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Abstract

Detailed knowledge about urban land use, especially building functions, is bene�cial to
governments for planning resource demands like electricity consumption or infrastruc-
ture. Every building in a city has di�erent requirements according to the infrastructure.
Commercial buildings consume more energy and produce more waste. On the other
hand, residential buildings consume less energy, but a residential settlement could re-
quire a hospital or schools. Since people are still migrating from rural areas to cities and
perhaps to informal settlements, governments can face unclear situations over the urban
land use and the resulting demands.
Remote sensing is the standard way of classifying urban land use. However, satellite

imagery could su�er from coarse image resolution or clouds such that subtle changes
on the ground might be undetected. Therefore, on-site information could be bene�cial
to gather more data about the situation on the ground. What if citizens themselves
could deliver information as sensors from the ground using georeferenced Twitter data?
Twitter data has been used before to classify buildings, however, mostly at a block level.
In a fast and heterogeneously growing urban environment, building functions at a block
level might be too coarse. Therefore, the main focus in this work is the classi�cation of
building functions at the level of individual buildings.
In this dissertation, georeferenced Twitter text messages obtained from 42 cities across

the globe are utilized to develop a classi�cation process that is not restricted to a speci�c
region. The data is applied as citizen (in situ) sensors to classify buildings at an individual
building level into "commercial", "residential", and "other". For text classi�cation, state-
of-the-art natural language processing methods such as fastText or BERT are used. Since
modern (mega) cities are multicultural and therefore multilingual spaces, not only English
tweets are considered to classify the building functions. To cover the actual language
situation in the cities, a multilingual fastText word embedding has been trained on 14M
multilingual tweets to have a baseline against the multilingual variant of BERT pretrained
on more than 100 languages.
To combine the strength of the remote sensing birds-eye-view with the potential of in-

situ sensors, a straightforward data decision fusion method is applied to further improve
the results. For this, three computer vision models, VGG16, InceptionV3, and ResNet50,
have been trained on high-resolution Google aerial images of the 42 cities.
The text classi�cation results show that the monolingual BERT model can achieve

accuracies up to 59%. The multilingual BERT model reaches a mean accuracy of 56%
and can outperform the LSTM trained with word vectors obtained from the self-trained
multilingual embedding achieving a mean accuracy of 55%. After fusing the decisions
of the best monolingual text model (BERT) with the best vision model (VGG16, 71%
accuracy), an accuracy of 75% can be reached. For the multilingual setting, the fusion
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Abstract

of the best text model with the vision model (73% accuracy) yielded 75% accuracy. The
remote sensing and text features seem complementary, and data fusion can improve the
results. The approach proposed in this dissertation is straightforward, resource-saving,
easy to replicate, and yields reasonable results that can be built upon.
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Zusammenfassung

Detailliertes Wissen über die urbane Landnutzung, vor allem Gebäudefunktionen, für
Regierungen, beispielsweise für die Ressourcenplanung nützlich. Jedes einzelne Gebäude
einer Stadt stellt verschiedene Anforderungen an die Infrastruktur. Beispielsweise weisen
kommerziell genutzte Gebäude einen höheren Energiebedarf auf und erzeugen mehr Ab-
fall. Demgegenüber stehen Wohnsiedlungen, die weniger Energie verbrauchen, aber
Krankenhäuser oder Schulen benötigen. Da Menschen noch immer von ländlichen Gegen-
den in Städte migrieren und dort vielleicht in eher informelle Siedlungen ziehen, sehen
sich Regierungen mit einer unklaren urbanen Landnutzungslage und resultierendem In-
frastrukturbedarf konfrontiert.

Fernerkundung ist der herkömmliche Weg, um urbane Landnutzung zu detektieren.
Allerdings sind Satellitenbilder teilweise zu grob aufgelöst und können mit Wolken über-
deckt sein, sodass detaillierte Änderungen am Boden nicht beobachtet werden können.
Aufgrund dessen können Information, die direkt vor Ort erhoben werden, nützlich sein,
um die Situation besser zu beleuchten. Was wäre, wenn die Bewohnerinnen und Be-
wohner der Städte selbst diese Informationen mit geo-referenzierten Twitter Daten liefern
könnten? Zwar wurden Twitter Daten schon zuvor für die Gebäudeklassi�zierung be-
nutzt, allerdings fast ausnahmslos auf Häuserblockebene. In einem schnell und heterogen
wachsenden urbanen Umfeld sind Informationen auf Häuserblockebene möglicherweise zu
niedrig aufgelöst. Aus diesem Grund liegt das Hauptaugenmerk dieser Arbeit auf der
Klassi�zierung von Gebäudetypen auf einer individuellen Gebäudeebene.

In dieser Dissertation werden geo-referenzierte Tweets aus 42 globalen Städten gesam-
melt um einen Prozess zu entwickeln, der nicht auf eine bestimmte Region begrenzt ist.
Die Daten werden als in situ-Bevölkerungssensor (citizen-sensor) verwendet, um einzelne
Gebäude in Geschäftsgebäude, Wohngebäude, oder weiteres Gebäude zu klassi�zieren.
Für die Klassi�zierung des Textes werden lege artis Methoden des Natural Language Pro-
cessing, wie fastText oder BERT, eingesetzt. Da moderne (Mega-) Städte multikulturelle
und mehrsprachige Orte sind, berücksichtigt die vorliegende Arbeit für die Gebäudeklas-
si�zierung nicht nur englische Tweets. Um jene realen sprachlichen Gegebenheiten in
den Städten zu berücksichtigen, wird eine mehrsprachige fastText Text Embedding mit
14 Millionen Tweets trainiert, um eine Ausgangsgrundlage für den Vergleich mit der auf
mehr als 100 Sprachen vortrainierten BERT-Variante zu erstellen.

Damit die Stärke der Vogelperspektive der Fernerkundung und das Potenzial der
in situ-Sensoren voll ausgeschöpft werden kann, wird eine unkomplizierte Fusion der
Daten auf Entscheidungsebene angewandt, welche die Ergebnisse weiter verbessern soll.
Dafür werden die drei Bildverarbeitungsmodelle VGG16, InceptionV3 und ResNet50 mit
hochau�ösenden Google Maps-Luftbildern der 42 Städte trainiert.
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Zusammenfassung

Die Ergebnisse der Textklassi�zierung zeigen, dass das englischsprachige BERT-Modell
mit einer Genauigkeit bis zu 59% am besten abschneidet. Das mehrsprachige BERT-
Modell liefert mit einer durchschnittlichen Genauigkeit von 56% etwas bessere Ergebnisse
als ein LSTM, das mit Wortvektoren der multilingualen fastText Embedding trainiert
wird (durchschnittlich 55%). Nach der Entscheidungsfusion des besten einsprachigen
Textmodells (BERT) und Bildmodells (VGG16, 71% Genauigkeit), kann eine Gesamtge-
nauigkeit von 75% erreicht werden. Für die mehrsprachige Umgebung erreichte die Fu-
sionierung des besten Textmodells (LSTM und mehrsprachige fastText Embedding) mit
dem besten Bildmodell (VGG16, 73% Genauigkeit) ebenfalls eine Gesamtgenauigkeit von
75%. Fernerkundungs- und Textmerkmale scheinen also komplementär und so kann die
Fusionierung der Modalitäten das Gesamtergebnis der Gebäudeklassi�kation verbessern.
Das in dieser Arbeit angewandte Vorgehen ist unkompliziert, ressourcenschonend und
einfach zu reproduzieren. Dennoch werden angemessene Ergebnisse erreicht, auf denen
sich in zukünftiger Forschung aufbauen lässt.
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1 Introduction

Thousands of years ago, humankind started to become sedentary and began living in
small settlements. Even today, in the age of the Anthropocene, we still retain at least
two facts in common with our ancestors. First, we still reside in buildings, and second,
we still live in settlements that grow over decades, centuries, and millennia. The urge
to migrate from rural areas into cities to �nd jobs and happiness persists. In 2050,
the United Nations (U.N.) expects that 70% of the world's population will live in cities
[5]. More and more people are seeking positive economic perspectives in cities. This
reality brings new challenges to city planning and municipal governments, such as energy
consumption [6], waste management [7], and sanitary facilities. As an example for the
latter aspect, the lack of such amenities can result in dangerous situations, especially
for female slum residents [8]. Therefore, the U.N. suggests in Sustainable Development
Goal (SDG) number 11: "Make cities and human settlements inclusive, safe, resilient and
sustainable." To achieve such goals, broad knowledge about a local urban con�guration is
desirable and inevitable. The correlation between well-being and the built-environment
is eminent [9], hence not only demographic information is essential for local decision-
makers but also detailed facts about constructions (e.g., a building). Some countries
are maintaining registers, e.g., cadastre, for buildings or real estate, et cetera, and are
including their functions or land use. In fast-growing city districts with a high migration
rate, such registers could be outdated or not even present [10, 11]. However, knowing the
function of an individual building could lead to more demand-orientated city planning
and so working towards ful�lling the U.N. Sustainable Development Goals [12].
For the reasons mentioned above, the current dissertation follows the building function

classi�cation task not at a block or �eld level but at an individual building instance level.
In this work, a building function is de�ned as the primary purpose of a building. For
example, if a building accommodates a supermarket only, it is used commercially. On the
other hand, a residential building is composed of apartments or is a one-family dwelling.
In urban areas, a wide range of building functions are available. It turns out that for New
York City, for example, commercial and residential buildings are the major categories
with the highest occupation of space [13]. In this work, the functions have therefore been
summarized to commercial, residential, and other. The other class summons additional
building functions like religious or civic structures. The task itself, i.e., the building
function classi�cation task, describes the identi�cation of the primary function of an
individiual building located in an urban area.
As pointed out by [14], the traditional approach to collect information about urban

con�gurations and land use is the exploitation of data generated by ex situ sources like
spaceborne or airborne sensors and the use of machine learning algorithms to extract
the critical information, e.g., [15]. However, classifying individual building functions
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from remote sensing imagery is complex. Spectral signatures of materials or shapes of
the buildings are not always providing clear information about the usage of a particular
building [16]. Therefore, additional information obtained from di�erent sensors could
support building function classi�cation.
Over a decade ago, [17] proposed that citizens voluntarily could collect data as a citi-

zen sensor and, in doing so, contribute to science. Goodchild's idea has been considered
in many studies, and some of the internet users became in situ sensors. For example,
OpenStreetMap (OSM) is a prominent example of the citizen sensor idea. OSM is a Geo-
graphic Information System (GIS) where users can collect and explicitly add geographical
information about their neighborhoods. Researchers can query this citizen sensor map
and utilize all of the information for their work. A popular data source used as a citizen
sensor is Twitter. Twitter is a micro-blogging platform where users can publish a short,
mostly informally written, text enriched with web URLs, mentions of other Twitter users,
or emojis, which is then called a tweet. Some of the users add geographical information
to a tweet to tag a place, landmark, or restaurant. Therefore, Twitter data was used in
numerous spatial-related studies like tra�c patterns [18] or demographic analysis [19] in
the past. Hence, Twitter data has great potential to impact building function classi�ca-
tion positively. Twitter data has been used before to classify the function of buildings.
The linguistic features derived from classical information retrieval approaches like Term
Frequency-Inverse Document Frequency (TF-IDF) have been utilized to categorize the
building functions [20].
Since the pool of big space data seems to be vastly growing1, deep learning [21, 22, 23]

has prevailed as a ubiquitous tool in remote sensing [24, 25, 26]. An extensive research
community is utilizing the vast amount of optical data acquired by various spaceborne
sensors to explore urban con�gurations like urban land use [11, 27, 28, 14]. On the other
hand, the utilization of more powerful Natural Language Processing (NLP) methods
like (multilingual) word embeddings or large language models were not employed for
building function classi�cation even though they outperform the classic approaches in
text classi�cation with Twitter data [29].
Additionally, another non-build attribute of urban structures is the aspect of multilin-

gualism [30, 31, 32, 33]. Migration not only brings people into cities but also imports a
large variety of new dialects and languages. As might be expected, English is the lingua
franca of Twitter [34]. However, a signi�cant amount of tweets are written in several lan-
guages [35] and additionally, translingual constructs are embedded in tweets as well [36].
Considering all this, investigating approaches handling multilingual text input next to a
monolingual one is natural. Studies from the past mainly looked into monolingual texts
obtained from block-level resolution or a small area of interest with a limited amount of
tweets, e.g., [20, 37, 38, 39].
For this reason, this dissertation investigates multidisciplinary approaches to �ll this

research gap for building function classi�cation using linguistic features. Namely, taking
a more extensive area covering 42 cities distributed over all continents and considering

1https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12632/22039_read-51751 [6.9.2021,
14:12]
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the aspect of the diverse pool of languages in the cities. For this, NLP methods like
word embedding algorithms and large neural language models are used to handle the
vast amount of multilingual text accumulated from the 42 cities and generate meaningful
feature vectors which are fed in neural networks for classi�cation.
The results based on the text classi�cation are then used as in situ sensors, i.e., citizen

sensors, to support the remote sensing image classi�cation. This approach could also
tackle the issue brought up by the U.N. that urban con�gurations underlie rapid changes
[40, 41]. The function of a building can change over time. Here, the nature of social
media�topicality�is advantageous. In contrast, a satellite can only see the roof of a
building�a disadvantage of remote sensing. A roof does not change when the function of
a building changes. Therefore, the text messages from the ground could reveal more about
the building's function and complement the information acquired by remote sensing. For
the image classi�cation, high-resolution Google aerial images of the 42 cities are used
and classi�ed with state-of-the-art computer vision deep learning architectures. The
combination, i.e., fusion, of data obtained from di�erent sensors is a widely accepted
methodology in remote sensing [42, 2, 43].

1.1 Research Questions

The aim of this dissertation can be spelled out in the following research questions (R.Q.):

1. Can linguistic features derived from social media text messages such as Twitter
contribute to building function classi�cation at an individual building level?

2. How can the multilingual reality in urban areas be represented best so that they
are bene�cial for building function classi�cation?

3. What is the e�ect of unbalanced and balanced datasets on building function clas-
si�cation?

4. Finally, are visual features derived from very high-resolution remote sensing images
complementary to linguistic features?

1.2 Thesis Outline

The outline of the thesis is arranged as follows: the subsequent chapter 2 provides a
more in-depth view on the techniques used in this work and is followed by chapter 3
where a more detailed discussion about state-of-the-art technology is given. In chapter
4 more insights about the area of interest and the datasets are shown. Furthermore, the
status of geo-referenced tweets is discussed. Chapter 5 summarizes the results of the
text classi�cation which is then followed by chapter 6 where the employed modalities are
fused. Finally, chapter 7 rounds o� the current dissertation by discussing the results and
looks into possible directions for future research.
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2 Fundamentals

In this chapter, the techniques applied in this work are explained. First, the foundations
of urban remote sensing and data fusion are discussed. An overview of deep learn-
ing methods follows, which brie�y introduces architectures utilized in computer vision
and Natural Language Processing (NLP). After that, the �eld of NLP, which might be
rather unorthodox in the remote sensing community, is introduced. Fundamental tech-
nologies like the classic Term Frequency-Inverse Document Frequency approach, which
is used as a method to produce a baseline for the text classi�cation part, are explained.
Since NLP is one of the core research �elds in this dissertation, the introduction will
be more extensive and detailed. Finally, the chapter will be concluded with a brief
discussion.

2.1 Urban Remote Sensing

The dream to observe the earth from far above like a bird is as old as humankind. Today,
that dream has not only come true but is in high-de�nition. We can not only watch the
earth from a bird's-eye-view but from a spaceborne view as well. Since the �rst Sputnik
satellite in 1957, remote sensing technology has evolved tremendously. Now, petabytes of
earth-observation from spaceborne sensors like TanDEM-X1, TerraSAR-X2, the Sentinel
missions3, Landsat4, Quickbird5, or Planet6 data are available7. The data is accessible
in di�erent spatial, spectral, and temporal resolutions.
In remote sensing, two kinds of sensors exist to capture the electromagnetic waves

carrying information: active and passive sensors (cf. �gure 2.1). Active sensors emit
arti�cial light sources, like synthetic aperture radar (SAR), for registering an image
[44, 45]. For further information about radar sensors, consider reading [46]. Passive
sensors use natural light, e.g., sunlight, to acquire an image. They are able to detect
visible, infrared, and thermal infrared bands of electromagnetic spectrum. The sensors,
i.e., the radiometers, measure the sunlight re�ected by the earth's surface [45]. Depending
on the ground material, the signature of the re�ected waves changes and di�er in strength.
Snow re�ects the sunlight more than 90%, but water, on the other hand, only 6% [1].

1https://tandemx-science.dlr.de/ [8.10.2021, 11:11]
2https://www.dlr.de/content/en/missions/terrasar-x.html [8.10.2021, 12:30]
3https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions

[8.10.2021, 11:12]
4https://landsat.gsfc.nasa.gov/ [7.10.2021, 18:10]
5https://earth.esa.int/eogateway/missions/quickbird-2 [7.10.2021, 18:13]
6https://www.planet.com/ [7.10.2021, 18:14]
7https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12632/22039_read-51751 [6.9.2021,
14:12]
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Satellite icons: Maxxl², CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons (modified M. Häberle)

passive active

Figure 2.1: Di�erence of active and passive sensors. Image inspired by NASA Earthdata [1]

The di�erences between the re�ected waves can be measured in di�erent resolutions.
Multispectral sensors, for example, can detect 3�10 bands, whereas hyperspectral sen-
sors can measure even more bands (mostly airborne sensors) [1]. Of course, the spatial
resolution can also vary. Optical images are composed of a pixel matrix where every
pixel can store values up to 8 bits (radiometric resolution). One pixel can therefore
store the energy levels of the light up to 256 digits (0�255) [1]. The spatial resolution
also depends on how �ne-grained a sensor is of capably storing the information of the
recorded scene [1]. A pixel can represent a square of 100× 100 meters, or, like Landsat
8, 30 × 30 meters [45]. More detailed imagery is possible. The GeoEye-1 satellite can
register images in a panchromatic resolution of 0.41 meters and color images with 1.65
meters. Together with IKONOS and SPOT-5, Geo-Eye-1 delivers imagery for Google
Earth [45].

Remote sensing data is used in a range of research areas and applications. For example,
glacier monitoring [47], detection of invasive plants in rainforests [48], the impact of
climate change on ocean productivity [49], disaster mapping [50], change detection [51],
and crop identi�cation [52].

Instead of observing the physical properties of the earth, urban remote sensing [41]
focuses on settlement structures to monitor urban change [53], explore settlement mor-
phology [54] and assess the usage of urban space, i.e., the land-use [44]. In great detail,
urban remote sensing can help to discover and to analyze the human footprint on earth:
where are settlements built [55]? How many people are living there [56]? What type of
urban structure does the detected urban con�guration represent [11]? Are the buildings
in the area of interest more commercially used, or is it a residential area [27]?
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All this information can help identify socio-economical patterns and augment the
knowledge of the space we live in. Thus, data about urban agglomerations can con-
tribute to solving the sustainability goals of the U.N. [12]. As stated in chapter 1, a key
challenge today are the migration patterns into (expanding) cities. To quote the U.N.
target 11.3 of SDG 11: "By 2030, enhance inclusive and sustainable urbanization and
capacity for participatory, integrated and sustainable human settlement planning and
management in all countries"8.
But could it also be possible to tap new information to augment the pool of urban

geospatial data? [57] elaborates that

Geospatial information and EO, together with modern data processing and
big data analytics, o�er unprecedented opportunities to modernise national
statistical systems and consequently to make a quantum leap in the capacities
of countries to e�ciently track all facets of sustainable development.

EO (from satellite, airborne and in-situ sensors) provide accurate and reliable
information on the state of the atmosphere, oceans, coasts, rivers, soil, crops,
forests, ecosystems, natural resources, ice, snow and built infrastructure, as
well as their change over time. These observations are directly or indirectly
necessary for all functions of government, all economic sectors and many
day-to-day activities of society. (p. 11)

Additionally, [12] point out that the usage of big data could be a way to close gaps in
knowledge. More and more cities are implementing open data initiatives where geospatial
data related to the cities are published and freely accessible. Los Angeles9 and San Fran-
cisco10, for example, provide cadastre data with parcel land-use labels. But what can
researchers do if no o�cial data is available [10]? As mentioned in the quote above, mod-
ern urban remote sensing should therefore integrate not only data from remote sensing
sensors but also information gained from in situ sensors, i.e., sensors on-site. [12, p. 464]
indicate, by citing the papers of [58] and [59], "that new geospatial information for sus-
tainability (e.g. on the built environment, land use and management), could be derived
from the integration of traditional EO approaches to data gathering with citizen science,
crowd-sourcing, social sensing, big data analytics and the Internet of Things". [17] pro-
posed the idea of the citizen sensor, i.e., social sensing, where citizens act as sensors to
gather data about their direct environment.
Thus, the usage of in situ sensors such as (big) data gained from location-based social

media could be analyzed and added to the toolbox of urban remote sensing [60]. Explor-
ing this citizen sensor data about our immediate environment could help facilitate and
achieve the goal of better citizen participation and more sustainable city planning.
Remote sensing images must be analyzed to discover the latter mentioned patterns or

structures. Currently, classic machine learning algorithms like random forest models are
used to analyze the images, e.g., [61]. However, as mentioned above, the amount of data is

8https://sdgs.un.org/goals/goal11 [7.10.2021, 18:45]
9https://data.lacity.org/ [7.10.2021, 16:32]
10https://datasf.org/opendata/ [7.10.2021, 16:33]
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Figure 2.2: A feature fusion and B decision fusion depiction. The social media modalities can
be images, text, metadata, or both. Image inspired by [2, p. 29, �gure 14].Back-
ground images© TerraMetrics 2021, Google. Social media example image© pri-
vate, the author.

rapidly increasing. In the present big data era, deep learning methods are becoming more
and more accepted in the �eld of remote sensing. The superior performance in image
classi�cation makes deep learning a valuable tool for urban remote sensing [24, 11, 62, 63].
More details and insights into Deep learning are further discussed in chapter 2.3.
This section proposed the combination of data of two di�erent sensors to gather more

information for urban remote sensing. However, how the data of two (or more) sensors
could be combined was left out. Therefore, the next section will discuss available methods
to fuse data from various sensors and answer the latter question.

2.2 Fusion

As [64] states, human brains fuse sensory information to derive the best possible decision
about a particular situation. In the engineering domain, sensor fusion has a long tradi-
tion. It can be described as the combination of observations done by di�erent sensors
in order to increase useful information for the studied phenomenon [64]. Of course, the
sensors should be comprehensive enough to gain information. However, a mere duplica-
tion of the observations is not particularly helpful. Therefore, the fusion of sensor data
can be done at di�erent levels:

1. data fusion

2. feature fusion

3. decision fusion
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Fusing information at the data level is mainly achieved by combining data from di�erent
sets to build a new set and using it for further feature extraction and decision making [64].
Feature level fusion utilizes already generated features, whereas decision level fusion takes
already made decisions by di�erent feature extractors and calculates the �nal decision
[64]. The advantage of decision level fusion is computational e�ciency and robustness
against a sensor failure. When the information from one sensor is not available, the other
sensor still provides a decision [64]. Whereas with feature fusion, a failure in the decision-
making process is possible. However, a drawback of decision fusion is that possible
information is lost because the features are used for classi�cation independently [64].

The combination of speci�c sensor data is a traditional method in remote sensing
to enhance the information quality [43, 2, 42]. As mentioned in section 2.1, the data
pile collected by remote sensors increases rapidly. More information becomes available
and awaits exploitation. However, the data collected by the many di�erent sensors comes
with trade-o�s. E.g., a higher spatial resolution comes at the expense of a lower temporal
or spectral resolution [2]. Therefore, data fusion can be used for pan-sharpening [65],
spatiotemporal fusion [66], or multisensor image analysis [67].

In section 2.1, it was discussed that crowd-sourced (e.g., OSM) or location-based social
media data (e.g, tweets), can be used to study urban areas. Whereas a coregistration via
positioning systems of the data sources is rather easy [43], fusing two highly heterogeneous
data sources is challenging [2]. Remote sensing and social media data cannot be fused
directly together. [2] propose three distinct ways to combine the data (c.f. �gure 2.2).
First, features are extracted individually but are integrated into the same classi�cation
framework. The fusion of the two (or more) feature sets is done after the individual
extraction paths are followed by the classi�cation, e.g., [67, 68]. A second possibility is
the decision level fusion. As explained above, two di�erent classi�ers �rst extract features
of the two modalities, perform distinct classi�cations, and then afterward, the individual
decisions are fused, e.g., [14]. A combination of both methods is also possible.

Further and more detailled information about data fusion can be found in [43, 2, 42,
69, 70].

Before data fusion can be performed, an accurate classi�er or feature extractor should
be selected. The following paragraph brie�y introduces deep learning methods for com-
puter vision and natural language processing tasks.

2.3 Deep Learning

The (human) brain is still a mysterious but fascinating organ. It automatically controls
basal functions like breathing or the heartbeat [71]. While reading this dissertation,
the brain simultaneously comprehends the text and creates consciousness. No wonder
the (human) brain inspires scientists across the world. They are eager to learn from
it and create digital micro-structures [72] which try to understand this organ. A goal
of cognitive science is to "simulate" cognitive functions with algorithmic processes, e.g.,
the work of [73]. Computer scientists working on classi�cation problems are trying to
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approximate the learning mechanism of the brain to increase the accuracy and �exibility
of their models�which recalled arti�cial neural networks.
An axiom of neural networks has remained the same: learning from experience. Ex-

perience is gained by showing a model training samples x and minimizing the error to
the target y. Often, the error is backpropagated [74], and a set of weights w is altered.
The experience of the model is stored in weight matrices which are called hidden units.
Over the last decades, the number of hidden units increased�the models became deeper
and larger [21].

2.3.1 Convolutional Neural Networks

In the 1990s, the feature extractors of a classi�cation task were often handcrafted and
very task-speci�c. Therefore, the success of such a feature extractor was often dependent
on the person's skill for creating it [75]. [76] propose the Convolutional Neural Network
(CNN) architecture which has major bene�ts such as sparse interactions, parameter
sharing, and equivalent representations [21]. A CNN can take size-normalized images
instead of handcrafted features for classi�cation. Via convolution and pooling layers,
it can deal with data that may be distorted or irregular (e.g., handwritten numbers or
letters). CNNs are e�cient to train and are memory friendly [21]. The following sections
discuss CNNs and other neural architectures in greater detail.
The basic CNN architecture has been constantly improved. For example, [77] increased

the depth of a CNN by adding more convolutional layers. To achieve this, they decreased
the �lter size in all layers. This was done in order to tackle the demanding computational
e�ort of the deep VGG models while at the same time making the model even deeper
and wider, [78] which led to the invention of the Inception architecture: instead of only
using one kernel size within a convolutional layer, it is possible to apply varying �lter
sizes at once to the input. In a so-called Inception-module, the convolutional layers with
di�erent �lter sizes and max-pooling are concentrated. The output of a module to a
subsequent layer is concatenated. In order to reduce computational complexity, the �nal
inception module has a downsampling component to reduce the dimensionality of the
input. By adding skip-connections before convolutional layers, [79, 80] the potential is
there to build a very deep residual network and achieve state-of-the-art performance at
the ImageNet classi�cation task [81] with a smaller complexity than a VGG network.
In (urban) remote sensing, CNNs are nowadays a standard tool for image classi�cation

[82], building detection using high-resolution Google images [83], and locale climate zone
classi�cation using Sentinel-2 images [68]. For this reason, it also applied in this work
to classify the obtained remote sensing images for building function classi�cation (cf.
sections 6.1).

2.3.2 Long Short-Term Memory, Transformers, and Attention

For NLP tasks, a di�erent inventory of deep learning models is available. One of the
crucial challenges in NLP is long-term dependencies [84, 21]. Speci�cally, it is an infor-
mation unit that is needed for a decision, but this unit is located way back in time. The
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Recurrent Neural Network (RNN) attempts to resolve this complication with an addi-
tional loop to feed information back to the input layer. The assistance from the "past"
uses the network to memorize such long-term dependencies [73]. Basic RNNs, however,
have di�culties learning longer sequences [84]. For this reason, [85] introduced the Long
short-term Memory (LSTM) architecture. An LSTM can learn long-term dependencies
better than regular recurrent networks by constantly modifying a cell state using gates.
Such gates decide if the information is important for the current state. In sequence-to-
sequence tasks, like translation tasks where long-term dependencies are natural, LSTMs
can show their utility.
[86], for example, used two LSTM networks in an encoder-decoder setting [87] to

translate English-French sentence pairs. The LSTM encoder encodes the sequence (of
arbitrary length) into a �xed-length context vector c and the LSTM decoder decodes c
into the translated text sequence.
The mapping of the information of a short sentence into a �xed vector representation

works well. However, if the sentence length increase, the encoder might have trouble
pressing all of the information into a �xed-length vector�the performance of encoders-
decoders decrease when the sentence length increase [88]. [89] proposed a mechanism to
overcome this issue. Instead of encoding the whole input sequence, it divides it into a
sequence of context vectors for every word. The clue: the decoder focuses only on the
vectors where helpful information is suspected to predict (or translate) the desired target
word. The model knows where to focus by a weighting mechanism that scores how well
the input and output agree. This method is widely known under the name Attention.
By applying Attention, the performance in translation tasks with longer input sequences
increased [89].
The development of Attention led to the advent of Transformer models [90]. A basic

Transformer is also an encoder-decoder architecture. However, the recurrent loops are
canceled, and the input sequence is presented at once instead of sequentially. For every
input word, an embedding is created. Due to the omission of the sequential input, position
information of single words is lost. Therefore, the words are embedded, and the position
encoding is calculated to preserve information about the word order. During training,
the decoder part is additionally fed with the entire target sequence that �ows next to
the received encoder input. Then, the output is transferred into word probabilities and
the desired output sequence. Finally, the loss function evaluates the outcome.
The attention mechanism [90] used is called self-attention [91]. The main di�erence

is that self-attention is not bridging the encoder and decoder. It is located within the
encoder or decoder layer and relates all sequence words to each other. In [90], the
self-attention is stacked in so-called multi-head attention layers. Furthermore, [90, p. 7]
claims that "[n]ot only do individual attention heads learn to perform di�erent tasks,
many appear to exhibit behavior related to the syntactic and semantic structure of the
sentences."
The Transformer showed superior performance, e.g., in machine translation tasks, over

RNN-based encoder-decoder models, and it was faster to train [90]. For classi�cation
purposes or language modeling, the decoder part can be left out, e.g., like in the famous
language model BERT [92] that will be introduced in section 2.5.4.
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For a more exhaustive history of deep learning, [21, 23, 22] provide further reading
material. The following section discusses the rather unusual �eld of natural language
processing in the remote sensing community. A well-arranged overview of text prepro-
cessing and representation is given.

2.4 Natural Language Processing in a Nutshell

The oldest human writing (discovered so far) has been found in Egypt and Mesopotamia
dating back over 5,000 years [93]. Nowadays, humanity can type digital characters via
a keyboard or even on a smartphone display. Writing in the digital age has become a
common way of communication. We can chat with our friends or family, answer e-mails,
or post comments on Twitter. In short, written texts have been a traditional way of
information for millennia. In the digital age, many books, texts, invoices, and other
documents are digitized or will be digitized. The vast amount of text data is interesting
for commercial and scienti�c purposes who wish to extract information gaining insights
and knowledge of the world.
Natural Language Processing investigates methods to transfer written text into a

machine-readable format. Simultaneously, it should preserve as much information about
syntactical and semantical features such that an interpretation of the data is possible [94].
The following section gives a brief overview of foundational techniques and algorithms
applied in the �eld of natural language processing.

2.4.1 Tokens and n-grams

Some terms should be known before text preprocessing and algorithms can be understood
properly. One term which appears frequently in NLP literature is token. A token is a
discrete entity of a text corpus [21]. Normally, a token is a string of single letters that
form a meaning-carrying processable unit, e.g., a word [95]. A sequence of tokens is
called an n-gram. If a sequence contains one single token, it is referred to as uni-gram
(bi-gram, tri-gram, and so on) [21]. The following example sentence (a) is a tri-gram:

(a) THE PENGUIN SHOUTS

A di�erent category of n-grams are character n-grams. In contrast to the regular version,
character n-grams are composed of tokens of a single character. Character bi-grams of
the word penguin, for example, would be represented as tuples of letters (cf. (b))

(b) PE EN NG GU UI IN

For more information, please consider [21, pp. 448-450] and [95, pp. 22-23]. Both token
representations are used in the algorithms introduced in the upcoming paragraphs below.

2.4.2 Text Preprocessing

Imagine texts written by a professional author like a journalist who works for a high-
ranked magazine, in comparison to random tweets, it is clear that sentences and writing
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styles can di�er fundamentally. While most magazine articles have a clear structure,
spell-checking, and editing, tweets are often drafted in a more unorthodox way. The
authors of tweets mostly share web URLs leading to entertaining videos in the depths of
the www, posting their latest holiday pictures, or uttering an opinion about whatsoever.
Therefore, the unusual spelling of words or the creative way of using written language
enriched with emojis is often utilized to emphasize the sentiment of the post or (maybe)
the video's hilariousness.
While this utilization of text serves the user's expressiveness, it hinders the NLP sci-

entist from analyzing the text straightforwardly. Of course, even formally written text
would need to be preprocessed before a NLP task. The focus on preprocessing twitter
text messages is temporarily redirected towards text preprocessing in general because
there are several practices that are applicable to standard texts and informal texts.
One of the �rst steps in text preprocessing is often the lower-casing of all the words in

a whitespace-separated text corpus [95]. The main reason for this step is that sometimes
a word is written at the beginning of a sentence starting with a capital letter, while the
same word in the middle of a sentence is spelled lower-cased.

(c) While the woman walked down the street, a man sneezed loudly.

(d) The woman walked down the street while a man sneezed loudly.

For a human reader the word While in sentence (c) and while in sentence (d) stay the
same. However, a "machine reader" would detect two di�erent words, and later, during
the learning phase, it has to learn them: a word with a capital �rst letter and another
word with a small �rst letter. In order to troubleshoot this, the �rst preprocessing would
be the lower-casing of every single word in a text corpus. This step is even more essential
using social media text. Consider the spelling of the following sentences (they could be
from tweets):

(e) While the woman walked down the street, a man sneezed so LOUD.

Sentence (e) shows the informal spelling to stress the noisy act. The next example depicts
even more irregular spelling:

(f) Tonight we will have the craziest PaRtY ever!

The quite unusual casing of the word presumably attempts to bring to attention that
something crazy will happen. Lower-casing the corpus will help to limit the vocabulary
and prevent storing or learning words with the same meaning. It should be mentioned at
this point that lower-casing the corpus could cost some subtle semantic di�erences, for
example, between apple and Apple (fruit vs. company). In this sense, lower-casing is used
to concur with standard NLP procedures and to reduce the amount of the vocabulary of
the highly irregular social media text, e.g., sentence (f).
The second (language-independent) preprocessing step is the removal of punctuation.

In most of NLP classi�cation tasks, punctuation is removed since it rarely contributes to
a classi�cation task because it increases the complexity of a text sequence and further
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expands the vocabulary with useless tokens. In this dissertation, all punctuation is
removed except for hyphens and apostrophes to preserve features like wasn't or high-tech
[95].
The third standard preprocessing step is the removal of so-called stop-words. Stop-

words are tokens like I, and, or while which have little or no meaning and occurring
in a high frequency in a corpus [95]. The vast number of such words within a corpus
could lead to a narrow focus of the classi�cation algorithm on such words, resulting in a
decreased classi�cation performance. However, the choice of a researcher to remove stop-
words or not depends highly on the task and algorithm. For example, [96] found out that
the removal of high-frequency words was counterproductive while performing a statistical
machine translation task. While traditional information retrieval methods like TF-IDF
operating on word frequencies, the deletion of stop-words might be crucial. However,
concerning geospatial natural language processing, the removal of stop-words could be
disadvantageous. Phrases like I'm at ... could be helpful to identify targets located in
an urban context. Furthermore, word embedding algorithms or language models take
the context of a word, i.e., surrounding words, into account. That creates a deeper
understanding of the language structure [97].

2.4.3 Tokenization

A crucial preprocessing step is called tokenization. It describes a procedure where tokens
are selected and split by a separator, e.g., white space or a set of rules [95]. For example,
punctuation should be separated from words and letters and treated as individual tokens
(cf. example sentences (g) and (h)).

(g) The penguin, a lion, and a zebra walked out of the zoo.

(h) [ "The", "penguin", "a", "lion", ",", "and", "a", "zebra", "walked", "out", "of",
"the", "zoo", "." ]

Of course, the examples above are relatively easy to process. However, sentences often
include contractions (don't), possesions (it's), or hyphenations (machine-readable).

(i) The penguin-style cup didn't belong to him.

(j) [ "The", "penguin", "-", "style", "cup", "didn", "'", "t", "belong", "to", "him",
"." ]

Example sentences (i) and (j) show how di�cult tokenization is. Dates, prices, or names
like Technische Universität München are further complications. The tokenization via
punctuation would lead to information loss. Hyphenations would be separated, and the
hyphen itself would become a (meaningless) token. The meaning of contractions and
possessions would also be dropped: the word, apostrophe, and the following abbreviated
word like not would be completely torn apart (cf. (j)). Much more suitable tokenization
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would take additional information into account. For example, the popular Python pack-
age NLTK11,12 [98] includes the word_tokenize13 tokenizer. It is based on the algorithm
of [99] that is able to split sentences. Furthermore, it utilizes information from the Penn
Treebank [100]14 to split words (including apostrophes), punctuation, or even emojis into
a list of tokens.

(k) [ "The", "penguin-style", "cup", "did", "n't", "belong", "to", "him", "." ]

The tokenized sentence (k) di�ers clearly from (j). The hyphenated word is preserved as
well as the contraction of did. The word is split into two parts: did and n't. The word did
is preserved and also the negation as a separate token. This word description is bene�cial
if words are later supposed to be represented in a vector form (cf. paragraph 2.5.3). An
additional aspect of word_tokenize is that it can be applied to text sequences written
in several di�erent languages (cf. footnote 13). Hence, a basic multilingual applicability
is given.
Although the tokenizer mentioned above can deal with di�erent languages, its ap-

plication in a highly multilingual text environment is complex. For every (supported)
language, the tokenizer must be initialized with the corresponding language. If a lan-
guage is not supported, the tokenizer cannot be used, or the tokenization performance
is poor. For Asian languages like Japanese or Chinese, it cannot be applied at all since
only languages are supported where words are usually separated by whitespace. Chinese
or Japanese words are not separated by whitespace. Therefore, a very di�erent approach
must be used.
Models like BERT (cf. [92] and paragraph 2.5.4), on the other hand, require special

tokenization steps. For example, it expects special input tokens before training which are
not provided by standard tokenization. Furthermore, the multilingual variant15 supports
104 languages (including Chinese simpli�ed, Chinese traditional, Japanese, and Korean).
A multilingual setting calls for a solution that includes methods that can manage Asian
languages as well. TensorFlow Hub16 provides not only BERT models but also prepro-
cessing models that prepare the text data to meet the BERT data representation and
at the same time cope with multilingual texts. Such models are based on WordPiece
models, which can break the text into single tokens with whitespace and/or for Asian
characters split after Unicode.
Further (multilingual) tokenizers are, for example, SentencePiece that operates at a

subword level and can handle every language after appropriate training [101] andMoses17

which is a universal suite for multilingual natural language processing [102].

11Natural Language Processing Toolkit (NLTK): https://www.nltk.org [8.10.2021, 17:12]
12https://www.nltk.org/api/nltk.tokenize.html [8.10.2021, 17:12]
13https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.word_tokenize [8.10.2021, 17:13]
14https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.treebank.

TreebankWordTokenizer [8.10.2021, 17:15]
15https://github.com/google-research/bert/blob/master/multilingual.md [3.11.2021, 11:32]
16https://tfhub.dev/google/collections/bert/1 [3.11.2021, 11:41]
17http://www.statmt.org/moses/ [3.11.2021, 11:54]
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2.5 Text Sequence Representations

Since computers cannot read a text like humans, every text sequence must be transformed
into a machine-readable representation. This procedure is referred to as vectorization18,19.
During vectorization, characters or words are transferred into numerical feature vectors.
Today, various algorithms with di�erent characteristics exist to perform this operation.
In the section below, a collection of basic approaches is introduced to give an overview
of how this task can be solved.

2.5.1 One-hot-encoding

A simple machine-readable text sequence representation is one-hot-encoding. The vo-
cabulary is represented in a d×w matrix where di is a word sequence, e.g., a tweet, and
n is the total vocabulary size. The sequence is encoded as a n-sized vector with zeros
and ones. Each word w that occurs in sequence di is set to one. All other terms remain
zero. For example, the text sequence d1 = the weather is nice or d2 =the zoo is crowded
would be encoded as: However, one-hot-encoding cannot preserve information like the

zoo the nice train weather church sky is crowded

0 1 1 0 1 0 0 1 0

1 1 0 0 1 0 0 1 1

Table 2.1: Simpli�ed one-hot text sequence, e.g., tweet, representation.

word order or the content of the document. Only the occurrence of a word can be stored.
The following paragraph describes an algorithm that takes word frequencies into account
to produce a term weighting score.

2.5.2 Term Frequency-Inverse Document Frequency

In information retrieval (IR) or data mining tasks, the categorization or classi�cation
of documents into speci�c topics is often needed [103]. For example, if the task is to
�nd out which document of a set of documents is about soccer, a person would read or
at least skim the documents looking out for clues like regularly appearing terms such
as goalkeeper, foot, referee, goal, et cetera. Luckily, scientists provided algorithms to
solve this task more e�ciently since it would be cumbersome for a person to perform for
thousands of documents.
TF-IDF, for example, is a classic IR algorithm that performs the task above. It is

based on the work of [104] and categorizes documents by occurring words within the

18https://scikit-learn.org/stable/modules/feature_extraction.html#

the-bag-of-words-representation [3.11.2021, 8:32]
19https://developers.google.com/machine-learning/guides/text-classification/step-3

[4.11.2021, 9:40]
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documents. The algorithm takes the word count and the count of documents where the
word appears into account. However, as [103] points out: it is not necessarily true that
words that frequently appear automatically contribute to the document categorization.
On the contrary, very high frequency words like and or the, usually do not tell us anything
about the document itself and are usually �ltered out before starting an IR task (for more
details about stop-words please consider paragraph 2.4.2). On the other hand, are rare
words inevitable hints for a document topic? [103] give a further example about word
frequencies which takes aims at the opposite case. They draw attention to words like
"albeit" and "notwithstanding" (p. 8). Those words are seldom, but they also do not
help to categorize the document. Therefore, "[t]he di�erence between rare words that
tell us something and those that do not have to do with the concentration of the useful
words in just a few documents." [103, p. 8]. To take up the soccer example from above,
the speci�c term o�side would tell us more about a document containing football-related
text sequences.
To measure the frequency of speci�c terms like o�side, the �rst step of the TF-IDF

algorithm is the computation of the term frequency TF . If D documents are available,
then TF of word i in document j is calculated in the following way20:

TFij =
fij

maxkfkj
(2.1)

The frequency fij is then normalized by the maximum frequency of any term in the
document. The word that exists most in j gets a score of 1 and all other words scores are
fractions. After this step, the TF counts of the documents are stored in a D×vocabulary
matrix. Ths form of vocabulary description is a so-called Bag-of-Words (BoW) represen-
tation.
The computation of the inverse document frequency IDF score is performed as follows:

IDFi = log2(
D

di
) (2.2)

Word i can be found n times in all of the documents D. To prevent divsion through zero
if an out-of-vocabulary word occurs, a 1 can be added the numerator and denominator21.
Finally, TF and IDF can be multiplied to receive the �nal TF-IDF score of a word.

TF -IDF = TFij × IDFi (2.3)

The higher the score of a word is, the more important is it to de�ne a topic. Hence, TF-
IDF is scoring, i.e., weighting words after their importance for each document [103, 95].If
the latter steps are employed on a text corpus, the words can be vectorized and are
machine-readable. Now, the desired NLP task, e.g., text classi�cation, can be performed.
As mentioned earlier, TF-IDF only takes the word importance within a document into

account, which might be good to get a general overview of a document's most important

20All listed TF-IDF equations were taken from [103, p. 8].
21https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting

[12.11.2021, 14:54]
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terms or is helpful by removing stop-words. However, a word's context or semantic
attributes are not considered, occurrences of Ouf-of-Vocabulary (OOV) words cannot be
handled, and possible bene�cial information is not used or is lost. 60 years ago, [105]
comments:

Even in the study of vocabulary 2 when ordered series of words are pre-
sented, such as kinship terms, parts of the body, terms of orientation in time
and space, numerals, calendrical terms, names of social units, proper names
of persons as well as of places,3 it is essential that they be separately and sev-
erally attested in contexts of situation. It is, however, necessary to present
them also in their commonest collocations. (p. 11)

He further argues that "[t]he placing of a text as a constituent in a context of situation
contributes to the statement of meaning since situations are set up to recognize use.
As Wittgenstein says, 'the meaning of words lies in their use.'4" [105, p. 11]. For this
reason, algorithms have been developed which utilize the word's context, semantic, and
syntactic information to generate a continuous feature vector of a word. In the subsequent
paragraph, such techniques are introduced and discussed.

2.5.3 Word Vector Representations

With the quotation from above in mind, [105] continues with his famous sentence "You
shall know a word by the company it keeps!" [105, p. 11]. What does this statement
mean within the context of NLP tasks? By looking at the TF-IDF algorithm, it is noted
that words are considered in isolation and are merely counted without taking context,
i.e., neighboring words into account. As mentioned above, syntactical and semantical
features of a word are lost.
In the early 1990s, [97, 106] pointed out that many NLP tasks, like word sense dis-

ambiguation22, require semantics of words to be solved. He argues that "[...] the same
content can be expressed with very di�erent words, so that [...] two contexts could have
a similarity measure of 0 although they are very close in meaning." [97, p. 787]. For this
reason, he proposed a system with co-occurrence counts within a context window [97]
and additionally of letter character four-grams [106] to create vector representations of
words. A context of a word can be de�ned as words adjacent next to the word of interest.
Therefore, a context window can be determined as an n-sized range of tokens before and
after the token of interest. For example, a context window size of 2 of the word zoo in
example sentence (l) would comprise the words {in, the} and {was, very}.

(l) The elephant we saw in the zoo was very large.

The key message of [97] is that the context of a word is taken into account to derive
semantic meaning. If a co-occurrence matrix of words is available, the cosine distance
for every word within the context window can be calculated. The normalized average
of such word vectors could be described as the approximated semantic content of a

22E.g., umfahren vs. umfahren (German; avoid an obstacle vs. hit the obstacle)
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word. [97, p. 787] further points out, "[i]f at least some of the words in the context are
frequently used to describe what the current context is about then their vectors will pull
the centroid toward the direction of that topic or content.". He claims that the proposed
context vectors are more reliable than the BoW representation [97].
In his follow-up work, [106] proposed a method to calculate word vectors for single

words. This di�ers from the approach above. A word vector was created by the cosine
distance of the co-occurrence count of an adjacent word located in the context. To
calculate a word vector of a single word, he used character four-grams. The word
football, for instance, would be sliced into the following four-grams:

(m) FOOT OOTB OTBA TBAL BALL

Instead of utilizing a word co-occurrence matrix, he created a four-gram collocation
matrix. This matrix holds the counts of occurrences of a four-gram i to the left of four-
gram j. That count re�ected the context of the two four-grams being found. Then,
vector representations of the four-grams are created by Single Value Decomposition
(SVD) [95, e.g., pp. 407-409] to re�ect each four-gram count vector as a 97 dimensional
real-valued vector. Composing a word vector by its context, context vectors must �rst
be calculated for all positions the word appears in the text. All four-gram vectors are
summed within a pre-de�ned window centered around the word of interest. Finally, the
context vectors are summed and normalized. The result is the word vector of the word of
interest [106]. Brie�y, all contexts of word four-grams within a context window are used
to create a vector representation of a word. With his work, [106] takes up the arguments
of [105] and contributes signi�cantly (amongst others) to word vector representations
that preserve meaning.

2.5.4 Word Embeddings and Language Models

Word embeddings established a widely accepted technique to represent text in machine
learning tasks [107, 94, 3, 108, 109]. Word embeddings provide a n-dimensional vector
space representation of words that can preserve semantic and syntactic features. It is
assumed that a word is described by the co-occurrence of adjacent context words. Often,
large text corpora like Wikipedia or CommonCrawl are used to train such embeddings
in an unsupervised setting. In a broad spectrum of application areas in natural language
processing, e.g., word analogy [3] and similarity [110] task, or Named Entity Recognition
(NER) [111], word embedding algorithms achieved good results. In the following para-
graphs, important milestones of word embedding algorithms and language modeling are
brie�y introduced.
Word2vec was developed by [3] and is also a neural algorithm like [107]. It can be

trained on much larger datasets and decrease training time because the hidden layer was
omitted, leading to reduced computational complexity. The main innovations are the
skip-gram and continuous bag of word (CBOW) models (cf. �gure 2.3). While the skip-
gram model predicts the context of a word within a context window, the CBOW model
predicts the word by a given context. The algorithm is able to capture syntactic and
semantic similarities of the training words. For example, the simple vector arithmetic
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Figure 2.3: Continuous bag of word (CBOW) and skip-gram model. Figure inspired by �gure
1 in [3, p. 5].

paris−france+italy would result in an approximation of the word vector of rome [112].
Word2vec allowed the e�cient training of large text corpora and created word vectors
that preserve the syntactic and semantic meaning of words.
The embedding algorithm GloVe [108] used a di�erent method the generate word vec-

tors. GloVe is the acronym for Global Vectors, and in contrast to word2vec, GloVe utilizes
a word co-occurrence matrix in addition to a local context window. GloVe outperformed
word2vec various tasks, e.g., word similarity or named entity recognition (NER).
Both word2vec and GloVe cannot deal with out-vocabulary-words (OOV). The fast-

Text algorithm [109], on the other hand, can generate word vectors by the sum of its
n-gram-representations. By using subword information, it can approximate word vectors
of words that were not in the training data and long word compositions23 [109]. Not only
the representations of compositions are better, but also the embedding of morphologi-
cally rich languages [113], e.g., German, Hebrew, or Arabic. Hence, fastText could be
seen as an improved development of word2vec. Additionally, [114] trained word vectors
for 157 languages using Wikipedia and CommonCrawl24.
There are several ways to use word vectors in combination with a deep neural network.

Before the vectors can be fed into the network, the text sequences must be vectorized (cf.
paragraph 2.5). Instead of one-hot encoding or TF-IDF, every token (i.e., word, number,
punctuation, etc.) of the complete text corpus is indexed by an integer and stored into
a dictionary D. The dictionary can be seen as a vocabulary look-up table where every
unique token is indexed by an integer. Text sequences like tweets can now be vectorized
by encoding the tokens into the integer-indexed representation.
Currently, two on-line options are available, which can be employed directly to the

classi�cation pipeline. The �rst option comprises the creation of a completely new word
embedding by training a randomly initialized embedding weight matrix25. The second
option is the import of pretrained word vectors into the neural network environment as

23e.g., Donaudampfschi�fahrtsgesellschaft
24https://fasttext.cc/docs/en/crawl-vectors.html [12.12.2021, 12:30]
25https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding [2.11.2021, 10:54]
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I am at a friend‘s house right now
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Figure 2.4: Vectorizing text using a word look-up table to integer-index sequences.

embedding weights. I.e., instead of training a completely new embedding, the already
pre-trained word vectors are loaded and initialized. To reduce hardware resource con-
sumption, only word vectors of tokens that are available in D are considered for the
embedding matrix (cf. �gure 2.4). The embedding layer is then initialized with the em-
bedding matrix assembled with the token index and the word vectors of the tokens found
in the pre-trained embedding. With the above integer-indexed sequences, the pre-trained
word vectors can be loaded and word vector sequences compiled and used as input for
classi�cation. The third variant of using pre-trained embeddings is the creation of the
word vector sequences o�-line, i.e., independently of the classi�cation pipeline. That
means that the word vector sequences are generated and stored separately (e.g., in a
text �le). By using separately stored vector sequences, a look-up table is not necessary.
However, it includes additional steps for generating, storing, and re-use.

The drawback of the word embedding models above is that only one word vector per
word exists. However, the meaning of a word can change if a di�erent context is given.
In German, for example, the word umfahren has di�erent meanings that cannot be
represented by one single vector. Therefore, language models like ELMo [115], ULMFit
[116] or BERT [92] can generate word vectors that are context-dependent. Speci�cally,
the word vector of a word di�ers by its context.
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Bidirectional Encoder Representations from Transformers (BERT) is based on the
Transformer architecture [90] and was developed by Google researchers [92]. The encoder
processes the entire text input sequence at once, allowing for the learning of the complete
context of a word. The decoder part of predicts the desired text outcome. Another crucial
di�erence between BERT and the above-discussed algorithms is how text sequences are
presented to the model. Usually, a sequence with n words is fed into an algorithm, and the
subsequent n+1 word must be predicted. That is identi�ed as the bottleneck of context
learning. In contrast, BERT presents an input sequence bidirectional, i.e., the words are
not presented sequentially, but the whole sequence is presented at once. However, since
this procedure would lead to the fact that the model would see the target words, the
15% of the words of sequences are masked (the authors refer to that as masked LM ) [92].
With the generated contextualized word representations, BERT led to a state-of-the-art
performance in tasks like question answering [117, SQuAD], or language understanding
[118, GLUE]. Next to contextualized word vectors for each token, BERT models are also
able to produce contextualized sentence representations. This is achieved by placing a
particular token, the CLS token, as the �rst token of a sequence. [92, p. 4174] stressing
that "The �nal hidden state corresponding to this token is used as the aggregate sequence
representation for classi�cation tasks.".
Google actually applying BERT in its own famous web search26. However, it was also

�netuned for various NLP downstream tasks. These models are called BERT experts. For
example, a version that is �netuned for bio-medical language processing [119] or German
named entity recognition (NER) tasks [120]. For more technical details please consider
the paper of [92], the Google blog entries in the foototes27, or the review paper of [121].
However, since the original BERT models are very large, the computational resources

and the resulting energy consumption to employ such models is high [122]. Therefore,
some "smaller" variants of BERT are available. MobileBERT [123], for example, is
BERT variant that is optimized for usage on mobile devices. It is smaller and faster
but achieves fair results similar to the original BERT model. In this work, DistilBERT
is used [122]. This BERT version is based on the student-teacher principle, where the
student is trained to "mimic" the teacher's actions. DistilBERT achieves 97% of the
original BERTs performance.
For the sake of completeness, several more large neural language models are available.

For example, GPT-2 [124], XLNet [125], the parallelized training of very large language
models�MegatronLM [126], or T5 [127].

2.6 Summary

In this chapter, the fundamentals of the research area and methods have been brie�y
introduced. Urban remote sensing seeks answers to questions (inter alia) concerning

26https://www.blog.google/products/search/search-language-understanding-bert/ [6.12.2021,
12:32]

27https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html [6.12.2021,
13:37]
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urban sustainability by using remote sensing methods. The information collected from
the sensors is processed with deep learning computer vision models like VGG and data
fusion to yield a maximum information output. Additionally, as sensors from the ground,
social media data can be used to add more features distilled by NLP techniques such as
word embeddings or large language models like BERT. In the next section, an overview
of related work is given to contextualize the current work.
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In this section, trends and recent research related to this thesis are introduced. At
�rst, urban remote sensing work is discussed, followed by discussing Twitter data within
the context of geospatial research. Next, data fusion focussing on social media data is
shown. The section is then concluded by introducing deep learning and natural language
processing research.

3.1 Urban land-use and Deep Learning

Land-use is a classic task in the remote sensing community. The development in this area
started by using handcrafted features and the application of decision trees [15]. Soon
afterward, upcoming deep learning methods like convolutional neural networks started
being used as well, and standard machine learning practices, like making use of ImageNet
[81] weights have been adopted [128] too. It turned out that deep learning methods can
yield higher land-cover prediction accuracies. The utilized a VGG16 network [77] were
able to achieve good accuracies classifying agricultural areas, forests, and airports. The
features of these classes seem to be general. [129] o�ers a morphological class scheme
which includes next to vegetation-related classes like dense trees, also human-made classes
such as high-rise or low-rise buildings. [130] and [131] prove that such classi�cation
schemes can be classi�ed well with multi-temporal remote sensing information using
deep learning and data fusion.
However, urban land-use classi�cation is more complicated. In the past years whether

deep learning-driven approaches can be applied to predict land-use by multispectral im-
agery. For example, the materials of the di�erent building functions could be similar,
which makes it hard to di�erentiate between functions [15, 16]. Additionally, classes
could overlap, which makes it even more di�cult to discriminate land-use classes [15].
However, similar di�culties are reported when separating high, mid, or low-density ur-
ban environments using high-resolution optical imagery [11]. It is reported that some
land-use classes, like forests, are categorized well. Other high-level features such as "high
density urban fabric" or "medium density urban fabric" su�er from lower accuracies. A
possible explanation is owed the fact of highly subjective and complex to standardize
land-use classes [11]. Classes like "high density urban fabric" or "medium density urban
fabric" are blending into each other such that a clear border is hard to determine [11].
By using smaller patch sizes, e.g., 50m, lower classi�cation results are documented. The
authors suggest that smaller patch sizes might not induce a rich feature space [11]. On
the other hand, information of smaller patch sizes could lead to enhanced classi�cation
results in urban land-cover classes, e.g., distinguishing building functions. Unfortunately,
the authors are not providing detailed class-wise results on this matter even though they
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use high-resolution Google Maps imagery. [132] point out that for object-level classi�ca-
tion, the resolution of many remote sensors is too coarse. A comparison of Quickbird and
freely accessible Google Maps images reveal no signi�cant di�erences in land-use classi�-
cation accuracy. Google Maps imagery showed promising results in land-use/land-cover
tasks [132]. It is pointed out in the literature that indeed high-resolution from Google
Maps is a valuable resource for classifying land-use even at individual object level [133].
By taking the issues mentioned before into account, it might be bene�cial to add

additional data sources to increase the classi�cation performance. However, the strength
of remote sensing images is more located to identify physical layout on the ground [133].
It is noted that remote sensing images are might not enough to identify the detailed
functionality of ground objects, and the augmentation of additional data is recommended
[133] like di�erent features like building height or �oor area to classify land-use classes
such as "o�ce", "civic", "industrial", or "transportation" [15]. It turns out that the
class "o�ce" is often confused with "civic" and "industrial" [15]. Even though di�erent
features are used, it seems that classes with a similar urban context like "o�ce" or "civic"
are misclassi�ed because they might be visual to similar [15].
The issues mentioned before are a sign of improving the land-use classi�cation pro-

cesses with additional data from the ground. Data acquired from in situ, i.e., on-site,
sensors could deliver features related to the area of interest but possibly not detectable
to spaceborne sensors. Therefore, the following section discusses the utilization of aux-
iliary data such as OSM or social media data within geospatial research and land-use
classi�cation.

3.2 Twitter and Geospatial Research

[17] proposed that citizens could act as an implicit sensor to detect urban phenomena.
So to say, as an in situ sensor. OSM is a perfect example of the citizen sensor idea.
It is created by a large mapping community to map the entire world since the spirit
of OSM is that volunteers explore and map their neighborhoods. Even though OSM is
criticized for its lack of completeness [134], all of this user-generated content is accessible
for free, and research can be conducted in areas where no o�cial data is available and at
the same time mitigate research redundancy. Also, the in remote sensing rather unusual
�eld of natural language processing can be utilized for solving geospatial research tasks.
[135], for example, combined NLP and remote sensing images. The authors introduced
a visual answering system based on a RNN (cf. section 2.3) and a ResNet50 (cf. section
2.3) trained with Sentinel-2 imagery. The features of the two modalities have been fused
point-wise so that the model could reply to questions like "Is there a rural area?".
[136] found, for example, that georeferenced tweets can sketch administrative bound-

aries or blocks within dense urban areas visible or draw road networks. These are why
georeferenced Twitter data is popular and widely used in urban research projects. The
nature of Twitter data, however, is di�erent than OSM. OSM data is maintained to cre-
ate Volunteered Geographic Information (VGI). Twitter data, on the other hand, is not
a priori created for geospatial research. Even so, new content in various forms is added
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to the microblogging platform daily. Due to the easy-to-access data and the rich, and
sometimes georeferenced, metadata, Twitter data o�ers a wide range of research topics.
Therefore, Twitter data is not only interesting for NLP tasks like emotion detection and
sarcasm prediction via emojis [137] but also for geospatial research as well. While this
dissertation was being written, there was a worldwide pandemic caused by the SARS-
CoV-2 virus (COVID-19, "Corona"). For a deeper understanding of the impact of such
exceptional circumstances, [138] used a multilingual Twitter dataset to analyze the (dig-
ital) sentiment of European citizens during lockdown measures. Also, an exploration on
the e�ects of anti-corona measures attempting to mitigate the virus was studied using
inter alia, commuting data, and georeferenced tweets from Germany [139].
Besides the pandemic, linguistic features have been employed to conduct sentiment

analysis and derive demographic characteristics of georeferenced U.S. tweets [140, 19],
competitor analysis in the pizza industry [141], or event detection [142]. The combination
with NLP techniques, e.g., word embeddings, and deep learning architectures, like CNNs,
allows tackling complicated classi�cation tasks like the identi�cation of election-related
tweets [143, 29].
Previous work shows that georeferenced Twitter data can also be utilized to investigate

intra-urban characteristics. [144] used geo-located Twitter and Flickr1 data to investigate
how public parks in New York City are used and visited. [145] used tweets and derived
TF-IDF scores from tagging OpenStreetMap objects in Great Britain, and [146] discussed
the social relationship and mobility patterns by georeferenced Twitter data. Also, within
the context of transportation, [147] mined Madrid-located tweets and monitored them
in regard to complaints about the local subway system and mapped them to the spatial
occurrence. The sentiment was detected by �ne-tuning the multilingual variant of BERT
with Spanish tweets.
Using linguistic features and patterns has also been applied in demographic research

tasks. Also, for land-use classi�cation, such features have been extracted. [148] employed
tweets and Flickr images for an in-depth land-use classi�cation in New York City and
San Francisco. They made use of Latent Dirichlet Allocation (LDA) [149] to extract
text features that were associated with Foursquare2 venues. For the building function
classi�cation task, previous work utilized temporal-spatial analysis in combination with
deep learning methods in order to extract settlement information [150]. Furthermore, [38]
found di�erent word clusters for commercial and residential tweets. For classi�cation, vec-
torized word representations derived from word embedding algorithms, such as fastText
[109], have been used to train a CNN. The deep learning model showed better perfor-
mance than a Naïve Bayes and TF-IDF baseline. The study implies that deep learning
and word embedding features are useful for building function classi�cation. However,
the study area was limited, and only one language was considered. In a subsequent
study, [39] used tweet sentence vectors and neural network architecture to classify �ve
classes of building functions at an individual building level in Berlin. Other than before,
English was not the language of interest. Instead, a pretrained German fastText word

1https://www.flickr.com/ [2.7.2021, 18:32]
2https://foursquare.com/ [2.7.2021, 18:37]
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embedding has been used to create the sentence vectors. The results showed that word
embeddings could be used for individual building function classi�cation. However, the
study area was also limited to the Berlin urban area.

Recently, [20] introduced abstaining for building function classi�cation. They focused
on tackling the issue of class imbalance and how to exclude tweets from the classi�cation
that are not related to a building function. For text representation, they generated
TF-IDF features from Los Angeles tweets posted in 2017 and 2018. The classi�cation
task covered the classes commercial and residential, which were derived from OSM. The
tweets have been assigned to buildings via a nearest neighbor join, and the maximum
distance was limited to 100m.

Their �ndings also support the claim that tweets can contribute to building function
classi�cation in urban areas. Using the abstaining method, they detected tweets where
the content contained information about the building function. On the other hand, if
content directly pointing towards a building function is necessary to classify a building,
or implicit features also enable a successful classi�cation. Furthermore, as pointed out
by the authors, even though the challenge of unrelated tweets was tackled, the potential
of multilingual text and the data fusion remains was not exploited. The study area and
their amount of tweets were limited.

3.3 Multilingual Twitter Analysis and Text Representation

The latter sections extensively discussed the application of Twitter data on geospatial
research tasks like land-use classi�cation. Often, only sparse feature representations of the
text are used, and additionally, text features obtained from a multilingual setting are rare
even though Twitter is a highly multilingual space [35]. However, using tweets in several
languages for classi�cation tasks is not impossible. Some authors, for example, address
multilanguage sentiment analysis based on Twitter text messages in a multilingual setting
[151]. Before discussing the usage of multilingual tweets from a geospatial perspective,
some explanation about multilingual text representation should be shown since working
with multilingual data is challenging.

[152] also produced multilanguage word vectors in 59 languages by estimating projec-
tions of monolingual word vectors into the English vector space. [114] proposed various
pre-trained word vectors in 157 languages trained on Wikipedia dumps and Common-
Crawl. Word vectors for 100 di�erent languages have been trained and preserved, for
example, compositional semantic features of German multi-unit words [153]. The re-
lease of multilingual embedding models and word representation methods encourages to
use of more multilingual text data. However, in a heavy multilingual space like Twit-
ter, every language needs a separate embedding. In a downstream task like building
function classi�cation, a more holistic model covering several languages would be bene-
�cial. Recently, [154] introduced a framework for multilingual sentence embeddings for
93 languages based on zero-shot transfer from English to other languages, even for those
languages with underrepresented training data.
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The latter examples focus on formally written language corpora. Indeed, on social
media platforms such as Twitter, texts are often written in an informal spelling, mixed
language, and (social media-speci�c) slang. For this reason, [155] developed RoVe (Ro-
bust Vectors), which tackles an issue of social media texts, namely typos. However,
multilanguage texts are not taken into account by this approach. [156] used a linear
translation approach [112] to map the word embeddings from one language into another
to classify election-related tweets.
From a more application-oriented perspective, methods like multilingual universal sen-

tence encoder [157] or the multilingual variant of BERT (cf. section 2.5.4) are more ap-
plicable. Because pre-trained models are open-sourced (e.g., via TensorFlow Hub3) and
are easy to integrate into one's own models. For example, as mentioned in paragraph
3.2, sentiment analysis of multilingual tweets from Europe has been used to explore the
tone and emotions of COVID-19 related tweets. [138] used (amongst other models) this
analysis for a multilingual universal sentence encoder that supported 16 languages and
a multilingual variant of BERT. The analysis reveals a measurable change of sentiment
after announcing curfew measures.
Aside from technical aspects, multilingual Twitter data is rarely used in geospatial re-

search. To the best of the author's knowledge, no work has been conducted on building
function classi�cation using multilingual Twitter text messages. Therefore, this disserta-
tion attempts to close this gap.

3.4 Data Fusion with Social Media Data

The fusion of two or more data sources can improve classi�cation results in various
urban remote sensing-related tasks [43, 2, 42]. Fusing data from two remote sensors is
a standard task in remote sensing. For example, [158] feature-fused the outcome of an
RGB image classi�er and a multispectral classi�er. With this method, they were able to
reach high accuracy scores by predicting urban land-use for Hong Kong and Shenzhen
cities at a block level. However, the fusion with fundamentally di�erent data sources is
still challenging.
Nevertheless, research is exploring methods to utilize not only remotely sensed data

but also geospatial data provided crowdsourcing platforms like in the OSM social map-
ping community. Here, the idea of the citizen sensor comes to life (cf. section 2.1).
Scientists use the socially sensed data from OSM and fuse it with Landsat imagery. By
the combination of the two modalities, land-use classi�cation, e.g., for 24 classes, could
be improved [159]. These results encourage the utilization of more user-generated, i.e.,
citizen sensor, data.
Not only data from OSM can be viewed as citizen sensor data. As discussed in sec-

tion 3.2, Twitter data can also be used for geospatial research. The sheer volume and
the possibility to tag local points of interest, or tagging the exact position (however, cf.
section 4.2.1), is a valuable source of knowledge. For example, the combination of so-

3https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3 [9.11.2021,
18:02]
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cial media data from Twitter and data from remote sensing can lead to improvements in
�ood detection [160], �ood maps [161], and damage estimation [162]. Remote sensing and
Twitter data can also be combined to understand socio-spatial contexts, e.g., if informal
settlements have a di�erent social media activity pattern in the megacity Mumbai [163].
Mumbai's urban structures types have been derived by high-resolution HR Quickbird
data. The Twitter activity clusters in informal settlements (in proportion to the popula-
tion density) were not so present, i.e., digital coldspots, as informal settlements. Hence,
the combination of remote sensing and Twitter data deliver insightful information about
the economic divide in megacities [163]. Also, in poverty mapping, Twitter data proved
an attractive additional data source. Merging Twitter metadata and vectorized text with
Nightlight data improved local poverty mapping for Africa [164]. These �ndings indicate
that the combination of remote sensing data and social media data, i.e., citizen sensor
data, is bene�cial for geospatial tasks.

If Twitter data can increase the performance of applications mentioned above, the
bene�ts of a step toward urban remote sensing tasks is evident. Since a large amount of
social media data occurs in large urban areas [136], there might be information hidden
in photos or text messages, which can improve classi�cation results for land-cover or
land-use tasks.

For land-use classi�cation, [14] explored fusion methods of aerial images with street
view images within the framework of a building function classi�cation task. The results
show that decision-level fusion by averaging prediction probabilities achieves the best
classi�cation performance. [62] showed the combination of several data sources for urban
land-use mapping, and Google StreetView images for the ground perspective and Google
Maps aerial images for the remote scene are used in that work. The proposed model can
outperform models using only one data source.

[165], for example, also utilized metadata from georeferenced social media data and
satellite imagery. They examined urban land-use in Haidian District (Beijing) using
Weibo4 and Gaofen-2 imagery. They divided the district into �elds via OSM road data.
For classi�cation, they used textural and spectral features from the imagery. It also in-
cluded the density and temporal patterns from georeferenced Weibo posts. [166] added to
temporal and remote sensing data, linguistic features obtained from tweets, and improved
land-use classi�cation accuracy.

Also, in a land-cover task, the fusion of georeferenced Twitter data and remote sensing
images can contribute positively to the classi�cation performance. [167] proposed a data
fusion framework to combine Twitter metadata and Sentinel-2 imagery. The target of
the land-cover task was the classi�cation of Local Climate Zone [129] classes. The de�-
nition of the classes ranges, for example, from bare soil, over scattered trees to an open
high-rise building con�guration. The area of interest was Washington, D.C., where the
researchers collected a large georeferenced Twitter data set. As features, the tweet count,
mean text length, or mean friends count (amongst others) were utilized per raster cell.
They augmented the CNN architecture with the generated Twitter feature maps in one

4Chinese Twitter equivalent

30



3.5 Summary

experiment. This approach improved the classi�cation result by increasing the F1 score
concerning the baseline.
However, as pointed out in the previous sections, the researchers investigated small

areas of interest. Therefore, the research gap of fusion remote sensing images and mul-
tilingual citizen sensor data from Twitter text messages has not been covered before.

3.5 Summary

A course sensor resolution and land-use classi�cation at block or patch level might not
be enough to provide detailed land-use or building function maps of settlements. Land-
use classes �ow into each other and impede land-use classi�cation using remote sensing
images at the patch level. Furthermore, almost all studies focused on a speci�c area of
interest and limited data. However, tackling the U.N. Sustainable Development Goals
demands a path towards a global and �ne-grained building function classi�cation at an
individual building function level. Augmenting remote sensing data with in situ data like
and social media data showed valuable results.
It is clear that adding data next to remote sensing imagery to classify land-use or build-

ing functions is not new�researchers before used linguistic features for building function
classi�cation. Like using remote sensing images alone, most of these studies focused on
speci�c areas with minimal data. Furthermore, the capabilities of word embedding or
(multilingual) language models have not been exploited so far. It is standard that various
languages are spoken in highly heterogeneous urban areas. Therefore, utilizing multilin-
gual language models like BERT or a self-trained multilingual Twitter word embedding
seems to be a research gap regarding building function classi�cation. To the best of the
author's knowledge, a building function classi�cation based on multilingual Twitter text
features has not been done before. The decision level fusion of multilingual text features
and remote sensing image features is also a novel application in the urban remote sensing
�eld.
The following chapter concentrates on the Twitter data itself and the resulting datasets.

It is shown, how the data can be obtained and processed. This includes the labeling and
balancing of the Twitter data. Additionally, the Twitter georeference accuracy issue is
discussed, and a straightforward approach is proposed to deal with this situation. The
�nal compilation of the �nal multilingual text datasets is documented.
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First, an overview of the task itself is given, followed by an explanation of the Twitter
dataset used. The approach to how tweets are assigned to buildings is explained. Fur-
thermore, the challenge of geo-accuracy in relation to the Twitter data is discussed, and
a solution for the building function classi�cation task is o�ered.

4.1 Building Function Classi�cation

The classi�cation of building functions is a standard task in remote sensing. Often, some
large areas or blocks are scrutinized to detect various land-cover and land-use classes
such as vegetation or buildings [11] with high accuracies [158]. As pointed out in chapter
1, the urban structure can change over time. Large urban con�gurations are investi-
gated at patch level or areas at block level with remote sensing methods only; detailed
changes possibly remain undetected. This challenge is getting more vivid studying the
functionality of an individual building. Figure 4.1 A depicts a residential area with green
spaces and trees. No industrial plant or a large shopping mall is present in this scene.
The building functions are evident (residential). Considering �gure 4.1 B, a obvious
functionality is not visible anymore. Even for a human, it is a hard task to identify a
possible function. Is it a hotel or a university? Could it be a large multi-family house or
a hospital? The answer can be found in section 6.4.2.
A conceivable way to tackle this challenge is shown in �gure 4.1 C. The blue circles

represent additional in situ sensor data, such as social media data that could be seen as
citizen sensors. The supplementary information gained by these sensors could be helpful
to associate a functionality to this building �nally. In this dissertation, geo-referenced
Twitter data is utilized as in situ sensors to generate additional linguistic features to
support remote sensing to estimate a building function of an individual building.
Many land-use classi�cation studies use various classes such as residential (scattered,

dense), industrial, o�ce, civic, et cetera for the task [11, 158, 15, 168]. It seems that
urbanization in�uences commercial and residential areas [40]. When people migrate into
cities, more residential areas are needed, impacting the infrastructure [169] and energy
consumption [170]. Additionally, urbanization might cause a shift from agricultural to-
ward industrial working places, or a service-oriented economy [40]. Therefore, studying
commercial and residential buildings within the context of urbanization seems reasonable.
These classes mentioned above can be summarized to prototypical classes such as

commercial or residential. This could be seen to reduce the complexity of the classi�cation
task at an individual building instance level. A third class, the other class, could solve
as a container for buildings that cannot be categorized into commercial and residential.
Therefore, the classes studied in this work are commercial, residential, and other. They
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A B C

Figure 4.1: Building function classi�cation using tweets as citizen sensors to support remote
sensing. Blue circles in C represent in situ sensors. Background images © Terra-
Metrics 2021, Google.

are summarized from more �ne-grained building functions derived from OSM building
polygons (cf. sections 4.3 and 4.3.2). The following paragraphs describe the whole process
of how a tweet becomes a citizen sensor to support urban building function classi�cation.

4.2 Twitter Data

In this work, utilize social media text messages are obtained from the Twitter API v.1.1.
The free access allows the download of approximately 1% of the live Twitter stream [171].
Additional �lters can be set, for example, keywords or geographical �lters like bounding
boxes. For the current project, a bounding box covering the whole world was con�g-
ured, i.e., only tweets with a geo-reference are received continuously. Twitter delivers
a tweet in JSON �le format, which allows a structured representation of the tweet's
metadata. A tweet comprises many di�erent metadata attributes such as a tweet-id,
user-id, date, time, geographic information, and the text itself. All of the attributes are
integrated into a so-called data dictionary. Normally, the coordinates of a geo-referenced
tweet are stored in the data dictionary in the �eld .coordinates.coordinates which
provides longitude and latitude �oats. Furthermore, a tweet can also be geo-referenced
when .coordinates.coordinates is empty. Namely, the place �eld also provides var-
ious information about the geo-reference. Here, a bounding box is stored which frames
the present georeference in di�erent granularities (cf. paragraph 4.2.1 for more detailed
information). This means that a tweet can be geo-referenced without longitude and lati-
tude information in the .coordinates.coordinates �eld. This attribute makes Twitter
a widely used data resource in geospatial research (cf. chapter 3.2). The geo-referenced
Twitter data was collected for approximately three and a half years for the whole world.
In total, 589, 764, 252 geo-referenced tweets posted in 66 languages have been stored.
However, as mentioned in section 1, [172] has announced it will deactivate the precise

geo-tagging in tweets. In the past, it was possible to embed a point coordinate of the cur-
rent position in the tweet. This position was then at an individual device/person level (if
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the user permitted). How does this announcement impact geospatial research? The next
section gives some insights into this matter by analyzing the results of a straightforward
�eld experiment and comments on the possibilities for building function classi�cation.

4.2.1 Geo-referencing precision using the Twitter and Instagram app

A Twitter user is still able to tag a tweet with a geo-location [173]. However, as locations,
users can set the country or city, or they can choose among pre-selected locations such as
a current neighborhood, a store, or a landmark (e.g., the Leaning Tower of Pisa) within a
radius of approximately 200 meters of the mobile device. The locations are provided by
Foursquare1 and Yelp. Twitter notes in its help center that it is still possible to attach
a precise geo-location to a tweet via the in-app camera of the iOS and Android Twitter
apps. Furthermore, Twitter explicitly mentions that this information is available via the
API [174]. [175] mentioned in their article that it is possible to get the point coordinates
via an Instagram cross-posting on Twitter, i.e., a user can create an Instagram post and
share it on his or her Twitter timeline. A brief analysis was conducted to evaluate the
statement of Twitter and [175].

4.2.2 Brief �eld analysis of georeference precision

The aim of this short analysis was to tag a Tweet with point coordinates such that
the exact location of the tweet could be identi�ed and retrieved via the API as point
coordinate. As a �rst step, the Twitter app (version 8.69.2) was installed on the author's
mobile phone (Apple iPhone SE II, iOS 14.6), and all involved apps (iOS camera, Twitter,
Instagram) were granted permission to access the phone's geo-information. Within the
Twitter app privacy settings, the option precise location was opted-in. The Wi-Fi was
deactivated by the opt-out switch in the Settings. To download the tweets from the
author's Twitter timeline the Python package tweepy has been used2.
For the analysis, Technical University of Munich (TUM) was chosen and the front

lawn of the Alte Pinakothek was the exact tweet location (c.f. Figure 4.2) which is
located in Maxvorstadt, a district of Munich, Germany. First, a tweet containing a
short text sequence and a picture taken by the Twitter app's camera but without any
geo-information has been posted. As expected, no polygons or points are present in the
tweet JSON object's coordinates and place �eld. The next tweet was created the same
way; however, this time, the suggested city (Munich) was included. The JSON reveals
now a place �eld includes a string describing the place (Munich), a type (city), country
(Germany), etc. and bounding box coordinates (c.f. Figure 4.2). Exact point coordinates
were not present. In the third tweet, TUM was marked as a place. In the pulled JSON,
no exact point coordinates of the mobile device were present; however, bounding box
coordinates of the TUM main building were present. This bounding box has no surface
area and cannot be seen on a plot. Therefore, the coordinates of the lower-left point
were taken to visualize location (c.f. Figure 4.2). The place type was set to poi (point

1https://foursquare.com/ [9.12.2021, 15:34]
2https://docs.tweepy.org/en/stable/getting_started.html#hello-tweepy [9.12.2021, 16:10]
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Exact position (Point)

TUM (Twitter polygon)

Maxvorstadt (Twitter polygon)

Munich (Twitter polygon)

Figure 4.2: Polygons provided by Twitter. By creating the plot the TUM polygon had to be
included as a point coordinate since the polygon had no surface area. Therefore, the
box is a symbolic depiction of TUM's location. Background images© TerraMetrics
2021, Google.

of interest). The fourth tweet was again created in the same way, but the city district
was tagged (Maxvorstadt). Again, no exact point coordinate was present but a polygon
which comprises roughly Maxvorstadt was included (c.f. Figure 4.2). As a place type
neighborhood was speci�ed. It was not possible to tag the exact location of the mobile
phone even though the Twitter documentation [174] proclaimed otherwise.

A cross-posting was created to check the statement of [175] that it is possible to receive
exact point coordinates in the tweet JSON via an Instagram cross-post. Instagram
suggests the same locations in the app if users want to tag an image with a place or a
point of interest. Therefore, the reproduction of the tweets was straightforward. The
results are shown in Figure 4.3. Now, if the tweets are queried, a point coordinate in the
coordinate �eld is present. Despite the presence of a point coordinate, it is apparent in
Figure 4.3 that even with a cross-post, it is not possible to receive the exact location of
a tweet.

The results of this brief analysis include two signi�cant �ndings and some minor �nd-
ings. The �rst and the most critical �nding is that it is not possible to receive the exact
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exact tweet location
TUM (Instagram point)
Maxvorstadt (Instagram point)
Munich (Instagram point)

Figure 4.3: Points provided by the Twitter API. Other than merely tweeting via the Twitter
iOS app, Instagram cross-posting reveals point coordinates in the retrieved tweet
JSONs. However, the exact tweet position could not be retrieved via the API.
Background images © TerraMetrics 2021, Google.

geo-location of a tweet regardless of the method applied (as of mid-2021). Secondly,
places of interest such as TUM or city districts like Maxvorstadt can still be tagged
in tweets. An Instagram cross-posting gives point coordinates of the place, district, or
city, and Twitter provides a polygon without surface area at the exact coordinate of the
location (e.g., TUM) and polygon coordinates for districts and cities. Furthermore, if a
location is tagged via Twitter, a place type (e.g., city, point of interest, neighborhood)
and an exact name of the location (e.g., Maxvorstadt) is given. A cross-post only includes
the point coordinates, and as a place type, only the city is denoted no matter what type
of location in the Instagram post was selected. Finally, in the Twitter app, it was not
possible to select locations that were farther away than approximately 250 meters. Even
when manually typing more distant locations like Allianz Arena or Karlsplatz (which is
not very far from the exact tweet location), the app replied that location could not be
found. On the other hand, Instagram permits the tagging of far more distant locations.

[4] investigated this issue at a data level and con�rmed the �ndings above. They
further provided detailed statistics informing about the distribution of geo-referenced
attributes in Twitter data. From table 4.1 it is notable that a signi�cant amount of
tweets are posted via an o�cial Twitter app. Those tweets are mostly tagged with a
place tag. As mentioned earlier, they represent di�erent granularity levels. The most
coarse level is country level, followed by city and neighborhood level. The most exact
place tag available is the point of interest (poi) tag. For example, landmarks, businesses,
or restaurants can be �agged.
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number of tweets total percentage

Total 25,756,667 100%

Twitter for Android 11,657,427 45%

Twitter for iPhone 9,410,305 37%

Twitter Web Client 2,982,670 12%

Twitter for iPad 506,638 2%

Twitter for Mac 12,040 0.05%

Instagram 22,151 0.09%

Foursquare (+Swarm) 2,034 �0.01%

CareerArc 2.0 1,229 �0.01%

Others 1,162,173 4.5%

Table 4.1: Distribution of tweet sources (e.g., apps). Mostly bots could be found in "Others".
This table is obtained from [4, p. 214], Table 1.

In conclusion, even though the exact coordinates of a tweet (i.e., phone location)
cannot be retrieved via the API anymore, the point or polygon coordinates of a point of
interest are "exact" in the sense of an individual building level but not at the individual
device/person level. Neighborhood and city locations are less exact [4]. Of course, the
geo-privacy of the users increases with this practice. An analysis of the user's comments
on the announcement of [172], reveals that the users welcomed the deactivation of this
feature. For geospatial research, on the other hand, a valuable data source was decreased
in geospatial accuracy. Therefore, additional measures needed to be executed to limit
the impact of non-exact geo-referenced tweets like neighborhood, city, or country level.

4.2.3 Tweets used in the current Ph.D. thesis

The analysis reveals, it is clear that after mid-2019, no precise tweets at an individual
device/person level are obtainable anymore. Therefore, the term geo-referenced tweet is
related to a tweet with embedded information about an object in urban space. Since all
tweets which have been collected for this work are "shipped" with a geo-reference, all
tweets are considered. However, not "naïvly" anymore. Naïvely means in the context
of building function classi�cation, the hypothesis that a tweet with a point coordinate
refers to the GPS location of the user. In tweets before mid-2019, it is the case but
not after. That said, since it is feasible to tag landmarks or restaurants on Twitter and
Instagram, it is possible that the tweet indeed carries (implicit) information about the
object it is referring to. Therefore, the "real" location of a Twitter user is not needed
to classify the building functions. Since a real-world location was tagged in the tweet, it
could be that the tweet is referring to the tagged place even though the user is at the
other side of town. In this study, it is hypothesized that a tweet text does not necessarily
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need explicit information about a certain building, e.g., "this is a company". Rather, a
tweet including implicit information�like the presence or absence of speci�c vocabulary
or the combination of words, e.g., "we sell high-quality apparel".
To summarize, for this study, all tweets with a point coordinate and tweets without

point coordinates but with poi place type are considered. As pointed out earlier, such
tweets incorporate also point coordinates in the form of a polygon without a surface. As
also mentioned, the point coordinate tweets are not used "naïvly" anymore. Therefore,
the impact of city and neighborhood-level tweets on building function classi�cation must
be limited. Section 4.5.4 provides further information.

4.3 Labeling of the Twitter data

The labeling process in this work is de�ned as the assignment of a tweet to one and only
one building. The tweet then inherits the building function of the building. The building
function is derived from OSM building polygons. To facilitate e�cient geospatial queries
like labeling or point-in-polygon checks as well as for attribute �ltering, the streamed
Twitter data have been stored in a PostgreSQL3 database with PostGIS4 extension [176].

4.3.1 OpenStreetMap Building Attributes

Although some cities, like Los Angeles, provide o�cial data about parcels and their
use, by far not every city publishes such data. For this reason, the tweets have been
labeled with OSM building polygon attributes5. In more detail, building polygons
include a building tag where several values can be associated with it. For example,
building:residential implies that the polygon represents a residential building. To
add a building polygon with more comprehensive information, users can add values to
the amenity tag. Such amenity values determine additional functionality of a building
which could be public bathrooms or Banks.
Since the building attributes provided by OSM are manifold, they were summarized

to commercial, residential, and other. For example, the residential class includes tags
like bungalow or apartments. The commercial class summarizes tags like supermarket,
retail, or fast food. The other class comprises tags like hospital, university, or religious.
In �gure 4.4, wordclouds of the OSM tags are provided divided by class. Each word in
the wordclouds represent a class mich was summerized.

4.3.2 Labeling process

As mentioned earlier, the labeling of the tweets is conducted via the PostgreSQL database
with a PostGIS extension. PostGIS enables spatial queries and operations like distance
measuring algorithms. The distance is measured via a PostGIS distance function6 to

3https://www.postgresql.org/ [9.9.2021, 13:39]
4https://postgis.net/ [9.9.2021, 13:41]
5https://wiki.openstreetmap.org/wiki/Key:building [9.9.2021, 13:52]
6https://postgis.net/docs/ST_DWithin.html [10.9.2021, 10:45]
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commercial

(a) commercial

residential

(b) residential

other

(c) other

Figure 4.4: Wordclouds of summeraized individual OSM classes.
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the next OSM building polygon with an OSM building attribute within a 50m limit to
label the geo-referenced tweets. The distance limit of 50m has been chosen since a larger
construction could have a plaza surrounding it and further include tweets in scattered
residential areas. After the labeling process, some buildings exhibit more than one tweet.
This state is from now referred to as 1 : n relationship. A 1 : n relationship means that
one building n tweets can be assigned.

4.4 Areas of Interest

[177] proposed a benchmark dataset for locale climate zone [129] classi�cation within the
context of the So2Sat7 project which is called LCZ42. In this dataset, 42 urban areas
are considered which are distributed throughout all continents and cultural zones (c.f.
�gure 4.5). In addition to commonly investigated Western cities like New York, Paris, or
Berlin cities from Southeast Asia like Jakarta or African metropolises like Nairobi have
also been taken into account. Since geo-referenced Twitter data from the whole world is
streamed, sub-sampling selection of the 42 urban areas is straightforward.
By using the city polygons proposed in [177], a subset from the large worldwide Twitter

set was taken. From the overall dataset containing 589, 764, 252 geo-referenced tweets,
113, 059, 673 are located in the areas of interest (19.17%). This number can be further
subdivided:

� 82,882,884 with point coordinates (longitude, latitude)

� 30,176,789 without coordinates but place tag point of interest (poi)

Since not every tweet can be assigned to a building that is within a distance of 50m,
a signi�cant data loss after the labeling process is expected (cf. section 4.3.2 for the
labeling process). Therefore, the dataset size has reduced:

� 82,882,884 (points) to 22,956,700

� 30,176,789 (poi) to 3,729,446

� 66 languages to 65 (minus Dhivehi, dv)

In addition to the cultural and architectural diversity of the cities, the tweets received
are written in various languages. Twitter o�cially supports 70 languages8 and a token
for unidenti�ed languages (unk). The dataset used in this dissertation is referred to as
LCZ42 to stick with the original designation used in [177].

4.5 Preparation of the Twitter Text datasets

Before the dataset for the building function classi�cation task can be composed, some
individual steps must be executed (cf. �gure 4.6). The following paragraphs describe the

7https://www.asg.ed.tum.de/sipeo/projects/so2sat/ [14.1.2022 12:27]
8https://developer.twitter.com/en/docs/twitter-api/enterprise/powertrack-api/guides/

operators
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4.5 Preparation of the Twitter Text datasets

City Region Tweets Buildings Languages Users

Amsterdam Europe 562,642 42,039 48 60,278

Beijing East Asia 24,889 1,596 42 8,889

Berlin Europe 1,029,228 15,672 51 57,611

Cairo transcontinental 74,817 631 42 10,880

Cape Town Africa 128,660 2,201 43 19,220

Changsha East Asia 5,358 243 27 1,846

Cologne Europe 168,022 6,097 48 15,340

Dongying East Asia 11 2 4 6

Guangzhou East Asia 24,397 1,486 43 7,439

Hong Kong East Asia 227,533 7,988 49 34,928

Islamabad South Asia 8,288 472 39 3,406

Istanbul transcontinental 3,491,443 17,482 51 214,292

Jakarta Southeast Asia 615,430 10,964 43 126,499

Kyoto East Asia 1,300,719 10,953 42 117,887

Lisbon Europe 90,202 5,077 47 20,390

London Europe 2,442,218 47,334 61 307,288

Los Angeles North America 3,463,727 302,152 54 309,240

Madrid Europe 4,48,108 16,683 46 86,772

Melbourne Oceania 158,000 6,499 48 24,781

Milan Europe 318,222 16,675 47 44,005

Moscow transcontinental 655,484 24,549 51 49,176

Mumbai South Asia 97,834 3,416 48 24,897

Munich Europe 96,772 4,058 48 23,032

Nairobi Africa 53,587 1,288 38 9,811

Nanjing East Asia 30,516 424 38 2,895

New York City North America 1,927,129 23,880 56 245,810

Paris Europe 542,374 9,979 60 111,617

Qingdao East Asia 4,130 334 28 1,585

Rio de Janeiro South America 660,042 5,695 40 147,329

Rome Europe 125,897 3,200 47 28,903

San Francisco North America 945,607 6,206 50 99,603

Santiago South America 1,019,367 14,475 40 51,168

São Paulo South America 469,477 9,178 40 77,053

Shanghai East Asia 41,377 1,852 41 12,235

Shenzhen East Asia 4,145 209 24 1,761

Sydney Oceania 212,931 6,301 50 36,048

Tehran Middle East 52,078 1,484 46 7,801

Tokyo East Asia 4,252,510 11,578 53 271,730

Vancouver North America 332,699 4,673 46 32,507

Washington D.C. North America 509,472 8,102 50 76,980

Zurich Europe 64,638 2,764 46 10,501

Wuhan East Asia 6,166 359 31 2,155

Table 4.2: Overview of the used cities.
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List of unique OSM building IDs

Text preprocessing
• lower-casing
• strip URLs
• strip Mentions
• strip Numbers
• strip punctuation
• Normalizing

Final train-test-split

Balancing 
building functions
(downsampling)

Train-test-split 
via building IDs

Allocate tweets to train or test set by OSM building ID 

Raw Twitter set

Train-test-split 
via building IDs

Randomly draw 𝜆 tweets 
for each building

Calculate 
tweet-house 

limit 𝜆?
use full data, 
i.e., all tweets

yes no

Figure 4.6: Composition process of the Twitter dataset.

train and test split via OSM building IDs, the subsequent data balancing process, and the
text preprocessing. Finally, the preparation of the remote sensing images is explained.

4.5.1 Text preprocessing

After querying the data from the database, some initial text preprocessing steps are
executed (cf. section 2.4.2). First, a building-wise text de-duplication is performed to
make sure that a tweet text cannot appear twice. Every single tweet text of a building
is concatenated with the corresponding building OSM ID to conduct the de-duplication.
Additionally, the URL was stripped since many tweets only di�er by URL. This string is
stored in a Python set9. In Python, a set is an unordered container that includes hashable
objects like text sequences. If a tweet text combined with the OSM id is already in the
set, the data point containing this tweet will be rejected.
The monolingual text preprocessing steps include:

1. lower-casing

2. removing of numbers, mentions, URLs

9https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset [7.9.2021,
17:59]
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4.5 Preparation of the Twitter Text datasets

3. removeing punctuation except apostrophes and hyphens

4. tokenization of the monolingual text (cf. section 2.4.3)

5. deletion of empty tweets

For more details about the preprocessing steps, see section 2.4.2.
A special preprocessing is required for (multilingual) DistilBERTmodels. Ready-to-use

preprocessing models can be obtained which arrange the text in the special representation
BERT requires internally (cf. section 2.4.3). For further information, please consider the
BERT paper [92], paragraph 2.4.3, and the huggingface transformer library10.

4.5.2 Balancing of the Dataset

Balancing the desired dataset before most machine learning tasks is an essential step.
An over-representation of a class could lead to over-�tting, whereas an under-represented
class could result in non-su�cient training, which results in unsatisfactory classi�cation
performance [21]. Hence, a balancing process aims to create a well-adjusted dataset to
prevent over- and under-�tting of the classi�cation algorithm. Various techniques can be
used to perform dataset balancing, for example, by the application of oversampling, [178].
In contrast, under-sampling reduces available classes to the quantity of the minority
class. Even though under-sampling is straightforward, good performance can achieve
[178]. Hence, this dissertation utilizes under-sampling for balancing.
However, since several cities with di�erent class distributions are used, the balancing

process should also consider the distribution of classes per city. Therefore, a balancing
algorithm was applied that also takes the city-wise class count into account. First, the
class with the lowest support, i.e., buildings, is identi�ed. This value is denoted as l.
Next, the global target value β is calculated, which represents the optimal number of
samples per class and city. l is divided by the total number of cities n to determine this
number.

β =
l

n
(4.1)

The calculated number β is the optimal downsampling threshold per class and city.
However, some cities overshoot β easily. Therefore, the total number of buildings per
class is calculated. After that, two possibilities are available: �rst, if the number samples
s of a class is undershooting or equal to β, all samples are kept (cf. equation (4.2)).

{s|s ≤ β} (4.2)

If s < β, the di�erence of s and β is stored. Second, if

{β|s > β} (4.3)

is true, then random downsampling takes place by drawing β samples (city-wise). The
new samples, i.e., buildings, are remembered. After executing all these steps for all cities,

10https://huggingface.co/docs/transformers/v4.14.1/en/model_doc/bert#transformers.

BertTokenizerFast [16.12.2021 10:04]
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tweets train test buildings train test

m
o
n
o
.

commercial 1,223,785 298,986 40,388 10,012

other 1,941,312 61,8235 40,404 9,996

residential 361,775 75,284 40,168 10,232

total tweets 3,526,872 992,505 120,960 30,240

m
u
lt
i.

commercial 3,762,683 1,153,615 69,662 17,278

other 6,912,596 138,4165 69,424 17,516

residential 785,770 202,612 69,570 17,370

total tweets 11,461,049 2,740,392 208,656 52,164

Table 4.3: Final class distribution and train-test split.

the unused buildings are brought back. How many buildings are missing to approximate
β independent of the city is now calculated. Lastly, the buildings are class-wise randomly
drawn to "�ll" the class count.

The classes are more evenly distributed amongst cities. The balancing process now
yields a list composed of OSM id, city name, and building function. This list is used
to create a train-test split. The next paragraph provides information about how the
train-test split is produced.

4.5.3 Train and Test Split

The goal of a machine learning classi�cation task is usually the categorization of a dat-
apoint x to a target y. [21] express this as "The ability to perform well on previously
unobserved inputs is called generalization" (p. 107). Before an acceptable generalization
performance is achieved, a collection of data points is required to train the model. A
set of unseen data is used to evaluate the trained model's performance. Therefore, di-
viding data into a train and test set is common in machine learning. Furthermore, the
strict separation of training and testing data prevents the "leakage" of training data into
the evaluation process, which a�ects the classi�cation process negatively by biasing the
model towards already seen data [179].

In this work, the train-test split is created via the OSM IDs obtained in the downsam-
pling process described in paragraph 4.5.2 above. 80% of the data is assigned to the train
set and 20% for the test set. For the validation set, 10% of the training data are subsam-
pled. After the balancing process (cf. section 4.5.2), an overview of the created train-test
split can be found in table 4.3. It can be seen that the number of tweets belonging to
the residential class is smaller compared to the other two classes. The classi�cation may
be biased in favor of the commercial and other classes.
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4.5.4 Dealing with imprecise Twitter geo-references during classi�cation

Landmarks or locations like the White House, the Ei�el Tower, or the Brandenburger Tor
usually have many tweets clustered around them. As discussed in section 4.2.2, tweets
can have di�erent levels of geo precision (e.g., GPS position vs. city level coordinate).
For example, tweets at a city level could be located in the center of the city place polygon.
During the labeling process, a building that happens to be next to the center might be
assigned to the city level tweet. After the labeling process, a 1 : n relationship between
buildings and tweets is generated. For reiteration, one building can be assigned to n
tweets, which are closer than 50m. Here, the question arises of how the in�uence of
landmark buildings and the Twitter geo-inaccuracy on building function classi�cation
can be limited.
To resolve this, a method is proposed to reduce the impact of buildings assigned to a

high number of tweets on classi�cation. The intuition behind the idea is to determine
the tweet-house limit λ. The tweet-house limit expresses the maximum allowed number
of tweets per building. It is calculated by determining the mean number of tweets per
building. Di�erent lower and upper bounds are de�ned to prevent landmark buildings
with a very high tweet count biasing the computation of the mean. A lower bound can be
described as the minimum possible number of tweets per building and an upper bound
as the maximum of allowed tweets. The bounds are represented by elements pl and pu
which are calculated. The bounds are calculated of a set of percentiles Pl and Pu.

Pl = {1, 2, 5, 10, 15, 20, 25}
Pu = {99, 98, 95, 90, 85, 80, 75}

(4.4)

Then, the count of tweets per building is determined and every building which cannot
ful�ll condition (4.5) are not considered in calculating the mean number of tweets per
building.

{x|pl ≤ x ≤ pu} (4.5)

Where x is the total number of tweets of a speci�c building. If a building does not
ful�ll condition 4.5, it is not considered for calculating λ. Following this approach, nine
monolingual and nine multilingual datasets are generated with di�erent minimum and
maximum tweet counts per building�also, the λ, i.e., the tweet-house-limit changes.
Table 4.4 documents the calculated tweet-house limits, i.e., λ values using di�erent per-
centile limits. The values decrease the stricter the thresholds are set. In the end, the
smallest λ value is 3, while the largest is 30. For example, the dataset 9-95 has a λ
value of 10. This follows that a building can only "have" a maximum of 10 tweets. If
a building has fewer tweets as speci�ed maximum, it can "keep" all tweets. However, if
the total number of tweets is higher than the λ upper bound, the total number of tweets
x is randomly downsampled until x ≤ λ. In contrast, the full dataset has no limitations.
All tweets are used in this dataset.
By using this method, 18 (9 monolingual and 9 multilingual) di�erent datasets are

created for classi�cation. The results are investigated to �nd out if such a limitation of
data can be useful for the building function classi�cation task. For text classi�cation
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Monolingual Multilingual

percentiles mean tweets/building λ mean tweets/building λ

full 29.89 ∞ 54.45 ∞
100 29.89 30 54.45 54

1-99 19.27 19 25.04 25

2-98 15.11 15 19.50 20

5-95 9.95 10 12.64 13

10-90 6.51 7 8.18 8

15-85 4.73 5 6.07 6

20-80 3.84 4 4.77 5

25-75 3.18 3 3.97 4

Table 4.4: The calculated λ values to controll the maximum tweets per building. The λ values
correspond to the mean number of tweets per building.

results, see tables 5.2 and 5.3 in section 5.6. To identify the datasets through out the
thesis, they are referred to by the percentile limit, e.g., 5-95 or 10-90.

4.5.5 Final collocation of the text dataset

Now, the approaches discussed in sections 4.5.2, 4.5.3, and 4.5.4 are applied to the data.
As pointed out in section 4.3.2, every tweet have been assigned to a building by tagging
it with the OSM ID and the correspondent building function label. All steps are the
same for the mono and multilingual dataset.
The class-wise balancing introduced in 4.5.2 is performed, and with the resulting bal-

anced class list, the train-test-split is generated. To create the train-test-split, every
unique OSM ID in the balanced class list is collected and split into a 80 : 20 ratio using
the method mentioned in paragraph 4.5.3. 80% of the OSM IDs are allocated to the
training dataset and 20% to the test set, respectively. 10% of the data is sampled from
the training dataset for validation during the training phase.
An additional aspect of building function classi�cation with Twitter data is the unequal

distribution of tweets and buildings. Remember, only tweets that are within a distance of
50m to its closest building are used for this work (cf. paragraph 4.3). Depending on the
con�guration of the urban area (e.g., dense or scattered) or the nature of a building (e.g.,
home or landmark), the number of tweets associated with a building within the selected
50m distance can vary. For instance, in London, a building with 584, 296 tweets has been
found (OSM ID: 1101888552). It is a gift shop next to Trafalgar Square; therefore, as
discussed in section 4.5.4, the total amount of tweets per building is limited to lower a
possible bias of such buildings on classi�cation.
All the steps depicted in �gure 4.6 have now been executed, and a train-test split ready

for classi�cation has been created. The �nal distribution of tweets per (multilingual)
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Monolingual Multilingual

tweets train test tweets train test

co
m
m
er
ci
a
l

full 1,223,785 298,986 3,762,683 1,153,615

100 320,759 78,381 870,130 213,548

1-99 257,863 63,464 598,415 147,600

2-98 228,769 56,420 531,435 131,308

5-95 184,168 45,577 417,995 103,377

10-90 150,553 37,293 312,848 77,302

15-85 123,176 30,588 260,808 64,456

20-80 107,198 26,654 231,417 57,194

25-75 89,005 22,155 198,967 49,189

o
th
er

full 1,941,312 618,235 6,912,596 1,384,165

100 329,020 81,528 852,574 214,167

1-99 262,052 65,129 584,126 146,974

2-98 231,665 57,605 518,881 130,667

5-95 185,637 46,128 408,196 102,889

10-90 151,216 37,509 305,688 77,079

15-85 123,302 30,569 255,014 64,345

20-80 107,134 26,552 226,458 57,169

25-75 88,841 22,030 195,081 49,243

re
si
d
en
ti
a
l

full 361,775 75,284 785,770 202,612

100 140,962 35,411 377,299 94,003

1-99 123,034 30,996 297,278 74,119

2-98 114,172 28,867 275,114 68,724

5-95 99,995 25,454 234,839 58,649

10-90 88,621 22,646 193,715 48,361

15-85 78,805 20,149 171,604 42,793

20-80 72,696 18,595 158,467 39,480

25-75 65,303 16,682 143,295 35,742

Table 4.5: Final class distribution and train-test split.
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dataset created under consideration of the calculated tweet-house limitation using the λ
value can be seen in table 4.5. It is important to note that between the buildings and
the tweets in the dataset is a 1 : n relationship. I.e., that n tweets can be assigned to
a speci�c building. For example, if TUM is in the test set, there could be 12 tweets
assigned to the building id of TUM.

4.6 Training Data for the Multilingual fastText Embedding

As pointed out in section 1.1, how a diverse language pool in urban areas can be rep-
resented best for building function classi�cation. To challenge this reserch question, a
multilingual Twitter fastText word embedding is trained for the building function clas-
si�cation task. For this, a geo-referenced Twitter data subset from September 2021 was
used. Speci�cally, data from calendar weeks 38 and 39 (Thursday to Thursday, seven
days) have been considered. This period is not included in the LCZ42 Twitter datasets
created above. The languages considered for the embedding have at least a share of 1% of
the data. Therefore, only English, Turkish, Japanese, Portuguese, Indonesian, German,
French, unidenti�ed, Russian, Dutch, and Italian. These are the top eleven languages of
the LCZ42 cities and together they are accounting for 91,97% of the tweets (cf. table
4.6).
The focus of creating this embedding is not on a transfer of semantics from one lan-

guage to another. This means, for example, that the Spanish word universidad and the
similar, but not identical, German word Universität are not necessarily adjacent in the
vector space. However, it is quite possible with languages more similar to each other, like
German and Dutch. The aim is more directed to generate a multilingual text representa-
tion where languages are clustered to generate their own feature space for each language.
Such a representation could increase the quality feature representations of words that are
misspelled like Univerität vs. Universität.
For languages like English or German, the same preprocessing steps are applied for

the text classi�cation dataset as mentioned above. However, no speci�c tokenization
was performed. All words are then separated by whitespace. For the Japanese tweets,
however, a slightly di�erent approach was used. Since Asian languages like Japanese,
Chinese, or Korean do not separate words with whitespace, the words must be split in
a di�erent way. In this work, the Python library Janome11 v.0.4 was used to tokenize
Japanese strings. It utilizes the MeCab12 dictionary mecab-ipadic-2.7.0-2007080113

dictionary including the Japanese new era (Reiwa) dictionary.
After the preprocessing step, 14, 044, 361 multilingual tweets are available for train-

ing. For the �nal word embedding training, the data was roughly sorted into language
branches14. First, Proto-Indo-European languages [180] are �lled into the dataset. Start-
ing with English, the biggest portion is the �rst language, followed by German and Dutch

11https://mocobeta.github.io/janome/en/ [8.12.2021, 17:01]
12https://taku910.github.io/mecab/ [visited 8.12.2021, 17:08]
13http://jaist.dl.sourceforge.net/project/mecab/mecab-ipadic/2.7.0-20070801/

mecab-ipadic-2.7.0-20070801.tar.gz [8.12.2021, 17:06]
14https://www.mustgo.com/worldlanguages/language-families/ [8.12.2021, 22:11]
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4.6 Training Data for the Multilingual fastText Embedding

language code count % language code count %

English en 8,522,616 45.06 Lithuanian lt 4,745 0.03

Turkish tr 2,795,470 14.78 Slovenian sl 4,231 0.02

Japanese ja 2,583,070 13.66 Vietnamese vi 3,577 0.02

Portuguese pt 846,849 4.48 Latvian lv 3,158 0.02

Indonesian in 459,482 2.43 Bulgarian bg 2,985 0.02

German de 457,710 2.42 Icelandic is 2,685 0.01

French fr 427,598 2.26 Marathi mr 1,529 0.01

Unde�ned und 360,958 1.91 Urdu ur 1,431 0.01

Russian ru 345,038 1.82 Hebrew iw 800 0.004

Dutch nl 316,202 1.67 Greek, M. el 680 0.004

Italian it 279,184 1.48 Serbian sr 559 0.003

Chinese zh 99,631 0.53 Bengali bn 256 0.002

Finnish � 64,707 0.34 Nepali ne 248 0.001

Estonian et 61,419 0.32 Pushto ps 95 0.0005

Tagalog tl 56,221 0.30 Tamil ta 84 0.0004

Arabic ar 47,323 0.25 Panjabi pa 76 0.0004

Danish da 43,824 0.23 C. Kurdish ckb 76 0.0003

Catalan ca 34,394 0.18 Armenian hy 63 0.0002

Persian fa 29,177 0.15 Gujarati gu 35 0.0002

Haitian ht 26,349 0.14 Sindhi sd 34 0.0002

Romanian ro 21,966 0.12 Sinhala si 22 0.0001

Welsh cy 15,481 0.08 Lao lo 22 0.0001

Polish pl 14,357 0.08 Burmese my 21 0.0001

Korean ko 13,038 0.07 Malayalam ml 21 0.0001

Swedish sv 11,855 0.06 Georgian ka 21 0.0001

Czech cs 11,505 0.06 Amharic am 16 0.0001

Norwegian no 11,127 0.06 Telugu te 14 0.0001

Thai th 10,728 0.06 C. Khmer km 9 0.0001

Hindi hi 10,448 0.06 Kannada kn 8 0.00004

Basque eu 7,883 0.04 Tibetan bo 5 0.00003

Hungarian hu 7,671 0.04 Oriya or 2 0.00001

Ukrainian uk 6,547 0.03 Uighur ug 1 0.00001

Table 4.6: Language distribution. The language abbreviations in the code column are encoded
in ISO 639-1.
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Figure 4.7: Examples of Google Maps very high resolution remote sensing aerial images. Back-
ground images © TerraMetrics 2021, Google.

(Germanic branch). Then, for the Romance branch, Portuguese, French, and Italian. Af-
ter that, Russian (East Slavic), Turkish (Altaic languages), Indonesian (Austronesian),
and Japanese (Altaic languages, disputed) are placed in the dataset. Finally, tweets "un-
known" languages are placed into the dataset (mostly emojis). In total, the dataset has
approximately 270 million words and 713, 099 unique words. The details of the training
and the used hyperparameters can be found in section 5.4. The results are documented
in section 5.6.

4.7 Preparation of the Aerial Image Dataset

Very high-resolution aerial images (VHR) provide a detailed depiction of an area of
interest. However, such images are expensive to obtain. For this reason, the approach of
[14] is followed. They used Google VHR images for ex situ building function classi�cation
obtained from the Google Maps satellite layer. The images are provided in WGS84
coordinate system obtainable in di�erent zoom levels (up to 22)15 and a tile size of
256× 256. In this work, zoom level 18 is preferred to a spatial resolution of 0.48m in the
area of interest in this work. The ground sample distance gsd on the desired zoom level
z and a latitude lat would be computed with the following equation.

gsd(z, lat) =
2πrE cos(lat)

2(z+8)
(4.6)

Where rE de�nes the equatorial radius of 6, 378, 137m 16. Based on the OSM IDs of the
Twitter text dataset, the building polygons of the buildings are obtained and the centroid
calculated. Based on the centroid, Google images are downloaded. Table 4.7 shows the

15https://developers.google.com/maps/documentation/javascript/coordinates [9.12.2021, 15:32]
16https://wiki.openstreetmap.org/wiki/Zoom_levels [9.12.2021, 16:07]
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4.8 Summary

Monolingual Multilingual

train test train test

commercial 40,388 10,012 69,662 17,278

other 40,404 9,996 69,424 17,516

residential 40,168 10,232 69,570 17,370

Table 4.7: Distribution of Google VHR images.

distribution of the images. For every building, one image could have been downloaded.
The single tiles have been compounded around the centroid to images with an extent of
256× 256 (cf. �gure 4.7).

4.8 Summary

This chapter discussed the Twitter data itself and the geo-reference accuracy issue (cf.
section 4.2.1) and showed a possible approach on how to deal with it for the building
function classi�cation task (cf. section 4.5.4). The areas of interest, initially proposed
by [177] that re�ect a variety of cultural zones have been introduced (cf. section 4.4).
Furthermore, the data labeling process of the tweets via OSM building function tags was
showed and explained (cf. section 4.3). Also, the composition of the test dataset was
discussed (cf. section 4.5). It included steps like text preprocessing, a train-test-split,
and a data balancing process. Additionally, information about the fastText multilingual
word embedding training dataset was given. Finally, the remote sensing image dataset
composed of Google Maps satellite images was explained (cf. section 4.7).
The tweets have been prepared for their function as citizen sensors to support building

function classi�cation. The data is now ready for analysis. The upcoming chapter docu-
ments the results of the building function text classi�cation task using the monolingual
and multilingual datasets introduced above.
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5 Building Function Classi�cation with
(multilingual) Linguistic Features

In this section, the text classi�cation procedure is explained. All the results are discussed
in more detail. First, the baseline results created with TF-IDF and a multinomial Naïve
Bayes are discussed. After that, the procedure of creating word representations for the
deep learning model con�gurations is explained and followed by the description of the
training process. Also, the di�erent approaches for monolingual and multilingual are
shown. Afterward, the building function classi�cation task results for both language
modalities are discussed in detail. Subsequently, an in-depth feature analysis is given.
Finally, the �ndings are discussed and summarized.
This section describes the building function classi�cation using linguistic features from

Twitter text messages. The main experiment is divided into �ve sub-experiments ac-
cording to the input features and the classi�ers that are used, namely, building function
classi�cation with:

1. a Naïve Bayes baseline with TF-IDF features,

2. an LSTM network using virgin word embedding which is trained on-the-�y,

3. an LSTM network fed with word vector sequences from a pre-trainend English
fastText embedding,

4. an LSTM network �tted with word vector sequences from a self-trained multilingual
Twitter fastText embedding,

5. and contextualized sentence embedding vectors from (multilingual) BERT.

It will be investigated which data representation will lead to the best classi�cation perfor-
mance. As pointed out in section 4.5.5, 9 monolingual and 9 multilingual datasets have
been compiled. Each of them includes a di�erent λ value, i.e., tweet-house limit, com-
puted by di�erent percentile thresholds (cf. section 4.5). The target is to �nd out what
impact the limitation of tweets per house, i.e., a more balanced dataset has. Therefore,
for every dataset, an individual model is trained. The text preprocessing and described
in section 4.5.1.
The tweets of a building are randomly fed to the classi�ers one by one to avoid explod-

ing sequence lengths. This process is based on the fact of the 1 : n relationship of tweets
to buildings. In theory, thousands of tweets can belong to a single (landmark) building
in an unlimited dataset. If all tweets of that building are pooled, e.g., [181], the text
sequence for the neural network would be enormous. As it was explained in section 2.3,
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Figure 5.1: Histogram of the tweet text lengths of the mono- and multilingual datasets.

very long sequences hinder classi�ers from performing well. Therefore, the tweets of a
building are shown individually during training and inference. The maximum sequence
length of a tweet was set to 40. The majority of the preprocessed tweets are between
1 and 40 tokens long. In the monolingual full dataset 98.60% and in the multilingual
99.29% of the tweets having this length (cf. �gures 5.1a and 5.1b). All sequences are
truncated with more than 40 tokens and padded with zeros to guarantee equal sequence
lengths if a sequence length < 40 tokens. BERT models, however, receive unlimited
sequence lengths.
For the text classi�cation, a Long Short-Term Memory (LSTM, cf. section 2.3.2) model

is used. Because the classi�cation itself is for all word embedding approaches the same,
identical training settings are used if not explicitly mentioned otherwise. As output, a
softmax fully-connected layer was added. Adam [182] was used as the optimizer, and as
loss-function, categorical cross-entropy was employed. Furthermore, 10% of the training
set were separated for validation.

5.1 Baseline with TF-IDF and Naïve Bayes

The �rst analysis serves as a baseline for the subsequent text classi�cation task. It
concentrates on traditional IR and machine learning algorithms. In more detail, the
classic term weighting method TF-IDF is used (cf. section 2.5.2) and for classi�cation a
Naïve Bayes classi�er [183, 184, 20]. Both algorithms are provided by the widely used
Python machine learning library scikit-learn [185].
First, the text is transformed into a sparse representation using the TF-IDF algorithm.

A lower word-count limit of 100 occurrences and an upper document frequency limit of
95% were set to limit the vocabulary. This ensures that typos and rare words are �ltered
out to a certain extent. Additionally, words that occur in more than 95% of the tweets
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5.2 Word Embedding from scratch: the Virgin Word Embedding
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Figure 5.2: Text classi�cation work�ow of the virgin embedding. A shows the process of creat-
ing a look-up table and the transfer of word sequences into word vector sequences.
B depicts the actual text classi�cation part.

are considered as stopwords. To classify the text features, a multinomial Naïve Bayes
was implemented using scikit-learn as well.

5.2 Word Embedding from scratch: the Virgin Word
Embedding

The �rst approach includes a virgin, i.e., an "empty" embedding layer. It is initialized and
trained with vocabulary derived from the tweet corpus. In other words: a new embedding
is trained from scratch to generate 128-dimensional word vectors. The vocabulary size
is limited to 35, 000 top words of the monolingual corpus. Instead of generating TF-
IDF weights, all words are indexed with an integer (cf. section 2.5.4). The embedding
generated by a Keras layer which is placed right before the network (cf. �gure 5.2).
The embedding layer is used to produce word vector sequences of the tweets and is
"live" trained during the classi�cation process. The word vector sequences are fed into
a classic LSTM network (cf. section 2.3). The methods to vectorize the text and the
implementation of the LSTM network have been taken from the machine learning and
neural network framework TensorFlow [186]. In the following, this monolingual model
is now referred to as virgin embedding or LSTM-V.
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Figure 5.3: Text classi�cation work�ow of the fastText embedding (mono- and multilingual).
A shows the word vector querying from the pretrained fastText model. B depicts
the actual text classi�cation part.

5.2.1 Training

The embedding layer E of the virgin embedding is the �rst layer in the neural network
construction with an embedding dimension of 128. As pointed out above, it accom-
modates the embedding matrix. For the whole experiment, its weights, i.e., the word
vectors, are trainable. After E, an LSTM layer is arranged with 128 units (size of the
word embedding) and 0.25 dropout. The virgin embedding model was trained for a
maximum of 15 epochs. Early-stopping was applied to approximate an optimal training
duration. Furthermore, if the learning reaches a plateau, the learning rate is reduced by
a factor of 0.2. The batch size is set to 128 and the initial learning rate to 2.5e− 5.

5.3 Pretrained Word Embedding: the fastText Vectors

The second variant of text representation includes a pre-trained English fastText embed-
ding1. The pre-trained embedding is loaded and for every token a word vector is returned
(cf. �gure 5.3). For out-of-vocabulary (OOV) words, an approximated vector is given
back based on the character n-grams of the OOV word (cf. section 2.5.4). This approach
unleashes the full potential of fastText and so plays out the advantages it has against
GloVe or word2vec, which are not able to deal well with OOV words. A further bene�t of
this approach: there is no word limit necessary since the classi�cation can be done within

1https://fasttext.cc/docs/en/crawl-vectors.html [15.12.2021 18:40]
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5.4 Self-trained multilingual Twitter fastText Embedding

a reasonable timeframe. However, loading word vectors in this way increases the memory
size considerably. A Python generator approach is recommended here. The vectors are
300-dimensional and are the outcome of training the fastText algorithm on Wikipedia
dumps where additional CommonCrawl2 data was added to increase the homogeneity
of the training data [114]. An additional embedding layer is not needed. To load the
fastText embedding and query the word vectors, the fastText Python library was used3.
In the following, to this model is now referred to as fastText model or LSTM-F.

5.3.1 Training

The fastText classi�cation model does not have an embedding layer. The inputs of the
generated word vector sequences are directly fed into an LSTM network followed by a
fully-connected classi�cation layer with softmax activation. Each generated word vector
is 300 dimensional. However, the fastText model was trained for 30 epochs with activated
early-stopping. Also, the same approach of learning rate reduction was applied, like the
virgin embedding. The learning rate was 5e− 4 and the batch size 128. Furthermore, a
dropout of 0.25 was used.

5.4 Self-trained multilingual Twitter fastText Embedding

As mentioned in section 1, cities are multilingual urban structures. For this reason,
the text classi�cation task is extended from a monolingual to a multilingual text corpus.
However, representing a multilingual text sequence with word vectors, e.g., obtained by a
single fastText embedding, would return a very limited word vector sequence. For exam-
ple, if a Spanish tweet should be converted with an English word embedding, the result
would be very poor. Spanish tokens might be sporadically included in an English em-
bedding; however, a meaningful vector-represented sequence cannot deviate. The tokens
are simply not included. Even though fastText provides embeddings in 157 languages
(cf. section 2.5.4 and footnote 1 on p. 58), the usage would be cumbersome. For every
individual language, the embedding must be exchanged for an optimal feature yield. As
an additional challenge, an individual preprocessing and tokenization must be executed
for every language present in the corpus (cf. section 2.4.3). Therefore, a special multi-
lingual training dataset to train the fastText embedding with unseen data was created
(cf. section 4.6).

5.4.1 Training

The multilingual fastText CBOW and skip-gram embedding training settings are adopted
from the fastText papers [109, 114] and standard settings. The embedding was trained
using fastText v.0.9.2 for �ve epochs starting with a learning rate of 0.5. The n-gram
size was set between 3 and 6. [109] reported this as a good choice across languages. The

2https://commoncrawl.org/ [15.12.2021 18:50]
3https://fasttext.cc/docs/en/python-module.html [15.12.2021 18:54]
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5 Building Function Classi�cation with (multilingual) Linguistic Features

mLSTM-F CBOW mLSTM-F skip-gram

dataset λ (m) OA κ OA κ

full ∞ (∞) 0.57 0.228 0.57 0.217

100 30 (54) 0.57 0.284 0.57 0.293

1-99 19 (25) 0.56 0.288 0.56 0.295

2-98 15 (20) 0.56 0.287 0.56 0.294

5-95 10 (13) 0.55 0.287 0.55 0.294

10-90 7 (8) 0.54 0.284 0.55 0.293

15-85 5 (6) 0.54 0.283 0.54 0.292

20-80 4 (5) 0.53 0.281 0.54 0.291

25-75 3 (4) 0.53 0.279 0.53 0.284

Table 5.1: CBOW vs. skip-gram building function classi�cation results. The maximum number
of tweets per building, i.e. the λ value, is noted in column λ (m), m stands for
multilingual and is only valid for models with the pre�x m.

output dimensionality was set to 300. The embedding yielding the highest scores in text
classi�cation is reported in the main results section 5.6.

For text classi�cation, the same LSTM con�guration and hyperparameters are used as
the previous experiments are used. The model was trained for a maximum of 30 epochs
with applied early-stopping. Also, the learning rate is reduced by a factor 0.2 if the
learning reaches a plateau. Like above, the learning rate was set to 5e − 4 and with a
batch size of 128. A dropout of 0.25 was applied to prevent over�tting.

5.4.2 CBOW vs. skip-gram: preliminary results

As pointed out above two fastText embedding have been trained. In this paragraph it
is analyzed which of the both models delivers the best building function classi�cation
results. Table 5.1 gives an overview of the classi�cation results. Please note that all
results refer to multilingual datasets. The classi�cation was performed with an LSTM
network. The training settings have been noted above. The LSTM trained with CBOW
word vectors is refered to as CBOW model and the skip-gram trained LSTM is called
skip-gram model in this section.

The CBOW accuracy ranges from 0.53 to 0.57, and the Kappa scores from 0.228 to
0.288. The skip-gram models also show accuracies from 0.53 to 0.57. In contrast to the
CBOW model, the skip-gram models yield higher Kappa scores. This outcome could be
pointing to a slightly better multilingual text representation. The skip-gram models can
deal better with the irregular spelling of words which creates a high amount of irregular
words and the short text sequences in general. Here, the di�erences between CBOW
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5.5 Contextualized Sentence Embeddings obtained from (multilingual) BERT

and skip-gram models might play a role (cf. section 2.5.4). In a blog post, the word2vec
authors pointed out that skip-gram might show better results for infrequent words4.
The classi�cation results show almost equal results. However, the skip-gram mod-

els have a slight lead regarding the Kappa scores. It seems that LSTMs trained with
multilingual skip-gram word vectors achieve slightly higher results. For this reason, the
skip-gram model is used to compare the results against the other models. In the follow-
ing, the winning skip-gram model is named as selt-trained multilingual fastText model,
multilingual fastText model, or mLSTM-F.

5.5 Contextualized Sentence Embeddings obtained from
(multilingual) BERT

The �fth option to generate the features for the text classi�cation is using contextualized
sentence embeddings yielded by a monolingual or multilingual BERT model (cf. �gure
5.4). For the contextualized sentence embedding, the CLS token is used which is placed
as the �rst token into every sequence during the special BERT preprocessing (cf. section
2.5.4). After BERT, a linear classi�cation layer is following.
The classi�cation with (multilingual) DistilBERT is implemented using the huggingface

transformers Python library5. The classi�cation architecture kept standard as described
in huggingface documentation6. In the following, to this models is now referred to as
BERT or mBERT for the multilingual variant.

5.5.1 Mono- and multilingual BERT models

For the mono- and multilingual BERT models, Adam was used as an optimizer, and the
models have been trained for 3 epochs. The learning rate was set to 5e − 6. The small
learning rate and the small number of training epochs were set because preliminary stud-
ies revealed quick over�tting to the Twitter data when using larger learning rates or more
training epochs. All other parameters remained standard according to the huggingface
transformer library.

5.6 Results

In this section, the results of the building function text classi�cation is shown and dis-
cussed. A complete overview over the text classi�cation results can be found in table
5.2 for overall scores, table 5.3 for class-wise peformance, �gure 5.6, and �gure 5.8 for
confusion matrices.
Before the results are discussed in detail, it should be noted how the testing was

performed. As pointed out in section 4.3.2, after the labeling process, buildings and

4https://code.google.com/archive/p/word2vec/ [20.1.2022 18:38]
5https://huggingface.co/ [1.12.2021, 12:05]
6https://huggingface.co/transformers/model_doc/bert.html#bertforsequenceclassification

[1.12.2021, 13:24]
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Figure 5.4: Text classi�cation work�ow of the mono- and multilingual BERT models. A shows
the special text preprocessing required for BERT. B depicts the actual text classi-
�cation part.

corresponding tweets are in a 1 : n relationship. Therefore, the testing was also performed
tweet-wise. In section 6, however, the testing process will be at a building level.

5.6.1 Baseline

Table 5.2 shows the overall accuracy and the Kappa score. The overall accuracy achieved
by the Naïve Bayes baseline never drops below 0.51. Interestingly, the overall accuracy
of the model trained with the largest dataset (no tweet-house-limitation by a λ value)
shows the highest accuracy of 0.59. On the other hand, the Kapp score of 0.128 is
the third-lowest which points to over�tting. The highest Kappa score shows the model
trained on the second-largest dataset of 0.273 and a 0.56 accuracy. It is also clear that the
classi�cation performance decreases when the dataset size also decreases. However, the
performance drop of the datasets with a more restrictive λ value is small. For example
from 100 to 2 − 98 accuracy decreased by 0.02 and Kappa by 0.01. This moderate
performance loss could signal that many tweets per building are not necessarily leading
to signi�cantly better performance.
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For the class-wise performance, it can be noted, that the commercial and other class
showing the best results (cf. table 5.3, column TFIDF-MNB). Both classes have the
highest amount of individual tweets (c.f. table 4.5). It is natural the classi�er adapts
more to the dominant classes. The class-wise performance re�ects this circumstance.
The residential class has not less buildings in the dataset (cf. table 4.3). However, the
total amount of tweets is lower (cf. table 4.5). Therefore, the performance is weaker as
observed at commercial and other. On the other hand, the smaller the dataset gets, the
performance of the residential class rises in precision, recall, and F1. The increase is
owed to the fact of more balanced tweet amounts amongst the classes, which leads to a
more "balanced" classi�cation result.

The full dataset without tweet-house limitation produces a poorer prediction quality
for the commercial and residential classes. As the overall results in table 5.2 indicated.
For example, the datasets with λ values from 100 to 5 − 95 produce almost identical
results. This �nding supports the claim that more data does not lead in all cases to
better predictions.

5.6.2 LSTM and Virgin Embedding

The self trained virgin embedding shows overall accuracies from 0.50 to 0.57 and Kappa
scores from 0.073 to 0.293 (cf. table 5.2, column LSTM-V ). The strongest result is
achieved with the model trained on the 100 dataset with an accuracy of 0.57 and a Kappa
of 0.293. Comparing the overall accuracies to the Naïve Bayes accuracies, partially better
results are detectable. Except for the dataset with no tweet-house limitation, the two
smallest datasets showing lower accuracy and Kappa values as the Naïve Bayes result.
The same pattern of slight to no decrease in performance can be seen in the results
produced by the datasets 100 to 5− 95.

For the commercial class precision scores, the virgin embedding shows for all datasets
almost the identical results as the Naïve Bayers models (cf. table 5.3, column LSTM-V ).
They are slightly lower. The same can be observed in the residential class results. Only
the values for others are higher as the Naïve Bayes' numbers. If studying the recall values,
a di�erent picture can be drawn. For commercial and residential, the virgin embedding
can outperform the baseline. Additionally, the F1 score is higher. Only for the other
class is the baseline better.

Also, the trend of "less data, fair performance" mentioned above is visible in the virgin
embedding results as well. Except for the other class, performance is not dropping when
the amount of data is reduced. For the residential class, the precision, recall, and F1
score are climbing. The more balanced tweet distribution amongst classes might be the
case for this behavior.

However, even though the virgin embedding can reach slightly higher recall and F1
scores, the gain of performance using deep learning methods with self-trained word rep-
resentations, i.e., word vectors, is moderate but observable (F1 score). The training
of a word embedding from scratch is a challenging task. The limited amount of words
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TFIDF-MNB LSTM-V LSTM-F

dataset λ (m) P R F1 P R F1 P R F1

c
o
m
m
e
rc
ia
l

full ∞ (∞) 0.42 0.31 0.36 0.36 0.42 0.39 0.46 0.43 0.45

100 30 (54) 0.56 0.58 0.57 0.55 0.66 0.60 0.56 0.65 0.60

1-99 19 (25) 0.55 0.57 0.56 0.54 0.65 0.59 0.56 0.62 0.59

2-98 15 (20) 0.55 0.56 0.55 0.54 0.62 0.58 0.55 0.65 0.60

5-95 10 (13) 0.54 0.54 0.54 0.53 0.62 0.57 0.54 0.63 0.58

10-90 7 (8) 0.53 0.52 0.53 0.52 0.57 0.55 0.53 0.62 0.57

15-85 5 (6) 0.52 0.50 0.51 0.51 0.56 0.54 0.53 0.59 0.55

20-80 4 (5) 0.52 0.49 0.50 0.46 0.61 0.53 0.53 0.59 0.55

25-75 3 (4) 0.50 0.48 0.49 0.45 0.62 0.51 0.51 0.57 0.54

o
th
e
r

full ∞ (∞) 0.66 0.79 0.72 0.65 0.62 0.63 0.68 0.63 0.65

100 30 (54) 0.57 0.71 0.63 0.62 0.63 0.62 0.62 0.65 0.63

1-99 19 (25) 0.56 0.70 0.62 0.62 0.60 0.61 0.60 0.67 0.63

2-98 15 (20) 0.55 0.70 0.62 0.59 0.65 0.62 0.61 0.63 0.62

5-95 10 (13) 0.54 0.70 0.61 0.60 0.60 0.60 0.60 0.62 0.61

10-90 7 (8) 0.53 0.70 0.60 0.56 0.64 0.60 0.58 0.62 0.60

15-85 5 (6) 0.52 0.70 0.59 0.56 0.61 0.58 0.57 0.61 0.59

20-80 4 (5) 0.51 0.70 0.59 0.56 0.60 0.58 0.57 0.61 0.59

25-75 3 (4) 0.50 0.69 0.58 0.56 0.56 0.56 0.56 0.58 0.57

re
si
d
e
n
ti
a
l

full ∞ (∞) 0.24 0.09 0.13 0.16 0.11 0.13 0.11 0.19 0.14

100 30 (54) 0.47 0.18 0.26 0.45 0.23 0.30 0.45 0.23 0.30

1-99 19 (25) 0.48 0.20 0.28 0.44 0.28 0.34 0.47 0.25 0.33

2-98 15 (20) 0.49 0.21 0.29 0.47 0.24 0.32 0.49 0.25 0.33

5-95 10 (13) 0.51 0.23 0.32 0.47 0.32 0.38 0.48 0.31 0.38

10-90 7 (8) 0.53 0.26 0.34 0.50 0.31 0.38 0.51 0.32 0.39

15-85 5 (6) 0.54 0.28 0.37 0.51 0.35 0.42 0.52 0.36 0.42

20-80 4 (5) 0.56 0.30 0.39 0.57 0.24 0.33 0.53 0.37 0.44

25-75 3 (4) 0.57 0.32 0.41 0.58 0.27 0.37 0.53 0.41 0.47

BERT mLSTM-F mBERT

c
o
m
m
e
rc
ia
l

full ∞ (∞) 0.50 0.55 0.53 0.55 0.51 0.53 0.61 0.67 0.64

100 30 (54) 0.58 0.65 0.61 0.55 0.71 0.62 0.57 0.67 0.61

1-99 19 (25) 0.57 0.67 0.61 0.56 0.65 0.60 0.56 0.66 0.61

2-98 15 (20) 0.58 0.62 0.60 0.55 0.66 0.60 0.56 0.65 0.60

5-95 10 (13) 0.56 0.64 0.60 0.55 0.64 0.59 0.56 0.64 0.59

10-90 7 (8) 0.55 0.63 0.59 0.54 0.62 0.58 0.54 0.66 0.59

15-85 5 (6) 0.53 0.65 0.58 0.54 0.61 0.57 0.53 0.64 0.58

20-80 4 (5) 0.55 0.57 0.56 0.54 0.60 0.57 0.53 0.63 0.58

25-75 3 (4) 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.58 0.56

o
th
e
r

full ∞ (∞) 0.74 0.66 0.70 0.60 0.67 0.63 0.69 0.64 0.66

100 30 (54) 0.63 0.66 0.65 0.61 0.61 0.61 0.62 0.63 0.62

1-99 19 (25) 0.64 0.62 0.63 0.59 0.63 0.61 0.60 0.63 0.62

2-98 15 (20) 0.61 0.67 0.64 0.58 0.64 0.61 0.61 0.59 0.60

5-95 10 (13) 0.64 0.60 0.62 0.58 0.63 0.60 0.60 0.62 0.61

10-90 7 (8) 0.62 0.37 0.43 0.57 0.62 0.60 0.60 0.59 0.59

15-85 5 (6) 0.62 0.59 0.60 0.57 0.62 0.59 0.61 0.56 0.58

20-80 4 (5) 0.58 0.65 0.61 0.56 0.62 0.59 0.58 0.60 0.59

25-75 3 (4) 0.58 0.62 0.60 0.53 0.68 0.60 0.57 0.61 0.59

re
si
d
e
n
ti
a
l

full ∞ (∞) 0.12 0.18 0.15 0.39 0.24 0.29 0.31 0.27 0.29

100 30 (54) 0.45 0.28 0.35 0.48 0.18 0.26 0.42 0.24 0.31

1-99 19 (25) 0.46 0.32 0.38 0.47 0.25 0.33 0.46 0.26 0.34

2-98 15 (20) 0.48 0.31 0.38 0.49 0.23 0.32 0.43 0.32 0.37

5-95 10 (13) 0.47 0.40 0.43 0.49 0.27 0.35 0.47 0.32 0.38

10-90 7 (8) 0.50 0.37 0.43 0.50 0.31 0.38 0.49 0.33 0.39

15-85 5 (6) 0.52 0.39 0.45 0.50 0.33 0.40 0.47 0.38 0.42

20-80 4 (5) 0.53 0.41 0.46 0.51 0.33 0.40 0.50 0.35 0.42

25-75 3 (4) 0.53 0.48 0.50 0.53 0.33 0.41 0.49 0.38 0.43

Table 5.3: Monolingual classi�cation results. The scores presented in this table are precision
(P), recall (R), and F1 (F1). The maximum number of tweets per building, i.e. the
λ value, is noted in column λ (m), m stands for multilingual and is only valid for
models with the pre�x m.
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(35, 000)7, the short sequences and the informal language are possibly the primary per-
formance factors. For this reason, a pre-trained word embedding, such as fastText (cf.
2.5.4) could provide more sophisticated feature vectors and approximations of out-of-
vocabulary words, which is expected due to informally written tweets, leading possibly
to higher classi�cation scores.

5.6.3 LSTM and fastText Embedding

The LSTM models training with fastText word vector sequences show overall accuracies
from 0.53 to 0.58 and Kappa scores from 0.146 to 0.305 (cf. table 5.2, column LSTM-F ).
Compared to Naïve Bayes and the virgin embedding, the fastText models outperform
both of them (moderately). The model trained on the 100 dataset shows the highest
kappa score. The results of the fastText embedding models are stable throughout the
nine datasets�the largest dataset achieves the highest accuracy but the lowest Kappa
score.
The class-wise performance is close to the virgin embedding. Slightly higher F1 scores

compared to the Naïve Bayes and the virgin embedding are observable. Also, recall in
some cases is also higher. By di�erentiating the F1 scores, the model best predicts the
other class followed by the commercial class. "Residential" demonstrate the poorest per-
formance. However, the fastText models reach slightly higher precision values compared
to the virgin embedding. For residential, higher recall values than the baseline can be
achieved. In comparison to the virgin embedding, elevated recall scores for the smaller
datasets are also observable.
The fastText models also display the same e�ect as the latter models. A lower number

of tweets per building does not lead to a large performance drop. The dataset without a
tweet-house limit constantly shows weaker results (except for the other class). As stated
in the paragraphs above, the residential bene�ts the most from a stricter tweet-house
limit, i.e., a lower λ value. The stricter this value is set, the more balanced the number
of tweets per class, leading to increased performance of the residential class.
In more than 50% of the cases, the fastText model shows higher recall values and higher

F1 scores compared to the virgin embedding model. In 19 of 27 cases, the fastText em-
bedding models achieve higher F1 scores than the baseline models. This �nding indicates
that a pre-trained English word embedding is able to deliver better features of the infor-
mal Twitter language and therefore leads to increased classi�cation results for building
function classi�cation. However, this poses the question of whether the classi�cation
can be boosted by using more contextualized embeddings from BERT's state-of-the-art
neural language model.

5.6.4 BERT

The BERT models achieve the highest accuracy values and Kappa ratings throughout
the di�erent datasets (cf. table 5.2). Except for the largest dataset full, all models

7Subsequent experiments with a much larger vocabulary, however, revealed no performance boosts.
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trained are reaching almost the same Kappa scores ranging from 0.320 to 0.332, which
outperform all other models and classi�cation techniques.
The precision values reached by the BERT models are higher for all classes in compar-

ison to every other model�with the exception that the Naïve Bayes outperforms BERT's
residential precision values. Although, BERT shows higher recall values at the residen-
tial class, which indicates a lower miss-classi�cation rate. The recall values of the BERT
models are also higher almost everywhere. In 19 of 27 cases BERT's recall values are
higher than the fastText models. However, it seems the baseline's recall values of the
other class are unbeatable. Finally, the BERT models can achieve higher F1 scores than
all other models in 22 cases. For the weak residential class, BERT reaches the F1 high
score for all datasets. In 8 of 9 cases, they reach the best recall score for the residential
class. Even though the amount of data is lower than commercial and other, BERT can
produce better results.
The results of BERT demonstrate that contextualized linguistic features can generate

better performance for building function classi�cation. In particular for the underper-
forming residential class where BERT can achieve higher recall and F1 scores. This
indicates that context also matters for building function classi�cation with text. The
following section scrutinizes the classi�cation results in more detail.

5.6.5 LSTM and multilingual Twitter fastText Embedding

To investigate the language capabilities of the self-trained embedding, some examples are
given by executing neares neighbor queries using the fastText tool. The cosine similiarity
scores of the query words can be found in the boxes in table 5.4. For in the intra-language-
space, fair nearest neighbors can be achieved. The results of the nearest neighbor queries
are not as perfect as for a monolingual embedding trained on very large Wikipedia corpora
with structered text. However, what can be shown is that for example spelling errors
can be covered to certain degree to yield vectors which are still in the neighorhood of
the misspelled word (cf. boxes 5.4b and 5.4c). Addiontally, plural forms of words can
also be found in each others neighborhoods (cf. boxes 5.4a, 5.4b, 5.4c, or 5.4d). The
trained embedding is also capable to some degree to grasp concepts. Box 5.4d shows the
nearest neighbors of the word car. Synonyms, plural, and car-lelated words like garage
appear. This can also be shown for the word �at in box 5.4e. When querying the German
political party spd, related words like cdu (another party), or scholz who is a member
of the party and new German chancellor. This particular result is owed to the fact that
during the time period the Twitter data was received, the bundestagwahl took place.
It can be seen that a real semantic transfer between languages is not present but

was not intended from the onset (cf. section 4.6). Still, some word representations are
in the neighboorhood of a di�erent language. For example, box 5.4a in table 5.4 the
German word Universität and the Dutch translation Universiteit or Spanish universidad
and Portuguese (Brasilian) universitária (although admittedly pretty easy). Dispite the
language transfer being rather modest, this illustrates the nearest neighbor examples
showing the potential of self-trained embeddings for a speci�c down-stream task like
building function classi�cation.
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universidade 0.861558

universidades 0.847378

diversidad 0.795884

marchadeladiversidad 0.720463

universitario 0.715051

universitárias 0.712705

universitária 0.704549

universitaria 0.704191

universitário 0.693096

universitários 0.689477

(a) universidad

universität 0.924975

diversität 0.8945

universitäten 0.887677

tät 0.788678

arbeitskollege 0.773706

parität 0.771903

nervosität 0.762107

kapazität 0.756521

naivität 0.756388

flächendeckend 0.752941

(b) Universität

universität 0.852836

tät 0.835155

universitäten 0.823349

naivität 0.811663

nervosität 0.810769

loyalität 0.804597

luftqualität 0.80388

parität 0.801605

autorität 0.793169

kapazität 0.790221

(c) univesität (sic!)

cars 0.759282

car 0.662185

tires 0.643771

dealership 0.639101

vehicles 0.621912

garage 0.613661

motorcars 0.611477

escooter 0.605716

chev 0.60509

parkings 0.604357

(d) car

apartment 0.74131

flats 0.737592

bhk 0.721817

bhkflats 0.70644

forrent 0.68528

apartments 0.652898

flat� 0.651492

apartmen 0.642933

furnishing 0.638957

forsale 0.637791

(e) �at

cdu 0.793992

csu 0.718582

jamaikakoalition 0.718441

scholz 0.714119

bundestag 0.711409

koalition 0.69919

ampelkoalition 0.689255

bundestagwahl 0.688271

bundestags 0.682935

bundestagswahlkampf 0.680833

(f) spd

Table 5.4: Cosine similarity scores of the skipgram model when performing a nearest neighbor
query.

The results of the text classi�cation of the LSTM using word vectors received from the
self-trained fastText skip-gram (cf. CBOW results in table 5.1) show stable performance
throughout the datasets. The overall accuracy ranges from 0.54 to 0.57 and Kappa from
0.217 to 0.295.

The models can achieve similar precision scores throughout the di�erent datasets with
minimal distances (0.54 to 0.56). In contrast, the recall values dropping from the datasets
1-99 to 25-75 are quite clear. The impact on the F1 scores is modest but visible.

Similar performance patterns can be found by looking at the other class. While the
"mid-range" datasets achieved relatively similar results, the minor datasets exhibited a
noticeable drop in precision. On the other hand, the recall of 0.68 is a indicator of the
25-75 dataset and seems to be an outlier. The recall values of the other datasets are
smaller, and the F1 scores are almost identical.

The precision scores of the residential class rise the smaller the dataset gets. This trend
was also observable by checking the numbers of the other models. The underrepresented
residential class bene�ts from a more balanced dataset. Same for recall: the values
increase the smaller the dataset gets.

The self-trained multilingual fastText embedding achieves balanced and reasonable
results given the naïve training approach and the relatively small dataset. It yields
similar patterns as other models�for example, the increasing scores for the residential
when the dataset size decreases.
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However, what if the features are generated with a multilingual variant of DistilBERT,
trained on vast text corpora? Can such features further increase the classi�cation results?
The following section discusses the performance of the text classi�cation using BERT.

5.6.6 Multilingual BERT embedding results

The results of the multilingual text classi�cation with the multilingual variant of Distil-
BERT showed slightly higher or equal results. The overall accuracies range from 0.54 to
0.63. By comparing the Kappa results with the other models, it can be seen that the
values are moderately higher. They range from 0.298 to 0.336. Multilingual DistilBERT
trained with the largest dataset achieves the highest overall scores. This circumstance is
di�erent from the other results where the models with the most tweets always performed
worst.
The precision scores of the commercial class decrease marginally, notable for the slim-

mer the dataset gets. Also, the precision scores are almost equal compared to the model
using the self-trained multilingual fastText vectors. The recall values are slightly higher
than the values achieved by the multilingual fastText model. However, the multilingual
BERT model can outperform the multilingual fastText model in 6 of 9 datasets at F1
scores. In three cases, the multilingual fastText model achieves the same or better results.
By looking at the results of the other class, it can be seen that the smaller the dataset

gets, the lower the precision. The precision drops slightly but is still higher compared to
the multilingual fastText model. However, the recall scores yielded by the multilingual
fastText model were better in 7 of 9 cases and for the F1 score, the multilingual fastText
embedding achieves higher scores in 4 of 9 cases. The multilingual BERT models have
only in 4 cases (slightly) higher F1 scores compared to the fastText model.
For the residential class, the �ndings are similar. In 9 of 9 precision scores, the mul-

tilingual BERT model is outperformed by the multilingual fastText embedding model.
The dataset 2-98 or 5-95 for example, are partially and relatively transparent. It is in-
teresting that the recall values in both models are climbing the smaller the datasets get.
Here, the BERT model reach higher scores. This �nding stressed the 8 of 9 times higher
F1 scores in comparison to the multilingual fastText embedding.
It can be stated, that the massive multilingual BERT model can partially outperform

the model trained with self-trained multilingual Twitter word vectors in the building
function classi�cation. However, the multilingual BERT model can outperform the fast-
Text model, it can be seen that the di�erences between the models are moderate. The
outcome is evidence that particular tasks like the building function classi�cation task
seem to require more speci�c linguistic features in a multilinguistic setting. Even though
BERT is slightly better, almost the same result can be achieved with smaller datasets
and "lighter" model architectures.

5.7 Analysis of the Text Classi�cation Results

The last section showed the classi�cation results yielded by the di�erent classi�ers. A
signi�cant �nding is de�nitely the increased performance reached by models exploiting
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more sophisticated word representations. The Kappa and F1 scores could be increased
with (multilingual) fastText and BERT models. However, 0.63 seems to be a ceiling for
accuracy for pure text classi�cation. The weakest class here is residential, with F1 scores
from 0.13 (baseline) to 0.50 (BERT). One reason is most likely the lower number of tweets
per building, but could it also be the text responsible for the underperformance? Why
have the classi�ers had di�culty distinguishing the tweets, especially for the residential
class? This section studies the results and gives possible answers to these questions.
The examined results are based on the results achieved with the dataset encoded 5−95

because it leads to a fair classi�cation result (concerning the number of tweets) amongst
classes.

5.7.1 Overview

The collected tweets can exhibit variable distances to the assigned building. Figure
5.5 shows the log-scaled distribution of tweets between the distances of 0 to 50m to
the assigned building. Most of the tweets are within a distance of 0 − 10m to their
assigned buildings�the distribution of the true predictions showing a slight decrease
for more distant tweets. The residential class shows here a noticeable trend. The false
predictions increase the further tweets are away from the buildings. This tendency is
visible throughout the classes. The �nding suggests that the 50m parameter chosen in
section 4.3.2 seems to be reasonable. Further research could utilize this �nding and �lter
even stricter tweets via distance to increase classi�cation performance. Figure 5.6 shows
the overall classi�cation results of the individual cities. It can be seen that cities like New
York, Los Angeles, and Washington show the best results. It can be noted that no city
exhibits strong performance variances. However, it can also be seen that some cities have
lower Kappa scores. A possible explanation for the poor results of the models trained on
the datasets without tweet-house-limitations is over�tting. By looking at the sub�gures
in �gure 5.7 it can be seen that is fact the case. The models trained on the large datasets
are over�tting very fast. By considering the loss plots belonging to models of the smaller
datasets, it can be seen that the over�tting is either not present (cf. sub�gure 5.7b) or
is not onsetting immediately (cf. sub�gure 5.7d)
Continuing on, the model predictions are analyzed in more detail. For this analysis,

the models with the most balanced results are chosen. Therefore, the models with the
dataset encoding 5-95 are used. The results with these datasets achieved slightly lower
accuracy. However, the Kappa scores are almost on par, and the residential class shows
better results. The confusion matrices of the individual models showing similar classi�-
cation distributions (cf. �gure 5.8). Figure 5.8a depicts the classi�cation distribution of
the best performing Naïve Bayes model. It can be seen that commercial and other are
classi�ed relatively well. The residential class, on the other hand, is classi�ed poorly.
"Residential" tweets are mistaken with other and commercial tweets. However, the bias
towards the other class is slightly higher. Almost the same trend can be observed when
looking at the confusion matrix in �gure 5.8b of the virgin embedding. The dominant
classes, commercial and other, are also inferred satisfyingly. Unfortunately, the residen-
tial class is classi�ed poorly as well. The commercial class is here also the most frequent
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Figure 5.5: Distance plot of the 5− 95 BERT model. The upper row shows the tweet-distance
distriburion within 50m. The rows below display the true and false distribution of
tweets according to the distance. The distances are normalized.

miss-classi�cation. The third model, i.e., the fastText model drawing the same picture
(cf. �gure 5.8c). Commercial and other are categorized �ne, while the residential class
underperforms visibly. According to the �ndings above, residential tweets are mainly
confused with the commercial class. BERT also shows the same classi�cation pattern
as the three models above. The commercial and other class are categorized well. The
BERT results for the residential class are slightly better. However, the residential class
is more confused with the commercial class (cf. �gure 5.8d). By examining the confusion
matrices of the multilingual models, the same pattern can be seen (cf. �gures 5.8e and
5.8f). Both models have achieved acceptable recall values for commercial and other, but
for residential, both models confuse commercial and residential more than residential
and other.
Therefore, the following paragraph analyzes the text classi�cation in more detail. Some

prototype tweets are selected, and their texts scrutinized. The goal is to �nd a possible
explanation for the misclassi�cations besides class imbalance and if a text pattern can
be detected.
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Figure 5.6: City-wise results of the 5− 95 BERT model. The numbers are showing the macro
scores of the individual cities. The scores presented in this �gure are overall accu-
racy (OA), precision (P), recall (R), F1 (F1), and Kappa (K).
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Figure 5.7: Training and validation loss histories.
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(b) LSTM + Virgin embedding model.

commercial other residential
Predicted label

commercial

other

residential

Tr
ue

 la
be

l

0.63 0.27 0.11

0.3 0.62 0.078

0.4 0.28 0.31

0.1

0.2

0.3

0.4

0.5

0.6

(c) LSTM + fastText embedding model.
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(e) LSTM + Multilingual Twitter fastText embed-
ding.
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Figure 5.8: Confusion matrices of the 5-95 dataset model results. Values normalized after true
predictions, i.e., recall (row-wise normalization).
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5.7.2 Feature Analysis

Before the misclassi�cation is investigated, a brief overview of correctly classi�ed tweets
is given. It can be seen in table 5.5 that the tweets showing a term and topic pattern.
Commercial tweets (examples 1�4) are often food-related. The example tweets given here
mostly talk about lunch break, having a drink, restaurants, or speci�c foods. Tweet 4 is
an example of code-switching, i.e., the changed language within context. The text of the
tweet is mainly English, but the user refers to a sort of beer and a location type spelled
out in German. Examples 5�7 are positive examples of the other class. The tweets
exhibit terms which are related to education like classroom, college, or religious content.
Example 8 refers to getting out at the next stop (most likely public transportation in
Paris). The examples of the residential class include watching the rain, o�ering kitchen
utensils, a home-coming scenario in Portuguese, and mowing the lawn at home in Italian.
Considering the confusion matrices 5.8a, 5.8b, 5.8c, 5.8d again, it can also be seen that
misclassi�cations are happening. In particular, the residential class is underperform-
ing. Why can commercial and other tweets be classi�ed relatively well while residential
tweets' predictions are mostly poor? One reason is the imbalanced number of tweets per
class. However, as [20] point out, challenges should be expected when tweets are posted
referring�referring to mix-used buildings. They hypothesized that a main source of error
could be the mixed usage of some buildings. For example, an apartment building can
also accommodate commercial entities like small stores, doctors' o�ces, a bakery, or a
restaurant. If a tweet is tagged with a point of interest of this particular place, it inherits
the OSM label of the building. When the building is labeled as residential, the tweet is
tagged with residential regardless if the tweet refers to the small restaurant on the ground
�oor (cf. �gure 5.9). Nevertheless, is the mixed-use building re�ected in the tweet text?
Multilingual tweets of all classes are selected to scrutinize the content to answer these
questions. The goal is to detect text features that might explain the classi�cation pattern
discovered above. Table 5.6 gives an overview over selected examples to corroborate the
statement from above. Here, tweets have been selected which the BERT model trained
with dataset 9-95 predicted wrong. Examples 13�15 in table 5.6 show misclassi�cations
of residential buildings. The content of the selected tweets is about drinking, cafeteria,
restaurants, menus, and a club. It is clear that the tweets refer not to a residential home
but to gastronomy venues that are tagged as commercial (cf. appendix 4.4a). Example
15 mentions a nightclub at a di�erent location in the city.

One explanation might be that a person is tweeting from home about the venue. By
looking at examples 16�18, the tweets are falsely categorized as other buildings. The
text includes words like Universidad, medical terms, and college. Education and medical
facilities can be related to the other class (cf. �gure 4.4c). Example 16 is also an
exemplary case of mixed language on Twitter. The same picture draws examples 19�20.
Here, the other texts are mistaken as commercial tweets. Terms like o�ce, work, or
job opportunities might be related to business and commercial topics. Examples 20 and
21 are additionally di�cult due to a mixed usage of possible topic words. The tweets
include both job-related vocabulary like job or hiring. On the other hand, terms that
could be used within a medical context like nursing or care could confuse the classi�er.
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# OSM id true predicted text

1 517469104 commercial commercial tom yum seafood only at thai street grand metropoli-
tan mall lv cobakoba wearekobagroup thaistreet grand
metropolitan

2 1569299520 commercial commercial lmao how do you forget the back door lol lucky went
around that side to see it trinity restaurant & bar

3 763397640 commercial commercial milano agosto pausa pranzo mezzogiornodifuoco mi-
lan august summer summertime canicule agosto
pranzo lunch stazionecentralemilano break lunchbreak
via vittor pisani (it)

4 433047806 commercial commercial drinking jever pilsener by friesisches brauhaus zu
jever cronn dark side o�ce (mixed)

5 13880363 other other voila the zombies zombie makeup studentvoice un-
dead schooldistricts fxmakeup classroom studentsuc-
cess studentengagement

6 900261706 other other serving up breakfastsandwiches & lunchsandwiches
woodbridge berkeley college middlesex

7 574421030 other other bom diaa hj domingo dia do senhor fe grati-
dao amominhaigreja amominhareligiao em paróquia
santa rita de cássia mirandópolis (es)

8 290986426 other other prochain arrêt étréchy (fr)

9 1582147372 residential residential mumbai rains and the beautiful views one can see
mumbairain rainyday

10 1547616508 residential residential various kitchen stu� in london unitedkingdom ze-
rowaste free

11 1396624836 residential residential sempre bom estar com meus irmãos em condomínio
green village (pt)

12 1043827438 residential residential primo taglio dell'anno erba taglio giardino garden
sole sun home casa pernate casa" (it)

Table 5.5: Correctly classi�ed examples predicted by DistilBERT and multilingual DistilBERT.
To maintain the privacy level as high as possible, names or other markers which
could identify a speci�c user are removed and replaced with [NAME]. Examples 3,
4, 7, 8, 11, and 12 are selected from predictions made by the model trained on the
multilingual fastText embedding (9-95 dataset).
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# OSM id true predicted text

13 422941234 residential commercial drinking an original by cafeteria monti photo

14 1492303944 residential commercial liked it lot thanks morris for taking me there �rst time
see french menu translation in hk and perfect one far
from the approximate ones you �nd in paris chinese
restaurants onedimsum

15 372558734 residential commercial and present playgroundlondonuk at circa theclub with
dj [NAME] on the decks and me on the door come
and join us doors open at pm [NAME]

16 403913772 commercial other i'm at universidad mayor in santiago de chile

17 1302733506 commercial other before and after nomorebraces braceso� [NAME] or-
thodontics

18 1022385648 commercial other halloween at tmg college australia tmg college aus-
tralia rto id

19 52377106 other commercial captured from the o�ce no�lter industries sunset
travelplaces workplace lovephotography amazingworld
nature naturalphotography photography

20 296540782 other commercial want to work at sunrise senior living we're hiring in
vancouver bc click for details nursing

21 714822352 other commercial see our latest vancouver bc nursing job opportunity
and click the link in our bio to apply personal care
giver at sunrise senior living

22 780511446 residential other ao partir pão os nossos olhos se abrem reconhecemos
quem tu és sabe enquanto adorávamos com esse lou-
vor eu perguntei deus que seria pra mim partir pão
daí ele me (pt)

23 1222452938 other commercial una pausa para seguir trabajando (es)

24 648693538 residential commercial con este vídeo de nuestro escaparate más carnavalero
os deseamos feliz carnaval en kidspace (es)

25 796720174 commercial other i'm at librerías cuesta de moyano in madrid comu-
nidad de madrid (es)

Table 5.6: Misclassi�cation examples. To maintain the privacy level as high as possible, names
or other markers which could identify a speci�c user are removed and replaced with
[NAME]. Examples 22�25 are selected from predictions made by the model trained
on the multilingual fastText embedding (9-95 dataset).
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Figure 5.9: Prototypical mixed-used building located in Munich (screenshot taken from Google
StreetView). © Google 2021.

The analysis of the tweets indicates two �ndings. First, by reading the example tweets
in table 5.6 the issue of mixed-used buildings is visible. The tweets clearly referring to a
commercial entities but are labeled as residential (cf. �gure 5.9). The same scenario is
present in all of the documented examples above. The challenge of unclear labels hinders
the text classi�cation from reaching higher accuracies [20].

However, the second �nding is that the text classi�cation is principally working. Tweets
with words that could be assigned to a certain building function, e.g., food-related terms
(commercial), are classi�ed "wrong" only because of the problematic labeling situation.
In reality, the tweet is a tweet that refers to a commercially used entity in urban space,
but the label is other. The text in example 16 indicates that the user is at a university.
The classi�er recognizes a possible class-related term and therefore classi�es the tweets
as other. The true label, however, is commercial. Example 20 in table 5.6 is showing
this circumstance vividly. The tweet contains work-related terms and is classi�ed as
commercial. The assumption that the text classi�cation is working could also be derived
by looking at examples 22�25. Example 22 is written in Portuguese and has spiritual
and religious content. Even though the true label is residential, the classi�er identi�ed
the text as other. This category covers churches, temples, or other spiritual facilities.
The Spanish tweet depicted in example 23 is about taking a break from work which the
classi�er could interpret as a commercial context. Therefore, the tweet was classi�ed as
commercial. Example 24 could be a mixed-use building. The text is about a carnival
video presumably from a place named kidspace which could be a daycare center or an
indoor playground. The last classi�cation example, 25, is about a street of small book
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stores in Madrid Librerías de la Cuesta de Moyano. The word librerías could be used
in tweets posted from libraries or book stores. Both words could refer to a library or a
book store in Spanish. In this case, the classi�er might decide the tweet came from a
library assigned to the other class. For this case, more local knowledge for the classi�er
would be bene�cial.

5.8 Discussion

In general, deep learning methods can boost the performance of the building function clas-
si�cation at an individual building level. The Naïve Bayes trained with TF-IDF features
states with a solid baseline. The three deep learning methods achieved partially higher
F1 scores. DistilBERT reaches the highest monolingual classi�cation scores, followed by
the LSTM trained with pre-trained English fastText embeddings. For the multilingual
part, the self-trained fastText embedding and an LSTM classi�er can achieve on par
results, however, is slightly outperformed by the multilingual variant of DistilBERT by
F1 in 5 of the 9 di�erent datasets.
Even though the di�erences between the models are moderate, what could be learned

is that models using subword information like fastText or BERT reach higher scores than
models using features at a token level. Despite using sentence embeddings composed of
the tweets' subword information, the monolingual BERT model sets the benchmark. It
achieves higher accuracies and Kappa scores for most of the datasets. The multilingual
models also show reasonable results by taking into account the language diversity [35],
informal character of the tweets (cf. tables 5.6 and 5.5), or translingual constructs [36],
e.g., example 4 in table 5.5. Particular interesting are the classi�cation results yielded by
the LSTM trained on the self-trained multilingual embeddings. As discussed in section
5.6.5, the embedding seems to deliver almost the same useful features as multilingual
BERT. Highly specialized embeddings could be pivotal for the task investigated in this
dissertation. In smaller datasets, they could be able to cover the informal Twitter lan-
guage better at a (sub) word level and perhaps embed topics discussed on Twitter in a
more meaningful way (cf. table 5.4, box 5.4f). It seems that multilingual BERT yields
only signi�cantly higher accuracies when the dataset is very large. Here, BERT can show
its full potential. However, if the datasets get smaller, the di�erences in performance are
not so explicit anymore. This �nding states that almost the same results can be achieved
by methods with less hunger for energy, economical reasonable hardware, and, along
going, a decreased amount of training hours.
The impact of the di�erent dataset sizes (cf. table 4.5), i.e., distinct tweet-house-

limits (λ, cf. table 4.4), is also detectable. The large datesets, i.e., no tweet-house-limit
yielding high accuracies (cf. table 5.2) but poorer label agreement, is re�ected by the
Kappa score. This could be evidence of over�tting toward the dominant classes. The
plausibility of this direction could be shown in �gure 5.7. If the tweet-house-limit rises,
i.e., a more restrictive λ value, the overall accuracies drop, however, not strikingly. On
the other hand, an increase of F1 values of the underrepresented residential class can be
seen. In general this class has much less tweets (cf. tables 4.3 and 4.5).
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The recommendation which can be given after reviewing the results is to establish a
balancing of tweets per building. However, due to the di�erent nature of the buildings
(landmarks vs. residential houses), establishing a holistic rule is tricky. Strict down-
sampling would reduce the dataset to the bare number of buildings, and neglecting to
balance leads to over�tting. Therefore, the combination of reducing tweets via a λ value
and class-weights might be a way to impact the classi�cation.
However, the analysis of the results of the text classi�cation task con�rms that the

building function classi�cation task at an individual building level is challenging. Par-
ticularly demanding is the situation of mixed building functions (cf. section 5.7.2). For
example, a residential building accommodates a restaurant, a small supermarket, bakery,
or other businesses [20]. As future research, a method for sample weights based on the
distance of tweets to the building could be researched. Tweets closer to a building could
be more related to a building. The farther a tweet is away, the higher the likelihood of a
falsely assigned tweet to a building. Therefore, the sample weight of a tweet farther away
could be reduced and lower its impact on classi�cation. Figure 5.5 perhaps suggests that
a sample weight based on the tweet's distance could be an option. Data fusion with social
media images or street view-like images could reduce uncertainties regarding mixed-used
images. For example, images like depicted in �gure 5.9, could be collected and used as
additional data source to support the classi�cation.
In this chapter, the primary research question 1 has been answered if multilingual lin-

guistic features can contribute to building function classi�cation at an individual building
level was explored. It can be answered in general with yes. Research question 2 has been
answered as well. Models using subword information are a good approach for multilin-
gual building function classi�cation. The contextualized embeddings returned by BERT
yielding strong classi�cation results of multilingual sequences. Additionally, the linguis-
tic reality of cities can be covered by features obtained from a self-trained multilingual
embedding as well. LSTMs trained with these features achieve competitive results com-
pared to BERT. The examples above show that they can handle multilingual social media
text sequences well and lead to good classi�cation results.
Nevertheless, the embedding can be further optimized by using more training data

and sophisticated tokenizing. Additionally, more formal corpora, e.g., (multilingual)
Wikipedia dumps, could be used as additional training data next to tweets. Finally,
research question 3 regarding the impact of a balanced dataset could also be answered.
It could have been shown, that the overall scores slightly decreased; however, the classi�-
cation scores in underrepresented classes could be increased in some cases. They bene�t
from more balanced training data.

5.9 Summary

In this chapter, the training of the text classi�cation models was introduced. The di�erent
settings and con�gurations of the classi�ers have been explained. Also, the classi�cation
results of the di�erent dataset sizes have been documented and discussed. Models taught
on larger datasets, i.e., more tweets per building, reach higher scores but seem slightly to
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over�t the dominant classes commercial and other. On the other hand, models trained
on smaller datasets achieve lower overall scores but more balanced results regarding the
minor residential class.
Furthermore, a multilingual text analysis has been given. To sum up, deep learning

methods, especially subword-based methods like fastText or BERT can reach higher
classi�cation results. It was also discovered, that an LSTM trained with word vectors
from a self-trained multilingual Twitter fastText skip-gram model achieved partially on
par classi�cation scores as multilingual BERT or was slightly outperformed. Subword
information and specialized (multilingual) linguistic features seem to be a recipe for
multilingual building function classi�cation at an individual building instance level across
di�erent urban areas.
The subsequent chapter introduces the remote sensing image classi�cation results and

discusses research question 4 asking about the usefulness of decision fusion. It is asked
if the combination of text and vision is able to realize better classi�cation outcomes for
building function classi�cation.
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6 Fusion of Remote Sensing Images and
Social Media Text Messages

This dissertation's �rst major research question was the building function classi�cation
on a building level using multilingual Twitter text messages. Section 5.6 shows promising
results. The linguistic features proved as valuable data sources. The second core research
objective is to combine, i.e., the fusion of remote sensing features and linguistic features
to further improve the classi�cation. This research question is discussed in the following
sections.

6.1 Computer Vision Models

In this section, the selection of the computer vision model is explained. Since the main
focus in this thesis is natural language processing, the computer vision models are only
brie�y discussed. All models are based on the work of [14] and are initialized with
ImageNet [81] weights. [128] found that the practice of applying ImageNet weights can
also be helpful in remote sensing image classi�cation with relatively sparse datasets. The
models used in this work are VGG16 [77], InceptionV3 [187], and ResNet50 [79]. The
models have been �ne-tuned with the Google aerial very high-resolution image dataset
introduced in section 4.7 and table 4.7.

6.1.1 Training

Three state-of-the-art computer vision models have been �ne-tuned on Google aerial
images to predict the building functions of the selected 42 cities. The approach and
�ne-tuning process are based on [14] and for optimization, Adam [182] has been used
and categorical cross-entropy as loss function is applied. For �ne-tuning, two consecutive
training steps are applied. First, all layers of the models are frozen except one dense
layer. This layer is trained for 16 epochs. After this initial learning step, all layers
are set to "trainable" one after another, beginning with the last layer. Meanwhile, the
learning rate is decreased. The exact �ne-tuning steps can be found in table 6.1.

6.1.2 Results of the Aerial Image Classi�cation

First, an initial overview over the remote sensing image classi�cation is given. Table 6.2
illustrate the overall classi�cation results of the models. The InceptionV3 is performing
well amongst classes. It achieves a good precision score predicting the commercial class.
The other classes' results are more balanced. Recalling the text classi�cation results (cf.

83



6 Fusion of Remote Sensing Images and Social Media Text Messages

model step learning rate epochs # trained layers

InceptionV3
1 1e-4 16 1

2 1e-5 16 311

ResNet50
1 1e-4 16 1

2 1e-5 16 175

VGG16
1 1e-4 16 1

2 1e-5 16 21

Table 6.1: Fine-tuning protocol on aerial imagery applied to selected computer vision models.

Monolingual Multilingual

Model OA F1 (macro) κ OA F1 (macro) κ

InceptionV3 0.70 0.70 0.552 0.72 0.72 0.580

ResNet50 0.67 0.67 0.507 0.68 0.68 0.514

VGG16 0.71 0.71 0.570 0.73 0.73 0.588

Table 6.2: Aerial image classi�cation results. The scores presented in this table are overall
accuracy (OA), and Cohen's Kappa (κ), and F1 (macro).

All models perform stronger than the text models (cf. table 5.2). The veteran model
VGG16 can achieve the best result measured in accuracy, F1, and Kappa scores. The
weakest model denotes the ResNet50 network.
Table 6.3 shows the class-wise performance of the computer vision models.

table 5.3), where the residential class always performed below the two other classes, it
can be seen here that the residential class yielded the highest precision, recall, and F1
score.
By comparing the class-wise performance of the ResNet50, it can be seen that the

performance is not as good as the InceptionV3 numbers. Throughout all classes, the
scores achieved are lower. However, the residential class performs best.
The VGG16 attains the highest precision scores except for the residential class. On

the other hand, the recall score is the lowest for the commercial class. The residential
class yields a strong recall of 0.91, which indicates a high true-positive rate.
Interestingly, the best performing class of all vision models is the residential class that

underperforms in the text classi�cation. A possible explanation is classifying residential
homes with text are di�cult opposed to remote sensing imagery. Residential places
could have very distinct shapes and maybe more greenspaces, e.g., gardens. In contrast,
the text classi�cation struggles to identify homes because of a much smaller number of
tweets and possibly much higher heterogeneity of the texts. From home, one can discuss
everything.
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commercial other residential

P R F1 P R F1 P R F1

m
o
n
o
. InceptionV3 0.70 0.62 0.66 0.66 0.66 0.66 0.74 0.83 0.78

ResNet50V2 0.66 0.59 0.63 0.63 0.63 0.63 0.72 0.79 0.75

VGG16 0.75 0.57 0.65 0.71 0.66 0.68 0.69 0.91 0.78

m
u
lt
i. InceptionV3 0.69 0.71 0.70 0.69 0.67 0.68 0.79 0.78 0.78

ResNet50V2 0.65 0.65 0.65 0.62 0.66 0.64 0.76 0.72 0.74

VGG16 0.75 0.63 0.68 0.64 0.78 0.70 0.81 0.77 0.79

Table 6.3: Class-wise remote sensing image classi�cation. The scores presented in this table are
precision (P), recall (R), and F1 (F1).

The �nding that a modality is better classifying a particular class, in this case res-
idential, is a strong argument for data fusion. The two modalities could complement
each other to improve the overall classi�cation result for individual building function
classi�cation. The upcoming section investigates the second central research question
raised in this dissertation: Does data fusion enhance building function classi�cation at
an individual building level.

6.2 Decision level Fusion of Social Media Data and Remote
Sensing Aerial Images

In the following paragraphs, the results of the decision-level fusion of the aerial remote
sensing images and the Twitter text messages are shown. First, the overall results are
presented and followed by an overview of the class-wise performance. For the sake of
clarity, only the F1 score is used as a metric in table 6.4. The decision level fusion is
executed after the classi�cation of the individual modalities (cf. section 2.2). Hence,
the fusion process in this work is triggered after the text and remote sensing image
classi�cation (cf. �gure 6.1, 1,2,3 ). The softmax probabilities of the classi�ers are
avergaged (cf. �gure 6.1, 4 ).
As pointed out in section 4.5.5, after the dataset prapration procedure (cf. section 4.5)

several tweets can be assigned to one building. That results in a 1 : n relationship between
buildings and tweets. Since there is only one remote sensing image, a 1 : 1 relationship
must be established. Therefore, all the predictions of a speci�c building are averaged (cf.
equation 6.1). In other words: a mini-fusion before the actual fusion process. After this
step, the predictions are now ready for the building-wise fusion process.
The fusion process per building b ∈ B, where B describes a non-empty set of OSM

building IDs can be formally de�ned by:

fb = argmax

[
1

2

 1

|Tb|
∑
t∈Tb

t

+ ib

]
(6.1)
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Image Classification

Fusion

f b=argmax[ 12 (( 1|T b|∑t∈Tb t)+ib)]

3

4

1

2

Text Classification

aerial image classification model(multilingual) text classification

softmax

I am at a friend‘s house right now

prediction probabilities Tb 
(1:n relationship)

Vectorization and feature generation
(e.g., word vector sequences)

softmax

prediction probabilities Ib 
(1:1 relationship)

Tweets Aerial Images

Figure 6.1: Decision fusion framework. 1-2 shows the text classi�cation module. 1 depicts
vectorization and linguistic feature generation module. 2 depicts the actual text
classi�cation module. 3 depicts the aerial image classi�cation module. 4 displays
the fusion formula. Background images © TerraMetrics 2021, Google.

The predictions of both models are stored as probability vectors of the size nclasses. The
text predictions are represented as a set of probability vectors T . A prediction made from
a Tweet for a building b is noted as t ∈ T . Analog to the text predictions, predictions for
a building based on remote sensing features are speci�ed as a set of probability vectors
I where i ∈ I.
The fusion methodology that is used in this work is straightforward, computationally

cheap, and �exible. E.g., if more recent classi�cation results are available, the fusion
methods can be quickly applied without training a new model.

6.3 Results of the Decision Level Fusion

For the decision level fusion, three computer vision models yielding the largest Cohen's
Kappa score are selected. The fusion was then conducted with the text classi�cation
results showing the most balanced results. In this case, the text classi�cation results

86
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of the 5-95-encoded datasets are used. The fusion results are documented in table 6.4.
Only the model combination yielding the best fusion result is presented.
Remember, that after labeling, buildings and tweets are in a 1:n relationship. This

means that several tweets can be assigned to one building. During text classi�cation,
the analysis of the results have been conducted tweet-wise. Here in the fusion chapter,
on the other hand, the analysis is performed building-wise. It can be seen in equation
(6.1) that not only the propabilities of the text and image results are fused but also
the text results. As mentioned in section 6.2, this enusures a 1:1 relationship between
tweets and buildings. This process is also improving the text classi�cation results. For
the tweet-wise text classi�cation see tables 5.2 and 5.3 in section 5.6.
Table 6.4 documenting the overall fusion results which denote the results of the key

research question of data fusion. Fusing the Naïve Bayes model (OA 0.54, κ0.314) with
the VGG16 model (OA 0.71, κ0.570) can achieve a better overall accuracy and a higher
Kappa score (OA 0.73, κ0.602). Also, the class-wise performance can be elevated. The
F1 score of the commercial class can be increased from 0.52 and 0.65 to 0.68. Also, the
scores of the other category can be improved from 0.60 and 0.68 to 0.72. The residential
class was classi�ed pretty well by the VGG16 beforehand. Therefore, the increase is
moderate but visible: from 0.48 and 0.78 to 0.79. The text results also improved slightly
from a Kappa score of 0.259 to 0.314.
The fusion of the virgin model LSTM-V + VGG16 also yields higher scores. The

combination of the text model (OA 0.57, κ0.361) and the VGG (OA 71, κ0.570) produces
better results (OA 0.75, κ0.621). The F1 score of the commercial class can be improved
from 0.57 and 0.65 to 0.70. Here, the deep learning model can contribute to a higher
result compared to the baseline model. The other class can also bene�t and now has F1
scores from 0.61 and 0.68 to 0.73. Here, the die baseline was also beaten. The residential
class also had improved results which can be reported with a strong F1 score of 0.80 after
fusion.
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6.3 Results of the Decision Level Fusion

The text classi�cation results could be further improved from a Kappa score of 0.284
to 0.361 which outperforms the baseline.

By fusing the model trained with monolingual fastText embeddings, LSTM-F + VGG16,
the overall outcomes could also be improved. The overall scores improve by fusing the
two modalities from (OA 0.58, κ0.365) and (OA 0.71, κ0.570) to (OA 0.75, κ0.623). By
comparing the results with the virgin model, it can be seen that the increase is subtle. For
the commercial, the F1 scores improved from 0.58 and 0.65 to 0.71. Here, an elevation of
0.01 can be reached compared to the virgin embedding model. For the other class, the
F1 raised from 0.62 and 0.68 to 0.73. No improvement can be found by comparing the
di�erences between the virgin and the fastText model. The residential class F1 score can
also slightly improve from 0.52 and 0.78 to 0.81. Here, the fusion F1 is slightly higher
than the virgin embedding model. The text classi�cation can be improved from 0.297 to
0.365, slightly higher by comparing the score to the virgin embedding result.

The best fusion result of all the monolingual models yields the combination of BERT
and the VGG16, BERT + VGG16. The scores can be elevated from (OA 0.60, κ0.403)
of the text model and (OA 71, κ0.570) of the vision model to fused (OA 0.75, κ0.629).
However, by looking at the class-wise outcomes, it can be seen that the F1 scores are
identical to the scores reached by the fastText model. For commercial, the F1 enhanced
from 0.58 and 0.65 to 0.71. The scores of the other class improved from 0.62 and 0.68 to
0.73. For residential, F1 raised from 0.52 and 0.78 to 0.81. The text classi�cation results
bene�t more from the fusion. They climbed from a Kappa of 0.331 to 0.403.

For the model trained with the multilingual fastText model, mLSTM-F + VGG16 also
positive results can be reported. The scores can be improved from (OA 0.58, κ0.362)
and (OA 0.73, κ0.588) to (OA 0.75, κ0.619). For the commercial class, the scores can
be improved from 0.59 and 0.68 to 0.72. The other class exhibits an improvement from
0.63 and 0.70 to 0.73. The F1 scores of the residential is 0.79 which means no improve-
ment compared to the remote sensing results. The text classi�cation result can also be
enhanced. The cape score increased from 0.294 to 0.362.

Finally, the fusion of the multilingual BERT model with the VGG16 can also improve
the outcome of the building function (mBERT + VGG16). The scores climb from (OA
0.58, κ0.377) and (OA 0.73, κ0.588) to (OA 0.75, κ0.625). By comparing the achieved
numbers of the model trained with multilingual fastText embedding with the BERT
scores, it can be seen that the fusion could not improve further. For the commercial
class, an improvement from 0.60 and 0.68 to 0.72 can be reached, quasi the same as the
fastText model's outcome. The text classi�cation results cannot be outperformed by the
fastText model. The same situation can be found by looking at the F1 score of the other
class: an improvement can be detected. The numbers can be elevated from 0.63 and
0.70 to 0.74 (fastText model fusion 0.73). For other, the text classi�cation results are
identical (0.63 and 0.63). The residential class' scores can be improved via decision fusion
from 0.50 and 0.79 to 0.79. By looking at the F1 of the text result, it can be seen that
the BERT model slightly outperformed the fastText model. The pure text classi�cation
results can also be improved by the data fusion from a Kappa score of 0.308 to 0.377.
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commercial other residential

OSM id: 536811332 OSM id: 681740708 OSM id: 172117688

fun day at bmw mottorad 
seeing the production line 
for bmw motorcycles 
tauberingermany maybe

just posted photo bahnhof 
berlin pankow

chat perdu poissy fr

A B C

Figure 6.2: Agreement between text and image predictions. Background images© TerraMet-
rics 2021, Google.

6.4 Fusion Analysis

The preceding section showed the classi�cation results and that the data fusion with the
decision fusion method is bene�cial for building function classi�cation. This section will
show where the fusion of remote sensing images and Twitter text messages is helpful.
The examples displayed in this section are taken from fusing the LSTM trained on the
multilingual fastText embeddings (9-95) and the VGG16.

6.4.1 Agreement

Figure 6.2 depicts some examples of an agreement between the text and image classi�-
cation. For example, �gure 6.2 A, shows a large complex with (rooftop) parking spaces.
The text refers to a German car company visiting a production line for motorcycles.
Both classi�ers agree on the building label commercial. Figure 6.2 B, showing tracks,
a covered structure and greenspaces. The text is written in a mixed-language style. It
is about posting a photo at Pankow station in Berlin. Public transportation sites are
labeled as other. Also, both classi�ers concur. The last agreement example, C, depicts
scattered low-rise buildings with various vegetation patches in them. A tight road is sep-
arating some of the buildings. The French tweet text is about a missing cat chat perdu.
The examples shown in �gure 6.2 are quite harmonic, demonstrating that an agreement
between remote sensing images and tweet text is possible. However, the main target of
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6.4 Fusion Analysis

data fusion in this work is enhancing the building function classi�cation. Is it possible
that the two modalities "backing each other up" if one sensor is wrong or uncertain?

6.4.2 Can modalities support each other?

It is intended to illustrate how the fusion of social media text messages and remote sens-
ing images can improve building function classi�cation. Figure 6.3 lists some examples
where one modality supported the other during classi�cation and so identi�ed the correct
building label.
Below are each example's text and, a string encodes the classi�cation decisions of the

classi�ers. For example, string T:c V:o F:c means that text (T) classi�ed commercial
(c), vision (V) other (o) and fusion (F) results in commercial (c). The spelled-out label
below each remote sensing image is the true label.
Example A shows a large grayish rooftop with a small portion of vegetation. The

tweet text is about that the person had orders to try a new camera. Words like order or
new may correspond to a more commercially used vocabulary. The word camera could
also be associated with a professional photographer. In this example, the text helped to
classify the building correctly.
The following example, B, depicts a residential area with a relatively large open green

space and scattered trees. The text is about how the author would like to be a bee,
drinking nectar, being a child again. It seems that this text is confusing for the classi�er.
As a consequence, the text model miscategorizes the text as other. On the other hand,
the remote sensing image model can correctly identify the building as residential. After
fusing, the building is classi�ed accurately into residential.
Example C demonstrates the issue of mixed-used buildings. The remote sensing image

shows a residential building block in Berlin. The buildings encompass a courtyard with
some trees. Additionally, a parking lot is visible, and a road is dissecting blocks from
each other. The tweet, however, refers to a pharmacy (apotheke) (sic). A pharmacy is
categorized as other building. As also pointed out in section 5.7.2, the classi�cation of
the text itself is "correct". However, the mixed-use of the building confuses the text
classi�er. The image classi�er's prediction is true, and the fusion results yield the correct
building label residential.
The image in example D displays a compound with paved roads and gray and a large

roof. No vegetation what so ever is visible. These visual features could indicate a
commercial place, e.g., a mall or an industrial plant. The text is about participating
in workshops, e.g., painting or making kombucha1. Sometimes, text features could be
confusing. The text classi�er ranks these tweets as residential, and the image classi�er
can label the building correctly.
In the next example, E, however, shows that the text can also help to correct the

vision classi�cation. The image depicts crossroads and broad streets, vegetation with
trees and bushes. The vision classi�er tagged this image as residential, but the true label
is commercial. The tweet helped to identify the correct label. The hungry Twitter user

1https://en.wikipedia.org/wiki/Kombucha [14.12.2021, 16:11]
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commercial
OSM id: 349992170 OSM id: 503651904 OSM id: 4914689

had orders to try the new 
camera

vorrei essere un'ape 
nutrirmi del nettare 
delizioso che diffonde 
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berlin', "i'm at merkur 
apotheke in berlin

OSM id: 615264746 OSM id: 309661328 OSM id: 114754136

berlin offers many do it yourself 
workshops which find really 
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disappointment pizza at is 
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pizzahut soldout 🤦
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mayl wear
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T:c V:o F:c T:o V:r F:r T:o V:r F:r

T:c V:r F:c T:o V:c F:oT:r V:c F:c

T:c V:r F:c T:c V:r F:c T:c V:o F:c
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commercial commercial other

A B C

D E

IG H

F

Figure 6.3: Data fusion examples. This �gure shows examples were data fusion improved clas-
si�cation. The encodings below the images denote the classi�cation pattern of the
modalities. T=Text, V=Vision, F=Fusion, c=commecial, o=other, r=residential.
All text predictions come from the LSTM trained with multilingual fastText vec-
tors (9-95) and vision predictions from multilingual VGG16. Background images
© TerraMetrics 2021, Google.
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wanted a pizza, but the pizzeria was soldout (sic). As previously discussed in 5.7.2, it
seems that food-related terms are classi�ed as commercial. For this reason, the building
could be correctly classi�ed as commercial.

The following example, F, shows a larger building surrounded by trees. The vision
model classi�es the image into commercial. The text contrasts this result. The text is
about Moscow University. The text can provide additional information regarding this
building. After fusion, the building is correctly classi�ed as other.

Example G displays a possible winter scene (trees without leaves), a block of buildings
with a courtyard, and a road. The vision classi�er marks the building as commercial, and
the text refers to colors, good company, a buddy, a gallery, and an exhibition. Galleries
are commercial places, and the word company (despite the semantics) could lead the text
classi�er into the direction of a commercial building. The fusion result yields correctly
commercial.

The second last example, H, shows an ample green space with dense trees and grass-
covered areas. Furthermore, a swimming pool is visible. The building is visibly hard to
identify due to the comparatively coarse image resolution. The vision model classi�es
the building as residential. Here, the text can help: it is about an apparel brand and
seems to be advertising a product. In the end, the building was correctly classi�ed as
commercial.

The �nal example, I, shows a blockish building with a �at roof, trees, and an adjacent
road. The building is classi�ed as other by the computer vision model. The text backs
the classi�cation up. It is about industrial real estate�the fusion result commercial,
which is the proper label.

6.5 Discussion

In general, the above-documented data fusion results suggest that the straightforward
fusion approach is working and improves the building function classi�cation task results.
The fusion results in table 6.4 demonstrate this fact.

By analyzing the fusion results, it can be seen that text and images achieve agreement
of text and building function (cf. �gure 6.2). Possible prototypical structures in the
images and (multilingual) linguistic features in the text are forming a reasonable classi�-
cation. Nevertheless, as pointed out in the previous section, the strength of fusion can be
seen when taking a look at the disagreement between text and image classi�cation (cf.
�gure 6.3). When one modality is confused by an unusual building shape or a strange
text sequence, the other can support the classi�cation.

The examples in the latter section show exactly this behavior despite the straight-
forward decision fusion approach. The text classi�er can have di�culties classifying
residential buildings. On the contrary, the computer vision models can achieve way
better classi�cation performances of the residential class (cf. table 6.3). A possible ex-
planation is shown in �gure 6.3 (B and C). Remote sensing images show that residential
buildings have vegetation features like trees or green spaces adjacent to them or have
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relatively small roofs. For this reason, the vision models contribute by delivering strong
classi�cation results based on visual features.
The text classi�cation can contribute as well. If the vision classi�er is maybe distracted

by trees shimmering on a rooftop, linguistic features could give the �nal hint (cf. �gure
6.3, F). Moreover, example F is an excellent example of why multilingual texts should
be included in building function classi�cation. The depicted building has no English
tweets surrounded at all. The used decision fusion method can compensate for a missing
prediction. However, the building would remain a misclassi�cation. By using multilingual
content, the applied fusion method could resolve the wrong classi�cation.
A disagreement between text and image classi�cation could be evidence for a mixed-

used building (cf. �gure 6.3, C). For future research such examples could be �ltered
out for further analysis or combine a third perspective, e.g., a streetview perspective (cf.
section 5.7.2 and �gure 5.9). Maybe a specialized classi�er could resolve the conundrum
of mixed used buildings to a certain degree.
However, by taking a look at table 6.4 it can be noticed that even though fusing the best

multilingual fastText model with the best vision model, the fusion result is almost equal to
the superior multilingual BERT classi�er. This result could be owed to the fusion method
used in this work. Since the text classi�cation prediction probabilities are �rst averaged
building-wise to achieve a 1:1 relationship between tweets and buildings/images, correct
classi�cations of single tweets could be canceled out by misclassi�cations. The same
could happen during averaging the fused text probabilities with the image probabilities.
For example, the residential class bene�ts least from adding the text modality, and the
results stay the same.
In conclusion it can be mentioned that the overall results suggest that the fusion of

remote sensing images and multilingual text messages is bene�cial for building function
classi�cation. Even though the fusion method is straightforward, it can compensate
misclassi�cations and improve the overall results.

6.6 Summary

This chapter shows the fusion of aerial remote sensing images and social media text
messages. It was explained, how the vision models have been �ne-tuned and the results
have been introduced. The vision models achieved good individual performance. Here,
the residential class sticks out with solid results. The additional performance brought the
data fusion with social media text classi�cation results. However, even though every text
model can improve the building function classi�cation results in general, the performance
is almost equal between the fusion results of the deep learning text models. That said,
the fused text classi�cation results point out that models using subword information,
i.e., fastText and BERT models, can outperform more naïve approaches. The outcome
of the fusion experiment suggests promising results opening new insights to the building
function classi�cation at an individual building level.
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7.1 Conclusion

The journey from the �rst written symbols of humankind and cave paintings to tweets
as citizen sensors and remote sensing images is long. Today, billions of geotagged social
media posts from almost every place on earth are available. Therefore, using social
media data in combination with remote sensing images to tackle the U.N. Sustainable
Development Goals could be a valuable instrument. Human or citizen sensors may be
one gear in the machinery of urban remote sensing.
For this reason, this dissertation analyzes the combination of remote sensing images

and multilingual social media text messages from Twitter for individual building function
classi�cation in 42 cities. The focus is on natural language processing methods to classify
the building functions into commercial, residential, and other. State-of-the-art methods
like the neural language model BERT are used to generate features for the classi�cation.
Also, a self-trained multilingual Twitter skip-gram embedding is trained to generate
multilingual word vectors.
In this dissertation, four primary research questions are investigated:

1. Can linguistic features derived from social media text messages from Twitter con-
tribute to building function classi�cation at an individual building level?

2. How can the multilingual reality in urban areas be represented best so that they
are bene�cial for building function classi�cation?

3. What is the e�ect of unbalanced and balanced datasets on building function clas-
si�cation?

4. Finally, are visual features derived from very high-resolution remote sensing images
complementary to linguistic features?

Despite the challenge regarding the accuracy of the geolocation of the tweets, the results
reached via the text classi�cation are positive. The best performing monolingual classi�er
is BERT. Depending on the datasets, it achieves accuracies from 0.55 to 0.59 and Kappa
score range 0.248 to 0.332 (cf. tables 5.2 and 5.3). All deep learning models accomplish
better results than the Naïve Bayes baseline in the majority of the cases. To conclude,
the monolingual part of research question 1 can be answered yes.
For the multilingual part, i.e., research question 2, the LSTM model �tted with word

vectors derived from a self-trained multilingual Twitter fastText embedding can perform
almost on par with the large multilingual language Model BERT. The LSTM model gains
accuracies from 0.54 to 0.57 and Kappa scores from 0.217 to 0.295. The multilingual
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BERT model, on the other hand, achieves accuracies from 0.54 to 0.63 and Kappa scores
from 0.298 to 0.336. Even though BERT attains a higher accuracy on the largest dataset,
the performance converge to the fastText results when the datasets get smaller. The
multilingual fastText models show almost identical performance but the multilingual
BERT models yield slightly higher accuracies, higher Kappa scores, and class-wise higher
F1 scores (cf. tables 5.2 and 5.3). Even though the own embedding was beaten by
BERT, the �ndings give insights how a multilingual building function classi�cation could
be approached in the future. Namely, highly specialized self-trained embedding can
produce feature vectors which are nearly as useful as the vectors produced by BERT
for building function classi�cation. This discovery is especially practical when data or
hardware resources are sparse because the linguistic diversity in multicultural urban
areas can be represented well with a self-trained multilingual Twitter word embedding
and achieve almost on par classi�cation results as BERT models.
To summarize the text classi�cation, it can be said that models using subword informa-

tion, i.e., the fastText models and contextualized information, i.e., BERT, are performing
best. The self-trained multilingual Twitter fastText embedding appears to be a suitable
alternative for multilingual BERT within the context of building function classi�cation.
It turned out to be a possible alternative for BERT.
Furthermore, research question 3 investigates if more balanced datasets, i.e., the limi-

tation of the total number of tweets per building, impacting on text classi�cation. Since
landmark buildings could incorporate thousands of tweets, they could bias the text classi-
�cation toward biased buildings and shadow buildings with much fewer tweets. Therefore,
nine di�erent mono and multilingual datasets are generated to explore if the text clas-
si�cation bene�ts from such a limitation. A di�erent tweet-house-limit, λ, is computed
to create the datasets. The λ value represents the mean number of tweets per building.
The calculation is restricted by excluding buildings with a very high tweet count using
nine upper and lower bounds. This process automatically leads to more balanced classes.
The results indicate that the largest full datasets with restrictions show poorer Cohen's
Kappa scores in comparison to smaller datasets. The models tend to over�t (cf. section
5.7.1 and �gure 5.7) Furthermore, the drop in performance of smaller datasets is not
as distinct as excepted. The residential class, with fewer tweets, pro�ts the most by a
tweet-house limitation. The class-wise results in table 5.3 show that if λ decrease, i.e.,
lowering the maximum tweets per building, the higher the F1 score of the residential class
gets. Therefore, the usage of Twitter data without a limitation of tweets per building
leads to decreased results for the minority class. When a tweet-house limit is established,
the results become more balanced, and the drop in performance of the majority classes
is moderate.
The applied computer vision models �ne-tuned and Google aerial images show strong

results compared to text classi�cation. The best performing vision model is the VGG16
with an overall accuracy of 0.73 and a Kappa score of 0.588 (cf. table 6.2) The vision
models perform better overall and class-wise. Opposed to the text classi�cation, the
residential class is the class with the highest classi�cation performance (cf. table 6.3).
These observations point directly to the usefulness of data fusion at a building function
classi�cation task. Remotely observed data and on-site information could be combined
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to support each other. Additionally, Google Maps images are available for everyone.
Therefore, costly expenses for high-resolution remote sensing images can be avoided, and
yet, good accuracies can be achieved.
Therefore, the fourth and �nal research question addressed in this Ph.D. thesis inves-

tigates whether visual and linguistic features are complementary. Fusing such diverse
modalities as high-resolution aerial remote sensing images and Twitter text messages
garnered positive results. The applied data fusion method, namely decision fusion of the
classi�cation probabilities, can bene�t the building function classi�cation task from this
combination. The overall classi�cation performance increases to an overall accuracy of
0.75 for the monolingual classi�cation and 0.75 for the multilingual scenario. The two
sensors back each other up, which leads to higher classi�cation accuracies 6.4. Moreover,
the simplicity of the fusion method evades the retraining of large models if something
has changed, and predictions can be re-used in other experiments. This modularization
encourages replicating the experiment in a research environment without top-notch GPU
cloud servers.
This Ph.D. thesis found arguments for using multilingual georeferenced social media

data as in situ sensors for building function classi�cation for a better covering of the
diverse linguistic reality in urban areas. It looks like the citizen sensor idea is gen-
uinely a valuable source for urban remote sensing and building function classi�cation.
As discussed, the work with georeferenced social media data, especially with multilingual
tweets, needs further re�nements. Therefore, information recovered directly from a spot
of interest could contribute to reaching the U.N. Sustainable Development Goals. Munic-
ipal administrations could use the gained data to improve infrastructure and, at the same
time, the life of the citizens. However, although the big data revolution is de�nitely over
(we now live amidst the big data age), climate change continues to transform. Therefore,
the development of high-performing but economic algorithms and solutions is needed to
tackle the U.N. Sustainable Development Goals sustainably.

7.2 Outlook

Without continual growth and progress, such words as improvement,
achievement, and success have no meaning.

�Benjamin Franklin

To improve the citizen sensor idea further, some additional work can be done. In the
future, a pre-trained large language model like BERT could be �ne-tuned with tweets
labeled with a building function to further improve the monolingual results. This model
could be a BuildingFunctionBERT and added to the BERT expert model zoo. Such a
model could act like a citizen sensor language model. Furthermore, the other class could
be opened to a more �ne-grained labeling scheme, e.g., "medical", "civic", "education",
or "religious". This augmentation could elevate the internal feature representations of
the individual classes, which might lead to improved building function classi�cation. The
multilingual embedding might be improved by using more data covering a whole year.
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Seasonal words like Christmas, Weihnachten, or Noël would be mapped better in the
linguistic feature space.
Although the straightforward decision fusion method is delivering good results, a draw-

back is the possible cancelation of predictions. By averaging the prediction probabilities,
predictions could cancel each other out (cf. section 6.5). For this reason, future research
could address a more sophisticated fusion methodology that causes higher performances
and avoid the cancelation of predictions. The lack of feature fusion could induce a loss of
information, and including or generating features by applying early or late fusion could
cause an even higher classi�cation score. Nevertheless, if the challenge of mixed-use
buildings is not tackled, higher accuracies cannot be expected regardless of the fusion
method.
The challenges of the mixed-used buildings again become clear, e.g., as pointed out by

[20]. The results suggest that the text classi�cation itself is working (cf. section 5.7.2).
If a tweet refers to a Pizzeria at the ground level of a residential building, the tweet
would be labeled as residential but classi�ed as commercial. This �nding could be seen
as evidence that the text classi�cation of individual building functions using tweets is
working. As pointed out in section 5.7.2, a research perspective could be the investigation
if extra optical sensor information at a street view level might be rewarding to detect
mixed-use buildings, e.g., images like depicted in �gure 5.9. A specialized image classi�er
trained only on a (human curated) mixed-used buildings dataset could turn the scale into
a multilabel building function classi�cation scenario with high performance.
By choosing light-weight algorithms like fastText or DistilBERT versions, the energy

consumption might be lowered [188] to tackle the SDGs in a more environmentally
friendly way. This idea could be an exciting research target worth investigating for
the future within the context of urban remote sensing and building function classi�ca-
tion. The insight found in this dissertation that light-weight algorithms such as fastText
can generate feature vectors which are nearly as good as features derived from BERT
could be a �rst starting point.
Furthermore, ethical concerns arise when using georeferenced social media data. Es-

tablishing a (geospatial) connection (e.g., during labeling) of georeferenced social media
text and a concrete building can violate Twitter users' privacy. Since many users are not
aware that their data is used for research [189], future research should include a privacy
protection policy for the user1. Additional research is needed to address ethical concerns
regarding building function classi�cation using social media.

1In this thesis, for example, data in sample texts which refer to a natural person are replaced by a place
holder (to the best of the author's knowledge).
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