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A B S T R A C T   

Pooled on-demand services promise to provide a convenient mobility experience and increase 
efficiency of road transport. We apply an established ride-pooling algorithm within the simulation 
framework MATSim to an autonomous fleet serving almost 2 million requests in Munich. Two 
mode choice scenarios are implemented, one substituting all car trips by ride-pooling, another 
one with free mode choice. For both scenarios we compare a stop-based and a door-to-door 
service in terms of system efficiency and noise imissions, applying an updated noise prediction 
model in MATSim. The results contribute to the systematic analysis of ride-pooling and show the 
effects of the proposed policies and service designs, which are essential for an efficient system 
with low noise exposure. Replacing all car trips by a stop-based ride-pooling system leads to a 
drastic noise reduction in residential areas whereas door-to-door systems may even increase noise 
exposure due to additional pick-up/drop-off rides and detours.   

1. Introduction 

Several app-based dynamic ride-pooling services such as UberPool (2020), GrabShare (2020), CleverShuttle (2020) or MOIA 
(2020) were introduced in recent years and promise to reduce traffic volumes and resources consumed in urban areas, as several car 
trips can be bundled and replaced by a single pooled trip. Previous studies have shown the potential of pooled on-demand mobility to 
reduce traffic and vehicle fleets in urban areas (Martinez and Viegas, 2017; Alonso-Mora et al., 2017) and suggested that ride-pooling 
can greatly reduce air pollutants and greenhouse gas emissions (GHG) (Greenblatt and Saxena, 2015). However, the positive effects are 
not only achieved through the introduction of these new services, but must be accompanied by urban policies that make car travel less 
attractive and prevent a modal shift away from public transport (Naumov et al., 2020). 

In contrast to air pollutants and GHG, much less focus has been put on the impact of ride-pooling and shared mobility on traffic 
noise. Traffic noise is a common nuisance in the urban environment and is largely driven by road traffic. The growth and densification 
of cities not only leads to higher traffic volumes and noise levels but also to more people being exposed to these levels. According to the 
WHO, more than 43% of the urban population in Europe is exposed to road noise levels greater than 55 dB(A) (WHO, 2009). Reviews 
compiled for the WHO indicate that noise can reduce well-being and quality of life of residents, leading to stress and stress-related 
diseases such as poor mental health (Clark and Paunovic, 2018). In addition, there is a significant relationship between traffic 
noise levels and the percentage of population that feels highly annoyed (Guski et al., 2017). Noise lowers residential housing 
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satisfaction and increases chances of people moving away if they can afford it (Bradley and Jonah, 1979; Źróbek et al., 2015; Wardman 
and Bristow, 2004; Osada et al., 1997), which additionally introduces environmental equity issues. The reduced demand for noisy 
dwellings has also been found to be reflected in reduced property or rent prices (Kuehnel and Moeckel, 2020). 

It has been shown that interventions implemented to reduce noise exposure can be linked to positive health outcomes (Brown and 
Van Kamp, 2017). It is therefore important to study potential noise reductions of policies such as the implementation of ride-pooling 
services. 

In our study, we introduce an autonomous on-demand ride-pooling service within the simulation framework MATSim (Horni et al., 
2016) to the existing transport system in central Munich using a ride-pooling extension by Bischoff et al. (2017). We apply two mode 
choice scenarios: A draconian one in which the entire car travel demand within the service area is forced to use the new ride-pooling 
system and a laissez-faire scenario in which all agents are allowed to use the new mode and mode choice decisions are based on an 
incremental choice model (Koppelman, 1983). For each mode choice scenario, we introduce a door-to-door and a stop-based service 
and measure system efficiencies, service levels and noise exposure of residential dwellings. In a stop-based service, passengers are 
picked up and dropped off at predefined stops and need to walk the first and last part of their journey. 

The hypotheses are that a) noise exposure should be reduced by replacing conventional car trips with pooled rides and b) resi-
dential exposure should decrease even more in a stop-based service than in a door-to-door service and c) service levels (travel time, 
wait time) are better in the draconian scenario as the service is not affected by congestion caused by individually driven cars. 

2. Literature review 

The implications that the introduction of a new mobility system has on an existing mobility system are versatile and complex. A 
common method to assess the system performance, user behaviour, traffic impacts, ecological or economical impacts is to simulate the 
particular service in a transport model that consists at least of a street network and a population with travel needs. In recent years there 
have been multiple simulation studies in the field of (pooled) Autonomous Mobility on-Demand (AMoD), often also described as 
Shared Autonomous Vehicle (SAV) applications. 

Pernestål and Kristoffersson (2019) and Jing et al. (2020) reviewed 26 and 44 simulation studies that investigate on the effects of 
autonomous vehicles, respectively. While each study has a slightly different focus, most focus on driverless taxi applications in urban 
areas without the capability to pool passengers. Results indicate that the introduction of unpooled fleets causes an increase in vehicle 
kilometers travelled (VKT) between 5% and 35% compared to the existing system, mainly due to empty kilometers to pick up cus-
tomers and to reallocate vehicles. At the same time it is stated by Pernestål and Kristoffersson (2019) that in most studies one 
autonomous vehicle replaces between 6 and 14 conventional cars. If rides are pooled, system efficiency generally increases and VKT 
can be reduced if penetration rate and request density are large enough. Out of the 44 agent-based simulation studies of autonomous 
vehicles that Jing et al. (2020) reviewed, almost half (20) made use of the simulation framework MATSim that we also use here. 
However, there has been extensive investigations in other frameworks that need to be considered. Martinez and Viegas (2017) replaced 
all private car, bus and taxi trips in Lisbon (approximately 565,000 inhabitants) by a ride-pooling fleet, serving all requests with a 
maximum time loss of 15 min. They found an overall VKT reduction of 25%, a CO2 reduction of 32% and that only 4.8% of the city’s 
current car fleet size is necessary to serve the demand. 

Alonso-Mora et al. (2017) introduced an anytime optimal ride-pooling algorithm and served all taxi rides (up to 460,700 daily) in 
Manhattan with a pooled fleet. They found that the vehicle fleet may be drastically reduced from 13,000 single-occupied vehicles to 
only 3,000 vehicles with a capacity of 4. Service levels are kept at a reasonable level with an average waiting time of less than 3 min 
and an average trip delay of 3.5 min. Engelhardt et al. (2019) based their investigation of a ride-pooling service on the same algorithm 
and replaced between 1% and 15% of all car trips in Munich in a similar but slightly larger study area than ours. Their results show that 
with adoption rates below 5% total VKT increase, whereas higher adoption rates lead to decreased VKT due to pooling. Vehicle flow 
volumes were mainly reduced on major roads. 

Ruch et al. (2020) implemented four previously developed ride-pooling policies (Alonso-Mora et al., 2017; Ma et al., 2013; Fagnant 
and Kockelman, 2018; Bischoff and Maciejewski, 2016) in the framework AMoDeus (Ruch et al., 2018) that is based on the mobility 
simulation of MATSim. They applied those four algorithms to an urban scenario with 16,400 requests and a rural scenario with 1,000 
requests. Although VKT and fleet sizes can be decreased through pooling compared to an unpooled system, the efficiency gain may not 
be sufficient to compensate for privacy loss and decreased service levels to attract customers. Pernestål and Kristoffersson (2019) draw 
the same conclusion from their reviewed papers and propose incentives or public policies to achieve a higher penetration rate of pooled 
service to accomplish major VKT reductions through on-demand mobility systems. 

Bischoff et al. (2017) introduced another ride-pooling extension within MATSim called drt (demand responsive transport) that we 
also use in this study. They applied a ride-pooling fleet to 27,336 taxi requests that occured on one day in Berlin. It is shown that VKT 
could be reduced by 15% to 20% compared to the existing taxi system if rides were pooled while average waiting times are below 5 
min. High pooling rates occur in the city centre and in the area of the airport where request density is highest. 

The drt extension is used in numerous simulation studies (Wang et al., 2018; Vosooghi et al., 2019; Bischoff et al., 2018; Bischoff 
and Maciejewski, 2020; Leich and Bischoff, 2019). However, all of them consider scenarios on a smaller scale and thus with a lower 
request density than proposed here. 

In general we find that while the impact of ride-pooling on VKT and exhaust emissions has received some attention, the impacts on 
traffic noise have not yet been investigated systematically. 

While car traffic noise depends on the traffic flow volume, the relationship is non-linear and follows a logarithmic curve. In 
addition, resulting noise immissions depend on vehicle speeds, road geometries and the built environment, among others. Therefore, 
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one cannot infer noise impacts by looking at changes in VKT and traffic volumes alone, which is why the impact of ride-pooling on 
noise has to be studied explicitly. 

A common way of studying noise impacts is to apply noise prediction models (Garg and Maji, 2014; Quartieri et al., 2009). These 
models take into account traffic volumes and speeds as well as road and building characteristics to estimate emission and immission 
values. Noise prediction models are an important tool for generating noise maps in compliance with the environmental noise directive 
2002/49/EC of the European council (dir, 2002). In Germany, the guideline for noise protection at streets (RLS-19) defines the 
prediction of road traffic noise (FGSV, 2019). In our study, we make use of this guideline to forecast impacts on noise exposure. 

In addition to the introduction of pooled rides, another reduction of noise could be expected from fleets of fully electric vehicles 
(EV) when compared to internal combustion engine vehicles (ICEV). However, for constant driving speeds above 30 km/h, the main 
contribution to car traffic noise emerges from the tires rolling on the surface which reduces the potential of reducing noise with EVs 
(Bekke et al., 2013). Similarly, the European Environmental Agency states that while electric cars contribute to lower noise levels at 
low speeds, a recent regulation will require the installation of artificial sound generators in all electric and hybrid vehicles by 2021 to 
improve pedestrian safety, which may further reduce potential reductions in noise (European Environment Agency, 2018). In a recent 
study, Campello-Vicente et al. (2017) showed that EVs equipped with an acoustic vehicle alerting system still emit lower levels of noise 
than conventional ICEVs (1 dB(A) less at 30 km/h, compared to EVs without alerting system: 2 dB(A)). The reductions diminish for 
higher shares of heavy vehicles and lower shares of EVs in the fleet. In the same study, the authors adapted the official French noise 
prediction model to correct emission values for electric fleets. In a simulation case study in Elche (Spain), they showed that replacing 
ICEVs with EVs leads to an improvement for 6% to 10% of the local population in terms of noise exposure. 

In a state-of-the-art survey by Iversen et al. (2013), the authors presented an overview of studies dealing with possible noise 
reduction due to EVs. They reported mixed findings, with reductions ranging between 1 and 15 dB(A) at different speeds. Most ref-
erences indicate that the difference in noise levels vanishes between 30 and 50 km/h. They stressed that these results include a high 
level of uncertainty and depend on how the comparisons were carried out in detail. Jabben et al. (2012) presented a comparison of 
noise measurements between ICEVs and EVs in a drive-by scenario and reported reductions between 11 dB(A) at very low speeds and 3 
dB(A) at 50 km/h. The same authors implemented a noise prediction model with correction terms for fully electric fleets (Verheijen 
and Jabben, 2010). The presented correction terms can be distinguished by vehicle types and respective speeds. In an application they 
found reductions of 3 to 4 dB(A) in noise exposure, on average. 

3. Methodology 

Travel demand is obtained from the open-source simulation model MITO (Microscopic Transportation Orchestrator, (Moeckel 
et al., 2020)). MITO is an agent- and trip-based travel demand model that utilizes a modified four step approach to create agent-based 
trips for six different trip purposes. The program is written in Java. MITO is provided with a synthetic population (Moreno and 
Moeckel, 2018) and generates trips for individual persons. For each trip, the purpose, destination, mode and time of day are chosen. 
MITO was estimated with the German national household travel survey (Infas and DLR, 2010) and calibrated to match observed travel 
behavior. 

The simulation is carried out by the Multi-Agent Transport Simulation MATSim (Horni et al., 2016). MATSim is an agent-based 
transport simulation framework that utilizes an iterative, co-evolutionary learning approach in which each agent tries to maximize 
their daily score for a given plan of activities. Agents obtain positive scores for performing scheduled activities (such as working) and 
negative scores for traveling or arriving late at an activity. After every iteration, agents evaluate their last executed plan with a 
resulting score. While some agents modify their plan by, e.g., choosing a new route or another mode of transport, the remaining agents 
choose from existing plans based on their scores. In our setup with MITO, we only make use of route choice in MATSim, as mode choice 
is part of MITO. We only assign car and ride-pooling trips to the network with MATSim. MATSim eventually leads to a stochastic user 
equilibrium in which no agent can unilaterally increase its perceived score by adapting its plan. Similar to MITO, MATSim is an open- 
source Java program, which facilitated the integration of the two in one software package. 

MATSim contains several extensions to simulate on-demand mobility systems (Maciejewski, 2016). Hörl (2017) developed an 
extension to simulate (pooled) autonomous taxis, which was further extended by Ruch et al. (Ruch et al., 2018; Ruch et al., 2020) with 
different operational strategies and algorithms to operate (pooled) autonomous on-demand systems. For this study, we make use of the 
DRT (demand responsive transit) extension developed by Bischoff et al. (2017). When a trip request with pick-up and drop-off co-
ordinates is submitted, the algorithm searches for a vehicle that can serve the request within a defined maximum wait time and without 
exceeding a maximum travel time for the waiting customer and all other customers in the vehicle. The performance of the DRT system 
highly depends on the service parameters, as shown by Bischoff et al. (2017) and Zwick and Axhausen (2020b). 

Other pooling strategies, such as the one proposed by Alonso-Mora et al. (2017), collect all requests for a certain time frame and 
dispatch requests and vehicles after a certain time step, taking into account all requests and vehicles. In this way, the system gains more 
knowledge of all possible assignments, which may increase the efficiency in high-demand scenarios with limited fleet sizes as shown by 
Zwick and Axhausen (2020a). The substantially lower computation time in combination with a reasonable system performance led to 
the decision to apply the algorithm by Bischoff et al. (2017). The DRT extension includes a rebalancing strategy that reallocates idle 
vehicles to areas with a historically high demand (Bischoff and Maciejewski, 2020). Several studies have shown the beneficial effect of 
the rebalancing strategy on acceptance rates, travel times and wait times with the potential drawback of increased VKT and conse-
quently more noise exposure (Bischoff and Maciejewski, 2020; Vosooghi et al., 2019; Zwick and Axhausen, 2020a). The algorithm 
allows to operate a door-to-door service, in which all customers are picked up and dropped off at their desired origin and destination. 
Alternatively, a stop-based system can be used, in which customers need to walk to and from a pre-defined stop before and after the 
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ride-pooling trip. The stop-based ride-pooling system promises to decrease noise especially in residential areas without stops as pick-up 
and drop-off rides in these areas are avoided. 

In addition, we make use of MATSim’s noise extension by Kaddoura et al. (2017) that is based on an older version of the German 
guideline for noise protection at streets (FGSV, 1990). In the course of this study, we updated MATSim’s extension to work with the 
more recent version of 2019 (RLS-19) (FGSV, 2019), which updates the estimation procedure of road traffic noise. In addition to the 
initial noise extension and in line with the RLS, we explicitly account for shielding of buildings (Kuehnel et al., 2019). With the noise 
extension, we obtain daily averaged noise immission values LDEN (day-evening-night noise level). The estimation takes into account 
link volumes, vehicle speeds and heavy vehicle shares, among others, to calculate link-level emissions for a given time interval. The 
LDEN value is a typical indicator for noise exposure at a receiver point and expresses the noise level over an entire day. The aggregated 
term adds up hourly equivalent noise immission values Leq,k,t at receiver point k at hour t, with an extra penalty τ of 5 dB(A) and 10 dB 
(A) added to evening (6 pm - 10 pm) and night (10 pm - 6 am) values, respectively: 

LDEN,k = 10 ⋅ log10

[
1
24

(
∑23

t=0
100.1⋅(Leq,k,t+τ(t))

)]

, with (1)  

τ(t) =

⎧
⎨

⎩

0 dB(A), 6⩽t < 18
5 dB(A), 18⩽t⩽22
10 dB(A), else.

(2)  

In contrast to the initial implementation of the RLS-90 guideline, the RLS-19 guideline does not support the “long, straight lane” 
emission calculation approach anymore. This means that roads (i.e. MATSim links) have to be split in smaller segments such that the 
length of a segment ji of a link i is smaller than half of the distance from receiver point k to the midpoint of segment ji. For this purpose, 
we implemented an algorithm that recursively splits a link i into smaller segments ji such that the length condition holds. 

The immission values for hour t at receiver point k are calculated as the logarithm of power sums over all emissions LW,j of relevant 
road segments ji: 

Fig. 1. Dose–response relationship of the uncorrected emission LW,ji ,t for a given link segment dependant on the traffic volume Mji ,t for different 
speeds vji ,k,t , excluding any correction terms. Based on the RLS-19. 
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Leq,k,t = 10 ⋅ log10

∑

i

∑

ji

100.1⋅(LW,ji ,t+10⋅log10 [lji ]− DA,ji − DRV1,ji − DRV2,ji ) (3)  

where lji is the length of segment ji of link i,DA,ji is a dampening correction for sound propagation from the link segment, and DRV1,ji and 
DRV2,ji are correction terms for the first and second order reflection, respectively. Due to computational reasons and data availability, 
the impact of reflections is not taken into account in MATSim’s noise model such that reflection correction terms are set to 0. The RLS- 
19 distinguishes between three different vehicle types k. One type for passenger cars and vans with a weight of up to 3.5 t and two types 
for heavy-duty vehicles. The ride-pooling vehicles in our study can be seen as passenger vans with a capacity of 6 people with a weight 
below 3.5 t, and thus, fall into the first category. The emission LW,ji of a single link segment ji is calculated as 

LW,ji ,t = 10 ⋅ log10[Mji ,t] + 10 ⋅ log10

[
∑

k
λji ,k,t ×

100.1⋅LW,ji ,k,t (vji ,k,t )

vji ,k,t

]

− 30, (4)  

where Mji is the average hourly traffic volume, λji ,k is the share of vehicles of type k, LW,ji ,k is the speed-dependant emission of a vehicle 
of type k and vji ,k is the average speed of a vehicle of type k on link segment ji. The type- and speed-dependant emission is defined as: 

LW,ji ,k,t(vji ,k,t) = LW0,k,t(vji ,k,t)+Dsurf,k(vji ,k,t)+Dgrad,k(g, vji ,k,t)+Dinter(xji )+Drefl(h) (5) 

Here, LW0,k,t(vji ,k,t) is the base emission value of a vehicle of type k with speed vji ,k,t. Dsurf,k(vji ,k,t) is a correction for the road surface, 
Dgrad,k(g, vji ,k,t) is a correction for the gradient g,Dinter(xji ) is a correction for intersections in a distance of xji and Drefl(h) is a correction for 
multiple reflections for obstacles with a height h. The logarithmic dose–response relationship for a given link is shown in Fig. 1. It 
becomes obvious that the potential for noise reduction is marginally decreasing with and largely depends on the base traffic volume. 

The gradient correction Dgrad,k(g, vji ,k,t) depends on vehicle type k, speed vji ,k,t and the gradient g. For the equations for the calcu-
lation of the gradient correction we refer to the guideline RLS-19 (FGSV, 2019). The gradient can be obtained by digital elevation 
models. Another source can be OSM by evaluating the incline = … tag. However, this tag is not widely present and sometimes only 
tagged as up or down without a percentage. 

The surface correction Dsurf,k(vji ,k,t) is defined for different surfaces and depends on the vehicle type and its speed. Due to lack of 
surface data, we limit our differentiation of surface types to the surfaces that have a positive correction term (i.e. louder surfaces). 
These can commonly be obtained by using OSM data. Table 1 shows the link between OSM tags and surface correction terms. The 
intersection correction Dinter(xji ) is linearly dependent on the distance xji from the point source of the link segment ji to the nearest 
intersection and is calculated as follows: 

Dinter(xji ) = κτ*max
{

1 −
xji

120
; 0
}

(6)  

Here, κτ is the maximum correction term for the intersection type τ as defined in Table 2. The table also shows the OSM tags that were 
used to identify the location of intersections during data preparation. In line with uncertain noise benefits of electric vehicles, there is 
no distinction between the type of engine in the official guideline. However, as discussed above, some reductions in noise could emerge 
from fully electric fleets. As two of our scenarios assume only electric vehicles on the network, we adapt the calculation of immissions 
by adding another correction term Delectric(vji ,k,t), similar to the approach of Verheijen and Jabben (2010). For this term, we refer to the 
reductions presented by Campello-Vicente et al. (2017) and fit an exponentially decreasing function to manually obtained data points 
from the provided graphs: 

Delectric(vji ,k,t) = 5.59 ⋅ e− 0.031⋅vji ,k,t (7) 

In line with the RLS-19, the lower bound is set to 30 km/h which is the minimal speed that is assumed for noise estimation. Out of 
computational reasons and due to lack of data, we ignore the impact of reflections in our approach and set Dreflji

(h)=def0. Thus, Eq. (5) 
becomes: 

LW,ji ,k,t(vji ,k,t) = LW0,k,t(vji ,k,t)+Dsurf,k(vji ,k,t)+Dgrad,k(g, vji ,k,t)+Dinter(xji )+Delectric(vji ,k,t) (8) 

MATSim uses a mesoscopic queue-based representation of traffic flow. As such, average speeds and volumes can only be analyzed at 
the link level. MATSim networks are usually created from OSM ways. In OSM, it is assumed that road surface and gradient stay constant 
across a way. Therefore, we assume that traffic volumes and speeds, vehicle type shares, velocities, gradient and road surface of each 
link segment stay constant across the whole link. Applying this assumption to Eq. (3) leads to (see Appendix for the derivation): 

Table 1 
Surface correction terms for different speeds and surfaces and their respective OSM identifier tags.  

Surface type Dsurf,k(vji ,k,t) in dB(A) for v >= …  OSM tag  

…30 km/h …40 km/h …50 km/h  

Cobblestone with smooth surface 1 2 3 ‘surface = sett’ 
Other cobblestone 5 6 7 ‘surface = cobblestone’  
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Leq,k,t = 10 ⋅ log10

[
∑

i

(
100.1⋅LW,i,t ⋅ ci

)
]

, with (9)  

ci =
∑

ji

100.1⋅(Dinter(xji )+10⋅log10 [lji ]− DA,ji ) (10) 

Now only LW,i,t is dependent on t. The corrections for all segments ci only need to be calculated once and can be stored as a single 
correction term during a pre-processing step. This means that no matter how detailed links are split, the memory requirement remains 
the same. 

Immissions are calculated for each dwelling of the synthetic population in the service area. This allows us to assess the environ-
mental impact of noise immissions and how it is affected by the introduction of ride-pooling. 

4. Data preparation and scenario setup 

We apply our simulation setup for the Munich metropolitan area. While our analysis focuses on the core city of Munich, a larger 
study area was used to generate demand with MITO and MATSim that includes in- and outbound traffic. About 8.8 million daily trips 
were generated by MITO, out of which 2.9 million travel by car, either as a driver or a passenger. The service area for the new ride- 
pooling system was defined to cover the service area of the former ride-pooling service CleverShuttle (2020) in Munich shown in Fig. 2. 

Table 2 
Maximum correction terms κτ and respective OSM identifier tags.  

Type τ  Correction κτ in dB(A)  OSM Tag 

Signalized intersection 3 ‘highway = traffic_signals’ 
Roundabout 2 ‘junction = roundabout’ 

Other 0   

Fig. 2. Service area and (stop) network.  
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It covers roughly 200 km2 and contains 1,531 public transport stops, provided by OpenStreetMap (OpenStreetMap Contributors, 
2018), which are used for the stop-based service. Previous studies have shown that the stop network design has a major effect on the 
system efficiency (Zwick and Axhausen, 2020b; Gurumurthy and Kockelman, 2020). In general, a thinner stop network enables more 
efficient pooling, but customers face longer walking distances. We assume that the public transport stop network is already fairly 
optimized for the current public transport system. Curb space is already used for pick-up and drop-off areas, which facilitates the usage 
of those stops for a ride-pooling system. However, additional curb space needs to be created to account for additional vehicles using the 
stops. For our base case, we simulate all agents of the greater study area that chose to travel by car and measure the resulting VKT and 
noise exposure within the service area. While it is common to simulate a representative sample of travelers in MATSim to reduce 
computational runtimes, this is not feasible for the ride-pooling scenarios. Sampling would lead to artifacts in the pooling rate that are 
difficult to interpret. If a pooled vehicle can carry four passengers and the sampling rate is 10%, it becomes impossible to analyze the 
occupancy rate due to the discrete number of passengers in agent-based modeling. As the base case serves to define the demand of our 
first ride-pooling scenario, we also simulate 100% of the car trips. 

In both scenarios, we set the maximum wait time to 10 min and the maximum travel time to 1.5 tdirect + 10min, where tdirect is the 
direct travel time between the origin and destination. This is assumed to be a reasonable balance between efficiency and a reasonable 
service level (Zwick and Axhausen, 2020b). If no vehicle can serve a request within the given constraints, the request is rejected and 
not further considered within the simulation. The stop time for every pick up and drop off is 30 s. The vehicles are assumed to operate 
24 h, without accounting for down times for charging, maintenance or other operational issues. For both mode choice scenarios, we 
operate a door-to-door and a stop-based ride-pooling system, which in combination leads to four different cases that we compare. 

To assess noise immissions, we analyze the 647,677 dwellings within the service area (Fig. 2). A receiver point is defined for each 
dwelling. We do not compute immissions for a regular grid of receiver points as we want to assess exposure of actual residents who do 
not reside in an even grid with an even density, but in dwellings. Larger buildings may contain multiple apartments. Therefore, the 
resulting average immission levels will be weighted by household density. In addition to the location of stops, we obtain the positions 
of tunnels and intersections as well as road surfaces from OpenStreetMap (OpenStreetMap Contributors, 2018). The immission 
contribution of MATSim links for those tunnels is set to 0. Gradient information is only sparsely available for Munich. However, since 
Munich is located in the Munich gravel plain, most of the study area is essentially flat. The largest road elevation has a maximum 
gradient of 4% which would result in a negligible correction term. For our scenario, the gradient correction is therefore set to 0. 

We assess two different mode choice scenarios to define the ride-pooling demand. The processes to obtain the demand are described 
in the following two sections. 

4.1. Draconian scenario 

In the first mode choice scenario, we assume a radical but simple policy. We replace all existing private car trips that drive in the 
service area with ride-pooling. We cut out trips that neither start nor end in the service area to reduce the run-time. External-to-internal 
trips (E-I) and internal-to-external trips (I-E) are transferred to the ride-pooling system within the service area and are assumed to be 
transported by an alternative mode outside the service area. Travelers using other modes in the base case cannot switch to ride-pooling. 
This approach is similar to a previous city-wide application of on-demand mobility with unpooled rides by Bischoff and Maciejewski 
(2016), although they did not replace E-I and I-E car traffic. Through traffic is not taken into account here as the service area does not 
include the outer motorway ring that is commonly used by trips neither starting nor ending within the service area. We use 18,000 6- 
seater vehicles for the door-to-door service and 12,000 6-seater vehicles for the stop-based service, which have been identified as 
sufficient to serve at least 99.8% of all requests. 

Fig. 3. Average wait times in minutes per zone for the door-to-door (left) and the stop-based (right) service in the draconian scenario.  
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4.2. Laissez-faire scenario 

The second setting applies a laissez-faire scenario in which every agent may choose the new ride-pooling mode. To obtain 
somewhat realistic mode shares, we add ride-pooling to MITO’s mode choice model. Since we have no data to estimate or calibrate the 
model, we base the agents’ decision on an existing utility function and implement the new mode in an incremental logit model 
(Koppelman, 1983). Due to the absence of a taxi mode in the original model, we assume the mode car passenger to be most similar to 
ride-pooling. Similar to car passenger, agents are not driving themselves and do not need a car or a driver’s license. While agents use a 
third-party service and have to share their trip with strangers, which makes it similar to transit modes, we consider the level of comfort 
to be more similar to a private car. Agents do not have to rely on connections and transfers, there is no predefined schedule and in-
dividual seats are guaranteed without the risk of overcrowding. Lastly, even in the stop-based ride-pooling service, routes in general 
will be more direct than transit routes as any stops can be connected for start and end of a trip. We then re-use the utility coefficients of 
the car passenger mode to calculate utilities for the new mode. The main difference in utility compared to auto passenger are gener-
alized costs. Here, we adjust generalized costs to include wait time, service costs per km and a detour factor for the actual travel time. 
Since we assume that our service operates autonomously, we obtain a per-kilometer fare from (Bösch et al., 2018) and set it to EUR 
0.27. Additionally, a fixed fare of EUR 2 is charged. We use results from a previous draconian scenario to obtain estimates for the 
average wait times and detour factors. Fig. 3 shows that the average wait times in the draconian scenario are constantly around 5 min 
for most parts of the service area. Thus, the waiting time for ride-pooling is set to 5 min for all customers. We estimate travel times by 
using the direct car travel time and multiplying it with an average detour factor taken from a previous simulation. Different from the 
draconian scenario, we only allow internal-to-internal trips within the service area to be made by ride-pooling. The assumption is that 
most people would probably not use another mode from/to the boundary of the study area and change from/to ride-pooling if it is not 
enforced. 

We use 8,000 6-seater vehicles for the door-to-door service and 5,000 6-seater vehicles for the stop-based service to serve at least 
99.8% of all requests. 

5. Results 

The presented scenarios are analyzed with regard to system efficiency and traffic noise impact within the service area shown in 
Fig. 2. After presenting the results of the base case, we compare the system efficiency to the draconian and the laissez-faire scenarios 
with the two proposed ride-pooling services. Finally, we assess the noise impact in each scenario. 

In the base case, overall VKT within the service area is 9.8 million km including the VKT by incoming, outgoing and through traffic. 
The average travel time for internal trips is 13:01 min for an average trip length of 6.9 km. Consequently, the average travel speed is 32 
km/h, which is in line with Forbes (2008) and Engelhardt et al. (2019). Walking to the parked vehicle or parking search traffic are not 
considered. 

5.1. Ride-pooling system performance 

The transport system aims at transporting all agents in the shortest possible time to their destination, including short wait and walk 
times. Table 3 shows performance indicators for the door-to-door ride-pooling service and the stop-based ride-pooling service. 

With a door-to-door ride-pooling service, 18,000 vehicles are used to serve almost 2 million rides in the service area that were 
previously conducted by private vehicles. The VKT of the ride-pooling system are 7.0 million, of which 8% are driven empty to pick up 
customers and for reallocation purposes. To facilitate the comparison between the scenarios we also measure the VKT inside the service 

Table 3 
Overview of system performance indicators of the base case system and all ride-pooling (RP) systems within the service area.   

Base case Draconian scenario Laissez-faire scenario   

Door-to-door Stop-based Door-to-door Stop-based 

RP vehicles — 18,000 12,000 8,000 5,000 
RP rides — 1,912,783 1,836,513 503,037 498,529 
Rides per RP vehicle — 106 153 63 100 
RP rejections — 2,926 0 179 132 
RP kilometers [km] — 6.9 × 106 4.5 × 106 1.9 × 106 1.4 × 106 

VKT in service area [km] 9.8 × 106 6.6 × 106 4.5 × 106 10.6 × 106 10.1 × 106 

Share of empty km [%] — 8 7 5 6 
Avg. travel time [min] 13:01 15:12 14:44 17:01 15:41 
Avg. trip length [km] 6.9 9.7 9.6 9.4 9.2 
Avg. detour [%] — 40 41 42 44 
Avg. wait time [min] — 5:30 5:04 5:34 4:56 
Median wait time [min] — 5:37 5:08 5:36 4:43 
Avg. walk distance [m] — — 271 — 259 
Avg. computation time per iteration [h] 1/2 24 16 9 5 

Note: Walk distance only includes walk to and from ride-pooling vehicles. 
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area, which is 6.6 million km in this case. Compared to 9.8 million km in the base case, we observe a substantial reduction with the 
pooling system. The mean travel time is 15:12 min, the agents face an average detour of 40% and an average wait time of 5:30 min. 
2,926 requests (0.15%) could not be served within the maximum wait time of 10 min or the accepted detour parameter. 

Using a stop-based ride-pooling service in the draconian scenario, a small part of the requests are not served by the ride-pooling 
system because origin and destination stops are the same. The remaining 1.8 million requests can be served by only 12,000 vehi-
cles, leading to more than 150 rides per vehicle. The vehicle kilometers driven are further reduced to 4.5 million km, which is a 
reduction of 54% compared to the base case. The average travel time drops to 14:44 min and the mean wait time to 5:04 min. 
Additionally, the agents need to walk on average 271 m to and from a stop, or a total of 542 m per trip. None of the requests had to be 
rejected with the given service constraints. 

For the laissez-faire scenarios, MITO’s mode choice model predicted a 16% share for autonomous ride-pooling trips starting and 
ending in the service area. Many of these are home-based, which, including the return trip, translates into two rides per trip. Out of the 
ride-pooling trips, roughly 47% were previously made by the modes car or car passenger, 20% by public transport, 13% by bike and 20% 
by walk. This results in about half a million requested rides for the on-demand system. 8,000 vehicles in the door-to-door system and 
5,000 vehicles in the stop-based system are necessary to serve all requests. Similar to the draconian scenario, a small share of requests 
cannot be served within the given service parameters and is rejected. The ride-pooling kilometers are lower, as fewer rides are served. 
The total VKT in the service area, however, increases to 10.7 million km for the door-to-door system and to 10.1 million km for the 
stop-based system. This increase compared to the base case (9.8 million km) is due to an increased number of trips conducted on the 
road network as the ride-pooling system not only attracts private car users but also agents that used transit, walked or biked before. The 
share of empty VKT is with 5% and 6% slightly lower than in the draconian scenario. As a consequence of the higher traffic volumes, 
travel times are noticeable higher in the laissez-faire scenario with 17:01 min and 15:41 min, confirming hypothesis c). Customers also 
face slightly longer detours. 

Computation times per iteration are highly influenced by the number of ride-pooling rides and vehicles. While in the base case, it 
only takes half an hour to simulate one iteration, the simulation of the draconian door-to-door system takes roughly 24 h. The number 
of necessary iterations however increases with the number of car trips. To reach a system equilibrium, we simulated 300 iterations for 
the base case, 4 iterations for both draconian scenarios and 10 iterations for both laissez-faire scenarios. 

Fig. 3 shows average waiting times per zone for the two ride-pooling systems in the draconian scenario. The waiting times for the 
door-to-door service predominantly vary between 4 and 7 min. Waiting times are slightly higher in the city center where request 
density is highest and consequently vehicle flow volume increases and causes some congestion in peak times. However, the negative 
effect on the customer side is rather small. At the border of the service area a high variance of average waiting times can be observed. 
The number of rides starting in some of the outer cells is very small which causes a higher variance. Additionally, we observe a cluster 
of cells in the north-western part of the service area with higher waiting times. In this area many rides occur due to an industrial zone 
with many working places and the location next to a street with incoming and outgoing car traffic that is replaced by the ride-pooling 

Fig. 4. Vehicle occupancy for the door-to-door (left) and the stop-based (right) service in the draconian (top) and laissez-faire (bottom) ride- 
pooling scenario. 
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system. The waiting times for the stop-based service vary between 4 and 6 min and spread evenly across the service area. As the 
average waiting times are similar across both draconian scenarios and do not vary drastically across the service area, we decided to 
assume an average waiting time of 5 min for all ride-pooling trips to calculate possible ride-pooling shares in the laissez-faire scenario. 
As stated earlier, the waiting times are part of the generalized costs. 

Fig. 4 shows the vehicle occupancy over time for the two ride-pooling services in both mode choice scenarios. In the draconian 
scenario the door-to-door service carries six passengers during 4% of the covered distance while the stop-based service carries the 
maximum number of passenger during 25% of the overall distance, indicating that even larger vehicles than six-seaters could add 
efficiency. 

The occupancy of the vehicle fleet in the laissez-faire scenario indicates a generally lower occupancy compared to the draconian 
scenario. The door-to-door fleet only carries six passengers during 1% of the distance whereas the stop-based fleet is fully occupied 
during 10% of the total distance. The lower occupancies in the laissez-faire scenarios are caused by a lower request density, lower 
travel speeds and fewer detour possibilities due to congested roads. Additionally, all incoming and outgoing traffic in the draconian 
scenario starts or ends at a street accessing the service area from outside, which leads to a bundling of requests at those peripheral 
locations. 

5.2. Noise analysis 

Fig. 5 shows the base scenario noise immissions for all receiver points within the service area. High noise values are observed near 
major roads, while residential areas show noticeable lower noise levels. Overall, immissions are comparatively high, with about half of 
urban dwellings experiencing an immission that exceeds 55 dB(A). 

The spatial distribution of differences in noise immissions in the ride-pooling scenarios compared to the base case is shown in Fig. 6. 
The results in the maps shown here do not include the electric correction term. 

Noise levels –on average– are nearly the same in the base scenario and in the draconian scenario with a door-to-door service. 
However, when looking at the spatial distribution of differences, we find that major reductions of noise are estimated along major 
roads. Pooling rates along major roads are high and traffic volumes are reduced. However, our simulation results show that those 
reductions are almost fully compensated by increased noise in residential neighborhoods. This can be explained by detours and 
additional kilometers driven near individual departure/arrival locations to pick up or drop off customers. In addition, pooling rates 
around pick-up/drop-off points in residential areas tend to be lower than at major connecting roads. The logarithmic dose–response 

Fig. 5. Base scenario noise exposure in the given service area in Munich. LDEN values presented in quantile ranges.  
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relationship between traffic volume and noise leads to relatively high increases in noise at residential areas, where traffic volumes are 
low and small changes in volume lead to high changes in noise. More consistent reductions in noise can be seen with the stop-based 
service, due to multiple reasons. First, fewer vehicles are required as the pooling rate is higher, leading overall to lower traffic volumes. 
Secondly, a few hundred meters of the trips are done by walking and lastly, quite a few links do not experience any traffic at all since 
vehicles only route between stops. This –in contrast to a door-to-door service– leads to some very quiet residential roads and 

Fig. 6. Difference in LDEN values for the door-to-door (left) and the stop-based (right) service in the draconian (top) and laissez-faire (bottom) ride- 
pooling scenario when compared to the base scenario immission values for dwellings inside the study area. Green values indicate a reduction of 
noise compared to the base case. Red values represent an increase. 

Fig. 7. Hourly equivalent sound levels Leq across 24 h for each scenario. Symbols represent the mean across all receiver points, bars delimit 
standard deviations. 
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neighborhoods. A few selected sites still experience an increase in noise. These are mostly near stops where traffic volumes can be 
higher. 

The impacts on noise are generally smaller in the laissez-faire scenario, which is driven by the fact that the fleet sizes are smaller 
and private car traffic remains a main source of traffic noise. Again, the door-to-door service leads to more noise than the stop-based 
service. However, since the overall traffic volumes increase in many places, there is almost no compensation at larger roads. With the 
stop-based service, changes in noise exposure are very small and happen in either direction with no distinct spatial pattern. This is 
remarkable in that 53% of the additional ride-pooling passengers previously used one of the modes walk, bike or public transport and are 
now additionally riding on the road network. 

Fig. 7 shows the temporal variations of the hourly equivalent sound level Leq for each scenario. In general, the variation between 
scenarios is higher in the morning hours, where traffic volumes are typically low and changes in volume are reflected by higher 
changes in noise. During the day, the mean hourly sound levels stay very similar across all scenarios, except the draconian stop-based 
scenario. Here, the mean Leq is constantly significantly lower than in the other scenarios. This indicates that the reduction in noise is 
stable across the day. 

The gap between the last and the first hour of the day is a typical limitation of transport models that run for one day only. However, 
because of its logarithmic nature (see Eq. 2), the LDEN indicator is mostly driven by the maximum levels across a day and therefore 
robust against inaccuracies in lower noise levels that occur at night. 

Table 4 shows a comparison of descriptive statistics while Fig. 8 shows the overall distributions of LDEN values in the different 
scenarios and the base case. Note that we also show the results for the draconian scenario with the electric correction term. In the 
laissez-faire scenario, the correction term did not lead to any noteworthy changes. The depicted threshold of 55 dB(A) was chosen as 
the target threshold defined by the European Union (2002). 

In the laissez-faire scenario, mean noise immissions increased slightly. While the overall distribution with a stop-based service 
looks similar to the base case distribution, a door-to-door service increases the share of highly exposed dwellings by around 5%. In the 
draconian scenario with door-to-door service, the mean immission value is slightly higher than in the base case, although VKT in the 
service area are reduced by 33%. However, when looking at the distribution and standard error, it shows that the immissions are 
distributed more evenly across all dwellings. Nonetheless, the share of highly exposed dwellings increases by 3%. The draconian 
scenario with a stop-based ride-pooling service including the correction term for electric vehicles shows the highest reductions in 
noise, with a mean LDEN of 48.41 dB(A) and only 30% of the dwellings being exposed to more than 55 dB(A). The stop-based service 
here leads to higher standard errors and less equally distributed immissions (compare “quiet” residential neighborhoods in Fig. 6). 
Under the given assumptions, reductions in noise can be quite significant when a correction is considered for electric vehicles. 
However, our results suggest that these only become visible once a major share of the vehicles on the road is electric. 

Fig. 9 shows the density distribution of differences in LDEN values. While the overall distribution in Fig. 8 suggests that, in the 
draconian door-to-door scenario, the distribution did not change systematically apart from a slight increase, the distribution of dif-
ferences reveals that noise levels indeed change. However, in line with the spatial distribution in Fig. 6, changes happen in both di-
rections and therefore “compensate” to some degree. The draconian stop-based scenarios show a clear trend towards reduced noise 
levels while the laissez-faire scenarios barely expose any noteworthy differences. The electric correction term seems to maintain the 
shape of the distribution while pushing it more towards reduced noise levels. 

Overall, it can be seen that a reduction of noise can be accomplished by a stop-based ride-pooling service in a draconian scenario. 
The door-to-door service tends to increase noise in residential areas, where most people live and where traffic increases because of 
pick-up and drop-off rides. In general, traffic noise is mainly moderated through traffic volumes and speeds (see Fig. 1). Consequently, 
hypothesis a) only holds true for the stop-based service in which traffic volumes decreased thoroughly whereas for the door-to-door 
service traffic volumes only decreased on major streets. 

In the laissez-faire scenario, a stop-based service can keep noise at similar levels as in the base case, even though the amount of road 
trips increases. Because of the logarithmic dose–response-relationship between traffic volume and noise, the impacts on the aggregated 
LDEN value is small compared to the changes in traffic volumes and VKT. The results confirm hypothesis b) as residential noise exposure 
is generally further decreased with a stop-based service than with a door-to-door service. 

Table 4 
Descriptive statistics of noise immission results.   

Base case Draconian scenario Laissez-faire scenario   

Door-to-door Door-to-door electric Stop-based Stop-based electric Door-to-door Stop-based 

Mean LDEN [dB]  53.17 53.68 51.93 48.41 46.92 54.29 53.37 
Median LDEN [dB]  52.57 53.77 51.83 48.31 46.72 54.00 52.85 
Min LDEN [dB]  16.64 15.51 13.825 2.75 2.52 16.95 17.04 
Max LDEN[dB]  87.99 84.68 83.77 83.84 82.94 88.39 88.37 
S.E. LDEN [dB]  8.89 8.04 8.17 10.78 10.82 8.60 8.96 
Share >55 dB [%] 40 43 34 30 26 45 41  
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6. Discussion and conclusion 

The proposed ride-pooling scenarios show the influence of different mode choice settings and service designs on a large scale. We 
used a state of the art ride-pooling strategy and assessed the impacts with an updated noise prediction model in MATSim. However, we 
identified some limitations of the investigation. 

A limitation for the laissez-faire scenario is that it is difficult to estimate reasonable mode shares for the ride-pooling system. As 
observed ride-pooling data are not available for Munich, one could re-estimate a mode choice model with automated ride-pooling 
based on stated preference data. However, since most of the current services are relatively new and not autonomous, a survey may 
only include hypothetical mode choice options. More reliable estimates could be derived by using estimated value of times (VOT) for 
pooled rides to have a better idea of the impacts of (generalized) costs (see e.g. Alonso-González et al. (2020)). Instead of doing the 
mode choice in MITO, the mode choice could be included in MATSim, enabling the consideration of the actual experienced service 
levels for each agent. However, since the simulation of ride-pooling with a 100% sample runs up to 24 h per iteration, adding mode 
choice would require several weeks to run the model, as many more iterations are required to reach an equilibrium. This could be 
reduced partly by using a discrete mode choice model instead of random mutations in MATSim as described in Hörl et al. (2018). The 
advantage of simulating mode choice in MATSim would be the feedback loop from actual travel times to the decision making 
throughout iterations. But even then, utility parameters would be hypothetical. 

Another limitation is that both scenarios do not account for induced demand, as the trip generation phase in MITO is not affected by 
the availability of the ride-pooling system. In reality, however, it could happen that people do additional trips once cheap automated 
ride-pooling trips become available, as observed by Henao and Marshall (2019) for ride-hailing. This could be especially true for 
otherwise less mobile persons, i.e. persons without cars/drivers’ license, children, persons with disabilities or elderly people. 

Fig. 8. Violin plots with quantiles for the distribution of LDEN values of dwellings in the presented scenarios. The dashed line depicts the threshold 
value of 55 dB(A). 

Fig. 9. Violin plots with quantiles for the distribution of differences of LDEN values of dwellings as compared to the base case.  
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The two scenarios presented in this study show possible outcomes under a set of assumptions and after the service is completely 
introduced/enforced. As pointed out in Basu and Ferreira (2020), it should be acknowledged that exogenous assumptions and the 
complete replacement assumption limit the use of studies like ours to the identification of long-term possibilities of new technologies. 
The authors stress the importance of market dynamics, which can impact acceptance and regulations. Haboucha et al. (2017) pre-
sented a stated preference study and find quite a reluctance to use shared autonomous vehicles (which were not even defined as a 
pooled service and just as a replacement to a privately owned vehicle), with 25% of respondents stating unwillingness to use shared 
autonomous vehicles even if the service was free. In addition, respondents would rather not use the autonomous service to send 
children to school, which indicated safety reservations towards automated services. Parents would probably be even more cautious if 
they had to decide to use a shared service that is pooled with strangers. 

While the detours and empty-kilometers of ride-pooling vehicles can lead to increased noise levels in residential areas, the present 
study does not account for the challenge of parking search for car traffic. A preceding study that included parking search in the 
simulation found that traffic volumes can be increased by up to 20% in residential areas when parking search is included (Bischoff and 
Nagel, 2017). As parking search only applies to personally owned vehicles and not to pooled vehicles, the differences in noise levels 
between the base scenario and the ride-pooling scenarios would be even more pronounced. 

We ignore commercial vehicles, which can significantly contribute to noise emission. The conclusions of this research, however, are 
likely to hold true. The main limitation can be found on major roads where most commercial vehicle traffic contributes to noise. The 
impact of these scenarios is expected to be slightly smaller once noise from commercial vehicles is added to the analysis. 

The chosen correction term for electric vehicles may reflect noise reductions reasonably well for the applicable speed range of the 
implemented noise guideline. However, higher reductions should emerge at intersections where acceleration noises of engines make 
up a large share of the resulting noise immission. Therefore, we assume that we broadly underestimate possible noise reductions at 
intersections, since acceleration is not modeled in MATSim and the guideline assumes a minimum speed of 30 km/h. This underes-
timation could be alleviated if EVs are required to be equipped with an acoustic alerting system at low speeds. 

Another limitation is that we implement one single operator which only offers pooled rides. Ruch et al. (2020) showed that it is 
unclear if the efficiency gains of ride-pooling compensate for the loss of privacy and a lower service level compared to an unpooled 
system. Private operators may generate higher revenues by offering private rides, which would again lead to more VKT and noise 
exposure. Thus, from a macroeconomic point of view, it could be beneficial for policy makers to incentivise the supply of pooled on- 
demand services compared to unpooled services. 

Given the current limitations, the present study shows remarkable results that can be generalized. It is shown that the imple-
mentation of an efficient ride-pooling system requires a well-elaborated strategy. The draconian scenario shows the high potential of 
ride-pooling to serve the same demand with less resources than the current car system. Assuming that each private vehicle in the 
service area is on average used for 3 rides per day, more than 600,000 private vehicles are necessary to transport the same amount of 
rides as 12,000 stop-based ride-pooling vehicles. According to that, one ride-pooling vehicle could replace more than 50 private 
vehicles. In addition, major noise reductions can be achieved with a draconian replacement of all private vehicles with electric pooled 
vehicles and a stop-based service. Although VKT are also reduced with a door-to-door service, average noise exposure increases since 
more traffic occurs in residential areas. The laissez-faire scenarios indicate that only by implementing the new service, road traffic does 
not decrease as agents that previously chose other modes than car are attracted. A stop-based system is again more efficient than the 
door-to-door service. To meet all travel needs of current car users, it may be beneficial to implement a mixed service that offers a stop- 
based option and a door-to-door option at a higher price level. The implementation of a mixed service including the mode choice might 
be subject of further research as well as the investigation of different pooling strategies in combination with additional public policies. 
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Appendix A 

We start from Eq. (8): 

LW,ji ,k,t(vji ,k,t) = LW0,k,t(vji ,k,t)+Dsurfji ,k(vji ,k,t)+Dgradji ,k
(gji , vji ,k,t)+Dinter(xji )+Delectric(vji ,k,t)

We assume that velocity, surface and gradient stay constant across all segments ji of a link i: 
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vji ,k,t=
defvi,k,t , ∀ji ∈ i,∀i

Dsurfji ,k(vji ,k,t)=
defDsurfi ,k(vi,k,t), ∀ji ∈ i,∀i

Dgradji
,k(gji , vji ,k,t)=

defDgradi ,k(gi, vi,k,t), ∀ji ∈ i,∀i 

Now only the intersection term Dinter(xji ) still depends on the actual segment. We separate the intersection term and define: 

LW,ji ,k,t(vi,k,t) = LW,i,k,t(vi,k,t) + Dinter(xji ), with
LW,i,k,t(vi,k,t) = LW0,k,t(vi,k,t) + Dsurf,k(vi,k,t) + Dgrad,k(g, vi,k,t) + Delectric(vi,k,t)

Using this, we update Eq. (4): 

LW,ji ,t = 10 ⋅ log10[Mji ,t] + 10 ⋅ log10

[
∑

k
λji ,k,t ⋅

100.1⋅(LW,i,k,t(vk,t )+Dinter(xji ))

vi,k,t

]

− 30

LW,ji ,t = 10 ⋅ log10[Mji ,t] + 10 ⋅ log10

[
∑

k
λji ,k,t ⋅

100.1⋅LW,i,k,t (vi,k,t )+0.1⋅Dinter(xji )

vi,k,t

]

− 30

LW,ji ,t = 10 ⋅ log10[Mji ,t] + 10 ⋅ log10

[
∑

k
λji ,k,t ⋅

100.1⋅LW,i,k,t (vi,k,t ) ⋅ 100.1⋅Dinter(xji )

vi,k,t

]

− 30

LW,ji ,t = 10 ⋅ log10[Mji ,t] + 10 ⋅ log10

[

100.1⋅Dinter(xji ) ⋅
∑

k
λji ,k,t ⋅

100.1⋅LW,i,k,t (vk,t)

vi,k,t

]

− 30

LW,ji ,t = 10 ⋅ log10[Mji ,t] + 10 ⋅

{

log10
[
100.1⋅Dinter(xji )

]
+ log10

[
∑

k
λji ,k,t ⋅

100.1⋅LW,i,k,t (vk,t )

vi,k,t

]}

− 30

LW,ji ,t = 10 ⋅ log10[Mji ,t] + Dinter(xji ) + 10 ⋅ log10

[
∑

k
λji ,k,t ⋅

100.1⋅LW,i,k,t (vk,t)

vi,k,t

]

− 30  

Next, we also assume that traffic volumes Mji , and vehicle type shares λji stay constant across all segments ji of a link i: 

Mji =
defMi, ∀ji ∈ i,∀i

λji =
defλi, ∀ji ∈ i,∀i  

Now we can separate the segment-dependent intersection term again: 

LW,ji ,t = LW,i,t + Dinter(xji ), with

LW,i,t = LW0,k,t(vk,t) + 10 ⋅ log10[Mi,t] + 10 ⋅ log10

[
∑

k
λi,k,t ⋅

100.1⋅LW,i,k,t (vk,t )

vi,k,t

]

− 30  

We can now update the immission calculation shown in Eq. (3): 

Leq,k,t = 10 ⋅ log10

∑

i

∑

ji

100.1⋅(LW,i,t+Dinter(xji )+10⋅log10 [lji ]− DA,ji − DRV1,ji − DRV2,ji )

We ignore the impact of reflections in our approach and set DRV1,ji = DRV2,ji =
def0. We now separate time- from segment-dependent terms: 

Leq,k,t = 10 ⋅ log10

[
∑

i

∑

ji

100.1⋅(LW,i,t+Dinter(xji )+10⋅log10 [lji ]− DA,ji )

]

Leq,k,t = 10 ⋅ log10

[
∑

i

∑

ji

100.1⋅LW,i,t+0.1⋅(Dinter(xji )+10⋅log10 [lji ]− DA,ji )

]

Leq,k,t = 10 ⋅ log10

[
∑

i

∑

ji

100.1⋅LW,i,t ⋅ 100.1⋅(Dinter(xji )+10⋅log10 [lji ]− DA,ji )

]

Leq,k,t = 10 ⋅ log10

[
∑

i
100.1⋅LW,i,t ⋅

∑

ji

100.1⋅(Dinter(xji )+10⋅log10 [lji ]− DA,ji )

]

Now, only the first part of the equation depends on t. The second part basically sums up all correction terms for the respective link 
segments and can be summarized as ci : 
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Leq,k,t = 10 ⋅ log10

[
∑

i

(
100.1⋅LW,i,t ⋅ ci

)
]

, with

ci =
∑

ji

100.1⋅(Dinter(xji )+10⋅log10 [lji ]− DA,ji )
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Kaddoura, I., Kröger, L., Nagel, K., 2017. An activity-based and dynamic approach to calculate road traffic noise damages. Transport. Res. Part D: Transport Environ. 

54, 335–347. 
Koppelman, F.S., 1983. Predicting transit ridership in response to transit service changes. J. Transport. Eng. 109 (4), 548–564. 
Kuehnel, N., Kaddoura, I., Moeckel, R., 2019. Noise shielding in an agent-based transport model using volunteered geographic data. In: Procedia Computer Science, 

vol. 151. Elsevier, pp. 808–813. 
Kuehnel, N., Moeckel, R., 2020. Impact of simulation-based traffic noise on rent prices. Transport. Res. Part D: Transport Environ. 78, 102191. 
Leich, G., Bischoff, J., 2019. Should autonomous shared taxis replace buses? A simulation study. Transport. Res. Procedia 41, 450–460. 
Ma, S., Zheng, Y., Wolfson, O. 2013. T-share: A large-scale dynamic taxi ridesharing service. In: Proceedings - International Conference on Data Engineering, pp. 

410–421. 

F. Zwick et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S1361-9209(20)30858-0/h0010
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0010
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0015
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0015
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0020
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0020
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0030
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0030
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0035
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0040
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0045
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0045
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0055
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0055
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0060
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0060
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0065
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0070
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0075
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0075
https://www.clevershuttle.de/
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0085
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0085
https://www.eea.europa.eu/airs/2018
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0095
https://www.forbes.com/2008/04/21/europe-commute-congestion-forbeslife-cx_po_0421congestion_slide.html
https://www.forbes.com/2008/04/21/europe-commute-congestion-forbeslife-cx_po_0421congestion_slide.html
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0115
https://www.grab.com/ph/transport/share/
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0125
https://www.researchgate.net/publication/343451580
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0135
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0135
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0140
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0145
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0150
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0160
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0180
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0185
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0185
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0190
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0200
http://refhub.elsevier.com/S1361-9209(20)30858-0/h0205


Transportation Research Part D 90 (2021) 102673

17

Maciejewski, M., 2016. Dynamic Transport Services. In: Andreas Horni, Kai Nagel, Axhausen Kay W. (Eds.), The Multi-Agent Transport Simulation MATSim, pp. 
145–152 (chapter 23). 

Martinez, L.M., Viegas, J.M., 2017. Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, 
Portugal. Int. J. Transport. Sci. Technol. 6 (1), 13–27. 

Moeckel, R., Kuehnel, N., Llorca, C., Moreno, A.T., Rayaprolu, H., 2020. Agent-based simulation to improve policy sensitivity of trip-based models. J. Adv. Transport. 
2020, 1902162. 

MOIA, 2020. https://www.moia.io/. Last accessed: 2020-08-19. 
Moreno, A., Moeckel, R., 2018. Population synthesis handling three geographical resolutions. ISPRS Int. J. Geo-Informat. 7 (5), 174. 
OpenStreetMap Contributors, 2018. OpenStreetMap. www.openstreetmap.org. Last accessed: 2018-07-26. 
Naumov, Sergey, Keith, David R., Fine, Charles H., 2020. Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems. Production 

and Operations Management 29 (5), 1354–1371. https://doi.org/10.1111/poms.13166. 
Osada, Y., Yoshida, T., Yoshida, K., Kawaguchi, T., Hoshiyama, Y., Yamamoto, K., 1997. Path analysis of the community response to road traffic noise. J. Sound Vib. 

205 (4), 493–498. 
Pernestål, A., Kristoffersson, I., 2019. Effects of driverless vehicles: Comparing simulations to get a broader picture. Eur. J. Transport Infrastruct. Res. 1 (19), 1–23. 
Quartieri, J., Iannone, G., Guarnaccia, C., D’Ambrosio, S., Troisi, A., Lenza, T., 2009. A review of traffic noise predictive models. In: Recent Advances in Applied and 

Theoretical Mechanics. 
Ruch, C., Horl, S., Frazzoli, E., 2018. AMoDeus, a simulation-based testbed for autonomous mobility-on-demand systems. In: 2018 21st International Conference on 

Intelligent Transportation Systems (ITSC), volume 2018-Novem. IEEE, pp. 3639–3644. 
Ruch, C., Lu, C., Sieber, L., Frazzoli, E., 2020. Quantifying the efficiency of ride sharing. IEEE Trans. Intell. Transp. Syst. 1–6. 
UberPool, 2020. https://www.uber.com/de/en/ride/uberpool/. Last accessed: 2020-07-29. 
Verheijen, E., Jabben, J., 2010. Effect of electric cars on traffic noise and safety. 
Vosooghi, R., Puchinger, J., Jankovic, M., Vouillon, A., 2019. Shared autonomous vehicle simulation and service design. Transport. Res. Part C: Emerg. Technol. 107, 

15–33. 
Wang, B., Ordonez Medina, S.A., Fourie, P., 2018. Simulation of autonomous transit on demand for fleet size and deployment strategy optimization. Procedia Comput. 

Sci. 130, 797–802. 
Wardman, M., Bristow, A.L., 2004. Traffic related noise and air quality valuations: Evidence from stated preference residential choice models. Transport. Res. Part D: 

Transport Environ. 9 (1), 1–27. 
WHO, 2009. Night Noise Guidelines for Europe. Technical report. world Health Organization. 
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