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Suppose that n items arrive online in random order and the goal is to select k of them 
such that the expected sum of the selected items is maximized. The decision for any item 
is irrevocable and must be made on arrival without knowing future items. This problem 
is known as the k-secretary problem, which includes the classical secretary problem with 
the special case k = 1. It is well-known that the latter problem can be solved by a simple 
algorithm of competitive ratio 1/e which is optimal for n → ∞. Existing algorithms beating 
the threshold of 1/e either rely on involved selection policies already for k = 2, or assume 
that k is large.
In this paper we present results for the k-secretary problem, considering the interesting 
and relevant case that k is small. We focus on simple selection algorithms, accompanied 
by combinatorial analyses. As a main contribution we propose a natural deterministic 
algorithm designed to have competitive ratios strictly greater than 1/e for small k ≥ 2. 
This algorithm is hardly more complex than the elegant strategy for the classical secretary 
problem, optimal for k = 1, and works for all k ≥ 1. We derive its competitive ratios for 
k ≤ 100, ranging from 0.41 for k = 2 to 0.75 for k = 100.
Moreover, we consider an algorithm proposed earlier in the literature, for which no 
rigorous analysis is known. We show that its competitive ratio is 0.4168 for k = 2, implying 
that the previous analysis was not tight. Our analysis reveals a surprising combinatorial 
property of this algorithm, which might be helpful to find a tight analysis for all k.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The secretary problem is a well-known problem in the field of optimal stopping theory and is defined as follows: Given a 
sequence of n items which arrive online and in random order, select the maximum item. The decision to accept or reject an 
item must be made immediately and irrevocably upon its arrival, especially without knowing future items. The statement of 
the problem dates back to the 1960s and the optimal algorithm was published by Lindley [1] and Dynkin [2]. For discussions 
on the origin of the problem, we refer to the survey by Ferguson [3].

In the past years, generalizations of the secretary problem involving selection of multiple items have become very popu-
lar. We consider one of the most canonical generalizations known as the k-secretary problem: Here, the algorithm is allowed 
to choose k elements and the goal is to maximize the expected sum of accepted elements. Other objective functions, such 
as maximizing the probability of accepting the k best [4,5] or general submodular functions [6], have been studied as well. 
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Maximizing the sum of accepted items is closely related to the knapsack secretary problem [7–9]. If all items have unit weight 
and thus the capacity constraint is a cardinality bound, the k-secretary problem arises. The matroid secretary problem, in-
troduced by Babaioff et al. [10], is a generalization where an algorithm must maintain a set of accepted items that form 
an independent set of a given matroid. We refer the reader to [11–13] for recent work. If the matroid is k-uniform, again, 
the k-secretary problem occurs. Another closely related problem was introduced by Buchbinder, Jain, and Singh [14]. In the 
( J , K )-secretary problem, an algorithm has J choices and the objective is to maximize the number of selected items among 
the K best. It can be shown that any monotone algorithm for the (k, k)-secretary problem corresponds to a k-secretary 
algorithm of the same competitive ratio [14]. Here, an algorithm is monotone if for any pair of items, it accepts the better 
item with higher probability. On the other side, any ordinal algorithm for k-secretary can be transformed to an algorithm for 
the (k, k)-secretary problem while maintaining the competitive ratio [14]. Ordinal algorithms [15] decide based on the total 
order of items only, rather than on their numeric values. In fact, most known and elegant algorithms for the k-secretary 
problem are ordinal [1,2,8,16].

The large interest in generalizations of the classical secretary problem is motivated mainly by numerous applications in 
online market design [10,16,17]. Apart from these applications, the secretary problem is the prototype of an online problem 
analyzed in the random order model: An adversarial input order often rules out good (or even constant) competitive ratios 
when considering online optimization problems without further constraints. By contrast, the assumption that the input is 
ordered randomly improves the competitive ratios in many optimization problems. This includes packing problems [7,9,18], 
scheduling problems [19], and graph problems [20,21]. Therefore, developing new techniques for secretary problems may, 
more generally, yield relevant insights for this input model as well.

1.1. Previous work

The k-secretary problem was introduced by Kleinberg [16] in 2005. He presents a randomized algorithm attaining a com-
petitive ratio of 1 − 5/

√
k, which approaches 1 for k → ∞. Moreover, Kleinberg shows that any algorithm has a competitive 

ratio of 1 − �(
√

1/k). Therefore, from an asymptotic point of view, the k-secretary problem is solved by Kleinberg’s result. 
However, the main drawback can be seen in the fact that the competitive ratio is not defined for k ≤ 24 and breaks the 
barrier of 1/e only if k ≥ 63 (see Fig. 2, p. 112).

In 2007 the problem was revisited by Babaioff et al. [8]. The authors propose two algorithms called virtual and op-

timistic and prove that both algorithms have a competitive ratio of at least 1/e for any k. While the analysis of virtual

is simple and tight, it takes much more effort to analyze optimistic [8,17]. The authors believe that their analysis for
optimistic is not tight for k ≥ 2.

Further indications for competitive ratios strictly greater than 1/e can be obtained from the framework of Buchbinder, 
Jain, and Singh [14]. In this framework, optimal algorithms for ( J , K )-secretary and other variants of the secretary problem 
can be obtained using linear programming techniques. By numerical simulations for the (k, k)-secretary problem with n =
100, Buchbinder et al. obtained competitive ratios of 0.474, 0.565, and 0.612, for k = 2, 3, and 4, respectively. However, 
deriving an algorithm from their framework requires a formal analysis of the corresponding LP in the limit of n → ∞, 
which is not provided in the article [14, p. 192].

Chan, Chen, and Jiang [22] revisited the ( J , K )-secretary problem and obtained several fundamental results. Notably, 
they showed that optimal algorithms for the k-secretary problem require access to the numeric values of the items, which 
complements the previous line of research in the ordinal model. Chan et al. demonstrate this by providing a 0.4920-
competitive algorithm for the 2-secretary problem which is based on an algorithm for the (2, 2)-secretary problem of 
competitive ratio 0.4886. Still, a rigorous analysis for the general ( J , K )-secretary problem revealing the numeric competitive 
ratios is not known, even for J = K . Moreover, the resulting algorithms seem overly involved. This dims the prospect of 
elegant k-secretary algorithms for k ≥ 3 obtained from this approach.

1.2. Our contribution

We study the k-secretary problem, the most natural and immediate generalization of the classical secretary problem. 
While the extreme cases k = 1 and k → ∞ are well studied, hardly any results for small values of k ≥ 2 exist. We believe 
that simple selection algorithms, performing well for small k, are interesting both from a theoretical point of view and for 
practical settings. Moreover, the hope is that existing algorithms for related problems based on k-secretary algorithms can 
be improved this way [14, p. 191]. We study ordinal, threshold-based algorithms in the style of [1,2].

As main contribution, we propose and analyze a simple deterministic algorithm single-ref. This algorithm uses a single 
reference value as threshold for accepting items. To the best of our knowledge, this approach has not been explored for 
the k-secretary problem so far, although this natural idea arises in algorithms for related problems [23]. As a strength of 
our algorithm we see its simplicity: It is of plain combinatorial nature and can be fine-tuned using only two parameters. In 
contrast, the optimal algorithms following theoretically from the ( J , K )-secretary approach [22] involve k2 parameters and 
the same number of different decision rules.

The analysis of single-ref crucially depends on the fact that items can be partitioned into two classes, which we will call 
dominating and non-dominating. Both have certain properties on which we base our fully parameterized analysis. In Table 1, 
we list the competitive ratios of single-ref for k ≤ 20 assuming n → ∞. While the competitive ratio for k = 1 is optimal, 
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Table 1
Competitive ratios α of single-ref for k ∈ [1..20].

k 1 2 3 4 5 6 7 8 9 10

α 1/e 0.41 0.44 0.47 0.49 0.51 0.53 0.54 0.55 0.56

k 11 12 13 14 15 16 17 18 19 20

α 0.57 0.58 0.59 0.59 0.60 0.60 0.61 0.62 0.62 0.63

we obtain a value significantly greater than 1/e already for k = 2. Furthermore, the competitive ratios are monotonically 
increasing in the interval k ∈ [1..20], already breaking the threshold of 0.5 at k = 6. Numerical computations suggest that 
this monotonicity holds for general k. See Fig. 2 (p. 112) for the competitive ratios up to k = 100 and a comparison with 
Kleinberg’s algorithm [16]. Providing a closed formula for the competitive ratio for any value of k is one direction of future 
work (see Section 6).

Moreover, we investigate the optimistic algorithm by Babaioff et al. [8] for the case k = 2. Although Chan et al. [22]
provided a strong algorithm for k = 2, we think studying this elegant algorithm is interesting for two reasons: First, a 
tight analysis of optimistic is stated as open problem in [8]. Article [8] does not provide the proof of the (1/e)-bound and a 
recent journal publication [24] (evolved from [8] and [10]) does not cover the optimistic algorithm at all. We make progress 
in this problem by proving that its competitive ratio is exactly 0.4168 for k = 2, which significantly breaks the (1/e)-barrier. 
Second, our proof reveals an interesting property of this algorithm, which we show in Lemma 7: The probability that
optimistic accepts the second best item is exactly the probability that the optimal algorithm for k = 1 accepts the best 
item. A similar property might hold for k ≥ 3, which could be a key insight into the general case.

From a technical point of view, we analyze the algorithms using basic combinatorial constructs exclusively. This is in 
contrast to previous approaches [14,22] which can only be analyzed using heavyweight linear programming techniques. The 
combinatorial parts of our analysis are exact and hold for all n. In order to evaluate the competitive ratios numerically, we 
find lower bounds that hold for sufficiently large n. Throughout the analyses of both algorithms, we associate probabilities 
with sets of permutations (see Section 2.2). Hence, probability relations can be shown equivalently by set relations. This is 
a simple but powerful technique which may be useful in the analysis of other optimization problems with random arrival 
order as well.

2. Preliminaries

Let v1 > v2 > . . . > vn be the elements (also called items) of the input. Note that we can assume w.l.o.g. that all items 
are distinct in the ordinal model. Therefore, we say that i is the rank of element vi . An input sequence is any permutation 
of the list v1, . . . , vn . We denote the position of an element v in the input sequence π with posπ (v) ∈ {1, . . . , n} and write 
pos(v) whenever the input sequence is clear from the context.

Given any input sequence, an algorithm can accept up to k items, where the decision whether to accept or reject an item 
must be made immediately upon its arrival. Let ALG denote the sum of items accepted by the algorithm. The algorithm is α-
competitive if E [ALG] ≥ (α − o(1)) · OPT holds for all item sets, where the expectation is taken over the uniform distribution 
of all n! input sequences. Throughout the paper, o(1) terms are asymptotic with respect to the number of items n and 
OPT = ∑k

i=1 vi denotes the value of an optimal offline solution.

2.1. Notation

For a, b ∈ N with a ≤ b, we use the notation [a..b] to denote the set of integers {a, a + 1, . . . , b} and write [a] for [1..a]. 
The (half-)open integer intervals (a..b], [a..b), and (a..b) are defined accordingly. Further, we use the notation nk for the 
falling factorial n!

(n−k)! .

2.2. Random permutations

We often use the following process to obtain a permutation drawn uniformly at random: Fix any order u1, u2, . . . , un of 
positions. Then, draw the element for position u1 uniformly at random among all n elements, next the element for position 
u2 among the remaining n − 1 elements, and so on.

Moreover, the uniform distribution of permutations allows us to prove probability relations using functions: Suppose that 
pi is the probability that item vi is accepted in a random permutation. Then pi = |Pi |/n!, where Pi is the set of all input 
sequences where vi is accepted. Thus, we can prove pi ≤ p j by finding an injective function f : Pi → P j and get pi = p j

if f is bijective. This technique turns out to be highly useful (e.g. in the proof of Lemma 7, which relates probabilities of 
different algorithms).
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2.3. Combinatorics

When analyzing random permutations, we often need to analyze the probability that K items in a sequence have a 
certain property. This is described by the following random experiment which is a special case of the hypergeometric 
distribution.

Fact 1. Suppose there are N balls in an urn from which M are blue and N − M red. The probability of drawing K blue balls without 
replacement in a sequence of length K is h(N, M, K ) := (M

K

)
/
(N

K

)
.

To simplify the binomial coefficients arising from h(N, M, K ), we make use of three useful identities (see [25]) stated in 
the following.

For integers l, m, n, w with l, m ≥ 0 and n ≥ w ≥ 0, it holds that

l∑
k=0

(
l − k

m

)(
w + k

n

)
=

(
l + w + 1

m + n + 1

)
. (R1)

The well-known symmetry property for binomial coefficients states that for any integers n, k with n ≥ 0,(
n

k

)
=

(
n

n − k

)
. (R2)

Finally, by the trinomial revision rule, for any integers m and k, and any real number r, it holds that(
r

m

)(
m

k

)
=

(
r

k

)(
r − k

m − k

)
. (R3)

2.4. Bounding sums by integrals

To bound sums over monotone increasing summands we make use of the following facts.

Fact 2. Let f : R≥0 →R≥0 and a, b ∈N. If f is

(A) monotonically decreasing, then 
∫ b+1

a f (i) di ≤ ∑b
i=a f (i) ≤ ∫ b

a−1 f (i) di.

(B) monotonically increasing, then 
∫ b

a−1 f (i) di ≤ ∑b
i=a f (i) ≤ ∫ b+1

a f (i) di.

3. Algorithms

In this section, we state our proposed algorithm single-ref and the optimistic algorithm by Babaioff et al. [8] and 
compare both strategies. While both algorithms have an initial sampling phase in which the first t − 1 items are rejected, 
the main difference is the policy for accepting items: Let s j be the j-th best item from the sampling.

Algorithm 1: single-ref.
Parameters : t ∈ (k..n − k] (sampling threshold),

r ∈ [k] (reference rank)
1 Sampling phase: Reject the first t − 1 items.
2 Let sr be the r-th best item from the sampling phase.
3 Selection phase: Choose the first k items better than sr .

Algorithm 2: optimistic [8].
Parameters : t ∈ (k..n − k] (sampling threshold)

1 Sampling phase: Reject the first t − 1 items.
2 Let s1 > . . . > sk be the k best items from the sampling phase.
3 Selection phase: As the j-th accepted item, choose the first item better than sk− j+1.

single-ref uses only item sr as reference element. In the selection phase, the algorithm accepts the first k elements 
better than sr . Despite its simple structure, a challenging part in the analysis of single-ref is the dependence between both 
parameters r and t .

optimistic uses the k best items from the sampling as reference elements. Right after the sampling phase, the first item 
better than sk will be accepted. The following accepted items are chosen similarly, but with sk−1, sk−2, . . . , s1 as reference 
105



S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
items. Note that optimistic sticks to this order of reference elements, even if the first item already outperforms s1. Hence, 
it is optimistic in the sense that it always expects high-value items in the future.

Note that in the case k = 1, both optimistic and single-ref become the optimal algorithm for the secretary problem 
[1,2]: After rejecting the first t − 1 items, choose the first one better than the best from sampling. This strategy selects the 
best item with probability t−1

n

∑n
i=t

1
i−1 .

From now on, let

pi := Pr [A accepts item vi] ,

where A is either single-ref or optimistic and i ∈ [n]. We further define

p( j)
i := Pr [A accepts item vi as the j-th item]

for i ∈ [n] and j ∈ [k]. Clearly, pi = ∑k
j=1 p( j)

i . Next, we define monotonicity of k-secretary algorithms and prove this prop-
erty for both algorithms.

Definition 1. An algorithm is called monotone if pi ≥ p j holds for any two items vi > v j .

Lemma 1. optimistic and single-ref are monotone.

Proof. We prove that pi ≥ pi+1 for all i ∈ [n − 1]. By the concept described in Section 2.2, it is sufficient to show that for 
each input sequence where vi+1 is accepted, there exists a unique input sequence where vi is accepted.

Consider any input sequence π in which vi+1 is accepted. Let s j < vi+1 be the sampling item to which vi+1 is compared 
(in case of single-ref, we have j = r). Since vi+1 is accepted, we have s j 	= vi . By swapping vi with vi+1, we obtain a new 
permutation π ′ with the same reference element s j . This is obvious if vi is not in the sampling of π . Otherwise, note that 
in the ordered sequences of sampling items from π and π ′ , both vi+1 and vi have the same position. This implies that s j
is the j-th best sampling item in π ′ . Further, item vi is at the former position of vi+1 in π ′ , thus both algorithms accept 
vi at this position since vi > vi+1 > s j .

The claim follows by applying the inequality pi ≥ pi+1 iteratively. �
Due to the monotonicity property, the competitive ratios of both algorithms can be easily analyzed using the following 

lemma.

Lemma 2. The competitive ratio of any monotone algorithm is (1/k) 
∑k

i=1 pi .

Proof. By monotonicity (Lemma 1) and by definition of the item set, both sequences p1, . . . , pk and v1, . . . , vk are sorted 
decreasingly. Let OPT = ∑k

i=1 vi and E [A] be the expected sum of the items accepted by the monotone algorithm. Cheby-
shev’s sum inequality [25] states that if a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn , then 

∑n
i=1 aibi ≥ (1/n) 

(∑n
i=1 ai

) (∑n
i=1 bi

)
. 

Applying this inequality yields

E [A] =
n∑

i=1

pi vi ≥
k∑

i=1

pi vi ≥ 1

k

(
k∑

i=1

vi

)(
k∑

i=1

pi

)
=

(
1

k

k∑
i=1

pi

)
OPT .

Note that the above inequalities are tight: Consider a set of items where the top k items are basically identical, and all 
remaining items are close to zero. More formally, set vi = 1 − iε for i ∈ [1..k] and vi = iε for i ∈ (k..n], where ε → 0. Then, 
the competitive ratio is exactly (1/k) 

∑k
i=1 pi . �

The same argument is used in [14] to show that any monotone algorithm for (k, k)-secretary corresponds to an algorithm 
for k-secretary of the same competitive ratio.

4. Analysis of SINGLE-REF

In this section we analyze our proposed algorithm single-ref. Recall that this algorithm uses sr , the r-th best sampling 
item, as the threshold for accepting items. As implied by Lemma 2, only the k largest items v1, . . . , vk contribute to the 
objective function. One essential idea of our approach is to separate the set of top-k items into two classes according to the 
following definition.

Definition 2. We say that item vi is dominating if i ≤ r, and non-dominating if r + 1 ≤ i ≤ k.
106



S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
Fig. 1. Event Ẽ j(z, i) considered in the proof of Lemma 3.

The crucial property of dominating items becomes clear in the following scenario: Assume that any dominating item v
occurs after the sampling phase. Since sr is the r-th best item from the sampling phase, it follows that v > sr . That is, each 
dominating item outside the sampling beats the reference item. Therefore, there are only two situations when dominating 
items are rejected: Either they appear before position t , or after k accepted items.

4.1. Dominating items

In Lemma 3 we compute the acceptance probability for dominating items. Since the algorithm cannot distinguish any 
two dominating items, each dominating item has the same probability.

Lemma 3. Let vd be a dominating item and j ∈ [0..k). We have

p( j+1)

d = κτ

n

n∑
i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
,

where κ = (r − 1 + j) j and τ = (t − 1)r .

Proof. Let E j(z, i) be the event that single-ref accepts vd as ( j + 1)-th item at position i = pos(vd) and sr has rank z (thus 
sr = vz) in a random permutation. Note that there must be elements s1, . . . , sr−1 of rank smaller than z in the sampling. 
Similarly, there must be j accepted elements a1, . . . , a j of rank smaller than z outside the sampling, but before position i.

The proof is in several steps. We first consider a stronger event Ẽ j(z, i). Later, we show how the probability of E j(z, i)
can be obtained from Ẽ j(z, i). In the end, the law of total probability yields p( j+1)

d .

Analysis of Ẽ j(z, i) Event Ẽ j(z, i) is defined as E j(z, i) with additional position constraints (see Fig. 1): Elements s1, . . . , sr

are in this order at the first r positions and elements a1, . . . , a j are in this order at the j positions immediately before vd . 
Therefore, Ẽ j(z, i) holds if and only if the random input sequence satisfies the following conditions:

(i) pos(s�) = � for � ∈ [r], pos(am) = i − j + m − 1 for m ∈ [ j], and pos(vd) = i.
(ii) Elements s1, . . . , sr−1 have rank smaller than z

(iii) Elements a1 . . . , a j have rank smaller than z
(iv) All remaining items at positions r + 1, . . . , i − j − 1 have rank greater than z.

As described in Section 2.2, we think of sequentially drawing the elements for the positions 1, . . . , r first, then i − j, . . . , i, 
and finally r + 1, . . . , i − j − 1. The probability for (i) is

β :=
j+r∏
�=0

1

n − �
= 1

n j+r+1
,

since each item has the same probability to occur at each remaining position. In (ii), the r − 1 elements can be chosen out 
of z − 2 remaining items of rank smaller than z (since vd is dominating and was already drawn). Therefore, we get a factor 
of 

(z−2
r−1

)
. After this step, there remain z − 2 − (r − 1) = z − r − 1 elements of rank smaller than z, so we get factor 

(z−r−1
j

)
for step (iii).

Finally, the probability of (iv) can be formulated using Fact 1. Note that at this point, there remain n − (1 + r + j) items 
and no item of rank greater than z has been drawn so far. In terms of the random experiment from Fact 1, we draw 
K = i − j − r − 1 balls (items) from an urn of size N = n − (1 + r + j) where M = n − z balls are blue (rank greater than z). 
Hence, the probability for (iv) is H := h(n − r − j − 1, n − z, i − j − r − 1). Therefore, we obtain

Pr
[

Ẽ j(z, i)
]

= β ·
(

z − 2

r − 1

)(
z − r − 1

j

)
· H .

This term can be simplified further by applying (R3) and (R2). Let R = z − 2, K = r − 1, and M = j + r − 1. It holds that
107



S. Albers and L. Ladewig Theoretical Computer Science 863 (2021) 102–119
(
z − 2

r − 1

)(
z − r − 1

j

)
=

(
R

K

)(
R − K

M − K

)
(R3)=

(
R

M

)(
M

K

)
(R2)=

(
R

M

)(
M

M − K

)
=

(
z − 2

j + r − 1

)(
j + r − 1

j

)
.

Let κ = ( j + r − 1) j , then 
( j+r−1

j

) = κ/ j! and we get

Pr
[

Ẽ j(z, i)
]

= βκ

j! ·
(

z − 2

j + r − 1

)
· H .

Relating Ẽ j(z, i) to E j(z, i) In contrast to Ẽ j(z, i), in the event E j(z, i), the elements s1, . . . , sr can have any positions in 
[t −1] and a1 . . . , a j can have any positions in [t..i). In the random order model, the probability of an event depends linearly 
on the number of permutations for which the event happens. Hence, we can multiply the probability with corresponding 
factors (t − 1)r =: τ and (i − t) j = (i−t

j

)
j! and get

Pr
[

E j(z, i)
] =

(
i − t

j

)
τ j! · Pr

[
Ẽ j(z, i)

]
.

Relating E j(z, i) to p( j+1)

d As the final step, we sum over all possible values for i and z to obtain p( j+1)

d . The position 
i = pos(vd) ranges between t + j and n, while the reference rank z is between r + j + 1 (there are r − 1 sampling elements 
and j + 1 accepted elements of rank less than z) and n. Thus we get:

p( j+1)

d =
n∑

i=t+ j

n∑
z=r+ j+1

Pr
[

E j(z, i)
]

= τ j!
n∑

i=t+ j

(
i − t

j

) n∑
z=r+ j+1

Pr
[

Ẽ j(z, i)
]

= βκτ

n∑
i=t+ j

(
i − t

j

) n∑
z=r+ j+1

(
z − 2

j + r − 1

)
· H

= βκτ

n∑
i=t+ j

(
i − t

j

)
1(n−r− j−1

i− j−r−1

) n∑
z=r+ j+1

(
z − 2

j + r − 1

)(
n − z

i − j − r − 1

)
. (1)

The sum over z in (1) can be resolved using (R1). Let L = n − r − j − 1, N = W = r + j − 1, and M = i − j − r − 1. In order 
to apply (R1) we need to verify L, M ≥ 0 and N ≥ W ≥ 0. We can assume k ≤ n/2, since for k > n/2, there exists a trivial 
(1/2)-competitive algorithm. Therefore, we have L = n − r − j − 1 ≥ n − k − (k − 1) − 1 = n − 2k ≥ 0. Further, i ≥ t + j, thus 
i − j ≥ t ≥ k + 1 ≥ r + 1 which implies M ≥ 0. The condition N ≥ W ≥ 0 holds trivially. By (R1) we obtain

n∑
z=r+ j+1

(
z − 2

j + r − 1

)(
n − z

i − j − r − 1

)

=
n−r− j−1∑

z=0

(
r + j − 1 + z

j + r − 1

)(
n − r − j − 1 − z

i − j − r − 1

)

=
L∑

z=0

(
W + z

N

)(
L − z

M

)
=

(
L + W + 1

M + N + 1

)
=

(
n − 1

i − 1

)
. (2)

By inserting (2) into (1), we obtain the quotient of binomial coefficients 
(n−1

i−1

)
/
(n−r− j−1

i− j−r−1

)
, which can be simplified further 

using (R3) since(
n − 1

i − 1

)/(
n − 1 − (r + j)

i − 1 − (r + j)

)
=

(
n − 1

r + j

)/(
i − 1

r + j

)
= (n − 1)r+ j

(i − 1)r+ j
.

Recall β = 1/n j+r+1, thus (n − 1)r+ j · β = 1/n. Together with (1) we get

p( j+1)

d = βκτ · (n − 1)r+ j
n∑

i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
= κτ

n

n∑
i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
, (3)

which concludes the proof. �
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4.2. Non-dominating items

It remains to consider the acceptance probabilities of the non-dominating items vr+1, . . . , vk . Interestingly, these proba-
bilities can be related finally to those for dominating items. First, we obtain the following result.

Lemma 4. Let vr+i be a non-dominating item with i ∈ [k − r] and let j ∈ [i]. We have p( j)
r+i = p(i+1)

r+i .

Proof. We construct a bijective function f : P → Q where P (resp. Q ) is the set of permutations where vr+i is the j-th 
(resp. (i + 1)-th) accept.

Let π ∈ P . First, we argue that the algorithm accepts at least i + 1 elements in π . As vr+i is accepted, sr < vr+i and 
thus all elements from the set S = {v1, . . . , vr+i} beat sr . Since sr is the r-th best element in the sampling, at most r − 1
elements from S can be part of the sampling. Consequently, at least r + i − (r − 1) = i + 1 elements from S , including vr+i , 
are accepted.

Now, let a1, . . . , ai+1 denote the first i + 1 accepts, where a j = vr+i . The function f can be defined as follows: Swap the 
positions of a1, . . . , ai+1 in a cyclic shift, such that a j = vr+i is at the former position of ai+1. This yields a permutation 
f (π) where vr+i is the (i + 1)-th accept. Note that f is bijective as the cyclic shift can be reversed. �

By the following lemma, the remaining probabilities can be related to corresponding probabilities for dominating items.

Lemma 5. Let vr+i be a non-dominating item with i ∈ [k − r] and let j ∈ [k − i]. Let vd be any dominating item. It holds that 
p(i+ j)

r+i = p(i+ j)
d .

Proof. Again, we prove the claim by defining a bijective mapping f : P → Q where P is the set of permutations where 
vr+i is the (i + j)-th accept and Q is the set of permutations where vd is the (i + j)-th accept. For any π ∈ P , let f (π) be 
obtained from π by swapping vr+i with vd .

We first show that f : P → Q . To that end, consider any fixed π ∈ P . As vr+i is accepted, sr < vr+i . We can argue that 
sr is the r-th best sampling element in f (π) as well: This holds clearly if no item is moved out of or into the sampling by 
f . Otherwise, f moves vr+i into the sampling and vd outwards. But since sr < vr+i < vd , this does not change the role of 
sr as the r-th best sampling element. Therefore, π and f (π) have the same reference element sr . Further, vd is accepted in 
f (π) at the former position of vr+i . Finally, we observe that f is bijective, since vr+i and vd have unique ranks. �
4.3. Competitive ratio

The following main theorem states the exact competitive ratio of single-ref. By the results from Sections 4.1 and 4.2, 
the final term only depends on the acceptance probabilities of dominating items.

Theorem 1. The competitive ratio of single-ref is

1

k

k∑
j=1

γ j · p( j)
1 where γ j =

{
r + 2 · ( j − 1) if j ≤ k − r + 1

k else.

Proof. According to Lemma 2, the competitive ratio is given by

1

k

k∑
i=1

pi = 1

k

(
r∑

i=1

pi +
k−r∑
i=1

pr+i

)
, (4)

where we split the sum according to dominating and non-dominating items. By Lemma 3, p( j)
i = p( j)

1 holds for any domi-

nating item vi and j ∈ [k]. Recall that pi = ∑k
j=1 p( j)

i for all i ∈ [k]. Therefore,

r∑
i=1

pi = r
k∑

j=1

p( j)
i =

k∑
j=1

rp( j)
1 . (5)

Now, we consider the sum for non-dominating items. We have

k−r∑
i=1

pr+i =
k−r∑
i=1

k∑
j=1

p( j)
r+i =

k−r∑
i=1

i∑
j=1

p( j)
r+i +

k−r∑
i=1

k−i∑
j=1

p(i+ j)
r+i . (6)

Next, we simplify the second last sum of Equation (6). From Lemmas 4 and 5 it follows that
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k−r∑
i=1

i∑
j=1

p( j)
r+i =

k−r∑
i=1

ip(i+1)
r+i =

k−r∑
i=1

ip(i+1)
1 =

k−r+1∑
j=1

( j − 1)p( j)
1 . (7)

The last sum in Equation (6) can be simplified using Lemma 5 followed by algebraic manipulations.

k−r∑
i=1

k−i∑
j=1

p(i+ j)
r+i =

k−r∑
i=1

k−i∑
j=1

p(i+ j)
1 =

k−r∑
i=1

k∑
j=i+1

p( j)
1 =

k−r+1∑
j=1

( j − 1)p( j)
1 +

k∑
j=k−r+2

(k − r)p( j)
1 . (8)

Combining Equations (4) to (8) yields the claim. �
4.4. Dominating items – asymptotic setting

As we have seen in Theorem 1, the competitive ratio mainly depends on the probabilities p( j)
1 . However, the term from 

Equation (3) is cumbersome and hard to optimize over r and t . The goal of this subsection is to derive a lower bound for 
p( j)

1 assuming that n is large enough. For this purpose, we assume t − 1 = cn for c ∈ (0, 1), i.e., the sampling length is some 
constant c of the input length. Further, we assume that k ∈ o(n). We obtain the following lemma.

Lemma 6. Let j ∈ [0..k). For � ∈ [0.. j], define β� := (−1)�
( j
�

)
and α� := ( j+r−1

�+r−1

)
. Assuming t − 1 = cn, it holds that

p( j+1)
1 ≥

⎧⎨
⎩c ·

(
ln 1

c −∑ j
�=1 β�

c�−1
�

)
− o(1) if r = 1

c
r−1 ·

(
1 − cr−1 ·∑ j

�=0 α�(1 − c) j−�c�
)

− o(1) if r ≥ 2.

Proof of Lemma 6. Let S := ∑n
i=t+ j

(i−t
j

) 1
(i−1)

r+ j be the sum from Equation (3). First, we obtain a lower bound for S using 

(n − k)k < nk < nk and similar inequalities:

S =
n∑

i=t+ j

(
i − t

j

)
1

(i − 1)r+ j
= 1

j!
n∑

i=t+ j

(i − t) j

(i − 1)r+ j
>

1

j!
n∑

i=t+ j

(i − t − j + 1) j

(i − 1)r+ j
= 1

j!
n−t− j+1∑

i=1

i j

(i + t + j − 2)r+ j

= 1

j!
m∑

i=1

f (i) , (9)

where we defined f (i) := i j/(i + y)r+ j with y := t + j −2 and m := n −t − j +1. Unfortunately, f is not necessarily monotone, 
hence we cannot apply Fact 2 directly to bound S by a corresponding integral. However, f has a single maximum point 
z = jy

r and is monotone increasing (resp. monotone decreasing) for i ≤ z (resp. i ≥ z). We prove this property in Lemma 10
in Appendix B. This allows to split S into two monotone parts.

m∑
i=1

f (i) =
�z�∑
i=1

f (i) +
m∑

i=�z�+1

f (i)

≥
�z�∫
0

f (i) di +
m+1∫

�z�+1

f (i) di Fact 2, Lemma 10B

=
m+1∫
0

f (i) di −
�z�+1∫
�z�

f (i) di

=
m+1∫
0

f (i) di − f (z) Lemma 10A . (10)

Therefore, if F is a function such that 
∫ m+1

0 f (i) di = F (m + 1) − F (0), we obtain from Lemma 3, Inequality (10), and the 
previous observation

p( j+1)
1 ≥ κτ

S >
κτ

(F (m + 1) − F (0)) − κτ
f (z) . (11)
n nj! nj!
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We first argue that the term (κτ )/(nj!) · f (z) from Inequality (11) vanishes for n → ∞. It holds that κτ = (r + j − 1) j · (t −
1)r < (r + j) j · (t − 1)r . Moreover,

f (z) = z j

(z + y)r+ j
<

z j

yr+ j
=

(
jy
r

) j

yr+ j
=

(
j

r

) j

· 1

yr
<

j j

(t − 1)r · (1 − 1
t−1 )r

,

where the last inequality follows from r ≥ 1 and yr ≥ (t − 2)r = (t − 1)r · (1 − 1
t−1 )r . Therefore,

κτ

nj! f (z) <
(r + j) j · (t − 1)r

nj! · j j

(t − 1)r · (1 − 1
t−1 )r

= (r j + j2)
j

j! · 1

n · (1 − 1
cn )r

= o(1) . (12)

In the remainder of the proof, we consider the cases r = 1 and r ≥ 2 separately. For both cases we use an appropriate 
antiderivative F , where we prove F ′(i) = f (i) in Lemmas 11 and 12 in Appendix B.

Case r = 1 We observe first that in Equation (11), the factor κτ
nj! resolves to c as

κ · τ
nj! = ( j + r − 1) j · (t − 1)r

nj! = j j · (t − 1)1

nj! = j! · (t − 1)

nj! = c .

With β� = (−1)�
( j
�

)
for 1 ≤ � ≤ j and

F (i) = ln(i + y) −
j∑

�=1

β�

�
·
(

y

i + y

)�

,

it holds that

F (m + 1) − F (0)

=
⎛
⎝ln(m + 1 + y) −

j∑
�=1

β�

�
·
(

y

m + 1 + y

)�
⎞
⎠−

⎛
⎝ln y −

j∑
�=1

β�

�

⎞
⎠

= ln

(
m + 1 + y

y

)
−

j∑
�=1

β�

�
·
((

y

m + 1 + y

)�

− 1

)

= ln

(
n

y

)
−

j∑
�=1

β�

�
·
(( y

n

)� − 1

)

= ln
1

c
−

⎛
⎝ j∑

�=1

β�

�
·
(

c� − 1
)⎞⎠− o(1) ,

where we used m + 1 + y = n and y = t − j − 2 = cn − j − 1. Combining with Inequality (11) yields the claim for r = 1.

Case r ≥ 2 Define α� = ( j+r−1
�+r−1

)
for 0 ≤ � ≤ j and let

F (i) = −
∑ j

�=0 α�i j−� y�

α0(r − 1)(i + y)r+ j−1
.

Further, let G(i) = −α0 · (r − 1) · F (i). Since α0 = ( j+r−1
r−1

) = κ/ j! and τ/n = (t − 1)r/n = c · (t − 2)r−1, we have

κτ

nj! (F (m + 1) − F (0)) = c

r − 1
· (t − 2)r−1 · (G(0) − G(m + 1)) . (13)

Now, it holds that

G(0) =
∑ j

�=0 α� · 0 j−� · y�

yr+ j−1
= α j · y j

yr+ j−1
= 1

yr−1 = 1

(t + j − 2)r−1 (14)

and further
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Fig. 2. Comparison of our algorithm single-ref and the algorithm by Kleinberg [16].

(t − 2)r−1 · G(0) ≥ (t − r)r−1

(t + j − 2)r−1 =
(

1 − j + r − 2

t + j − 2

)r−1

= 1 − o(1) . (15)

Finally, we analyze the term (t − 2)r−1 · G(m + 1). Using m = n − t − j + 1 and y = t + j − 2 = cn + j − 1, we obtain

(t − 2)r−1 · G(m + 1) = (t − 2)r−1 ·
∑ j

�=0 α� · (m + 1) j−� · y�

(m + 1 + y)r+ j−1

≤ (t − 2)r−1 ·
∑ j

�=0 α� · (n · (1 − c) + 1) j−� · (cn + j − 1)�

nr+ j−1

≤ (t − 2)r−1 ·
(∑ j

�=0 α� · (n · (1 − c)) j−� · (cn)�
)

nr+ j−1
+ o(1)

< (t − 1)r−1 ·
(∑ j

�=0 α� · n j−� · (1 − c) j−� · c�n�
)

nr+ j−1
+ o(1)

= cr−1 ·
⎛
⎝ j∑

�=0

α� · (1 − c) j−� · c�

⎞
⎠+ o(1) . (16)

Combining Equations (11) to (13), (15) and (16) concludes the proof. �
4.5. Competitive ratio – asymptotic setting

The competitive ratio of single-ref in the asymptotic setting n → ∞ can be evaluated using Lemma 6 in combination 
with Theorem 1. For k ∈ [1..100], we optimized the resulting objective function over r and c numerically. As shown in Fig. 2,
single-ref reaches competitive ratios of up to 0.75 and outperforms the algorithm by Kleinberg [16] on this interval. The 
optimal parameters for k ∈ [1..100] and the resulting competitive ratios can be found in Table A.2 of Appendix A.

5. OPTIMISTIC for k = 2

Let A2 denote the optimistic algorithm with k = 2 and parameters r, t in the following. To analyze the relevant proba-
bilities p1 and p2, we again relate these probabilities to corresponding sets (see Section 2.2). For i ∈ {1, 2}, let Pi be the set 
of permutations in which A2 accepts vi .

5.1. Acceptance probability of v2

In Lemma 7, we show a surprising relation between optimistic for k = 2 and single-ref for k = r = 1: Assuming that 
both algorithms have the same sampling length of t − 1, the probability that optimistic accepts v2 is exactly the probability 
that single-ref accepts v1. The proof uses a sophistically tailored bijection between two respective sets of permutations.

Lemma 7. Let A1 be the single-ref algorithm with parameters k = r = 1 and t. It holds that Pr [A2 accepts v2] = Pr [A1 accepts v1].

Proof. Let � be the set of all n! permutations and Q 1 ⊂ � be the set of permutations where A1 accepts v1. We prove the 
claim by constructing a bijective function f : � \ P2 → � \ Q 1.

We first investigate the two complementary sets � \ P2 and � \ Q 1. The set � \ P2 contains the permutations where v2
is not accepted by A2. This occurs in exactly one of three cases: v2 is in the sampling, v2 comes behind the first accept 
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and v1 is in the sampling (then A2 will reject all following elements), or v2 comes behind two elements accepted by A2. 
Similarly, � \ Q 1 contains the permutations where v1 is not accepted by A1. In these permutations, v1 is either in the 
sampling, or behind the first accepted element.

Now, fix any π ∈ � \ P2. To define f (π), we distinguish five cases (A)-(E) based on the position of v2 in π and the 
accepted elements of A2 on input π .

(A) v2 is in the sampling. We obtain f (π) from π by swapping v1 with v2. In f (π), item v1 is in the sampling and cannot 
be accepted by A1.

(B) v2 comes behind the first accept and v1 is in the sampling. Then, we have an accepted element a1 with s2 < a1 < v2. 
To obtain f (π), we swap v1 with a1 and afterwards v1 with v2:

Since a1 > s2, item a1 is the best element in the sampling of f (π). Particularly, the second best element s2 of the 
sampling is maintained in this case. This fact will be important later. Since v2 is in front of v1 in f (π), algorithm A1
accepts v2 in f (π).

(C) v2 comes behind two accepts and v1 is the first accept. Then, there must be another accept a2 between v1 and v2. We 
obtain f (π) by swapping v1 with a2. Since a2 > s1, algorithm A1 accepts a2 in f (π).

(D) v2 comes behind two accepts and v1 is the second accept. Here, we define f (π) such that v1 is swapped with v2. A1
accepts v2 in f (π).

(E) v2 comes behind two accepts and v1 is not accepted. Set f (π) = π in this case. Since there is at least one item better 
than s1 before v1 in f (π), algorithm A1 cannot select v1 in f (π).

In order to show the bijectivity of f , we have to argue carefully following the definition of f in the different cases. Let 
C = {A, B, C, D, E} represent the set of cases (A)-(E).

f is injective Let π1, π2 ∈ � \ P2 with π1 	= π2. We have to show f (π1) 	= f (π2). Let X, Y ∈ C be such that π1 and π2
satisfy the conditions of case X and Y , respectively.

First, we consider the situation where π1 and π2 are mapped by f according to the same case X = Y . In all cases, the 
operation defined by f involves v1, v2, and possibly a further accepted element. All of these elements can be retrieved 
given any permutation f (π): Items v1 and v2 have a unique rank, item a1 from case B is the maximum element in the 
sampling, and item a2 from case C is the first item after the sampling better than s1. Hence, f (π1) = f (π2) implies π1 = π2, 
which is equivalent to the claim we wanted to show.

It remains to consider all pairs of cases where X 	= Y .

X = A, Y ∈ {B, C, D, E}. Since item v1 is moved into the sampling in case (A) and to some position after the sampling in 
all remaining cases (B)-(E), we immediately get f (π1) 	= f (π2).

X = E , Y ∈ {C, D}. Assume f (π1) = f (π2) for contradiction. In all cases (C)-(E), the function f maintains the items in the 
sampling phase. Particularly, π1 and π2 must have the same two best elements s1, s2. The construction in case (E) 
ensures that A2 would accept two elements in f (π1) before position min{pos f (π1)(v1), pos f (π1)(v2)}, while there 
is only one such accept in f (π2). This contradicts f (π1) = f (π2).
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X = B , Y ∈ {D, E}. Assume f (π1) = f (π2) for contradiction. In all three cases (B),(D),(E), the function f maintains the 
second best sampling item s2. Similar to the previous case, we get a contradiction as there is no element before 
v2 better than s2 in f (π1), while f (π2) has at least one such item. Thus, f (π1) 	= f (π2).

X = C , Y ∈ {B, D}. By construction, item v1 is before v2 in f (π1), while the relative order of v1 and v2 in f (π2) is the 
other way round. Therefore, f (π1) 	= f (π2).

f is surjective Let π ′ ∈ � \ Q 1. We show that there is π ∈ � \ P2 with f (π) = π ′ .
The obvious case is when v1 is in the sampling of π ′ , then π can be obtained from case (A). If v1 is not in the sampling 

of π ′ , there must be an element before v1 that A1 accepts. Consequently, A2 would accept at least one element before 
v1 in π ′ as well. Furthermore, it follows that v2 is not in the sampling either, as otherwise v1 would be accepted by A1. 
Therefore, considering A2 on input π ′ , item v2 can be the first or second accept, or can follow two accepts.

If v2 is the first accept of A2, the desired π can be constructed according to case (B). Similarly, the situation where v2
is the second accept of A2 corresponds to case (D). Finally, consider the case where v2 follows two accepted elements. If 
v1 is the second accept, π ′ was obtained from case (C), and if v1 is not accepted from case (E). Note that v1 cannot be the 
first accept of A2, as otherwise A1 would also accept v1 which would contradict π ′ ∈ � \ Q 1. �
5.2. Acceptance probability of v1

In this part, we prove p1 = p2 + δ for δ > 0. First, we observe that P2 can be related to a set P ′
1 ⊂ P1 of equal cardinality.

Lemma 8. Let P ′
1 = {π ∈ P1 | posπ (v2) < t ⇒A2 accepts v1 as the first item}. It holds that 

∣∣P ′
1

∣∣ = |P2|.

Proof. Let f be the function that swaps v1 with v2 in a given input sequence. We first prove that f (π) ∈ P ′
1 holds for each 

π ∈ P2 and thus f : P2 → P ′
1.

Let π ∈ P2. In f (π), algorithm A2 accepts v1 at position pos f (π)(v1) = posπ (v2), as v1 > v2. So far we showed f (π) ∈
P1. If pos f (π)(v2) ≥ t , there is nothing to show. Assuming that pos f (π)(v2) < t , it follows that v1 is the best element in 
the sampling of π . Since no item (particularly not v2) beats v1, but v2 is accepted by A2 in π , we get that v2 is the first 
accept in π . Hence, v1 is the first accept in f (π) and therefore f (π) ∈ P ′

1.
Clearly, f is injective. To prove surjectivity, let π ′ ∈ P ′

1 and let π the permutation obtained from π ′ by swapping (back) 
v1 with v2. If posπ ′(v2) < t , by definition of P ′

1 we know that v1 is the first accept in π ′ , implying that no item before 
posπ ′ (v1) = posπ (v2) is accepted by A2. In the case posπ ′(v2) ≥ t , since posπ ′ (v1) ≥ t , the smallest rank in the sampling 
of π ′ is 3 or greater. Therefore, v2 is accepted if at most one item before v2 is accepted. This holds for π , as posπ (v2) =
posπ ′ (v1). �

From |P1| = ∣∣P ′
1

∣∣ + ∣∣P1 \ P ′
1

∣∣ = |P2| +
∣∣P1 \ P ′

1

∣∣ we get p1 = p2 + δ, where δ = ∣∣P1 \ P ′
1

∣∣/n!. That is, δ is the probability 
that a random permutation is element of 

∣∣P1 \ P ′
1

∣∣. We analyze this event in Lemma 9 using a similar counting argument 
as in the proof of Lemma 3.

Lemma 9. Let δ = Pr
[
π ∈ P1 \ P ′

1

]
where π is drawn uniformly at random from the set of all permutations and P ′

1 is defined as in 
Lemma 8. It holds that δ = t−1

n
t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1)

.

Proof. The set P1 \ P ′
1 contains exactly those permutations where v2 is in the sampling and A2 accepts v1 as the second 

item. Hence, s1 = v2, and there exists an accepted item vx before v1.
Let z ≥ 3 be the rank of s2 = vz and x ∈ [3..z) be the rank of the first accepted element vx . Let π be drawn uniformly at 

random. Consider the following sequence of random events.

(i) pos(vx) = i for i ∈ [t..n)

(ii) pos(v1) = � for � ∈ (i..n]
(iii) pos(v2) ≤ t − 1
(iv) pos(s2) ≤ t − 1
(v) All items with positions in [i − 1] \ {pos(s2), pos(v2)} have ranks greater than z.

The above conditions exactly characterize the event π ∈ P1 \ P ′
1 (see also Fig. 3): They ensure that the best two sampling 

elements are s1 = v2 and s2 and fix the positions of vx and v1 to be i and �, respectively. Further, all elements before 
position i except from s1 and s2 must have ranks greater than z, such that in fact s1 and s2 are the best two elements 
in the sampling and no item before vx is selected by A2. Note that we do not need an extra event ensuring that v1 gets 
accepted if it comes after the first accept: Since the second accept must beat s1 = v2, the only item with this property is 
v1.

The probability for the first four parts (i-iv) is β := 1
n

1
n−1

t−1
n−2

t−2
n−3 . For event (v), we need the probability that the next 

i − 3 items, drawn from the set of n − 4 remaining items, all have rank greater than z. As no item from {vz+1, . . . , vn} was 
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Fig. 3. Event π ∈ P1 \ P ′
1 considered in Lemma 9.

drawn so far, n − z items of rank greater than z remain. Therefore, by Fact 1 the probability for step (v) is h(n −4, n − z, i −3). 
By the law of total probability we obtain finally

δ =
n−1∑
i=t

n∑
�=i+1

n∑
z=3

z−1∑
x=3

β · h(n − 4,n − z, i − 3) = β

n−1∑
i=t

(n − i)
1(n−4

i−3

) n∑
z=3

(z − 3)

(
n − z

i − 3

)
. (17)

The last term can be simplified further. First, we eliminate the sum over z by applying (R1):

n∑
z=3

(z − 3)

(
n − z

i − 3

)
=

n−3∑
z=0

(
z

1

)(
n − 3 − z

i − 3

)
=

(
n − 2

i − 1

)
. (18)

Using Equation (18) in Equation (17) yields

δ = β

n−1∑
i=t

(n − i)

(n−2
i−1

)
(n−4

i−3

) = β

n−1∑
i=t

(n − i)
(n − 3)(n − 2)

(i − 2)(i − 1)

and the claim follows by resubstituting β . �
5.3. Competitive ratio

Finally we can state the competitive ratio of optimistic in the case k = 2. Again, we consider the asymptotic setting 
where n → ∞ and t − 1 = cn for some constant c ∈ (0, 1).

Theorem 2. optimistic is 0.4168-competitive for k = 2 assuming t − 1 = cn for c = 0.3521.

Proof. By the relation between optimistic and single-ref proven in Lemma 7 and by Lemma 3, we obtain p2 =
t−1

n

∑n
i=t

1
i−1 . As proven in Lemma 6, this term approaches c ln(1/c) in the asymptotic setting. Further, in Section 5.2 we 

showed p1 = p2 + δ where δ = t−1
n

t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1)

. The term 
∑n−1

i=t
n−i

(i−2)(i−1)
is bounded asymptotically from above and 

below by 1
c − ln 1

c − 1 (see Lemma 13 of Appendix C for a proof). Further, t−1
n

t−2
n−1 = c2 − 1−c

n−1 = c2 − o(1). According to 
Lemma 2, the competitive ratio is

1

2
(p1 + p2) = 1

2
(p2 + δ + p2) = c ln

1

c
+ c2

2

(
1

c
− ln

1

c
− 1

)
.

The optimal choice for c is around c∗ = 0.3521 < 1/e, which gives a competitive ratio of 0.4168. �
6. Conclusion and future work

In this work, we investigated two algorithms for the k-secretary problem with a focus on small values for k ≥ 2. We 
introduced and analyzed the algorithm single-ref. For any value of k, the competitive ratio of single-ref can be obtained 
by numerical optimization. Further, we provided a tight analysis of the optimistic algorithm [8] in the case k = 2.

We see various directions of future work. For single-ref, it remains to find the right dependency between the parameters 
r, c, and k in general and, if possible, to find a closed formula for the competitive ratio for any value of k. optimistic seems 
a promising and elegant algorithm, however no tight analysis for general k ≥ 3 is known so far. For k = 2, we identified a 
key property in Lemma 7. Similar properties may hold in the general case.
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Appendix A. Optimal parameters for SINGLE-REF

Table A.2
Optimal parameters and corresponding competitive ratios (c.r.) of single-ref for k ∈ [1..100]. For readability, the numeric values are truncated after the 
fourth decimal place.

k r c c.r.

1 1 0.3678 0.3678
2 1 0.2545 0.4119
3 2 0.3475 0.4449
4 2 0.2928 0.4785
5 2 0.2525 0.4999
6 2 0.2217 0.5148
7 3 0.2800 0.5308
8 3 0.2549 0.5453
9 3 0.2338 0.5567
10 3 0.2159 0.5660
11 4 0.2570 0.5740
12 4 0.2410 0.5834
13 4 0.2267 0.5914
14 4 0.2140 0.5983
15 4 0.2026 0.6043
16 4 0.1924 0.6096
17 5 0.2231 0.6155
18 5 0.2133 0.6211
19 5 0.2042 0.6261
20 5 0.1959 0.6306
21 5 0.1882 0.6347
22 5 0.1811 0.6384
23 6 0.2054 0.6426
24 6 0.1985 0.6465
25 6 0.1919 0.6502
26 6 0.1858 0.6535
27 6 0.1800 0.6566
28 6 0.1746 0.6595
29 7 0.1947 0.6625
30 7 0.1893 0.6655
31 7 0.1842 0.6684
32 7 0.1793 0.6711
33 7 0.1747 0.6736
34 7 0.1703 0.6760

k r c c.r.

35 7 0.1662 0.6782
36 8 0.1830 0.6805
37 8 0.1788 0.6829
38 8 0.1748 0.6851
39 8 0.1710 0.6873
40 8 0.1673 0.6893
41 8 0.1638 0.6912
42 8 0.1605 0.6930
43 9 0.1750 0.6948
44 9 0.1716 0.6968
45 9 0.1683 0.6986
46 9 0.1651 0.7004
47 9 0.1621 0.7021
48 9 0.1592 0.7037
49 9 0.1563 0.7052
50 9 0.1536 0.7067
51 10 0.1662 0.7082
52 10 0.1635 0.7098
53 10 0.1608 0.7113
54 10 0.1582 0.7127
55 10 0.1557 0.7141
56 10 0.1532 0.7155
57 10 0.1509 0.7168
58 10 0.1486 0.7180
59 11 0.1597 0.7193
60 11 0.1574 0.7206
61 11 0.1551 0.7219
62 11 0.1529 0.7231
63 11 0.1508 0.7243
64 11 0.1487 0.7255
65 11 0.1467 0.7266
66 11 0.1447 0.7277
67 11 0.1428 0.7287
68 12 0.1527 0.7298

k r c c.r.

69 12 0.1508 0.7309
70 12 0.1489 0.7320
71 12 0.1470 0.7330
72 12 0.1452 0.7340
73 12 0.1434 0.7350
74 12 0.1417 0.7360
75 12 0.1400 0.7369
76 12 0.1384 0.7378
77 13 0.1473 0.7387
78 13 0.1456 0.7397
79 13 0.1440 0.7406
80 13 0.1424 0.7415
81 13 0.1408 0.7424
82 13 0.1393 0.7433
83 13 0.1378 0.7441
84 13 0.1363 0.7449
85 13 0.1349 0.7457
86 14 0.1429 0.7465
87 14 0.1415 0.7473
88 14 0.1400 0.7482
89 14 0.1386 0.7490
90 14 0.1372 0.7497
91 14 0.1359 0.7505
92 14 0.1346 0.7512
93 14 0.1333 0.7520
94 14 0.1320 0.7527
95 14 0.1307 0.7534
96 15 0.1381 0.7541
97 15 0.1368 0.7548
98 15 0.1356 0.7555
99 15 0.1343 0.7562
100 15 0.1331 0.7569

Appendix B. Omitted proofs for SINGLE-REF

Lemma 10. Let f : R≥0 → R≥0 with f (i) = i j/(i + y)r+ j and constants j ≥ 0, r ≥ 1, and y > 0. Define z = jy
r . The function f has 

the following properties:

(A) f has a global maximum point at z,
(B) f is monotonically increasing on [0, z] and monotonically decreasing on [z, ∞).

Proof. Let g(i) = i j and h(i) = (i + y)r+ j , thus f (i) = g(i)/h(i). For the first derivative of f we obtain f ′(i) = g′(i)h(i)−g(i)h′(i)
h(i)2 . 

Since h(i)2 is non-negative for all i ≥ 0, we have

f ′(i) ≥ 0 ⇔ g′(i)h(i) ≥ g(i)h′(i)

⇔ ji j−1(i + y)r+ j ≥ i j(r + j)(i + y)r+ j−1

⇔ j(i + y) ≥ i(r + j)

⇔ z ≥ i .

Hence, f is monotonically increasing on [0, z] and monotonically decreasing on [z, ∞). An analogous calculus shows f ′(i) =
0 if and only if i = z. Therefore, z is a global maximum point. �
Lemma 11. Let f : R → R with f (i) = i j/(i + y)r+ j and constants j ≥ 0, r = 1, and y > 0. The following function F fulfills F ′(i) =
f (i):
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F (i) = ln(i + y) −
j∑

�=1

β�

�
·
(

y

i + y

)�

,

where β� = (−1)�
( j
�

)
for 1 ≤ � ≤ j.

Proof. We have

F ′(i) = 1

i + y
−

j∑
�=1

β�

�
· � ·

(
y

i + y

)�−1

·
(

− y

(i + y)2

)

= 1

i + y
+

j∑
�=1

β� · y�

(i + y)�+1

=
j∑

�=0

β� · y�

(i + y)�+1

=
j∑

�=0

(−1)�
(

j

�

)
· y�

(i + y)�+1

= 1

(i + y) j+1
·

j∑
�=0

(
j

�

)
· (−y)� · (i + y) j−�

= i j

(i + y) j+1
,

where the last inequality follows from the binomial theorem: For all a, b, n ∈ Z it holds that (a + b)n = ∑n
k=0

(n
k

)
akbn−k . �

Lemma 12. Let f : R → R with f (i) = i j/(i + y)r+ j and constants j ≥ 0, r ≥ 2, and y > 0. The following function F fulfills F ′(i) =
f (i):

F (i) = −
∑ j

�=0 α�i j−� y�

α0(r − 1)(i + y)r+ j−1
,

where α� = ( j+r−1
�+r−1

)
for 0 ≤ � ≤ j.

Proof. Let G(i) = − 
∑ j

�=0 α� · i j−� · y� and H(i) = α0 · (r − 1) · (i + y)r+ j−1 be the numerator and denominator of F (i), 
respectively. We derive the first derivatives G ′(i) = − 

∑ j
�=0 α� · i j−�−1 · y� · ( j − �) and H ′(i) = α0 · (r − 1) · (r + j − 1) · (i +

y)r+ j−2 = H(i) · r+ j−1
i+y . Therefore,

F ′(i) = G ′(i) · H(i) − G(i) · H ′(i)

H(i)2

= G ′(i) − G(i) · r+ j−1
i+y

H(i)

= G ′(i) · (i + y) − G(i) · (r + j − 1)

α0 · (r − 1) · (i + y)r+ j
.

Hence, the claim follows if we can show

G ′(i) · (i + y) − G(i) · (r + j − 1) = i j · α0 · (r − 1) . (B.1)

To show Equation (B.1), we observe

G ′(i) · (i + y) − G(i) · (r + j − 1)

= −
⎛
⎝ j∑

�=0

α� · i j−�−1 · y� · ( j − �)

⎞
⎠ · (i + y) +

⎛
⎝ j∑

�=0

α� · i j−� · y�

⎞
⎠ · (r + j − 1)
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= −
⎛
⎝ j∑

�=0

α� · i j−� · y� · ( j − �)

⎞
⎠−

⎛
⎝ j∑

�=0

α� · i j−�−1 · y�+1 · ( j − �)

⎞
⎠

+
⎛
⎝ j∑

�=0

α� · i j−� · y� · (r + j − 1)

⎞
⎠

=
⎛
⎝ j∑

�=0

α� · i j−� · y� · (r − 1 + �)

⎞
⎠−

⎛
⎝ j∑

�=0

α� · i j−�−1 · y�+1 · ( j − �)

⎞
⎠ .

Let S1 and S2 be the first and the second sum in the last expression, respectively. Note that S1 can be rewritten as follows

S1 = α0 · i j · (r − 1) +
j∑

�=1

α� · i j−� · y� · (r − 1 + �)

= α0 · i j · (r − 1) +
j∑

�=1

α�−1 · i j−� · y� · ( j − � + 1)

= α0 · i j · (r − 1) + S2 ,

where we used the fact that α�

α�−1
= j−�+1

�+r−1 for 1 ≤ � ≤ j for the second equality. This proves Equation (B.1) and concludes 
the proof of the lemma. �
Appendix C. Omitted proofs for OPTIMISTIC

Lemma 13. Assuming t − 1 = cn for c ∈ (0, 1), it holds that

1

c
− ln

1

c
− 1 − o(1) ≤

n−1∑
i=t

n − i

(i − 2)(i − 1)
≤ 1

c
− ln

1

c
− 1 + o(1) .

Proof. The lower and upper bounds follow basically from Fact 2A. For the lower bound, note that (n − i)/i2 decreases 
monotonically in i. Therefore,

n−1∑
i=t

n − i

(i − 2)(i − 1)
>

n−1∑
i=t

n − i

i2
≥

n∫
t

n − i

i2
di = ln

t

n
+ n

t
− 1 > ln

t − 1

n
+ n

t − 1
· t − 1

t
− 1

= 1

c
− ln

1

c
− 1 − 1

ct︸︷︷︸
=o(1)

.

The upper bound follows likewise. Observe that

n−1∑
i=t

n − i

(i − 2)(i − 1)
<

n∑
i=t

n − i

(i − 2)2
<

n∑
i=t−2

n − i

i2
=

(
n∑

i=t

n − i

i2

)
+ ξ ,

where

ξ = n − (t − 2)

(t − 2)2
+ n − (t − 1)

(t − 1)2
= o(1) .

Since n+2−i
i2 decreases monotonically in i, we obtain

(
n∑

i=t

n − i

i2

)
+ ξ ≤

⎛
⎝ n∫

n − i

i2
di

⎞
⎠ + ξ = ln

t − 1

n
+ n

t − 1
− 1 + ξ = 1

c
− ln

1

c
− 1 + ξ . �
t−1
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