while the old solution is
kept in memory. Based on the new solution, an offer is
created. In line with the mobiTopp process flow, the
agent’s mode choice function is called directly after. If
the agent chooses ride-pooling as its travel mode, the
assignment solution is updated, otherwise the assignment
solution is reset to the old one and the request is removed
from the solution space.

Re-running a computationally complex and time-
consuming global optimization algorithm for each new
request is not tractable. To deal with the computational
complexity, the following two-stage approach is intro-
duced: in a first stage, a local optimization solution is
calculated with a fast insertion heuristic for each new
request. An offer is created based on the solution of this
heuristic. Once all agents executed their mode choice
decisions and ride-pooling customers are fixed, a global
optimization is executed to improve the decisions for
assigned routing tasks. As long as the batch size of new
ride-pooling customers is small, the insertion heuristic
builds on the solution of the global optimization from
the last optimization time step. Therefore, close to opti-
mal results can be expected. Both stages are described in
the following, starting with the insertion heuristic.

Let Cv, 0 be the currently assigned routing task of
vehicle v. For each new request ri, the location of origin
oi and destination di are inserted as additional stops into
cv, 0. All possible insertion combinations with oi before di

into the list of stops in cv, 0 are considered. Let ci
v, kv

be
the kv -th new feasible routing task for vehicle v which
includes the new request, that is, a routing task fulfilling
all time constraints and the capacity constraint. The
request i is assigned to vehicle n with new assigned rout-
ing task ci

n, kn
which minimizes the difference

DN=Ni � N0 = r(ci
n, kn

)� r(cn, 0) ð3Þ

resulting in a local optimization of the global objec-
tive function from Equation 1. The mode choice para-
meters access, waiting, riding, and egress time, as well as
the fare, are extracted from this new assigned routing
task and the mode choice is called after providing these
parameters to mobiTopp. If the agent decides for ride-
pooling, the routing solution ci

n, kn
is assigned to vehicle

n, otherwise the routing task cn, 0 is reset.

While this procedure provides fast and tractable solu-
tions for the mode choice interaction with mobiTopp,
optimal assignments for routing tasks of vehicles cannot
be expected. Therefore, once all request interactions are
processed, a global optimization algorithm is called to
improve the current assignment solution. The algorithm
applied is based on the algorithm proposed by Alonso-
Mora et al. (25). The concept of the algorithm is
described in the subsequent paragraphs. A detailed
description of the applied algorithm is out of the scope
of this paper and the reader is referred to Engelhardt
et al. for additional information (27).

The idea of the algorithm is to divide the ride-pooling
assignment problem into easier-to-tackle sub-problems.
In a first step, all feasible routing tasks any vehicle is able
to take to serve an arbitrary set of requests, which is
denoted by request bundle, is determined. This step is
followed by an optimization step where an integer linear
problem (ILP) is solved to assign the best routing tasks
to vehicles. If both steps are computed until termination,
the optimal solution for the static assignment problem
can be found. Nevertheless, a naive exhaustive search
approach for calculating all feasible routing tasks in most
cases is not tractable because the search space increases
exponentially with the system size.

Therefore, the applied algorithm directly exploits the
time constraints twaitmax and Ddet

max, which predominantly
define the feasibility of routing tasks. Considering all
possible combinations of customers (and vehicles), most
routing tasks that would be checked by a naive search
approach are infeasible because of customers’ time con-
straints. Therefore, a guided search can be applied to
reduce the number of feasibility checks when computing
all feasible routing tasks. This guided search is defined
by the following three rules:

First, any routing task for vehicle v serving request i

can only be feasible if v can reach the origin of i within
the time constraint twaitmax.

Second, any routing task for an arbitrary vehicle for
serving request i and request j can only be feasible if a
feasible routing task serving both requests for an imagin-
ary vehicle starting at the origin of i or the origin of j can
be found.

Third, the resulting feasible routing tasks are created
within a certain order. Therefore, let a vehicle-to-request-
bundle (V2RB) O½v; ri, ri+ 1, :::, rm� be defined as the set
of all feasible routing tasks for vehicle v serving exactly
the bundle of requests ri, ri+ 1, :::, rm. Let the grade of a
V2RB be the number of requests that are served by this
V2RB. A V2RB O½v; ri� of grade 1 can therefore only
exist if the first rule concerning vehicle v and request ri is
fulfilled. A V2RB O½v; ri, rj� of grade 2 can only exist if
the first rule concerning vehicle v and request ri and vehi-
cle v and request rj, and the second rule concerning

Wilkes et al 231



request ri and request rj is fulfilled. Consequently, for
V2RBs with grade n.2 to exist, all V2RBs of grade n� 1

resulting from removing one of the served requests have
to exist. For example, for the V2RB O½v; r1, r2, r3� to
exist, the existence of O½v; r1, r2�, O½v; r1, r3� and O½v; r2, r3�
are necessary.

Combining all three rules, a guided search can be
applied by creating all feasible V2RBs iteratively starting
from grade 1 until no more can be found.

After computing all feasible V2RBs, each V2RB is
rated by the minimum objective function value of
all routing tasks included in this V2RB. This V2RB is
also represented by this routing task. By defining rv,Bk

the objective function value of the V2RB
O½v; ri, ri+ 1, :::, rm�=O½v; Bk � with the corresponding
request bundle Bk = ri, ri+ 1, :::, rm and conversely K(i)
the set of all request bundles that include request ri, the
ILP can be formulated:

min
zv, k

X

v, k

rv,Bk
zvk ð4Þ

s:t:
X

v

zv, k ł 1 8v 2 V ð5Þ

X

k2K(i)

X

j

zv, k = 1 8i 2 R ð6Þ

zv, k 2 f0, 1g 8v, k ð7Þ

In Equation 4 zv, k is a binary decision variable taking
the value 1 if the V2RB O½v; Bk � (represented by its rout-
ing task with minimum objective value) is assigned to
vehicle v. The constraint of Equation 5 guarantees that
no more than one V2RB is assigned to any vehicle v. The
constraint of Equation 6 enforces that each request has
to be assigned to a V2RB. Note that the existence of at
least one solution, for which the last constraint is feasi-
ble, can be guaranteed because of the initial solution cre-
ated by the insertion heuristic in the first fleet control
stage.

In general, this algorithm finds the global optimum of
the static ride-pooling assignment problem. Nevertheless,
to overcome peaks in computational time, a time limit of
5 s is employed for building feasible V2RBs for each vehi-
cle. Additionally, a time limit of 30 s is applied for sol-
ving the ILP. These time limits are triggered only on rare
occasions during the simulations and evaluations, show-
ing that the solution deteriorates only marginally.

Simulation Results

Case Study Description

The simulation framework is applied to a mobiTopp
example project, the Eggenstein-Leopoldshafen case. It
contains the small city of Eggenstein-Leopoldshafen

(Germany). The model spreads over a total area of 12.4
km2, and includes areas with residential and industrial
land use. Concerning transport infrastructure, it includes
different road categories up to federal highway, as well
as urban rail lines. Figure 3 shows the transport network.

The case study area contains 20,639 inhabitants repre-
sented as person-agents. The modeled travel demand gen-
erated by the inhabitants contains 70,518 trips during the
course of a day. Compared with other studies, a rather
small number of trips is performed, which enables testing
new modeling algorithms or modules and performing
many simulation runs to test the sensitivity of different
parameters. While the population is based on actual
demography by the inhabitants of the area, and the activ-
ities performed by the agents is based on long-term study
data from the German Mobility Panel, further parts of
this model are not calibrated.

By default, the model includes the modes public trans-
port, walking, bicycle, car as driver, and car as passen-
ger. For the present work, the set of available modes was
extended by adding the mode ride-pooling. All inhabi-
tants can use the modes walking, bicycling, public trans-
port, and car as passenger. Car usage is restricted to
agents having a licence and living in a household with a
car—around 73% of the agents have access to a car.
Mode choice is performed using a multinomial logit
model. To keep the model simple, the valuation para-
meters (betas) are the same for each mode and only
travel time and costs are set to influence mode choice in
this model (btt = � 0:0102min�1, and bcostsperkm=
�2:82ct�1). The alternative specific constants are set to

Figure 3. Area and transportation network used in this case
study.
Note: The green dots represent public transport stops.
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zero (bASC= 0:0). An exception is the mode ‘‘car as pas-
senger,’’ which has a high negative alternative specific
constant (bASC, pass = � 3:0). This is undertaken to rep-
resent the effective limited availability to join a ride with
another person. Ride-pooling uses the same link travel
times as the modes car as driver and car as passenger.

Several simulation runs were performed with varying
individual parameters of the fleet simulation framework.
All other parameters (e.g., all travel demand-model-
related parameters) were held constant. The varied para-
meters are fleet size, accepted waiting time, and accepted
detour factor, as well as price-related parameters. The
price for the ride-pooling system consists of a base fare
component f b, which is charged for every trip, and a
distance-based component f d . The choice of scenarios
aim to test the sensitivities of these parameters on the
travel demand for the ride-pooling service, as well as for
the other travel modes. As the baseline scenario, a sce-
nario with a rather low price (which could be offered by
an autonomous ride-pooling service) and medium-sized
fleet is used, see Table 1 (50). The scenarios with higher
prices relate to current taxi systems with driver, as, for
example, in Munich the price of a taxi ride is 3.70 Euro
plus 2.00 Euro per km (51).

Simulation Results

In a first step, the ride-pooling fleet size is varied from 0
to 150 vehicles (see Figure 4). Figure 4a illustrates the
modal share of ride-pooling services, Figure 4b the frac-
tion of agents that received a ride-pooling offer, and
Figure 4c the driven distance of ride-pooling service. All
figures show similar trends: an approximately linear
increase for small fleet sizes with a saturating behavior
for large fleet sizes. This observation can be interpreted
by the operation of the ride-pooling services in two dif-
ferent realms: for small fleet sizes demand exceeds sup-
ply. The fleet reaches its capacity limit and cannot serve

additional customers. Increasing the fleet sizes makes the
service accessible for customers that did not receive an
offer from the ride-pooling service. This results in a
higher mode share but also additional fleet mileage.
Nevertheless, after reaching a fleet size of approximately
75 vehicles, ride-pooling demand is saturated at a mode
share of around 16%: the supply of the ride-pooling fleet
exceeds demand. With the ride-pooling service not oper-
ating at its capacity limit, the service can be offered to
nearly all agents. With more vehicles but no additional
users, the implemented control algorithm can even
slightly reduce the fleet mileage in the saturated regime.
As baseline for the following analysis, a fleet size of 50
vehicles is used (base scenario).

The demand for ride-pooling implies a decreased num-
ber of trips at all other modes. The comparison of modal
shares for the scenario without the ride-pooling service
and the scenario after introducing the mode ride-pooling
with the operation defined by the base scenario is shown
in Figure 5. Ride-pooling gains a mode share of 14.4%.
The low fares estimated for an autonomous ride-pooling
service (base fare of 100Eurocent [ct; 1/100 Euro] and a
distance fare of 25 ct/km in the base scenario) attract
demand from all traditional modes. Relative to the

Table 1. Base Scenario and Variation of Parameters

Parameter

Base
scenario

value
Sensitivity

test

Fleet size (# vehicles) 50 0, 25, 75, 100, 150
Vehicle capacity (# passengers) 4 na

Maximum waiting time twait
max (min) 5 10

Detour time factor Dmax
det (%) 40 0, 20, 60

Base fare f b (ct) 100 25, 200, 400
Distance fare f d (ct/km) 25 15, 50, 250

Note: na = not applicable; ct = abbreviation for Eurocent (1/100 Euro).

Figure 4. Simulation results for varying fleet sizes.
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scenario without ride-pooling, with the exception of the
special mode ‘‘car as passenger,’’ the decrease in modal
share of the other modes is between 10.6% and 16.6%;
the highest absolute decrease can be seen with ‘‘pedes-
trian’’ trips. (The mode ‘‘car as passenger’’ as being very
simply modeled is left out from the further analysis.)

The high amount of prior pedestrian trips raises the
question how the other different modes are affected by

different pricing schemes, that is, variation of base and
distance-based fare independently. The modal split at dif-
ferent costs is depicted in Table 2. The following analysis
is always relative to the base scenario.

Having a lower fare for ride-pooling, the demand for
this mode increases by between 1.3% and 6.9% in the
analyzed scenarios. Relatively, bike trips decrease most
with a reduced distance fare, and car trips are reduced
most with a lower base fare.

If the distance or base fare are doubled, the demand
for ride-pooling trips decreases by 6.0% and 14.4%,
respectively. The usage of other modes increases with
changes between +0.3% and +3.5% in these two sce-
narios. In both scenarios, public transport gains most
trips. However, this effect is most dominant with the high
distance fare scenario (+2.5%, while the other modes
have increases of up to 1.0%), while in the high base fare
scenario all modes show a similar relative increase of
trips (between +1.6% and 3.5%).

More insight can be gained from the scenarios with
the highest fares. As their change concerning ride-
pooling trips is of similar magnitude (242.2% and

Figure 5. Comparison of modal share with and without an
offered ride-pooling service.

Table 2. Trip-Based Modal Split in Base Scenario and Cost-Related Variations

Bike (%) Car (%) Passenger (%) Pedestrian (%) Public transport (%) Ride-pooling (%)

Base scenario 21.8 17.9 1.8 25.4 18.7 14.4
Distance fare = 15 ct/km 21.6 17.9 1.8 25.5 18.7 14.6

20.8 20.4 +2.0 +0.4 20.3 +1.3
Distance fare = 50 ct/km 21.8 18.1 1.8 25.6 19.2 13.5

+0.3 +1.0 22.8 +0.8 +2.5 26.0
Distance fare = 250 ct/km 23.0 19.1 2.2 27.2 21.0 7.6

+5.3 +6.4 +19.2 +7.3 +12.1 247.2
Base fare = 25 ct 21.5 17.6 1.8 25.2 18.5 15.4

21.2 21.9 +1.8 20.8 21.2 +6.9
Base fare = 200 ct 22.2 18.2 1.8 26.1 19.4 12.3

+1.8 +1.6 +2.3 +2.7 +3.5 214.4
Base fare = 400 ct 22.9 18.9 1.8 27.6 20.4 8.3

+5.4 +5.4 +/20 +8.7 +9.1 242.2

Note: ct = abbreviation for Eurocent (1/100 Euro). In the base scenario, the distance fare is 2.5 ct/km and the base fare is 100 ct. The first row of each

scenario represents the mode share and the second row of each scenario represents the relative change to the base scenario.

Table 3. Mean Trip Distance in the Base Scenario and Change of Mean Trip Distances between Base Scenario and Cost-Related
Variations

Bike Car Passenger Pedestrian Public transport Ride-pooling

Base scenario 1.88 km 1.85 km 2.50 km 1.58 km 2.32 km 1.97 km
Distance fare = 15 ct/km 20.5% 20.4% +3.2% 20.6% 20.5% +2.3%
Distance fare = 50 ct/km +0.7% +0.1% +3.1% +1.6% +1% 25.9%
Distance fare = 250 ct/km +1.7% +2.3% +21.6% +5.5% +2.8% 243.1%
Base fare = 25 ct +0.1% 20.1% +5.5% 20.2% 20.1% 20.7%
Base fare = 200 ct 20.1% 20.4% +0.2% +0.1% +0.2% +0.7%
Base fare = 400 ct 20.5% 21.0% 22.2% +0.1% +0.3% +5.9%

Note: ct = abbreviation for Eurocent (1/100 Euro). In the base scenario, the distance fare is 25 ct/km and the base fare is 100 ct.
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247.2%), the changes on other modes can be directly
compared between these two scenarios. It can be seen
that with a higher distance price, public transport trips,
especially, increase (more than car trips, compared with
their original value). Contrarily, the number of pedes-
trian trips is higher at the high base fare variation.

The different effects of the fare models on the modal
split changes indicate that mean mileage per trip should
be analyzed further. As can be seen in Table 3, the mean
mileage is decreased by 43.1% for ride-pooling trips at
the variation with highest distance fare, compared with
the base scenario. This also has an impact on the other
modes: since ride-pooling serves more of the short-
distance trips, the other modes’ mean distance per trip
increases, especially for pedestrian trips where mean dis-
tance per trip increases by up to 5.5%.

The opposite effect can be seen in variations with
highest base fare: ride-pooling becomes less attractive for
short trips. While the mean distance for ride-pooling
trips increases by 5.9%, the mean trip length by other
modes decreases up to 1.0%. Interestingly, the mean dis-
tance of public transport trips increases. This could be
explained by the consistency of private vehicle trips in
the demand model: people who previously used a car for
making a relatively long round trip might now switch to
ride-pooling to their intermediary destination and return
home by public transport.

Finally, the impact of different fleet control parameters
is studied. Figure 6 shows stacked plots of vehicle occu-
pancy states at different times of the simulation period.
The maximum value on the y-axis indicates the fleet size.
White spaces therefore correspond to idle vehicles.

Figure 6a displays the base scenario. Until 5 a.m. only
a few agents are active in the system resulting in nearly
all vehicles being idle. With rising demand, vehicles start
moving. During the course of the day, roughly 10 of the
50 vehicles perform empty pick-up trips. The largest
amount of vehicles is occupied with one customer. Only
a few vehicles reach occupancy states of three passengers
or higher. Overall, a distance-weighted average occu-
pancy of 1.08 is observed in this scenario.

In Figure 6b a simulation with an increased maximum
waiting time of twaitmax = 10min (in comparison with the

base value of 5min) is shown. On the one hand, by

increasing the maximum waiting time, the fleet simula-

tion module gets additional degrees of freedom for opti-

mization. On the other hand, additional waiting time has

a negative effect on the number of agents choosing the

ride-pooling service. Nevertheless, the first effect seems

to be prominent in this setting, because the ride-pooling

modal share can be increased to 15.7%. Compared with

the base scenario, occupancy states of three and more

are more likely resulting in an increased average occu-

pancy of 1.17.

Figure 6, c and d, show variations in the allowed
detour parameter from Ddet

max = 40 % in the base scenario.
Ddet
max = 0 % almost represents a ride-hailing service. Only

agents with the same origin-destination relations can be
pooled together. Therefore, nearly no vehicle exceeds the
occupancy of one, while the fraction of empty pick-up
trips increases resulting in an average occupancy of 0.75.
Without pooling, the fleet capacity decreases, that is, the
fleet can serve less customers in the same period of time.
The modal share therefore decreases by 2.0 percentage
points compared with the base scenario. For Ddet

max = 60

% the opposite effect can be observed. By increasing the
allowed detour, additional pooling options become avail-
able, resulting in higher occupancy states and a higher
modal share.

Finally, Figure 6, e and f, depict scenarios with differ-
ent fleet sizes. Analogously to the discussion of Figure 4,
the two realms are shown, where demand exceeds supply
(for 25 vehicles), and supply exceeds demand (for 100
vehicles). In the first case, only a few idle vehicles can be
observed during times of demand. In the second case,
even during times of high demand, many vehicles are
idle.

As stated in the case study description, the result val-
ues do not reflect the real situation of Eggenstein-
Leopoldshafen as the model is not calibrated. Therefore,
the results are only indicative and show trends (e.g., for
different pricing strategies). The case study rather shows
evaluations of impacts of a ride-pooling system (with
various fleet settings) on travel demand, which can be
analyzed with the developed software frameworks.

Performance

The framework is not yet optimized for computing speed.
At the current state, the computation times for more than
70,000 requests and fleet re-optimization after every
simulation minute (24h simulation) in the 50 vehicles sce-
narios range between 1:26 h and 2:46 h on a modern
3.3GHz CPU (single threaded). Influencing factors are
mostly the number of bookings and the degrees of free-
dom at the fleet simulation, such as allowed detours and
allowed waiting time.

Conclusion

Summary

This paper presented the coupling of mobiTopp with an
advanced fleet simulation module. The coupling works
on an agent-based level, which is naturally suitable to
model ride-pooling because of the involved online match-
ing of vehicles and passengers.

The resulting simulation framework allows analyzing
transportation networks in the presence of a ride-pooling
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system. Transportation planners and fleet operators can
use the framework as a tool to (1) determine the elasticity
of demand on the fleet setting (fleet size, prices, service
quality) or how certain parameters constrain the supply
and thereby the realized demand, and (2) predict and
analyze mode shifts from the traditional modes to the
new mobility option. The introduced simulation frame-
work represents a progress of travel demand models with
new mobility modes, as the used mode-choice model

together with the selected simulation flow generates a
self-regulating demand-supply equilibrium of the ride-
pooling system and therefore does not require extensive
simulation run iterations.

The coupled framework is applied to an example case
study. Even though the example region is a non-
calibrated model, valuable insights could be derived.
Analyzing demand for varying fleet sizes clearly shows
when (elastic) demand and when supply are limiting the

Figure 6. Time-dependent vehicle occupancy for the ride-pooling fleet by varying one parameter in comparison with the base scenario.
(a) base scenario: modal share 14.3%; (b) a twait

max = 10 min: modal share: 15.7%; (c) Ddet
max = 0 %: modal share: 12.4%; (d) Ddet

max = 60 %:
modal share: 14.7%; (e) fleet size 25: modal share: 8.7%; (f) fleet size 100: modal share: 16.8%.
Note: ; indicates the overall average occupancy in the corresponding scenario. The varied parameter and the resulting ride-pooling modal share is shown in

the sub-captions.
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realized demand and the utilization of ride-pooling vehi-
cles. The fare system of the ride-pooling system obvi-
ously affects the demand elasticity; however, the model
allows to quantify how much increasing base and
distance-based fare affect the average ride-pooling trip
length and the modal split. As a result, regulators can
ask ride-pooling companies for a certain base fare to
reduce the mode transition from active transportation
modes.

Future Work: Case Study of MOIA in Hamburg

The scale of Hamburg and the ride-pooling service
MOIA are much larger than the example of this paper
and will show scaling effects of ride-pooling for more
demand and larger fleet sizes. It is likely that fleet control
heuristics and parallelization will be required to achieve
tractable computation times. Furthermore, the model
will consider that MOIA employs a fully electric vehicle
fleet. Demand side parameters of the Hamburg case will
be estimated from a large survey with more than 10,000
participants and Mobility in Germany survey data.
More performance indicators from city, operator, and
user view will be evaluated and their sensitivities ana-
lyzed. After implementing the status quo in Hamburg,
other use cases will be simulated to study the transfer-
ability, for example, by introducing governmental regu-
lations or simulating other cities.

Methodological effort will be necessary to implement
intermodal ride-pooling trips. Moreover, the differences
in relation to wait and detour time between ride-pooling
offers and realized trips will be analyzed to account for
differences between available information for mode-
choice and actual customers’ experience. Models to
adjust offers and realized trips and the development of
long-term private vehicle ownership models will be inter-
esting challenges. Furthermore, the authors will improve
the implementation of the algorithms and employ paral-
lelization to decrease computation time.
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