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Abstract—With the prosperous development of Convolutional
Neural Networks, currently they can perform excellently on
visual understanding tasks when the input images are high
quality and common quality images. However, large degradation
in performance always occur when the input images are low
quality images. In this paper, we propose a new super-resolution
method in order to improve the classification performance for
low-resolution images. In an image, the regions in which pixel
values vary dramatically contain more abundant high frequency
contents compared to other parts. Based on this fact, we design
a weight map and integrate it with a super-resolution CNN
training framework. During the process of training, this weight
map can find out positions of the high frequency pixels in
ground truth high-resolution images. After that, the pixel-level
loss function takes effect only at these found positions to minimize
the difference between reconstructed high-resolution images and
ground truth high-resolution images. Compared with other state-
of-the-art super-resolution methods, the experiment results show
that our method can recover more high frequency contents in
high-resolution image reconstructing, and better improve the
classification accuracy after low-resolution image preprocessing.

I. INTRODUCTION

Nowadays, the Convolutional Neural Networks (CNNs)
have dramatically facilitated the progress of high-level visual
understanding tasks [1], [2], [3] and low-level image process-
ing tasks [4], [5], [6]. However, in real world applications,
CNNs always fail to deal with visual understanding tasks
in harsh conditions, such as low resolution, low luminance
and adverse weathers. The most direct solution to resolve
this problem is preprocessing the low quality images captured
in adverse conditions. This connects the low-level image
processing methods and the high-level visual understanding
methods. Vidal ef al. [7] and Yang et al. [8] have completed a
lot of trials in this direction. Their work reveals that the current
preprocessing methods can improve the performance of visual
algorithms on some of the low quality images, but also degrade
their performance on some other images. For instance, image
super-resolution (SR), which can scale up a low-resolution
(LR) image to a high-resolution (HR) image, is supposed to
increase the accuracy of visual classification, but sometimes
they can also introduce artifacts and affect the judgement of
classifier. In general, the existing preprocessing methods can
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only slightly improve the performance of classification or even
degrade the performance.

In this paper, we focus on improving the performance
of visual classification for low-resolution images by super-
resolution method. The research on single image super-
resolution has lasted a long term, and many typical
methods have been proposed, such as interpolation-based
method [9], reconstruction-based method [10] and example-
based method [11]. In recent years, the CNN-based super-
resolution methods [12], [13], [14] outperform the above
methods and achieve a very high peak signal-to-noise ratio
(PSNR) in validation. Most of the state-of-the-art CNN-based
SR methods share the same training process and the same
loss functions. Generally speaking, the training process usually
contains two main steps: 1. generating the training sample
pairs. 2. learning a mapping to reconstruct a HR image from
a LR image. A training sample pair consists of a ground truth
HR image and a LR image, and the LR is downscaled from
the HR. In the training process, the network takes the LR as
input and outputs a reconstructed HR image. Then the loss
function calculates the difference between the reconstructed
HR and the ground truth HR. Based on this computed result,
the network updates its parameters by back propagation. In
order to achieve a higher PSNR, the loss functions usually
equally take all pixels into consideration, which can result in
blur and artifacts. However, in image processing, it is well
known that a high PSNR cannot always represent the high
subjective quality. We think pixels located at different positions
should be treated differently, just like humans naturally focus
on textures and edges when recognizing some objects.

In an image, textures and edges are the parts in which
pixel values vary dramatically. In the frequency domain, they
correspond to the high frequency contents which help us to
distinguish different objects. We suppose that the performance
of a CNN classifier can be improved if more high frequency
contents are recovered in HR image reconstructing. To this
end, we propose a modified image super-resolution method
which focus on high frequency contents reconstruction. Firstly,
the pixels which contain more high frequency contents are
selected out from ground truth HR image. Then, we give them
a high weight during the training loss calculating process.
To determine that which pixels contain more abundant high
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frequency contents, we propose a method to extract a weight
map from a ground truth HR image. This weight map has the
same shape of the ground truth HR image. In this ground
truth HR image, if a pixel’s value is much more different
from its surrounding pixels, the weight map will have a larger
value at its corresponding position. In a follow-up process, on
the weight map, the positions which are occupied by large
enough values will be denoted by the number ‘1°, and all
other positions will be denoted by the number ‘0’. As a result,
each number ‘1’ in the weight map corresponds to a high
frequency pixel in the ground truth HR image. After that, we
train the network according to this weight map. The network
focuses on minimizing the difference between reconstructed
HR and ground truth HR at positions of the high frequency
pixels, and it ignores the differences at positions of the low
frequency pixels. This means we only use a part of the training
data in network training, but our method can obtain more
high frequency contents and the same or even better PSNR
compared to those methods which use 100% training data.
Furthermore, for those classification tasks with low-resolution
input images, after scaling up the LR images by our SR
method and retraining the network, the network can achieve a
higher classification accuracy.

Experiment  Source  Code can  be  found in
https://github.com/zhouliguo/Low-Resolution-Image-
Classification

II. RELATED WORK
A. Image Processing joint Visual Understanding

With the widely use of computer vision techniques, low-
level image processing tasks and high-level visual understand-
ing tasks are inevitably to be combined in some comprehensive
applications. Zhou et al. [15] and Liu et al. [16] propose
frameworks that can use results of high-level vision tasks to
improve performance of the low-level image processing.

In [15], visual classification results is used to supervise the
training of image super-resolution network. The top layers
of classification CNNs are supposed to extract perceptual
information of objects. In this method, a well reconstructed
HR image should not only have a high PSNR with respect to
the ground truth HR image, but also be the same as outputs
of top layers in classification CNNs. The authors connect
a SR network with a classification network, and optimize
the SR network by minimizing the difference between the
reconstructed HR image and the ground truth HR image,
and the difference of the classification network’s outputs
when inputting reconstructed HR image and ground truth HR
image synchronously. [16] proposes a joint network for image
denoising. This network is similar to the network in [15] , both
of them can gain higher PSNR and more visual satisfaction.

B. Robust Visual Understanding in Wild

Many outdoor camera platforms, like UAVs, surveillance
cameras and outdoor robots, are of advantage to the society
and people in general. However, the images captured by them
are always unclear and cannot be interpreted automatically. To

facilitate the research in this area, Vidal ef al. [7] proposed a
benchmark dataset, namely the UG2, which contains images
collected from three difficult real-world scenarios: uncon-
trolled videos taken by UAVs and manned gliders, as well as
controlled videos taken on the ground. This benchmark aims at
validating whether or not image restoration and enhancement
techniques improve visual classification and object detection
performances.

Similar to [7], Yang et al. [8] collected three benchmark
datasets in real-world poor visibility environments, such as
bad weathers (haze, rain) and low light. These datasets focus
on object detection in the haze, face detection in the low
light condition and zero-shot object detection with raindrop
occlusions, and aim to evoke a comprehensive discussion
and exploration about whether and how the low-level image
processing techniques can benefit the high-level automatic
visual recognition tasks in various scenarios.

IIT. METHOD
A. Image Super-Resolution Training Framework

The mainstream deep learning based image super-resolution
methods are learning a mapping model to reconstruct a high-
resolution image from a low-resolution image. The whole
training framework is showed in Figure 1 (solid lines con-
nected part). During the training process, the Super-Resolution
CNN takes the LR image X as its input, and outputs a recon-
structed HR image Y. Then the difference between Y’ and the
ground truth HR image Y is calculated as training loss which
can be used for guiding the back propagation to optimize the
weight parameters of the network. The most commonly used
loss functions in image super-resolution methods are L1 or
L2 distance [17]. In this paper, we use the L1 distance, and
the loss functions are defined as:
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where | denotes the loss of one pair of Y/ and Y. w, h
and c denote the width, height and channel number of Y
and Y respectively. N and 1™ denote the total number of
sample-tuples and the n-th tuple’s loss in one training batch
respectively, and [, denotes the average loss of one batch of
training sample-tuples.

In conventional deep learning based image super-resolution
methods, all image pixels are treated equally in the loss
function. In fact, for network optimization, the pixels in the
high frequency regions of image play a much more important
role than those which exists in low frequency regions. Hence,
giving priority to optimize the high frequency regions could
make the method to be more efficient. To achieve this, as
show in Figure 1, we design a weight map W and add it in the
training framework. The weight map has the same shape of Y,
it can help the network screen out high frequency regions from
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Fig. 1. Our CNN training framework for image super-resolution. We add a weight map in loss function for recovering more high frequency content.

the ground truth HR images, therefore enables the network
to focus on optimizing loss at these regions and enhances its
capability to obtain more high frequency content. More details
about weight map generation are provided in next section.
After integrated with weight map, the loss function of the
new network changes from (1) to (3):

1 w h c
I=— ‘Yi,j,ka/i,j,k Wi, k| G
- ;;; (Y[i, j, k] (i, 5, K)WTi, j, K]
where m denotes the total number of none-zero values in
weight map W.

B. Weight Map Initialization

In order to select pixels which contain more high frequency
content, we propose a method to assign a weight to per pixel
position. Figure 2(b) represents a 3x3 pixel neighborhood in
ground truth HR image. Obviously, in this pixel neighborhood,
the center pixel p. has four nearest adjacent pixels which
locate on the up, down, left and right side of it respectively.
For each pixel neighborhood, equations (4)-(6) are defined for
calculating the initial weight value w for p,:

Pc — Pu
D = DPc — Pd (4)
De — D1
L Dec — Pr
I |pc - pu‘
|pc - pd|
D, = 5
|pc - pl| ( )
L ‘pc - prl
w = D[argmaz(D,)] (6)

Firstly, the differences between the center pixel p. and its
four nearest adjacent pixels are computed by equation (4).
Then the absolute values of these differences are calculated by
equation (5). After that, in equation (6), the maximum absolute

Pu
P1|Pc
Pa

Pr

(a) Ground Truth Image

(b) A Pixel Neighborhood

(d) Modified Weight Map

(c) Initial Weight Map

Fig. 2. (a) represents the ground truth image (cropped from the ‘0068.png’ in
training dataset of DIV2K [18]). (b) denotes a pixel neighborhood in ground
truth image. (c) is the initial weight map generated by (4)-(6) (the negative
values are absolutized for visualization). (d) is the weight map modified by (7)
from (c) for pixels selection.

value is found, and its corresponding difference is selected as
the initial weight value w for p.. For those pixels locating at
corners and edges, we calculate their initial weight values with
their nearest two or three adjacent pixels if they really exist.
Since an image usually has three channels, all channels are
processed one by one in the same way.

Figure 2(c) shows a sample result of initial weight map
calculating. Apparently, the high frequency regions in the
original image have an obvious representation in this generated
weight map. After weight map initialization, the next step is
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to select pixels for training according to this weight map.

C. Weight Map Modification for Training Pixels Selection

Distribution of Pixel Values in Weight Map
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Fig. 3. The distribution of pixel values in initial weight map (normalized
to [-0.5,0.5]). The horizontal axis denotes weight value in weight map and
the vertical axis denotes weight number. (Generate from the ‘0068.png’ in
training dataset of DIV2K [18].)

With the statistic analysis, the distribution of the weight val-
ues in a initial weight map approximately obeys the Gaussian
distribution. As show in Figure 3, most of the weight values
concentrated near the zero point, and the positions of these
weight values represent positions of low frequency contents
in original image. On the contrary, a few of them have very
large values and these weight values are corresponding to the
high frequency contents.

The most needed part of ground truth HR image for network
training is the high frequency part, so it is necessary to screen
out pixels containing high frequency information from the
ground truth HR image. For this purpose, we modify the initial
weight map (the result of the previous subsection) according
to the weight values’ Gaussian distribution.

Firstly, the initial weight map values are normalized to a
range of [0,1], next the mean p and the standard deviation o
of their distribution are calculated. Then the weight values are
modified by (7):

/ 0, we€u—ao,p+aol
w = . (7
1, otherwise

The parameter « is used for controlling and limiting the total
number of zero values in a weight map. A modified weight
map looks like the sample in Figure 2(d) and the bright parts
of it represent the high frequency content in ground truth
image. Finally, this modified weight map is applied to train
the network. As a result, in the loss function, only the loss of
high frequency pixels are multiplied by the weight value 1, this
implies that they have been selected. On the other hand, the
loss of low frequency pixels are multiplied by 0 and ignored.
Since only the high frequency part of the ground truth HR

image contributes to the back propagation, the network can
reconstruct more high frequency contents.

IV. EXPERIMENT
A. Datasets

In this section, we evaluate the performance of our image
super-resolution method and its effects on the subsequent ob-
ject recognition task on DIV2K [18] and CIFAR [19] datasets
respectively. DIV2K dataset consists of 1000 2K resolution
RGB images which contain a large diversity of contents. These
images are divided into three parts: 800 images for training,
100 images for validation, and 100 images for testing. CIFAR
dataset contains 2 subsets: CIFAR-10 and CIFAR-100. The
CIFAR-10 subset is composed of 60000 32x32 color images
in 10 classes, namely 6000 images for each class. From
another point of view, there are 50000 training images and
10000 testing images in CIFAR-10. The CIFAR-100 subset is
similar to CIFAR-10, except it has 600 images for each of the
100 classes. In addition, there are 500 training images and 100
testing images in each class.

TABLE I
PERFORMANCE COMPARISON OF SUPER-RESOLUTION METHODS ON
DIV2K DATASET

;;;’51‘:;;"]‘;32 PSNR (dB) SSIM

Bicubic [9] — 29.91 0.8680
SRCNN [4] 100% 32.97 0.9196
WDSR [14] 100% 34.54 0.9368
a=1 71.73% 3455 0.9368
o=t 67.66% 34.55 0.9367
a=1% 63.07% 34.55 0.9368
a=1% 56.87% 34.54 0.9367
a=1 48.32% 34.52 0.9365

B. Super-Resolution Network Training

Since WDSR [14] is a state-of-the-art CNN-based image
super-resolution method, we adopt the network of WDSR-A
and integrate it with our weight map in the training process.
The number of Residual Blocks [20] in WDSR-A is set to 8.
The parameter « is set to 1/3, 1/4, 1/5, 1/6 and 1/7 respectively,
and the network is trained on bicubic downscaling x2 DIV2K
images with Tensorflow [21]. We use the same optimizer [22]
and hyperparameter setting in [14]. The trained models can
scale up the width and height of an image 2 times. Then we
measure the PSNR of our model on the validation images. The
result is depicted in Table I.

As shown in Table I, different o values represent different
amount of non-zero values in the weight map. If « is set to a
non-zero value, it means that only a part of the training data
is used for model training. On the contrary, if « is set to 0,
100% of the training data are used for training, in this case, the
training process is the same as WDSR training. Furthermore,
the results in Table I demonstrate that our method can achieve

1975

Authorized licensed use limited to: Carleton University. Downloaded on May 27,2021 at 05:52:18 UTC from IEEE Xplore. Restrictions apply.



the same (even better) PSNR and the same SSIM [23] as the
original WDSR method in super-resolution task, even though
only about half amount of the training data are used for
training.

C. Effects on Classification Task

Firstly, the training and test images in CIFAR dataset are
upscaled by the models trained in section 4.2. Then we
train the classification network on this upscaled dataset. The
classification network is a ResNet [20] with 164 layers. The
details of this network are presented in Table II. The vectors in
the last column represent kernel size, feature channel number
and stride size of the layers. For example, the vector ‘3x3,
16, 1’ means the kernel size of this layer is 3x3, it outputs a
feature map with 16 channels, and the stride is 1.

To make a comparison, we firstly train the classification net-
work by the original 32x32 images, then train it by the 64 x 64
images upscaled by bicubic, SRCNN, WDSR and our method
(with different « ) respectively. Momentum optimizer [24] is
used with momentum = 0.9. The batch size is set to 64.
The learning rate is initialized to 0.1 and is multiplied by 0.1
at 80K, 120K and 160K iterations respectively. The training
ends at 180K iterations. For data augmentation, we pad 4 zero-
value pixels to the CIFAR-10 images’ edges and 8 zero-value
pixels to CIFAR-100 for randomly cropping, as well as flip
the images horizontally and randomly. All the training images
are used in training process. Image whitening is applied to
every image in training and testing. The classification results
are presented in Table III.

TABLE I
STRUCTURE OF THE CLASSIFICATION NETWORK

Feature Size
32x32 64 x64
32x32 64 x64

Layer Name Layer Details

Input
Conv 0

3x3, 16, 1
1x1, 64, 1
3x3, 64, 1
1x1, 64, 1
1x1, 128,2 |
3x3, 128,
32%32 L xd 1281 ]
1x1, 128, 1
3x3, 128, 1
1x1, 128, 1
1x1, 256, 2
3x3, 256, 1 | x1
16x 16 L 1xl.256. 1 ]
1x1, 256, 1
3x3, 256, 1
1x1, 256, 1

2x2, -2

Conv 1_x 32x32 64 x64 x18

x1

Conv 2_x 16x16

x17

Conv 3_x 8x8

x17

4x4 8x8
10-d/100-d fc, softmax

Average pool

The results in Table III show that the bicubic interpolation
method cannot significantly improve the performance of clas-
sification, in some cases it even reduces the classification ac-
curacy. Meanwhile, the SRCNN and WDSR slightly improve
the classification performance on both datasets. On the other
hand, our method (with different o)) can better improve the
classification accuracy than the original WDSR method. More
specifically, when « is set to 1/5, the classification accuracy
on dataset CIFAR-10 reaches the peak as 95.23%. In addition,
when « is set to 1/6, the classification accuracy on dataset
CIFAR-100 achieves its highest value as 78.24%.

TABLE III
CLASSIFICATION RESULTS ON CIFAR

Accuracy
CIFAR-10 CIFAR-100
Original Size 94.69% 77.21%
Bicubic (x2) 94.43% 77.59%
SRCNN (x2) 94.78% 77.23%
WDSR (x2) 94.80% 78.12%
=1 (x2) 95.15% 78.05%
=1 (x2) 95.18% 78.24%
=1 (x2) 95.23% 78.17%
=1 (x2) 95.04% 78.06%
=1 (x2) 95.05% 78.13%

V. DISCUSSION

Does our method really get more high frequency contents in
super-resolution? In this section, we will discuss this question.

A. Comparison of File Size after Differential Coding Com-
pression

Differential coding [25] is a typical method for image
compression. It compresses images by utilizing the differences
between neighboring pixels. In an image, if the pixel values
vary dramatically in most of the pixel neighborhoods, this
means that this image contains abundant high frequency con-
tents, and its compressed version will have a large file size.
Otherwise, the compressed version will be small in size.

In Table IV, we list file sizes of compressed version of
upscaled datasets. These upscaled datasets consist of the re-
constructed HR images generated by different super-resolution
methods. To compare the amount of high frequency contents
these datasets contain, they are compressed into a lossless
format, namely PNG (Portable Network Graphic) [26], by
differential coding compression. In experiment, these com-
pressed images are generated by OpenCV-Python with default
parameters.

As shown in Table IV, the compressed datasets generated
from results of the bicubic method always have the smallest
size. They are followed by the compressed versions of results
of WDSR method, which have the second smallest size all the
time. Generally speaking, compared with bicubic and WDSR
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TABLE IV
DIFFERENTIAL CODING COMPRESSION SI1ZE (MB) OF THE UPSCALED
DATASETS
DIV2K CIFAR-10 CIFAR-100
Validation Set | Training Set | Test Set | Training Set | Test Set
Bicubic 369.42 358.67 71.73 358.21 71.84
SRCNN 422.82 390.79 78.14 389.46 78.09
WDSR 419.64 390.42 78.07 389.13 78.02
o= % 425.52 392.80 78.55 391.60 78.51
o= é 428.06 393.07 78.60 391.92 78.57
o= % 430.90 394.12 78.81 392.82 78.76
o= i 433.62 394.98 78.98 393.75 78.94
o= % 439.84 396.86 79.37 395.37 79.27

method, the compressed datasets generated from results of
our method have the largest file sizes. Furthermore, for our
method, as the value of « increases, the sizes of the com-
pressed datasets increase gradually. When « rises to 1/3, the
compressed datasets have the largest sizes. Since the file size
of a compressed dataset reflects the amount of high frequency
contents in its corresponding reconstructed HR images, the
results in Table IV demonstrate that our method can really
recover more high frequency contents.

What’s more, as a supplementary explanation, the amount
of reconstructed high frequency information is not always
positively related to PSNR. As shown in Table IV, SRCNN
method generates approximately the same-sized compressed
dataset as WDSR, but its PSNR is much lower than WDSR.
This means that SRCNN recovers more inaccurate contents
in HR image reconstruction, and also results in a lower
classification accuracy in Table III. The same situation occurs
when we test our new method with different parameter values.
When « is set to 1/3, the network generates the largest
compressed dataset. However, it results in a lower PSNR in
super-resolution validation, as well as a lower accuracy in
classification experiment. Therefore, it is important to maintain
the balance between more high frequency information and a
higher PSNR.

B. Spectrogram of the Super-Resolution Image

The Fourier Transform is a mathematical operation which
can decompose an image into its sinusoidal and cosinoidal
components, and it will output the frequency domain represen-
tation of this image. A spectrogram is a visual representation
of the Fourier transformed image in which each point repre-
sents a particular frequency contained by the spatial domain
image. If the DC values are not shifted to the center, the
central part of the spectrogram is the high frequency and the
peripheral part is the low frequency.

Figure 4 shows the spectrograms of the super-resolution im-
ages which are upscaled by different SR method. As shown by
Figure 4(a), the bicubic interpolation method yields the lowest
intensive values in central part of the spectrogram, it means

that this method gains the least amount of high frequency
contents. In addition, the original WDSR method constructs
more high frequency contents than bicubic interpolation, and
our method achieves the most high frequency contents among
these methods.

The results shown in Figure 4 are consistent with the
conclusion drawn from Table IV. Our super-resolution method,
which corresponds to the largest compressed datasets gener-
ated by differential coding compression, also yields the highest
intensive values in central part of the spectrogram. Hence,
we can draw a conclusion that our method can recover more
high frequency contents compared to the other state-of-the-art
super-resolution methods.

VI. CONCLUSION

In this paper, we propose a new image super-resolution
method in order to improve the classification performance for
low-resolution images. The method introduces a weight map
to denote positions of the pixels which contain more high
frequency information in ground truth HR image. After that,
during the training process, the network focuses on minimizing
the difference between reconstructed HR image and ground
truth HR image at these positions. The experiment results
show that our method has two main advantages compared
to the other state-of-the-art super-resolution methods. For one
thing, it has been proven for two times that our method can
really recover more high frequency contents in HR image
reconstructing. For another, our method can better improve
performance of the low-resolution image classification by
scaling up the datasets using our method and retraining the
network. Because of the similarities among tasks, our method
can also be applied in image dehazing and denoising in future
work.
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