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Abstract. Wefelscheid (Untersuchungen über Fastkörper und Fastbere-
iche, Habilitationsschrift, Hamburg, 1971) generalised the well-known The-
orem of Artin/Schreier about the characterization of formally real fields
and the fundamental result of Baer/Krull to near-fields. In the last fifty
years arose from the Theorem of Baer/Krull a theory, which analyses the
entirety of the orderings of a field (E. Becker, L. Bröcker, M. Marshall
et al.), as presented e.g. in the book by Lam (Orderings, valuations and
quadratic forms, American Mathematical Society, Providence, 1983). At
the centre of this theory are preorders and their compatibility with valu-
ations or places. We develop some essential results of this theory for the
near-field case. In particular, we derive the Brown/Marshall’s inequalities
and Bröcker’s Theorem on the trivialisation of fans in the near-field case.
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1. Notations

By a left-ordering of a near-field F we understand a subset P of F ∗1 with the
properties

(O1) P ∪ (−P ) = F ∗, (O2) P + P ⊂ P and (O3) P · P ⊂ P .
The associated order relation <=<P (x < y ⇔ y−x ∈ P ) is then linear

and satisfies: From x < y it follows

a + x < a + y for every a ∈ F and a x < a y for every a ∈ P.

If x < y and a ∈ P also implies x a < y a, we call P an ordering.

1We set A∗ := A\{0} for each subset A of a near-ring.
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Every left-ordering P of a near-field F contains the square set F (2) :=
{x2 |x ∈ F ∗}. Every intersection T of left-orderings of F satisfies the condi-
tions:

(PO1) 0 �∈ T , (PO2) T + T ⊂ T , (PO3) T T ⊂ T , (PO4) F (2) ⊂ T .
A subset T of the near-field F with (PO1)–(PO4) is called an preorder

of F .
A preorder S of a near-field F is called a fan if every subgroup P of index

2 of F ∗ containing S with −1 �∈ P is a left-ordering of F .
A near-ring A ⊆ F is called a valuation near-ring of F , if F ∗ = A∗ ∪

(A∗)−1. In this case MA := {x ∈ F |x−1 �∈ A} ∪ {0} is an ideal of A, which is
the complement of the group of units UA in A.

The set ΓA := {x A |x ∈ F} is linearly ordered by < := � with smallest
element 0 := 0 A. And v = vA : x → x A is a valuation on F , i.e.:

(B1) v(x) = 0 ⇔ x = 0,
(B2) v(x + y) ≤ max{v(x), v(y)} for all x, y ∈ F ,
(B3) v(x) ≤ v(y) ⇒ v(a x) ≤ v(a y) for every a ∈ F .

If the ideal MA has the property

x, y ∈ A, m ∈ MA ⇒ (x + m) y − x y ∈ MA ,

the valuation near-ring A is called strict. In the case of a strict valuation
near-ring by

(x + MA) · (y + MA) := xy + MA (x, y ∈ A)

a (well-defined) multiplication is given and FA := A/MA is then a near-field,
the residue near-field of A.

Before we come to the connection between places, valuations and pre-
orders, we introduce in a preparatory Section the Harrisson topology and some
invariants for preorders that are essential for everything else, namely the degree
of stability and the chain length—all this for the case of a given near-field.

From now on we consider a left-real near-field F .

2. Preparations

2.1. Harrison Topology

For a preorder T of the near-field F , let XF /T denote the set of all left-
orderings P with P ⊇ T .

For each P ∈ XF /T we denote by σT (P ) the (well-defined) multiplicative
character x T → sgnP x of GT := GF (T ) = F ∗/T .

The mapping σT is an injection of XF /T into the character group ĜT

of GT , which can be interpreted as a subset of the Cartesian product Π :=
{1, −1}GT . Let T = TGT

0 be the product of the discrete topology T0 of {1, −1}
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on Π. The topology T is Hausdorffian and, according to the Theorem of Ty-
chonoff compact. A subbasis of T is {R1(a) | a ∈ F ∗} ∪ {R−1(a) | a ∈ F ∗},
where

Ri(a) := {f : GT → {1, −1} | f(a T ) = i } .

Since

σT (P ) ∈ R1(a) ⇔ a ∈ P ⇔ −a �∈ P ⇔ σT (P ) ∈ R−1(−a)

the sets

H ′(a) := R1(a) ∪ σT (XF /T ) = {σT (P ) | a ∈ P ∈ XF /T }
form a subbasis of the trace topology of T in σT (XF /T ). Consequently, the
system HT (F ) of the Harrison sets

HT (a) := {P ∈ XF /T | a ∈ P }
forms a subbasis of the initial topology TH(T ) of σT on XF /T . Because of
HT (−a) = XF /T\HT (a) its elements HT (a) are open and closed. We call
TH(T ) the Harrison topology on XF /T . It is obviously the trace topology
of TH(F ) := TH(T (F )) (and the coarsest topology on XF /T for which all
mappings εa : P → sgnP a are continuous).

Lemma 1. σT (XF /T ) is closed in (Π,T).

Proof. Let χ ∈ Π\σT (XF /T ). Then we have one of the following cases:
(1) χ(T ) = −1.
(2) χ(a T ) = χ(−a T ) for an a ∈ F ∗.
(3) χ(a T ) = 1 = χ(b T ), and χ(a b T ) = −1 for certain a, b ∈ F ∗.
(4) χ(a T ) = 1 = χ(b T ), and χ((a + b)T ) = −1 for certain a, b ∈ F ∗ with

a + b ∈ F ∗.
(Otherwise P := {x ∈ F ∗ |χ(x T ) = 1} would be an element of XF /T , and
χ = σT (P ).)

Then there exists a T-neighbourhood U ⊂ Π\σT (XF /T ) which contains
χ:

U := R−1(1) in case (1) ,

U := R1(a) ∩ R1(−a) respectively U := R−1(a) ∩ R−1(−a) in case (2) ,

U := R1(a) ∩ R1(b) ∩ R−1(a b) in case (3) and

U := R1(a) ∩ R1(b) ∩ R−1(a + b) in case (4) .

�

This gives us the important result:

Theorem 1. For each preorder T of a near-field F , (XF /T,TH(T )) is a Boolean
space (i.e. (XF /T,TH(T )) is Hausdorffian, completely disconnected and com-
pact) with subbasis HT (F ) = {HT (a) | a ∈ F ∗}.
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Proof. For elements P �= P ′ from XF /T there exists an a ∈ P\P ′ such that
P ∈ HT (a) and P ′ ∈ HT (−a). Because of HT (a) ∩ HT (−a) = ∅ and HT (a) ∪
HT (−a) = XF /T the topology TH(T ) is therefore completely disconnected
(and Hausdorffian). And according to Lemma 1 TH(T ) is compact. �

2.2. Degree of Stability and Chain Length

In this Section, two invariants for preorders are introduced and some of their
properties are discussed.

Let a preorder T of a near-field F be given. The factor group GT = F ∗/T
is a vector space over F2. Its dimension is denoted by δ(T ). We further denote
by

(A) st(T ) := sup{δ(S) − 1 |S ∈ XF /T is a fan }
the degree of stability of T .

Lemma 2. For each preorder T of a near-field F we have:

st(T ) = 0 ⇔ T is a left-ordering.

For a preorder T and each element a ∈ F ∗, T [a] = T ∪ a T ∪ (T + a T )
is the smallest multiplicatively closed subgroup of (F,+) containing T and
a, therefore T [a] is a preorder exactly if 0 �∈ T [a]; and that is equivalent to
a �∈ −T . The mapping

εT :
{

GT → HT (F )
a T → HT (a)

is well-defined and surjective. From HT (a) = HT (b) it follows a−1 b ∈ P for
every P ∈ XF /T and hence a−1 b ∈ T according to the Theorem of Artin:

Lemma 3. The mapping εT : a T → HT (a) is a bijection of GT onto HT (F ).

The mapping HT (a) → T [a] is well-defined according to the Theorem of
Artin, injective and inclusion-reversing. Consequently

(B) a T < b T ⇔ T [a] � T [b] ⇔ HT (a) � HT (b)

defines a (partial) order relation < on GT with smallest element T [1] = T and
largest element T [−1] = F .

Following Marshall, we call the element

(C) cl(T ) := sup{k ∈ N | a0 T < a1 T < · · · < ak T, ai ∈ F ∗, k ∈ N}
f N ∪ {∞} the chain length of T . We note some simple facts:

Lemma 4. For a preorder T of a near-field F we have:

(a) cl(T ) = 1 ⇔ T is a left-ordering.
(b) cl(T ) ≤ 2 ⇔ T is a fan.
(c) cl(T ) ≤ δ(T ).



Vol. 76 (2021) Places of Near-Fields Page 5 of 14 135

Proof. (a) Only ⇒ is to be verified. If T is not a left ordering, there exist
P ∈ XF /T and a ∈ P\T . Therefore, we have T < a T < −T .

(b) Let T be a fan and a, b ∈ F ∗ with T < a T < b T < −T be given.
It follows a ∈ T [a] ⊂ T [b] ⊂ T ∪ b T , and a �∈ T . This shows a ∈ b T , i.e.
a T = b T . Consequently, we have cl(T ) ≤ 2.

If, on the other hand, T is not a fan, then there is an a ∈ F ∗\(−T )
with T + a T �⊂ T ∪ a T . Obviously, we can assume 1 + a �∈ T ∪ a T . Then
T < (1 + a)T < a T < −T so that cl(T ) ≥ 3.

(c) Any chain a0 T < a1 T < · · · < an T leads to T [a0] � T [a1] � · · · �
T [an] and thus to a chain T [a0]/T � T [a1]/T � · · · T [an]/T of F2-subspaces
of F ∗/T . �

We will also need the following property later [cf. for example [9] (8.13)]:

Theorem 2. [10, (1.7)] Let T ⊂ Ti (i = 1, . . . , n) be preorders of F with
XF /T ⊂ ⋃n

i=1 XF /Ti. Then cl(T ) ≤ ∑n
i=1 cl(Ti).

Proof. Let <i denote the order relation on F ∗/Ti explained according to (B).
From a T ≤ b T , i.e. HT (b) ⊂ HT (a), it follows HTi

(b) ⊂ HTi
(a) thus a Ti ≤i

b Ti for i = 1, . . . , n. Furthermore:
(∗) In the case a T < b T we have a Ti <i b Ti for at least one i ∈

{1, . . . , n}.
Namely, let a Ti = b Ti, i.e. Ti[a] = Ti[b] for i = 1, . . . , n be assumed. For

each c ∈ F ∗, we conclude XF /T [c] =
⋃n

i=1 XF /Ti[c] from the premise, so that
T [c] =

⋂n
i=1 Ti[c] according to Artin’s Theorem. It follows T [a] =

⋂n
i=1 Ti[a] =⋂n

i=1 Ti[b] = T [b] in contrary to the assumption.
Now let a chain a0 T < a1 T < · · · < ak T be given in F ∗/T . This

induces chains a0 Ti ≤i a1 Ti ≤i · · · ≤i ak Ti in F ∗/Ti for i = 1, . . . , n. If
in the i-th of these chains ki strict inequalities <i occur, then with (∗) it
follows obviously k ≤ k1 + · · · + kn ≤ cl(T1) + · · · + cl(Tn). This establishes
cl(T ) ≤ cl(T1) + · · · + cl(Tn). �

3. The (Real) Place of a Left-Ordering

For each valuation near-ring A of F , let λA denote the extension

x →
{

x + MA if x ∈ A
∞ if x ∈ F\A

of the projection πA : A → A/MA onto F . We call ξ := λA the place belonging
to A. It obviously has the following properties2:
(S1) ξ(x) = ∞ ⇔ x �= 0 and ξ(x−1) = 0.
(S2) ξ(x), ξ(y) �= ∞ ⇒ ξ(x ± y) = ξ(x) ± ξ(y).
(S3) ξ(x), ξ(y) �= ∞ ⇒ ξ(x y) �= ∞.

2We write 0 for MA ∈ F A.
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If A is strict, the following stronger condition (S3’) holds:
(S3’) ξ(x), ξ(y) �= ∞ ⇒ ξ(x y) = ξ(x) ξ(y).
On the other hand, if F ′ = (F ′,+) is an abelian group, then a surjective

mapping ξ : F → F ′ ∪ {∞} with the properties (S1), (S2), (S3) is a F ′-place
of F . If F ′ = (F ′,+, ·) even is a near-field and if (S3’) is satisfied, then we call
ξ multiplicative F ′-place. To ξ it belongs a valuation near-ring, from which ξ
essentially arises in this manner:

Lemma 5. Let F ′ = (F ′,+) be an abelian group and ξ a F ′-place of F . Then
we have:
(a) Aξ := ξ−1(F ′) is a valuation near-ring of F with maximal ideal Mξ :=

ξ−1({0}).
(b) The mapping εξ : x+Mξ → ξ(x) is a group isomorphism of F ξ := Aξ/Mξ

onto F ′.
(c) The valuation near-ring Aξ is strict if and only if

(i) ξ(x) · ξ(y) := ξ(x y) (x, y ∈ Aξ)

defines a well-defined operation · in F ′.
Then (F ′,+, ·) is a near-field and εξ is a near-field isomorphism. (And ξ

is a multiplicative F ′-place.)

The proof is done as in the case of a field.
In analogy to the notations introduced for valuations we call Aξ valuation

near-ring, Mξ the (maximal) ideal, Uξ := Aξ\Mξ the group of units, F ξ the
residual class group (in case of strict Aξ the residual class near-field), vξ :=
vAξ

: x → x Aξ the canonical valuation of the place ξ, and we denote U
(1)
ξ :=

1+Mξ. The place ξ is called trivial if Aξ is trivial. Trivial places yield near-field
isomorphisms.

Remark 1. In many cases (e.g. [1,5,11]) only multiplicative places ξ with the
additional property

ξ(a x − b x) �= ∞, ξ(x) = ∞ ⇒ ξ(a) = ξ(b)

are considered. These are those places whose valuation near-rings Kalhoff [7]
denotes by place-near-rings.

The place ξ is called compatible with the left ordering < or P , if vξ is
compatible with < or P respectively. Due to Karpfinger [8] (2.1)(8) and (5)(b)
we have:

Lemma 6. An F ′-place ξ of F is compatible with a left-ordering < (or P ) if
and only if by

x ≤ y ⇔ ξ(x) ≤ξ ξ(y) (or Pξ := ξ(P ∩ Uξ))

a left order <ξ (or Pξ) of (F ′,+) is given.
If ξ is multiplicative, then <ξ (or Pξ) is a near-field left-ordering. It is

an ordering if < is an ordering.
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We call <ξ (resp. Pξ) the left-ordering induced by < and ξ (resp. P and
ξ).

A place ξ is called compatible or fully compatible with a preorder T in F ,
if ξ is compatible with at least one or with every left-ordering of XF /T .

It is herewith possible to make a particularly favourable formulation of
Karpfinger [8] (2.5), which is going back to Dubois [4] and Brown [3]:

Theorem 3. For every non-archimedean left-ordering < of F there is exactly
one isotonic (i.e. compatible with <) and multiplicative R-place 3 λ< of F ,
namely

(ii) λ< : x →
{

sup{r ∈ Q | r < x} , if x ∈ A<

∞ , if x ∈ F\A<
.

We have vλ<
= v< and Aλ<

= A<.4

Proof. According to Karpfinger [8] (2.5) v := v< is strict and non-trivial with
the archimedean left-ordered residue class near-field (F v, <′).5 As every archi-
median left-ordered near-field can be embedded into R, there exists an isotonic
near-field monomorphism ε< from (F v, <′) into (R, <). Consequently

λ< : x →
{

ε<(x + Mv), if x ∈ A
∞, if x ∈ F\A

is a multiplicative and isotonic R-place. For x ∈ A< and r, s ∈ Q we have

r < x < s ⇒ r = λ<(r) ≤ λ<(x) ≤ λ<(s) = s.

This establishes the representation (ii).
If ξ1, ξ2 are two different multiplicative, isotonic R-places of F , then there

exists a x ∈ F with ξ1(x) < ξ2(x) and hence an q ∈ Q with ξ1(x) < q < ξ2(x).
Because of ξ1(q) = q = ξ2(q) a contradiction arises. �

We call λ< the real place of < and also write λP for λ<. The mapping
P → λP of X(F ) is denoted by λ. By Karpfinger [8] (3.7), (3.9)(b) and (2.1)(b)
it follows:

Theorem 4. For a multiplicative R-place ξ of F the following statements are
equivalent:
(1) ξ ∈ λ(XF ).
(2) 0 �∈ ∑

ξ(Q(F ) ∩ Uξ).
(3) U

(1)
ξ ∩ (−T (F )) = ∅.

Remark 2. If F is a field, then each multiplicative R-place of F is in λ(XF ).
For a skew field F this is in general not true.

Remark 3. The ring Aξ<
= A< is a place-ring.

3
R is thereby provided with the usual ordering.

4For the natural valuation v< and A< see the definitions after Karpfinger [8] (2.5).
5Whereby F v = A</M<.
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Now if <1 and <2 are two non-archimedean left orderings of F with the
same image under λ, then it follows by (3) A := A<1 = A<2 and with the
proof of (3) – and the terms there – ε<1 πA = λ<1 = λ<2 = ε<2 πA, such that
ε<1 = ε<2 . And that has (F<1 , <

′
1) = (F<2 , <

′
2) as a consequence. This yields:

Theorem 5. For left-orderings <1, <2 of F we have λ<1 = λ<2 if and only if
the natural valuation near-rings A<1 and A<2 coincide and <1, <2 induce the
same left-orderings in F<1 = F<2 .

3.1. The Place-Topology

We are now following Lam again [9] §§9, 10, 11. The proofs given by Lam can
often be applied literally to the nearfield case. However, because the literature
quoted is not so easily accessible and we can occasionally give shorter proofs,
we give in this Section all corresponding proofs.

For each preorder T of F we abbreviate λ(XF /T ) with LF (T ) and write
LF for LF (T (F )) for short.

The quotient topology of the Harrison topology TH of X(F ) with respect
to λ is denoted by TL. Because of Theorem 1 we have:

Lemma 7. (LF ,TL) is compact.

To examine TL in more detail, we introduce for each preorder T of F and
each element a of the Prüfer near-ring AT =

⋂
P∈XF /T AP [8, Section 3.3] the

value function:

(iii) εa :
{

LF (T ) → R
λP → λP (a)

Lemma 8. [4] εa is continuous for every preorder T of F and a ∈ AT .

Here R is provided with the ordinary topology and LF (T ) with the topol-
ogy induced by TL.

Proof. According to the definition of TL as quotient topology it suffices to
show for a ∈ AT that μa := εa λ : XF /T → R is continuous. This is the
case if for each r ∈ Q the sets μ−1

a (]r, +∞[) and μ−1
a (] − ∞, r[) are open in

(XF /T,TH(T )). Because of (ii) in Theorem 3, we have for each P ∈ XF /T :

P ∈ μ−1
a (]r, +∞[) ⇔ r < μa(P ) = λP (a) = sup{s ∈ Q | s <P a}

⇔ r < s <P a for a s ∈ Q

⇔ 0 < t <P a − r for a t ∈ Q .

Thus μ−1
a (]r, +∞[) =

⋃
0<t∈Q

HT (a − r − t) is open in (XF /T,TF (T )).
Similarly, one shows that μ−1

a (] − ∞, r[) is open. �

We also need:

Lemma 9. The set {εa | a ∈ AT (F )} separates different points in LF .
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Proof. Let there be given different ξ, ξ′ ∈ LF . Then there exists an x ∈ F
with ξ(x) < ξ′(x).

1. case: ξ′(x) �= ∞. There is an r ∈ Q with ξ(x) < ξ(r) = r = ξ′(r) <
ξ′(x). For y := x − r it follows ξ(y) < 0 < ξ′(y). According to Karpfinger [8],
(3.14), a := (y + y−1)−1 is in AT (F ), and ξ(a) < 0 < ξ′(a).

2. case: ξ′(x) = ∞. We have 0 < ξ(x + n) for a suitable n ∈ N. For
y := x + n it follows 0 < ξ(y) < ξ′(y) = ∞ and hence ξ′(y−1) < ξ(y−1) <
∞, so that ξ(−y−1) < ξ′(−y−1) < ∞. Thus, we have again case 1 (for
x := −y−1). �

With these results we now get:

Lemma 10. [4]
(a) The space (LF ,TL) is Hausdorffian.
(b) The mapping λ is continuous and closed.
(c) For every preorder T of F , LF (T ) is a compact subset of LF .

Proof. (a) According to Lemma 9, for ξ �= ξ′ in LF there is an a ∈ AT (F )

with ξ(a) �= ξ′(a). If I, I ′ are disjoint open intervals of R with ξ(a) ∈ I and
ξ′(a) ∈ I ′, then, by Lemma 8, ε−1

a (I) and ε−1
a (I ′) are disjoint environments of

ξ and ξ′, respectively.
(b) follows from (a), Theorem 1 and the continuity of λ.
(c) By Theorem 1, XF /T is a compact subset of (XF ,TH). Because of

the continuity of λ, the assertion follows. �

A concrete description of TL is now possible:

Lemma 11. [4]
(a) The topology TL is the initial topology of the mappings εa (a ∈ AT (F )).
(b) The sets H(a) := {ξ ∈ LF | ξ(a) > 0} with a ∈ AT (F ) form a subbasis of

TL.

Proof. (a) Let T′ be the initial topology of the mappings εa (a ∈ AT (F )), and
T := TL. According to Lemma 8, T is finer than T′. Since T is compact by
Lemma 7, the topology T′ is compact, too. Since the mappings εa separate
points in LF and are continuous with respect to (TH ,T′), it follows literally as
in the proof of Lemma 10(a), that T′ is also Hausdorffian. Consequently, Id :
(LF ,T) → (LF ,T′) is continuous and closed, i.e. a homeomorphism: T = T′.

(b) According to Lemma 8 the sets H(a) = ε−1
a (]0, +∞[) are open with

respect to T = TL. On the other hand, the sets ε−1
a (]r, s[) with a ∈ AT (F ) and

r < s in Q form a subbasis of T′ = T (T′ as in the proof of (a)). Furthermore,

ε−1
a (]r, s[) ={λP ∈ λ(X(F )) | r < λP (a) < s}

={λP ∈ λ(X(F ))|λP (a − r) > 0} ∩ {λP ∈ λ(X(F ))|λP (s − a) > 0}
=H(a − r) ∩ H(s − a) ,

and a − r, s − a ∈ AT (F ). This proves the assertion. �



135 Page 10 of 14 C. Karpfinger Results Math

Remark 4. Unlike TH , TL need not be totally disconnected at all. There are
even fields F for which TL is connected.

According to Lemma 8, for each preorder T of F the value functions
εa (a ∈ AT ) lie in the ring CT := C(LF (T ), R) of all continuous functions of
LF (T ) in R. Since LF (T ) is compact according to Lemma 10 (c), the supremum
norm

(iv) ‖f‖T := sup{|f(λP )| |λP ∈ LF (T )} (f ∈ CT )

is defined on CT .

Lemma 12. For each preorder T of F the set ε(AT ) = {εa | a ∈ AT } lies dense
in CT with respect to ‖ ‖T .

Proof. Because of Lemma 9 ε(AT ) separates points in LF (T ); and the constant
function ε1 : ξ → 1 lies in ε(AT ). The assertion therefore follows with the
Theorem of Stone/Weierstrass. �

This provides:

Theorem 6. (Separation criterion) For each preorder T of F and disjoint closed
subsets A, B of XF /T are equivalent:
(1) λ(A) ∩ λ(B) = ∅.
(2) There exists an x ∈ AT ∩ ⋂

ξ∈λ(A∪B) Uξ with A ⊂ HT (x) and B ⊂
HT (−x).

(3) There exists an x ∈ AT ∩⋂
ξ∈λ(A) Uξ with A ⊂ HT (x) and B ⊂ HT (−x).

Proof. (1) ⇒ (2): According to Lemma 10 λ(A) and λ(B) are closed. By
Urysohn’s lemma and due to λ(A) ∩ λ(B) = ∅, there is a continuous function
f : XF /T → R with f(ξ) = 1 for all ξ ∈ λ(A) and f(ζ) = −1 for all ζ ∈ λ(B).
And according to Lemma 12 there exists an x ∈ AT with ‖εx − .f‖T < 1, i.e.

(v) |λP (x) − f(λP )| < 1 for all λP ∈ λ(X(F )).

For every P ∈ A we have λP ∈ λ(A) so that |λP (x) − 1| < 1 due to
(v), and it follows λP (x) > 0. This justifies x ∈ UλP

and x ∈ P according to
Theorem 3. Similarly, for any P ∈ B, i.e. λP ∈ λ(B), we have |λP (x) + 1| < 1
due to (v) and therefore shows λP (x) < 0. This has x ∈ UλP

and—again
according to Theorem 3—x ∈ −P as a consequence.

(2) ⇒ (3) is trivially correct.
(3) ⇒ (1): Suppose λ(P ) = λ(Q) for certain P ∈ A and Q ∈ B. And let

x be chosen as in (3). Since x ∈ UλP
= UλQ

and x ∈ P and x ∈ −Q we get a
contradiction λP (x) > 0 to Theorem 3 and λQ(x) < 0. �

An interesting consequence is:

Corollary 1. For each two preorders T, T ′ of F we have

λ(XF /(T ∩ T ′)) = λ(XF /T ) ∪ λ(XF /T ′).
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Proof. The inclusion λ(XF /T ) ∪ λ(XF /T ′) ⊂ λ(XF /(T ∩ T ′)) is trivially
correct. Suppose there is an P ∈ XF /(T ∩ T ′) with λ(P ) �∈ λ(XF /T ) ∪
λ(XF /T ′) = λ(XF /T ∪ XF /T ′). According to Theorem 6 [(1) ⇒ (2)], {P}
can be separated from the set B := XF /T ∪ XF /T ′ which is closed by Theorem
1: There exists an x ∈ P with −x ∈ Q for each Q ∈ B. According to Artin’s
Theorem it follows −x ∈ T ∩ T ′ in contradiction to T ∩ T ′ ⊂ P . �

We derive a corollary for natural evaluation near-rings and Prüfer near-
rings:

Corollary 2. For each two preorders T, T ′ of F we have

AT∩T ′ = AT ∩ AT ′ and AT∩T ′
= .AT AT ′

.6

Proof. The inclusions AT∩T ′ ⊂ AT ∩ AT ′ and AT AT ′ ⊂ AT∩T ′
are clear. On

the other hand, according to Corollary 1 for each P ∈ XF /(T ∩ T ′) AP coin-
cides with AP ′ for any P ′ ∈ XF /T ∪ XF /T . From this the reverse inclusions
follow. �

If T is a preorder of F , then {Xξ | ξ ∈ LF (T )} with

(vi) Xξ := {P ∈ XF /T |λP = ξ}
forms a decomposition of XF /T according to Theorem 3. We now show that
Xξ = XF /Tξ for some fan Tξ with Tξ ⊇ T .

Let P ∈ XF /T be a left-ordering and ξ := λP . It follows from Theorem
3 and the fact that ξ = εξ πvξ

[cf. Lemma 5 (b)] and [8], (3.2) that:

Tξ :=T ξ−1(F
∗
ξ ∩ R

(2))=T ξ−1(ξ(Uξ ∩ P ))=T π−1
vξ

(πvξ(Uξ ∩ P )) = T ∧ πvξ(P ).7

And according to Karpfinger [8], (3.2), the preorder Tξ of F is fully com-
patible with πvξ

(i.e. with ξ) and πvξ
(Tξ) = πvξ

(P ), i.e. due to Theorem 3:
ξ(Tξ ∩ Uξ) = F

∗
ξ ∩ R(2). According to Karpfinger [8], (2.3) (b) πvξ

(P ) is a
left-ordering of F ξ; and by Karpfinger [8], (3.10) Tξ is a fan of F . This shows
the first of the following statements:

Lemma 13. For each preorder T of F and each place ξ ∈ LF (T ) we have:

(a) Tξ := T ξ−1(F
∗
ξ ∩ R(2)) is a fan of F fully compatible with ξ; and ξ(Tξ ∩

Uξ) = ξ(P ∩ Uξ) = F
∗
ξ ∩ R(2) for each P ∈ XF /T with ξ = λP .

(b) Xξ = XF /Tξ, i.e. for P ∈ XF /T we have: Tξ ⊂ P ⇔ λP = ξ.
(c) XF /T is the disjoint union of the sets XF /Tξ with ξ ∈ LF (T ).

6AT AT ′
denotes the nearring generated by AT and AT ′

.
7With the repeatedly noted agreement πvξ (A) := πvξ (A ∩ Uξ). And R

(2) = {x2 | x ∈ R
∗} =

{x ∈ R | x > 0}.
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Proof. (b) From P ∈ XF /T and λP = ξ it follows with (a):

Tξ = T ξ−1(F
∗
ξ ∩ R(2)) = T ξ−1(ξ(P ∩ Uξ)) ⊂ T P = P

(since ξ(P ∩ Uξ) ⊂ R(2)).
Thus, Xξ ⊂ XF /Tξ. On the other hand, any left-ordering P of XF /Tξ is

compatible with ξ by (a). Therefore, due to Theorem 3 we have λP = ξ, i.e.
P ∈ Xξ.

(c) follows directly from (b). �

We now prove the Brown/Marshall’s inequalities (cf. for example Lam
[9] 10.10).

Theorem 7. For each preorder T of F we have

|LF (T )| ≤ cl(T ) ≤ 2 |LF (T )|.
Proof. To prove the first inequality, let P1, . . . , Pn ∈ XF /T with different real
places λP1 , . . . , λPn

be given. We construct inductively elements a0, . . . , an ∈
AT with the properties:
(a) a0 = −1.
(b) ai ∈ UP1 ∩ . . . ∩ UPn

.
(c) For each i = 1, . . . , n ai is positive with respect to the left-orderings in

HT (ai−1) ∪ {Pi} and negative with respect to Pi+1, . . . , , Pn.
It then follows ∅ = HT (a0) � HT (a1) � · · · � HT (an). According to

Sect. 2.2, (B) and (C), this results in n ≤ cl(T ), which proves the first inequal-
ity.

Now, if a0, . . . , ai−1 (i ≥ 0) with the properties (a)–(c) are already con-
structed, then it follows with Theorem 6 [(3) ⇒ (1)]: λ(HT (ai−1)) ∩
λ({Pi+1, . . . , Pn}) = ∅, since ai−1 separates the disjoint and closed sets A :=
{Pi+1, . . . , Pn} and B := HT (ai−1) and lies in UPi+1 ∩ . . . ∩ UPn

. Then also
λ(A)∩λ(B′) = ∅ for B′ := HT (ai−1)∪{Pi}. With Theorem 6 [(1) ⇒ (2)]—for
B′ instead of B—it follows that there exists an element ai with properties (b)
and (c).

To prove cl(T ) ≤ 2 |LF (T )| we may assume LF (T ) as finite. According to
Lemma 13 XF /T is a (disjoint) union XF /T = XF /Tξ1 ∪ · · · ∪ XF /Tξn

with
places ξi ∈ LF (T ); and each Tξi

is a (T covering) fan. Due to Theorem 2 and
Lemma 4(b) we have

cl(T ) ≤ 2 (cl(Tξ1) + · · · + cl(Tξn
)) ≤ 2n.

�

From Theorem 7 and Lemma 4(b) one obtains directly:

Corollary 3. For each fan S of F we have |LF (S)| ≤ 2.

We can now prove Bröcker’s Theorem [2] about the trivialisation of fans
(c.f. Kalhoff [6]):
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Theorem 8. For each fan S of F for which XF /S contains at least one or-
dering, there is a place ξ : F → F ′ ∪ {∞} fully compatible with S for which
ξ(S ∩ Uξ) is a trivial fan8 of F ′.

Proof. If S is a trivial fan, we choose the trivial place ξ. Let S therefore be
nontrivial. According to corollary 3, two cases are possible:

1. Case: LF (S) = {ξ} with non-trivial ξ. In this case, any P ∈ XF /S is
compatible with ξ and by Lemma 13 (and the Theorem of Artin) it follows
S = Tξ and ξ(S ∩ Uξ) = F

∗
ξ ∩ R(2); and that is a left-order of F ξ.

2. Case: LF (S) = {η, ζ} with different places η, ζ, and without loss
of generality ζ = λQ for some ordering Q of XF /S. All P ∈ XF /S are
non-archimedean, i.e. η, ζ are non-trivial, and topologically equivalent. By
Karpfinger [8], (2.9) it follows that A := Aη Aζ is a strict valuation near-ring
�= F compatible with any P ∈ XF /S. Now ξ = λA is nontrivial. According to
Karpfinger [8], (3.10) and Lemma 5, S′ := ξ(S ∩Uξ) is a ξ-fan of the near-field
F ξ. If S′ were non-trivial, then a non-trivial place ξ′ : F ξ → F ′ ∪ {∞} fully
compatible with S′ exists. This is shown in the last part of the proof applied
to F ξ, since ξ(Q ∩ Uξ) is an ordering of F ξ due to Karpfinger [8], (2.3) (b).
Then—with ξ′(∞) := ∞—ξ′ ξ : F → F ′ ∪{∞} is a place of F fully compatible
with S. Since ξ′ is nontrivial, we have Aξ′ ξ � Aξ. Since ξ′ ξ is compatible with
all P ∈ XF /S, we have on the other hand Aη, Aζ ⊂ Aξ′ ξ and hence we get
the contradiction Aξ = A = Aη Aζ ⊂ Aξ′ ξ. �
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