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Abstract
Background: Multiple myeloma is the second most com-
mon hematologic malignancy, which to date remains incur-
able despite advances in treatment strategies including the 
use of novel substances such as proteasome inhibitors, im-
munomodulatory drugs, and monoclonal antibodies. Sum-
mary: The bone marrow-based disease is preceded by the 2 
sequential premalignant conditions: monoclonal gammo
pathy of undetermined significance and smoldering myelo-
ma. Plasma cell leukemia and extramedullary disease occur, 
when malignant clones lose their dependency on the bone 
marrow. Key genetic features of these plasma cell dyscrasias 
include chromosomal aberrations such as translocations 
and hyperdiploidy, which occur during error-prone physio-
logic processes in B-cell development. Next-generation se-
quencing studies have identified mutations in major onco-
genic pathways and tumor suppressors, which contribute to 
the pathogenesis of multiple myeloma and have revealed 
insights into the clonal evolution of the disease, particularly 
along different lines of therapy. More recently, the impor-
tance of epigenetic alterations and the role of the bone mar-
row microenvironment, including immune and osteogenic 
cells, have become evident. Key Messages: We herein re-
view the current knowledge of the pathogenesis of multiple 
myeloma, which is crucial for the development of novel tar-
geted therapeutic strategies. These can contribute to the en-
deavor to make multiple myeloma a curable disease.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Plasma cells are terminally differentiated B cells, 
which play an integral role in the humoral immune re-
sponse by secreting antibodies. Errors in the physiologic 
events leading to plasma cell maturation and antigen 
specificity can propagate malignant transformation, 
leading to a variety of diseases termed plasma cell dyscra-
sias. The clinically most significant plasma cell disorder 
is multiple myeloma, which is the second most common 
hematologic malignancy and accounts for 10% thereof 
[1]. Clinical features of this bone marrow-based disease 
include bone destruction, hypercalcemia, renal failure, 
cytopenia, and immune paralysis [1]. Symptomatic mul-
tiple myeloma requires systemic treatment and can be 
preceded by 2 sequential premalignant conditions termed 
monoclonal gammopathy of undetermined significance 
(MGUS) and smoldering myeloma (SMM; also known as 
asymptomatic myeloma), all of which share several ge-
netic features [2]. Precise understanding of the molecular 
pathogenesis and biology of each state of the disease is 
necessary to develop prognostic tools and novel thera-
peutic approaches. Technical advances in the detection 
of chromosomal aberrations via fluorescence in situ hy-
bridization, mutational analysis using next-generation 
sequencing, epigenetic profiling, and investigations into 
the bone marrow microenvironment have added to the 
understanding of this family of hematologic malignan-
cies. We herein review the current knowledge and pro-
vide novel insights into the molecular pathogenesis of 
plasma cell dyscrasias.

This article is licensed under the Creative Commons Attribution 4.0 
International License (CC BY) (http://www.karger.com/Services/
OpenAccessLicense). Usage, derivative works and distribution are 
permitted provided that proper credit is given to the author and the 
original publisher.
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Physiological B-Cell Development
After undergoing immunoglobulin heavy and light 

chain rearrangement at the immature B-cell stage, B cells 
can transition from the bone marrow into the periphery 
and secondary lymphoid tissues for maturation. T-cell-
dependent cytokine stimulation induces a complex B-cell 
activation in the germinal center that results in selection 
of B cells with higher-affinity B-cell receptors and longer 
lasting immunity. This process includes somatic altera-
tions termed somatic hypermutation (SHM) and class-
switch recombination (CSR), which are prone to genom-
ic errors [3, 4]. SHM of the heavy and light chains is im-
portant to increase the antigen-antibody affinity through 
mutation of the complementarity determining region [4]. 
CSR is a process that removes portions of the antibody 
heavy-chain locus, enabling the production of immuno-
globulins of different isotypes with same antigenic speci-
ficity [5]. Both processes are mediated by the activation-
induced cytidine deaminase, which introduces DNA 
double strand breaks [6–8].

Translocations and Hyperdiploidy
Translocations can be found in half of MGUS and MM 

patients [9]. As opposed to other B-cell malignancies, 
CSR errors are mainly thought to cause translocations in 
MM [10]. Most translocations involve the IgH locus 
(14q32), which puts oncogenes under the influence of the 
powerful IgH enhancer and thus result in upregulation 
(Table 1) [11, 12]. Translocations involving the immuno-
globulin lambda (IgL) locus are present in 10% of patients 
with newly diagnosed MM and up to 20% in relapsed-
refractory MM and are indicative of poor prognosis [13]. 
IgK translocations are even less frequent, occurring in 
<5% of newly diagnosed MM [14]. Cyclin D (CCND) dys-
regulation is the most common result of IgH transloca-
tion [15]. It involves t(11;14) (CCND1, 15–20%), t(12;14) 
(CCND2, 1%), and t(6;14) (CCND3, 1–4%). IgH-NSD2 or 
t(4;14) is the second most common translocation and re-
sults in a dual dysregulation of NSD2 and FGFR3 [16, 17]. 
NSD2 is thought to be the essential transforming element 
[18, 19]. It contributes to increased proliferation, a change 
in cellular adhesion, and high tumorigenicity [20]. IgH-

MAF and IgH-MAFB translocations result from t(14;16) 
and t(14;20), respectively [21, 22]. Both genes belong to 
the MAF family, which are leucine zipper-containing 
transcription factors. MAF induces the expression of 
CCND2 resulting in accelerated cell division and DNA 
synthesis as well as integrin B7 leading to increased adhe-
sion to bone marrow stromal cells [23]. Overexpression 
of MAFB induces proliferation and protects cells from 
drug-induced apoptosis [4, 24]. Complimentary to trans-
locations, 50–60% of all myelomas are hyperdiploid. Hy-
perdiploidy is hypothesized to occur during rapid germi-
nal center proliferation that results in chromosome seg-
regation errors [4]. Trisomies commonly affect odd 
chromosomes [25]. Nonhyperdiploid karyotypes can be 
further divided into hypodiploid (44/45 chromosomes; 
approximately 20%), pseudodiploid (44/45 to 46/47; ap-
proximately 35%), near-tetraploid (>74; approximately 
10%), and hyperhaploid karyotypes (24–34 chromo-
somes, rare) [26]. Nonhyperdiploid karyotypes are asso-
ciated with a more aggressive clinical course, especially in 
the case of hypodiploidy and hyperhaploidy [9, 27–31].

Monoclonal Gammopathy of Undetermined 
Significance
MGUS is considered a premalignant clonal disorder 

and is classified based on the involved paraprotein (non-
IgM, IgM, and light-chain MGUS) [32]. Diagnostic crite-
ria are listed in Table 2 [33]. MGUS is present in approx-
imately 3% of white individuals aged >70 years, and its 
incidence increases with age [34]. The most common 
subtype of heavy-chain MGUS is IgG (70%), followed by 
IgM (15%), IgA (12%), and biclonal gammopathy (3%). 
In contrast to IgG, IgA, and biclonal gammopathy, which 
can precede MM, IgM MGUS is mostly a precursor for 
lymphoplasmocytic lymphoma [35]. Monoclonal gam-
mopathy of renal significance is an important subgroup, 
which is characterized by renal impairment and/or pro-
teinuria caused by paraprotein deposition [36] and pro-
gresses to end-stage renal disease in one-fifth of all cases 
[37]. Solitary plasmocytoma is a localized form of MM, 
confined to a single bone or extramedullary lesion, and is 
frequently associated with MGUS [38].

IGH translocation Genes affected Frequency Prognostic impact

t(4;14) FGFR3, MMSET 11–15% High risk
t(6;14) CCND3 Approximately 1–2% Standard risk
t(11;14) CCND1 Approximately 15% Intermediate risk
t(14;16) MAF 3–5% High risk
t(14;20) MAFB Approximately 1% High risk

Most common translocations with affected genes, frequencies, and prognostic impact. 
Data derived from [12, 20, 39].

Table 1. Translocations
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Mutational Landscape in SMM and MM
The risk of progression to multiple myeloma is around 

1% per year [35]. A variety of further genetic aberrations 
contribute to transformation of MGUS to MM. The cru-
cial pathomechanism lies in the deregulation of oncogen-
ic pathways rather than in single-gene mutations [39]. 
SMM is an intermediate condition with a higher disease 
burden than MGUS, which still lacks organ damage (Ta-
ble 2) [34]. The progression risk of smoldering myeloma 
to active myeloma is about 10% per year in the first 5 
years, 3% for the next 5 years, and 1% 10 years after initial 
diagnosis [2, 40]. This observation led to the conclusion 

that there are 2 main mechanisms of myeloma progres-
sion. In the “static progression model,” the malignant 
population is already defined at SMM stage, and MM oc-
curs by continuous proliferation of this clone. In the 
“spontaneous evolution model,” disease progression oc-
curs by clonal evolution with acquisition of further trans-
locations, copy number aberrations, and mutations 
(shown in Fig.  1) [41, 42]. A recent study showed that 
whole-genome sequencing-based analyses could differ-
entiate MM precursor conditions (MGUS and SMM) 
with a low or high risk of progression based on the ab-
sence or presence of key MM defining genetic events such 

Table 2. Diagnostic criteria

Diagnosis MGUS Smoldering 
myeloma

Symptomatic 
multiple myeloma

Criteria
Clonal plasma cells in bone marrow <10% 10–60% ≥10% ≥60%

And And/or And/or Or
M-protein (serum) <30 g/L ≥30 g/L Detectable

And And/or And/or
Monoclonal light chain excretion (urine) <500 mg/24 h ≥500 mg/24 h Detectable

And And And
End organ damage (CRAB-criteria) No No Yes

And
Abnormal free light chain ratio 
(only light chain type)

Abnormal free light chain ratio 
(only light chain type) >100
Or
>1 focal lesion on MRI

Diagnostic criteria for each disease stage assessed by bone marrow biopsy, serum and urine markers, and presence of organ damage. MGUS, monoclonal 
gammopathy of undetermined significance. Derived from [33].

Fig. 1. Key features of multiple myeloma pathogenesis. Errors dur-
ing physiologic B-cell development can result in primary genetic 
events such as hyperdiploidy and translocations. Further second-
ary events, such as mutations in oncogenic pathways, loss of tumor 
suppressor function through mutation or deletion, epigenetic al-
terations, and changes in the bone marrow microenvironment, 

cause the transition to symptomatic myeloma. End-stage disease 
is characterized by cells circulating in the blood stream/infiltrating 
other organs. MGUS, monoclonal gammopathy of undetermined 
significance; SMM, smoldering multiple myeloma; MM, multiple 
myeloma; EMD, extramedullary disease; PCL, plasma cell leuke-
mia. Illustration adapted from [47].
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as chromothripsis, templated insertions, mutations in 
driver genes, and aneuploidy [43]. The frequency of mu-
tations in MM has been determined by next-generation 
sequencing at about 60 mutations per patient [12] and is 
thus much higher than in patients with acute leukemias 
but lower than in solid tumor patients [44]. More than 60 
recurrent mutations in driver genes have been identified 
[45]. Recent studies have shed light on the complex 
chronological order of MM-driving events using whole-
genome sequencing approaches and have determined on-
cogenic point mutations to occur at rather later disease 
stages as opposed to disease-driving complex structural 
events [46]. In about 50% of myeloma patients, mutations 
induce aberrant signaling in the MAPK/ERK pathway 
(NRAS, KRAS, BRAF and EGR1, and FGFR3) [47]. About 
15% of MM patients show mutations affecting DNA re-
pair pathways like TP53, ATR, ATM, and ZFHX4 genes, 
which are associated with shorter survival [48, 49]. More-
over, mutations involving the NFκB pathway can be de-
tected in about 20% of MM patients, affecting TRAF3, 
NFKBIA, BIRC2/3, or CYLD genes [50]. Alteration of the 
PI3K pathway occurs in patients with MAF transloca-
tions [51]. Mutations in the CCND1/2/3, CDK4/6, and 
RB1 genes deregulate cell cycle control mechanisms and 
are associated with unfavorable outcomes [48, 49]. To fa-
cilitate the export of cellular metabolites such as lactate 
and sustain the high need for nutrients, MM cells upreg-
ulate the expression of metabolically active transmem-
brane complexes. Their destabilization marks a major 
means by which IMiDs exert their antimyeloma efficacy 
[52, 53]. Last, epigenetic changes leading to global DNA 
hypomethylation and gene-specific DNA hypermethyl-
ation play an important role in the progression of MGUS 
to myeloma [54]. This can be observed in a subgroup of 
patients with t(4;14) and overexpression of MMSET 
which encodes a histone methyltransferase transcription-
al repressor, leading to DNA hypermethylation [55].

High-Risk, Extramedullary MM and Plasma Cell 
Leukemia
Despite the recent improvements in therapy for MM 

patients, a group of high-risk disease patients consistent-
ly demonstrates poor outcomes upon standard therapy 
[56]. High-risk disease, which is present in 20–30% of all 
cases, cannot be defined by a single pathogenic mecha-
nism, but rather arises from the interplay of several ge-
netic lesions leading to high proliferation rates, evasion of 
apoptosis, and therapy resistance [20]. This is, in part, 
achieved by strong dysregulation of the G1/S checkpoint, 
further proliferation signaling via MYC, RAS-ERK, and 
NFκB pathways, aberrant signaling within the bone mar-
row niche, and loss or mutation of the tumor suppressor 
genes RB1 and TP53 [20]. Next to IGH translocations 
such as t(4;14) and t(14;16), which have been associated 
with adverse outcomes, gain of chromosome 1q21 has re-
cently evolved as another poor prognostic marker [57, 
58]. Biallelic inactivation of TP53, either by homozygous 
deletion (del[17p]) or concurrent mutation, is considered 
a marker for ultra high-risk disease [49]. In advanced dis-
ease stages, some MM clones lose their dependency on 
the bone marrow microenvironment and can be found 
circulating in the bloodstream or infiltrating other or-
gans. Plasma cell leukemia is historically defined by the 
presence of >20% or >2 × 109 clonal plasma cells in the 
peripheral bloodstream [59], whereas extramedullary 
disease is marked by proliferation and infiltration of MM 
cells in various extramedullary organs [60].

Clonal Evolution of MM Disease
Traditional cancer progression models proposed a lin-

ear process, in which a single malignant cell gives rise to 
clonal progeny, which acquires further genetic hits [61]. 
This applies in part to multiple myeloma; however, cur-
rent studies have revealed a more branched evolutionary 
pattern according to Darwinian principles of natural se-

Fig. 2. Branched clonal evolution patterns 
in plasma cell disorders. Clonal evolution 
of MM follows a branched pattern from an 
original propagating cell to symptomatic 
disease. Several clones may be present at 
each stage. Treatment can reset the clonal 
heterogeneity, and different clones can lead 
to relapse. MGUS, monoclonal gammopa-
thy of undetermined significance; SMM, 
smoldering multiple myeloma; MM, mul-
tiple myeloma; EMD, extramedullary dis-
ease; PCL, plasma cell leukemia. Illustra-
tion adapted from [20].
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lection (shown in Fig. 2) [44, 62]. This is in line with pat-
terns seen in acute myeloid leukemia and other hemato-
logic malignancies [63, 64]. Evolutionary patterns be-
come evident especially in patients at relapse after therapy. 
A recent study demonstrated that patients at relapse after 
achieving a complete response had a predominantly 
branching evolutionary pattern with a greater mutational 
burden, an altered mutational profile, acquired structural 
aberrations, and biallelic inactivation of tumor suppres-
sor genes, while patients at relapse after a partial response 
showed a largely stable mutational and structural profile 
[65]. Induction therapy reduces the tumor load and can 
be considered as an evolutionary restriction point, which 
resets intraclonal dynamics (shown in Fig. 2). Consolida-
tion and maintenance therapy can then control more in-
dolent clones, which persist after induction therapy, lead-
ing to a longer survival [66]. Mutations in known MM-
driving genes (e.g., KRAS), segmental copy number 
alterations, and inactivation of tumor suppressors, such 
as TP53, drive disease progression by Darwinian clonal 
evolution, and both mutations in such genes, as well as 
branched evolution itself, have been associated with an 
adverse prognosis [67–69]. Another complexity arises 
from intrapatient spatial heterogeneity, which was shown 
to be present in 75% of patients analyzed by multiregion 
sequencing [70]. Biopsies taken from the usual sampling 
site, the iliac crest, might not provide a representative im-
age of all, possibly high-risk clones, which might be pres-
ent at other sites or focal lesions. This poses a significant 
challenge to targeted therapy in multiple myeloma.

Microenvironment
Since patients with MGUS or SMM show IgH translo-

cations and/or hyperdiploidy, other factors seem to be 
necessary for MM progression. Late oncogenic events are 
thought to occur in the bone marrow, after the initial 
clone is completely differentiated into a long-lived plas-
ma cell [39]. This implies an important role of the micro-
environment for tumor progression [34, 71]. The micro-
environment includes cellular elements like bone marrow 
stroma cells, mesenchymal stem cells, endothelial cells, 
immune cells, and soluble factors. The bone marrow mi-
croenvironment in MM patients has been shown to differ 
in its composition compared to that of healthy individu-
als [72]. Pro-proliferative, antiapoptotic, and chemotac-
tic cytokines such as IL6, CXCL12, IGF1, and VEGFA me-
diate MM cell growth, survival and migration, and fol-
lowing treatment, the development of drug resistance in 
the bone marrow microenvironment [73]. Moreover, 
myeloma cells also produce cytokines such as TNF-α, 
TGF-β, and VEGF, resulting in a positive feedback loop 
[74].

Osteogenic Niche
Osteoblasts are responsible for apposition of new bone 

and counterbalance the function of osteoclasts, the bone-
resorbing cells. Various hormones, nutrients, drugs, and 
disease states influence the function of osteoclasts and os-
teoblasts, normally providing an equilibrium and thus 
guaranteeing adequate bone mass [75]. In MM patients, 
the osteoblastic niche is depleted in favor of an overabun-
dance of osteoclasts, which support cancer cell prolifera-
tion, resistance to apoptosis, and whose aberrant activity 
is responsible for lytic lesions and ultimately bone disease 
[76]. Molecular mechanisms of the antiosteoblastic ef-
fects of MM cells include downregulation of Run2 in 
MSCs and differentiated osteoblast progenitors, in-
creased production of WNT pathway inhibitors includ-
ing Dickkopf WNT signaling pathway inhibitor 1 (DKK1), 
secretion of antiosteoblastic factors such as IL-3, TGF- β, 
hepatocyte growth factor, and constitutive activation of 
the Notch pathway [77–81]. Increased osteoclastogenesis 
in MM is largely determined by a loss of the balance be-
tween the pro-osteoclastogenic RANKL and the anti-os-
teoclastogenic RANK decoy receptor osteoprotegerin 
[82]. A maladaptive prosurvival and bidirectional loop 
also exists among osteoclasts and MM cells [83]. Osteo-
clasts contribute to MM pathogenesis, not only via their 
bone-resorbing properties which results in MM-related 
bone disease manifesting as osteopenia, lytic lesions, and 
eventually pathological fractures but also by secreting 
IL-6 and osteopontin, thus stimulating MM proliferation 
and angiogenesis, respectively [84]. In return, MM cells 
promote osteoclast differentiation and activity [85, 86].

Immune Cells
Several studies have demonstrated the capacity of in-

nate and adaptive immune cells to mediate growth con-
trol of MGUS/MM [87]. MM cells can escape immuno-
logic surveillance by inducing immune tolerance and T-
cell anergy. A loss of effector function of T cells, NK cells, 
and NKT cells is associated with a progression to MM [88, 
89]. The composition of lymphocytes present in the MM 
microenvironment substantially differs from that in 
healthy subjects [90, 91]. TH17 cells are a distinct subset 
of CD4+ T helper cells characterized by a particular pat-
tern of cytokine production and are abundant in the BM 
of MM patients [92–94]. TH17 cells suppress cancer im-
mune surveillance by secreting IL-10 and IL-17, which 
also has a pro-osteoclastogenic effect [94–96]. Cytotoxic 
CD8+ T cells from MM patients differ from healthy coun-
terparts in their repertoire of T-cell receptor coreceptor 
molecules and show an increased expression of PD-1. 
PD-L1 is overexpressed on the surface of MM cells, which 
conveys further immune tolerance of MM [97, 98]. Al-
though PD-L1 is expressed on MM cells, single-agent 
PD-1 blockade is not effective in MM, and combination 
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regimens with checkpoint inhibitors have also rendered 
disappointing results, especially given an excessive toxic-
ity in combination with IMiDs [99–101].

Conclusion

It has become clear that the pathogenesis of plasma cell 
disorders is characterized by primary genetic lesions such 
as translocations and hyperdiploidy, which occur during 
physiological B-cell development. The transition from a 
premalignant clone to symptomatic disease is then facili-
tated by somatic mutations in various oncogenic path-
ways and tumor suppressors, epigenetic alterations, and 
a tumor-promoting bone marrow microenvironment. 
The understanding of these complex processes will sup-
port the development of new targeted therapeutic strate-
gies, which should be considered essential if we want to 
reach the goal of curing MM patients.
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