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Abstract— Following work on joint object-action represen-
tations, the functional object-oriented network (FOON) was
introduced as a knowledge graph representation for robots.
Taking the form of a bipartite graph, a FOON contains symbolic
or high-level information that would be pertinent to a robot’s
understanding of its environment and tasks in a way that
mirrors human understanding of actions. In this work, we
outline a road-map for future development of FOON and
its application in robotic systems for task planning as well
as knowledge acquisition from demonstration. We propose
preliminary ideas to show how a FOON can be created in a
real-world scenario with a robot and human teacher in a way
that can jointly augment existing knowledge in a FOON and
teach a robot the skills it needs to replicate the demonstrated
actions and solve a given manipulation problem.

I. INTRODUCTION

An ongoing trend for research in robotics is the develop-
ment of robots that can jointly understand human intention
and action and execute manipulations for human domains. A
key component for such intelligent and autonomous robots
is a knowledge representation [1], which would allow robots
to understand its actions in a way that mirrors human
understanding of action and affordance [2]. Prior to this
work, we introduced the functional object-oriented network
(FOON) as a knowledge representation for service robots [3],
which was inspired by previous work on joint object-action
representation [4], [5]. A FOON innately describes the rela-
tionship between objects and manipulation actions as nodes.
Ideally, graphs are formed from demonstrations of action,
and they can be combined into a single network from which
knowledge can be retrieved as task sequences [3]. We also
showed how existing knowledge can be used to learn “new”
concepts based on semantic similarity [6], and in [7], we
introduced a new retrieval algorithm that considers a robot’s
capabilities to find an optimal task sequence.

In this preliminary work, we propose a road-map for
further applications of FOON and to integrate it in task
planning and execution in order to take advantage of the
richness of such knowledge graphs. Prior to this paper, little
has been done to incorporate FOON into a robotic system,
as the knowledge in a FOON is too abstract for immediate
use in robotic manipulation planning [8]. Furthermore, the
FOON dataset is comprised of subgraphs whose contents
were collected from manual annotation by human volunteers.
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Fig. 1. Overview of the proposed pipeline incorporating elements of LfD
with FOON knowledge creation and retrieval.

To address these limitations, we propose a pipeline (shown as
Figure 1) that integrates learning from demonstration (LfD)
such that: 1) we can construct graphs directly from observa-
tion, and 2) we can integrate symbolic knowledge in FOON
with physical aspects, such as a robot’s motion primitives,
object parameters, and trajectories. Although some work
has been done to semi-automatically construct graphs from
videos [9], there is merit to learning in a teacher-student
setting, where a human demonstrator can teach necessary
skills to a robot to augment knowledge gathered from videos.

This paper is organized as follows: in Section II, we give
a short overview of the FOON structure and algorithms
in a FOON terminology. In Section III, we introduce our
preliminary ideas for the integration of LfD in a learning
setting to ground an abstract, domain-independent FOON
into a domain-specific FOON. Finally, in Section IV, we
summarize our ideas and give an overview of future work.

II. FUNCTIONAL OBJECT-ORIENTED NETWORK

A. Basics of a FOON

A FOON consists of two types of nodes in its bipartite
structure: object nodes and motion nodes. Object nodes refer
to objects that are used in activities, including tools, utensils,
ingredients or components, while motion nodes refer to
actions that can be performed on said objects. Presently,
we use FOON to represent activities in cooking. Objects
are identified by their object type, its states, and, in some
cases, its make-up of ingredients or components; motions
are identified by a motion or action type, which can refer
to a manipulation (e.g., pouring, cutting, and shaking) or
a non-manipulation action (e.g., frying or baking). As a



Fig. 2. An example of two functional units, which describe placing a tomato
on a cutting board and dicing it with a knife (best viewed in colour). Object
nodes are denoted by circles, while motion nodes are denoted by squares.
Here, input-only nodes are depicted in green, output-only nodes are depicted
in purple, and nodes that are both input and output are depicted in blue.

result of executing actions, objects may take on new states
or conditions; state transitions are conveyed in functional
units, which are collections of object nodes and a motion
node before and after an action takes place. Therefore, when
using FOON, it is important for a robot to identify states to
determine when an action or goal has been completed.

Figure 2 illustrates an example of two functional units
describing the action of placing a tomato on a cutting board
and dicing it with a knife. Without considering states, we
have the objects cutting board, tomato, and knife. Note,
however, that there are several instances of these objects,
as their states will change as a result of execution; this is
analogous to Petri Nets [10], where the firing of transitions
cause a change in input place nodes. Each functional unit
has a motion node for picking and placing the tomato on the
cutting board (pick-and-place) and dicing the tomato (dice).

B. Creating a Universal FOON

A FOON is typically created using annotations of activities
as video demonstrations or, as we plan to explore in the
near future, demonstrations from a human teacher. When
annotating, it is important to note the objects, actions, and
state changes that have been observed and that are required
to achieve a specific goal, such as preparing a meal or recipe.
As a result of this process, one can obtain a FOON subgraph
for several activities or recipes, which describes a sequence
of functional units that capture information on the objects,
manipulations and actions required to fulfill the task’s goal.
The combination of two or more subgraphs form a universal
FOON. This merging procedure consolidates all instances of
object nodes and removes duplicate functional units that are
common across different subgraphs or recipes [3]. Presently,
the FOON dataset provides 111 subgraph annotations from
which a universal FOON has been created; these annotations
along with helper code can be found online*.

C. Task Planning with FOON

Aside from representing knowledge in a symbolic manner,
a FOON can be used for problem solving through task plan-
ning. Such a problem would entail answering the question:
given a set of objects (e.g., tools, ingredients, or appliances),
how can a robot create an object denoted as a node in a

*FOONets (FOON Website) – http://www.foonets.com

FOON? Given that a robot can understand its environment,
where it can ground instances of objects to nodes in FOON,
we can rely on FOON to determine how those objects can
be utilized to solve more complex problems. This knowledge
retrieval procedure is denoted as task tree retrieval [3], where
a task tree is a subgraph that describes the steps for solving a
given problem based on the state of the robot’s environment.

The principle behind the task tree retrieval algorithm
combines ideas from breadth-first and depth-first search (BFS
and DFS), where, starting from the goal node or sub-goal
nodes, we perform a backward search to find the functional
units needed to make them (DFS), and for each functional
unit, we evaluate if their input conditions are met (BFS).
As such, this will require some knowledge of the initial set
of objects that could be made or that are already available
to the robot. If we want to perform a task tree retrieval
operation without immediately considering the availability
of objects or to find the best course of action that a robot
can successfully execute, then one can also consider building
a path tree [7], where we can retrieve possible combinations
of action sequences that achieves the final goal. This form of
retrieval was introduced to find the optimal task tree based
on the robot’s success rate of executing its motion primitives.

III. LEARNING FROM DEMONSTRATION FOR FOON

A FOON can be created using annotations from demon-
strations. However, up to this point, annotation was done
manually, although semi-automatic annotation has been ex-
plored from video by using existing FOON knowledge to
annotate never-before-seen videos [9]. The problem intro-
duced in this work entails annotation directly from human
demonstration, where a robot will be shown a sequence of
actions, which is performed by a teacher, at first hand.

In detail, the objective of this learning from demonstration
pipeline is to connect a domain-independent FOON to a
domain-specific representation, where a system can connect
abstracted concepts in a universal FOON to the physical
world and to relevant robotic properties. This would require
key components [1], including object detection, grounding
object instances to FOON nodes, action recognition, and the
demonstration of key skills or motion primitives to perform
actions represented as functional units. In this paper, we
refer to a domain-independent FOON as a universal FOON
(or UNIFOON) and a domain-specific FOON as a planetary
FOON (or PLANFOON). We illustrate an overview of our
framework as Figure 3.

A. Identifying Objects for FOON

Object nodes in a FOON relate to objects that are directly
or indirectly manipulated for tasks. In a regular FOON (or
UNIFOON), object nodes are typically described by their
object type, state(s), and their ingredient composition. At the
PLANFOON level, our proposed learning framework would
need to connect low-level information (based on signals and
sensors) to the high-level attributes in UNIFOON. From a low-
level perspective, the objective is to identify key features that
can be used by a robotic system to identify the objects and
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Fig. 3. Overview of our learning framework that integrates a domain-independent FOON (UNIFOON) with a domain-specific FOON (PLANFOON).

their observed states that exist within its environment and
that are used in a certain action segment. Useful parameters,
such as object poses, images, point clouds or models, object
centroids and bounding boxes, can be extracted from a scene,
and from these parameters, a robot can then ground object
instances to the symbols found in FOON. At the same time,
from a high-level perspective, a robot should understand that
these detected objects translate to their respective object node
symbols in a FOON based on such parameters.

To achieve this, a learning task would comprise of training
a model to output object and state labels after being fed these
parameters as input. Such a model or system would need to
perform two variations of classification: object classification
and state recognition. For object classification, a model can
be used to learn how to detect different types of objects as
used in a FOON regardless of their observed state, either in
a supervised or unsupervised manner. The more challenging
problem lies in state recognition, where it is important to
discriminate between different states, requiring lots of train-
ing data and thus more complex state-of-the-art approaches
such as [11]. To ease the burden on the training procedure,
we will first explore how we can simplify object and state
detection by manually identifying parameter thresholds for a
limited object-state sample size and then further refine them
when it comes to different object instances.

B. Learning Motion Primitives and Skills
A FOON’s motion nodes and functional units correspond

to different types of actions, which usually involve interac-
tion or manipulation of objects, such as tools, containers,
ingredients, or appliances. A functional unit can be equated
to planning operators, which are often times defined using
planning domain languages such as PDDL [12]. Using a
graphical representation like FOON can allow for faster
knowledge retrieval due to discretization of the problem do-
main. When demonstrating an action, it is important to learn
trajectories as skills, which can be retained for replication.
One method of learning and representing trajectories is to
use dynamic movement primitives (DMP) [13]. Based on a
start and end position, a DMP can be used to approximate the
original demonstrated trajectory; forcing terms are included

that will retain details of the trajectory, where the more
forcing terms (as weights) are used, the closer the learned
trajectory will be to the original demonstration. These pa-
rameters as well as object centroids will be acquired from
the object parameter extraction phase discussed earlier.

C. Integrating Domain-specific Knowledge into FOON

Combined with observable object parameters, skills as
DMPs can be learned for planning operators represented in
FOON, and they can be mapped to motion nodes of each
functional unit in a UNIFOON. However, many of the actions
that are present in a typical FOON are still too abstract to
represent as a single motor skill or primitive. For instance,
let us consider the functional units in Figure 2. In the case of
the picking-and-placing unit, this action can be decomposed
into the sub-actions of: moving the robot’s gripper to the
tomato object, grasping the tomato, translating the gripper
to the target location of the cutting board, and then releasing
the object to complete the place. In the case of the dicing
unit, this action can be decomposed into the sub-actions
of: moving the gripper to the knife, grasping it, moving
the gripper with the knife to the tomato, executing the
dice action, and returning the knife to its original location.
Therefore, the notion of actions in UNIFOON cannot suffice,
and the PLANFOON level will have to provide a similar
chaining of atomic skills to the abstract action.

1) Details: We propose to introduce PLANFOON as an
additional hierarchy that will focus on the domain-specific
details that are needed to physically execute the actions given
by a UNIFOON. This notion of hierarchy is innately different
to that in [6], where the latter is perhaps better described as
levels of abstraction. A task planning problem would require
searching for a task sequence first in the upper UNIFOON
level, which is then followed by the retrieval of execution-
level details in the lower PLANFOON level. This allows us to
take advantage of the rich and descriptive form of knowledge
that is available from explicitly grounding to FOON.

Using learning from demonstration (LfD), we plan to
develop a framework that will acquire and retain knowledge
gathered from a teaching task, which draws inspiration
from [8], [14]. Actions at the PLANFOON level can be



Fig. 4. An example of a UNIFOON to PLANFOON mapping for the action
of pouring water from a measuring cup to a bowl. At the PLANFOON level,
atomic motion primitives will map to UNIFOON level actions. PLANFOON
actions will be connected to planning operators and DMPs.

connected to manipulation planning to define sequences of
primitive actions (manipulation plan) to ground them. This
sequence is generated using planning operators (POs) that
encode physical cause-effects in terms of object-centered
predicates. Similar to [8], we plan to use LfD to obtain DMP
parameters that are associated to POs through action con-
texts. However, as opposed to schemas [14], these POs will
be connected to functional units at the the PLANFOON level,
which are then connected to descriptive knowledge at the
UNIFOON level. Knowledge at these two levels of hierarchy
can also be learned from demonstration. For PLANFOON-
level learning, the main focus would be to identify the
atomic skills needed for each UNIFOON action. A human
demonstrator will teach the robot the necessary actions from
start to end from which the robot will learn object features
and parameters that are needed to identify the required items.
In the case where no UNIFOON knowledge is available,
then together with teaching skills, it is necessary to learn
a UNIFOON-level graph. On one hand, this can be achieved
via activity recognition; however, at the beginning, a simpler
approach will be taken, where a human demonstrator will
demonstrate an entire task to the robot while giving an
explanation to the robot about its actions from which a graph
may be constructed in a higher-level terminology. This graph
can then be verified by the demonstrator to see if the robotic
system has correctly created the UNIFOON annotations.

2) Example: In Figure 4, we illustrate an example of how
a UNIFOON functional unit for the pouring action may be de-
composed into several simpler units at the PLANFOON level.
Our understanding of the pour action could be translated into
several sub-actions that are usually treated as atomic motion
primitives from a robotics perspective. Hence, an important
starting point would be to first identify different motor skills
that can be generalized to different object types or instances
or that can be chained together for flexible execution.

IV. CONCLUSION AND FUTURE WORK

In summary, in this preliminary work, we outline a road-
map towards a robotic application of the functional object-
oriented network (FOON) representation, which has not been
extensively explored due to the domain-independent nature
of FOON. We propose to ground abstract knowledge in a
regular FOON (which we refer to as the universal FOON
or UNIFOON) to a domain-specific level of FOON (which
we refer to as a planetary FOON or PLANFOON) using
learning from demonstration (LfD). Using LfD, a teacher
can instruct a robot on how to execute high-level actions
typically described in a universal FOON using its basic
motion primitives while learning the necessary parameters
for object detection and manipulation. This framework aims
to learn the object and motion parameters that are needed
to physically ground abstract UNIFOON-level concepts to the
real world. In the near future, we will further explore sub-
components needed to realize this framework and evaluate
our approach in both simulation and real-world settings.
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