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A B S T R A C T   

Most bike-sharing systems in cities aim to maximize demand, an approach that tends to inad-
vertently favor wealthier neighborhoods. Therefore, we developed a heuristic and data-mining- 
based method to weigh both Demand And/oR Equity (DARE) in the station distribution and 
allocation process of planning bike-sharing. Equity is measured using a deprivation index and the 
potential demand is estimated using structural equation models via the built and social envi-
ronment. The DARE method was applied first to the BSS service area in Munich, Germany, and 
then, to the area surrounding Munich, demonstrating the method’s transferability. Incorporating 
equity resulted in disadvantaged areas being better served by bike-sharing stations while favoring 
ridership (demand) tended to cluster stations in the wealthier city center. This method allows 
decision-makers to build scenarios for allocating infrastructure based on their desired fairness 
criterion, and can also be applied to other shared modes or public transport.   

1. Introduction 

Bike-sharing systems (BSS) can provide an opportunity to access cycling regardless of a person’s purchasing power (Lucas, 2019). 
However, “most bike share schemes were never designed with equity or social justice in mind...[but] designed around environmental 
and economic goals intended to stimulate urban renewal” (de Chardon, 2019; Hoffmann, 2016). BSS studies have shown inequality in 
the implementation, usage, and benefits across demographics. The common profile of a BSS user tends to be a young white male, who is 
highly educated, higher income, already engaged with cycling, and has access to bank accounts and credit cards (Fishman et al., 2015; 
Ogilvie and Goodman, 2012; McNeil et al., 2017; Stöckle, 2020; Mooney et al., 2019). Historically, the distribution of stations and the 
service areas have been focused on central and densely populated regions, (Fishman et al., 2015; Duran-Rodas et al., 2019; Chen et al., 
2019) where residents tend to reflect BSS user profile (Chen et al., 2019; Ursaki et al., 2015; Mooney et al., 2019). Deprived and low- 
income areas are reported to have less access to BSS infrastructure (Ursaki et al., 2015; Mooney et al., 2019; Ogilvie and Goodman, 
2012; Smith et al., 2015), even though many BSS promote themselves as being equitable (Duran-Rodas et al., 2020b). 

Are BSS planned fairly? Justice involves rules that are based on a shared understanding of morality among individuals in a global, 
cultural, or circumstantial context (Goldman and Cropanzano, 2015; Leventhal, 1980). “Fairness” is a subjective judgment that varies 
depending on whether justice rules are applied or not (Goldman and Cropanzano, 2015). What is fair for one person may not be fair for 
other people (Goldman and Cropanzano, 2015; Duran-Rodas et al., 2020c). Distribution of a particular resource is considered as fair 
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when the distribution meets criteria that certain individuals believe is fair (Leventhal, 1980). The most common criteria for the spatial 
distribution of resources are: a) spatialequality or horizontal equity (equal distribution of resources), b) spatial equity or vertical equity 
(distribution according to people’s needs in terms of social status, opportunities, and abilities), c) spatial efficiency (distribution ac-
cording to the people’s ability to contribute or access resources) (Leventhal, 1980; Talen, 1998; Duran-Rodas et al., 2020c). These 
distribution criteria are “fair” depending on the point of view of each individual (Duran-Rodas et al., 2020c). 

We identified three gaps in the existing research on the fair allocation of stations and service area boundaries. First, only a few 
studies have considered equity as an input for planning BSS, such as Caggiani et al. (2020). Previous systematic planning methods for 
BSS have not prioritized infrastructure distribution according to the neediest populations in terms of social status and opportunities. 
The second research gap is that in systematic methods, the opportunity to balance efficiency and equity has not been deeply explored. 
Finally, the third research gap is the failure to account for confounding variables when estimating BSS ridership (spatial efficiency) and 
its associated spatial factors. Exploring causality can increase the generalization and transferability of the model (Thakkar, 2020). 
Usually, linear regressions are performed by learning from historical trips using spatial factors from the built and social environment. 
However, with linear regressions, we cannot detect confounding variables. For instance, an increase in population density has a high 
probability of generating an increase in the number of trips. However, the relationship between population density and ridership is not 
causal: trips are not caused because of the number of people but rather their need for mobility to perform activities (Wegener and Fürst, 
1999). 

There is a need to consider spatial equity when planning the distribution of BSS infrastructure, which means prioritizing under-
privileged areas or areas where people have the greatest needs in terms of social status, opportunity, or ability. However, this can be 
balanced with spatial efficiency by also prioritizing the distribution of infrastructure where higher ridership is expected. Therefore, we 
aim to develop a heuristic and fairness-based method in which the fairness criteria (equity and/or efficiency) for the distribution of 
stations and service areas can be depending on the desired focus: spatial equity as represented by deprivation, spatial efficiency 
represented by the potential ridership, or a balance of both. Based on these criteria, and accounting for limited resources, the method 
ranks zones of analysis based on four heuristic algorithms to prioritize the allocation of infrastructure. The resulting allocation is then 
assessed based on the resulting coverage area and density. 

We applied this method to the hybrid bike-sharing system (HBSS) in Munich, Germany. Testing a hybrid system was advantageous 
because HBSS are rarely studied in the literature. Additionally, since HBSS have characteristics of both docked and dockless systems, 
our method can be implemented with those types of BSS as well. 

The second contribution of this study is the estimation of potential ridership as an indicator of spatial efficiency using Structural 
Equation Models (SEMs). To train SEMs, the paper will also build a theoretical structure of links between BSS ridership and its pre-
viously associated spatial factors from the built and social environment. This structure will be shaped by merging two theoretical 
models: a) “land-use and transport interactions” that includes the factors from the built environment (Wegener and Fürst, 2004; 
Wulfhorst, 2003), and b) “urban mobility cultures” that includes factors from the social environment (Kuhnimhof and Wulfhorst, 2013; 
Deffner et al., 2006; Klinger et al., 2013). 

This paper continues with a literature review of BSS concepts and previously used methods to plan BSS and estimate potential 
ridership demand. Hence, it presents the DARE (Demand And/oR Equity) method followed by the results of its application. Finally, it 
discusses the strengths, limitations, and possible future applications for this method. 

2. Literature review 

2.1. Bike-sharing: overview 

BSS are programs in which people can pick up a bike and drop it off in the public space within a service area (Büttner and Petersen, 
2011; Toole Design Group, 2012). BSS have the potential to improve access to cycling and its benefits as a healthy and convenient 
transport mode, enhance last-mile connections to transit, increase transport resilience, help build support for future cycling initiatives, 
and change attitudes towards cyclists (Cohen and Shaheen, 2018; Shaheen et al., 2014; Teixeira and Lopes, 2020; Manca et al., 2019; 
de Chardon, 2019; Bauman et al., 2017). BSS can also reduce CO2 emissions in a city, depending on the balancing system of bicycles 
and their ability to replace trips that would otherwise be made by private motorized vehicles (Ricci, 2015). However, BSS have also 
faced some challenges. For example, improper sizing and distribution of stations can lead to areas that are over- or under-supplied with 
bicycles (McNeil et al., 2017; Li et al., 2019; Sun, 2018; Ma et al., 2018). The sustainability of BSS can also be compromised by the 
massive amounts of waste that are generated when bicycles are no longer used (de Chardon, 2019), or by the emissions of the 
rebalancing and maintenance operations (Ricci, 2015). Projected health benefits can also be overstated when bike-sharing trips replace 
walking or private cycling trips that provide comparable health benefits (Ricci, 2015; de Chardon, 2019; Bauman et al., 2017). 

BSS include conventional bicycles, cargo, tandem, or e-bikes in three types of systems: a) docked or station-based, b) dockless or 
free-floating, and c) hybrid, a mix of docked and dockless (HBSS) (Shaheen et al., 2020). Docked systems have the advantage of 
designated parking and easy-to-locate bikes. On the other hand, dockless systems have lower capital costs, a more flexible service area, 
and provide greater convenience to users since the trip can end anywhere in the service area. However, dockless systems can also be 
more difficult for users to locate a bike nearby and require more effort for operators to rebalance the fleet (Shaheen et al., 2020). If not 
carefully monitored, bikes can accumulate in one area and improperly parked bikes may conflict with pedestrians, especially those 
with limited mobility. Analysis of social media sites such as Twitter reveal that people often complain about piles of dockless bikes 
encountered in certain areas (Duran-Rodas et al., 2020b). However, Brown et al. (2020) performed a systematic observation of parking 
behavior of different transport means including bike-sharing, and concluded that only 0.3% of the bikes presented conflicts with 
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pedestrians. Hybrid systems share advantages of dockless and docked systems (Yanocha et al., 2018) but have not been studied in great 
depth. Therefore, we aimed to develop a method that would help to plan these systems. 

2.2. Bike-sharing: planning process 

According to guidelines in North America and Europe, four “macro” steps are commonly used for planning BSS (Yanocha et al., 
2018; Gauthier et al., 2014; Anaya Boig and para la Diversificación y Ahorro de la Energía, 2007; Büttner and Petersen, 2011; Toole 
Design Group, 2012): I) set goals, II) estimate the potential demand and potential bike-sharing users, III) define the potential location 
of stations and service area, and IV) fix the locations (Fig. 1). 

The planning process of BSS (Fig. 1) often starts with the definition of the system’s goals (e.g. mobility, sustainability, equity). Next, 
historical data from systems in comparable cities are used to build potential demand models. The potential station locations and service 
area boundaries are defined using design inputs such as budget, rebalancing method and strategies, and key performance metrics (e.g. 
stations density, number of bicycles). BSS guidelines recommend preparing a “first draft” of the design and then adjusting it based on- 
site visits and stakeholder involvement (Gauthier et al., 2014). If potential sites are not accepted or cannot support BSS stations, new 
sites should be identified until suitable locations are found. Should a system change its goals, expand, or relocate to a new area, the 
process begins anew. The goals of BSS could be potentially modified when systems do not fulfill the requirement of, for example, 
expected ridership, service, or equity. Therefore, assessing inequity in a system, as in previous studies (Ogilvie and Goodman, 2012; 
McNeil et al., 2017; Fishman et al., 2015), can justify changing a system’s goals and looking for new locations of stations or service 
areas in a more equitable way. 

2.3. Bike-sharing: estimation of potential demand 

Past research has studied how the spatial factors are associated with the historical trips of BSS to estimate the potential demand. 
Some common spatial factors that have been studied are shown in Table 1. The social environment factors most associated with 
ridership are population and employment density, while the most common built environment factors are transit stations and cycling 
infrastructure, leisure, and student-oriented activities. 

Ordinary least squares models have been one of the most frequently implemented techniques to build potential demand models and 
identify the most influential factors on BSS ridership (Duran-Rodas et al., 2019; Faghih-Imani et al., 2014; El-Assi et al., 2017; Wang 
et al., 2015; Faghih-Imani et al., 2017; Mattson and Godavarthy, 2017; Zhao et al., 2014). Other approaches have performed robust 
linear regression (Chardon et al., 2017; Tran et al., 2015) and negative binomial regression (Noland et al., 2016), among others. The 
dependent variable in these studies is typically the logarithm of the number of bicycles’ rentals or returns in an area or station (Wang 
et al., 2015; El-Assi et al., 2017; Faghih-Imani and Eluru, 2016). Although Ranaiefar and Rixey (2016) built SEMs for predicting 
potential ridership for BSS, a limitation of all these studies is that causal relationships between factors were not examined. 

2.3.1. Milieus as a spatial indicator of the social environment 
In the application of the study’s method, milieus were considered the spatial factors representing the social environment for 

estimating the potential demand. Milieus are groups of like-minded people concerning the social status and core values (INTEGRAL, 
2018). Milieu clusters categorize socio-spatial characteristics including people’s attitudes, values, lifestyles, etc. (SINUS, 2017). They 
represent an approximation of perceptions and lifestyle orientations in this study. This categorization, therefore, expands on tradi-
tional social demographics by considering core values. Milieus have been tested for market segmentation in “leading manufacturers of 
branded goods and well-known service providers from politics, media, and associations as well as advertising and media agencies” 
(SINUS, 2017). 

Fig. 1. Typical planning cycle for BSS.  
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This additional inclusion of core values of the inhabitants (e.g.. tradition, adventure, modernization) is the main advantage for 
using milieus for the sociodemographic analysis. Milieus also help overcome the limitation of the so-called “sociodemographic twins” 
(Sociovision, 2018) where areas with the same sociodemographic parameters are expected to behave similarly. The prominent 
orientation or values helped to further categorize and further divide the social environment and better understand the social envi-
ronment of an area. In a previous study, values were even found to have a higher correlation with BSS use than traditional socio-
demographics (Duran-Rodas et al., 2020a). 

Milieus have been used in transport research e.g. for agent-based modeling (Schwarz and Ernst, 2009; Jensen et al., 2016), multi- 
agent simulation (Soboll et al., 2011), marketing research (Diaz-Bone, 2004), as well as for understanding social changes (Man-
derscheid and Tröndle, 2008) and mobility preferences (Von Jens, 2018; Sinus Markt und Sozialforschung GmbH, 2019). 

2.4. Bike-sharing: methods for searching the potential location of stations 

Gavalas et al. (2016) summarized four types of algorithm approaches for determining optimal station locations:  

1. Integer programming-based approaches take into account BSS’ historical trips to optimize the level of service and costs (travel, 
operation, infrastructure) to identify the optimal location of stations (Lin and Yang, 2011; Sun et al., 2019; Caggiani et al., 2018; 
Reiss and Bogenberger, 2015). 

Table 1 
Influential factors on bike-sharing ridership: literature review.   

Factors   Source    
A B C D E F G H I J 

Social Population City population ✓ ✓ ✓    ✓    
enivironment  Population density ✓ ✓  ✓    ✓ ✓    

Employment density   ✓   ✓   ✓   
Socio- Age     ✓ ✓      
Demography Gender      ✓  ✓    
Household income      ✓ ✓       

Household size     ✓   ✓     
Education level     ✓      

Mobility Mode to commute (work/school) ✓  ✓  ✓      
Behaivor Time/ distance to commute     ✓       

Bicycle ownership      ✓      
Cycling propose      ✓      
Driver license ownership      ✓      
Already combine cycling and PT      ✓     

Built Topography Slope (max 4%) ✓   ✓       
environment  Altitude       ✓ ✓    

Urban Distance to city center ✓ ✓    ✓   ✓   
Structure Accessibility  ✓ ✓   ✓       

Mixed use land use ✓ ✓        ✓   
Industrial land use  ✓           
Single land use  ✓           
Residential land use          ✓   
Commercial activity    ✓        

Transport PT stops ✓ ✓ ✓ ✓        
Infrastructure Metro         ✓ ✓   

Railway station       ✓      
Major roads         ✓    
Streets         ✓    
Embankment road       ✓      
Transport POIs        ✓     
Cycling infrastructure ✓ ✓ ✓ ✓     ✓   

POIs Student residence       ✓      
Cinema       ✓      
Worship POIs        ✓     
Hotel        ✓     
Restaurant       ✓ ✓ ✓    
Universities ✓   ✓     ✓    
Parks  ✓           
Sports Centers ✓            
Recreation POIs        ✓     
Tourist attractions    ✓       

A: Anaya Boig and para la Diversificación y Ahorro de la Energía (2007),Gauthier et al. (2014), C: Büttner and Petersen (2011),Toole Design Group 
(2012), E: Efthymiou et al. (2013),Bachand-Marleau et al. (2012), G: Tran et al. (2015),Faghih-Imani et al. (2017), I: Faghih-Imani et al. (2014), 
Noland et al. (2016) 
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2. Heuristic approaches use (meta) heuristic techniques that search for the near-optimal solution. Cintrano et al. (2020) use five meta- 
heuristic techniques to solve the p-median problem (minimize the distance to stations to all points). Also, Lin et al. (2013) 
developed a heuristic method for station location based on costs for both users and operators.  

3. GIS-based approaches are developed using geographic information systems tools. For instance, Banerjee et al. (2020) calculated a 
bike station suitability score using GIS tools. Another example is García-Palomares et al. (2012), who used a GIS-based method-
ology to develop a heuristic approach, locating stations by minimizing impedance (p-median), and maximizing coverage based on 
the density of spatial features associated with BSS ridership.  

4. Data mining-based approaches use data to discover knowledge to plan BSS. Gehrke and Welch (2019) clustered existing stations 
based on built environment factors. Every candidate station was classified into five different groups on a suitability spectrum. In a 
similar approach, Vogel et al. (2011) proposed to plan BSS by clustering stations based on the bicycles’ pick-ups and drop-offs and 
then correlated them to their most common geographical information. 

Most of these techniques share a common approach of learning from historical trips to estimate potential demand, locate stations, 
and define the service area. However, techniques that learn from unfair systems are likely to perpetuate the same systematic inequities. 
Our proposed approach provides an opportunity to target equity and thereby break an unfair planning cycle. 

2.5. Bike-sharing: Overcoming inequalities 

Including spatial equity when planning BSS can lead to a reduction in social disparities and social exclusion (Fainstein, 2009), 
resulting in less social conflict and more social peace (Tomlinson, 2016). Providing access to those who have the greatest needs can 
allow them to participate in new transport trends. Even though lower-income neighborhoods with BSS supply have shown low usage 
Caspi and Noland (2019), a high level of fairness perceived by the population can reduce resistance towards implementation, increase 
project consent, or generate greater political acceptance (Ariely and Uslaner, 2017; Wüstenhagen et al., 2007). Moreover, prioritizing 
the neediest does not mean that a project is not serving those that contribute the most. Both private or public systems can be developed 
to be economically efficient, where spatial factors allow for higher demand (Willing et al., 2017). Those most in need have the potential 
to be customers when provided with information and incentives (Hoe, 2015). 

Commonly, when BSS include a goal of equity, access is improved in these two ways: a) reducing barriers to entry into the system, 
and b) improving physical access to the infrastructure in underprivileged areas. Yanocha et al. (2018) recommended reducing barriers 
to entry into the system for ensuring equity in BSS, such as higher accessibility for people with different abilities, affordable pricing, or 
renting mechanisms that do not require smartphones or credit cards. For example, in Philadelphia, fees can be paid with cash at local 
convenience stores, or in Boston, residents classified as “low-income” only pay an annual fee of 5 U.S. dollars Yanocha et al. (2018). 
Moreover, system fleets have included adaptive bicycles such as electric bikes and standard trikes for people with less physical abilities 
(MacArthur et al., 2020). Regarding the access to infrastructure, in Philadelphia, extra stations were placed after considering the 
income levels and public participation in the planning (Hoe, 2015).In New York, one system has concentrated shared bicycles in low- 
income communities that have low access to transit (Kodransky and Lewenstein, 2014). 

Only a few studies have incorporated equity-based concepts in the planning cycle (Fig. 1) of BSS. Conrow et al. (2018) optimized 
the distribution of stations by minimizing the average distance to stations in the service area and maximizing the potential demand. 
While this approach is referred to as equitable, it does not prioritize the neediest population. Therefore, according to our definitions, 
this study targeted spatial equality. In a similar approach, Caggiani et al. (2020) optimized the location of stations by minimizing 
walking distances to access the system and distributing a similar number of bicycles in all the districts of the city. To the best of the 
authors’ knowledge, Caggiani et al. (2017) is the only study that systematically considers the concept of spatial equity by including the 
neediest population when planning BSS. They develop an allocation method that prioritizes areas with greater underprivileged 
populations using a bike equity index. The system cost was also made more equitable by funding the implementation of dockless BSS in 
deprived areas using toll payments collected in other areas. 

After reviewing the literature, we aim to develop a heuristic fairness-based method for planning BSS that would incorporate spatial 
fairness criteria according to its targeted goals. Thus, our method employs a mixed approach of heuristics, data-mining, and equity 
criteria to develop the “first draft” of station locations and service area boundaries. As described above, previous studies and appli-
cations have considered equity in the sitting of stations by prioritizing lower-income neighborhoods or increasing coverage areas. In 
this study, we expanded the spatial equity concept of underprivileged by including areas with poor access to basic opportunities (e.g. 
health, food, education). Since resources are limited and stations or service areas cannot be placed everywhere, we developed a 
method called Demand And/oR Equity (DARE) to build scenarios for station locations and coverage areas. This method provides an 
opportunity to balance the priorities of serving underprivileged areas and serving areas with high potential ridership with an alter-
native to balance the priority in underprivileged areas and also areas where it is expected to be high ridership. 

3. Demand And/oR Equity (DARE) method for planning bike-sharing systems 

Demand And/oR Equity (DARE) is a heuristic-based method for planning the allocation of BSS stations and their service area based 
on spatial fairness. Spatial fairness summarizes three criteria for transport supply allocation: spatial equity, efficiency, and equality 
(Leventhal, 1980; Talen, 1998; Duran-Rodas et al., 2020c). Spatial equity has a broad justice focus and it refers to a spatial distribution 
of resources that prioritizes areas where people have the greatest need in terms of social status, opportunities or abilities. For example, 
if spatial equity alone were to be considered in the distribution of BSS’s infrastructure, the allocation would be predominantly in 
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underprivileged areas. Hence, people in these areas could not cycle to privileged areas as the city center. Spatial efficiency has a narrow 
concept of justice, focusing on the allocation of resources to maximize ridership. If spatial efficiency is considered, underprivileged 
areas might be excluded from access to the system. It should be emphasized that this study incorporates distribution according to 
(estimated) effective demand or ridership into spatial efficiency. It is inferred that effective demand occurs when people can 
“contribute”, or have an ability to access or pay a mobility system. Another way of defining spatial efficiency is a distribution of public 
resources favoring those who pay more taxes, in other words, those who “contribute” the most. Spatial equality is related to the equal 
distribution of resources regardless of need or potential ridership. It is achieved when spatial resources are evenly distributed across an 
area, i.e.. resources are not specifically prioritized in any area and all areas receive the same amount of resources. Spatial equality was 
not considered in this approach because resources are limited and the difficulty of evaluating and compensating equally each in-
dividual’s access to resources. 

The primary goal of DARE is to create scenarios in which stations are located and service areas are bounded based on the preferred 
fairness criteria for design: spatial equity, spatial efficiency, or a balance of both. In general, DARE divides a study area into analysis 
zones (ZAs). In each of these zones, indicators of spatial equity and spatial efficiency are calculated. Then, the zones are ranked by their 
weighted combination of spatial equity and spatial efficiency. Finally, these scenarios are evaluated based on the resulting coverage 
and density of infrastructure. Specifically, DARE includes the following seven main steps (Fig. 2). 

3.1. Choosing a study area and defining zones of analysis. 

The first step in the DARE method is to select a study area which is further divided into a training area with an existing BSS and an 
implementation area with similar characteristics where bike share will be added or modified. Historical data from the training area is 
then used to build a ridership model with which to estimate behavior in the implementation area. The learning area and the imple-
mentation area are each subdivided into zones of analysis (ZAs), which define the spatial resolution of the results. 

The shape of the ZAs is typically determined by administrative boundaries, such as neighborhoods (Cintrano et al., 2020; Mooney 
et al., 2019), districts (Caggiani et al., 2020), traffic zones (Caggiani et al., 2017) census blocks (Frade and Ribeiro, 2015), buffer radius 
from candidate stations (Chen et al., 2015; García-Palomares et al., 2012), demand-based delimitation (Reiss and Bogenberger, 2015), 
grid-based hexagons (Albiński et al., 2018), squares (Lin et al., 2020) or road network-based (Noland et al., 2016). Of these, road 
network-based delimitation is recommended because it best aligns with natural cycling barriers such as buildings, highways, railways, 
and water bodies. 

The distance for delimiting the areas (Dmin) determines the size of the ZAs and it should be based on desired station density or the 
maximum distance that a user is willing to walk to access the system. Distances ranging from 200 to 400 meters are commonly used in 
previous research (Tran et al., 2015; Chardon et al., 2017; Duran-Rodas et al., 2019; Wang et al., 2015; Noland et al., 2016; Faghih- 
Imani et al., 2014; El-Assi et al., 2017; Chen et al., 2015; García-Palomares et al., 2012; Caggiani et al., 2020). According to Kabra et al. 
(2019), most BSS ridership originates within 300 meters of stations, and it is the recommended value in guidelines (Yanocha et al., 
2018) and in Banerjee et al. (2020). 

3.2. Spatial data collection, feature generation & dimensionality reduction 

Three main types of spatial data must be collected: (1) historical BSS trips, including the time and location of rentals’ origins and 
destinations, station locations, and service area boundaries, (2) built environment data (e.g. transport infrastructure, POIs), and (3) 
social environment (e.g. transport’s mode choice, milieu, sociodemographics). 

The spatial data for each ZA may be represented in different types of units. In this approach, spatial data types can be represented in 

Fig. 2. DARE method procedure.  
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terms of 1) feature density for each spatial unit, 2) feature percentage by category within each ZA, or 3) walking accessibility from the 
centroid of the ZA, which is measured with the exponential cost function (Geurs and van Wee, 2004): 

Aij = min(e− βcij ), j = 1, 2, 3,…nop (1)  

where Aij is the walking accessibility, defined as the lowest cost to access nop opportunities of category j in ZAi, cij is the travel cost from 
the centroid of ZAi to the opportunities, and β is a cost sensitivity parameter. Eq. 1 assumes that the effect of an opportunity on the 
zone’s accessibility to the centroid diminishes as the distance from the zone centroid increases (Geurs and van Wee, 2004). 

Multicollinearity might be present between variables of the same category. For instance, the density of cafes in a ZA may be highly 
correlated with the density of restaurants. Therefore, we used a hierarchical agglomerative clustering method (HC) for dimensionality 
reduction to group highly associated variables belonging to the same category. HC represents the dissimilarities between the different 
types of variables using a distance matrix (Everitt et al., 2011). Initially, each variable is distinct. Then, each variable is clustered to its 
closest neighbor, with the distance being estimated using linkage methods (Everitt et al., 2011). This procedure continues iteratively 
until there is only one cluster. We used HC because the results are plotted as dendrograms, which helped visualize which variables 
clusters should be included in the model. 

3.3. Estimating the neediest population in terms of opportunities and social status 

After creating ZAs and collecting the spatial data, the next step is estimating the neediest population in terms of opportunities and 
social status. This need is based on access to opportunities and social status demographics and is calculated using a deprivation index 
for each zone of analysis. The Deprivation Index (DI) is an indicator of how deprived and unprivileged a ZA is (Duran-Rodas et al., 
2020c) and is adapted from the concept of deprivation defined by Townsend (1987)): “a state of observable and demonstrable 
disadvantage”. Based on this concept, we calculated this index using the percentage of the underprivileged population (e.g. migration 
background, low-level education, low income, and manual occupations), such as in Messer et al. (2006); Eibner and Sturm (2006); 
Pampalon et al. (2012), as well as the level of access to basic opportunities (e.g. groceries, healthcare, public transportation). An 
example of how access to basic opportunities influences deprivation is provided by Pearce et al. (2007) who correlated deprived areas 
to those with less access to healthy food. Therefore, our formulation of the deprivation index includes the average walking accessibility 
to basic opportunities (Geurs and van Wee, 2004; Büttner et al., 2018) (Eq. 2). 

DIi =
UPi

1
/

nB
∑nB

k=1
Aik

(2)  

where DIi is the deprivation index of ZAi,UPi is the percentage of the underprivileged population, Aik is the walking accessibility to the 
k basic opportunity, and nB is the number total types of basic opportunities considered in the study. Thus, a high deprivation index 
represents an area of a greater underprivileged population and/or limited access to basic opportunities. 

3.4. Estimating the potential demand 

As described in the literature review, different regression methods can be used to estimate potential demand in each zone of 
analysis. The recommended variable for potential demand is the density of arrivals in a zone of analysis. Arrivals are often more closely 
correlated with spatial factors than departures are. Table 1 showed examples of the various factors in the built and social environment 
that are associated with the potential demand for BSS. 

We chose Structural Equation Models (SEMs) as the regression method to estimate the density of bike arrivals for each zone. SEMs 
help to predict behavior using multiple types of variables and searches for causal relationships, which improves the generalization and 
transferability of the model (Thakkar, 2020). SEMs are multi-equation frameworks applied to a multivariate problem to understand the 
interactions between dependent and independent variables in a system using one causal network (Lefcheck, 2016; Grace and Keeley, 
2006). The result accounts for “the roles of the multiple factors in a single analysis” and separates the direct effects from the indirect 
effects (Grace and Keeley, 2006). Every hypothesis of a causal relationship is represented by a linear model in which every path is the 
coefficient of the regression. Therefore, SEMs help to mitigate the impact of potential multicollinearity between the built and social 
environment. 

When using SEMs, it is important to consider that they are linear models having a constant distribution of the error term for all 
observations. To normalize the distribution and increase the data fit of the model, non-linear transformation techniques can be used, 
such as square root, logarithmic (Bishara and Hittner, 2012), or box-cox (Box and Cox, 1964). The first variable to be included in the 
model is the one having the highest correlation with BSS ridership, followed by the one with the second-highest correlation, and so on. 
Variables that neither improve the goodness of fit (CFI > 0.9) nor help reduce the poorness of fit (RMSEA < 0.1) (Hooper et al., 2008) of 
the model are omitted. Randomness in the fitting process of both techniques is mitigated by modeling with a training data-set and 
validating with a testing set (Natekin and Knoll, 2013). Moreover, we performed cross-validation with k-folds as a re-sampling pro-
cedure of the training and test sets in order to control biased results. 
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3.5. Ranking the zones of analysis 

The most important design input for DARE is the weights (from 0 to 1) that are applied to efficiency and/or equity. These weights 
are the heart of the fairness-based method. They are set based on the preferred fairness allocation criteria of the decision makers, 
planners, stakeholders, or politicians developing the system and steer the allocation of infrastructure for the BSS being implemented, 
expanded, or restructured. 

Efficiency is related to the estimated demand and equity is based on the deprivation index. A weight of 0 for efficiency means an 
allocation that prioritizes deprived areas, whereas a weight of 0 for equity prioritizes areas with higher estimated BSS usage. Both 
weights range from 0 to 1, subject to Eqw + Efw = 1. Eqw = 1 signifies consideration of equity alone, whereas Efw = 1 means only 
efficiency is considered. 

After estimating the potential demand and DI for each ZA and assigning the respective weights for spatial efficiency and equity, we 
calculated the rank index (RI). RI is an indicator for each ZA that orders and prioritizes the allocation of stations in each ZA. RI is 
defined in Eq. 3: 

RIi = scale(DIi) ∗ Eqw + scale(PDi) ∗ Ef w (3)  

where RI is the rank index in ZAi, Eqw and Efw are the equity and efficiency weights respectively, DIi is the scaled value of the 
deprivation index in each ZAi, and PDi of the estimated potential ridership. DIi and PDi are scaled based on their distributions. If the 
distribution of DIi and PDi are not similar, mathematical transformations should be performed to obtain comparable distributions. 
Another alternative for different distributions of DIi and PDi is to consider the rank position of DIi and PDi respectively instead of 
scaling (Eq. 4). 

RIi = rank(DIi) ∗ Eqw + rank(PDi) ∗ Ef w (4)  

3.6. Setting different scenarios for the potential location of stations and boundaries of the service area 

At this point, all zones of analysis in the implementation area should be ranked. After setting policies, regulations, system operation 
strategies, financial models (Yanocha et al., 2018), design inputs should be established (such as budget, rebalancing method and 
strategies, and key performance metrics) (Gauthier et al., 2014; Büttner and Petersen, 2011; Toole Design Group, 2012). The number of 
stations (nS) is dependent on the available budget. We propose four different algorithms yielding different results in coverage and 
station density. The algorithms’ inputs are the potential number of zones in the implementation area, the number of stations (nS), and 
RI for each ZA. All algorithms start by ordering the ZAs in descending fashion based on the RIi. The output of each algorithm is the 
zones named ZSt in which stations are allocated.  

1. Top-N. ZSt’s are the top-nS zones based on their RIi, a similar approach as in (Chen et al., 2015). This algorithm tends to result in 
high coverage but a low density of stations.  

2. Neighbor. This algorithm starts by creating a matrix of the ZAs, in which the cells take a value of 1 if two ZAs are contiguous and 
0 otherwise. We order the ZAs based on RIi, and start by allocating a station in the highest raked zone ZSt1 (the ZA with the highest 
RI). The procedure continues by allocating a station in zone ZSt2, which is the zone contiguous to ZSt1 with the highest RI. This step 
is repeated until the desired number of stations nS are allocated. If a neighbor of a ZSt has already been chosen, the next ranked 
neighbor is selected. However, if all the possible neighbors have already been selected, the next ranked ZAi, which is not a neighbor 
of ZStk, is chosen (Appendix A: Algorithm 1). This algorithm tends to have a high density of stations but low coverage.  

3. Island. This algorithm is a mix of the Top-N and Neighbor algorithms. It starts like the Top-N algorithm by setting nisl number of 
zones (”islands”) with fixed stations ZSt′s. Then, the remaining stations are split equally among the fixed stations ZSt′s and allocated 
using the Neighbor algorithm for each “island”.  

4. Island weighted. This algorithm is the same as the basic island algorithm, except that the remaining stations are not equally split 
between islands, but instead follow a weighted distribution. The allocation algorithm with the weighted distribution is shown in Eq. 
5 
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Fig. 3. Hypothetical example of application of the four algorithms. (nS = 6, nisl = 3).  
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nneighbor(xi) = nisl ∗
nisl − xi

n2
isl −

∑nisl

i=1
xi

, for xi = 1, 2, 3,….nisl (5)   

The Island and Island weighted algorithms represent a middle ground between the first two algorithms. They tend to have higher 
coverage than the Neighbor algorithm and higher density values than the Top-N algorithm. As a hypothetical example of the appli-
cation of the four algorithms, Fig. 3 shows the allocation of six stations in 30 ZAs. 

In dockless systems, the stations are virtual and a service area boundary must be defined as an additional step. The service area is 
defined as a buffer area of a distance Bmin around the shortest path tree connecting the selected stations. The distance Bmin defines the 
buffer distance an average person is willing to walk in order to access the supply of BSS. This distance Bmin is often similar to Dmin. 

3.7. Assessment of scenarios 

The most commonly used approach for assessing or optimizing the allocation of infrastructure for docked systems is to minimize the 
impedance (p-median) and maximize the coverage area (García-Palomares et al., 2012). However, these approaches do not consider 
the balancing costs of the system. The allocation goal in this study is to minimize the balancing costs while maximizing the coverage 
area. This requires a dense station network. Therefore, we considered the bi-problem which minimizes the percentage of ZAs without 
access to the system ("non-coverage" area) and maximizes the distribution of the Gaussian kernel density estimate (KDE) of stations 
(density distribution). This approach considers the impedance. 

We aim to maximize the distribution of the KDE, which maximizes the number of areas that have a high density of stations and 
therefore minimizes the balancing costs. KDE for ZSt1,…,ZStnS zones of analysis which have a station is defined by Eq. 6. 

f̂ h(x) = (nSh)− 1
∑nS

i=1
K((x − ZSti)

/

h) (6)  

where K is the normal kernel function, and h is the buffer distance of the area to account for stations’ density. The outcome is a raster 
with values f̂ h(x), in which the average is calculated for each ZA. The distribution of the average KDE is assessed using a Gini coef-
ficient, for which the Lorenz curve is a cumulative line of the percentage of ZAs which have a station and the cumulative percentage of 
the KDE. Gini coefficients range from 0 (signifying an equal distribution in all ZA), to 1 (meaning only one zone gets all the resources). 

In summary, the three inputs in DARE that can be modified to build different scenarios are the equity weighting, the number of 
stations, and the number of islands. Coverage and density of stations are indicators suggested for comparing the different scenarios. 
Top-n presented higher coverage, neighbor presented higher density and the island algorithms fall in between both. The equity 
weighting can be adjusted depending on the desired spatial fairness criteria, the number of stations depending on the budget, and the 
number of islands depending on the desired balance between coverage and density. A coverage goal can improve equality (equal 
distribution of resources) in the allocation because it serves more people and thus more parts of the community (Walker, 2012). In 
addition, users have more destination choices and may perceive high service quality. However, high coverage but low density can lead 
to inefficient service. In this situation, stations may be located far apart, which may be especially inconvenient for users of docked 
systems if a station does not have empty racks and a bike cannot be returned. Moreover, balancing bikes between stations involves 
higher costs for the operator due to the greater distances involved. 

4. Application 

4.1. Choosing an area of study and setting zones of analysis. 

We applied the fairness-based DARE method to a hybrid BSS in Munich, Germany. In 2018, the system reached around 90,000 users 
with its 1,200 bicycles and 118 stations (Rube, 2019). Users can pick-up and drop-off bicycles at stations or at a free-floating location in 
the public realm. To incentive station use, users get a 10 min discount on the trip if a bicycle is returned to a station. The rental of a bike 
costs 0.08 euros per min (or 0.05 euros per min for students). Users can also pay 12 euros to use a bike for the whole day. There is also a 
48 euro subscription package in which users can rent a bike for 30 min every day for six months (12 euros for students) (MVG-Rad, 
2019). 

Munich’s hybrid BSS provides data on the bicycles’ locations every five minutes when they are not being rented (Transit.robbi5, 
2019). It is assumed that a trip ends when a bike “appears” in a new area since there is no location available during the trip. We call this 
a bike movement, which approximates a drop-off or end of a bicycle rental. Bike movements longer than 150 min or with a 
displacement of fewer than 100 meters are not considered in the study. Rebalancing of bikes might be counted as movements within 
the dataset. In total 93,615 bike movements were collected from March 15, 2017 to October 10, 2017. However, within this time 
period, only 138 days with complete information were considered in this study. The month with the greatest number of bike move-
ments was in July and movements tended to decrease in winter. 

To delimit the ZAs based on the road network, we first created a point grid (virtual stations) separated a distance Dmin in the study 
area based on the values previously described. We then removed virtual stations in areas where it was not possible to locate stations, 
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such as water bodies or railways. Then, a service area for each virtual point was generated by assigning the road network that can be 
reached within a distance Dmin from each virtual station. Finally, to split overlapping service areas, they were intersected with Voronoi 
diagrams (Voronoï, 1908) created from vertices and intersection points of the road network. 

Next, we generated the service area for each virtual point by calculating the road network that can be reached within a distance 
Dmin from each virtual station. Finally, we split overlapping ZAs using Voronoi diagrams created from vertices and intersection points 
of the road network. 

For the study area, the service area from the current hybrid BSS system was used as the training area. Two implementation areas 
were considered: 1) the same service area but a reallocation of stations and 2) the outskirts of Munich County as an implementation 
approach with new infrastructure. The minimum distance between stations (Dmin) was 300 meters, which is the most common distance 
used in previous studies and is also recommended in guidelines (Yanocha et al., 2018). The ZAs were thus created based on a grid of 
virtual stations separated Dmin = 300 meters apart within Munich’s service area and excluding areas within railways and water bodies. 

4.2. Spatial data collection 

As a dependent variable, we considered the density of bicycle drop-offs observed in each ZA instead of the count due to the het-
erogeneity of the ZAs’ shape. To pick-up a bicycle, the user must walk to the place where it is located, which may be in a different ZA 
from where the activity was performed. Since we wanted to develop demand models based on the built environment, considering 
bicycle drop-offs rather than pick-ups offered a greater accuracy in studying the ZA of the trip purpose. 

Built environment information was downloaded from OpenStreetMap (OSM) (OpenStreetMap, 2017). OSM is an online platform, 
in which volunteers geolocalize built environment features and make them publicly available. Information collected from OSM in-
cludes transit stations, POIs, land-use, roadways, cycleways, railways, and waterways. 

Milieus data, representing the social environment in this approach, was collected from the Sinus-Geo-Milieus data-set from 2014. In 
this data-set, every address in Munich was probabilistically assigned one out of ten Sinus-Milieus categories (Fig. 4) based on ground 
values (tradition, modernization, individualization, re-orientation) and social status (low, middle, high) (SINUS, 2017). Sinus-Mi-
lieus® on a spatial scale are called Sinus-Geo-Milieus and are defined as the probability of every address in Germany to belong to a 
certain milieu group (Küppers, 2018). Sinus-Geo-Milieus use data from Sinus-Milieus® interviews, official national survey data, and 
data collected from the marketing company Microm (https://www.microm.de/). Then, a multinomial regression model was run on all 
the addresses in Germany to calculate the probability of each house in Germany belonging to one of the ten milieus (Küppers, 2018). 
Population density was also extracted from the Sinus-Geo-Milieus dataset. 

Mode split data was collected from the national mobility survey “Mobilität in Deutschland 2017” (Nobis and Kuhnimhof, 2018) 
with a spatial accuracy of 500x500m. Mode split was extracted from questions related to the mode ridership frequency (daily, 1–3 
times a week, 1–3 times a month, less than monthly, never) of the following modes: bicycle, car, transit (local and regional), and car- 
sharing. 

Fig. 4. Sinus-milieus definition of categories. (SINUS, 2017).  

D. Duran-Rodas et al.                                                                                                                                                                                                 

https://www.microm.de/


Transportation Research Part D 97 (2021) 102914

11

4.3. Feature generation & dimensionality reduction 

In order to calculate walking accessibility to POIs and transport infrastructure, we used the values of β = log(1.0126)+0.013 for 
distances to the centroid of the ZA in Eq. 1. These values were estimated in feet and were taken from Zhao et al. (2003) who studied the 
walking accessibility to public transport. The spatial units used for land-use, milieus, and mode choice were the percentage of each 
category in each ZA. Furthermore, we included an index of walkability as an additional spatial factor, defined as the density of street 
crossings (crosswalks) (Moudon et al., 1997). Walkability is an indicator that an area may also be more attractive for cycling since 
walkable areas make it easier for BSS users to walk to rent a bike. 

Once the units of measure of the built and social environment were estimated, we clustered milieus and POIs using hierarchical 
clustering. Milieus were clustered into four categories: a) Cosmopolitans-Performers, b) Traditionalists-Precarious-Hedonists-Modern 
Mainstreamers, c) Socioecologists-Adaptive navigators, and d) Established Liberal-Intellectuals. POIs were clustered using hierarchical 
clustering into 15 categories: essential needs POIs, essential services POIs, luxury shops, non-luxury shops, public building, doctors, 
education, food service, children-friendly, do-it-yourself shops, tourist attractions, open-air activities, convenience stores, department 
stores, and cinemas & theaters. 

4.4. Estimating people’s need with regard to opportunities and social status 

The deprivation index for each ZA was calculated based on the number of households with low social-status milieus: 
Traditionalists-Precarious-Hedonists with reduced access to basic opportunities: pharmacies, supermarkets, organic food stores, 
bakeries, butchers, transit stations, cycle-ways. Fig. 5 shows the spatial distribution of the deprivation index and the density of bike 
drop-offs. 

4.5. Estimating the potential demand 

Prior to the station assignment, potential demand was estimated using SEM for each ZA as an indicator of spatial efficiency. In order 
to build SEMs, the first step was to set up a structure with the linkages between the independent variables (built and social envi-
ronment) among them and also with the dependent variables (BSS ridership). Linkages between the built environment and ridership 
were taken from the theoretical model “land-use and transport interactions “ (Wegener and Fürst, 2004; Wulfhorst, 2003), while the 
linkages between the social environment were taken from “urban mobility cultures” (Kuhnimhof and Wulfhorst, 2013; Deffner et al., 
2006; Klinger et al., 2013). 

Fig. 5. Map of the density of bike drop-offs vs the deprivation index.  
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The land-use and transport interactions model is based on the “land-use and transport feedback cycle” (Wegener and Fürst, 2004). 
Different land-uses (e.g. residential, industrial) determine the location of activities (e.g. shopping, living, working, leisure), and their 
distribution in space requires a transport system (transport demand) to overcome the distance between these activities. Accessibility 
serves as a measure of the distribution of transportation systems (transport supply), and its spatial distribution guides decisions to 
change land-use (Wegener and Fürst, 2004; Wulfhorst, 2003). The three chosen spatial factors from this theoretical model are:  

• Urban structure. Built environment 3D’s (Cervero and Kockelman, 1997): density (population density), diversity (land-use), and 
design (walkability) 

• Attractiveness. Walking easiness (cost) to reach activities (e.g. points of interest). This actor can be also called accessibility to ac-
tivities. The attractiveness of a zone is higher when different activities are easier to reach.  

• Accessibility to transport supply. Walking easiness (cost) to reach transport infrastructure (e.g. cycleways, public transport). 

The urban mobility culture model involves socio-material interactions between material characteristics (e.g. transport supply), and 
subjective components (e.g. attitudes, preferences, lifestyles, milieus) (Deffner et al., 2006; Klinger et al., 2013). Kuhnimhof and 
Wulfhorst (2013) summarized this theoretical model in four key dimensions: spatial structure and transport supply, policy-making and 
governance, perceptions and lifestyle orientations, and mobility behavior. The three chosen spatial factors links from the urban 
mobility culture definition are the spatial structure and transport supply, perceptions and lifestyle orientations, and mobility behavior. 
Perceptions and lifestyle orientations include milieus and mobility preferences. The policy-making and governance dimension was not 
included in our approach because it is more likely to be quantified at the city level rather than at the local level. 

The land-use and transport interactions model and the urban mobility culture model are linked together by the common factor of 
transport demand (or mobility behavior). This factor refers to the effective (observed) demand for a mode of transportation (e.g. bike- 
sharing). The unit of measurement for this study is the density of aggregated origins and destinations for BSS trips in the study area. 

Fig. 6 shows the spatial factors and their interactions. Green links are taken from the land use and transport interactions model, 
while the orange links are from the urban mobility cultures model. Table 2 lists the supporting concepts for the theoretical linkages 
between the spatial factors. We selected the spatial factors and their interaction links from these two theoretical models. (see Table 3). 

For better model fit and to meet the requirement of homoscedasticity in linear regressions i.e. uniform variance of the error, the 
data set was mathematically transformed. Various transformations were established (e.g. log, squared root), however, the power of 2/7 
presented the lowest heteroscedasticity. Appendix B shows the variables selected to build the model and Spearman’s correlation 
coefficient. Also, we adapted the theoretical structure, in which we combined “Urban structure” and “accessibility to transport supply” 
into one latent variable. There was not a significant direct relationship between transport supply and bike drop-offs. SEM was esti-
mated with the package “lavaan” (Rosseel, 2012) developed for the R programming language (www.r-project.org). The results 
(Table 4) revealed a good fit model with RMSEA = 0.065 (90% CI:0.056–0.075, p = 0.03), and CFI = 0.955. After 100 runs of splitting 
the data into training data (70%) and testing data (30%) and performing cross-validation, the median of the R2 from the training set 
was 0.587, and the median from the test set was 0.582. 

4.6. Setting different scenarios for the potential location of stations and boundaries of the service area 

We chose 100 stations to be allocated among 1234 zones of analysis. and the buffer distance (Bmin) for the service area was assumed 
to be 300 meters. Then, we applied each of the four algorithms previously presented, and determined which zones of analysis would be 
allocated a station in each algorithm. We studied the two extreme cases, allocating infrastructure entirely based on spatial equity 
(Eqw = 1), and entirely based on spatial efficiency (Effw = 1) (Fig. 7a). In the estimation of RI (Eq. 3), deprivation index and estimated 

Fig. 6. Theoretical links of the spatial factors associated to BSS ridership.  
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ridership presented similar non-normal distributions. Therefore, min–max normalization was performed, assigning 0 to the minimum 
value and 1 to the maximum value, and the range of RIi thus being from 0 to 1. 

Finally, we applied DARE in the surrounding county of Munich, which is the peripheral region of the city (Fig. 7b). We excluded this 
region when building the demand model in order to use it as a validation set, demonstrating the method’s transferability. There are 107 
stations in this peripheral region. We applied the island-weighted algorithm to assign the same number of stations. In addition, we used 
different equity weights (Eqw) and the number of islands (nisl) to test the different scenarios when these variables change. In the 
estimation of RI (Eq. 3), deprivation index and estimated ridership presented similar non-normal distributions. Therefore, min–max 
normalization was performed, assigning 0 to the minimum value and 1 to the maximum value, and the range of RIi thus being from 0 to 

Table 2 
Theoretical links between spatial factors associated to BSS ridership.  

LINK TO FROM DESCRIPTION 

v, ii, 
vi 

Milieus Attractiveness, Transport Supply, 
Urban Structure 

Lifestyle, as part of the milieus, are decisive at the moment of choosing a residence location ( 
Aeroe, 2001; Handy et al., 2005), based on different preferences towards access to 
opportunities and transport supply (Klinger et al., 2013).     

i Mobility 
preferences 

Transport supply Different mobility preferences depend on the transport infrastructure available. “Locations 
with good accessibility by car will produce more car trips, locations with good accessibility by 
public transport will produce more public transport trips” (Wegener and Fürst, 2004). 
Preference for a transport mode is not possible if this mode is not accessible. For example, 
train orientation is not possible in areas without a train connection. Klinger et al. (2013) 
stated that a possible reason why US cities are car-dependent is because of the lack of public 
transport systems. 

iii Mobility 
preferences 

Milieu “Mobility is not limited to purely rational decisions, but is influenced by a cluster of feelings, 
norms, value orientations, desires, and fears” (Deffner et al., 2006), i.e. milieus.     

III Urban structure Transport supply “The distribution of accessibility in space co-determines location decisions and so results in 
changes of the land use system.” (Wegener and Fürst, 2004). For example, industrial areas are 
more attracted to be located close to motorways or railways, or office areas are attracted to 
areas close to airports, railway stations, or motorways (Wegener and Fürst, 1999).     

IV Transport 
demand 

Attractiveness Locations with high accessibility to multiple activities will generate more travel demand ( 
Wegener and Fürst, 2004). 

iv Transport 
demand 

Mobility preferences Mobility orientations and attitudes have shown to be particularly relevant to behavior ( 
Hunecke, 2002). When there is a choice or preference towards a mode of transport, its 
ridership will increase. 

I Transport 
demand 

Transport supply Access to transport supply enables intermodal transportation (e.g. bike and ride, park and 
ride), which can raise trips to a certain location to change from one transport mode to another.     

I Transport supply Transport Demand This linkage happens when demand is considered as allocation criteria for transport 
infrastructure (spatial efficiency) (Duran-Rodas et al., 2020c), and therefore, supply is higher 
accessible in areas where there is higher demand.     

V Attractiveness Urban Structure “The distribution of land uses, such as residential, industrial or commercial, over the urban 
area determines the locations of human activities such as living, working, shopping, education 
or leisure.” (Wegener and Fürst, 2004).  

Table 3 
Descriptive statistics from the selected spatial factors.  

Statistic Unit Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Bikes’ drop-offs density*** [#/ ha] 1,620.52 3,162.81 0.00 160.48 1,715.03 57,383.25 
Department stores* [acc.] 2.04 1.16 0.09 1.13 2.84 6.12 
Food services* [acc.] 0.28 0.25 0.00 0.11 0.36 1.88 
Tourist attraction* [acc.] 0.27 0.21 0.00 0.12 0.37 1.52 
Cinema and theater* [acc.] 1.38 0.93 0.02 0.64 1.99 4.55 
Transit stations* [acc.] 0.21 0.14 0.00 0.11 0.28 0.93 
Cycle ways* [acc.] 0.11 0.10 0.00 0.03 0.15 0.64 
Population density**** [#/ ha] 4,439.24 4,413.58 0.00 870.1 6,792.20 21,385.00 
Road intersections (Walkability)* [#/ ha] 4,230.01 3,996.90 0.00 1,965.07 5,283.01 51,690.53 
Cosmopolitan-Performers**** [%] 0.23 0.25 0.00 0.02 0.40 1.00 
Car ridership: 1–3 a month*** [%] 0.09 0.09 0.00 0.00 0.10 1.00 
Car-sharing ridership: < monthly*** [%] 0.17 0.11 0.00 0.10 0.20 0.00 

Data Source: * OpenStreetMap (2017), ** www.bmvi.de/, *** Transit.robbi5 (2019), **** www.microm.de 
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1. 

5. Discussion 

The presented method can be used as a “first draft” 1) to relocate stations based on shifting priorities or goals (e.g. Fig. 7a), 2) to 
expand BSS after learning from an existing system (e.g. Fig. 7b), or 3) to implement new systems, after applying the method to a city 
with similar characteristics. This method can help planners prioritize the distribution of infrastructure according to their BSS goals by 
adjusting the spatial equity and efficiency weights, and to communicate these design priorities transparently. 

5.1. DARE as a method 

DARE method can be summarized by the following steps which can be further applied in other systems:  

1. selecting a study area, and dividing it into zones of analysis,  
2. collecting data from the built and social environment, generating features and aggregating them into categories,  
3. estimating deprivation in each analysis zone or an index showing where underprivileged people live,  
4. estimating potential ridership in each analysis zone or other variables related to “productivity” (e.g. systems’ earnings),  
5. ranking zones of analysis in terms of equity (step IV) and efficiency (step V), 

Table 4 
SEM results.  

LATENT VARIABLES:        
Estimate Std.Err z-value P(>|z|) 

Attractiveness=~       
Department stores 1     
Food service 1.220 0.077 15.746 0  
Tourist attraction 1.066 0.077 13.889 0  
Cinema & theater 0.946 0.069 13.622 0 

Urban structure =~       
Transit station 1     
Cycle ways 0.511 0.087 5.876 0  
Population density − 2.373 0.155 − 15.353 0  
Walkability − 1.051 0.067 − 15.672 0 

Mobility preference =~       
Car ridership: 1–3 a month 1     
Car-sharing ridership: < monthly 1.246 0.115 10.831 0 

Milieu =~       
Cosmopolitan-Performers 1    

REGRESSIONS:        
Estimate Std.Err z-value P(>|z|) 

Attractiveness~       
Urban structure 0.871 0.072 12.108 0 

Mobility preference~       
Milieu 0.025 0.025 1.034 0.301  
Urban structure − 1.291 0.148 − 8.715 0 

Milieu~       
Urban structure − 2.549 0.407 − 6.266 0  
Attractiveness 0.045 0.356 0.128 0.899 

Bikes’ drop-offs density~       
Attractiveness − 1.511 0.113 − 13.415 0  
Mobility preference 0.151 0.050 2.989 0.003 

INTERCEPTS:        
Estimate Std.Err z-value P(>|z|) 

.Department stores  0.725 0.004 161.615 0 

.Food service  0.579 0.005 126.148 0 

.Tourist attraction  0.663 0.005 138.235 0 

.Cinema & theater  0.699 0.005 140.480 0 

.Transit station  0.660 0.004 155.020 0 

.Cycle ways  0.578 0.006 95.587 0 

.Population density  0.569 0.009 66.910 0 

.Walkability  0.506 0.004 138.777 0 

.Car ridership: 1–3 a month  0.692 0.008 88.702 0 

.Car-sharing ridership: < monthly  0.470 0.010 47.486 0 

.Cosmopolitan-Performers  0.546 0.011 50.871 0 

.Bikes’ drop-offs density  0.327 0.005 64.495 0 

Note: RMSEA  = 0.089, CFI  = 0.917 
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Fig. 7. Application of DARE in Munich, Germany.  
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6. creating scenarios based on the number of (virtual) stations according to the available budget and the four algorithms previously 
presented (e.g. Top-n) for infrastructure allocation. For dockless systems, a service area is set using the collective buffer distance 
from the virtual stations.  

7. comparing scenarios in terms of density and coverage. 

Depending on the desired fairness criteria of decision-makers, the allocation of stations can be oriented toward equity, efficiency, or 
a combination of the two. An equilibrium between efficiency and equity can potentially be found, in which deprived areas are not 
abandoned but the system can still be efficient (e.g. Fig. 7b). Previous methods have considered minimizing impedance (García- 
Palomares et al., 2012; Conrow et al., 2018) such that all areas of a city or region would have access to the system. However, when the 
cost for this approach is considered too high, identifying priority areas could be useful for planners to distribute infrastructure ac-
cording to their budget, while taking into account the weights of the preferred fairness criteria. Furthermore, DARE has the strength to 
automate the development of multiple scenarios, which can assist decision-making. Moreover, having different scenarios available can 
help decision-makers justify and be transparent about the planned BSS service area and station distribution. 

Furthermore, DARE provides transparency in terms of the efficiency and equity weights selected, and the varying actors involved in 
BSS planning can aim to reach a consensus on a preferred scenario. Methods for public participation can include online map-based 
commenting, smartphone app crowdsourcing platform, public hearings, public opinion survey, consensus conference, citizens’ 
panels, focus groups, and others (Rowe and Frewer, 2000; Griffin and Jiao, 2019). Further recommendations are to integrate the 
physical design, technology, and payment methods for the system with those of other public transportation and shared means of 
transport. Finally, the process of determining station locations should include site visits and the involvement of the general public and 
other stakeholders. 

A limitation of DARE is the lack of stakeholder inputs in the decision-making method. This method could be improved by adding an 
extra parameter to the rank index based on crowd-sourcing or community input and also an extra weight considering the environ-
mental impact. Another improvement might include the modeling of ridership and spatial factors in terms of trips between zones, 
rather than exclusively origins or destinations. 

5.2. Application of DARE in Munich, Germany 

For our application of DARE to the HBSS service area in Munich, we compared both extreme cases of maximum spatial equity vs 
maximum spatial efficiency with a low budget of 100 stations (Fig. 7a). When spatial equity was desired, deprived areas were served. 
However, there were a very limited number of stations in the city center, making it difficult for people living in deprived areas to cycle 
to and from the city center. In contrast, spatial efficiency focused on the city center and deprived areas were poorly served. It is worth 
mentioning that some areas were well served under both criteria, mainly those deprived areas that had significant potential demand 
for bike-sharing. 

Regarding the algorithms for building different scenarios. The Top-n algorithm prioritized the highest ranked areas, and based on 
the spatial parameters, it provided a higher coverage and lower density of stations than the other algorithms. More people could access 
such a system but it might be expensive for balancing the bicycles during the operation. The neighbor algorithm provided a dense 
allocation of stations but only located them in a few neighborhoods. The island algorithm combined the advantages of the two previous 
methods. It resulted in adequate density with reasonable coverage. However, the method that we recommend is the island weighted 
algorithm, in which zones with the highest-ranking are provided with a denser network of stations, thus prioritizing the whole 
neighborhood. Though having multiple allocation algorithms might increase the method’s complexity, developers can then build 
different scenarios with varying balances of coverage and density. 

DARE was also applied in the peripheral region of Munich by using the SEM built in the central part. With a lower equity weight, the 
stations were located closer to the city of Munich. The Top-n algorithm with a higher efficiency weighting presented similarities (40%) 
with the existing allocation of stations, as opposed to 8% when equity weighting was considered. This analysis suggests efficiency was 
the fairness criterion chosen to allocate the stations. In addition, when the number of stations is small, the neighbor algorithm tended 
to be similar to the island algorithm because of the lower population density in the peripheral region. 

In this study, we applied DARE specifically to a hybrid BSS. However, the method could also be used for docked or dockless BSS 
because hybrid BSS share characteristics of both systems. A key difference when studying station-based systems is that the service area 
is not required in the design. Completely dockless systems, in contrast, use virtual to help design the service area that defines the 
system. 

5.3. SEMs for estimating potential ridership and understanding causal relationships between the social and built environment 

This study uses SEMs to estimate the potential ridership of bike-sharing by associating historical trips with spatial factors from the 
built and social environment using their linkages from a hypothesized theoretical structure (Fig. 6). Every spatial factor included in the 
theoretical structure represents one latent variable, which is a set of observed variables associated with BSS ridership (Table 1). If 
spatial efficiency is desired over spatial equity, areas with higher estimated ridership would be prioritized with an allocation of 
stations. 
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SEMs presented a good fit of the data and theoretical interactions. Areas with a high historical ridership were estimated with the 
model to have potential demand and vice versa when considering spatial efficiency. These areas were densely populated, highly 
walkable, had a low preference for cars, many leisure and touristic activities, a predominance of cosmopolitan and performers 
residents, and good accessibility to transit stations. If we consider only spatial efficiency, the population with a low social-status 
population would be poorly served by the system. The variables identified were in line with guidelines (Büttner and Petersen, 
2011; Gauthier et al., 2014) and studies (García-Palomares et al., 2012) that recommended locating stations in densely populated 
areas close to transit stations, cultural and tourists attractions, and major public spaces and parks (high walkable areas). 

SEMs are a common tool for causal inference. Our use of SEMs to distinguish features that have causal effects from those that are 
purely correlative gives us a better understanding to predict behavior in a new domain. Other advantages of using SEMs are the 
incorporation of multicollinearity, which in linear regression would not have been possible. Moreover, we were able to test the 
hypothesized theoretical structure (Fig. 6). A good model fit was shown after merging urban structure and accessibility to transport 
supply as one latent variable, which validated the concept of urban design including transport infrastructure (Cervero and Kock-
elman, 1997). Even though SEMs served to avoid multicollinearity between the factors, spatial factors might still have a spatial 
autocorrelation between zones. This issue should be considered in further research or applications. 

Using SEMs, we also validated the theory that different milieus choose their residence based on the urban structure and the 
theory that urban structure determines mobility preferences. Therefore, we can infer that attractiveness, milieus, and mobility 
preferences are dependent on the urban structure. The two directly-linked factors determining bike drop-offs were attractiveness 
and mobility preferences. However, attractiveness had ten times the correlation with the drop-offs compared to mobility prefer-
ences. These results of the cosmopolitan population associated with BSS ridership were complementary with the survey by Stöckle 
(2020), where the main value of BSS users in Munich was adventure (progressive values) but not tradition and security (tradi-
tionalist values). The drawback of using milieus is the complexity of their estimation and the lack of availability in other countries. 
Hence, in the absence of milieus for further research, sociodemographic characteristics, perceptions, or attitudes can be included as 
social environments. 

SEMs have learned from the past by using spatial factors. When implementing BSS in a new area, the estimated ridership based 
on spatial factors is assumed to be the induced demand for BSS because there is no existing system in the area. To improve current 
practice, which mostly provides infrastructure to areas with higher estimated demand, we propose to include underprivileged areas 
in the ranking with a weighting in terms of spatial equity. Duran-Rodas et al. (2020a) showed that areas with underprivileged 
residents and traditional values had low BSS use. Possible reasons for this may include cultural barriers and attitudes toward 
bicycling (Stöckle, 2020; Pochet and Cusset, 1999; Van der Kloof, 2015). 

6. Conclusions 

Demand And/or Equity (DARE) is a method that can be used for building scenarios to allocate stations and limit the service area 
of BSS where fairness is considered as an input in the planning process. The distribution of stations and the service area boundaries 
are determined by the weights planners assign to spatial equity versus efficiency. This method was explored through a case study 
based on ridership as well as people’s needs with regard to social status and opportunities. DARE provides transparent decision- 
making support for supply distribution and presents an alternative where the benefits of BSS are extended beyond privileged 
populations. 

We validated a theoretical structure with SEM for estimating potential ridership. The social environment previously associated with 
BSS ridership (Faghih-Imani et al., 2017) was an approximation of the urban structure but not directly connected to the ridership. The 
variables associated directly with high BSS ridership were low car ridership and especially the attractiveness of a zone (defined mostly 
by leisure activities). Both of these variables depended on the urban structure. 

Further research includes the adaptation of the method for decision-making with feedback from stakeholders. Also, possible 
weights for the ranking index can be suggested by stakeholders from different cities to obtain an average score. Additionally, further 
applications of DARE can include sensitivity analyses for using different design inputs, such as the minimum distance between stations, 
sizes, and shapes of the zones of analysis, beta values to estimate walking accessibility or a varying shape and size of zones depending 
on the location. To improve the usability of the method, DARE should be further developed as a practice-relevant user tool. This 
method can also be applied further to study the implementation of new bike-sharing systems and even to assist in planning for other 
transport modes such as car-sharing, scooter-sharing, or public transport. Moreover, the method can extend beyond transport to be 
other logistical and operational services that aim for spatial fairness. 
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Appendix A. Neighbor algorithm 

Algorithm 1. Neighbor algorithm  
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Appendix B. Spearman correlation between selected variables    

Spearman correlation between selected variables. 
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