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Abstract

Over the past decades, gravitational lensing has become one of the major tools in astrophysical
studies. It enables a variety of different applications, including studies of dark matter and dark
energy, the measurement of cosmological parameters such as the Hubble constant H0, analysis
of the supernavae progenitor systems, and studies of high redshift galaxies and quasars. In
recent years, large surveys have allowed the detection of hundreds of new strong gravitational
lenses and thousands promising candidates, and machine learning has played a major role in
handling the huge amount of data. As a consequence, fast and autonomous modeling for ground
based imaging data is getting crucial. This will become even more relevant when new large
imaging surveys, such as the Rubin Observatory Legacy Survey of Space and Time (LSST), will
provide billions of high-quality images of galaxies containing around 100,000 lenses (Collett,
2015).

In this thesis, we focused on the modeling of strong lens systems using neural networks (NNs).
Since one needs a good and large enough data set to train the NNs, we have developed a sim-
ulation pipeline that takes real observed images of galaxies, one for the lens and one for the
background source with each a redshift measurements and a lens velocity dispersion value. The
code computes then the lensing effect and adds the lensed source to the original lens image. With
this procedure, we obtain ∼100,000 realistic mock images in the quality of Hyper Suprime-Cam
(HSC) images (Bosch et al., 2018; Aihara et al., 2019), as the light distributions and line-of-
sight objects are real. These mocks are then used to train our Convolutional Neural Networks
(CNNs) that predict the five parameters of a Singular Isothermal Ellipsoide (SIE) profile. Fur-
thermore, we have explored the effect of different Einstein radii distributions and demonstrated
the accuracy in image position and time delay predictions based on our network output.

Built upon this, we have improved the simulation procedure further and adopted also a SIE
profile together with an external shear component. Here we include also an error prediction and
make use of a residual network (ResNet) (He et al., 2015). This type of network architecture
has been proposed to increase the network depth while increasing the computational time only
moderately, resulting in a much more powerful network. We obtain very good results on the SIE
parameters, but difficulties remain in recovering the external shear, which are minor distortions
on the arcs from massive objects outside of the cutout.

As this ResNet is still trained on mock data, we carried out a detailed comparison of 32 real
HSC lenses modeled with our network, and with traditional, very time and resource consuming
methods. For this, we have developed a code to automate several steps to reduce the user input
time. This comparison, which is the first direct comparison for ground based data, demonstrates
the power and trustworthiness of the network.

Beside these developments for analyzing gravitational lenses, we present in this thesis NetZ,
a novel approach to estimate photometric redshifts by using directly the images instead of
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extracted quantities such as color-magnitude or size-compactness information of a galaxy.
The performance of the network has been demonstrated with HSC images through a detailed
comparison to another well-tested redshift code (DEmP, Hsieh & Yee, 2014) that gave the best
accuracy with HSC data (Tanaka et al., 2018; Nishizawa et al., 2020). We find that our main
network performs especially well in the high-redshift range without drastic cuts on e.g., the
brightness, which will be very important for upcoming deep imaging surveys. One of the main
advantages of this technique is the possibility of data augmentation in the training process to
obtain a more uniformly distributed training sample. With this network we have predicted and
published more than 34 million photometric redshifts. Given the expected similarity of HSC
images to those from LSST in terms of quality and filter, this method will be immediately
applicable with similar performance to LSST.

Combining the different machine learning and Bayesian analysis based software for strong
lens modeling in addition to the presented photometric redshift network NetZ, we made a major
step towards accurate and fast analysis of HSC data and also LSST data given their expected
similarities. This enables a variety of different science applications and will be particularly
useful to analyze and follow-up lensed time-variable sources discovered in the next decade by
LSST.

vi



Zusammenfassung

Über die letzten Jahrzehnte hinweg sind Gravitationslinsen zu einem der wichtigsten Instru-
menten in astrophysikalischen Studien geworden. Es ermöglicht eine Vielzahl unterschiedlicher
Anwendungen, einschließlich Studien zur dunklen Materie und der dunklen Energie, die
Messung von kosmologischen Parameter wie der Hubble Konstante H0, der Analyse von
Supernavae Vorläuferszenarien und Studien von Galaxien und Quasaren mit hoher Rotver-
schiebung. In den letzten Jahren haben große Beobachtungsprogramme die Identifizierung von
hunderten neuer starker Gravitationslinsen und tausenden von vielversprechenden Kandidaten
ermöglicht, wobei maschinelles lernen eine große Rolle in der Handhabung diese rießige Menge
an Daten gespielt hat. Als eine Konsequenz, schnelle und autonome Modellierung werden
für erdgebundene Bilddaten entscheidend sein. Dies wird noch relevanter wenn neue große
Beobachtungsprogramme, wie zum Beispiel das Rubin Observatory Legacy Survey of Space
and Time (LSST) Projekt, Milliarden an qualitativ hochwertigen Bildern von Galaxien inklusive
etwa 100,000 Gravitationslinsen (Collett, 2015) zur Verfügung stellen wird.

In dieser Dissertation haben wir uns auf die Modellierung von starker Gravitationslinsensys-
teme unter Ausnutzung neuronaler Netzwerke (NNe) konzentiert. Nachdem man zum trainieren
von NNe einen groß genugen und realistischen Datensatz benötigt, haben wir einen Simulations-
code entwickelt der echt beobachtete Bilder von Galaxien, eins für die Linse und eines für die
Hintergrundquelle mit jeweils gemessener Rotverschiebung und Dispersionsgeschwindigkeits-
wert der Linse nutzt. Das Programm berechnet dann den Linseneffekt und fügt die durch den
Linseneffekt veränderte Quelle dem Originalbild der Linse hinzu. Mit dieser Prozedur haben wir
∼ 100, 000 realistische Scheinbilder mit der Qualität von Hyper Suprime-Cam (HSC) Bildern
(Bosch et al., 2018; Aihara et al., 2019) erhalten, da die Lichtverteilung und Nebenobjekten echt
sind. Diese erzeugten Bilder wurden dann zum trainieren unseres faltendes neuronales Netzwerk
(engl. convolutional neural network, CNN) verwendet um die fünf Parameter eines singulären
isothermischen elliptischen (SIE) Profiles zu bestimmen. Desweiteren haben wir den Effekt von
unerschidlichen Verteilungen der Einsteinradii erprobt und die Genauigkeit der Bildpositionen
und Zeitverzögerungen basierend auf den von dem Netzwerk bestimmten Werten.

Darauf aufbauend, haben wir das Simulationsprogramm weiter optimiert und auch das SIE
Profile zusammen mit externer Scherung angennommen. Hier haben wir ebenfalls eine Fehler-
bestimmung eingebaut und nutzen ein Residuennetzwerk (ResNet) (He et al., 2015). Diese Art
von Netzwerkarchitektur wurde vogeschlagen um die Tiefe des Netzwerkes erhöhen zu können
wärend die Berechnungszeit nur geringfügig steigt, resultierend in einem deutlich leistungs-
fähigeren Netzwerk. Wir erhalten sehr gute Ergebnisse für die Parameter des SIE Profils, aber
es bleiben Schwierigkeiten in der Erhaltung der externen Scherung vorhanden, welche geringe
Verzerrungen an den Linsenbögen durch sehr massereiche Objekte außerhalb der Bildausschnit-
tes hervorruft.
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Zusammenfassung

Nachdem dieses ResNet noch an erzeugten Daten trainiert wurde, haben wir eine detailierten
Vergleich anhand von 32 echten HSC Linsen durchgeführt, welche wir mit unserem Netz-
werk modelliert haben und auch mit der traditionellen, sehr zeitaufwändigen und ressourcenver-
brauchenden Methode. Hierfür haben wir auch ein Programm entwickelt um einige der Schritte
zu automatisieren und dadurch den Zeitaufwand des Benutzers zu reduzieren. Dieser Vergleich,
welcher den erste direkte Vergleich für erdgebundene Bilddaten darstellt, demonstriert die leis-
tungsfähigkeit und Vertauenswürdigkeit des Netzwerkes.

Neben diesen Entwicklungen für die Auswertung on Gravitationslinsen, präsentieren wir
in dieser Dissertation NetZ, ein neuartigen Ansatz um die Rotverschiebung photometrisch
zu bestimmen wozu wir direkt die Bilddaten nutzen anstatt daraus extrahierte Werte wie
Informationen zur Farb-Magnituden oder Größe-Kompaktheit der Galaxien. Die Leistung des
Netzwerkes wurde demonstriert anhand HSC Bildern durch einen direkten Vergleich zu einem
anderen gut getesteten Programm zur Rotverschiebungsbestimmung (DEmP, Hsieh & Yee,
2014), welches beste Genauigkeit an HSC Daten zeigte (Tanaka et al., 2018; Nishizawa et al.,
2020). Wir finden das unser Hauptnetzwerk insbesondere im hohen Rotverschiebungsbereich
gut funktioniert ohne starke Einschränkungen z.B. an der Helligkeit, was sehr wichtig für
zukünftige tiefe Bildbeobachtungsprogramme ist. Eine der großen Vorteile dieser Methode ist
die Möglichkeit von Datenerweiterung in dem Trainingsprozess um ein mehr gleichverteilteren
Trainingsatz zu erhalten. Mit diesem Netzwerk haben wir mehr als 34 Millionen Rotver-
schiebungen photometrisch bestimmt und veröffentlicht. Aufgrund der erwarteten Ähnlichkeit
zwischen HSC Bildern zu denen von LSST bezüglich Qualität und Filter, ist diese Methode
direkt anwendbar auf LSST mit ähnlicher Genauigkeit.

Durch kombinieren der verschiedenen auf machinellem lernen und Bayessche Analyse ba-
sierenden Computerprogramme zur Modellierung starker Gravitationslinsen und durch zusät-
zlich das präsentierte Netzwerk NetZ zur photometrichen Rotverschiebungsbestimmung, haben
wir einen großen Schritt in Richtung genauer und schneller Analyse von HSC Daten und auch
Daten von LSST aufgrund zu erwatenden Ähnlichkeit. Dies ermöglicht eine Vielzahl an unter-
schiedlichen wissenschaftlichen Anwendungen und wird daher insbesondere nützlich sein um
von LSST entdekte zeitlich variierende Quellen in Gravitationslinsen zu analysieren und weiter
zu beobachten.
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1 Introduction

1.1 Overview of gravitational lensing

Gravitational lensing describes the effect that light rays get deflected when traveling through a
gravitational field. For this to happen, one needs two astrophysical objects aligned in a nearly
straight line with the an observer on the earth, i.e. a light emitting source and between that
source and the earth another massive object as the lens. This idea was already discussed and
quantified within the Newtonian theory of gravity by considering light as massive particles with
a mass going to the limit of zero. In 1915, Albert Einstein developed his Theory of General
Relativity (GR) (Einstein, 1917, 1918), and predicted this effect to happen as well. Fig. 1.1
shows a schematic sketch of a lensing system.

η

Observer Deflector (Lens)

Source

Ds

Dd Dds zs
zd

θ

α

α

β

^

ξ

~

Figure 1.1: Schematic sketch of a lensing system in the thin lens approximation. Image taken from
Schuldt (2018).

In this configuration, we have one deflector (lens) at an angular diameter distance Dd, corre-
sponding to a redshift zd, and a background source at distance Ds, corresponding to a redshift zs,
which is shifted by η̃ from a straight line through observer and lens, the so-called Line-of-sight
(LOS). Einstein computed the deflection angle α̂ of a photon diverted by the gravitational field
produced by a point mass M to be

α̂ =
4GM
c2ξ

= 1.75′′
(

M
M�

) (
ξ

r�

)−1

, (1.1)
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1 Introduction

where G is the gravitational constant, c the speed of light, and ξ the impact parameter of the
incoming light ray (Einstein, 1915). This raised a debate about the new theory of GR as the
approximation with the Newtonian theory, which was the accepted theory of gravity at this time,
predicted half of that deflection angle.

Only a few years later, the gravitational lensing effect was observed the first time and the de-
flection angle could be quantified experimentally. In 1919, a solar eclipse happened and allowed
the measurement of the deflection of nearby stars through the mass of the sun carried out by Sir
Arthur Eddington and Edwin Cottingham in Príncipe on the west coast of Africa and at the same
time by Andrew Crommelin and Charles Davidson in Sobral, Brazil (Eddington, 1919). Al-
though the deflection angle could be only quantified to be within 0.9′′ and 1.8′′ (Einstein, 1919),
GR successfully overcome this test by predicting a value of 1.75′′ that matches the observed
value.

After this astounding confirmation, Einstein affirmed the idea of gravitational lenses but re-
mained very pessimistic about their observation as he thought only about star-sized lenses (Ein-
stein, 1936). Instead, Fritz Zwicky had a much more positive view and also thought about more
distant and massive objects such as galaxies. In the late 1930’s, he finally proved the possibility
of resolving multiple images of the same background source if the lens has a mass of a galaxy.
His estimations forecast that images separation of around 10′′are possible (Zwicky, 1937) and
1 out of 400 distant sources should be affected by lensing (Zwicky, 1937), which implies a very
high probability to indeed find resolved multiple images.

Nonetheless, it took more than four decades until the first extragalactic lens was found. In
1979, Walsh et al. (1979) carried out a program to optically identify radio sources and discovered
two quasars separated by 6′′ with identical redshift, color, and spectra. In the following years
several more gravitational lenses were found, but mainly fortuitously.

In the late 20th century, gravitational lensing has become a prominent research field used to
explore many different aspects of astrophysics and cosmology while the sample of known lenses
grows slowly. During the years, three different regimes of lensing have evolved.

1.1.1 Weak gravitational lensing

In the weak lensing regime, the light of the background object gets distorted and magnified
through the mass of the lens (e.g., Bartelmann & Schneider, 2001; Schneider et al., 2006), which
is, however, not massive enough to produce multiple images of the source. Therefore, one
cannot rely on single background objects because of their unknown intrinsic brightness and
shape. Instead, weak lensing is used through a statistical inference of lensed objects in galaxy
clusters or groups showing a trend in their alignment. This was observed the first time in two
clusters A1689 and CL 1409+52 (Tyson et al., 1990), which were used to explore the Dark
Matter (DM) distribution of the lensing cluster.

In the following years, weak lensing was detected in several other galaxy clusters or galaxy
groups, and new detections are still expected in the future. Weak lensing allows to study sev-
eral different aspects in astrophysics and cosmology, including the large scale structure of the
Universe (e.g., Jaroszynski et al., 1990; Wambsganss et al., 1997; Schneider et al., 1998), the
mass distribution of the cluster or its substructure (e.g., Lombardi & Bertin, 1998; King et al.,
2001; Jee et al., 2005; Irwin & Shmakova, 2005), and the Hubble constant H0. Moreover, the
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Large Scale Structure (LSS) can produce a weak lensing effect, the so-called cosmic shear, that
can be used for cosmology. It allows the measurements of the shear correlation functions (e.g.,
Abbott et al., 2018a; Duncan et al., 2021; Hildebrandt et al., 2017; Stafford et al., 2021) and also
to estimate cosmological parameters such as the DM density parameter ΩM or the normalization
of the power spectrum σ8 (e.g., Jain & Seljak, 1997; Hoekstra et al., 2002). Furthermore, it can
be used to probe the equation of state of the Dark Energy (DE) by combining weak lensing and
Cosmic Microwave Background (CMB) measurements (e.g., Baxter & Sherwin, 2021).

1.1.2 Microlensing

If the image separation of the lensed background source is so small that it cannot be resolved,
we are talking about microlensing as proposed by Paczynski (1986, 1991). Even though the
multiple images are not resolved, we can observe a change in the magnification resulting in a
variation of the brightness over time. The first detection was reported in 1993 and used to test
the DM nature (Alcock et al., 1993; Aubourg et al., 1993; Udalski et al., 1993).

In the following years, microlensing was a strong probe to test whether DM in the Milky
Way is composed by compact objects, so called Massive Astrophysical Compact Halo Objects
(MACHOs). For this, the brightness of a large number of stars in the Large Maggellanic Cloud
(LMC) were monitored to detect fluctuations in case a MACHO would pass a star. Nowadays,
micro-lensing is often used in a very similar procedure to detect planets orbiting around of stars
by detecting the characteristic variation in the stars’ flux (e.g., Mao & Paczynski, 1991; Tsapras
et al., 2001; Bond et al., 2004; Nikolaus & Hundertmark, 2018). Moreover, microlensing can
be use to study the Active Galactic Nucleus (AGN) accretion disk and AGN structure (e.g.,
Kochanek, 2004; Morgan et al., 2010, 2018; Chan et al., 2021).

1.1.3 Strong gravitational lensing

Stong lensing occurs when multiple images of the background source can be separately identified
and distortions and magnification are prominent. To produced such a large image separation, the
lens must have typically the mass of a galaxy at least and a relative good alignment with the
source and the observer, i.e. a relative small offset η̃, resulting in typically tangentially stretched
images which are called arcs. In an idealized scenario with η̃ = 0 and a point mass, this can
form a full Einstein ring, such that we call the image separation Einstein radius θE. A very
well-known system with a nearly-full Einstein radius is the Cosmic Horseshoe (J1148+1930,
Belokurov et al., 2007) shown in Fig.1.2. It is with ∼ 5.4 × 1012M� so far the most massive
galaxy observed, resulting in an Einstein radius θE of 5.1′′. In addition to that, it contains a
radial arc from another galaxy at redshift zs,r = 1.961 (Schuldt et al., 2019), lying in between the
lens (zd = 0.444, Belokurov et al., 2007) and source that produce the Einstein ring (zs,t = 2.381,
Quider et al., 2009).

Strong gravitational lenses are a powerful tool for probing several different aspects of the
Universe, helping to answer outstanding questions. We will discus some of them in in the
following.
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Figure 1.2: Color image of the Cosmic Horseshoe (J1148+1930) observed with Hubble Space Telescope
(HST) (F475W, F606W, and F814W) as an example of a strongly lensed galaxy. The size of
this image is 20′′ × 20′′, north is up and east is left. The radial arc is located on the west side
of the lens galaxy G, marked with a green arrow. The corresponding counter image is on the
left and marked with the green dashed box. Image taken from Schuldt et al. (2019).

1.1.3.1 Lens mass studies

Since the deflection of the light is independent of the nature of the mass, one can use lenses to
infer the total mass of the deflector, i.e. baryonic and DM together (e.g., Belokurov et al., 2007;
Treu, 2010; Treu & Ellis, 2015), independent of the nature of DM which is still unclear. So
far DM is not directly observed, but lensing gives with the Bullet Cluster one of the strongest
indications that DM exist (Barrena et al., 2002; Clowe et al., 2006; Tucker et al., 1998) and
complement other indicators such as the Coma Cluster by considering the viral theorem (e.g.,
Zwicky, 1933, 1937), galactic rotation curves (e.g., López Fune, 2018), studies of the LSS (e.g.,
Ciarcelluti, 2005a,b; Kunz et al., 2016; Primack, 1997), or directly the CMB.

Instead of only inferring the total mass with gravitational lensing, one can also disentangle
both components by assuming a mass-to-light ratio and even infer the DM distribution (e.g.,
Gavazzi et al., 2007; Dye et al., 2008; Suyu et al., 2012; Grillo et al., 2013; Bellagamba et al.,

4



1.1 Overview of gravitational lensing

2017; Collier et al., 2018; Schuldt et al., 2019). Since radial arcs are very seldom on the galaxy-
scale, lensing gives typically only constraints at a distance of the Einstein radius. Therefore,
the Cosmic Horseshoe with its peculiar radial arc shown in Fig. 1.2 is especially well suited for
this study. In such analyses rotation curves (e.g., Hashim et al., 2014; Strigari, 2013) or velocity
dispersion measurements (e.g., Mortlock & Webster, 2000; Treu & Koopmans, 2002a,b, 2004;
Auger et al., 2010; van de Ven et al., 2010; Barnabè et al., 2011, 2012; Yıldırım et al., 2020)
are often included, which perfectly complement the lensing data and help to break degeneracies.
Through this combination, a deprojected 3D model of the mass density profile can be obtained
which helps in probing cosmological models (e.g., Eales et al., 2015; Davies et al., 2018; Eales
et al., 2015; Krywult et al., 2017; Birrer et al., 2020) or General Relativity (Collett et al., 2018).
In addition to that, strong lensing can also be used to detect DM substructure through detailed
modeling (Vegetti & Koopmans, 2009a,b; Vegetti & Vogelsberger, 2014; Vegetti et al., 2014;
Hezaveh et al., 2016; Bayer et al., 2018; Brehmer et al., 2019; Ritondale et al., 2019).

1.1.3.2 High-z studies

While lensing conserves the Surface Brightness (SB), the lensed images appears sheared and
magnified. Therefore, strong lensing is a perfect tool to study high-redshift sources, revealing
information on the evolution of most distant galaxies so far observed (e.g., Dye et al., 2018;
Lemon et al., 2018; McGreer et al., 2018; Rubin et al., 2018; Salmon et al., 2018; Shu et al.,
2018). When the mass profile of the lens is well constrained, the original unlensed morphology
can be reconstructed (e.g., Warren & Dye, 2003; Suyu et al., 2006; Nightingale et al., 2018;
Rizzo et al., 2018; Chirivì et al., 2020; Powell et al., 2021), allowing a detailed study of their
high-redshift properties. For instance, Salmon et al. (2018) report the discovery of SPT0615-
JD1, a galaxy at z ∼ 10 which is stretched into an ∼ 2.5′′ long arc by the effect of strong lensing.
Since it is well resolved, they are able to extract information such as the intrinsic delensed
magnitude, the stellar mass, the half-light radius suggesting a merger or accretion event, or the
Star Formation Rate (SFR) indicating a typical star-forming galaxy.

1.1.3.3 Hubble constant measurements using quasar time delays

In the special case of a time-variable background object such as a quasar, a measurable gravi-
tational time delay between two images j and k with observed positions θ j and θk occur. This
time delay is given by

∆t jk =
D∆t

c

 (θ j − β)2

2
− Ψ(θ j) −

(θk + β)2

2
+ Ψ(θk)

 (1.2)

where β is the source position, Ψ the lens potential, and D∆t the so-called time delay distance.
As we see from this equation, two effects are contributing to the time delay. The first one results
from the difference in path length and is described by the term (θ − β)2/2. The second effect is
the gravitational time delay, which is proportional to the lens potential Ψ.

By monitoring the lensed quasar images, which was extensively carried out in the COSmo-
logical MOnitoring of GRAvItational Lenses (COSMOGRAIL) program (e.g., Courbin et al.,
2005, 2018; Millon et al., 2020a), light curves of quasars were obtained that display the pattern
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of the intrinsic brightness fluctuations with also extrinsic variations due to microlensing. As an
example, the gravitationally lensed quasar system RX J1131−1231 is shown in Fig. 1.3 together
with its light curve observed between 2003 and 2019 from the COSMOGRAIL collaboration.
Such long and frequent monitoring allows to extract the light curve shift precisely, resulting
in time delays between the different images with few percent uncertainty. This can be used to
constrain cosmological parameters such as the Hubble constant H0, as demonstrated extensively
by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration (e.g., Rusu et al.,
2020; Suyu et al., 2017; Tihhonova et al., 2020; Wong et al., 2020).

For this three ingredients are necessary: First, measured time delays ∆t, second the mass
along the LOS, and third a lens mass model to obtain the lens potential Ψ. With these quantities,
we can use Eq. (1.2) to compute the time-delay distance defined as

D∆t = (1 + zd)
DdDs

Dds
, (1.3)

and with the three angular diameter distances inverse proportional to the Hubble constant H0.

H0LiCOW’s current best constraints on H0 comes from six lensed quasars, resulting in a
value of H0 = 73.3+1.7

−1.8km s−1Mpc−1 assuming a flat ΛCold Dark Matter (CDM) cosmol-
ogy (Wong et al., 2020) and physically motivated mass models. It is thus comparable and
in agreement with results of the local Cepheid distance ladder, which currently measures
H0 = (73.2 ± 1.3)km s−1Mpc−1 as presented by the Supernovae, H0, for the Equation of State
(SH0ES) collaboration (Riess et al., 2021), as well as with measurements from other lensed
quasars observed in the optical and Infrared (IR) (e.g., Millon et al., 2020b; Liao et al., 2019,
2020; Bonvin et al., 2017) and radio range (Qi et al., 2021). The procedure of obtaining H0
from strongly lensed quasars is based purely on fundamental, well understood physics and is
a one-step approach, in contrast to the distance ladder which adds to the uncertainty in the dis-
tance calibration and thus in H0 as well. On the other side, strong lensing depends more strongly
on the adopted cosmology compared to other late Universe probes through the higher redshifts
of the lenses and quasars. Without the assumption of a flat ΛCDM cosmology the errors on
H0 can increase substantially. Nonetheless, many further investigations are done to improve
the constrains through gravitational lensing and to make them less dependent on cosmological
assumptions (e.g., Taubenberger et al., 2019; Wong et al., 2020; Birrer et al., 2019).

While there are nowadays several different approaches to measure the Hubble constant H0,
there were over years mainly two attempts carried out with high precision. Beside the distance
ladder, also the CMB observations can be used to determine H0 carried out extensively by the
Planck Collaboration et al. (2020). While both methods where improved and the underlying
measurements got more precise, their uncertainties got much smaller. This resulted finally in a
discrepancy of the two measurements, as the Planck Collaboration et al. (2020) obtain a value
of H0 = (67.4 ± 0.5)km s−1Mpc−1, much lower than the through the distance ladder.

This debate demands new and independent approaches, where gravitational lensing is just one.
We show an overview of the current measurments of H0 from various different probes in Fig. 1.4.
For better comparison, we show in that plot the newest value from the Planck Collaboration et al.
(2020) as light blue bar, from gravitational lensing the current value from H0LiCOW as orange
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Figure 1.3: Observed r band image (top) and light curves for the quadruply lensed quasar system RX
J1131 − 1231 (Millon et al., 2020a). The image was observed with the Leonhard Euler
1.2m telescope at La Silla Observatory and shows the four quasar images labeled with A,
B, C, and D. The bottom panel shows the corresponding light curves from COSMOGRAIL
together with the difference with respect to reference image A. Credit: Millon et al., 2020a
A&A, 639, A101 reproduced with permission c©ESO.
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bar (Wong et al., 2020), and overlaid as hatched bar the current estimates from the SH0ES team
(Riess et al., 2021).

Based on the analyzed data set, the different approaches can be grouped into “early Universe”
or “late Universe” measurements. The early Universe represent H0 values obtained from the
CMB power spectrum observed with the Planck and Wilkinson Microwave Anisotropy Probe
(WMAP) satellites, or with the South Pole Telescope (SPT) and the Atacama Cosmology Tele-
scope (ACT) (e.g., Aiola et al., 2020; Balkenhol et al., 2021; Dutcher et al., 2021; Planck Col-
laboration et al., 2020). Moreover, measurements corresponding to that group are based on
Baryonic Acoustic Oscillation (BAO) and Big Bang Nucleosynthesis (BBN) and including data
from Baryon Oscillation Spectroscopic Survey (BOSS) or extended BOSS (eBOSS) (e.g., Colas
et al., 2020; Philcox et al., 2020; Ivanov et al., 2020; Alam et al., 2021). Since these are indepen-
dent data sets, they can also be combined to obtain another measurement (e.g., Pogosian et al.,
2020; Zhang & Huang, 2019). All measurements based on these data sets result in a value of
H0 ∼ 67km s−1Mpc−1 and are in relatively good agreement to each other.

In the group of late type probes, there are also, beside the traditional distance ladder approach
using Cepheids and Supernovas (SN) Type Ia (e.g., Riess et al., 2021; Breuval et al., 2020; Riess
et al., 2019; Camarena & Marra, 2020), measurements extending specifically to the IR wave-
length range (e.g., Dhawan et al., 2018; Freedman et al., 2012) carried out for instance by the
Carnegie-Chicago Hubble Program (CCHP) (Freedman et al., 2012). Since these measurements
are to some extend model dependent, Follin & Knox (2018) carried out a measurement also with
an relatively model independent approach, resulting in a value of H0 of (73.3±1.7)km s−1Mpc−1

and therefore perfectly in agreement with the other distance ladder measurements. The uncer-
tainty, however, is larger but still not in agreement with early type measurements. A different
approach but with the same kind of data are performed by Feeney et al. (2018) with an Bayesian
hierarchical approach to not rely on Gaussian distributions and by Cardona et al. (2017) with a
Bayesian hyper parameter method used to avoids subjective rejection criteria of outliers and of-
fers a possibility to test data sets for unknown systematics. As we can see directly from Fig. 1.4,
both estimates are in good agreement with the other distance ladder approaches.

While these data sets include always the Cepheids as an anchor, there is also the possibility
to use the Tip of the Red Giant Branch (TRGB) instead (e.g. Soltis et al., 2021; Freedman et al.,
2019, 2020; Reid et al., 2019; Yuan et al., 2019). These are not fully independent measurements
because of their shared SNe data set but still different measurements. Interestingly, these esti-
mates with H0 ∼ 70km s−1Mpc−1 tend to lower values, i.e., in the direction of measurements
relying on the CMB, BBN and BAO but still more than at least 1σ away.

Given the discrepancy between these distance ladder measurements and the early type, inde-
pendent approaches and data sets became crucial for a clarification. A similar approach as the
distance ladder with Cepheids or the TRGB is presented by Huang et al. (2020), who perform a
dedicated search for Mira variables, which are highly evolved low-mass stars characterized by
very red colors and have relatively long periods of few 100 days, using HST in NGC 1559, the
host galaxy of the SN 2005df. The distance of that SN is then calibrated with the Miras, which
is typically done with the Cepheids. In analogy to that, Pesce et al. (2020) consider microwave
amplification by stimulated emission of radiation (maser) objects, which is an object with natu-
rally occurring stimulated microwave emission lines. Specifically, they use megamaser, which
have a very large isotropic luminosity in contrast to masers and thus can be detected even if
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Figure 1.4: Recent measurements of the Hubble constant H0 with different approaches and data sets.
For comparison, values using the CMB (Planck Collaboration et al., 2020), gravitationally
lensed quasars (H0LiCOW, Wong et al., 2020), and distance ladder with Cepheids (SH0ES
program, Riess et al., 2021) are, respectively, shown as light blue, orange, and hashed bar.
Adapted from Di Valentino et al. (2021).
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outside of the Milky Way (MW). These maser are then again used to calibrate the distances of
their host galaxies. Both measurements are in notable disagreement with the CMB measurement
although the error bars are especially for the Miras larger, which might come from their relative
long periods making the distance measurement more difficult.

In addition to that, Blakeslee et al. (2021) uses the SB fluctuations of 63 bright and mainly
early type galaxies to reach distances in the Hubble flow. These are again combined with both
the Cepheids and the TRGB to obtain finally a value of H0, which is with 73.3±2.5km s−1Mpc−1

in very good agreement with the current value of the SH0ES team.

Another type of approach is based on the Tully-Fisher relation, which allows to determine
the distance D of spiral galaxies through their apparent brightness and their asymptotic rotation
velocity measured using long-slit spectroscopy. Both Kourkchi et al. (2020) and Schombert et al.
(2020) making use of this relation to measure the Hubble constant, and obtain a slightly higher
value than SH0ES. Therefore, they are even further away from the CMB measurements.

While all these distance ladder approaches are using SNe Type Ia whose absolute luminosi-
ties are then calibrated differently, de Jaeger et al. (2020) present a measurement of H0 using
Cepheids, the TRGB, and 7 SNe Type II.

A further independent measurement is presented by Fernández Arenas et al. (2018) using H
II regions, which are also standardizable candles. They obtained with this approach a value
of 71.0 ± 3.5km s−1Mpc−1, which is one of the few measurements that is in relatively good
agreement with both, the value from CMB and SH0ES due to the large uncertainty.

The best agreement of the later Universe probes to the CMB value is obtained using Grav-
itational Waves (GWs). While Gayathri et al. (2020) combines data of two GWs resulting in
very large uncertainties, Mukherjee et al. (2020, 2021) combines those data additionally with
the inclination angle inferred with the Very Large Baseline Interferometry (VLBI) to reduce
the error bars. Nonetheless, the uncertainty is still relatively large, ranging from H0 ∼ 63 to
∼ 72km s−1Mpc−1. Here are definitively more and better data necessary to reduce further the
error bars. Mukherjee et al. (2020) estimates an amount of 200 GWs with current precision that
are needed to bring the uncertainty below 1.3%, which is a quite ambitious goal.

In addition to this large collection of different H0 measurements belonging to the late Uni-
verse, gravitational lensing is becoming a competitive method in addition to the distance ladder
approach through continuously increasing and improving their data set (e.g., Bonvin et al., 2017;
Denzel et al., 2021; Suyu et al., 2017; Birrer et al., 2019, 2020; Millon et al., 2020b; Liao et al.,
2019, 2020; Shajib et al., 2020; Wong et al., 2020). While these are based on lensed quasars,
also lensed SNe are possible as we will discuss in Sect. 1.1.3.4 (Refsdal, 1964). This is currently
highly limited by the detected number of lensed SNe, but first results from Grillo et al. (2018)
are in good agreement with the results of the lensed quasars.

In general, as we see directly from Fig. 1.4, most methods are consistent within their group,
which means measurements using early type probes are in agreement with the CMB, while most
methods using data from the late Universe are in agreement with the most recent value from the
SH0ES team. This raises the question whether new physics is needed to resolve the discrepancy,
or if just the uncertainties are underestimated or assumptions need to be re-considered.
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1.1.3.4 Studies with lensed supernovae

Because of this debate, also significant efforts are currently spent on extending this procedure to
lensed SNe. If a SN explodes in the background source galaxy that is gravitationally lensed into
multiple images, also the light rays of the SN will be observed multiple times. In analogy to the
time delay for quasars, the SN will appear at different times leading again to a measurable time
delay. Sjur Refsdal proposed in 1964 that this time delay of strongly lensed SN could be also
used to measure the expansion rate of the Universe (Refsdal, 1964). In comparison to lensed
quasars, the well-understood light curves of SNe (e.g., Collett et al., 2019; Oguri, 2019; Foxley-
Marrable et al., 2020; Bag et al., 2021; Bayer et al., 2021), and the relative minor distortions
of microlensing on the light curves (e.g., Suyu et al., 2020; Huber et al., 2019) may help in
tightening the constraints on H0. On the other hand, recent studies showed that microlensing
magnification influences significantly the intrinsic brightness of the SN and thus complicates the
standardization (e.g., Huber et al., 2019, 2021a,b; Yahalomi et al., 2017).

Beside time-delay measurements to constrain the Hubble constant, observing lensed SNe can
help to shed light on their early phase, since SNe beyond the local Universe are typically detected
only at or after their peak luminosity. In case of a lensed SN, one can then use the first appearing
image, together with a good mass model of the lens, to predict the time delay and location of
the next image. Then a planned follow-up observation allows one to observe the reappearing
SN image already in an earlier phase than usually. Given their typically short time delays of
days to weeks, one has to react fast and especially to model the lens with the host galaxy in the
given time. Therefore, lensed SNe Type Ia are especially promising systems for answering also
outstanding questions about their progenitor system(s) that are debated through the past decades
(e.g., Suyu et al., 2020). One scenario is the single degenerate case with a White Dwarf (WD)
that is accreting mass from a nearby star until it reaches the Chandrasekhar mass limit (Whelan
& Iben, 1973; Nomoto, 1982), such that the WD collapses and explodes as a SN. In another
scenario the WD explodes already before reaching the Chandrasekhar mass, the so-called sub-
Chandrasekhar detonations (Sim et al., 2010). A third option is the so-called double-degenerate
scenario where two WDs are orbiting around each other, finally merging and thus exceeding
the Chandrasekhar mass limit (Pakmor et al., 2010). While these are typical scenarios of SNe
Type Ia, also early-phase observations for core-collapse SNe are important to study also their
progenitor properties and test further current stellar evolution models. SNe Type II spectroscopy
of the early phase are important to give constrains on the mass-loss history just before explosion.

To date, only three lensed SN are detected as the chance of a SN in a lensed galaxy is very
slim. After Refsdal proposed the idea of lensed SN, it took more than 50 years for the first
discovery. On November 10, 2014, a core-collapse SN forming an Einstein cross around an
elliptical galaxy at redshift zd = 0.54 was detected in HST images. It is now called SN Refsdal to
honor his proposed technique (Kelly et al., 2015). The SN host galaxy is a spiral galaxy and lies
at a redshift of zs = 1.49. Since this lens system is part of the cluster MACSJ1149.5+222.3, the
background host galaxy is additionally lensed through that gravitational potential into multiple
images. Therefore, it was expected that also the SN will appear another time in those images,
and many teams started directly to model that system to predict when and where the images
would appear (e.g., Oguri, 2015; Sharon & Johnson, 2015; Diego et al., 2016; Treu et al., 2016).
Finally, more than one year later, on December 11, 2015, a new image of the SN appeared in the
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observations taken with HST (Kelly et al., 2016). This system was successfully used for various
studies including constraining H0 (Grillo et al., 2018, 2020).

The second observed strongly lensed SN is iPTF16geu, which is so far the first confirmed
SN that is strongly lensed by a single, isolated galaxy at redshift zd = 0.216 (Goobar et al.,
2017). Fig. 1.5 shows SN iPTF16geu observed with HST and Keck, a telescope located in
Hawaii, where we can clearly see the four images of the SN type Ia, marked with white circles.
Additionally, we see the host galaxy of the SN at a redshift zs = 0.409, which will remain after
the SN faded away, leaving just a galaxy-galaxy lens. The very symmetric arrangement of the
SN images implies a well aligned systems, with nearly no offset η̃ between the source and the
LOS, resulting in similar path length for all four images and thus in a very small time-delay
difference, making this system not ideal for measuring H0. The alignment is supported by the
large magnification, while the relative magnifications of the four SN images provide evidence
for dust and /or sub-structures in the lensing galaxy.

Figure 1.5: Image of the strongly lensed SN iPTF16geu observed with HST and Keck. The four images
of the SN type Ia are clearly visible. Especially in the K band we can see the lensed host
galaxy. From Goobar et al., 2017, Science, 356, 291. Reprinted with permission from AAAS.

The third system contains the SN AT2016jka, which is possibly a SN type Ia and got now
named SN Requiem (Rodney et al., 2021). It appeared in an evolved galaxy at z = 1.95 and
is lensed by a massive galaxy cluster. Given the huge mass of the cluster, which is mainly
concentrated at the Brightest Cluster Galaxy (BCG), and the image separation, the fourth image
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is predicted to appear in the year 2037 ± 2. Further model investigations will help to reduce the
uncertainty, and if the SN appearance can be measured in more than two decades, this would
lead to an extraordinarily precise time delay.

This list of lensed SNe shows how seldom and peculiar such events are. To investigate further
in the search and study of lensed SNe, we recently initiated the Highly Optimized Lensing
Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals
(HOLISMOKES) program (Suyu et al., 2020). In general, we follow a simple strategy to find a
lensed SN: First, we detect as many as possible static strongly lensed galaxy systems and thus
increase the sample of known lens candidates (Cañameras et al., 2020, 2021; Cañameras et al.,
in prep.; Rojas et al., 2021; Savary et al., 2021; Shu et al., in prep.). Therefore, we introduce in
the following Sect. 1.2 the different lens search strategies developed and carried out by various
teams. We then cross-match on a daily basis with Lasair (Smith et al., 2019), a transient alert
broker, the whole list of known lens candidates with all alerts from the Zwicky Transient Facility
(ZTF), an imaging survey with focus on transient detection (Bellm et al., 2019). All systems that
have an alert within 5′′are inspected by the cross-matcher and decided whether it is a promising
lens candidate and likely a SN. If this is the case, which is unfortunately very seldom, we follow-
up that system with spectroscopy and confirm the lensing nature of that candidate. In addition,
we develop fast and automated modeling machineries (see Chapters 3, 4, and 5), which is the
core part of this thesis, investigate into micolensing effects and algorithms to measure quickly
the time delays both for SNe Type Ia (Huber et al., 2019, 2021a,b; Suyu et al., 2020) as well as
SNe Type II (Bayer et al., 2021).

1.2 Searches for strong galaxy-scale lenses

Since we are very keen on increasing the sample of known galaxy-scale strong lenses to achieve
our science goals and can apply the modeling pipelines presented in this thesis. Because strong
lensing events are very rare with about one in 105 for seeing-limited ground-based data (e.g.,
Jacobs et al., 2019), dedicated and automated lens search programs are crucial for us to identify
those systems. We give a short overview and highlight several different techniques of galaxy-
galaxy scale lens searches that helped to increase the sample from only several dozen system to
nowadays several hundred lenses and several thousands promising lens candidates. Especially
with the current and upcoming wide-field imaging surveys, precise, fast, and automated methods
are necessary that can identify lens candidates within this huge amount of galaxies. To increase
the chance of being a lens, many searches focus on Luminous Red Galaxys (LRGs), which have
a higher lensing cross-section (Turner et al., 1984) and smooth light profiles that help separate
the foreground lens and background source emissions.

1.2.1 Pattern based searches

One of the first dedicated lens search project is the Strong Lensing Legacy Survey (SL2S),
a project to search for strong lenses in the Canada-France-Hawaii Telescope Legacy Survey
(CFHTLS) sample (Cabanac et al., 2007). Cabanac et al. (2007) developed in total 3 comple-
mentary algorithms to automatically check whether lensing features are detected in the images.
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The first method is an Arc-detector based on a pattern recognition procedure. The second tech-
nique, called RingFinder, looks for rings in the images to detect unresolved systems, detecting
blue residuals in otherwise a smooth red light distribution. The third proposed method is a mul-
tiplet detector, aimed at detecting peculiar and rare multiple arclet systems that were missed by
the Arc-detector. However, this method is finally not used in the paper. The RingFinder method
was also successfully used in further programs (Gavazzi et al., 2012, 2014). In the same search
project SL2S, More et al. (2012) present 12 group-scale lenses and 42 additional lens candidates
found with the Arc-detector.

1.2.2 Spectroscopic searches

Another method was proposed by Bolton et al. (2006), who looked as part of the Sloan Lens
ACS (SLACS) project at spectroscopically selected galaxies from the Sloan Digital Sky Survey
(SDSS) and checked if there are signs of high redshift emission lines of luminous galaxies, that
could indicate a lensed object. They found in total more than 100 secure lenses or maybe lenses
where further confirmation was neccessary (Bolton et al., 2006, 2008; Gavazzi et al., 2008). This
made the SLACS survey to the most productive strong-lens survey at that time.

The same method was used by Brownstein et al. (2012) considering the spectra from the
BOSS. They found in the BOSS Emission-Line Lens Survey (BELLS) 25 definite lenses and
11 probable lenses, which were confirmed through HST follow-up observations. Since this
technique requires spectroscopic data, its applicability is highly limited to a very small fraction
of observed galaxies through wide-field imaging surveys but nontheless still in use (e.g., Shu
et al., 2016a; Talbot et al., 2018, 2021).

1.2.3 Search techniques using modeling

Sonnenfeld et al. (2018a) demonstrate the possibility of finding lenses though automated model-
ing as part of the Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI) project.
They present three complementary algorithms that were applied to Hyper Suprime-Cam (HSC)
images of 43,000 LRGs detected by eBOSS. The first algorithm is called YattaLens, which looks
for arc-like features in the image stamp by fitting a model to it and depending on the result, it
get classified as lens candidate or as non lens.

The second code is called Chitah (Chan et al., 2020), which was originally developed for the
search of lensed quasars (see Sect. 1.2.6). Chitah requires images in four different bands grzy,
of which it automatically pick one bluer (g/r) and one redder (z/y) bands, depending on which
band has a sharper Point Spread Function (PSF). By matching these two PSFs, Chitah is able
to disentangle lens and arcs according to the color information to identify the lens center and
the image positions. With this information, Chitah models the lens image configuration with a
Singular Isothermal Ellipsoid (SIE) profile. Based on the resulting χ2, it is classified as a lens
for low χ2 values or rejected as non-lens for high χ2 values.

The third method is following Bolton et al. (2006) as described in Sect. 1.2.2 by using emis-
sion lines in spectroscopic data. In total, Sonnenfeld et al. (2018a) find 15 definite lenses, 36
highly probable lenses and 282 possible lenses.
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1.2.4 Lens searches as citizen science

With the larger imaging surveys and therefore increasing number of images, the modeling and
fitting techniques get very time and resource consuming unless pre-selection and cuts on the
catalog level is done. To classify a larger sample, Sonnenfeld et al. (2020) collaborated as part
of the SuGOHI project with the Space Warps team (Marshall et al., 2016), who are conducting
a citizen science project to find strong lenses. For this, Sonnenfeld et al. (2020) pre-selected
∼ 300, 000 images and included several mock lenses as well as known non-lenses that were
accessible from the web and all people in the world were encouraged to help classifying them.
The included mock lenses and known non-lenses were used to demonstrate the procedure and
to check the performance. In parallel, they used YattaLens, which is introduced in Sect. 1.2.3,
to find lenses as well. It turned out that YattaLens found roughly half of the number that were
found by the crowd-sourcing method.

1.2.5 Machine learning based searches

Thanks to the recent wide-field imaging surveys and especially also very soon from upcoming
surveys like Rubin Observatory Legacy Survey of Space and Time (LSST) and Euclid, billions
of galaxy images are available in relative good quality. Within this huge amount of images,
around 100,000 strongly lensed galaxies are expected (Collett, 2015). To select these specific
images, one needs a fully automated and precise method, that is also fast enough to classify
millions to billions of images in an acceptable amount of time. Given these requirements and
the great success of Convolutional Neural Networks (CNNs) in image classification, they are
perfect techniques for this task. However, since there are not enough lenses known in a specific
survey, they get typically mocked up. Although the fraction in nature for a lens is quite small,
the training set contains typically around 50% lenses and 50% non-lenses to give the network
enough examples of lenses such that it can learn the important features of the arcs.

One of the first developed CNNs for lens identification was a so-called ensemble network per-
formed by Jacobs et al. (2017). They applied their first network to all of the 171 deg2 CFHTLS
wide field image data (Cabanac et al., 2007), and identified 18,861 candidates including 63
known and 139 other potential lens candidates. A second search was focused on 1.4 million
early-type galaxies selected on the catalog level and identified 2,465 candidates including 117
previously known lens candidates, 29 confirmed lenses/high-quality lens candidates and 266
novel probable or potential lenses.

In the same year, Petrillo et al. (2017) developed a CNN for lens identification on the Kilo
Degree Survey (KiDS) sample (de Jong et al., 2015, 2017), which were applied to around 22,000
LRGs selected through a color-magnitude cut. With this network, they find 761 lens candidates,
while the network is able to recover two of the three known strong lens systems.

Both teams pursued in lens recognition though CNNs; Jacobs et al. (2019) considered now
data from the Dark Energy Survey (DES) and present finally a catalog of 511 lens candidates,
while Petrillo et al. (2019a,b) focused still on LRGs of newer data releases of the KiDS sample.

Following this success in detection of strongly lensed galaxies, many other teams started to
develop CNNs for various existing imaging surveys. For instance, Knabel et al. (2020) report a
detailed comparison of spectroscopic, Machine Learning (ML), and citizen science methods for
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the identification of galaxy-galaxy lens candidates. For the spectroscopic based technique data
from the Galaxy And Mass Assembly (GAMA) survey were used, while for the citizen science
and ML method images from the KiDS sample are considered. All three methods complement
each other very well, resulting in a relative complete sample for this sky area. On the other hand,
it demonstrate that a single method like a network is not able to capture nearly all lenses.

Cañameras et al. (2020) searched for lenses in the Panoramic Survey Telescope And Rapid
Response System (Pan-STARRS) survey (Chambers et al., 2019) of the entire Northern sky fo-
cusing on typical high-redshift galaxies strongly lensed by massive LRGs. Due to the lower
image quality of Pan-STARRS compared to previous used surveys such as HSC, KiDS, or
DES, simple cuts on the photometry to select only promising candidates within the three bil-
lion sources would exclude significant fractions of interesting systems with strongly lensed arcs
blended with the lens and altering its photometry. Therefore, a multi-step approach is performed
to obtain a very pure sample of lens candidates. First, around 84% of the three billion sources
detected in the Pan-STARRS 3π survey image stacks get excluded through conservative cuts like
on their color and circular apertures, leaving still a sample of 23.1 million objects that includes
96% of the mock training systems according to the aperture magnitudes. These sample was then
classified though a Neural Network (NN) on the catalog level to further reduce the number of
candidates. The remaining sample contained around 1 million candidates and the corresponding
gri images were passed through a CNN that predicted for 12,382 lens candidates a score above
0.9, containing 330 high-quality newly-discovered lenses while recovering 23 published systems
selected through visual inspection.

While so far all presented networks were simple CNNs, Huang et al. (2020, 2021) made use
of so called residuals neural networks presented by Lanusse et al. (2018). They apply their two
networks to images of the Dark Energy Camera Legacy Survey (DECaLS) sample, resulting
after visual inspection in, respectively, 335 (Huang et al., 2020) and 1210 (Huang et al., 2021)
newly discovered strong lensing systems.

Rojas et al. (2021) presented again a CNN for detecting strongly lensed galaxies, focusing
on LRGs of the DES sample, detecting 405 lens candidates and additionally 315 candidates
that show lensing signatures but require more evidence such as higher imaging resolution or
confirmation through spectroscopic data. From the 90 best lens candidates, 52 systems were
selected showing only a single deflector, and modeled through an automated modeling code
using traditional sampling techniques. Through this modeling, 41 systems were further justified
as real lenses.

In Savary et al. (2021), a CNN committee classifier is applied to LRGs of the Canada-France
Imaging Survey (CFIS) sample (Ibata et al., 2017). While for most other surveys used for lens
searches each lens candidate was observed in multiple filters, typically gri, for the CFIS sam-
ple only r band data are available. This limits the network to a single-band classifier which
complicates the task for the network, as color information help to distinguish between a redder
lens galaxy and blue-ish arcs, coming from more distant objects. The CNN committee is finally
applied to more than 2.3 million candidates, of which 9,460 obtained a score above the conserva-
tive threshold of 0.5. Through visual inspection, 133 very promising lens candidates, containing
104 completely new candidates, were found. In analogy to Rojas et al. (2021), the best 32 can-
didates were modeled in an autonomous way, assuming an Singular Isothermal Ellipsoid with
external shear (SIE+γext) (Kormann et al., 1994) for the lens mass and a single elliptical Sér-
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sic profile for the light distribution. Finally, auto-encoders were applied to those candidates to
present deblended source and light components.

There are several Deep Learning (DL) based lens search programs in the HSC data ongo-
ing, as this survey provides, for a ground based survey, images with good quality in multiple
filters and matches the expected quality of LSST quite well, making these investigations a di-
rect preparation for LSST. Since so far several other lens search techniques were used to detect
strongly lensed galaxies, this is an excellent set of data to complement the known lenses with
DL techniques. Additionally, since many lenses are already known, the networks can get tested
on those known systems as well as on a commonly used test set of realistic mocks shared within
the different teams (More et al., in prep.).

Cañameras et al. (2021) present a residual neural network applied directly to all 62.5 million
gri galaxy image cutouts from the HSC second Public Data Release (PDR) with an i-band Kron
radius larger than 0.8′′to avoid strict pre-selections. This very restrictive network assign to 9651
candidates, which corresponds to 0.015% of the classified images, a score above the threshold
of 0.1. Through a visual inspection, 206 newly-discovered candidates got classified as a definite
or probable lens and additionally 173 known systems are recovered. The network is also able to
recover 102 group- and cluster-scale lens candidates although it is not optimized for these sys-
tems. However, this demonstrates the opportunity for dedicated group- and cluster lens searches.
This Residual Network (ResNet) obtains a False Positive Rate (FPR) of ∼ 0.01%, which is very
good for the current sample size, but still high for a full image-based classification for upcoming
surveys like LSST or Euclid. It turned out that many false-positives where under represented in
the training sample (Cañameras et al., in prep.), such that future networks might result in even
better performance. This lens search is complemented by Jaelani et al. (in prep.), carrying out
also a galaxy-galaxy scale lens search in the HSC footprint. In addition, Shu et al. (in prep.)
present a lens search focusing on high-redshift lens systems in the HSC sample.

While all these networks were from the supervised category, i.e. the network gets trained and
tested on a specific selected data set containing lenses, typically mocked lenses, and non-lenses,
there is also the option of so-called unsupervised learning which is proposed by Cheng et al.
(2020) for a lens search. For this, they use a combination of a feature extractor, a convolutional
autoencoder and a clustering algorithm consisting of a Bayesian Gaussian Mixture model. This
network is developed using Euclid mock images and is able to recover 63% of the lensed in
their sample. While this is a dedicated preparation work for the Euclid mission, previous works
used real data and thus also detected new lenses that can be used for further studies. However,
given that LSST is expected to have similar quality than HSC images, these developments will
be extremely useful for the up coming LSST.

1.2.6 Searches of lensed quasars

Lensed quasar are especially useful to study galaxy evolution and to perform time-delay cosmog-
raphy, but they are even more rare than lensed galaxies as the chance of having a bright quasar in
the background source is very low. Therefore, also dedicated lens searches for strongly lensed
quasar systems were carried out. The first large program targeted flat-spectrum sources in the
radio wavelength range in the combination of the Cosmic Lens All-Sky Survey (CLASS) and
Jodrell Bank VLA Astrometric Survey (JVAS) (Browne et al., 2003). A further large program
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uses data from SDSS and is therefore called SDSS Quasar Lens Search (SQLS) (Inada et al.,
2008, 2010, 2012; Oguri et al., 2006, 2008). They present an algorithm for scanning uniformly
spectroscopically identified quasars by using only morphological and color selections that are
generated with the standard image processing pipeline.

A further exclusive search in this field was done by Lemon et al. (2017, 2018, 2019) using data
from Global Astrometric Interferometer for Astrophysics (Gaia), which is a space satellite oper-
ated by the European Space Agency (ESA). They first select candidates within the Pan-STARRS
footprint that have either quasar-like WISE colors or photometric indications of quasars from
SDSS, requiring either multiple detection in Gaia or a single Gaia detection near a morphologi-
cal galaxy. Through modeling and follow-up observations, they confirm finally 24 (Lemon et al.,
2018) and 22 (Lemon et al., 2019), respectively, lensed quasars.

Another specialized lensed quasar detection algorithm is Chitah presented in Chan et al.
(2020), which was also successfully used to find galaxy-galaxy lens systems (see also Sect. 1.2.3
Sonnenfeld et al., 2018a). They present 46 quasar lens candidates of which 3 are previously
known. A subset of six candidates got additionally confirmed with X-Shooter spectra and got
modeled uniformly with Gravitational Lens Efficient Explorer (GLEE), a widely used and well
tested lens modeling software (Suyu & Halkola, 2010; Suyu et al., 2012).

A complete different procedure is presented in Chao et al. (2020a), proposing to use time
variability of lens systems in the HSC transient survey to obtain a sample of lensed quasar
candidates to which Chitah is applied. After visual inspection seven lensed quasars, of which
one was previously known, and one galaxy-galaxy lens were discovered (Chao et al., 2020b).
Since also LSST will provide images of different cadence, this difference imaging method would
also work for LSST.

1.3 Imaging surveys

As set out in Sect. 1.2, the galaxy-scale lenses are very seldom with one out of 105 (e.g., Ja-
cobs et al., 2019) and thus dedicated lens searches are crucial to detect them. Thanks to many
different ongoing and upcoming wide-field surveys, images of billions of astronomical objects
are available enabling a large variety of astronomical studies, beside gravitational lensing. To
identify many gravitational lenses with those algorithms introduced in Sect. 1.2, a wide-field
imaging survey with relatively good image quality is preferred to cover a wide area of the sky
and with good enough quality to resolve the arcs or multiple lensed images. On the other hand,
to detect short-lived transients like SNe, a good cadence is crucial for the difference imaging. For
detailed analysis, discovered peculiar objects are then often followed-up with space based tele-
scopes like HST (e.g., Kinney & Maran, 1991, compare Fig. 1.2 and Fig. 1.5) that provide much
better resolution (∼ 0.04′′/pixel, depending on the filter) and therefore complement perfectly
the wide-field imaging surveys.

Since these wide-field surveys are crucial for our science cases and we extensively use imag-
ing data in this thesis, we give a short overview of current and upcoming imaging surveys. We
highlight specifically HSC, a wide-field imaging surveys which we use in this thesis.
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1.3.1 Current wide-field imaging surveys

In the last two decades, we experienced great changes in astronomy through large surveys in-
cluding ground based wide-field imaging surveys in the optical wavelength regime. One of
the first large programs to image the sky is the SDSS (York et al., 2000; Stoughton et al., 2002),
which started already in the year 2000 and stopped imaging in 2009 but continued to take spectra
until this day. It is using a dedicated 2.5-m wide-angle optical telescope installed at the Apache
Point Observatory in New Mexico, United States. During these years, it covered around 35%
of the sky and provided nearly 1 billion of images in five optical filters (g, r, i, z, and y). This
was complemented by the CFHTLS (Cabanac et al., 2007), which observed at the same time
(2003-2009) from Hawaii, United States of America (Boulade et al., 2003; Cuillandre et al.,
2012; Hudelot et al., 2012). For this, CFHTLS used the MegaCam camera, which is able to
cover a full 1 × 1 square degree field of view with a resolution of 0.187′′/pixel.

The same camera is now used since 2017 by the CFIS (Ibata et al., 2017), which images
∼5,000 square degree of the northern sky in the r band and ∼ 10,000 square degrees in the
u band. This survey obtained again observing time and thus will last at least until 2022, but
is most likely further extended through the newly founded collaboration between CFIS and the
Pan-STARRS, another so far independent imaging survey operating since 2010. Pan-STARRS is
using two wide-field 1.8 m Ritchey–Chrétien telescopes located at Haleakala in Hawaii, United
States of America (Chambers et al., 2019). It reaches with the single-epoch images currently a
magnitude of around 21, depending on the filter and is therefore perfectly suited for the discovery
of near-earth objects.

Another imaging program dedicated for transients is the ZTF located at the Palomar Ob-
servatory in California, United States (Bellm et al., 2019). It started in 2017 and is a direct
continuation of the Palomar Transient Factory (2009-2017) with an augmented camera. With its
huge field of view of 47 square degrees, ZTF is able to image the entire northern sky in around
three nights in one of the supported three filters g, r or i. It has an pixel size of 1′′, and is there-
fore perfectly suited to detect transients with rapidly changing brightness like SNe or gamma
ray bursts, collision between two neutron stars, and moving objects like comets and asteroids.

There are many other surveys dedicated to image static objects. For instance the DECaLS,
which started in 2014, used the Dark Energy Camera (DECam) on the Blanco 4m telescope,
located at the Cerro Tololo Inter-American Observatory. Originally planned for three years,
it finally were completed in March 2019. It was specifically operated to provide the optical
imaging for the Dark Energy Spectroscopic Instrument (DESI) footprint, a survey focusing on
spectroscopy.

These are expanded by various additional large surveys, which also cover other wavelength
ranges such as the infrared, the radio, or gamma ray regime. Several surveys like the the KiDS
(de Jong et al., 2013a,b) and DES (Flaugher et al., 2015; Abbott et al., 2018b; Morganson et al.,
2018) combine also different regimes like optical and Near-IR (NIR). Those surveys focus typ-
ically on the covered sky area to provide billions of images with resolution of around 0.1′′ or
larger, but because of the earth atmosphere normally not reaching the quality of space based
telescopes, that are best suited for specific follow-up observations.

However, nowadays, also ground-based telescopes are competitive with space based tele-
scopes like HST by using a technique called Adaptive Optics (AO). This technique is for instance
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now available at the Keck telescopes (Medwadowski, 1989; Herbst et al., 1992; Wizinowich
et al., 2006) located near the summit of Mauna Kea at Hawaii, United States. To achieve this,
the mirror of the telescope get deformed in order to compensate the distortions introduced by
the earth atmosphere to a guide star. Since the science target is typically too faint to act as the
reference star, a nearby brighter star can be used as a guide star as it passed through nearly the
same atmospheric turbulence (e.g., Medling et al., 2021; Nielsen et al., 2017). This however,
limits the applicability of an AO system as a bright enough guide star is not always nearby. The
further away the guide star is from the scientific target, the more different is the atmosphere
between those two locations, which results in decreasing correction quality. This severely limits
the application of this technique for astronomical observations. Another major limitation is the
small field of view over which the AO correction is good. This lead to the development of mul-
ticonjugate adaptive optics where several deformable mirrors are combined to increase the field
of view (e.g., Rigaut et al., 2014; Neichel et al., 2014; Johnston & Welsh, 1994).

To increase the number of systems where AO can be used, also a laser beam as an artificial
guide star got installed for instance at the Keck observatory and is nowadays frequently used
(e.g., Chen et al., 2016, 2021c,b; Goobar et al., 2017; Vayner et al., 2021). This technique
allowed to observe the gravitational lensed SN iPTF16geu shown in the bottom panel of Fig. 1.5
(Goobar et al., 2017). The basic idea is to shoot the laser into the sky near the scientific target
such that the back-scatter light, which traveled through nearly the same atmosphere, can be
collected (e.g., Huang et al., 2022). Based on the received light, the mirror get deformed to
compensate the atmospheric turbulence.

1.3.2 Upcoming surveys and facilities

Those surveys and many others, especially also from smaller telescopes, provide billions of
images allowing a high variety of different astrophysical studies. This will reach soon another
stage when the next generation of telescope start to operate and provide additional billions of
images in even better quality. There will be Euclid (Laureijs et al., 2011), a new satellite mission
from the ESA, which shall be launched in 2023. It will provide a huge amount of images with
a resolution of ∼ 0.1′′/pixel dedicated for studies on the DE and DM content of the Universe.
Moreover, it will provide insightful information on the physics of the early universe and on
the initial conditions which seed the formation of the LSS. There is the James Webb Space
Telescope (JWST) (Gardner et al., 2006), another satellite mission planned to be launched even
before Euclid, in December 2021. It will operate around ten years and conduct high-quality data
in the NIR wavelength range.

To complement these space-based telescopes, there are also several ground-based telescopes
under construction. On one hand, the European Southern Observatory (ESO) is building a new
Extremely Large Telescope (ELT) (Evans et al., 2015) with a primary mirror diameter of 39
meters, composed out of 798 segments. The ELT will therefore provide images with incredibly
good quality, especially as it also supports AO imaging. While the ELT will provide high-quality
images for specific objects, the LSST (Ivezic et al., 2008), which is also currently under con-
struction, is expected to start operating in 2024 and provide images with an expected resolution
of around 0.2′′. Although the resolution is lower than from the other new telescopes, it will
photograph the entire reachable southern sky of around 18,000 square-degrees every few nights.
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Moreover, it will provide color information though observations in six optical and NIR filters,
whereas e.g., Euclid only supports one filter and thus give no color images. A design image of
the dome with a cutaway to show the telescope is displayed in Fig. 1.6. We also show a enlarged
cutout of the telescope (blue box), which will get a primary mirror with a diameter of 8.4 meters
and which will be equipped with a novel three-mirror design. This allows to deliver relatively
sharp images over a very wide 3.5-degree diameter field of view. The human, which is shown
enlarged in the red box, demonstrates the huge size of the LSST telescope and dome.

Because of its high cadence and large area, it will be perfectly suited for the discovery of
transients. It will surpass the resolution of Pan-STARRS, the current best detector for near-
earth objects although its coverage is with 30,000 square degrees larger than the expected area
covered by LSST. The ZTF, operating since 2018, is a similar wide-field survey dedicated for
transient detection. Its field of view is more than 4.5 times that of LSST, while LSST will
have a ∼ 30 times larger aperture. Since ZTF is reaching typically a magnitude of 21, LSST
is expected with a limiting magnitude of around 24 per epoch (Huber et al., 2021a) to provide
soon many more objects in even better quality then ZTF and to reach and even outperform
after few years of operation HSC, the current best ground based wide-field imager, in terms of
resolution. Nonetheless, both will be comparable such that the image reduction pipeline for
LSST got adapted from that of HSC. Therefore, LSST which will cover the southern sky from
Chile, will perfectly complement the HSC images of the northern sky.

Over its 10-year survey, LSST is expected to observe billions of images in six different fil-
ters, of which ∼ 100, 000 are expected to contain strongly lensed galaxies (Collett, 2015). This
will increase the current sample of known galaxy-scale lenses by nearly two orders of magni-
tude, allowing a statistical analysis of galaxy properties and many other science applications.
Among these lenses, forecasts predict 290 lensed SNe (Craig et al., 2021; Goldstein & Nugent,
2016; Goldstein et al., 2019; Wojtak et al., 2019) to be discovered by LSST. This will increase
the current sample extremely, since, as described in Sect. 1.1.3.4, only three lensed SNe, two
cluster-scale lenses and one galaxy-scale lens, are detected so far. This enables another stage
of astronomical studies including precise cosmology through a sample of gravitational lensing
SNe which is not possible until then. Given that LSST is starting soon its survey, it is timely to
develop and test dedicated tools to handle and analyze this huge amount of data. This thesis will
bring us a major step forward to achieve these ambitious goals.

1.3.3 The Hyper Suprime-Cam Subaru Strategic Program

For a newly developed software or method that is expected to be applied to any kind of specific
data, for instance astronomical images, it is crucial that the software or method is tested first on
a real or realistic data set with known output. Therefore, we will extensively use data collected
and provided by the HSC Subaru Strategic Program (HSC-SSP, throughout the thesis just HSC)
for the developments described in this thesis, .

The HSC survey (Aihara et al., 2018a,b) is a large three-layered multi-band imaging survey
using the 8.2-meter Subaru telescope on the summit of Maunakea, Hawaii. The installed camera,
the Hyper Suprime-Cam (Miyazaki et al., 2018; Komiyama et al., 2018; Kawanomoto et al.,
2018; Furusawa et al., 2018), is a three meter tall giant digital camera. The focal plane of the
camera consists of 116 Charge-Coupled Device (CCD) chips with each 2048 × 4096 pixels, of
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Figure 1.6: A three dimensional design image of the LSST dome with a cutaway to show the telescope
facility (top panel) which is currently under construction and is expected to start operating
in 2024. Below we show an enlarged image cutout of the telescope (left, blue box) and
human (right, red box) that demonstrate the size of the facility. Image downloaded on Nov.
30, 2021 from https://www.lsst.org/gallery/dome-and-telescope. Image Credit:
Rubin Obs./NSF/AURA.
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1.3 Imaging surveys

which four chips are used for auto-guiding and eight chips for monitoring the focus. This results
in 114 CCD chips that are used for real science observations. The camera has a field of view of
1.8 square degrees which is equivalent to 1.5 degree in diameter and able to obtain images with
a resolution of 0.168′′/pixel.

The survey contains three layers, Wide, Deep and UltraDeep, as indicated in Fig. 1.7. Here
we show the covered area of sky in the PDR 3, where the blue regions specifies the area covered
by the Wide layer, and the green regions the parts covered in the Deep and UltraDeep depth.
The three red boxed indicate the regions of the final Wide survey, as the area denoted as AEGIS
was only observed for calibration. Therefore, HSC imaged 1470 square degrees of the northern
hemisphere with at least one filter in the Wide layer (PDR3, Aihara et al., 2021). The different
shades of blue indicate the number of broad band filters in which data are available, with the
darkest blue corresponding to all five filters g, r, i, z, and y. These filters are classified as broad
band filters with a covered wavelength range of more than 300Å, while filters covering a range of
100Å to 300Å or smaller than 100Å are called intermediate and narrow-band filters. The choice
of the filters depend on the scientific goals of the survey. While narrower passbands lead to more
detailed information about the Spectral Energy Distributions (SEDs) of the observed galaxies,
broad band filters increase the sensitivity of the telescope and thus allow also to detect fainter
objects. The filters used by HSC for the Wide layer follow those from SDSS (Kawanomoto et al.,
2018), which are commonly adopted for a good combination of different data sets. We list the
exposure time, the obtained seeing, depth, saturation and covered sky area for each individual
filter in Tab. 1.1, archived since 2014 over the 300 nights allocated for the HSC program.

g r i z y
exposure (min) 10+2

−2 10+2
−2 20+3

−6 20+3
−10 20+3

−10
seeing (arcsec) 0.79+0.09

−0.08 0.75+0.13
−0.09 0.61+0.05

−0.05 0.68+0.08
−0.06 0.68+0.10

−0.08
depth (mag) 26.5+0.2

−0.2 26.5+0.2
−0.2 26.2+0.2

−0.3 25.2+0.2
−0.3 24.4+0.2

−0.3
saturation (mag) 17.4+0.6

−0.4 18.1+0.5
−0.5 18.3+0.5

−0.3 17.5+0.5
−0.4 17.0+0.5

−0.7
area (square degree) 1332 1298 1264 1299 1209

Table 1.1: For the Wide layer approximated exposure time, seeing, 5σ depth, and saturation magnitudes
for each of the five broad band filters, averaged over the area included in the PDR2 (Aihara
et al., 2019), from which the used data are. Note that, apart from the area, which is the total
area covered in at least one exposure, the provided numbers are the median and quartiles of
the distribution and not median and 1σ values as throughout the rest of the thesis.

In addition to these five broad band filters, HSC also covers four narrow bands (NB387,
NB816, NB921, NB101). We show the bandpasses for all nine filters in Fig. 1.8, including the
reflectivity of all mirrors, transmission of all optics, the atmosphere, and response of the CCD
chips, assuming an airmass of 1.2. The bottom panel shows the sky emission line spectrum, from
which we can see that the narrow-band filters lie in relatively dark regions of the sky spectrum.

In this thesis we use images from the Wide layer observed in g, r, i, and z in Chapters 3, 4, and
5. In Chapter 6 we additionally make use of the y band. These filters, but also the image quality
and depth matches very well the expected first-year data from LSST. In addition, the image
processing pipeline of HSC (Bosch et al., 2018) is a branch of the LSST pipeline. Therefore,
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Figure 1.7: Covered area of the sky by HSC. The blue areas show the Wide layer, where the shading
indicates the amount of broad band filters g, r, i, z, and y in which images are available. The
green regions indicate the Deep/UltraDeep layers. In the background, the Galactic extinction
map from Schlegel et al. (1998) is shown. Republished with permission of Oxford University
Press-Journals, from “Second Data Release of the Hyper Suprime-Cam Subaru Strategic
Program”, Aihara et al., PASJ, 106, 2019; permission conveyed through Copyright Clearance
Center, Inc.
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Figure 1.8: Transmission curves for the five broad band and four narrow band filters supported by HSC,
including the reflectivity of all mirrors, transmission of all optics, the atmosphere, and re-
sponse of the CCD chips, assuming an airmass of 1.2. The bottom panel shows the sky emis-
sion line spectrum. From this we can see that the narrow-band filters lie in relatively dark
regions of the sky spectrum. Figure from Aihara et al. (2018a).Republished with permission
of Oxford University Press-Journals, from “The Hyper Suprime-Cam SSP Survey: Overview
and survey design”, Aihara et al., PASJ, 70, S4, 2018a; permission conveyed through Copy-
right Clearance Center, Inc.

our results and the network performances obtained with HSC data are expected to hold also
for LSST. Nonetheless, we propose to train again dedicated networks, by using the pipelines
presented in this thesis, as soon as real LSST data are available to minimize effects due to small
differences.

1.4 Redshifts

While the surveys introduced in Sect. 1.3 are providing an immense amount of images in differ-
ent wavelength ranges and resolutions, the full exploitation of these images often require also
the distance to those imaged objects. This holds not only for gravitational lensing applications
mentioned in Sect.1.1, but also for many other astrophysical studies.

1.4.1 The need of redshifts

Until the early twentieth century, astronomers believed that the universe is static and its age
infinite, such that a measured distance will stay the same over time. The first indication for
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an expanding Universe came from Vesto Slipher, an astronomer from the Lowell Observatory,
who precisely measured the radial velocities of distant galaxies including the Andromeda nebula
(e.g., Slipher, 1913, 1915, 1917a,b, 1918, 1921). In the same years, Albert Einstein developed
the theoretical foundation for describing an dynamical Universe with his field equations of GR
(Einstein, 1908, 1915). He then introduced the cosmological constant Λ to counterbalance grav-
ity and guarantee a static Universe, which was at that time still a requirement for the theory
(Einstein, 1917). Built upon this, Friedmann (1922, 1924) demonstrated the possibility of an
expanding Universe, with the consequence that all objects should move away from us. By that
time, the data set of Vesto Slipher contained 41 objects of which 36 appeared to move away from
us providing a first demonstration of the expansion.

The other main discovery for the breakthrough was the discovery of the relation between pe-
riod and luminosity of Cepheids, which are very bright pulsating stars (Leavitt, 1908; Leavitt &
Pickering, 1912). Originally discovered by Henrietta Leavitt, Edwin Hubble started to determine
the distances and absolute magnitudes to several Cepheids in the Andromeda galaxy and other
nearby galaxies (Hubble, 1925a,b).

However, Georges Lemaître, an Belgian astrophysicist, was the first person who combined
both discoveries, the distances of Cepheids and the spectral shifts of their galaxies (Lemaître,
1927). This lead to the clear evidence that more distant objects are moving faster away from
us, which implies that we are not in a static universe. To demonstrate this, Hubble measured
the distance D to 24 galaxies and compare to their velocities. As we can see from Fig. 1.9,
where Hubble plotted the distance against the recession velocity, the relation is linear. Therefore,
Hubble defined the famous Hubble-Lemaître law

v = H0D . (1.4)

Lemaître estimated the Hubble constant H0, which we have introduced already in Sect. 1.1, to
be ∼ 680kms−1Mpc−1 (Lemaître, 1927) and Hubble to be ∼ 500kms−1Mpc−1 (Hubble, 1929),
which are both much higher than current measurements.

Further investigations also demonstrated that the ratio between velocity v and distance D is
not constant, such that Eq. (1.4) got generalized with a Hubble parameter H with H0 as the value
of the present day. This implies that the universe is not only expanding, it is expanding with
an accelerating speed. By introducing the scale factor a and its time-derivative ȧ, the Hubble
parameter can be expressed through

H(t) =
ȧ
a
. (1.5)

The scale factor can be interpreted as the ratio of the distance between two objects at some time
in the past, to the distance now and therefore represents the expansion of space. This means
the wavelength of the emitted photons of a distant object get shifted towards redder wavelength
as they travel through an expanding space. In general, this is a relativistic effect that can be
interpreted as the stretching of the electromagnetic waves (increase in wavelength) as they travel
though a stretching space. Therefore, as demonstrated by Vesto Sliper (Slipher, 1913), we can
measure the distance to objects by taking their spectra and comparing the wavelength λ of a
specific spectral feature to the originally emitted rest-frame wavelength λ0, resulting in the cos-
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1.4 Redshifts

Figure 1.9: Original Hubble diagram, showing the relation between velocity and distance of extra-
galactic galaxies. Filled circles and the solid line represent the solution for solar motion
using the individual galaxies, while the open circles and dashed line display values of groups
galaxies. The cross represent the mean velocity corresponding to the mean distance of 22
galaxies whose distances could not be estimated individually. Figure taken from Hubble
(1929).

mological redshift

z =
λ

λ0
− 1 =

1 − a(t)
a(t)

. (1.6)

Given a cosmological model, these redshifts can be then translated to a physical distance.

1.4.2 Spectroscopic redshifts

The redshift of a specific astrophysical object such as a galaxy can be measured with a spectro-
graph. The obtained spectrum are predominantly formed by the approximate blackbody spectra
of the individual stars the galaxy contain, producing a relatively flat spectrum. However, el-
ements in the atmosphere of stars as well as hydrogen gas occupying the interstellar medium
cause specific emission and absorption lines, as well as other prominent features such as breaks
in the spectrum, which are sudden drops in the flux.

By locating these features in the spectrum, one can extract the corresponding observed wave-
length λ. Using Eq. (1.6), these wavelength can be compared to the originally emitted rest-frame
wavelength λ0 to obtain the redshift. This is in general a straightforward process to obtain very
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precisely the redshift of a galaxy. The main difficulty is during the identification of the emission
or absorption lines, as a mis-identification can lead to a completely wrong redshift estimate.

Beside absorption and emission lines, there are in general two very prominent breaks known.
One is the Balmer break, which is composed of two separate breaks that occur very closely and
are therefore observed as one break. The shortest wavelength of the Balmer series, the Balmer
limit, is at a wavelength of 3646Å although the mentioned Balmer break falls at around 4000Å
caused by a number of metal elements in stellar atmospheres. Since the metal content of stars
depend on the SFR and age of the galaxy, the Balmer break is only observed in the optical and
NIR wavelength ranges for galaxies at z . 1.

Another prominent break is the Lyman break introduced by the hydrogen gas. It starts at the
Lyman limit of 912Å, which is the ionisation wavelength of neutral hydrogen gas, and continues
then towards smaller wavelength. Because of its low rest-frame wavelength, it is observed in the
optical range for galaxies between 3 . z . 4 and therefore important to measure the redshift of
very distant galaxies. For closer objects, the Lyman break is observed in the Ultraviolet (UV)
range and therefore can also be helpful for these objects.

Since it is crucial to have redshift measurements of scientific objects for further applications,
there are in analogy to the imaging surveys introduced in Sect. 1.3 also dedicated surveys for
spectroscopic observations. For instance WiggleZ (Drinkwater et al., 2010) conducted a spectro-
scopic survey between 2006 and 2011 targeting specifically UV bright emission line galaxies.
One year later, in June 2007, the observatory Xinglong in China started the Large sky Area
Multi-Object fiber Spectroscopic Telescope (LAMOST) program (Zhao et al., 2012; Luo et al.,
2015) to obtain spectra. Their main scientific aspects include studies of the LSS, to find metal-
poor stars in the galactic halo, and to provide information on the structure of the Milky Way.
Originally planned as a 5 year survey, they obtained so far around 10 million spectra of milky
way stars as well as millions spectroscopic redshifts, also called spec-z, for galaxies.

One of the largest spec-z surveys is the BOSS and the eBOSS program (Dawson et al., 2013)
as part of SDSS. These surveys provide the redshift measurements of additional millions of
objects with a peak in the redshift distribution at z ∼ 0.5 for galaxies and a small sample of
quasars in the range 1 . z . 3. To expand the sample of objects with z > 1, the survey DEEP2
and its extension DEEP3 were carried out (Davis et al., 2003; Davis et al., 2007; Newman et al.,
2013; Cooper et al., 2011; Zhou et al., 2019). They used the 10-meter class Keck telescopes to
obtain around 50,000 redshifts.

There are many more surveys like the VIMOS-VLT Deep Survey (Le Fèvre et al., 2003;
Le Fèvre et al., 2013) operated by ESO, DESI conducting spectra of tens of millions galaxies
and quasars in the optical through scanning 14,000 square degrees of northern and southern sky
(DESI Collaboration et al., 2016), zCOSMOS (Lilly et al., 2009), UDSz (Bradshaw et al., 2013;
McLure et al., 2012), 3D-HST (Skelton et al., 2014; Momcheva et al., 2016), VVDS (Le Fèvre
et al., 2013), VIPERS (Garilli et al., 2014), GAMA (Liske et al., 2015), PRIMUS (Coil et al.,
2011; Cool et al., 2013), and many others.

Nonetheless, there are many more objects imaged of which no spec-z is available. This is
mostly because spectroscopic measurements require comparably long exposure times in order to
achieve sufficient signal-to-noise ratio over a wide wavelength range. Therefore, spectroscopic
redshifts are much more expensive than photometric measurements making it infeasible to obtain
a spec-z measurement for all objects for deep observations and for large areas of the sky. As an
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example, although SDSS (York et al., 2000) has taken millions of spectra of galaxies to high
precision (Ahumada et al., 2020), the same survey conducted much more detailed photometric
data of galaxies in considerably less time. The objects with only photometry will grow even
more when the new upcoming surveys introduced in Sect. 1.3.2 start to collect data.

1.4.3 Photometric redshifts

As a result of the huge amount of objects with only photometric observations, the idea came up
whether also redshifts can be extracted from photometric data directly. The possibility was first
demonstrated by Baum (1962), while Koo (1985) and Loh & Spillar (1986) were the first ones
that computed photometric redshifts using data observed with CCD chips. In general, these tech-
niques are tested on objects with both photometric data and spectroscopic data to compare the
predicted photometric redshift zpred to the spectroscopic redshift, acting as a reference redshift
zref.

Since then, a huge amount of effort is spent on developing new and better techniques espe-
cially with the large wide-field imaging programs (see Sect. 1.3) carried out in the past two
decades. The main requirement is the availability of multi-band data to provide color infor-
mation to the photo-z code, which can also be obtained in different surveys or with different
telescopes to cover a larger wavelength range. This helps to improve the accuracy and precision
of the photo-z estimations. An example is the COSMOS2015 catalog from Laigle et al. (2016),
which we also use in Chapter 6. They combined photometric observations from ∼ 30 different
intermediate or narrow filters spanning the UV, visible, NIR and mid-infrared wavelength range
to compute very accurately photo-z values for around half a million galaxies of the 2 square
degree COSMOS field.

Nonetheless, spectroscopic surveys are still necessary as this is the more accurate technique
and spec-z are the reference redshifts for photo-z techniques. On the other hand, photometric
redshift routines are more efficient in terms of obtaining galaxy redshifts per unit telescope time
(Hildebrandt et al., 2010) and also applicable to objects that are too faint for spectroscopy (e.g.,
Abdalla et al., 2011; Blake et al., 2007; Connolly et al., 1995; Koo, 1985; Li et al., 2007; Oyaizu
et al., 2008). In addition, for objects in the redshift range of 1.4 . z . 2.5 the Balmer break and
strong emission lines are shifted into the NIR range of the spectrum making it difficult to obtain
spectroscopic redshifts in case only a spectrum in the optical range is available, where most
of the wide-field surveys operate. Therefore, this redshift range is called the “redshift desert”
(e.g., Steidel et al., 2004; Renzini & Daddi, 2009) where most spec-z samples lack. This means
that also mixed surveys, conducting both photometric and spectroscopic data, like SDSS benefit
from photo-z estimations. This makes, however, also tests of photo-z methods in that range more
difficult and resulted in significant work on obtaining spectra for galaxies at all relevant regions
of color-space (e.g., Masters et al., 2015).

Even with much fewer bands than used for the COSMOS2015 catalog, and also when only
broad band filters are available, good photo-z estimates can be computed. Thus much more
photo-z estimates are nowadays available than spec-z measurements. This is becoming even
more crucial with the new upcoming surveys like Euclid and LSST, providing billions of
high quality images without spectroscopic measurements. Both collaborations set very strin-
gent criteria on the photo-z errors to accomplish their scientific goals, mostly triggered by the
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weak lensing requirements. For example, Euclid requires a Root Mean Square (RMS) error
σRMS ≤ 0.05(1 + zpred), a catastrophic outlier fraction foutlier below 10% at a cut of 3σ and an
error in the mean redshift bin Nbin smaller than 0.002 (Laureijs et al., 2011). LSST requires the
same performance on the σRMS and outlier fraction, while allowing a maximum bias of 0.003
(LSST Science Collaboration et al., 2009). Both surveys quote even more stringent values as
their goal in addition to requesting an error estimation per system to similar accuracy.

Over the years, many different methods were developed to compute photometric redshifts.
However, they all can be categorized broadly into two groups, either template fitting algorithms
or empirical training algorithms using machine learning. We will briefly introduce both groups
in the following.

1.4.3.1 Template fitting techniques

The original procedure of photometric redshift estimation proposed by Baum (1962) is based on
observations in optical broad band filters, which allow to extract characteristics such as colors
and magnitudes. These are then compared to those extracted from a set of possible SEDs, which
shows the observed energy plotted against the wavelength λ.

These SED templates used for that comparison can be now either empirical or synthetic SEDs
of typical galaxies. Empirical templates means they are based on real observed galaxies (e.g.,
Assef et al., 2010; Mannucci et al., 2001; Duncan et al., 2018a). The main problem of these
empirical templates is that most observations are from local galaxies which span a relatively
limited volume of the parameter space and thus limiting the templates available for fitting to
observations. Therefore, often synthetic templates are used (e.g., Kriek et al., 2009; Benítez,
2000; Brammer et al., 2008), which are obtained from theoretical models of stellar population
synthesis and therefore can cover the full parameter range. These parameters include the SFR,
metallicity, initial mass function, interstellar reddening, flux decreases due to the Lyman alpha
forest, and the limiting magnitude of each filter (e.g., Bolzonella et al., 2000). The best template
is then determined through a χ2 minimization of the difference between available template and
that of the observed object. From the obtained best fit template, the corresponding redshift can
be inferred.

These techniques, however, are not exempt from mis-predictions for instance due to mea-
surement errors on the survey filter transmission curves or color-redshift degeneracies. While
an advantage of template fitting techniques is that they can be applied also to fainter objects
where spectral information are unachievable, template techniques are typically less reliable at
high redshifts where the uncertainties in galaxy SEDs increases due to calibration on low red-
shift galaxies and then extrapolation. Another problem can be an incomplete template library,
leading to a mis-match when fitting the observed magnitudes or colors to template SEDs. On
the other hand, a library with too many templates is also disadvantageous as it possibly results
in colour-redshift degeneracies (Benítez, 2000).

Therefore, template fitting algorithms are sometimes combined with Bayesian techniques.
This means a set of galaxies with known spectroscopic redshifts and similar color-magnitude
parameters act as a prior range for the template fitting process which lead often to improved
results (e.g., Benítez, 2000; Ilbert et al., 2006; Feldmann et al., 2006)
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1.4.3.2 Photo-z through machine learning

Beside the option of SED template fitting, it is also possible to use directly a sample of galaxies
with known and trustworthy, e.g., spectroscopic, redshifts to calibrate an algorithm that can be
quickly applied to new photometric observations. These algorithm was originally just a poly-
nomial function between colors and redshifts (e.g., Connolly et al., 1995; Brunner et al., 1997;
Wang et al., 1998) and provided surprisingly good predictions and thus enables a complete dif-
ferent branch of photo-z predictions.

With the increasing amount of data from both photometric and spectroscopic surveys and the
great success of machine learning techniques, this procedure got extended. A lot of work was
spent in recent years on these developments, resulting in a high variety of different procedures,
including artificial neural networks using Fully Connected (FC) layers (e.g., Collister & Lahav,
2004; Bonnett, 2015), boosted decision trees (e.g., Gerdes et al., 2010; Henghes et al., 2021a),
Gaussian process (e.g., Way et al., 2009; Bonfield et al., 2010; Gomes et al., 2018; Soo et al.,
2021), kernel regression (Wang et al., 2008), k-nearest neighbors (e.g., Ball et al., 2007, 2008;
Lima et al., 2008; Oyaizu et al., 2008; Henghes et al., 2021a), nonsequential neural network (de
Diego et al., 2021), Quasi Newton Algorithm (e.g., Cavuoti et al., 2012; Brescia et al., 2014;
Razim et al., 2021), random forest (e.g., Carliles et al., 2010; Carrasco Kind & Brunner, 2013;
Li et al., 2021; Henghes et al., 2021a), spectral connectivity analysis (e.g., Freeman et al., 2009),
support vector machines (e.g., Han et al., 2016; Wadadekar, 2005; Wang et al., 2008), and many
others (e.g., Schmidt & Lipson, 2009; Krone-Martins et al., 2014).

Instead of using a single type of architecture, there are also nowadays codes combining differ-
ent types of networks (e.g., Duncan et al., 2018b; Soo et al., 2018; Pasquet et al., 2019; Leistedt
et al., 2019) which lead often to an improved performance. While these methods are all super-
vised, i.e., trained and tested on a specific set of objects with known redshifts, there is also the
possibility of unsupervised machine learning (see also Sec. 1.5) using e.g., the so-called Self
Organized Maps (SOM) (e.g., Geach, 2012; Way & Klose, 2012; Razim et al., 2021). These
unsupervised networks perform similarly well as all other supervised architectures. Despite the
huge number of different codes, most of the codes predict still only a point estimate without a
specific uncertainty per system or a proper Probability Density Function (PDF). Another impor-
tant aspect of the applicability of these networks is the redshift range. Many are only trained on
the lower end, e.g., between 0 and 1 (e.g., Bonnett, 2015; Hoyle, 2016; Sadeh et al., 2016; Al-
mosallam et al., 2016b; Pasquet-Itam & Pasquet, 2018; Pasquet et al., 2019; Eriksen et al., 2020;
Campagne, 2020), while only a minority is able to predict photometric redshifts for objects at
e.g., z ∼ 4. This, however, is very important for the upcoming surveys such as Euclid and LSST
providing high quality images.

The main advantages of these machine learning codes are their simple usage and applicability
to different data sets as well as the possibility to include extra information such as galaxy profiles,
concentration, angular sizes, or environmental properties, in addition to magnitudes or colors
(e.g., Soo et al., 2018). However, these are also extracted quantities from the images, which are
then fed into the network. In contrast to that, we present in Chapter 6 NetZ, a novel machine
learning technique dedicated for HSC that directly uses the image cutouts and is trained on
galaxies up to z ∼ 4.
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Similar methods including CNNs got now also presented for SDSS. Pasquet et al. (2019) are
using a classifier to sort SDSS images into redshift bins between 0 < z < 0.4 while Henghes
et al. (2021b) are in analogy to us using a regression network but with an upper limit of z=0.3 or
z=1. Henghes et al. (2021b) carry out also a detailed comparison to common techniques such as
random forest algorithms. Mu et al. (2020) present a hybrid method using a combination of both
a CNN and a SOM architecture resulting in much better performance than a simple k-nearest-
neighbor algorithm on galaxies up to z = 0.8 while Campagne (2020) focused on the very low
end of the redshift distribution (z < 0.3). Here we clearly see the limitation of the SDSS image
resolution with 0.396′′/pixel, which covers the area of more than 5.5 pixels of a HSC image.
This demonstrates again the high quality of HSC, and the necessity of larger surveys with that
or even better resolution − which is currently under construction with LSST. As a result, we
also clearly see the need of new photo-z techniques that include the redshift range beyond 1 for
upcoming surveys like LSST.

1.5 Machine learning

Not only in astrophysics, but also in general, we are entering an era of having huge amount
of data available that need to be analyzed. And this will become even more extreme in the
near future. Therefore, and also thanks to the rapid developments in computer science, ML
and specifically DL obtained in the last few years huge attention, revolutionizing a well estab-
lished field of data analysis. Especially the flexibility of their tasks such as pattern recognition
or information extraction and their extreme low computational time when applying these fully
automated and self-guided computer algorithms make them so powerful. One of the first real
applications was to digitize handwritten numbers or letters (Bozinowski, 1981), and since then
DL has extended to many more and much more complex tasks also thanks to newly developed
types of networks.

With the great success in image pattern recognition, DL got also attention in various astro-
physical studies especially in data-intensive branches. Therefore, it is no surprise, that DL was
also proposed for classification of astronomical images, to e.g., sort them into different galaxy
categories such as spiral galaxies, merger, dwarf galaxies and any other types of galaxies. In
analogy, NNs are also used with great success to classify images of galaxies into lenses and
non-lenses. Because lens classification as presented in Sec. 1.2.5 is a binary classification prob-
lem, the network predicts typically one score in the range between 0 and 1 for each image. We
can then set a threshold score above which an image would get labeled as lens candidate. These
scores cannot be interpreted directly as probabilities but we see a clear correlation to the purity
of lenses with increasing score, such that a score of 1 is a clear lens candidate.

Beside the classification tasks on images, DL algorithms can also be used to extract a set of
continuous parameter values from these images. This is the kind of networks we use in this
thesis, as we predict the parameter values of our assumed mass profile of the lens (see Chapter 3
and 4). Moreover, regression networks can be used to predict photometric redshifts as introduced
in Sect. 1.4. While the redshift prediction is in principle a regression task, i.e. the network should
output a specific value as redshift, several teams proposed to use a classification network and
predict a redshift bin for each object (e.g., Bonnett, 2015; Carrasco Kind & Brunner, 2013; Han
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et al., 2016; Hoyle, 2016; Li et al., 2021; Gerdes et al., 2010; Pasquet et al., 2019; Wadadekar,
2005; Wang et al., 2008). Despite their different network types, most of them are based on
catalog entries extracted beforehand from the image cutouts such as colors, magnitudes, and
size-compactness of the galaxy.

1.5.1 Convolutional neural networks

In contrast to most other teams, we demonstrate in Chapter 6 the possibility to obtain an accurate
photometric redshift directly from the image over a large redshift range between 0 and ∼ 4. For
this, we use the standard type of networks for image processing, which includes convolutions
of the images to extract their features and thus is called convolutional neural network (CNN)
(Fukushima & Miyake, 1982). Such NN are comprised of multiple layers, at least one input and
one output layer but typically include more hidden layers in between (Lecun et al., 2015).

For CNNs, these layers include convolutional layers with the basic procedure shown in
Fig. 1.10. The kernel, whose size f × f is specified in the network architecture and thus individ-
ual for each network, is applied to the input image. Following the solid arrows, it is convolved
with a cutout of the image of the same size of the kernel (yellow input part in Fig. 1.10), and
then get iteratively shifted by a specific amount of pixels, the so-called stride (i.e. following the
dashed arrow), to cover the whole image. This produced an output reduced in size by f − 1 as
shown on the right.

Figure 1.10: Schematic procedure of a convolutional layer.

While the CNN accepts a pre-defined amount of filters of the input images as the third di-
mension, which can also be just one, the convolutional layers will increase this dimension to
the amount set by the network architecture through so-called feature maps. Each convolutional
layer is then followed by an activation function, which give a weighting on the neurons. The
most common function is the Rectified Linear Unit (ReLU) activation (Nair & Hinton, 2010).
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Since the ReLU function set simply all negative values to zero, it is much faster in computation
without decreasing accuracy compared to other activation functions such as a sigmoid function
or the hyperbolic tangent. There are nowadays also modifications of the ReLU function pro-
posed such as a leaky ReLU (He et al., 2015) where the negative values are multiplied by a
small constant instead of zero.

Another common layer in NNs is the pooling layer, which is often applied after the activation
function in CNNs. It helps to reduce the size of the maps by combining the outputs of a given
space. In Fig. 1.11 we show the two options of pooling with an space of 2× 2, either the average
(avg-pooling) of the given space or the maximum (max-pooling) is kept.

Figure 1.11: Schematic procedure of a pooling layer, either the average (avg-pooling) or the maximum
(max-pooling) is kept.

The last layers of CNNs are typically FC layers, for which the remaining data cube from the
previous layer gets flatten to one dimension. Unlike convolutional layers, FC layers do not share
weights or a kernel, but instead contain a number of neurons that are connected to every other
neuron in the following layer. These FC layers behave similarly to traditional NN using catalog
entries (e.g., Bonnett, 2015; Cañameras et al., 2020; Collister & Lahav, 2004) and taking here
the features extracted by the convolutional layers. The FC layers are further processing these
information to reach with the final FC layer the number of parameters the network shall predict.
This can be just a single neuron like for predicting the redshift of a galaxy, a few parameters like
for our modeling networks, or also hundreds for instance when classifying large sets of images
(e.g., He et al., 2015).

Depending on the task of the network, the output of the last FC layer is passed through a
sigmoid function to map the output into the range between 0 and 1. This is for instance the
case in binary classification tasks (e.g., Cañameras et al., 2020, 2021; Shu et al., in prep.) where
exactly one output score is requested, but can be also used in regression networks as presented in
Chapter 4, helping to better and equally optimize all parameters. For a multi-class classification
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challenge, the softmax function is typically used (e.g., Fuqiang et al., 2014; Morales et al., 2021;
Wang et al., 2019).

1.5.2 Residual neural networks

With the increasing amount of training data and complexity in tasks, the networks got steadily
deeper in terms of layers. Nowadays, even networks with more than 1,000 layers got developed
and trained (He et al., 2015). Since it is extreme difficult to train such deep networks and the
computational time increases drastically, He et al. (2015) proposed a residual neural network
(ResNet), a new variation of CNNs, by introducing residual blocks (pre-activated bottleneck
residual units in He et al., 2015) in the network architecture. Such blocks consists of typically
two or also more convolutional layers, which are additionally provided with a skip-connection
(or short cut). This ensures that the convolutional layer learns residual functions with respect
to the previous layer, and help avoid vanishing gradients during optimization. Thanks to these
residual blocks, it is possible to increase the number of layers and performance without request-
ing much higher computing resources than before. Such ResNets are ideal for capturing small
features and obtained the best results on the ImageNet Large Scale Visual Recognition Chal-
lenge 2015 as well as similar challenges (He et al., 2015). Therefore, we also make use of these
ResNets in Chapters 4 and 5.

1.5.3 Training process for supervised learning

All the mentioned types of ML can be grouped into supervised, weakly-supervised, semi-
supervised or unsupervised methods, while most of the mentioned examples, as well as our
developments in this thesis, fall into the group of supervised learning. Supervised NN are op-
timized on a specific set of data with known output. This is called the ground truth and used
to find the best network architecture and the best set of hyper-parameter values. For this, the
ground truth data set is split up into training set R, validation set V , and test set T . The net-
work is now applied during the forward propagation to the training set R where it can capture
image characteristics, and the network output is compared to the expected output, the so-called
labels. The differences are quantified through the loss function L, whose form depends on the
task and to some extent on the developer. The weight and neurons get then updated through the
back-propagation of the gradients to minimize the loss. After that, the network get applied to
the validation set V to quantify how good the network perform on new data and to ensure the
network is not fitting only to the training set R which is called over-fitting. Through an itera-
tive process, the weights and neurons are optimized to solve the task in the best manner, i.e. to
give the lowest validation loss. At the very end, the trained network is applied to the test set T ,
containing data the network has never seen before to demonstrate the performance on new data.

To minimize potential selection biases in the different splits, a common procedure is the cross-
validation which we also use throughout the thesis. For this, the validation set V and the training
set R get split into e.g., five sets {A, B,C,D, E} of equal size. The network is now trained five
times, while each time another split acts as validation set and the remaining ones as training
set. After the training and validation of these five networks, the epoch of the minimal median
validation loss get computed and a final network is trained on all five splits {A, B,C,D, E} up
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to this epoch. That network is then the final network which we apply to the test set T for a
performance test and afterwards to new data without known output.

Therefore, the main requirement for supervised learning is a large enough, realistic data set
with known labels. These can be either mocked up data or real data.

In case of unsupervised learning the network learns on its own the task, e.g., to group images
into classes containing similar features but is not optimized on a set of examples with known
labels. Examples of applications in astrophysics are redshift predictions (e.g., Geach, 2012;
Way & Klose, 2012; Razim et al., 2021), classification of fast radio bursts into repeaters and
non-repeaters (Chen et al., 2022), detecting extragalactic transients (Villar et al., 2021, e.g.,) or
lenses (e.g., Cheng et al., 2020), and many more (e.g., Sarmiento et al., 2021). Semi-supervised
learning falls in between and is an approach of ML that combines a small sample of labeled data
and a larger sample without labels. A very similar branch of ML is weak-supervised learning
with only noisy, limited, or imprecise labeled data. Given the success of unsupervised networks,
even such data sets can lead to very precise predictions of a network. Both types of ML are
also successfully used in astrophysics for different tasks (e.g., Ali-Dib et al., 2020; Balakrishnan
et al., 2021; Marianer et al., 2021; Richards et al., 2012).

1.6 Thesis outline

The work presented in this thesis is ordered as follows. Since the main part of the thesis fo-
cus on gravitational lensing, we give a short summary of the lensing formalism and the typical
modeling procedure in Chapter 2. In Chapter 3 we present our simulation pipeline to generate
very realistic mock data as well as our modeling network where we assumed a SIE mass profile.
Moreover, we show in this chapter the resulting accuracy and precision on the image position
and time delays obtained with the network’s model. This is followed by the modeling network
assuming SIE+γext in Chapter 4, where we also include an error estimation. A direct and de-
tailed comparison between traditionally obtained models and those from our network is given
in Chapter 5. For this comparison, we use 32 galaxy-galaxy lens systems from the SuGOHI
sample. Additionally, we describe our automated modeling algorithm using conventional opti-
mization techniques which we used to derive the comparison models. In Chapter 6 we present
the photometric redshift network NetZ with our novel approach using directly the image cutouts.
We finally conclude and provide an outlook in Chapter 7.
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2 Lensing formalism and traditional lens
modeling

In this chapter we revisit the most important aspects of the lensing formalism (Sect. 2.1), where
we mainly follow Schneider et al. (2006) and the naming convention introduced in Fig. 1.1. In
Sect. 2.2 we will then highlight the general procedure of lens modeling and introduce commonly
adopted light and mass profiles of which we also make use in this thesis.

2.1 Lensing formalism

2.1.1 Lens equation

Normally, without lensing, the light rays from the background source would travel in a straight
line (dashed in Fig. 1.1) to the observer, such that the observer would see the source under the
angle β. Therefore, β is called the true, unlensed source position. Because of the deflection
generated by the lens, the observer sees the source at position θ instead of β. By assuming that
η̃ is very small compared to the distances Dd and Ds, the angles are also very small such that we
can use the approximation sin(x) ≈ x ≈ tan(x) and read off the geometric condition

η̃ =
Ds

Dd
ξ − Ddsα̂(ξ) (2.1)

from Fig. 1.1. If we introduce now angular coordinates

η̃ = Dsβ (2.2)

ξ = Ddθ (2.3)

we can write Eq. (2.1) as

β = θ −
Dds

Ds
α̂(Ddθ) . (2.4)

By defining the scaled deflection angle as

α(θ) ≡
Dds

Ds
α̂(Ddθ) (2.5)

we are directly left with the famous lens equation

α = θ − β . (2.6)
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2.1.2 Convergence and the critical mass density

As mentioned in Sect. 1.1.3, the strong lensing regime implies resolvable multiple images of
the background source, which can be individual images from point like objects such as quasars,
stretched arcs from extended sources like galaxies, or, if the alignment is appropriate, form a
ring through merging arcs. This happens if the lens equation (2.6) has, for a specific source
position β, more than one solution. A sufficent criteria is that the convergence, sometimes also
called dimensionless surface mass density,

κ =
Σ(r)
Σcrit

(2.7)

is bigger or equal to 1. This can therefore be used as a criterion to distinguish between the strong
and weak lensing regimes. The given expression is valid for an axisymmetric mass distribution
Σ = Σ(r), which can often be assumed. Here, Σ(r) is the surface mass density and Σcrit the critical
mass density, a characteristic and specific quantity for each lens system, defined as

Σcrit =
c2

4πG
Ds

DdDds
. (2.8)

2.1.3 Deflection angle and the lens potential

Following Schneider et al. (2006), the deflection angle for a general extended mass distribution
ρ(ξ, z), with spatial coordinates (ξ1, ξ2, z), can be generalized to

α̂(ξ) =
4G
c2

∫
d2ξ′

∫
dz′ρ(ξ′1, ξ

′
2, z
′)
ξ − ξ′

|ξ − ξ′|2
(2.9)

or

α̂(ξ) =
4G
c2

∫
d2ξ′Σ(ξ′1, ξ

′
2)
ξ − ξ′

|ξ − ξ′|2
, (2.10)

where
Σ(ξ′1, ξ

′
2) =

∫
dz′ρ(ξ′1, ξ

′
2, z
′) (2.11)

is the projected surface mass density of the deflector as a function of the two-dimensional posi-
tion on the lens plane (ξ′1, ξ

′
2).

Assuming again an axisymmetric mass distribution, we can now write the scaled deflection
angle with the dimensionless surface mass density as

α(θ) =
1
π

∫
R2

d2θ′κ(θ′)
θ − θ′

|θ − θ′|2
(2.12)

or, by evaluating the spatial integral in Eq. (2.12) to 2π and taking the derivative canceling the
radial integral, express the dimensionless surface mass density as a function of the deflection
angle by

2κ =
∂α1

∂θ1
+
∂α2

∂θ2
= ∇θ ·α . (2.13)
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Using the mathematical relation

∇ ln(|θ|) =
θ

|θ2|
, (2.14)

we can write the deflection angle α as

α(θ) = ∇Ψ(θ) (2.15)

and define
Ψ(θ) ≡

1
π

∫
R2

d2θ′κ(θ′) ln
(
|θ − θ′|

)
(2.16)

as the lens potential, which describes the gravitational potential generated by the lens mass
distribution and the curvature of space-time created by it (Schneider, 2005). This allows us to
re-write the lens equation(2.6) as

β = θ − ∇Ψ(θ), (2.17)

which directly shows the connection between the image positions on the lens plane and the first
derivative of the lensing potential.

2.1.4 Surface brightness conservation, magnification, and shear

As a consequence of the Liouville theorem (e.g., Zettl, 2010) and the absence of emission and
absorption of photons in gravitational lensing, the photon number and thus also the SB is con-
served. However, the images of extended background sources are typically highly distorted.
This can be seen for example in Fig. 1.2, where the arcs are forming nearly an Einstein ring.
Also the second source, another galaxy, is lensed into a radially stretched arc (green box in
Fig. 1.2), while its counter image (dashed green box in Fig. 1.2) shows a completely different
structure. The magnification factor µ quantifies the distortion for a specific system.

To motivate this, suppose a source has a SB described by I(β), then the observed SB on the
image plane is

I(θ) = Isource(β(θ)) . (2.18)

Without gravitational light deflection, the source would subtend a specific area on the sky, which
we denote as dω̃. Then the monochromatic flux is given by

F̃ = I(θ)dω̃ . (2.19)

When now a massive object deflects the light, the solid angle dω will be different from dω̃.
Because the SB does not change, the flux of the image is given by

F = I(θ)dω . (2.20)

Hence, the light deflection leads to a change of flux which we observe as distortions. This
amount is given by the magnification factor µ, which is defined as the ratio of flux with and
without lensing, i.e.

|µ| =
F
F̃

=
I(θ)dω
I(θ)dω̃

=
dω
dω̃

. (2.21)
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By assuming that the source is much smaller than the angular scale on which the lens mass
properties change, the lens equation can be locally linearised resulting in the Jacobian matrix

A =
∂β

∂θ
=

(
δ jk −

∂2Ψ(θ)
∂θ j∂θk

)
. (2.22)

Here we have used the lens equation in form of Eq. (2.17) and the Kronecker Delta δ jk. Fol-
lowing Schneider et al. (2006), the Jacobian matrix can further be expressed using Eq. (2.16)
as

A =

(
1 − κ − γint

1
−γint

2

−γint
2

1 − κ + γint
1

)
= (1 − κ)

(
1 − g1
−g2

−g2
1 + g1

)
. (2.23)

where we introduced the shear
γint = γint

1 + iγint
2 (2.24)

and the reduced shear

g = g1 + ig2 ≡
γint

1 − κ
, (2.25)

which are both complex quantities and the key parameter in weak lensing studies. The Jacobian
matrix in form of Eq. (2.23) shows also the role of the shear and convergence: the convergence
is the generator of a constant isotropic distortion in the source structure, while the shear is
elongating it in a preferential direction.

Finally, the determinant of the Jacobian matrixA can be related to the magnification factor

µ =
1

det(A)
=

1
(1 − κ)2 − |γint|2

. (2.26)

From this equation we see that for specific values of κ and γint the determinant of A vanishes,
which implies that the magnification µ diverges. These locations define the so-called critical
curves on the lens plane. Depending on the eigenvalues of A, they are described as tangential
or radial critical curves. The mapped positions of the critical curves to the source plane are
called caustic curves. Therefore, objects close to the caustic can be highly magnified, allowing
us to observe them even though they would be otherwise too faint. This effect helps to study
the early Universe and properties of high-redshift objects. This effect is also important on the
microlensing-scale especially for transient or expanding objects like SNe, as they can cross
the caustics, leading to a sudden steep increase of the magnification (e.g., Huber et al., 2019,
2021a,b).

2.1.5 Multi-plane lensing

So far we assumed the basic scenario where we have exactly one lens and one background object.
This is enough for most studies, including this work, however, in some cases like the Cosmic
Horseshoe shown in Fig. 1.2, more than two objects are involved. This means in detail, that the
light of the most distant object at position θN gets deflected by all other N − 1 objects towards
the observer. In this case the lens equation defined in Eq. (2.6) is calculated iteratively over all
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N objects and reads as

θ j(θ1) = θ1 −

j−1∑
k=1

Dk j

D j
α̂(θk) . (2.27)

Moreover, the light of object N − 1 gets deflected by all remaining N − 2 deflectors towards the
observer; and following this logic all other objects as well until the last source at position θ1
is observed unlensed like the lens in the single-plane scenario. In other words, Eq. (2.27) gives
the relation between the angular position θ j of a light ray in the j-th lens plane and the angular
position in the j = 1 plane, which is the observed image plane. In this notation θN corresponds
to the source plane, and α̂(θk) to the deflection angle on the k-th plane. In analogy to Eq. (2.5),
the total scaled deflection angle αtot is the sum over all deflection angles on all N −1 lens planes

αtot =

N−1∑
k=1

DkN

DN
α̂(θk) . (2.28)

Following Eq. (2.23), the Jacobian matrix in the multi-plane scenario is given by

A =
∂β

∂θ
=
∂θN

∂θ1
, (2.29)

and in similar procedure the other effective quantities by replacing the deflection angle α with
the total deflection angle αtot.

Since we do not perform multi-plane lens modeling in this thesis, we refrain from further
discussion and only refer the reader to dedicated publications on this topic like Petters (1995a,b)
and Schneider (2019).

2.2 Traditional lens modeling

After introducing the general formalism used in gravitational lensing, we further highlight the
general procedure developed over the past decades to reproduce the lens observations with the-
oretical profiles. Such modeling is necessary for most lensing studies, including the study of
lens mass properties (see Sect. 1.1.3.1), the reconstruction of the source SB for studying the
background source (see Sect. 1.1.3.2), or the reconstruction of the lens potential for time-delay
cosmography (see Sect. 1.1.3.3 and Sect. 1.1.3.4). The modeling is typically performed step-
wise, while the exact procedure depends on the lensing regime, system size (single galaxy/-
group/cluster), and on whether e.g., a quasar is lensed or only a galaxy. It also depends on the
image resolution and science case which determines how detailed and complex the model shall
be. This means there is not a strict procedure, especially as also each lens system is particular
on its own, making detailed modeling a relatively complicated and lengthy task that requires
expertise. For the modeling, there are several well established software packages available such
as GLEE (Suyu & Halkola, 2010; Suyu, 2012) and its extension for Gravitational Lensing and
Dynamics (GLaD) (Chirivì et al., 2020) which we extensively use in this thesis. These codes
support all commonly adopted profiles, well-tested sampling algorithms to obtain the best fitting
parameter values, possibilities to include measured time delays or velocity dispersions as con-
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strains, as well as several other possibilities. In this section we summarize the general modeling
procedure, introduce typically adopted mass and light profiles, and finally highlight optimization
techniques supported by GLEE and GLaD and used in this thesis.

2.2.1 Source/Image position model and the Singular Isothermal Ellipsoid
profile

For a galaxy-galaxy strong lensing system as we use in this thesis, the first step is to identify
multiple components of the background source. For ground based images this is often just
one set, i.e. the brightest pixel of each arc, while for high-resolution images e.g., from HST,
multiple sets can be identified by taking into account that the color and intrinsic brightness of the
background source is conserved (e.g., Grillo et al., 2013, 2018; Suyu et al., 2013; Schuldt et al.,
2019). These identified positions can then be used to constrain the parameters of a lens mass
profile through minimizing the difference between predicted positions and identified positions,
either on the source plane or on the image plane, resulting in a source position or image position
model, respectively. Since for the image position model the lens equation needs to be solved in
every iteration, this procedure is slightly slower and computationally more expensive but on the
other hand also more precise. Typically, we first run a short iteration using the source position,
but from then onward optimize with the image positions.

A commonly adopted profile for the total mass is the power-law profile, for instance the
Singular Power-Law Elliptical Mass Distribution (SPEMD) (Barkana, 1998) which is a softened
power-law profile with a constant density within a central core of radius rc. Its convergence as
defined in Eq. (2.7), which quantity is used by GLEE to compute the deflection map, can be
written as

κ(r) = E
(
r2 + r′c

2
)−γPL (2.30)

where γPL is the power-law index and r the elliptical radius, which can be expressed through the
Cartesian coordinates x and y and the axis ratio q by

r =

√
x2 +

y2

q2 . (2.31)

The elliptical core radius r′c is related to the core radius rc by

r′c =

(
2rc

1 + q

)
, (2.32)

and the whole mass distribution is then additionally rotated by the position angle θ. In this
equation, E is the amplitude and following Barkana (1998) related to the Einstein radius θE by

E =
2

1 + q
(1 − γPL)

θE
2

(θE2 + r′c2)1−γPL − r′c2(1−γPL) (2.33)

The case γPL = 0 corresponds to a constant mass sheet and the isothermal case is obtained with
γPL = 0.5. If the number of image positions is relatively low and for a well-constrained model
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the number of free parameters needs to be reduced, we often assume the isothermal case and set
the core radius to zero, or, to avoid numerical instabilities in the lens center, to a very low values
such as 10−4, resulting in the SIE profile. The even more simple profile is the Singular Isothermal
Sphere (SIS), where additionally the axis ratio is set to 1, i.e. a spherical mass distribution. In
the case of an SIE, Eq. (2.30) simplifies to

κ(r) =
θE

(1 + q)r
. (2.34)

Since real lensing systems are not isolated, nearby objects influence the light deflection as
well. While e.g., stars, even within the Einstein radius, are not massive enough, galaxy clusters
introduce notable effects on the light deflection even if they are several tens of arcseconds to
arcminutes away. This mass concentration is typically outside of the image cutout (compare
Fig. 1.2), such that these perturber can be described by a simple external shear strength denoted
as γext and a position angle θext, indicating the amount and direction of the mass concentra-
tion, instead of specific mass profiles such as the power-law. These two parameters can also be
converted into a complex notation through γ̃ext = γ1 + iγ2 with

γ1 = γext cos (2θext)

γ2 = γext sin (2θext) . (2.35)

Due to the low number of constraints in the source or image position model, this external shear is
often neglected and included at a later stage. However, this is not that crucial as both procedures
based on the image positions alone give typically just a preliminary model for galaxy-systems,
which is refined by using directly the image cutouts. These provide the full pixel information,
and multiple bands can be modeled simultaneously to increase the amount of data and addi-
tionally provide color information. Here the external shear component can be included without
problems.

2.2.2 Lens light modeling with the Sérsic or the chameleon profile

To model the mass distribution of the lens using the full image cutout, the lens light distribution
must be modeled first. Lens galaxies are typically LRGs given their higher lensing cross-section
(Turner et al., 1984). The commonly adopted profile is the Sérsic profile (Sérsic, 1963) which
has a variable slope n compared to the De Vaucouleurs law (De Vaucouleurs, 1948). Assuming
an elliptical profile, the intensity I of the galaxy at position

r =

√
x2 +

y2

q2 (2.36)

is given by

I(r) = Ae
−ζ(n)

((
r

reff

)1/n
−1

)
, (2.37)
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with the axis ratio q, the amplitude A corresponding to the central surface density, and the effec-
tive radius reff. The constant ζ(n) depends on the exponent and can be approximated as

ζ(n) = 2n −
1
3

+
4

405n
+

46
25515n2 +

131
1148175n3 −

2194697
30690717750n4 (2.38)

such that the effective radius encloses half of the projected light (Cardone, 2004; Ciotti & Bertin,
1999; Dutton et al., 2011). Therefore, the effective radius is also called half-light radius. De-
pending on the resolution and complexity of the lens, multiple components can be included.

An alternative to the Sérsic profile is the so-called “chameleon” profile which mimics the
Sérsic profile well but allows analytic computations of lensing quantities (e.g., Dutton et al.,
2011; Maller et al., 2000; Suyu et al., 2014). It is composed of a difference of two isothermal
profiles with different core radii, but the same amplitude:

I(x, y) =
I0

1+qL

(
1√

x2+y2/q2
L+4w2

c/(1+qL)2

− 1√
x2+y2/q2

L+4w2
t /(1+qL)2

)
. (2.39)

In this equation qL is the axis ratio, and wt and wc are originally the core radii of the two
isothermal profiles and now just two parameters of the profile with wt > wc to keep I > 0 at
every position (x, y).

Since the light distribution is typically not well enough described with one Sérsic or
chameleon profile alone, often two or three such profiles are stacked together to increase the
flexibility of the model. The values of these parameters describing the lens light (subscript ll)
distribution are then optimized through minimizing

χ2
ll =

Np∑
j=1

(
Iobs

j − PSF ⊗ Ipred
j

)
σtot, j

, (2.40)

which is the difference between the observed intensity Iobs
j of pixel j and the predicted intensity

Ipred
j after convolving with the PSF, divided by the total noise σtot, j. This is finally summed over

all pixels Np of the lens, which means all pixels that are not excluded through the arc mask or
lens mask. These are two masks dedicated for each lensing systems to specify where the arcs and
multiple images are (arcmask) and where notable light of LOS objects, such as objects O1, O2,
and O3 in Fig.1.2, is (lensmask) as the optimized lens light profile is not supposed to describe
that light. Here the total noise σtot, j combines through a quadrature sum the background noise
σbkgr,j, which can be estimated through the standard deviation from an empty patch of the cutout,
and the astrophysical Poisson noise (Hasinoff, 2012).

Since the predicted light distribution shows only the light of the lens, the arcs and other bright
objects in the cutout are either masked out, i.e., excluded from the sum defined in Eq. (2.40), or
the uncertainty σtot for these pixel is increased drastically such that the contribution to the χ2

ll
is effectively zero. After optimizing the parameters for the main lens, contaminants like objects
O1, O2, and O3 in Fig. 1.2 can be included through an own, additional light profile.
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2.2 Traditional lens modeling

2.2.3 Arc light modeling and source surface brightness reconstruction

After obtaining a good lens light fit, the mass profile, normally pre-optimized from the image
positions, is included in the model. Instead of the identified image positions, the regions of
the multiple images in the cutout are directly used to constrain the mass parameters. For this,
either the mask or error map is updated such that these pixel are now also included in the χ2

ll
minimization, denoted then as χ2

arc. In this modeling step, also the light distribution of the
background source is reconstructed. One possibility for this is to adopt a profile, for instance
a Sérsic profile. This light distribution is then mapped from the source plane onto the lens
plane and compared to the observed arcs. The source light parameters are then chosen such that
the difference on the lens plane is minimal. This principle of the source SB reconstruction is
supported by GLaD and preferred for ground-based images.

The other option is to assume no light profile at all for the source and instead use a so-
called pixelated source SB reconstruction. Here the code tries to reconstruct the source light
distribution on a grid of pixels, where the distribution is only constrained through the observed
arcs. Additionally, in the minimization of χ2

arc a regression term such as

|sk−1 − 2sk + sk+1|
2 (2.41)

is included to minimize the difference of the source intensity sk of pixel k and the neighboring
pixels on the grid (Suyu et al., 2006). This helps to obtain a smooth, physically realistic intensity
map. This procedure is supported by GLEE and is typically used for high-resolution images such
as HST images which provide enough details on the arcs.

2.2.4 Composite mass modeling

Depending on the science case, one might be interested in disentangling the baryonic matter from
the DM component. For this, one typically assumes the baryonic mass as the light distribution
scaled by a mass-to-light ratio (M/L), which is a good approximation for the optical and NIR
wavelength range (e.g., Schombert & McGaugh, 2014; McGaugh, 2016), but is known not to be
exact (e.g., Bernardi et al., 2018; Sonnenfeld et al., 2018b). Combining the total mass and the
baryonic mass, one can construct a composite mass model of baryons and DM. The commonly
adopted profile for the DM distribution is the Navarro Frenk and White (NFW) profile which
was found through large numerical DM-only simulations based only on gravity (Navarro et al.,
1997). The DM density is given by

ρ(r) =
ρs(

r
rs

) (
1 + r

rs

)2 . (2.42)

In this equation, rs is the scale radius and defines the radius where the slope changes: for radii
much smaller than the scale radius, the density falls as ρr<<rs ∝ r−1 and for radii much larger
than the scale radius as ρr>>rs ∝ r−3. Typically, this profile is considered with an elliptical radius
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(denoted here as ENFW) and we define

r′ ≡
r
rs

=

√
qx2 +

y2

q

rs
(2.43)

with axis ratio q. Thus, the deflection angle (Halkola et al., 2006; Meneghetti et al., 2003)

αNFW(r′) = θE
h(r′)

r′
(2.44)

changes in the following way

αENFW
1 = αNFW

1
qx
r

(2.45)

αENFW
2 = αNFW

2
y
qr

, (2.46)

with

h(r′) = ln
(
r′

2

)
+


2√

1−r′2
arcosh

(
1
r′
)

for r′ < 1
1 for r′ = 1

2√
r′2−1

arcos
(

1
r′
)

for r′ > 1
. (2.47)

However, one is not limited to this profile and can instead adopt for instance a power-law
profile or a generalized NFW profile, where a variable inner DM slope γg is introduced and the
density is given by

ρ(r) =
ρs(

r
rs

)γg
(
1 + r

rs

)3−γg
. (2.48)

2.2.5 Degeneracies and breaking them through stellar kinematics

In the lens modeling, some parameters are typically degenerate with each other, such as the
ellipticity and external shear or the Einstein radius and the power-law slope. These degeneracies
can be seen from 2D probability density plots of the various parameters. Moreover, there is a
Mass-Sheet Degeneracy (MSD) as shown by Falco et al. (1985), which means that the mass
distributions κ(θ) defined in Eq. (2.30) for the power-law profile and

κλ′(θ) = λ′κ(θ) + (1 − λ′) (2.49)

in combination with the same arbitrary isotropic scaling λ′ of the source plane β → λ′β, which
is in most cases unobservable, correspond to exactly the same dimensionless observables like
image positions, image shape, and magnification ratios. This means that from the observed
image positions and flux ratios alone, we cannot distinguish between any of the possible κλ′
distributions. This MSD can not be broken through weak lensing either, as the image shapes are
unaffected. Similarly, also time-delay ratios remain invariant, but the product H0 ×∆t is affected
(Schneider & Seitz, 1995) making it impossible to obtain H0 from gravitational lensing without
breaking the MSD.
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There are several ways proposed to break this degeneracy. For instance, if the magnification,
which is affected by the MSD as µ → µ/λ′2, can be estimated, it can be used to break the de-
generacy by constraining the value of λ′. Another possibility is to combine gravitational lensing
with another, independent lens mass estimate, where velocity dispersion measurements are per-
fectly valid. This combination was done the first time for the model of Q0957+561 by Grogin
& Narayan (1996) used to constrain the Hubble constant H0 and got refined by Romanowsky &
Kochanek (1999) who suggested to include higher-order moments of the stellar velocity. While
originally velocity dispersion measurements and lensing were treated completely independently,
it is nowadays common to combine them to break the MSD especially when inferring the Hubble
constant (e.g., Suyu et al., 2010, 2013). Therefore, many studies on the MSD were carried out
to further understand the effect and impact on H0 inference (e.g Birrer et al., 2016; Chen et al.,
2021a; Gomer & Williams, 2020; Schneider & Sluse, 2013) also under the assumption of Inte-
grale Field Unit (IFU) stellar kinematics obtained with the JWST (Yıldırım et al., 2021). Beside
breaking the MSD by including the velocity dispersion as additional data in the lens mass model,
it helps also to constrain further all parameters. Therefore, our modeling software GLEE, which
does not support kinematics on its own, got extended through GLaD. In addition to including
the lens stellar kinematics, GLaD supports also the option of reconstructing the unlensed source
kinematics simultaneously with the source SB through modeling of lensing and IFU kinematic
measurements of lens and lensed source (Chirivì et al., 2020).

2.2.6 Lensed quasar modeling

The described modeling process is slightly different for modeling lensed quasars as we have to
model the host galaxy of the quasar as well as the quasar images themselves, which are typically
much brighter than the host (compare Fig. 1.3). The source and image position modeling proce-
dure is the same as described in Sect. 2.2.1, where the quasar images can be used as the lensed
image positions. Also the lens light modeling procedure described in Sect. 2.2.2 remains un-
changed, but when including the quasar in the extended image model, a point profile is adopted
for each quasar image. This point profile has only three parameters: the position of the center
(x,y) and the amplitude. The light distribution is given by the PSF representing a point-like ob-
ject such as a star observed through the given telescope under given circumstances. This means,
when including the quasar in the lens light model, the host galaxy will be further masked to first
optimize the parameters describing the bright quasar images. This, however, leads to a slight
overestimate of the quasar amplitudes to compensate the light contribution of the host at these
positions. Therefore, when including the host in the model, the quasar amplitudes are adjusted
to slightly lower values at the first instance. Because one does not know the amount by which the
quasar amplitudes need to be decreased, one trick is to increase artificially the values in the error
map around the quasar positions such that the contribution of these regions to the χ2 is smaller
than that of the other parts of the host. This essentially helps in fitting better the host galaxy
without introducing difficulties through the bright quasar, and after the fit of the outer parts of
the host has stabilized, the uncertainties are reset to their original values and the quasar light
is allowed to vary again. Apart from this, the arc light modeling follows closely the procedure
described in Sect. 2.2.3, and allows to reconstruct the SB of the host galaxy. Since the mass of
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the quasar is not represented though an individual mass profile, a composite mass model can be
obtained through the normal procedure described in Sect. 2.2.6.

Lensed quasar systems are typically modeled to infer the Hubble constant H0, as described
in Sect. 1.1.3.3. For this, a well constrained composite mass model is indispensable such that
the velocity dispersion measurements are commonly included to break the MSD. Moreover, the
time-delays ∆t and LOS velocity estimates are used to constrain the model further.

2.2.7 Cluster modeling

The modeling of complete clusters is different in various aspects from the described procedure
for strong galaxy-galaxy lensing. Not only does the system size change from few arcseconds to
tens of arcseconds, but one is also typically in the weak lensing regime, possibly in combination
with strong lensing effects. However, the main difference is the number of lenses involved.
While we have one main lens in a galaxy-galaxy system, a cluster contains several dozens of
galaxies that need to be taken into account. Each galaxy would have a different redshift, but
given the small redshift difference within the cluster, one often groups them together. This
implies the multi-plane case (see Sect. 2.1.5) unless a single redshift is adopted for the whole
cluster. In addition, given the size of a cluster, there are normally LOS objects at a completely
different redshift. To take these additional objects into account is crucial especially for the weak
lensing observations. Therefore, we often use only the image positions as constraints, which also
avoids modeling of the light distribution. Since the number of lensed image sets are high, even
more advanced models that include several mass profiles is well constrained. For instance, Grillo
et al. (2018, 2020) modeled the lensing system SN Refsdal introduced in Sect. 1.1.3.4 using 89
multiple image systems, i.e. 178 x and y coordinates, as well as four time delays as constraints.
On the other side, they have 28 free parameters describing the total mass of the cluster, 56 x
and y coordinates from the background sources, three redshift families and additionally two free
parameter for the Hubble constant H0 ∈ [20, 120] km s−1Mpc−1 and ΩM = 1 − ΩΛ ∈ [0, 1] in
a ΛCDM cosmology. In sum, they have 93 more data points than free parameters, making it
possible to constrain the mass distribution and cosmological parameters very well.

2.2.8 Optimization algorithms

As described in the previous sections, the lens light, lens mass and possibly also the source light
or neighboring objects within the cutout are described by well-motivated but adopted profiles.
During the modeling process, the profile parameters are varied to find the best set of values to
represent the observation. The difference between observed data and predictions is described by
the χ2 whose exact form depends on the modeling stage. For instance, the expression for the
lens light fit is given by Eq. (2.40). Therefore, the task of optimizing the model is translated
into minimizing the χ2, for which various mathematical algorithms exist and are supported by
our modeling software. This parameter inference is typically a Bayesian inference relying on
Bayes’ Theorem

P(C|B) = P(B|C) ×
P(C)
P(B)

(2.50)
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where P(C), called prior, is the probability of observing event C and P(C|B), which is called
posterior, describes the probability of observing event C given that B has happened. In this
terminology, we call further P(B) the evidence, which is often a constant given that the observed
quantity B does not change, and P(B|C) the likelihood. The likelihood is then connected to the
χ2 through

L ∝ e−χ
2/2 , (2.51)

which implies that minimizing the χ2 corresponds to maximizing the likelihood. With this the-
orem, we get the updated probability of C given new information from B.

A common approach to Bayesian inference is based on Markov chain Monte Carlo (MCMC)
methods (e.g., Mackay, 1992, 2003). These methods sample the parameters of the model and
obtain the posterior from Bayes’ Theorem given in Eq. (2.50). Explicitly, we use the Metropolis
Hastings algorithm (Hastings, 1970; Robert & Casella, 2004), which contains the following
steps:

• Take a point in the parameter space

• Propose a direction to go through a proposal density distribution

• Calculate the posterior probability of the new point and accept the new point
if P(new point)/P(old point) > 1 or
if P(new point)/P(old point) < 1 and P(new point)/P(old point) > k,
where P(x) is the probability of point x and k is a random number between 0 and 1.

After a certain number of steps, the chain will converge to the final and steady state. One
important characteristic of MCMC methods is that the final state does not depend on the starting
point. As a proposal density distribution, it is common to use a Gaussian distribution.

An MCMC chain does not only allow to infer better fitting parameters, it also allows us to
generate a covariance matrix from a full chain. This helps especially to improve the perfor-
mance for sampling a high-dimensional parameter space with several degeneracies among those
parameters.

Since MCMC sampling is not parallelized and with an increasing number of parameters and
data points, which are the image pixels for the extended image modeling (see Sect. 2.2.2 and
following modeling steps), it becomes relatively slow. We therefore also make use of the em-
cee software package developed by Foreman-Mackey et al. (2013). Emcee is an affine-invariant
ensemble sampler for MCMC and was proposed by Goodman & Weare (2010). The main ad-
vantage is its parallelization resulting in a huge speed up, coming along with slightly lower
precision. However, emcee is perfectly suited for generating a good covariance matrix from a
relative long chain for another sampling sequence.

In addition to that, we also use extensively the so called simulated annealing procedure, which
is adopted from thermodynamics, explicitly from annealing in metallurgy. For this, one intro-
duces a “temperature” T ′ in the relation between χ2 and the likelihood:

L = e−χ
2/2 ⇒ e−χ

2/(2T ′) . (2.52)
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In the procedure of simulated annealing the temperature is lowered iteratively, starting with a
high temperature such that the probability distribution has lower peaks and it is easier to find the
global maximum of L. In each optimization iteration, the temperature is lowered to increase the
peaks in the distribution, allowing to find better the exact position of the maximum. Additionally,
we start with a large step size, which is reduced in each iteration as well. This helps further to
first find the global maximum, and as we come closer, to fit better to the distribution with smaller
step sizes. The parameters are again optimized through a short MCMC chain in each iteration,
where also a covariance matrix can be included for better performance.

We further use the dual annealing optimization1 (Tsallis, 1988; Tsallis & Stariolo, 1996; Xi-
ang et al., 1997; Xiang & Gong, 2000; Xiang et al., 2013; Mullen, 2014), which is a similar
stochastic annealing approach and combines variations of simulated annealing (Tsallis, 1988;
Tsallis & Stariolo, 1996) with a strategy for applying a local search on accepted locations (Xi-
ang et al., 1997).

Moreover, we use another stochastic algorithm called basin hopping2 (Wales & Doye, 1997;
Wales & Scheraga, 1999; Wales, 2003; Li & Scheraga, 1987), which is a two-phase method
introduced by Wales & Doye (1997). It is inspired by the natural process of energy minimization
of clusters of atoms. In each iteration it performs the following steps:

• random perturbation of the parameter values

• local minimization

• acceptance or rejection the new values based on an acceptance test

The acceptance test in our case is also based on the Metropolis criterion with temperature T ′.
The new point is accepted if it lowers the χ2, or otherwise with a probability of

e[χ2(old point)−χ2(new point)]/T ′ . (2.53)

In the case of T ′ = 0, the algorithm becomes a monotonic basin hopping, which means that
only steps with χ2 (

new point
)
< χ2 (

old point
)

are accepted.

With this collection of optimization tools, we are able to infer the best fitting parameters of a
given observation.

1Python Package available here: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.dual_annealing.html

2Python Package available here: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.basinhopping.html
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3 Lens mass modeling through a CNN
assuming SIE-only

Summary
Gravitational lensing is a very powerful tool to answer many outstanding questions in astro-
physics. For nearly all applications, a mass model of the foreground object(s) is needed. With
the number of current known galaxy-galaxy lenses in addition to the expected number from
up-coming surveys like LSST, current modeling approaches are insufficient due to their high
resource and time consuming sampling procedure. Therefore, and because of the broad ap-
plicability of ML in image processing, Hezaveh et al. (2017) suggested and demonstrated the
opportunity to use a CNN to model strongly lensed images observed with HST. Since most de-
tection are made by ground based surveys such as Pan-STARRS, HSC or in the future LSST, we
developed a CNN to model ground based images from HSC published in Schuldt et al., A&A
646, A126, 2021, which is reproduced in this chapter.

To train a NN, one needs in general a large enough training set that represents the data the
network shall applied to. In the case of supervised learning, which we use here, also the output
values, the so-called ground truth, is needed. Since there are not enough real lenses with the mass
model parameter values available, we need to mock them up. It is crucial for a good performance
on real data that the training data are as realistic as possible. Therefor we developed a simulation
code that uses real observed images of galaxies and only simulate the lensing effect. With this
code we created around 105 images each in four filters. We consider also different assumptions
such as image configuration or distribution and range of the Einstein radius. With those data
sets, we trained CNNs to predict five values for the five SIE parameters (lens center x and y,
complex ellipticity ex and ey, and the Einstein radius θE). We find very good performance of the
networks, especially by training with a uniform distribution of the Einstein radius comparable
to models obtained with traditional methods on ground-based images and a SIE profile.

Since the network predicts the mass parameters very fast, the network can be useful for
planning follow-up observation in case e.g., a SN goes off in the background source. Therefore,
we also compared the image positions and time delays using the ground truth mass parameters
or the network output and find good performance.

Author contribution
I contributed the main driving force to this project. I have developed the code to simulate strong
lensing images, making use of the code GLEE (Suyu & Halkola, 2010; Suyu et al., 2012). I de-
veloped the network code and have done all corresponding training and testing of the networks.
For the image prediction and time delay comparison I made use of a code contributed by Aleksi
Halkola to this project. I am the main author of the paper and created all included figures.
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HOLISMOKES - IV. Efficient mass modeling of strong lenses
through deep learning

S. Schuldt, S. H. Suyu, T. Meinhardt, L. Leal-Taixé, R. Cañameras,
S. Taubenberger, and A. Halkola

ABSTRACT
Modeling the mass distributions of strong gravitational lenses is often necessary in order to
use them as astrophysical and cosmological probes. With the large number of lens systems
(&105) expected from upcoming surveys, it is timely to explore efficient modeling approaches
beyond traditional Markov chain Monte Carlo techniques that are time consuming. We train a
convolutional neural network (CNN) on images of galaxy-scale lens systems to predict the five
parameters of the singular isothermal ellipsoid (SIE) mass model (lens center x and y, complex
ellipticity ex and ey, and Einstein radius θE. To train the network we simulate images based
on real observations from the Hyper Suprime-Cam Survey for the lens galaxies and from the
Hubble Ultra Deep Field as lensed galaxies. We tested different network architectures and the
effect of different data sets, such as using only double or quad systems defined based on the
source center and using different input distributions of θE. We find that the CNN performs well,
and with the network trained on both doubles and quads with a uniform distribution of θE > 0.5′′

we obtain the following median values with 1σ scatter: ∆x = (0.00+0.30
−0.30)′′, ∆y = (0.00+0.30

−0.29)′′,
∆θE = (0.07+0.29

−0.12)′′, ∆ex = −0.01+0.08
−0.09, and ∆ey = 0.00+0.08

−0.09. The bias in θE is driven by
systems with small θE. Therefore, when we further predict the multiple lensed image positions
and time-delays based on the network output, we apply the network to the sample limited to
θE > 0.8′′. In this case the offset between the predicted and input lensed image positions is
(0.00+0.29

−0.29)′′ and (0.00+0.32
−0.31)′′ for the x and y coordinates, respectively. For the fractional differ-

ence between the predicted and true time-delay, we obtain 0.04+0.27
−0.05. Our CNN model is able to

predict the SIE parameter values in fractions of a second on a single CPU, and with the output
we can predict the image positions and time-delays in an automated way, such that we are able
to process efficiently the huge amount of expected galaxy-scale lens detections in the near future.

Credit: Schuldt et al., A&A 646, A126, 2021, published in A&A with Open Access MPI agree-
ment c©Schuldt.
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3.1 Introduction

Strong gravitational lensing has become a very powerful tool for probing various properties of
the Universe. For instance, galaxy-galaxy lensing can help to constrain the total mass of the lens
and, assuming a mass-to-light ratio (M/L) for the baryonic matter, also its dark matter (DM)
fraction. By combining lensing with other methods like measurements of the lens’ velocity
dispersion (e.g., Barnabè et al., 2011, 2012; Yıldırım et al., 2020) or the galaxy rotation curves
(e.g., Hashim et al., 2014; Strigari, 2013), the dark matter can be better disentangled from the
baryonic component and a 3D (deprojected) model of the mass density profile can be obtained.
Such profiles are very helpful for probing cosmological models (e.g., Davies et al., 2018; Eales
et al., 2015; Krywult et al., 2017).

Another application of strong lensing is to probe high-redshift sources thanks to the lensing
magnification (e.g., Dye et al., 2018; Lemon et al., 2018; McGreer et al., 2018; Rubin et al.,
2018; Salmon et al., 2018; Shu et al., 2018). In recent years, huge efforts have been made in
reconstructing the surface brightness distribution of lensed extended sources. Together with red-
shift and kinematic measurements, these observations contain information about the evolution
of galaxies at higher reshifts. If the mass profile of the lens is well constrained, the original un-
lensed morphology can be reconstructed (e.g., Warren & Dye, 2003; Suyu & Blandford, 2006;
Nightingale et al., 2018; Rizzo et al., 2018; Chirivì et al., 2020).

Lensed supernovae (SNe) and lensed quasars are very powerful cosmological probes. By
measuring the time-delays of a lensing system with an object that is variable in brightness,
one can use it to constrain, for example, the Hubble constant H0 (e.g., Refsdal, 1964; Chen
et al., 2019; Rusu et al., 2020; Wong et al., 2020; Shajib et al., 2020). This helps to assess
the 4.4σ tension between the Cosmic microwave background (CMB) analysis that gives H0 =

(67.36 ± 0.54) km s−1Mpc−1 for flat Λ cold dark matter (ΛCDM; Planck Collaboration et al.,
2020) and the local distance ladder with H0 = (74.03 ± 1.42) km s−1Mpc−1 (SH0ES project;
Riess et al., 2019). To date, time-delay lensing cosmography has been mainly based on lensed
quasars as the chance of a lensed supernova (SN) is substantially lower. There are currently two
lensed SNe known: one core-collapse SN behind a strong lensing cluster MACS J1149.5+222.3
(SN Refsdal; Kelly et al., 2015) and one SN type Ia behind an isolated lens galaxy (iPTF16geu;
Goobar et al., 2017). Thanks to the upcoming wide field surveys in the next decades, like the
Rubin Observatory Legacy Survey of Space and Time (LSST, Ivezic et al., 2008), this will
change. LSST is expected to detect hundreds of lensed SNe (e.g., Goldstein et al., 2019; Wojtak
et al., 2019). Therefore, it is important to be prepared for such exciting transient events in a
fully automated and fast way. In particular, a fast estimation of time-delay(s) is important for
optimizing the observing–monitoring strategy for time-delay measurements.

In addition to time-delay measurements, observing lensed SNe type Ia can help to answer out-
standing questions about their progenitor systems (Suyu et al., 2020). The basic scenario is the
single degenerate case where a white dwarf (WD) is stable until it reaches the Chandrasekhar
mass limit (Whelan & Iben, 1973; Nomoto, 1982) by accreting mass from a nearby star. To-
day there are also alternative scenarios considered where the WD explodes before reaching the
Chandrasekhar mass, the so-called sub-Chandrasekhar detonations (Sim et al., 2010). Another
possibility for a SN Ia is the double-degenerated scenario where the companion is another WD
(e.g., Pakmor et al., 2010) and both are merging to exceed the Chandrasekhar mass limit. It is
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still unclear which of the main scenarios is correct to describe the SN Ia formation, or if both
are. To shed light on this debate, one possibility is to observe the SN Ia spectroscopically at
very early stages, which is normally difficult because SN detections are often close to peak lu-
minosity, past the early phase. If this SN is lensed, we can use the position of the first appearing
image, together with a mass model of the underlying lens galaxy, to predict the position and
time when the next images will appear. Here it is very important to react quickly, particularly to
compute the mass model of the underlying lens galaxy based on imaging, as the time-delays of
galaxy-galaxy strong lensing are typically on the order of days to weeks.

Since these strong lens observations are very powerful, several large surveys including the
Sloan Lens ACS (SLACS) survey (Bolton et al., 2006; Shu et al., 2017), the CFHTLS Strong
Lensing Legacy Survey (SL2S; Cabanac et al., 2007; Sonnenfeld et al., 2015), the Sloan WFC
Edge-on Late-type Lens Survey (SWELLS; Treu et al., 2011), the BOSS Emission-Line Lens
Survey (BELLS; Brownstein et al., 2012; Shu et al., 2016b; Cornachione et al., 2018), the Dark
Energy Survey (DES; Dark Energy Survey Collaboration et al., 2005; Tanoglidis et al., 2020), the
Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI; Sonnenfeld et al., 2018a;
Wong et al., 2018; Chan et al., 2020; Jaelani et al., 2020a), and surveys in the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS; e.g., Lemon et al., 2018; Cañameras
et al., 2020) have been conducted to find lenses. So far we have detected several thousand lenses,
but mainly from the lower redshift regime. However, based on newer upcoming surveys like the
LSST, which will target around 20, 000 deg2 of the southern hemisphere in six different filters
(u, g, r, i, z, y), together with the Euclid imaging survey from space operated by the European
Space Agency (ESA; Laureijs et al., 2011), we expect billions of galaxy images containing on
the order of one hundred thousand lenses (Collett, 2015).

To deal with this huge amount of images there are ongoing efforts to develop fast and auto-
mated algorithms to find lenses in the first place. These methods are based on different identifi-
cation properties, for instance on geometrical quantification (Bom et al., 2017; Seidel & Bartel-
mann, 2007), spectroscopic analysis (Baron & Poznanski, 2017; Ostrovski et al., 2017), or color
cuts (Gavazzi et al., 2014; Maturi et al., 2014). Moreover, convolutional neural networks (CNNs)
have also been extensively used in gravitational lens detection (e.g., Jacobs et al., 2017; Petrillo
et al., 2017; Schaefer et al., 2018; Lanusse et al., 2018; Metcalf et al., 2019; Cañameras et al.,
2020; Huang et al., 2020) as they do not require any measurements of the lens properties. Once
a CNN is trained, it can classify huge amounts of images in a very short time, and is thus very
efficient. Nonetheless, CNNs have limitations (e.g., completeness or accurate grading) and the
performance strongly depends on the training set design as it encodes an effective prior (in the
case of supervised learning). In this regard unsupervised or active learning might be promising
future avenues for finding lenses.

However, these methods are only for finding the lenses; a mass model is necessary for fur-
ther studies. Mass models of gravitational lenses are often described by parameterized profiles,
where the parameters are optimized, for instance via Markov chain Monte Carlo (MCMC) sam-
pling (e.g., Jullo et al., 2007; Suyu & Halkola, 2010; Sciortino et al., 2020; Fowlie et al., 2020).
These techniques are very time and resource consuming as modeling one lens can take weeks or
months, and they are thus difficult to scale up for the upcoming amount of data. With the suc-
cess of CNNs in image processing, Hezaveh et al. (2017) showed the use of CNNs in estimating
the mass model parameters of a singular isothermal ellipsoid (SIE) profile, and investigated fur-
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3.2 Simulation of strongly lensed images

ther error estimations (Perreault Levasseur et al., 2017), analysis of interferometric observations
(Morningstar et al., 2018), and source surface brightness reconstruction with recurrent inference
machines (RIMs; Morningstar et al., 2019). While they mainly consider single-band images and
subtract the lens light before processing the image with the CNN, Pearson et al. (2019) presented
a CNN to model the image without lens light subtraction. However, for all deep learning ap-
proaches one needs a data set that contains the images and the corresponding parameter values
for training, validation, and testing the network. As there are not that many real lensed galaxies
known, both groups use mock lenses for their CNNs.

We recently initiated the Highly Optimized Lensing Investigations of Supernovae, Microlens-
ing Objects, and Kinematics of Ellipticals and Spirals (HOLISMOKES) program (Suyu et al.,
2020, hereafter HOLISMOKES I). After presenting our lens search project (Cañameras et al.,
2020, hereafter HOLISMOKES II), we present in this paper a CNN for modeling strong gravi-
tationally lensed galaxies with ground-based imaging, taking advantage of four different filters
and not applying lens light subtraction beforehand. In contrast to Pearson et al. (2019), we use a
mocked-up data set based on real observed galaxy cutouts since the performance of the CNN on
real systems will be optimal when the mock systems used for training are as close to real lens
observations as possible. Our mock lens images contain, by construction, realistic line-of-sight
objects as well as realistic lens and source light distributions in the image cutouts. We use the
Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) images together with redshift and
velocity dispersion measurements from the Sloan Digital Sky Survey (SDSS) for the lens galax-
ies, and images together with redshifts from the Hubble Ultra Deep Field (HUDF) survey for the
sources (Beckwith et al., 2006; Inami et al., 2017).

The outline of the paper is as follows. We describe in Sect. 3.2 how we simulate our training
data, and we give a short introduction and overview of the used network architecture in Sect. 6.3.
The main networks are presented in Sect. 6.4, and we give details of further tests in Sect. 3.5.
We also consider the image position and time-delay differences in Sect. 3.6 for a performance
test, and compare them to other modeling techniques in Sect. 3.7. We summarize and conclude
our results in Sect. 3.8. Throughout this work we assume a flat ΛCDM cosmology with a Hubble
constant H0 = 72 km s−1 Mpc−1 (Bonvin et al., 2017) and ΩM = 1 − ΩΛ = 0.32 (Planck Collab-
oration et al., 2020). Unless specified otherwise, each quoted parameter estimate is the median
of its 1D marginalized posterior probability density function, and the quoted uncertainties show
the 16th and 84th percentiles (i.e., the bounds of a 68% credible interval).

3.2 Simulation of strongly lensed images

For training a neural network one needs, depending on the network size, from tens of thousands
to millions of images, together with the expected network output, which in our case are the
values of the SIE profile parameters corresponding to each image. Since there are far too few
known lens systems, we need to mock up lens images. While previous studies are based on
partly or fully generated light distributions (e.g., Hezaveh et al., 2017; Perreault Levasseur et al.,
2017; Pearson et al., 2019), we aim to produce more realistic lens images by using real observed
images of galaxies and simulating only the lensing effect with our own routine. We work with
the four HSC filters, g, r, i, and z (respectively matched to HST filters F435W (λ = 4343.4Å),
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3 Lens mass modeling through a CNN assuming SIE-only

F606W (λ = 6000.8Å), F775W (λ = 7702.2Å), and F850LP (λ = 9194.4Å)) to give the network
the color information to distinguish better between lens and source galaxies. The images of
HSC for these filters are very similar to the expected image quality of LSST, such that our tests
and findings will also hold for LSST. Therefore, this work is in direct preparation for and an
important step in modeling the expected 100,000 lens systems that will be detected with LSST
in the near future.

3.2.1 Lens galaxies from HSC

For the lenses we use HSC SSP1 images from the second public data release (PDR2; Aihara
et al., 2019) with a pixel size of 0.168′′. To calculate the axis ratio qlight and position angle θlight
of the lens, we use the second brightness moments calculated for the i band since redder filters
follow better the stellar mass; however, the S/N is substantially lower in the z band compared
to the i band. We cross-match the HSC catalog with the SDSS2 catalog to use only images
of galaxies where we have SDSS spectroscopic redshifts and velocity dispersions. With this
selection we end up with a sample containing 145,170 galaxies that is dominated by luminous
red galaxies (LRGs). We show in Figure 3.1 a histogram of the lens redshifts used for the
simulation (in gray). We already overplot the distribution of the mock samples discussed in
Sect. 6.4.

0.0 0.2 0.4 0.6 0.8 1.0
zd

0 100 200 300 400 500
vdisp

input catalog
E, min = 0.5'', equally distributed (Sec. 4.3)
E, min = 0.5'', naturally distributed (Sec. 4.1)
E, min = 2.0'', naturally distributed (Sec. 4.2)

Figure 3.1: Distributions of the lens galaxy redshifts zd (left) and velocity dispersion vdisp (right). Shown
are the distributions of the input catalogs to the simulation code (in gray), and the distributions
of the generated samples discussed in Sect. 6.4 (see inset for color-coding).

To describe the mass distribution of the lens, we adopt a SIE profile (Barkana, 1998) such that
the convergence (dimensionless surface mass density) can be expressed as

κ(x, y) =
θE

(1 + q) r
(3.1)

1HSC SSP webpage: https://hsc-release.mtk.nao.ac.jp/doc/
2SDSS webpage: https://www.sdss.org/; catalog downloaded from the 14th data release page

http://skyserver.sdss.org/dr14/en/tools /search/sql.aspx .
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with elliptical radius

r =

√
x2 +

y2

q2 , (3.2)

where x and y are angular coordinates on the lens plane with respect to the lens center. In this
equation θE denotes the Einstein radius and q the axis ratio.3 The mass distribution is rotated by
the position angle θ. The Einstein radius is obtained from the velocity dispersion vdisp with

θE = 4π
vdisp

2

c2

Dds

Ds
, (3.3)

where c is the speed of light, and Dds and Ds are respectively the angular diameter distances
between the lens (deflector) and source and the observer and source. The distribution of the
velocity dispersion is shown in Figure 3.1 (bottom pannel, gray histogram). We compute the
deflection angles of the SIE with the lensing software GLEE (Suyu & Halkola, 2010; Suyu
et al., 2012).

Based on the second brightness moments of the lens light distribution in the i band, the axis
ratio qlight and position angle θlight are obtained internally in our simulation code. Based on
several studies (e.g, Sonnenfeld et al., 2018b; Loubser et al., 2020), the light traces the mass
relatively well but not perfectly. Therefore, we add randomly drawn Gaussian perturbations on
the light parameters, with a Gaussian width of 0.05′′ for the lens center, 0.05 for the axis ratio,
and 0.17 radians (10 degrees) for the position angle, and adopt the resulting parameter values
for the lens mass distribution. If the axis ratio of the mass q (i.e., with Gaussian perturbation) is
above 1, we draw a second realization of the Gaussian noise. If the resulting q (from the second
Gaussian perturbation) is ≤ 1, then we keep this value; otherwise, we set q to exactly 1.

While the simulation code assumes a parameterization in terms of axis ratio q and position
angle θ, we parameterize for our network in terms of complex ellipticity ec, which we define as
ec = A e2iθ = ex + iey with

ex =
1 − q2

1 + q2 cos(2θ),

ey =
1 − q2

1 + q2 sin(2θ). (3.4)

The back transformation is given by

q =

√
1−
√

ex2+ey2

1+
√

ex2+ey2

θ =


1
2 arccos

(
ey

1+q2

1−q2

)
if ex > 0

π
2 +

∣∣∣∣∣1
2 arcsin

(
ex

1+q2

1−q2

)∣∣∣∣∣ if ex < 0
.

(3.5)

3The SIE mass profile introduced by Barkana (1998) allows for an additional core radius, which we set to 10−4, that
yields effectively a singular mass distribution without numerical issues at the lens center.
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3 Lens mass modeling through a CNN assuming SIE-only

This is in agreement with previous CNN applications to lens modeling (Hezaveh et al., 2017;
Pearson et al., 2019).

3.2.2 Sources from HUDF

The images for the sources are taken from HUDF4 where the spectroscopic redshifts are also
known (Beckwith et al., 2006; Inami et al., 2017). The cutouts are approximately 10′′ × 10′′

with a pixel size of 0.03′′. This survey is chosen for its high spatial resolution, and we can
adopt the images without point spread function (PSF) deconvolution. Moreover, it contains
high-redshift galaxies such that we can achieve a realistic lensing effect. The 1,323 relevant
galaxies are extracted with Source Extractor (Bertin & Arnouts, 1996) since the lensing effect
is redshift dependent and we would otherwise lens the neighboring objects as if they were all
at the same redshift, which would lead to incorrect lensing features. We show a histogram of
the source redshifts in Figure 3.2 (gray histogram). Since we randomly select a background
source (see Sect. 3.2.3 for details), the source galaxies can be used multiple times for one mock
sample, and thus the redshift distribution varies slightly between the different samples (colored
histograms; see details in Sect. 6.4).

0 1 2 3 4 5
zs

input catalog
E, min = 0.5'', equally distributed (Sec. 4.3)
E, min = 0.5'', naturally distributed (Sec. 4.1)
E, min = 2.0'', naturally distributed (Sec. 4.2)

Figure 3.2: Distributions of the source redshifts zs of the input catalog to the simulation code (gray) and
of the different mock samples (colors) discussed in Sect. 6.4.

3.2.3 Mock lens systems

To train our networks we use mock images based on real observed galaxies, and only generate the
lensing effect. We use HSC galaxies as lenses (see Sect. 3.2.1 for details) and HUDF galaxies as
background objects (see Sect. 3.2.2) to obtain mocks that are as realistic as possible. Figure 3.3
shows a diagram of the simulation pipeline. The input has three images: the lens, the unlensed
source, and the lens PSF image (top row). Together with the provided redshifts of source and
lens, as well as the velocity dispersion for calculating the Einstein radius with equation (3.3),

4HUDF webpage https://www.spacetelescope.org/; downloaded on Oct. 1, 2018, from
https://archive.stsci.edu/pub/hlsp/udf/acs-wfc/.
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3.2 Simulation of strongly lensed images

the source image can be lensed onto the lens plane (second row). For this we place a random
source from our catalog randomly in a specified region behind the lens and accept this position
if we obtain a strongly lensed image. Since the source images have previously been extracted,
we use the brightest pixel in the i band to center the source. We have also implemented the
option to just keep one of the two strong lens configurations, either quadruply or doubly imaged
galaxies, classified based on the image multiplicity of the lensed source center. We also set a
peak brightness threshold for the arcs based on the background noise of the lens. To estimate the
background noise we take the corner with size 10%×10% square of the full lens image (rounded
to an integer of pixel) with the lowest maximum and compute from the patch the root mean
square (RMS) value used as background noise. We take the lowest maximum for each corner
separately and then compute the RMS of that one because there might be line-of-sight objects
in the corners that would raise the RMS values. To avoid contamination to the background
estimation from the lens, we use 40′′ × 40′′ image cutouts such that each corner is 4′′ × 4′′. The
peak brightness of the lensed source must then be higher than the RMS to be accepted by the
simulation code.

In the next step the lensed source image with high resolution is convolved with the subsampled
PSF of the lens, which is provided by HSC SSP PDR2 for each image separately. After binning
the high-resolution lensed, convolved source image to the HSC pixel size and accounting for the
different photometric zeropoints of the source telescope zpsr and lens telescope zpls, which gives
a factor of 100.4(zpls−zpsr), the lensed source image is obtained as if it had been observed through
the HSC instrument (third row in Figure 3.3), i.e., on the HSC 0.168′′/pixel resolution. At this
point we neglect the additional Poisson noise for the lensed arcs. Finally, the original lens and
the mock lensed source images can be combined, which results in the final image (fourth row)
that is cropped to a size of 64 × 64 pixels (10.8′′ × 10.8′′). For better illustration, a color image
based on the filters g, r, and i is also shown, but we generate all mock images in four bands,
which we use for the network training. We show more example images based on gri filters in
Figure 3.4. During this simulation, we set an upper limit on the Einstein radius of 5′′, which
corresponds to the size of the biggest Einstein radius so far observed from galaxy-galaxy lensing
(Belokurov et al., 2007).

We test the effect of different assumptions on the data set, like splitting up in quads-only or
doubles-only, or different assumptions on the distribution of the Einstein radii since we found
this to be crucial for the network performance. For this we generate with this pipeline new
independent mock images that are based on the same lens and source images, but different com-
binations and alignments. The details of the different samples and the network trained on them
will be discussed further in Sect. 6.4. For the set of quads-only and higher limit on the Einstein
radius of 2′′ we use a modification of the conventional data augmentation in deep learning. In
particular, we rotate only the lens image before adding the random lensed source image, but
not the whole final image (which is done normally for data augmentation). Thus, the ground
truth values are also not exactly the same values given the change in position angle and another
background source with different location and redshift.
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Figure 3.3: Diagram of the simulation pipeline.

60
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Figure 3.4: Examples of strong gravitational lens systems mocked up with our simulation code by using
HUDF galaxies as sources behind HSC galaxies as lenses. Each image cutout is 10.8′′ ×
10.8′′.

3.3 Neural networks and their architecture

Neural networks (NNs) are extremely powerful tools for a wide range of tasks, and thus in recent
years broadly used and explored. Additionally, the computational time can be reduced notably
compared to other methods. There are generally two types of NNs: (1) classification, where the
ground truth uses different labels to distinguish between the different classes, and (2) regression,
where the ground truth consists of a set of parameters with specific values. The latter is the
kind we use here, which means that the network predicts a numerical value for each of the five
different SIE parameters (x, y, ex, ey, and θE).

Depending on the problem the network needs to solve, there are several different types of
networks. Since we are using images as data input, typically convolutional layers followed by
fully connected (FC) layers are used (e.g., Hezaveh et al., 2017; Perreault Levasseur et al., 2017;
Pearson et al., 2019). The detailed architecture depends on attributes such as the specific task,
the size of the images, or the size of the data set. We have tested different architectures and found
an overall good network performance with two convolutional layers followed by three FC layers,
but no significant improvement for the other network architectures. A sketch of this is shown in
Figure 6.4. The input has four different filter images for each lens system and each image a size
of 64× 64 pixels. The convolutional layers have a stride of 1 and a kernel size of 5× 5×C, with
C = 4 for the first layer and C = 6 for the second layer. Each convolutional layer is followed by
a max-pooling layer of size f × f = 2×2 and stride 2. We use as activation function the rectified
linear activation (ReLu) function. After the two convolutional layers, we obtain a data cube of
size 13 × 13 × 16, which is then passed through the FC layers after flattening to finally obtain
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3 Lens mass modeling through a CNN assuming SIE-only

the five output values. This network is coded with python 3.8.0 and uses pytorch modules (torch
1.5.1).

Figure 3.5: Overview of our main CNN architecture. The input has four different filter images for each
lens system and each image a size of 64× 64 pixels. The network contains two convolutional
layers (conv) each followed by a max-pooling layer (max pool) with kernel size f and stride
S values indicated in the figure. This is then followed, after flattening the data cube, by three
fully connected (FC) layers to finally obtain the five output values of the SIE η, containing
the lens center x and y, the complex ellipticity ex and ey, and the Einstein radius θE.

Independent of the exact network architecture, the network can contain hundreds of thousands
of neurons or more. While initially the values of weight parameters and bias of each neuron are
random, they are updated during the training. To see the network performance after the training,
the data set is split into three samples: the training, the validation, and the test sets. We further
divide those sets into random batches of size N. In each iteration the network predicts the output
values for one batch (forward propagation), and after running over all batches from the training
and validation sets, one epoch is finished. The error, which is called loss, is obtained for each
batch with the loss function; we use the mean square error (MSE) defined as

L =
1

p × N

N∑
k=1

p∑
l=1

(ηpred
k,l − η

tr
k,l)

2 × wl , (3.6)

where ηtr
k,l and ηpred

k,l respectively denotes the lth true and predicted parameter, in our case from
{x, y, ex, ey, θE}, of lens system k, and p denotes the number of output parameters. We incorpo-
rated in our loss function L weighting factors wl, which are normalized such that

∑p
l=1 wl = p

holds. This gives a weighting factor of 1 for all parameters if they are all weighted equally.
The loss value of that batch is then propagated to the weights and biases (back propagation) for

an update based on a stochastic gradient descent algorithm to minimize the loss. This procedure
is repeated in each epoch first for all batches of the training set and an average loss is obtained
for the whole training set. Afterwards the steps are repeated for all batches of the validation set,
while no update of the neurons is done, and an average loss for the validation set is obtained as
well. The validation loss shows whether the network improved in that epoch or if a decreasing
training loss is related to overfitting the neurons. A network is overfitting when it learns the
training set, and not the features in the training set. After each epoch we reshuffle our whole
training data to obtain a better generalization. This concludes one epoch, which is repeated
iteratively to obtain a network with optimal accuracy.
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This whole training corresponds to one so-called cross-validation run, where several cross-
validation runs are performed by exchanging the validation set with another subset of the training
set. For example, if the training set and validation set form five subsets {A, B, C, D, and E},
then we can have five independent runs of training where in each run the validation set is one
of these five subsets and the training set contains the remaining four subsets. After the multiple
runs, we can determine the optimal number of epochs for training by locating the epoch with
the minimum average validation loss across the multiple runs. This procedure helps to minimize
potential bias to certain types of lenses for a potentially unbalanced single split. The neural
network trained on all five sets {A, B, C, D, E} up to that epoch is the final network, which is
then applied to the test set that contains data the network has never seen before. In our case we
used ∼56% of the data set as the training set, ∼14% as the validation set, and ∼30% as the test
set5 in order to have a five-fold cross-validation for each network.

To find the best hyperparameter values for our specific problem, we test each network on
its performance with several different variations of the hyperparameters. Independent of the
data set, we train each cross validation run for 300 epochs, and apart from a few checks with
different values, we fix the weight decay to 0.0005 and the momentum to 0.9. For the learning
rate, batch size, and the initializations of the neurons, we perform a grid search, varying the
learning rate rlearn ∈ [0.1, 0.05, 0.01, 0.008, 0.005, 0.001, 0.0005, 0.0001] and batch size as 32
or 64 images per batch, and exploring three different network initializations. For the weighting
factors of the contribution to the loss we test two options, either all parameters contribute equally
(i.e., wl = 1 ∀ l in Eq. (3.6)) or the contribution of the Einstein radius is a factor of 5 higher
(wθE = 5). This already gives 96 different combinations of hyperparameters which we test with
cross-validation and early stopping.

For a subset of the hyperparameter combinations, we test further possibilities. In particular,
we explore the effect of drop-out (i.e., the omission of random neurons in every iteration) with
a drop-out rate p ∈ [0.1, 0.3, 0.5, 0.7, 0.9], but find no improvement. We further test different
network architectures by adding an additional convolutional layer or fully connected layer, or by
varying the number of neurons in the different layers. We also test a different weighting of the
lens center parameters to the loss that is motivated by the results of our networks in Section 4.

In addition, we test the effect of five different scaling options of the input images for our data
set, but assume here the learning rate rlearn = 0.001 for simplicity. First, we boost the r band by
a factor of 10. Since the network is still able to recover the parameter values, we see that the
network performance is not heavily affected by the absolute value of the images. Second, if we
normalize each filter of one lens system independently of the other filters, the network fails to
recover the correct parameter values. This shows us that the network is indeed able to extract the
color information as the relative difference is much smaller, and thus needs the different filters.
In the third and fourth option we normalize each filter with its maximum value or with the mean
peak value of the different filters. Last, we also rescale the images by shifting them by the mean

5The percentiles vary slightly due to rounding effects depending on the absolute size of the simulated mocks of that
sample and the assumed batch size.
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value and dividing by the standard deviation6. Since we obtained no notable improvement with
any one of these scalings, we use the images without rescaling to obtain our final networks.

3.4 Results

To train our modeling network we mock up lensing systems based on real observed galaxies with
our simulation pipeline (see Sect. 3.2). Each lensing system is simulated in the four different
filter griz of HSC to give the network color information to distinguish better between lens galaxy
and lensed arcs. The network architecture assumes, as described in Sect. 6.3 in detail, images
64 × 64 pixels in size, which corresponds to a size of around 10′′ × 10′′.

During our network testing, we found that the distribution of Einstein radii in the training
set is very important, especially as this is a key parameter of the model. Therefore, we trained
a network under the assumption of different underlying data sets, for example a lower limit of
the Einstein radius for the simulations or a different distribution of Einstein radii. We further
tested the network performance by limiting to a specific configuration (i.e., only doubles or
quads). We give an overview of the different data set assumptions in Table 3.1, as well as the
best hyperparameter values that depend on the assumed data set.

We present in the following subsections our CNN modeling results for various data sets.

6The four individual images are rescaled as

Iscaled =
(I − M)
σ

(3.7)

with mean

M =

f∑
k=0

p1,p2∑
l,m=0,0

Ik,l,m/( f × p1 × p2) , (3.8)

the number of filters f , and

σ =

√√√ f∑
k=0

p1,p2∑
l,m=0,0

(Ik,l,m − M)2

(p1 × p2 − 1)
, (3.9)

and p1 and p2 as image dimensions in pixels for the x- and y-axis, respectively. In our case we have f = 4 and
p1 = p2 = 64.
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Table 3.1: Overview of trained networks.

Natural distribution of Einstein radii of lenses
double quad θE,min [′′] wθE loss epoch rlearn N seed Section Figures
X X 0.5 1 0.0201 115 0.005 64 3 3.4.1
X X 0.5 5 0.0496 123 0.001 64 3 3.4.1 3.6, 3.7, 3.8, 3.13, 3.14
X X 2.0 1 0.0120 85 0.01 32 3 3.4.2
X X 2.0 5 0.0209 85 0.008 32 2 3.4.2 3.7, 3.8, 3.9, 3.13, 3.14
X 0.5 1 0.0193 242 0.008 64 1 3.5.1
X 0.5 5 0.0474 117 0.001 64 3 3.5.1
X 2.0 1 0.0118 163 0.05 64 3 3.5.1
X 2.0 1 0.0118 96 0.01 32 2 3.5.1
X 2.0 5 0.0217 62 0.008 32 3 3.5.1

X 0.5 1 0.0193 151 0.008 32 2 3.5.1
X 0.5 5 0.0441 69 0.001 32 2 3.5.1
X 2.0 1 0.0129 267 0.01 64 2 3.5.1
X 2.0 5 0.0268 285 0.005 32 1 3.5.1

Uniform distribution of Einstein radii of lenses
double quad θE,min [′′] wθE loss epoch rlearn N seed Section Figures
X X 0.5 1 0.0223 147 0.001 32 1 3.4.3
X X 0.5 5 0.0528 112 0.0005 64 2 3.4.3 3.7, 3.8, 3.10, 3.11, 3.13, 3.14

X 0.5 1 0.0288 73 0.008 64 2 3.5.1
X 0.5 5 0.0688 56 0.001 32 2 3.5.1 3.12

Note. The first and second columns indicate if quads and/or doubles are included in the data set. The parameter θE,min represents the
lower limit on the Einstein radius in the simulation, and wθE is the weighting factor of the Einstein radius in the loss function. The other
parameters (lens center, ellipticity) are always weighted by a factor of 1 and the sum of all five weighting factors is normalized to the
number of parameters. The fifth and sixth columns give the value of the loss of the test set and the epoch with the best validation loss.
This is followed by the specific hyperparameters: learning rate rlearn, batch size N, and seed for the random number generator. The last
two columns list the sections and the figures that present the results of the corresponding network.
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3.4.1 Naturally distributed Einstein radii with lower limit 0.5′′

For this network we use 65,472 mock lens images simulated following the procedure described
in Sect. 3.2. Here we assume a lower limit of the Einstein radii of 0.5′′ as otherwise the lensed
source is totally blended with the lens and is not resolvable given the average seeing and image
quality. The resulting redshift distributions are shown as the blue histograms for the lens in
Figure 3.1 (top panel) and for the source in Figure 3.2. The lens redshift peaks at zd ∼ 0.5.
Concerning the possible strong lensing configurations, the data set is dominated by doubles
as expected. In addition, systems with smaller Einstein radii are more numerous than those
with larger Einstein radii, as expected given the lens mass distribution, although the velocity
dispersion (see Figure 3.1, bottom panel) peaks at around vdisp ∼ 280 km s−1, and thus tends
to include more massive galaxies than the input catalog (gray histogram). The distribution of
the different parameters are shown in Figure 3.6, left panel; the red histogram depicts the true
distribution and the blue one the predicted distribution. In the right panel we show the correlation
between the true value and the predicted value for the five different parameters.

If we look at the performance on the lens center, which is measured in units of pixels with
respect to the image cutout center, it seems as if the network fails totally in the first instance. We
recall here how we obtain the lens mass center. In the simulation, we assume the lens light center
to be the image center, and add a Gaussian variation (with standard deviation of 0.05′′) to shift
to the lens mass center. Thus, the ground truth (red histogram in Figure 3.6) follows a Gaussian
distribution, while the predicted lens center distribution (blue) is peakier. This suggests that the
network does not obtain enough information from the slight shift or distortion in the lensed arcs
to correctly predict the lens mass center. We test upweighting the contribution of the lens center
to the loss with a higher fraction, which results in a better performance on these two parameters,
but then the performance on the other parameter deteriorates. We thus refrain from upweighting
the lens center. Further difficulties on the centroid parameters are caused by all systems having
the exact same lens light center (which is at the center of the image). If we assume that the
lens mass perfectly follows the light distribution and the lens light center is always the same, the
lens (mass) center ground truth will become a delta distribution, and the network will perform
much better.Accordingly, in many automated lens modeling architectures (e.g., Pearson et al.,
2019) the lens center is not even predicted. Since the difference of the center for nearly all lens
systems is smaller than ±1 pixel, it does not affect the model noticeably. We nonetheless keep
five parameters for generality, and suggest investigating in future work more in this direction by
relaxing the strict assumption of coincidence centers of image cutout and of lens light.

Looking at the performance on the ellipticity, it turns out that most of the lens systems are
approximately round (i.e., ex ∼ ey ∼ 0) and that the network can recover them very well. If the
lens is more elliptical, the network performance starts to drop. This might be an effect of the
lower number of such lens systems in the sample especially since the position angle becomes
relevant, and thus the number of systems in a particular direction is again lower. We note that
ex = ±0.3 and ey = 0 corresponds to an axis ratio q = 0.73 (i.e., quite elliptical). If the absolute
value of ex or ey were higher, the axis ratio would be even lower, which seldom occurs in nature.

We see that the network recovers the Einstein radius better for lens systems with lower image
separation than with high image separation (θE & 2′′), which is in the first instance counter-
intuitive. If the lensed images are further separated, they are better resolved and less strongly
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Figure 3.6: Network performance on the Einstein radius under the assumption of a lowest Einstein radius
θE,min of 0.5′′and a weighting factor of wθE = 5. The left panel shows histograms of the
ground truth (tr) in red and of the predicted values in blue. The right panel shows a direct
comparison of the predicted against the true value, where the red line indicates the median
of the distribution and the gray bands give the 1σ (16th to 84th percentile) and 2σ ( 2.5th to
97.5th percentile) ranges. From top to bottom are the five different model parameters, lens
center x and y, complex ellipticity ex and ey, and Einstein radius θE. For all plots 30 bins over
the plotting range are used.
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3 Lens mass modeling through a CNN assuming SIE-only

blended with the lens, and we would expect better recovery of Einstein radii from the network.
The worse network performance at larger Einstein radii can therefore only be explained by the
relatively low numbers of these systems in the training data. We have more than two orders
of magnitude more lens systems with θE ∼ 0.5′′ than with θE ∼ 2.0′′. Therefore, the network
is trained to predict a small Einstein radius more often, and a larger Einstein radius less often.
Since the lens systems with larger image separation are very interesting for a wide range of
scientific applications, it is desirable to improve the network performance specifically on those
lens systems. Therefore, we test a network with the same data set where the Einstein radius
difference contributes a factor of 5 more to the loss than the other parameters. In the case of this
weighted network, the prediction performance is very similar for the lens center and ellipticity,
but slightly better for the Einstein radius. If we increase the contribution of the Einstein radius
further, we notably worsen the performance on the other parameters.

As a further comparison of the ground truth with the predicted values of the test set, we show
in Figure 3.7 the difference as normalized histograms (bottom row) and the 2D probability dis-
tributions (blue), where we find no strong correlation among the five parameters. The obtained
median values with 1σ uncertainties for the different parameters are, respectively, (0.00+0.31

−0.30)′′

for ∆x, (−0.01+0.29
−0.31)′′ for ∆y, 0.00+0.08

−0.09 for ∆ex, 0.01+0.09
−0.08 for ∆ey, and (0.02+0.21

−0.18)′′ for ∆θE, where
∆ denotes the difference between the predicted and ground truth values. As an example, a shift
of ex = 0.3 to ex = 0.15 with fixed ey = 0 results in a shift from q = 0.73 to q = 0.86.

Finally, we show in Figure 3.8 the difference in Einstein radii as a function of the logarithm of
the ratio between lensed source intensity Is and lens intensity Il determined in the i band, which
we hereafter refer to as the brightness ratio. In the top right panel, we show the distribution of the
brightness ratio. The lens intensity is defined as the sum of all the pixel values in the 64 pixels
× 64 pixels cutout of the lens such that it is slightly overestimated due to light contamination
from surrounding objects. The distribution peaks around −2 in logarithm to basis 10, which
means that the lensed source flux is a factor 100 below that of the lens. The bottom left plot
shows the median with 1σ values of the Einstein radius differences for each brightness ratio
bin. Focussing on the blue curve for this section, we find a bias in the Einstein radius which is
driven by the small lensing systems with θE . 0.8′′ (compare Figure 3.6). Excluding these small
lensing systems, we show the corresponding plot in the lower right panel. With this limitation,
we no longer find a bias, and obtain a median with 1σ values of 0.00+0.17

−0.14
′′ for the Einstein radius

difference. We find a slight improvement of the performance with increasing brightness ratio for
both the full sample (bottom left panel) and the sample with θE > 0.8′′ (bottom right panel).

To further improve the network performance for wide-separation lenses, we train separate
networks for lens systems with Einstein radius θE > 2.0′′ in Sect. 3.4.2, and for lens systems
where we artificially boost the number of lenses at the high end of θEin Sect. 3.4.3.

3.4.2 Naturally distributed Einstein radii with lower limit 2.0′′

Since the network presented in Sect. 3.4.1 cannot easily recover a large Einstein radius (θE & 2′′),
we test the performance of a network specialized for the high end of the distribution and set
the lower limit to θE,min = 2′′. Because of the higher limit on the Einstein radii, the velocity
dispersion (see orange histogram in Figure 3.1, bottom) is shifted towards the high end, which
corresponds to more massive galaxies. We also find that the lens and source redshifts (orange
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Figure 3.7: Comparison of the performance of the three networks described in Sect. 6.4. All samples
include doubles and quads and a weighting factor of wθE = 5, but different Einstein radius
distributions or lower limits on the Einstein radius (see legend). In the bottom row are shown
the normalized histograms of the difference between predicted values and ground truth for
the five parameters and above the 2D correlations distribution: 1σ contour (solid line) and
2σ contour (dotted line).

histograms in Figure 3.1 and Figure 3.2, respectively) tend to slightly higher values. Since we
use the natural distribution of Einstein radii as in Sect. 3.4.1, the image-separation distribution
is again bottom-heavy and the number of mock lens systems is smaller (25,623), as shown in
Figure 3.9. From the blue (predicted) histogram, we see that the true distribution (red histogram)
is well recovered.

In the right panel of Figure 3.9 we show the correlation of predicted and true Einstein radii.
The red line, which follows quite well the diagonal dashed line, shows the median. The gray
shaded regions show the 1σ and 2σ regions. We find that the network performs much better
for θE ∼ 2′′ than for the network trained in the full range (Sect. 3.4.1). However, this is again
due to the number of lens systems that decreases towards θE ∼ 4′′, and the scatter that increases
dramatically for the high end of the data set.

We further show 1D and 2D probability distributions for this network in Figure 3.7 (orange) as
well as the histogram of the brightness ratio, and the difference of the Einstein radii as function

69



3 Lens mass modeling through a CNN assuming SIE-only
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Figure 3.8: Comparison of the performance of the three networks described in Sect. 6.4. All samples
include doubles and quads and a weighting factor of wθE = 5, but different Einstein radius
distribution or lower limits on the Einstein radius as indicated in the legend (upper left). The
upper right panel shows the histogram of the brightness ratio of lensed source and lens. The
bottom panel shows for the full sample (left) and limited to θE > 0.8′′ (right) the difference
in Einstein radius as a function of the brightness ratio with the 1σ values. Shown are the
Einstein radius difference in the range −3 ≤ log

(
I s
Il

)
≤ −1 (white area in the histogram)

where there are enough data points, and the blue and orange bars have been shifted slightly
to the right for better visualization.

of the brightness ratio in Figure 3.8. While the performance for the lens center and complex
ellipticity is very similar to the network presented in Sect. 3.4.1, we achieve an improvement
for the Einstein radius. This is expected as the network is specifically trained for lens systems
with large image separation. As we see from Figure 3.8, the larger systems do not have a
higher brightness ratio on average as one might expect. As we have already seen, the network
performs notably better on the Einstein radii over the whole brightness ratio range. We no longer
overpredict the Einstein radius for log

(
Is
Il

)
& −2.5, and the 1σ values are smaller as well.
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Figure 3.9: Network performance on the Einstein radius under the assumption of a smalles Einstein ra-
dius θE,min of 2.0′′. The left panel shows the histograms of the ground truth (tr) in red and of
the predicted values in blue. The right panel is a 1:1 plot of predicted against true Einstein
radius. The red line shows the median of the distribution and the gray bands give the 1σ and
2σ ranges. For both plots 30 bins over the plotting range are used.

3.4.3 Uniformly distributed Einstein radii with lower limit 0.5′′

Because of the extreme decrease in the number of systems towards large image separation, we
test a network trained on a more uniformly distributed sample. For this, we generate more lens
systems with high image separation by rotating the lens image by nπ/2 with n ∈ [0, 1, 2, 3].
Here we do not reuse the same lens in the same rotation to avoid producing multiple images of
lens systems that are too similar. We note that the background source and position are always
different such that the lensing effect varies (see Sect. 3.2 for further details on the simulation
procedure). We limit the sample to a maximum of 8,000 lens systems per 0.1′′ bin resulting in
a sample of 140,812 lens systems. This results in a more uniform distribution, though the bins
with the largest image separation still have fewer lens systems since it is very difficult, and a very
seldom occurrence, to obtain a lensing configuration with an image separation above ∼2.5′′ due
to the mass distribution of galaxy-scale lenses. The biggest image separation within this sample
is ∼4.5′′, which is about 10% lower than the upper limit of 5′′ that we set for our simulations (see
Sect. 3.2.3). The redshift distributions, shown as green histograms in Figure 3.1 and Figure 3.2,
are similar to that of the naturally distributed sample (blue), whereas the lens velocity dispersions
(Figure 3.1, bottom panel) tend to be higher (i.e., more massive galaxies), as expected.

Similar to the networks trained with natural Einstein radius distribution (see Sect. 3.4.1 and
Sect. 3.4.2), in Figure 3.10 we show histograms (left column) and a 1:1 comparison (right
column), but now for all five SIE parameters (from top to bottom for the lens center x and y,
the complex ellipticity ex and ey, and the Einstein radius θE). For this network we obtain a
median value with 1σ scatter of (0.00+0.30

−0.30)′′ for ∆x, (0.00+0.30
−0.29)′′ for ∆y, −0.01+0.08

−0.09 for ∆ex,
0.00+0.08

−0.09 for ∆ey, and (0.07+0.29
−0.12)′′ for the Einstein radius ∆θE. Comparing the performance on

the Einstein radius to the network from Sect. 3.4.1 with a natural Einstein radius distribution, we
see a significant improvement for the systems with larger image separation. Therefore, we can
confirm that the underprediction of the Einstein radius in Sect. 3.4.1 is due to the relatively small
number of large-θE systems in the training data. On the other hand, based on this plot the new
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3 Lens mass modeling through a CNN assuming SIE-only

network seems to be slightly worse for the low-image separation systems. It tends to overpredict
the Einstein radius at θE . 2.0′′ such that when we limit to θE > 0.8′′ as in Sect. 3.4.1, we only
get a slight improvement in reducing the scatter and obtain ∆θE = (0.07+0.25

−0.08)′′. Therefore, it
turns out that the performance depends sensitively on the training data distribution.

We find a very similar performance on the lens center and ellipticity as for the network with
the natural distribution (see Sect. 3.4.1). This is expected since the only difference is the distri-
bution in Einstein radii. This can be further visualized with the 1D and 2D probability contours
in Figure 3.7 (green) that show that overall this network performs very similarly to the net-
work trained on the naturally distributed sample (blue). For all three networks we find minimal
correlation between the different parameters.

In analogy to the previously presented networks, we show in Figure 3.8 the histogram of the
brightness ratio and the Einstein radius differences as function of the brightness ratio for this
network. While the distribution matches that from the sample with naturally distributed Einstein
radius, we overpredict the Einstein radius more than before. This is related to the overprediction
at smaller Einstein radii (see Figure 3.10), which comes from weighting higher the fraction of
systems with larger image separation. We still underestimate the Einstein radius at the very high
end, as already noted, but this is negligible for the overall performance compared to the amount
of overestimated systems as we still have a factor of ∼ 100 more of them in our sample. This is
the reason why the network tends to overpredict more strongly than that trained on the naturally
distributed sample (Sect. 3.4.1, and blue lines in Figure 3.7 and Figure 3.8).

Finally, we show the loss curve in Figure 3.11. The training losses (dotted lines) and val-
idation losses (solid lines) in different colors correspond to the five different cross-validation
runs. Additionally, we give the mean of the validation curves with a black solid line. This line
is used to obtain the best epoch, which in this specific case is epoch 122 (vertical line). The
corresponding loss is 0.0528 obtained with Eq. (3.6).

From the loss curve we see that the network does not overfit much to the training set since
the validation curves do not increase much for higher epochs, but still enough to define the
optimal epoch to terminate the final training. This is a sign that drop-out is not needed, which is
supported by additional tests (see Sect. 6.3).

3.5 Further network tests

In addition to the networks described in Sect. 6.4, where we mainly investigated the effect of the
Einstein radius distribution, in this section we discuss further tests on the training data set.

3.5.1 Data set containing double or quads only

We considered a specialized network for one of the two strong lensing options and limited our
sample to either doubles or quads, where the image multiplicity is based on the centroid of the
source (as the spatially extended parts of the source could have different image multiplicities
depending on their positions with respect to the lensing caustics). In the case where we limited
the sample to doubles only, we did our standard grid search for the different hyperparameter
combinations for two samples with naturally distributed Einstein radii above 0.5′′ and above
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Figure 3.10: Network performance under the assumption of a lowest Einstein radius θE,min of 0.5′′ but a
uniform distribution up to ∼ 2′′. The left panel shows histograms of the ground truth (tr) in
red and of the predicted values in blue. The right panel shows a direct comparison of the
predicted against the true value. From top to bottom are the five different model parameters,
lens center x and y, complex elliptcity ex and ey, and Einstein radius θE. For all plots 30
bins over the plotting range are used.
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Figure 3.11: Loss curve of our best network under the assumption of equally distributed Einstein radii.
The training loss is shown as dotted lines in five different colors for the five different cross-
validation runs. In the same colors the validation loss is shown as solid lines together with
the black curve, which is the average of the five validation curves from the cross-validation
runs. From the minimum in the black curve, shown as the vertical gray line, the best epoch
is found.

2.0′′. With these networks we found no notable difference compared to the sample containing
both doubles and quads (see Sect. 3.4.1 and Sect. 3.4.2), which was expected as the doubles
dominate the sample including both doubles and quads by a factor of around 20-30 (for the
different networks depending on the lower limit of the Einstein radii).

When we limited the sample to quads only, we performed our grid search again for the differ-
ent hyperparameter combinations of both samples with naturally distributed Einstein radii above
0.5′′ and above 2.0′′ and also with equally distributed Einstein radii. Since the chance of ob-
taining four images is smaller than the chance of observing two images based on the necessary
lensing configuration probability, the sample sizes are smaller with 42 063, 19 176, and 28 398
lensing systems. Therefore, the output has to be considered with care as this is much lower than
typically used for such a network.

It turns out that these networks perform equally well on the lens center and ellipticity but better
for the Einstein radius shown in Figure 3.12. By comparing this plot to Figure 3.10, we find the
main improvement that the 1σ and 2σ scatters are substantially reduced and with smaller bias
for systems with larger θE. An improvement on the Einstein radius is expected as the network
gets the same information for the lens, but more for the lensed arcs. Even if one image is now
too faint to be detected or is too blended with the lens there are three images from the quad left
over to provide information on the Einstein radius.

To increase the sample we simulated a new quads-only batch with the source brightness
boosted by one magnitude, which resulted in a ∼ 1.5 times larger sample than before. This
is still small compared to the other double or mixed samples. Now we have a brightness ratio
peak at log

(
Is
Il

)
∼ −1.5 instead of ∼ −2.0 (as shown in Figure 3.8). The performance obtained
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3.6 Prediction of lensed image position(s) and time-delay(s)

with this trained network (the loss is 0.0673 for the network with wθE = 5) is still similar to
that for the quads-only network without magnitude boost (the loss is 0.0688) and no significant
performance difference is observed for the individual parameters.
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Figure 3.12: Network performance under the assumption of a lowest Einstein radius θE,min of 0.5′′ but
a uniform distribution with quadruply lensed images. The left panel shows histograms of
the ground truth (tr) in red and of the predicted values in blue. The right panel is a 1:1 plot
of predicted against true Einstein radius. For both plots 30 bins over the plotting range are
used.

3.5.2 Comparison to lens galaxy images only

As further proof of the network performance on the Einstein radius, we test how well the network
is able to predict the parameters from images of only the lens galaxies (i.e., without lensed arcs).
As expected, the network performs similarly well for the lens center and axis ratio, but much
worse for the Einstein radius with a 1σ value of 0.41′′. This shows us that the arcs are bright
enough and sufficiently deblended from the lens galaxies to be detectable by the CNN.

3.6 Prediction of lensed image position(s) and time-delay(s)

After obtaining a network for different data sets (see Table 3.1), we compared the true and pre-
dicted parameter values directly. Since the main advantage of the network is the computational
speed-up compared to recent methods and the fully automated application, the network is very
useful for planning follow-up observations. This needs to be done quickly in case there is, for
instance, a SN or a short-lived transient occurring in the background source. We explore below
how accurately we can predict the positions and time-delays of the next appearing SN images.

We used the predicted SIE parameters from the networks to predict the image positions and
time-delays and compared them to those obtained with the ground-truth SIE model parame-
ter values. This gives us a better understanding of how well the network performs and if the
obtained accuracy is sufficient for such an application. For this comparison we computed the
image positions of the true source center based on the true SIE parameters obtained by the simu-
lation for the sytsems of the test set (hereafter true image positions). After removing the central
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highly demagnified lensed image as this would not be observable (given its demagnification
and the presence of the lens galaxy in the optical–infrared), we computed the time-delays for
these systems (hereafter true time-delays ∆ttr) by using the known redshifts and our assumed
cosmology. Based on these true image positions and time-delays, we were able to select the
first-appearing image and use its true image position to predict the source position with our
predicted SIE mass model. This source position was then used to predict the image positions
(hereafter predicted image positions) of the next-appearing SN images based on the SIE param-
eter values predicted with our modeling network. The predicted image positions were then used
to predict the time-delays (hereafter predicted time-delays ∆tpred) with the network predicted
SIE parameter. We directly compared the image positions and time-delays that we obtained
with the true and with the network predicted SIE parameters when we had the same number
of multiple images. If the number of images did not match, which happened for 7.8% of the
sample used for the network with equally balanced Einstein radii distribution containing double
and quads, we omitted the candidate from this analysis as a fair comparison was not possible.
Since we always remove the central image, we obtain for a double and quad, respectively, two
and four images and one and three time-delays. Since the time-delays can be very different, we
also compared the fractional difference between the true and predicted time-delays with respect
to the true time-delays.

We chose again the three main networks from Sect. 6.4 for this comparison; they are shown
in Figure 3.13. All three sets contain quads and doubles, and assume a loss weighting factor of
5 for the Einstein radius. The first set assumes a lower limit on the Einstein radius of 0.5′′(blue),
the second a lower limit of 2′′(yellow), and the third a lower limit of again 0.5′′ but with a
uniform distribution on the Einstein radii instead of the natural distribution following the lensing
probability (green). We plot the quantities as a function of the brightness ratio log

(
Is
Il

)
in analogy

to Figure 3.7 and Figure 3.8.
In detail, Figure 3.13 contains in the upper row the median difference in the image position for

the x coordinate (left) and y coordinate (right) with the 1σ value per brightness ratio bin, where
only the additional image positions are taken into account as the first reference image is known,
and thus they do not need to be predicted. We obtain for all three networks a median offset of
nearly zero independent of the brightness ratio and whether we limit further in Einstein radii or
not. The 1σ values are around 0.25′′, corresponding to ∼ 1.5 pixels. Explicitly, we find for the
equally distributed sample applied to θE > 0.8′′ a median image position offset of (0.00+0.29

−0.29)′′

and (0.00+0.32
−0.31)′′ for the x and y coordinate, respectively. Interestingly, the 1σ values are slightly

larger for quads than doubles as we would have expected that quads provide more information
to constrain the SIE parameter values, and thus predict the image positions better. The reason
for this is probably because quads generally have higher image magnification than doubles, and
image offsets are larger with higher magnification.

The middle row of Figure 3.13 shows the legend (left) and a histogram of the difference
between the predicted time-delay ∆tpred and the true time-delay ∆ttrue. The bottom row shows
the difference in time-delay divided by the absolute value of the true time-delay per brightness
ratio bin (left) and the difference of the time-delays again per brightness ratio bin (right). In
terms of time-delay difference, the network trained on the natural distribution (blue) performs
better than that with uniform distribution (green), but especially for the network trained for
lens systems with large Einstein radius (orange) we obtain notable differences. In detail, we
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3.6 Prediction of lensed image position(s) and time-delay(s)
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Figure 3.13: Precision of model network predictions as a function of the lens and lensed source brightness
ratio in the range −3 ≤ log

(
I s
Il

)
≤ −1 for the three networks presented in Sect. 6.4 applied

to the restricted sample with θE
tr > 0.8′′. The upper row shows the image position offset

for the x coordinate (left) and y coordinate (right). In the middle panel is the legend (left)
and a histogram of the difference in time-delay (right), while in the bottom row is shown
the fraction of the time-delay difference and the true time-delay (left) and the time-delay
difference (right). The curves show the median and the vertical bars the 1σ values. The blue
and orange bars have been shifted slightly to the right for better visualization.

77



3 Lens mass modeling through a CNN assuming SIE-only

obtain a median with 1σ value for the naturally distributed sample (blue; see Sect. 3.4.1) for
the time-delay difference of 2+18

−6 days and a fractional time-delay difference of 0.05+0.47
−0.09. Since

we find a strong correlation between the offset in the Einstein radius and the time-delay offset
(see Figure 3.14), we exclude again the very small Einstein radii systems (θE

tr < 0.8′′) and
obtain for the time-delay difference 1+18

−11 days and for the fractional difference 0.01+0.19
−0.12. For the

equally distributed sample (green; see Sect. 3.4.3) we obtain, with θE > 0.5′′ and θE > 0.8′′,
respectively, for the time-delay difference 7+38

−6 and 6+36
−8 days and for the fractional time-delay

difference 0.06+0.45
−0.05 and 0.04+0.27

−0.05. This restriction is easily applicable in practice since individual
lensing systems are only followed up at a given time, and it is possible to check by looking at the
image of the individual system whether the Einstein radius is >0.8′′. Depending on the predicted
time-delay, the model can be further improved by using traditional manual maximum likelihood
modeling methods to verify the predicted time-delay.
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Figure 3.14: Correlation between Einstein radius offset in the range −0.8′′ ≤ θE
pred − θE

tr ≤ 0.8′′ and
time-delay difference (left panel) or fractional time-delay difference (right panel) by apply-
ing the different networks to their samples after limiting to θE

tr > 0.8′′. The blue and orange
bars have been shifted slightly to the right for better visualization.

The fractional offset in the predicted time-delays of 0.04+0.27
−0.05 that we achieve with our

CNN for systems with θE > 0.8′′ for the uniformly distributed θE sample (i.e., with a sym-
metrized scatter of ∼16%) is close to the limit that would be achievable even with detailed and
time-consuming MCMC models of ground-based images. This is because the assumption of
the SIE introduces additional uncertainties on the predicted time-delays in practice, even though
detailed MCMC models of images would typically yield more precise and accurate estimates
for the SIE parameters than our CNN. While galaxy mass profiles are close to being isother-
mal, the intrinsic scatter in the logarithmic radial profile slope γ′ (where the 3D mass density
ρ(r3D) ∝ r−γ

′

3D ) is around ±0.15, translating to ∼ 15% scatter in the time-delays (e.g., Koopmans
et al., 2006; Auger et al., 2010; Barnabè et al., 2011). In other words, if a lens galaxy has a
power-law mass slope of γ′ = 2.1, then our assumed SIE mass profile (with γ′ = 2.0) for it
would predict time-delays that are ∼10% too high (e.g., Wucknitz, 2002; Suyu, 2012). While
constraining the profile slope γ′ with better precision than the intrinsic scatter for individual
lenses is possible, this would require high-resolution imaging from space or ground-based adap-
tive optics (e.g., Dye & Warren, 2005; Chen et al., 2016). Given the difficulties of measuring the
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3.7 Comparison to other modeling codes

power-law mass slope γ′ from seeing-limited ground-based images of lens systems (although
see Meng et al., 2015, for the optimistic scenario when various inputs are known perfectly such
as the point spread function), we conclude that our network prediction for the delays has uncer-
tainties comparable to that due to the unknown γ′. We expect these two sources of uncertainties
to be the dominant ones in ground-based images.

We also find a decrease in the performance with increase in brightness ratio, which is in the
first instance counterintuitive. If we consider the fractional offset in the left panel, we see a better
performance for the sample with an Einstein radius lower limit of θE,min = 2′′ (orange), espe-
cially in terms of the 1σ scatter, when compared to the other two networks. This θE,min = 2′′

network also has minimal bias, as shown by the median line. This is understandable as the
time-delays are longer for systems with a bigger Einstein radius, and therefore the fractional
uncertainty is smaller. The accuracy in time-delay difference (lower right plot) is good, although
the 1σ scatter is quite large, ∼20 days. With this reasoning, we can also understand the worse
performance of the equally distributed sample (green) compared to the naturally distributed sam-
ple (blue) as it contains a much higher fraction of systems with bigger image separation. As a
higher brightness ratio (log(Is/Il)) tends to be associated with systems with higher θE, the pre-
diction of delays thus has larger scatter, as shown in the bottom right panel. Moreover, we note
that we find a better performance for doubles than quads, probably because of smaller image
separation and shorter time-delays of quads.

During this evaluation of the networks we should keep in mind that the main advantage of
these networks is the run time: we need only a few seconds to estimate the SIE model parameters,
the image positions, and the corresponding time-delays. Therefore, it is expected that we do
not reach the accuracy of current modeling techniques using MCMC sampling which can take
weeks. Nonetheless, the network results can serve as input to conventional modeling and can
help speed up the overall modeling.

3.7 Comparison to other modeling codes

There are already several modeling codes developed, and they can be separated into two main
groups. The state-of-the-art codes that rely on MCMC sampling have been widely tested and
used for most of the modeling so far. The advantage of such codes are their flexibility in image
cutout size or pixel size and also in terms of profiles to describe the lens light or mass distribution.
With the advantage of the variety of profiles comes the disadvantage that the codes require a lot
of user input which limit the applicability of such codes to a very small sample, or specific
lensing systems that are modeled. Moreover, based on the MCMC sampling of the parameter
space is very computationally intensive, and thus can take up to weeks per lens system, although
some steps can be parallelized and run on multiple cores.

Since the number of known lens systems has grown in the past few years and will increase
substantially with upcoming surveys like LSST and Euclid, the codes used to analyze individual
lens systems will no longer be sufficient. Thus, the modeling process must be more automated
and a speed-up will be necessary. While some newer codes (e.g., Nightingale et al., 2018; Shajib
et al., 2019; Ertl et al., in prep.) are automating the modeling steps to minimize the user input,
they still rely on sampling the parameter space such that the run time remains on the order of
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3 Lens mass modeling through a CNN assuming SIE-only

days or weeks, and some user input per lens system. With these codes it should be possible to
obtain results that are comparable with the current interactive modeling procedure.

The second new kind of modeling is based on machine learning such as that used in this
work. The first network for modeling strong lens systems was presented by Hezaveh et al.
(2017). While they use Hubble Space Telescope data quality, we use ground-based HSC images
with similar quality to those used by Pearson et al. (2019) as most of the newly detected lens
systems will be in first instance observed with ground-based facilities. Moreover, Hezaveh et al.
(2017) suggest first removing the lens light and then only modeling the arcs with the network.
Given the differences in the data quality, number of filters, and modeling procedure between
Hezaveh et al. (2017) and our work, we cannot further compare the performance fairly.

Pearson et al. (2019) consider modeling with and without lens light subtraction, but found
no notable difference; thus, we only consider modeling the lens system without an additional
step to remove the lens light. Since we provide the image in four different filters, the network
is able to distinguish internally between the lens galaxy and the surrounding arcs. In contrast
to Pearson et al. (2019), we use the SIE profile with all five different parameters, while they
only predict three parameters: axis ratio, position angle (equivalent to our complex ellipticity),
and the Einstein radius. Moreover, they completely mock up their training data, assume a very
conservative threshold of S/N>20 in at least one band, and do not include neighboring galaxies
that can confuse the CNN; instead, we are more realistic by using real observed images as input
for the simulation pipeline. We further assume an offset between lens mass distribution and lens
light distribution, which complicates the CNN parameter inference further as the network has
to predict the mass distribution only from the images. This way we have more realistic lens
light and mass distributions and also include neighboring objects which the network has to learn
to distinguish from the lensing system. Pearson et al. (2019) make use of a CNN (the same
type of network that we use, and also Hezaveh et al. 2017), but they use slightly smaller input
cutouts (57 × 57 pixels) and a different network architecture (six convolutional layers and two
FC layers) than ours.They investigated mostly the effect of using a different number of filters and
whether to use lens light subtraction, whereas we investigate the effect on the underlying samples
and a simulation with real observed images, which means that we do not have a scenario that
assumes the exact same properties. The closest scenario, from Pearson et al. (2019) the results
from LSST-like gri images including lens light and our results based on HSC griz images with
naturally distribution of the Einstein radii, shows that both networks are very similar in their
overall performance.The reason that the performance on the Einstein radius by Pearson et al.
(2019) is better and that they do not suffer from the same biases in θE

pred, even with a non-flat
θE

tr distribution in their simulations, is perhaps because they use idealized simplistic simulations
(high S/N, well-resolved systems, no neighbors).

There are also other recent publications related to strong lens modeling with machine learning.
Bom et al. (2019) suggest a new network that predicts four parameters: the Einstein radius θE,
the lens redshift zd, the source redshift zs, and the related quantity of the lens velocity dispersion
vdisp. They adapt, as we do, a SIE profile to mock up their training data with an image quality
similar to that from the Dark Energy Survey. Comparing their performance on the Einstein radius
(Figure 8, left panel, assuming θE

tr on the x-axis and θE
pred on the y-axis) to our performance with

the natural distribution (Figure 3.6), we find a similar trend. Both networks slightly overpredict
at the very low end and underpredict at the high end. If we compare this to the network with
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equal distribution, we see a clear improvement of our network on the median line for θE ∼ 2−3′′.
Since this code only provides the Einstein radius instead of a full SIE model, the applicability is
somewhat limited.

Madireddy et al. (2019) suggest a modular network to combine lens detection and lens mod-
eling which to date have been done with complete independent networks. In detail, they have
four steps. The first is to reduce the background noise (so-called image denoising), followed
by a lens light subtracting step (the deblending step), before the next network decides whether
this is a lens system or not. If it detects the input image to be a lens, the module is called to
predict the mass model parameter values. Each module of the network is a very deep network
and both modules for detection and modeling make use of the residual neural network (ResNet)
approach. They use a sample of 120,000 images, with 60,000 lenses and 60,000 non-lenses, and
split this into 90% and 10% for the training and test set, respectively, without making use of the
cross-validation procedure. Madireddy et al. (2019) use, as do Pearson et al. (2019), completely
mocked-up images based on a SIE profile with fixed centroid to the image center such that the
modeling module predicts three quantities, Einstein radius, and the two components of the com-
plex ellipticity. Based on the different assumptions a direct comparison of the lens modeling
performance is not possible. However, we see that the performance is typical for the current
state of CNNs based on Pearson et al. (2019).

Comparing the network-based modeling to the traditional model using MCMC on a concrete
sample is difficult as first we have to obtain the mass models for that sample with both methods.
However, in general it is expected that the MCMC models are typically more precise than those
obtained with neural networks because of the interactive and individual modeling procedure. In
the MCMC modeling, the image residuals can be inspected to see whether the model is good
and trustworthy, or if the parameters need to be refined further and different mass profile adopted
(e.g., SIE plus external shear). In contrast, the fully automated procedure with CNN does not
inspect the individual images and residuals in detail. However, for upcoming surveys like LSST
it is impossible to model all the expected ∼100, 000 lens systems in the traditional MCMC way
systematically given the computational time required. The only way to analyze the entire LSST
lens sample will be a fully automated, fast procedure where a small fraction of outliers and
(probably) slightly higher uncertainties are acceptable. Therefore, the substantial speed-up is a
very important advantage of CNN modeling, as we can process one lens systems with our CNN
in fractions of a second compared to weeks or months with MCMC methods. If one is interested
in a specific lens system such as a lensed SN, one can consider starting with a CNN to get a good
initial mass model and then refining with traditional methods to achieve a good balance between
speed and accuracy.

3.8 Summary and conclusion

In this paper, we presented a convolutional neural network to model in a fully automated way
and very quickly the mass distribution of galaxy-scale strong lens systems by assuming a SIE
profile. The network is trained on images of lens systems generated with our newly developed
code that takes real observed galaxy images as input for the source galaxy (in our case from
the Hubble Ultra Deep Field), lenses the source onto the lens plane, and adds it to another real
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observed galaxy image for the lens galaxy (in our case from the HSC SSP survey). We chose the
HSC images as lenses and adopted their pixel sizes of 0.168′′ as this is similar to the data quality
expected from LSST. With this procedure we simulated different samples to train our networks
where we distinguish between the lens types (quads+doubles, doubles-only, and quads-only) and
on the lower limit of the Einstein radius range. Since we find a strong dependence on the Einstein
radius distribution, we also consider a uniformly distributed sample and also a weighting factor
of 5 for the Einstein radius’ contribution to the loss. With this we obtain eight different samples
for each of the two different weighting assumptions summarized in Table 3.1.

For each sample we then perform a grid search to test different hyperparameter combinations
to obtain the best network for each sample, although we find that the CNN performance depends
much more critically on the assumptions of the mock training data (e.g., quads, doubles, both,
or Einstein radius distribution) rather than on the fine-tuning of hyperparameters. From the
different networks presented in Table 3.1, we find a good improvement for the networks trained
with quads-only compared to the networks trained on both quads and doubles. If the system type
is known, we therefore recommend using the corresponding network. Since the Einstein radius
is a key parameter, we weighted its loss higher than for the others and, although the minimal
validation loss is higher, we advocate these networks for modeling HSC-like lenses. With the
network trained on both quads and doubles with the uniform distributed sample of θE > 0.5′′,
we obtain for the five SIE parameters a median with 1σ value as follows: ∆x = (0.00+0.30

−0.30)′′,
∆y = (0.00+0.30

−0.29)′′, ∆θE = (0.07+0.29
−0.12)′′, ∆ex = −0.01+0.08

−0.09, and ∆ey = 0.00+0.08
−0.09.

After comparing the network performance on the SIE parameter level, we tested the network
performance on the lensed image and time-delay level. For this we used the first appearing image
of the true mass model to predict the source position based on the predicted SIE parameter.
From this source position and the network predicted SIE parameters, we then predicted the
other image position(s) and time-delay(s). We find for the sample with doubles and quads a
uniform distribution in Einstein radii and a weighting factor wθE of five by applying the network
to θE > 0.8′′ an average image offset of ∆θx = (0.00+0.29

−0.29)′′ and ∆θy = (0.00+0.32
−0.31)′′, while we

achieve the fractional time-delay difference of 0.04+0.27
−0.05.

This is very good given that we use a simple SIE profile and need only a few seconds per
lens system in comparison to state-of-the-art methods that require at least days and some user
input per lens system. We anticipate that fast CNN modeling such as the one developed here
will be crucial for coping with the vast amount of data from upcoming imaging surveys. For
future work, we suggest investigating further into creating even more realistic training data
(e.g., allowing for an external shear component in the lens mass model) and also exploring
the effect of deeper or more complex network architectures. The outputs of even the network
presented here can be used to prune down the sample for specific scientific studies, which can
then be followed up with more detailed conventional mass modeling techniques.
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4 Lens modeling with a residual neural
network assuming SIE with external shear
with error estimation

Note. The content of this chapter will be submitted as an individual paper to an international
journal for publication. We refer to this upcoming publication with Schuldt et al. (in prep a).

4.1 Introduction

We have demonstrated in Chapter 3 the ability of modeling strongly lensed galaxy systems
from HSC with a CNN. We performed extensive tests regarding the effect of different sample
distributions on the Einstein radius for the ground truth, presented networks trained specifically
for systems with large image separation, or only quads or doubles. Moreover, we demonstrated
the accuracy and precision of image positions and time delay inferred from our network output.
In this chapter we present our further investigations built upon this. Here we adopt now an
external shear, describing the influence on the light deflections from mass outside the main
lens potential, in addition to the SIE profile. We will refer to this combination of profiles as
SIE+γext in the remaining thesis. Adding the external shear component required an upgrade of
our simulation pipeline which is introduced in Sect. 3.2.3 and used to create again our training
data set. The upgrade and additionally improvements, such as including Poisson noise on the
arcs, improving the lens centering and thus adding an random ±3 pixel shift, which is a common
data augmentation technique to enhance the performance of CNNs Dieleman et al. (2015), are
described in Sect. 4.2.

Since we include the external shear, our network predicts now seven parameters instead of
five. Additionally, we include an uncertainty prediction by doubling the number of neurons in
the last layer. Since this new task is much more complex than considered in Chapter 3, it requires
a deeper network coping with the small distortions of the external shear, such that we rely now
on ResNet (He et al., 2015). This procedure, and also the final network architecture is described
in Sect. 4.3.

In Sect. 4.4 we describe then the performance of our final network and discuss the results.
The extensive tests we carried our in order to find this network architecture and the best hyper-
parameter combination are summarized in Sect. 4.5. Moreover, we highlight several additional
tests on the network to demonstrate further possibilities. We summarize and conclude our results
finally in Sect. 4.6.

As already in Chapter 3, we assume a flat ΛCDM cosmology with a Hubble constant H0 =

72 km s−1 Mpc−1 (Bonvin et al., 2017) and ΩM = 1 − ΩΛ = 0.32 (Planck Collaboration et al.,
2020).
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4.2 Simulation of strongly lensed images

To create our training, validation, and testing set for this modeling network, we follow and
improve on the pipeline described in Sect. 3.2. In analogy to Chapter 3, we use as lenses HSC
images (Aihara et al., 2019) of LRGs with a pixel size of 0.168′′and available spectroscopic
redshifts and velocity dispersion measurements from SDSS (Abolfathi et al., 2018). In addition
to our criteria in Chapter 3, we set now a lower limit of 100 km/s for the velocity dispersion,
since the very low mass galaxies do not give a strong lensing configuration as we see from the
right panel of Fig. 3.1. This will speed up the creation of mocks as we do not iterate over these
systems anymore trying to find a suitable source. As background sources, we use again images
from Hubble Ultra Deep Field (HUDF) together with their redshift measurements (Beckwith
et al., 2006; Inami et al., 2017). These galaxies are extracted through the same procedure as
in Sect. 3.2 using Source Extractor (Bertin & Arnouts, 1996). This background galaxy is then
lensed with the software GLEE (Suyu & Halkola, 2010; Suyu, 2012) from the source plane to
the lens plane and the obtained arcs are painted on top of the lens image. With this procedure we
include real line-of-side objects and light distributions, making the mock images very realistic.
To calculate the deflection angles, we assume a SIE profile and, in contrast to Chapter 3, we
include an external shear to account for an additional mass concentration outside of the cutout.
In the following we describe the changes compared to our procedure adopted in Chapter 3, and
therefore show a diagram of the upgraded simulation procedure in Fig. 5.2, which is adapted
from Fig. 3.3. Example images generated with our upgraded simulation pipeline are displayed
in Fig. 4.2; on the left panel the final mock images and on the right panel the lensed source alone,
which got added to the HSC lens image. It shows the variety of mocks and how realistic they
are.

Compared to the version used in Chapter 3, we improve the lens centering and ellipticity
estimation in the simulation code in the following way. The code accepts now a mask of the lens
obtained for instance with the Source Extractor (Bertin & Arnouts, 1996), resulting in a more
accurate extraction of the lens. To determine the lens center, we additionally apply a circular
mask with radius of 20 pixels centered at the image center. This is in particular important to avoid
stronger biases for the lens center through unsymmetrical extraction due to neighboring objects.
From the resulting masked image, we predict the lens light center trough the first moments
and recenter the image to the nearest pixel of the predicted lens light center. An interpolation
for better centering is not performed to avoid manipulating the observed image. Instead, the
remaining fractional pixel is taken into account through the simulation as lens light center, from
which we determine the lens mass center. This lens mass center is drawn from a Gaussian
distribution with width of ± 0.5 pixel corresponding to ±0.84′′, and used later for the network
training. Additionally, since we now re-centering the cutout on the lens, we shift the final mock
image randomly by up to ±3 pixels in x and y direction. This ensures that the network learns to
predict the lens center instead of the image center.

The axis ratio qlight and position angle θlight of the lens light is determined through the second
moments using the provided mask. Here is no additional circular aperture taken into account as
the outer parts of the lens light distribution are crucial for the correct estimation of the ellipticity
and axis ratio. In analogy to our mocks in Chapter 3, the axis ratio q and the position angle θ
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Figure 4.1: Flow chart of the simulation pipeline used to create our training data. Figure adapted from
Fig. 3.3.
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Figure 4.2: Example images of our mock lensed (left) and corresponding frames with only the lensed
source (right).

of the mass distribution are drawn from Gaussian distributions centered at the lens light with a
Gaussian width of 0.05 and 0.17 radians (equal to 10 degrees), respectively.

The Einstein radius θE is again obtained through Eq. (3.3) from the velocity dispersion and
redshifts. For the external shear we implemented the option of either (1) randomly assigned val-
ues matching a realistic distribution obtained from galaxy-scale lenses with external shear pre-
viously estimated from detailed modeling using state-of-the-art techniques (Faure et al., 2011;
Wong et al., 2011), or (2) using a flat distribution for the complex quantities γ1 and γ2, or (3) a
flat distribution for the shear strength γext. For the final set of mocks, we assume a flat prior in
the shear strength within a range between 0 and 0.1. As described in Sect. 4.5 further, this helps
the network to learn better the full parameter range of the shear strength.

Moreover, we improve our simulation code by including now Poisson noise (Hasinoff, 2012)
for the arcs approximated from the variance map vi corresponding to the individual lens image
pixel i. For this we first define

σi =

√
v+

i (4.1)

with v+
i = max{vi, 0}, i.e. we reset all negative pixel values of the variance map by zero, and

compute the lens background noise σbkgr defined as the minimal RMS of the four corner of the
lens image. With those two quantities we then approximate the Poisson noise map of the lens as

σpoisson,i =

√
σ2

i − σbkgr2 (4.2)

to obtain the poisson scaling factor map

αpoisson,i = σpoisson
2
,i/Ilens,i (4.3)
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4.2 Simulation of strongly lensed images

where Ilens is the lens image from HSC. Since this scaling factor αpoisson should be a constant,
we approximate it as the median of the 10 × 10 pixels central region as there the lens intensity
is the highest and thus the mapping is more precise than on the outer parts. The Poisson map of
the arc is then simply

σpoisson,arc,i =
√
αpoisson × I+

arc,i (4.4)

where Iarc is the lensed source image (arcs). From this map we draw Gaussian variations repre-
senting the additional Poisson noise which are added on top of the simulated images.

In addition to these technical changes, we request, similar as described in Sect. 3.2, the lens
and source pair to pass the following criteria on the brightness in at least either the g or i filter,
wherever the source is brighter. This allows to accept both bluer and redder lenses, while previ-
ously a large fraction of red sources were discarded. In detail, we require the brightness peak of
the lensed source (arcs), shown on the right panel in Fig. 4.2, to be at least a factor 1.5 brighter
than the lens at this specific pixel, such that the main arc is detectable at this position. However,
we include here no check on the extend of the arc nor the counter image(s). This implies that
systems with larger Einstein radius can have fainter arcs, like e.g., image (g) and (m) in Fig. 4.2,
since the lens light will be low at the lensed source brightness peak compared to systems with
small image separation. Therefore, we set additionally a brightness threshold of 5 σbkgr. With
this criteria we obtain mock systems with arcs above the lens background noise and thus de-
tectable lensing features. If the arc would be too faint compared to the main lens, the network
would have no chance to extract information from the arcs. This is valid, as we intend to model
lenses primarily found from multiband imaging containing typically a visual inspection stage
where we request to have visible indications of arcs in the color image.

Since it is hard to overcome these thresholds with sources randomly places behind the lens,
we always place the source on positions with a magnification factor µ of at least 10. Addition-
ally, if a lens source pair does not fulfill these brightness requirements, we lower iteratively the
source magnitude in all bands in steps of −0.5mag by a maximum of 6 steps which is taken into
account when translating the lensed source from the high resolution image to the ground-based
resolution. This results still in realistic images as we can see from Fig. 4.2 with also relatively
faint arcs (e.g., system (b), (g), (l), (m)).

The 16 images displayed in Fig. 4.2 are a randomly selected subset of our produced mocks.
It shows the variety of included LOS objects that complicated the task for the network notably.
It has to learn to distinguish between lens, arcs, and these LOS objects. Although we use only
galaxies as lenses that got classified as LRGs given their higher lensing cross section, also some,
probably mis-classified, edge on spirals (compare image (l) in Fig. 4.2) or face-on Early Type
Galaxys (ETGs) (compare image (d) and (j) for instance) are included. Such edge on spirals or
face-on ETGs are still possible lensing systems, see lens candidate HSCJ0928-0045 which we
found with our residual neural network in the HSC images (Cañameras et al., 2021), but much
rarer. This underrepresented systems are expected to raise difficulties for the network leading
to higher uncertainties but are intended as we aim to model larger samples from current and
upcoming wide-field imaging surveys that likely have these types of lens-spiral contaminants.

Image (i) in Fig. 4.2 shows untypically red arcs, matching nearly the color of the lens. This
is most likely the result of Source Extractor identifying another object in the cutout close to the
image center, as in the image center only a nearly indetectable object is, which although could
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indeed correspond to the HUDF redshift of zs = 5.92. The offset to the image center is not
visible in the final image as each source gets automatically recentered on the brightest pixel.
The lens of this system lays at a redshift zd = 0.443 and has a velocity dispersion of 225.9km/s,
resulting in an Einstein radius of 1.163′′. This system shows the limitation of our simulation
pipeline and introduced inaccuracies which come along with the procedure using real images. It
demonstrated how careful the masking has to be done. Since these systems are very seldom in
our data set, we expect their introduced difficulty for the network to be minor especially as they
appear in all three splits, the training set, validation set, and test set.

Following the procedure described in this section, we create more than 90, 000 mock images.
These are then used to train (50,176 mocks), validate (12,544 mocks), and test (27,392 mocks)
the network, as described in Sect. 4.3.

4.3 The residual neural network architecture

As introduced in Sect. 1.5, CNNs are very powerful tools in image processing especially if
an autonomous and fast method is required to cope with the huge amount of images. Since
there are already thousands of known lens candidates in the HSC footprint (e.g., Jaelani et al.,
2020a,b; Jaelani et al., in prep.; Sonnenfeld et al., 2019, 2020; Wong et al., 2018; Cañameras
et al., 2021; Shu et al., in prep., , see also Sect. 1.2 for further details), and we expect around
hundred thousand more observed in similar quality by LSST (Collett, 2015), CNNs are perfectly
suited for analyzing this data.

While we used in Chapter 3 a CNN architecture based on the LeNet (Lecun et al., 1998)
architecture to predict the five SIE parameters, we consider now deeper networks to predict
SIE+γext and thus make use of residual neural networks to gain notable improvement. A sketch
of our network architecture is given in Fig. 4.3.

In analogy to Chapter 3, we start with a network predicting one point estimate per parameter,
i.e. now seven values for the five SIE parameters plus two values for the external shear. Here we
again use a Mean Square Error (MSE) loss function. We then modified very soon the network
such that it predicts two values per parameter, i.e. 14 values in total. We interpret now seven
values as the mean (like previously the point estimate) and the other values as the σ spread of a
Gaussian function describing the error on that parameter for that specific image. Here we use a
loss L given by

L =

N∑
k=1

p∑
l=0

−wl × log(P(ηpred
k,l , ηtr

k,l, σk,l)) + εl × log(σ2
k,l) (4.5)

with a log-probability term and a regularization term to minimize the errors similar as suggested
in Perreault Levasseur et al. (2017). The loss is a sum over the p different parameters η and
corresponding errors σ with index l and additionally summed over each image k in the batch
of size N. We introduced a weighting factor w and a regularization constant εl which can be
different for each parameter l. If we can indeed interpret the second values as an 1σ error
on the values, this makes the network much more powerful as it indicates how much we can
trust that predictions. Perreault Levasseur et al. (2017) suggest to tune the network through the
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Figure 4.3: Overview of our ResNet architecture. The input are the lens images in four filters g, r, i, and
z, witch are passed through a series of convolutional layers and FC layers. After a sigmoid
layer to map all output values to the range [0, 1], we split them up into mean and uncertainty.
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dropout rate (Srivastava et al., 2014) such that the predicted errors match the expected intervals
of 68% for 1σ, 95% for 2σ and 99.7% for 3σ. Instead of using dropout for both convolutional
layers and FC layers with the same rate as done in Perreault Levasseur et al. (2017), we use only
dropout for the FC layers as the dropout rate typically differs significantly between convolutional
layers and FC layers. Because of the low number of final FC layers (one to three layers), the
effect of dropout on the percentile is minor. This makes the tuning difficult such that even if
we average over the seven parameters, the right percentile were not perfectly achievable for us.
It is also questionable if averaging over all seven parameters makes the predicted uncertainties
interpretable as σ values as the fraction can differ significantly for one specific parameter to
the expected percentile. Therefore, we investigated into network architectures with different
branches of FC layers as further described in Sect. 4.5.1.

In general, we tested different setups of the ResNet architecture by varying e.g., the number
of residual blocks, kernel sizes, and number of FC layers. The tests we carried out to find the
best network architecture and hyper-parameter set are summarized in Sect. 4.5, while we focus
here on the final network architecture and the general training procedure. As shown in Fig. 4.3,
the final network architecture contains one conv layer with kernel size 3 followed by a batch
normalization and three residuals blocks of each two conv layers with kernel size of 3. The
standard 3 × 3 kernel where preferred over larger kernel sizes such as 5 × 5 or 7 × 7 as the
network need to capture also very small features on the arcs to predict the external shear and our
images are only 64 × 64 pixels large. The output of the convolutional sequence is passed after
flattening through three FC layers mapping it to 14 values.

Since the parameter ranges are different for the different parameters, we include a scaling of
the ranges to map them consistently to the range [0, 1]. This ensures an equal contribution from
the different parameters to the loss, resulting in better optimization of all parameters. We assume
here the following input ranges [a, b]: lens center x ∈ [−0.6′′, 0.6′′] and y ∈ [−0.6′′, 0.6′′],
complex ellipticity ex ∈ [−1, 1] and ey ∈ [−1, 1], the Einstein radius θE ∈ [0.5′′, 5′′] as already in
the simulation procedure, and the complex external shear γ1 ∈ [−0.1, 0.1] and γ2 ∈ [−0.1, 0.1].
This means the ground truth get scaled as

ηscaled, tr =
ηtr − a
a − b

, (4.6)

and the ourput of the network get scaled back to the original ranges through

η = (b − a) × ηscaled, pred − a (4.7)

and for the uncertainty
σ = (b − a) × σscaled . (4.8)

The uncertainties are not shifted by −a as those are considered with respect to the predicted
mean values η. This procedure implies an sigmoid layer in the network architecture, which is
applied before splitting it up into 7 values for the median and 7 values for the uncertainty σ, to
compute the loss with Eq. (4.5). The network parameter optimization is performed with a ReLU
(Nair & Hinton, 2010) activation function and a stochastic gradient descent algorithm, adjusting
the weights to minimize the loss.
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4.3 The residual neural network architecture

To avoid unbalanced optimization of the network, we used again a 5-fold cross-validation by
splitting our set of 90,112 mocks into roughly 56% training, 14%validation, and 30% testing,
where rounding effects from the batch size occur, and train each run over 500 epochs. This
allows us also to determine better the hyper-parameter and the final stopping epoch, defined
through the minimal average validation loss. This is visualized in Fig. 4.4, where we show the
loss curves of the training set (dotted) and validation set (solid) for our 5 runs (colored) and
the resulting mean curve (black). The lowest mean loss is −524.14 obtained in epoch 49, such
that the final run is trained over 49 epochs. It shows a relative big generalization gap (compare
Fig. 3.11), which means the network performs after some amount of epochs significantly better
on the training data than on the validation set. A typical procedure to reduce this effect is through
dropout, which was suggested by Perreault Levasseur et al. (2017) to be used for the uncertainty.
This is further discussed in Sect. 4.5.
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best epoch loss: -524.1366
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Figure 4.4: Loss curves for our 5-fold cross-validation together with its mean curve (black). The minimal
validation loss is −524.14 and obtained in epoch 49.

In the presented network, we assumed a batch size of 32, a learning rate rlearn = 0.00001, a
weight decay of 0.0005, a momentum of 0.9, a regularization constant ε of 0.5 for all different
parameters and a weighting factor w of 1 for all different parameters, i.e., no up-weighting of
any specific parameter such as the Einstein radius or external shear. As shown in Fig. 4.3, we
include three residual blocks with a stride of 2, 1, and 1, respectively, and 24, 32, and 64 feature
maps, respectively. The first layer before the residual blocks has 16 feature maps, while the input
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has 4 corresponding to the 4 different filters. The FC layers connect 1024 to 32, 32 to 16 and 16
to 14 neurons, respectively. We discuss the details on the hyper-parameter search in Sect. 4.5.2.

4.4 Network results and performance

Following the work presented in Chapter 3, we present here our results obtained with a residual
neural network predicting the SIE+γext parameters and corresponding uncertainties σ. This
network was trained, validated and tested on 90,112 realistic mock images created with our
upgraded simulation procedure described in Sect. 4.2. The optimized network architecture is
shown in Fig. 4.3, with which we obtain overall good results. We show in Fig. 4.5 a comparison
between ground truth and predicted values on the test set, which are images the network has
never seen before nor were they used during the cross-validation procedure. In detail, we show in
the left column the performance on the lens center and the ellipticity, and in the right column the
performance for the Einstein radius and the external shear, respectively, always as histogram and
as median with 1σ and 2σ ranges with the true value on the x-axis and the network predictions
on the y axis.

The network performs very well on the lens center, especially in contrast to our CNNs pre-
sented in Chapter 3 where we had difficulties in recovering the mass center. Here we directly see
the good improvement on the lens centering resulting from the random shift of the final mock
image by up to ±3 pixels. The median with 1σ for xpred − xtr and ypred − ytr are, respectively,
−0.06+0.4

−0.5 and 0.1+0.6
−0.4. The complex ellipticity is also very well recovered, although the predic-

tions tend to values closer to zero than it should. In words, the network predict the galaxy to be
more round as it is, although this interpretation might be not the only reason. Another possible
reason is the much higher number of training systems with values around zero such that the net-
work guess for some systems just the most probable value. We obtain a median with 1σ values
for ex

pred − ex
tr and ey

pred − ey
tr of −0.009+0.1

−0.1 and 0.02+0.1
−0.08, respectively.

The Einstein radius θE is very well recovered with a mean and 1σ values of θE
pred − θE

tr =

0.002+0.09
−0.09, although we do not up-weight the contribution to the loss as done for our CNNs

presented in Chapter 3. The median line still follows closely the 1:1 line between our lower limit
of 0.5′′ and around 2.5′′, dropping for systems with very large image separation. The binned 1σ
and 2σ ranges indicate very precise predictions between ∼ 1′′ and ∼ 2′′, but also beyond this
range the performance is good. The lower precision on the low end is most likely because of
blending issues with the lens. Because of the small image separation(s), the counter image(s) are
relatively more blended with the lenses such that the network cannot deblend the arcs from the
lens well enough which is important for the prediction of the Einstein radius. This is confirmed
by a test using the arcs alone for the network training (see Sect. 4.5.3 for details). On the other
side of the range, the performance drops significantly due to their under representation in the data
set. As extensively tested for our CNNs, the distribution on the Einstein radii are crucial for the
performance, and a uniformly distributed sample yield the best performance considered over the
full range. Therefore we artificially enforced a similar number of systems below ∼ 2′′ per bin.
Since we use real measurements of the velocity dispersion and redshifts, lensing systems with
an Einstein radius above ∼ 2.5′′ are very seldom even by increasing the number of iterations for
testing different lens-source alignments or lens-source pairs. As a result, the number of systems
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Figure 4.5: Comparison between ground truth and prediction of our final network. In the left panel of
each column we show histograms of the ground truth (red) and predicted values (blue). On
the right panel we plot directly the predicted value (y-axis) against the true value, showing
the median as a red line with 1σ and 2σ ranges (gray shaded).

drop by two orders of magnitude towards θE ∼ 3′′ compared to the plateau with the consequence
of decreasing performance. Given the very low number of systems within each bin for θE > 3′′,
we do not show them in Fig. 4.5 but keep our limit at 5′′ as largest image separation accepted
by our simulation pipeline. Even if the network performs not well in this range, it has seen
some of these systems and because of our introduced scaling, the network is in principle able to
predict such large Einstein radii. As demonstrated with our modeling CNN in Sect. 3.4.2, we
can also train a dedicated network for e.g., systems with θE ≥ 2′′ giving very good performance
on systems with such large image separation.

As we see from Fig. 4.5, the network is so far not able to predict the external shear well
although the mean with 1σ vales are 0.001+0.04

−0.03 and −0.001+0.03
−0.04, respectively. It tends to predict

values closer to zero, resulting in a lower shear strength than it should. We tested many different
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possibilities to improve on the external shear as described in Sect. 4.5, and found that blending
with the lens or the low image quality compared to e.g., HST images is not the main reason
for this issue. It seems that the current network cannot generalize to new systems well enough
on these very minor distortions on the arcs or the degeneracy to other parameters are higher
than expected, such that further investigations are necessary if one needs a good estimate of the
external shear. This depends on the science case beyond the modeling. For statistical studies
on the image systems such as the mass of the lenses, the external shear is expected to have only
negligible influence.

We show in Fig. 4.6 the performance of the network as difference between predicted values
and ground truth for the seven parameters in analogy to Fig. 4.6. In the bottom row are the nor-
malized histograms and above the 2D correlations distribution with 1σ contour (solid line) and
2σ contour (dotted line). We find no strong correlation, also not between typically degenerated
quantities such as ellipticity and external shear. However, by comparing to the performance of
our CNNs in Fig. 4.6 where the plotting ranges of the SIE parameters are kept the same for a
more easily comparison, we find a general better performance on the Einstein radius but with
the same kind of diamond shaped 2σ contour. On the other hand, we obtain with the ResNet
larger discrepancies on the lens center most likely because of our newly introduced random ±3
pixels shift for the final mocks to ensure the network predicts the lens mass center instead of
the image center. Moreover, one has to remember also our other drastic changes by introducing
new parameters through the external shear, the uncertainty prediction, the change in the network
architecture or introducing Poisson noise in the simulations, which makes this comparison to
some extend unfair or at least difficult to infer the reasons for observed changes in performance.
Since the ResNet has a much more complex task with predicting the external shear and uncer-
tainties per parameter to solve, which it does overall good, this is definitely the more powerful
network.

Beside the median value for each parameter, the network predicts also an uncertainty σ for
each parameter. To interpret this as the width of a Gaussian distribution, it has to match the
statistical expectations of 1σ correspond to a Convidence Intervall (CI) of 68.3%, 2σ to 95.4%
CI, and 3σ to 99.7%. Given our predictions are not perfectly matching a Gaussian distribution,
we scale the predicted values for the different parameters x, y, ex, ey, θE, γ1, and γ2 by, respec-
tively, 1.127, 1.150, 1.185, 1.164, 1.124, 1.265, and 1.255, to match the 86.3% CI as this is the
typically (e.g., in Chapter 5) interpretation. This is visualized in Fig. 4.7, where we show the
coverage of the scaled uncertainty values for each parameter (gray bars) as absolute values (left)
and (difference to the expectations (right). The left panel demonstrates to close match to the ex-
pected CI levels (blue dashed) especially also for the mean over all seven parameters (red dotted)
and can be directly compared to the achievements from Perreault Levasseur et al. (2017, Fig. 2)
and Pearson et al. (2021, Fig. 4), while the right panel highlights better the small deviations.
Since we plot here the difference between achieved and expected CIs, the blue lines fall all onto
exactly zero. It shows the good match of the 1σ mean and all individual parameters achieved
through appropriate scaling, resulting in visible deviations for the 2σ and 3σ lines. Especially
the distribution for the Einstein radius is sharper than a Gaussian distribution.

A comparison of the performance to other modeling networks are difficult given the discrep-
ancy in assumptions. Hezaveh et al. (2017), who originally came up with this novel idea, present
a network to predict ex, ey, and θE of a SIE profile for HST-like images after the lens light got
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Figure 4.6: Histograms (bottom row) and 2D density plots of the difference between prediction and
ground truth of our final ResNet.

subtracted to demonstrate the possibility. In Perreault Levasseur et al. (2017), they further in-
cluded uncertainty predictions and an external shear component. Similar to that Pearson et al.
(2021) present a network to predict ex, ey, and θE of a SIE profile for mock images with 0.1′′ res-
olution in preparation for the Euclid space mission. Additionally, they include error estimations
inspired by Perreault Levasseur et al. (2017) and explore the opportunity of a hybrid code by
combining it with PyAutoLens (Nightingale et al., 2018), a fully automated non-machine learn-
ing based modeling software, for further refinement of the parameter predictions. Especially
because of the difference in image resolution, number of filters, and the quality of training and
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Figure 4.7: Plot of the uncertainty prediction coverage to demonstrate the interpredability of the uncer-
tainties as 1σ values as absolute values (left panel) and relative values to their expectations
(right panel).

test data makes a comparison difficult. Moreover, the different number of predicted parameters
complicates the comparison given the degeneracies between the different parameters. The clos-
est work in terms of image quality and number of filters is presented in Pearson et al. (2019),
who consider CNNs to predict ex, ey, and θE of a SIE profile for Euclid, LSST r-band, and
LSST gri band data. The latter is the best match to us, and as already mentioned in Sect. 3.7,
comparable to the performance of our CNN from Chapter 3 and also to our upgraded ResNet
network.

4.5 Network tests

To find our final network architecture as shown in Fig. 4.3 and the best set of hyper-parameters
defined as the network with smallest mean validation loss (compare loss curve in Fig. 4.4),
we carried out extensive tests which we summarize in this section. Throughout these tests we
adopted a weight decay of 0.0005, a momentum of 0.9, and after some short tests regarding
the effect on the performance, a batch size of 32 and the normalization procedure described in
Sect. 4.3. As shown in Sect. 4.4, the main remaining difficulty is the prediction of the external
shear which is the focus of most of the tests.

4.5.1 Network architecture

We tested several different variations of the global network architecture by varying the number
of residual blocks between 2 and 6, the number of FC layers between 1 and 3, as well as the
number of feature maps and strides in the convolutional layers or neurons within the different
FC layers. We also tested different kernel sizes for the convolutional layers, but obtained the
smallest average validation loss with the standard 3×3 kernel which is understandable given our
comparable small image size.
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4.5 Network tests

During our tests on the network architecture, we also exchanged the pooling layer before
flattening for the FC layers (compare Fig. 4.3). Here we adopted an average pooling layer, a
maxima pooling layer or no pooling at all. For the two different pooling layers, we tested a
kernel size of 8× 8, 4× 4, or 2× 2. We found the best performance by using an average pooling
layer with a kernel size of 8 × 8, as indicated in Fig. 4.3.

In addition to that, we modified the loss function by introducing the uncertainty prediction
such that also σ contributes to the optimization of the weights and neurons during the training
process. Here we tested different possibilities of regularization terms such as using the absolute
value of σ instead of the squared term, as given in Eq. (4.5), or even to drop the regularization
term completely. Moreover, we varied the regularization constant ε. Since changing the loss
function will change the loss value for a given network, we cannot compare the obtained loss
values directly. Based on a more quantitative comparison, we found no notable difference in the
performance on the median predictions. Given that we use a scaling to match the expected 68.3%
CI instead of tuning dropout for this, we adopted finally the regularization function proposed by
Perreault Levasseur et al. (2017), which uses a squared term and a regularization constant of 0.5.

We further tested the possibility to split into multiple branches after flattening and before the
FC layers (compare Fig. 4.3). Each branch consists then of one or more FC layers, such that
specific FC layers predict only specific parameters. The input of the first FC layer in each branch
is the full flatted data cube obtained after the pooling, i.e. the same for each branch. Here we
considered three scenarios, although others are possible as well. In the first case we split into two
branches, predicting each 7 values, one branch for the median values and one branch predicting
the uncertainties. In the next scenario we split into 7 branches, each branch predicts the median
and error for one parameter. The third considered option includes 14 branches, where each
branch predicts just one value. Since we did not found an improvement through these tests, we
discard this idea.

However, if not helpful to obtain better performance compared to an architecture with just a
single branch of FC layers, it could be helpful when trying to tune the dropout rate as suggested
by Perreault Levasseur et al. (2017) through adopting a specific dropout rate for each branch.

As completely independent test, we trained networks on pre-developed ResNet architectures,
specifically on ResNet-18, ResNet-34, and ResNet-50 (He et al., 2016). We further tested both
either pre-trained on the ∼ 14 million images from ImageNet (Deng et al., 2009; Russakovsky
et al., 2015) or not pre-trained i.e. with a random initialization. Here the last FC layer, which
originally outputs 1,000 values for their classification task, was replaced by a FC layer outputting
only 14 neurons. Since these networks are only developed for three input channels, we used here
the images only in g, r and i band, skipping the y band which has typically the lowest quality and
information on the arcs. The images where then pre-processed by sub-sampling the images to
the expected image size and re-scaling of the pixel values to match the expected input data from
pre-training. Given this re-scaling and sub-sampling, changing drastically the last layer, and
switching from a classification task to a regression task, it was no surprise that the performance
were not that good. We therefore continued only with our own developed network architecture
with residual blocks like in their architectures.
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4.5.2 Hyper-parameter search

In addition to testing the different architecture layout, also the values for hyper-parameter need
to be optimized. One of the key-quantities is the learning rate, for which we typically tested
the following values: 0.1, 0.001, 0.0001, 0.00001, 0.000001 when changing any other hyper-
parameter or layer. This covers a good range of plausible values. Since the changes on the
weights are expected to drop over the training, we also tested the option of a “decreasing learning
rate”, which means we divide every 20 epoch the learning rate by a factor of 2. Because the best
epoch was typically below 100, we had only a few relevant decreasing steps during training such
that we adopted finally a constant learning rate again for most of our further tests.

Similar to the weighting factors introduced already for our CNN in Chapter 3 used to improve
on the Einstein radius, we introduced also weighting factors in our new loss function given in
Eq. (4.5). With these weighting factors we can control the contribution of the different param-
eters to the loss, and thus which shall be better optimized. For our CNN, we found it helpful
to increase the contribution of the Einstein radius to the loss, as this is the key quantity in the
SIE profile. Although it remains the key parameter in an SIE+γext setup, we also tested the
possibility of up-weighting the external shear as these two parameters are the most problematic
ones. Although this helped to improve on the external shear, we discarded this option for all
further tests as we gained only minor improvement on the external shear but lose notable perfor-
mance on the other parameters. As already discussed in Sect. 4.4, it seems as the external shear
introduces too small distortions on the arcs that can be generalized well enough with our current
setup.

We further tested the effect of dropout on the FC layers even with our relatively small amount
of FC layers. It helped to reduce the over-fitting, which is quite strong in our case as we see in
Fig. 4.4, but resulted instead in a higher average validation loss used to select the best network.
Therefore, we consider no dropout for the final network.

Although this is not a hyper-parameter that typically get tuned, we tested the effect of using
different initialization of the network for a few given setups. This demonstrates how indepen-
dent the final, trained network is from the original values. We found no preference of a specific
considered seed and the overall performance was unaffected, but each network gave a slightly
different loss, showing that it is not fully independent of the initialization. These slight changes
are due to the stochastic learning process and thus commonly observed. For a few instances, the
best hyper-parameter like the learning rate changed by changing the seed, indicate the impor-
tance of optimizing the hyper-parameter for a given network.

To mitigate these changes, so called ensemble learning methods can be used, were essentially
the same network, i.e., with fixed architecture and hyper-parameters, get trained with different
initialization and the predictions are combined afterwards. We performed such testes for a few
given setups, predicted the 14 parameters with each network, and compared their average to the
ground truth on the test set. In our case, this helped not to average out the outliers and decrease
the scatter, which prove the similarity of the networks and their overall independence of the
initialization.
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4.5.3 Variations of the input data

Since we gained in our lens search projects (Cañameras et al., 2021; Cañameras et al., in prep.;
Shu et al., in prep.) better performance by applying a square-root stretching, we also tested this
for our modeling network although it raised the question whether this direct modification of the
images is acceptable for a modeling network. This means we pass not anymore the images to
the network, but rather the square-root of the images after setting all negative background pixels
to zero. This helps to increase the faint arcs compared to the brighter lens in the center, but
changes also the ratio between the different filters where the color information is encoded which
is important for the modeling. This might be the reason that we found no improvement for the
modeling network.

Another test of this kind were to subsample the images by a linear interpolation to increase
the number of pixels as our images with 64 × 64 pixels are very small compared to images e.g.,
from ImageNet. Although we do not add information, we could imagine that a higher resolution
helped the network to access better the small features which are important especially for the
external shear. We adopted here a subsampling factor of 2, 3, or 4, but since a subsampling
factor of 3 or 4 gave no improvement, we focused for further tests on a subsampling factor of two
or no subsampling. A higher number of pixels allows also deeper networks when reducing the
size of the data cube through larger kernel sizes or strides in the convolutional layers. Therfore,
this looked promising during the development, but according to the mean validation loss the
presented network does not require subsampling.

Given our difficulties with the external shear, we thought whether we can give the network
some additional information that might help the network. Therefore, we tested the option to
provide the Full Width at Half Maximum (FWHM) values of the PSF frames in addition to the
normal set of images. These values were added to the flattened output of the convolutional layers
and processed through the FC layers. Since we did not obtain any improvement with this, we
considered networks accepting eight frames as we added the PSF images directly as images.
Since the network architecture requires the same image size for all frames, we subsampled
the PSF with a linear interpolation. Unfortunately, we also gained no improvement with this
option, possibly as such networks perform well on pattern recognition with their relatively small
kernel sizes rather than on analyzing very similar and completely smooth images like a PSF.
Another possible reason for gaining no improvement by adding the PSF images which are likely
imperfect due to the complex stacking procedure. These small errors are estimated to reach
the 1% level at maximum (Aihara et al., 2018a, 2019), but for the relative small effects of the
external shear on the arcs possibly relevant.

To investigate further on the external shear, we trained networks on images containing only
the arcs. This was done in many other modeling networks (e.g., Hezaveh et al., 2017; Perreault
Levasseur et al., 2017; Morningstar et al., 2018, 2019; Pearson et al., 2021) and seem to be
helpful. Although one removes information from the lens light, one makes on the other hand the
remaining information more easily accessible. We assumed here perfect lens light subtraction,
which is in reality not achievable but for our test definitely good enough, which was mainly to
test whether the network can now predict better the external shear which is only encoded in the
arcs. As expected, the network predicts perfectly the Einstein radius with nearly no scatter over
the full range, and also performs well on the lens center. This good performance on the systems
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with small image separations confirms that the lower performance for our normal network is
due to blending issues with the lens. In this test, we lose notable performance on the ellipticity,
which is to some extend expected as this information the network can get also from the lens
light, although it predicts the ellipticity of the mass distribution. However, also here the network
cannot predict the external shear well, which suggest that the information is very hard to access
and a generalization over the whole sample is currently impossible.

To answer a complete different question, we have trained network on fewer filters. Here we
assumed either only the g band, g and r band, or g and i band. Although we performed no
real optimization of the network architecture nor hyper-parameters, we found notable lose in
performance with two filters. Moreover, also with just one filter the network is able to predict
roughly the SIE parameters with most troubles on the ellipticity, which confirms the possibility to
train CNNs or ResNets on single-band images e.g., from Euclid where the much better resolution
will compensate the missing color information to some extend. As expected, the external shear
is not predictable at all with just one filter and HSC image quality within our few tests in this
direction.

4.5.4 Over-fitting tests

For testing whether a change in the network architectures or on the hyper-parameter is promising,
we performed so-called over-fitting tests, which means that we trained the network just on a very
small sample containing only 1,142 mock images. This shows if the network is able to learn all
parameters by heart and, if not, exclude directly the possibility of a good enough model with this
architecture. As this were only short tests, we performed no cross-validation. We show the result
of one run in Fig. 4.8, from which we can see that the network predicts very good the values
for the training set as expected. Given our difficulties with the external shear, it is important to
remark that here the network is able to learn the external shear for a very small sample. This
shows that the network is in general able to remember features of the images and can connect
them to all seven parameters values although not perfectly. Especially on the shear we see some
scatter, which indicates that the network not just remember the exact image and outputs the
stored values, which demonstrates that the network architecture is not or not only responsible
for the failure on the external shear. We further performed such over-fitting tests with networks
just to predict the external shear. This helped to significantly improve on the training data. On
the other hand, if we roughly double the sample size, the network has problems in recovering
the seven parameters that precisely.

4.5.5 Test with fixed lens-source pairs

Since our over-fitting tests presented in Sect. 4.5.4 only shows that the network is able to predict
the external shear very well on the data it was trained on, we further test whether it can predict
the shear on new images if we simplify the task. For this, we considered three different stages of
simplification and created a sample with 1,000 mocks each. First, we use always the same lens,
but different background sources from HUDF and place them randomly behind the lens. The
second scenario has always the same lens and source, but varying the position of the background
source with respect to the lens plus different mass-to-light variations as in our general training
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Figure 4.8: Comparison of ground truth and predictions on the training set. We train this network on
a very small sample to demonstrate the ability of learning perfectly the input values for all
parameters rater than obtaining a network for further applications.
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data set. The third option was to keep everything fixed including the source position, and only
vary the external shear. This means in the third option the arcs look always the same, with only
distortions of the external shear. Since the lens does not vary and we have also restrictions on
the source, resulting in very similar SIE parameter values, we excluded them in the prediction
and trained the networks to only predict the external shear.

In the first and second scenario, the network is able to predict better the external shear but not
perfectly, which is the case for the third option as we show in Fig. 4.9. Here the network is able
to predict not only on the training set (top panel), but also on the test data equally perfectly the
external shear (bottom panel). This demonstrates the ability of the network to transfer the shear
extraction to completely new images and thus recover very well the external shear on the test
set.
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Comparison on the test set
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Figure 4.9: Comparison of ground truth and predictions from a network trained on 1,000 mocks with
always the same lens and source pair to predict the external shear, once applied to the training
set (top panel) and once to the test set (bottom panel). Under this extreme simplification the
network is able to predict perfectly the external shear even on new images.
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4.6 Summary and conclusion

Since the lens and background source are always the same, we also exclude the possibility
that the network connects other features of the image with the external shear parameters. On
the other hand, we also exclude possible degeneracies between different parameters such as
the ellipticity and the external shear that might explain the difficulties with the external shear.
Another reason for the good performance here might be the same PSF for all systems given we
are using the same lens. Normally, different lenses have slightly different PSFs, such that the
arcs look differently after the convolution. This variations can introduce some difficulties for
the network, as it does not know how the PSF looks for a given lens system. Especially for the
external shear small effects on the arcs necessary, which get highly influenced by the different
PSF shapes. However, passing the PSF frames together with the images to the network did not
help (see Sect. 4.5.3).

4.6 Summary and conclusion

In Chapter 3, we have demonstrated the possibility of modeling strongly lensed ground-based
galaxy-scale systems with a relatively simple CNN inspired by the LeNet architecture. Built
upon these results, we showed in this chapter the possibility of modeling such systems when
including additionally the external shear component to the SIE mass distribution of the lens.
Moreover, we predict now also an 1σ value per parameter and lensing system. For this we make
use of a residual neural network, which is a specific type of CNNs that include so called residual
blocks with a skip connection. A diagram of our final network architecture is shown in Fig. 4.3
and visualize the setup of residual blocks. Because of the included error prediction, we changed
the loss function from a MSE loss to a log-probability function with a regression term inspired
by Perreault Levasseur et al. (2017). For an equal contribution of all parameters to the loss, we
have introduced a scaling of each parameter to the range [0, 1] and therefore include the sigmoid
function as last layer.

This network is trained on mock images created with our simulation pipeline introduced in
Sect. 3.2, which we upgraded for this project as described in Sect. 4.2. The procedure is based on
purely real observed data and only simulate the lensing effect, resulting in very realistic images
as shown in Fig. 4.2. We use again as lenses images of LRGs observed with HSC, together with
velocity and redshift measurements from SDSS. The background sources are again images from
HUDF with provided redshifts.

Since the network shall now predict the external shear as well, these need to be also included
in the simulation of the training data. Here we implemented and tested different distributions of
the shear, either a flat distribution of the shear strength γext and shear angle θext, a shear strength
distribution matching the expected distribution from lens studies, or a flat distribution in both
complex quantities γ1 and γ2. Finally, we adopted the flat distribution in the shear strength
γext. Moreover, we include now the Poisson noise on the arcs which we approximate from the
variance map provided by HSC and improve the lens center and ellipticity estimation by using
a dedicated mask for each individual lens. To make sure the network predict the lens mass
center, we apply a random shift of the final mock image with up to three pixels in both x and y
directions.
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With this procedure we created ∼ 90, 000 images each in four filters used to train our NN.
Through extensive tests we found a network that is able to predict very accurately the SIE
parameters compared to the ground truth values as shown in Fig. 4.5 and Fig. 4.6. Only the
externals shear is very hard to predict. We carried out many tests on the external shear, such
as up-weighting their loss contribution, only predicting the external shear, adding further infor-
mation like the FWHM values or PSF images directly as additionally frames or subsampling.
Furthermore, we are testing different network architectures by training them on a very small
sample such that it completely over-fit to the training set. In this case the network is able to pre-
dict all seven parameters, i.e. also the external shear, for the training set demonstrating that the
network architecture can cope with the given task. Since in that case the network can also con-
nect other features to the values of the external shear, we considered thee further simplifications
for the network. In the most extreme case, we create 1,000 mock images with always the exact
same lens and source, and even force the source to the exact position being the lens, resulting
in 1,000 images with slightly different arcs introduced by the external shear. In this case, as
shown in Fig. 4.9, the network is able to predict perfectly the external shear also for new images
in the test set. This demonstrates that the network obtain the predicted external shear from the
arcs which are only different because of the variable external shear. In short, the network is able
to predict the external shear from effects introduced by the external shear. Therefore, it seems
as the network is in general able to extract the information from the external shear, but cannot
generalize well to other systems which is probably a result of the combination of the complexity
of the lensing system, image resolution, inaccurate masking of the sources affecting the mocks,
for the network unknown PSF, correlations between the external shear and other parameters, or
other reasons.

Independent of the difficulties on the external shear, we obtained overall very good results
and a with the uncertainty prediction a much more powerful network then presented in Chap-
ter 3, especially when taking into account the computational time for the network: it predicts in
fractions of a second these parameter values, while state-of-the-art methods like GLEE & GLaD
require at least days and a lot of user input to obtain these values. With this network we are able
to predict the SIE+γext values with uncertainties for all known HSC lenses or lens candidates,
which are already few thousands, in an acceptable amount of time. Given the good match of
HSC PDR2 images to the expected quality of LSST, our obtained performance is expected to
hold also for LSST. Here we propose to generate dedicated mocks and train a separate network
as soon as first data from LSST are available to omit possible lose in performance because of
better but different images.
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5 Direct model comparison of network and
traditional method

Note. The content of this chapter will be submitted as an individual paper to an international
journal for publication. We refer to this upcoming publication with Schuldt et al. (in prep b).

5.1 Introduction

We have demonstrated the possibility to modeling strong gravitational lensed galaxy-galaxy
images observed with ground based telescopes through a NN. In Chapter 3, we have used a
CNN inspired by the LeNet architecture (Lecun et al., 1998) to predict the five parameters from
the adopted SIE profile. We then included error predictions and an external shear component as
presented in Chapter 4. Both networks are trained on mock images created with our simulation
pipeline introduced in Sect. 3.2.3 and Sect. 4.2, respectively. For this we use observed images
of real galaxies, take their measured redshifts and the velocity dispersion of the galaxy acting
as lens, and simulate only the lensing effect. This results in very realistic simulations as shown
in Fig. 3.4 and Fig. 4.2, because the light distribution of the lens and source are real, but also
as we include real LOS objects in the cutout. Nonetheless, they are mocks and, as discussed
already, a small fraction include inaccuracies and unrealistic features. This raises the concerns
that the in Chapter 3 and Chapter 4 shown performance is better than it would be on real data.
Therefore, we perform in this chapter a direct comparison on a sample of 32 real galaxy-galaxy
lenses found in the SuGOHI program (Sonnenfeld et al., 2018a; Wong et al., 2018; Sonnenfeld
et al., 2019; Chan et al., 2020; Jaelani et al., 2020a; Sonnenfeld et al., 2020; Jaelani et al., 2021)
presented in Sect. 5.2. We apply our trained ResNet to that sample, which is the first time a
trained modeling network is applied to real ground-based images instead of mock images, and
show our results in Sect. 5.3.

We then compare each model predicted with our network to a model that we obtained with
traditional MCMC sampling methods through GLEE & GLaD (Suyu & Halkola, 2010; Suyu
et al., 2012; Chirivì et al., 2020). For the traditional modeling we developed an automated
code that is optimized for ground based images like from HSC or soon from LSST. For further
refinement of the models we develop gleeauto.py, a flexible code to automate optimization steps
selected by the user without assuming anything on the lens system setup. These procedures of
the automation code as well as our results are described in Sect. 5.4. The comparison itself,
which demonstrates how good machine learning can compete with conventional algorithms in
terms of accuracy as well as time and resource cost, is given in Sect. 5.5. We finally present our
conclusion in Sect. 5.6.

Similar to previous chapters, we assume throughout this chapter a flat ΛCDM cosmology
with a Hubble constant H0 = 72 km s−1 Mpc−1 (Bonvin et al., 2017) and ΩM = 1 − ΩΛ = 0.32
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(Planck Collaboration et al., 2020). For the traditional modeling with GLEE & GLaD, each
quoted parameter estimate is the median of its 1D marginalized posterior probability density
function, and the quoted uncertainties represent the 16th and 84th percentiles (i.e., the bounds
of a 68% credible interval).

5.2 Comparison data set

As comparison sample we use lenses detected within the SuGOHI program, a large and exten-
sive lens search survey using various methods in the HSC footprint as introduced in Sect. 1.2.
We select only the grade A candidates to have a very clean sample1. We further request galaxy-
galaxy lenses as the network is trained for such systems. From the resulting sample we re-
ject system HSCJ023307-043838 (Sonnenfeld et al., 2013; Jacobs et al., 2019; More et al.,
2012; Gavazzi et al., 2014; Sonnenfeld et al., 2019; Chan et al., 2020; More et al., 2016) and
HSCJ135138+002839 (Wong et al., 2018) as those look more like a cluster or group lens al-
though listed as galaxy-galaxy system on the web-page. This results in a sample of 32 lenses
which we summarize in Tab. 5.1. In that table, we also quote the redshifts for the lenses and if
available for the sources. In case there is no spectroscopic redshift available, we note the pho-
tometric redshift. Since the quoted parameters are independent of the redshifts, we can model
all systems although we do not have a source redshift for some of them. For our comparison we
use images of the lenses in the four filters g, r, i, and z as requested by our network (compare
Sect. 3.2.1 and Sect. 4.2). A mosaic of gri color images of our comparison sample is shown in
Fig. 5.1.

5.3 Neural Network models

As presented in Chapter 4, we developed a NN to model HSC lens images. We apply this net-
work to the presented sample of 32 known real lenses. It predicts within few seconds for all
lenses the full set of parameter values with corresponding 1σ uncertainties. This set of param-
eters includes the external shear γ1 and γ2 which we give in Tab. 5.2 (gray shaded background)
and the SIE mass parameters, the lens center xl and yl, the ellipticity ex and ey, and the Einstein
radius θE, which we give in Tab. 5.3 (gray shaded background). The results are discussed and
compared to the traditional obtained models in Sect. 5.5.

1Available on the SuGOHI web-page: http://www-utap.phys.s.u-tokyo.ac.jp/ oguri/sugohi/ .
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Table 5.1: Overview of all 32 SuGOHI lenses modeled with GLEE & GLaD for a direct comparison to
the network predictions of our ResNet.

Name RA DEC zd zs References

HSCJ015618-010747 29.0755 −1.1298 0.542 1.167 (b), (c)
HSCJ020141-030946 30.4249 −3.1628 0.362 − (a)
HSCJ020241-064611 30.6725 −6.7698 0.502 2.748 (a), (c)
HSCJ020955-024442 32.4809 −2.7450 0.560 − (e), (f)
HSCJ021737-051329 34.4049 −5.2248 0.646 1.847 (c), (e), (g), (h), (k), (i)
HSCJ022346-053418 35.9423 −5.5718 0.499 1.444 (c), (e), (g), (h)
HSCJ022610-042011 36.5444 −4.3366 0.496 − (a), (c), (h)
HSCJ023217-021703 38.0724 −2.2844 0.508 − (a)
HSCJ023322-020530 38.3443 −2.0918 0.49 − (e), (f)
HSCJ085046+003905 132.6942 0.6515 0.84 − (f)
HSCJ085855-010208 134.7333 −1.0357 0.468 1.421 (a), (c)
HSCJ090429-010228 136.1239 −1.0411 0.957 3.403 (e), (j)
HSCJ094427-014742 146.1145 −1.7951 0.539 1.179 (c), (l)
HSCJ120623+001507 181.5994 0.2520 0.563 3.12 (a), (c)
HSCJ121052-011905 182.7187 −1.3181 0.7 2.295 (a), (c)
HSCJ121504+004726 183.7685 0.7906 0.642 1.297 (c), (l)
HSCJ124320-004517 190.8365 −0.7550 0.654 − (b)
HSCJ125254+004356 193.2275 0.7323 0.649 − (b)
HSCJ135138+002839 207.9122 0.4778 0.461 − (b)
HSCJ141136-010215 212.9022 −1.0377 0.949 3.021 (f)
HSCJ141815+015832 214.5656 1.9756 0.556 2.139 (a), (c)
HSCJ142720+001916 216.8356 0.3211 0.551 1.266 (a), (c)
HSCJ144132-005358 220.3862 −0.8995 0.49 − (f)
HSCJ144320-012537 220.8359 −1.4270 1.16 − (f), (d)
HSCJ145242+425731 223.1789 42.9589 0.718 − (b)
HSCJ150021-004936 225.0876 −0.8269 0.41 − (f)
HSCJ150112+422113 225.3007 42.3537 0.27 − (e)
HSCJ223733+005015 339.3897 0.8377 0.604 2.143 (a), (c)
HSCJ230335+003703 345.8965 0.6176 0.458 0.936 (b), (c), (l)
HSCJ230521-000211 346.3403 −0.0366 0.492 − (b), (k)
HSCJ233130+003733 352.8770 0.6259 0.552 − (b), (k)
HSCJ233146+013845 352.9434 1.6460 0.476 − (b)

Note. From left to right we give the name used to reference each lens, right ascension (J2000),
declination (J2000), lens redshift zd, and source redshift zs. The last column give the references:
(a) Sonnenfeld et al. (2018a), (b) Wong et al. (2018), (c) Sonnenfeld et al. (2019), (d) Chan
et al. (2020), (e) Jaelani et al. (2020a), (f) Sonnenfeld et al. (2020), (g) Gavazzi et al. (2014),
(h) Sonnenfeld et al. (2013), (i) Cabanac et al. (2007), (j) Jaelani et al. (2020b), (k) Jacobs et al.
(2019), (l) Brownstein et al. (2012)
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5 Direct model comparison of network and traditional method

HSCJ015618-010747 HSCJ020141-030946 HSCJ020241-064611 HSCJ020955-024442 HSCJ021737-051329

HSCJ022346-053418 HSCJ022610-042011 HSCJ023217-021703 HSCJ023322-020530 HSCJ085046+003905

HSCJ085855-010208 HSCJ090429-010228 HSCJ094427-014742 HSCJ120623+001507 HSCJ121052-011905

HSCJ121504+004726 HSCJ124320-004517 HSCJ125254+004356 HSCJ135138+002839 HSCJ141136-010215

HSCJ141815+015832 HSCJ142720+001916 HSCJ144132-005358 HSCJ144320-012537 HSCJ145242+425731

HSCJ150021-004936 HSCJ150112+422113 HSCJ223733+005015 HSCJ230335+003703 HSCJ230521-000211

HSCJ233130+003733 HSCJ233146+013845

Figure 5.1: Color images based on the filters gri of the 32 HSC SuGOHI lenses used for direct compari-
son. All cutouts are 10′′ × 10′′ large and oriented such that north is up and east is left. Name
of each lens given at the bottom of the image.

110



5.3 Neural Network models

Table 5.2: Obtained external shear values γ1 and γ2 by modeling with GLEE & GLaD or with the net-
work presented in Chapter 4 (column 2, method) for the 32 HSC SuGOHI lenses used for the
direct comparison.

Name method γ1 γ2

HSCJ015618-010747
ResNet 0.01 ± 0.03 0.02 ± 0.03

GLEE & GLaD 0.05+0.01
−0.01 −0.066+0.01

−0.008

HSCJ020141-030946
ResNet −0.01 ± 0.03 0.02 ± 0.02

GLEE & GLaD 0.003+0.003
−0.003 0.073+0.003

−0.003

HSCJ020241-064611
ResNet 0.03 ± 0.03 −0.01 ± 0.03

GLEE & GLaD 0.06+0.03
−0.03 −0.10+0.02

−0.02

HSCJ020955-024442
ResNet 0.00 ± 0.02 0.02 ± 0.02

GLEE & GLaD −0.032+0.005
−0.005 −0.003+0.004

−0.004

HSCJ021737-051329
ResNet 0.06 ± 0.03 −0.02 ± 0.03

GLEE & GLaD −0.066+0.008
−0.02 −0.004+0.003

−0.003

HSCJ022346-053418
ResNet 0.04 ± 0.03 0.00 ± 0.03

GLEE & GLaD 0.005+0.002
−0.002 −0.009+0.003

−0.003

HSCJ022610-042011
ResNet 0.00 ± 0.03 −0.02 ± 0.03

GLEE & GLaD 0.06+0.02
−0.02 −0.018+0.01

−0.02

HSCJ023217-021703
ResNet 0.02 ± 0.02 0.00 ± 0.02

GLEE & GLaD −0.014+0.008
−0.007 −0.037+0.005

−0.005

HSCJ023322-020530
ResNet −0.04 ± 0.03 0.04 ± 0.03

GLEE & GLaD −0.008+0.001
−0.001 0.108+0.001

−0.001

HSCJ085046+003905
ResNet −0.03 ± 0.03 0.00 ± 0.03

GLEE & GLaD 0.058+0.01
−0.005 −0.002+0.004

−0.01

HSCJ085855-010208
ResNet 0.04 ± 0.02 0.02 ± 0.02

GLEE & GLaD −0.045+0.002
−0.002 0.058+0.003

−0.003

HSCJ090429-010228
ResNet 0.00 ± 0.03 −0.01 ± 0.03

GLEE & GLaD −0.053+0.002
−0.002 −0.005+0.001

−0.001

HSCJ094427-014742
ResNet −0.01 ± 0.03 −0.00 ± 0.03

GLEE & GLaD 0.02+0.01
−0.05 0.081+0.005

−0.01

HSCJ120623+001507
ResNet 0.04 ± 0.03 −0.00 ± 0.03

GLEE & GLaD −0.05+0.02
−0.02 0.11+0.01

−0.01

HSCJ121052-011905
ResNet −0.06 ± 0.02 −0.03 ± 0.02

GLEE & GLaD −0.011+0.002
−0.002 −0.039+0.005

−0.005

HSCJ121504+004726
ResNet 0.00 ± 0.04 0.00 ± 0.04

GLEE & GLaD −0.055+0.006
−0.008 −0.055+0.01

−0.009

HSCJ124320-004517
ResNet 0.00 ± 0.03 −0.01 ± 0.03
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5 Direct model comparison of network and traditional method

Table 5.2 Continued: Obtained external shear values γ1 and γ2 by modeling with GLEE & GLaD or
with the network presented in Chapter 4 (column 2, method) for the 32 HSC SuGOHI lenses used for the
direct comparison.

Name method γ1 γ2

GLEE & GLaD −0.054+0.005
−0.005 0.065+0.004

−0.003

HSCJ125254+004356
ResNet −0.04 ± 0.02 −0.01 ± 0.02

GLEE & GLaD 0.082+0.004
−0.006 0.027+0.007

−0.007

HSCJ135138+002839
ResNet 0.00 ± 0.02 −0.01 ± 0.02

GLEE & GLaD −0.008+0.001
−0.001 0.048+0.001

−0.001

HSCJ141136-010215
ResNet −0.03 ± 0.03 0.02 ± 0.03

GLEE & GLaD 0.032+0.006
−0.007 −0.006+0.003

−0.002

HSCJ141815+015832
ResNet −0.06 ± 0.03 −0.01 ± 0.03

GLEE & GLaD 0.076+0.013
−0.014 −0.050+0.006

−0.006

HSCJ142720+001916
ResNet −0.03 ± 0.03 0.02 ± 0.03

GLEE & GLaD −0.046+0.007
−0.007 0.077+0.006

−0.008

HSCJ144132-005358
ResNet −0.03 ± 0.04 −0.03 ± 0.04

GLEE & GLaD 0.054+0.02
−0.007 −0.028+0.003

−0.003

HSCJ144320-012537
ResNet 0.05 ± 0.03 0.02 ± 0.03

GLEE & GLaD −0.010+0.002
−0.002 −0.056+0.001

−0.001

HSCJ145242+425731
ResNet 0.01 ± 0.03 0.01 ± 0.03

GLEE & GLaD 0.022+0.005
−0.005 0.056+0.005

−0.004

HSCJ150021-004936
ResNet −0.01 ± 0.03 −0.01 ± 0.03

GLEE & GLaD 0.100+0.001
−0.003 −0.020+0.001

−0.002

HSCJ150112+422113
ResNet 0.02 ± 0.04 −0.02 ± 0.04

GLEE & GLaD −0.133+0.001
−0.001 0.003+0.002

−0.002

HSCJ223733+005015
ResNet −0.01 ± 0.03 −0.02 ± 0.03

GLEE & GLaD 0.114+0.002
−0.005 −0.004+0.002

−0.002

HSCJ230335+003703
ResNet 0.06 ± 0.03 −0.01 ± 0.03

GLEE & GLaD 0.010+0.001
−0.001 −0.007+0.003

−0.004

HSCJ230521-000211
ResNet 0.05 ± 0.02 −0.02 ± 0.02

GLEE & GLaD 0.018+0.002
−0.002 −0.046+0.001

−0.001

HSCJ233130+003733
ResNet −0.04 ± 0.03 0.07 ± 0.03

GLEE & GLaD 0.047+0.002
−0.002 0.059+0.001

−0.002

HSCJ233146+013845
ResNet 0.06 ± 0.02 −0.03 ± 0.02

GLEE & GLaD −0.076+0.002
−0.002 −0.034+0.002

−0.002

112



5.3
N

euralN
etw

ork
m

odels
Table 5.3: Obtained SIE mass parameter values by modeling with GLEE & GLaD (converted to complex

quantities) or with the network presented in Chapter 4 (column 2, method) for the 32 HSC
SuGOHI lenses used for the direct comparison. The quoted SIE mass parameters are the lens
mass center x and y, the lens mass complex ellipticity ex and ey, and the Einstein radius θE.

Name method xl[′′] yl[′′] ex ey θE[′′]

HSCJ015618-010747
ResNet 0.1 ± 0.09 0.03 ± 0.08 0.07 ± 0.1 0.2 ± 0.1 1.6 ± 0.3

GLEE & GLaD −0.076+0.001
−0.001 0.070+0.001

−0.001 0.562+0.03
−0.05 0.417+0.06

−0.05 0.99+0.02
−0.01

HSCJ020141-030946
ResNet −0.12 ± 0.07 −0.03 ± 0.07 −0.11 ± 0.06 0.01 ± 0.06 1.56 ± 0.06

GLEE & GLaD −0.005+0.001
−0.001 −0.052+0.001

−0.001 −0.211+0.02
−0.02 −0.088+0.02

−0.02 1.406+0.007
−0.007

HSCJ020241-064611
ResNet −0.1 ± 0.1 −0.06 ± 0.09 −0.03 ± 0.06 0.00 ± 0.07 1.14 ± 0.04

GLEE & GLaD −0.007+0.001
−0.001 0.061+0.001

−0.001 0.1+0.1
−0.1 −0.158+0.08

−0.07 1.26+0.03
−0.02

HSCJ020955-024442
ResNet −0.14 ± 0.07 −0.17 ± 0.07 −0.05 ± 0.08 0.07 ± 0.08 1.00 ± 0.02

GLEE & GLaD −0.071+0.001
−0.001 0.021+0.002

−0.002 −0.231+0.02
−0.02 −0.084+0.02

−0.02 1.043+0.003
−0.003

HSCJ021737-051329
ResNet 0.32 ± 0.08 0.06 ± 0.08 0.1 ± 0.1 0.1 ± 0.1 1.32 ± 0.09

GLEE & GLaD −0.053+0.001
−0.001 0.072+0.001

−0.001 0.22+0.03
−0.02 0.036+0.04

−0.009 1.252+0.007
−0.02

HSCJ022346-053418
ResNet −0.10 ± 0.06 −0.02 ± 0.09 0.21 ± 0.09 −0.4 ± 0.1 1.4 ± 0.1

GLEE & GLaD −0.089+0.001
−0.001 −0.020+0.001

−0.001 0.09+0.007
−0.006 −0.305+0.004

−0.004 1.397+0.004
−0.003

HSCJ022610-042011
ResNet −0.2 ± 0.1 −0.21 ± 0.08 −0.01 ± 0.09 −0.04 ± 0.09 1.4 ± 0.2

GLEE & GLaD 0.059+0.001
−0.001 −0.023+0.001

−0.001 −0.055+0.06
−0.06 −0.065+0.05

−0.06 1.16+0.02
−0.02

HSCJ023217-021703
ResNet 0.15 ± 0.09 −0.03 ± 0.09 0.00 ± 0.06 0.09 ± 0.07 1.30 ± 0.04

GLEE & GLaD −0.058+0.001
−0.001 −0.045+0.001

−0.001 −0.191+0.03
−0.02 0.361+0.02

−0.02 1.345+0.009
−0.009

HSCJ023322-020530
ResNet −0.3 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 0.04 ± 0.1 1.7 ± 0.1

GLEE & GLaD −0.033+0.002
−0.002 0.057+0.001

−0.001 −0.042+0.004
−0.004 0.294+0.002

−0.003 1.669+0.001
−0.001

HSCJ085046+003905
ResNet 0.14 ± 0.07 0.12 ± 0.08 −0.1 ± 0.1 0.0 ± 0.1 1.71 ± 0.06

GLEE & GLaD −0.092+0.001
−0.001 0.007+0.001

−0.001 −0.336+0.05
−0.02 0.087+0.006

−0.01 1.750+0.006
−0.01

HSCJ085855-010208
ResNet 0.16 ± 0.07 −0.03 ± 0.08 0.03 ± 0.06 0.16 ± 0.07 1.00 ± 0.02
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Table 5.3 Continued: Obtained SIE mass parameter values by modeling with GLEE & GLaD or with
the network presented in Chapter 4.

Name method xl[′′] yl[′′] ex ey θE[′′]
GLEE & GLaD −0.007+0.001

−0.001 0.015+0.001
−0.001 −0.125+0.006

−0.007 0.224+0.008
−0.008 1.065+0.002

−0.002

HSCJ090429-010228
ResNet −0.1 ± 0.1 −0.1 ± 0.2 −0.1 ± 0.1 0.2 ± 0.1 1.2 ± 0.2

GLEE & GLaD −0.041+0.001
−0.001 −0.107+0.001

−0.001 0.205+0.006
−0.006 0.033+0.002

−0.003 1.232+0.002
−0.002

HSCJ094427-014742
ResNet 0.0 ± 0.1 −0.2 ± 0.1 −0.02 ± 0.08 0.01 ± 0.09 1.0 ± 0.2

GLEE & GLaD −0.005+0.001
−0.001 0.082+0.001

−0.001 −0.611+0.02
−0.09 −0.021+0.04

−0.08 1.08+0.05
−0.01

HSCJ120623+001507
ResNet 0.02 ± 0.07 0.13 ± 0.08 −0.07 ± 0.09 −0.12 ± 0.09 1.28 ± 0.06

GLEE & GLaD −0.060+0.001
−0.001 −0.016+0.001

−0.001 −0.253+0.08
−0.07 0.15+0.04

−0.05 1.07+0.01
−0.02

HSCJ121052-011905
ResNet 0.14 ± 0.08 0.07 ± 0.08 −0.19 ± 0.07 0.15 ± 0.08 1.28 ± 0.05

GLEE & GLaD 0.029+0.001
−0.001 −0.095+0.001

−0.001 −0.15+0.003
−0.003 0.261+0.001

−0.001 1.529+0.008
−0.008

HSCJ121504+004726
ResNet 0.0 ± 0.1 0.10 ± 0.09 0.2 ± 0.1 0.2 ± 0.1 0.9 ± 0.4

GLEE & GLaD −0.052+0.001
−0.001 0.023+0.001

−0.001 −0.03+0.02
−0.03 0.028+0.03

−0.03 1.398+0.008
−0.007

HSCJ124320-004517
ResNet 0.01 ± 0.1 0.1 ± 0.1 0.16 ± 0.07 −0.03 ± 0.08 1.2 ± 0.1

GLEE & GLaD 0.034+0.001
−0.001 0.030+0.001

−0.001 −0.02+0.03
−0.02 0.152+0.02

−0.02 1.506+0.004
−0.005

HSCJ125254+004356
ResNet −0.41 ± 0.09 0.1 ± 0.1 0.1 ± 0.1 −0.01 ± 0.09 1.88 ± 0.08

GLEE & GLaD −0.040+0.001
−0.001 0.066+0.001

−0.001 −0.076+0.01
−0.02 −0.043+0.03

−0.03 1.899+0.007
−0.005

HSCJ135138+002839
ResNet 0.13 ± 0.09 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 2.2 ± 0.1

GLEE & GLaD 0.068+0.001
−0.001 −0.017+0.001

−0.001 0.039+0.004
−0.004 0.244+0.003

−0.003 2.216+0.001
−0.001

HSCJ141136-010215
ResNet 0.2 ± 0.1 −0.02 ± 0.09 0.18 ± 0.08 0.05 ± 0.09 1.5 ± 0.3

GLEE & GLaD −0.056+0.001
−0.001 0.066+0.001

−0.001 0.122+0.02
−0.02 0.227+0.02

−0.02 1.081+0.003
−0.004

HSCJ141815+015832
ResNet 0.2 ± 0.1 0.1 ± 0.1 −0.08 ± 0.07 0.2 ± 0.08 1.33 ± 0.07

GLEE & GLaD −0.093+0.001
−0.001 0.062+0.001

−0.001 −0.178+0.05
−0.05 −0.098+0.02

−0.02 1.34+0.01
−0.01

HSCJ142720+001916
ResNet 0.2 ± 0.1 −0.02 ± 0.08 0.2 ± 0.08 0.05 ± 0.09 1.5 ± 0.3

GLEE & GLaD −0.123+0.001
−0.001 −0.09+0.001

−0.001 −0.24+0.04
−0.04 0.19+0.02

−0.02 1.491+0.009
−0.01
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Table 5.3 Continued: Obtained SIE mass parameter values by modeling with GLEE & GLaD or with
the network presented in Chapter 4.

Name method xl[′′] yl[′′] ex ey θE[′′]

HSCJ144132-005358
ResNet 0.05 ± 0.09 −0.10 ± 0.09 0.2 ± 0.1 0.3 ± 0.17 2 ± 1

GLEE & GLaD 0.001+0.001
−0.001 −0.041+0.001

−0.001 0.32+0.01
−0.01 0.334+0.008

−0.008 1.078+0.02
−0.006

HSCJ144320-012537
ResNet −0.1 ± 0.1 −0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 1.1 ± 0.2

GLEE & GLaD 0.034+0.001
−0.001 −0.027+0.001

−0.001 0.154+0.007
−0.007 0.355+0.004

−0.004 1.206+0.001
−0.001

HSCJ145242+425731
ResNet −0.06 ± 0.07 −0.01 ± 0.09 −0.1 ± 0.1 0.0 ± 0.1 1.9 ± 0.1

GLEE & GLaD 0.060+0.001
−0.001 0.080+0.001

−0.001 0.277+0.004
−0.005 0.274+0.01

−0.01 1.99+0.01
−0.01

HSCJ150021-004936
ResNet 0.33 ± 0.08 0.12 ± 0.08 0.01 ± 0.08 −0.01 ± 0.08 3 ± 1

GLEE & GLaD 0.089+0.001
−0.001 0.093+0.001

−0.001 0.124+0.007
−0.008 −0.296+0.004

−0.009 3.063+0.01
−0.008

HSCJ150112+422113
ResNet −0.34 ± 0.08 0.13 ± 0.09 0.1 ± 0.2 −0.1 ± 0.2 1.0 ± 0.2

GLEE & GLaD −0.066+0.001
−0.001 0.008+0.001

−0.001 0.489+0.009
−0.008 0.273+0.008

−0.008 1.117+0.002
−0.001

HSCJ223733+005015
ResNet −0.0 ± 0.1 −0.1 ± 0.1 −0.01 ± 0.08 −0.08 ± 0.08 0.9 ± 0.1

GLEE & GLaD 0.015+0.001
−0.001 0.085+0.001

−0.001 0.189+0.002
−0.003 0.4+0.003

−0.003 1.58+0.006
−0.004

HSCJ230335+003703
ResNet 0.05 ± 0.06 0.00 ± 0.07 0.12 ± 0.09 0.04 ± 0.08 1.0 ± 0.1

GLEE & GLaD −0.017+0.001
−0.001 0.065+0.001

−0.001 0.007+0.002
−0.002 −0.002+0.001

−0.002 1.020+0.003
−0.003

HSCJ230521-000211
ResNet 0.2 ± 0.2 0.1 ± 0.2 0.23 ± 0.07 0.14 ± 0.07 1.74 ± 0.05

GLEE & GLaD 0.076+0.001
−0.001 0.080+0.001

−0.001 0.44+0.007
−0.007 −0.076+0.004

−0.003 1.777+0.003
−0.003

HSCJ233130+003733
ResNet 0.09 ± 0.09 0.16 ± 0.09 −0.08 ± 0.2 0.6 ± 0.1 1.47 ± 0.05

GLEE & GLaD −0.052+0.001
−0.001 −0.027+0.001

−0.001 −0.123+0.005
−0.005 0.336+0.003

−0.003 1.502+0.001
−0.001

HSCJ233146+013845
ResNet −0.04 ± 0.09 0.12 ± 0.08 0.06 ± 0.06 −0.02 ± 0.06 1.49 ± 0.03

GLEE & GLaD 0.004+0.001
−0.001 −0.030+0.001

−0.001 0.067+0.008
−0.008 −0.105+0.005

−0.004 1.481+0.001
−0.001
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5.4 Traditionally obtained models

We model the 32 lens systems described in Sect. 5.2 using GLEE (Suyu & Halkola, 2010; Suyu
et al., 2012) and its extension GLaD (Chirivì et al., 2020), which are both well-tested modeling
codes providing among others the profiles and optimization algorithms introduced in Sect. 2.2.
As explained in that section as well, this traditional modeling procedure is very time and re-
source consuming. Especially it requires a lot of input from an user with specific modeling
expertise, e.g., to create the required input files, including a configuration file specifying the
adopted profiles with the initial starting values, and the optimization details such as the chain
length, stepsize, and range for the different sampling methods like MCMC and simulated an-
nealing, the prior ranges on each parameter, and several other details. Each optimization run
will lead to an updated configuration file with the newest best set of parameter values. After
a possible update with e.g., the prior ranges or the selection of varying parameters which get
typically iteratively optimized, a new optimization run is started. This will be repeated until the
sampled parameter values stabilize and represent the observation to an acceptable level. Thus,
this procedure is a complete iterative process and thus the user input time is relatively high.

Therefore, we develop a code to automate the modeling procedure to minimize the user input
time where we adapt partly the code and procedure presented in Ertl et al. (in prep.). The
implemented procedure and decision criteria were extensively tested on the presented sample,
such that the code is able to model broadly typical galaxy-galaxy lenses from ground based
surveys, where most of the lenses are detected. The final procedure and criteria are presented in
Sect. 5.4.1.

Since each lensing system is very special and thus require specific treatment in the modeling,
the presented automated code will not obtain for every lensing system a fit that represents the
observation very well. This is expected because of the huge variety of galaxy light distribution,
orientations, LOS objects and other things, but provides at least an initial model for further
refinement of the parameter values. For this, we introduce in Sect. 5.4.2 gleeauto.py, a code
that automated individual optimization steps specified by the user.

The obtained best models are presented in Sect. 5.4.3 where we also discuss details of the
code limitations. We finally conclude our traditional modeling in Sect. 5.4.4.

5.4.1 Automated modeling code for galaxy-galaxy lenses

Our developed automated modeling code is divided into four individual parts, where the mod-
eling steps are again internally subdivided but do not require any further user input. The first
step is simply preparing the input files which are used for the modeling. In the second step the
lens light distribution is modeled following Sect. 2.2.2, where we adopt Sérsic profiles. We as-
sume here the same structural parameters across different filters. In the third step we automated
Sect. 2.2.1, which contains a short optimization of the SIE mass parameters based on the source
or image positions identified beforehand from the user. In the fourth part the arclight modeling
and source light reconstruction is performed (Sect. 2.2.3), where we assume one Sérsic profile
to describe the source light distribution. A parameterized profile for the background source,
which is supported only by GLaD, is here preferred over a pixelized source SB reconstruction,
implemented in GLEE, as we use ground based images that only resolve the main structure of
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5.4 Traditionally obtained models

the arcs. This is the only reason for making use of GLaD, although we do not include dynamical
modeling, which is the key part of GLaD. Because of the relative long run-time of the last part,
this part can be re-started from several different steps indicated with m if the code get aborted or
to refine the model iteratively.

The input data with assumed nomenclature, the individual optimization steps and imple-
mented criteria of the modeling routine are presented as a flow diagram in Fig. 5.2 and explained
below in detail.

1.) Preparation of input files

– Creation of lens and arc masks, shown in Fig. 5.2 as the top-left and top-middle
insert of the corresponding box. These masks specify the region to be modeled and
can be different for each filter.

– Creation of a region file with the ds9 software2 (Joye & Mandel, 2003) as shown
in the top-right insert of the corresponding box in Fig. 5.2. Here one specifies the
cutouts size, the lens center and the lens ellipticity, the image positions, and if needed
a region to subtract the image background σbkgr.

– Renaming of all files according to the assumptions of the modeling code displayed
on the bottom of each insert. Both, the alphanumerical ID specifying the lensing
system, which is in our example 42, and a name to distinguish between the filters,
which is R in our example, are chosen by the user.

2.) Lens light modeling with GLEE

– Read in the provided files, crop the lens image and error map, subtract the back-
ground if specified and save the new image and error map cutout to disk.

– The code creates now automatically the initial GLEE configuration file for the first
filter. The starting values for the lens center and ellipticity are determined from the
region file provided. We adopt at this stage one Sérsic profile with the following
parameters and prior ranges: lens light center coordinates xl ∈ [xl − 2′′, xl + 2′′]
and yl ∈ [yl − 2′′, yl + 2′′], axis ratio qll ∈ [0.3, 1], position angle θll ∈ [−π,+π],
the amplitude All ∈ [0, 100], the effective radius reff,ll ∈ [0.01′′, 10′′], and the Sérsic
index nll ∈ [1, 5].

– Since the Sérsic amplitude All is not known a priori, the code evaluate automatically
each order of magnitude between 10−5 and 105 and select the correct order of mag-
nitude defined through the minimal χ2. The code updates then the upper limit of the
prior range to 100 times the estimated amplitude. If the new parameter range limit
is lower than 10, we set it to 10. We refer to this procedure as amplitude test in the
remaining chapter.

– If the reduced χ2, χ2
red, is above 2, optimize the model by running first

− a simulated annealing optimization and

2https://sites.google.com/cfa.harvard.edu/saoimageds9
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Figure 5.2: Diagram of our automated procedure for galaxy-galaxy lens modeling with GLEE & GLaD.
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− then an MCMC chain to use the best model of the chain as new model parame-
ters and also to include a covariance matrix in the next optimization sequence.

Redo both optimization steps until the MCMC chain passes the criterion of ∆ log P ≤
20 where P is the likelihood probability of the corresponding MCMC chain.

– Add now iteratively the other filters in the order specified by the user. Assume
the same structural parameters across the different filters, which means only the
amplitude is added as a new parameter.

− For each new filter run first an amplitude test as described above, and

− then a simulated annealing optimization,

− followed by an MCMC chain to continue with the best set of parameter values
of that chain.

– After adding all filters and if χ2
red > 1, optimize all filter simultaneously further by

alternating between

− an MCMC run and

− a simulated annealing run

until ∆ log P ≤ 5.

– If still χ2
red > 1, which is normally the case, the code adds a second but concentric

Sérsic profile for each filter, assuming again the same structural parameters across
the different filters.

– Determine again the order of magnitude of each new amplitude and set the prior
range as specified above.

– Optimize the model further by alternating between

− an MCMC run and

− a simulated annealing optimization

until ∆ log P ≤ 5.

– Accept this now as final lens light model obtained with GLEE.

3.) Source and image position model with GLEE:

– This optimization step of the SIE profile parameters is based on the multiple image
positions identified by the user during the preparation stage. The mass parameters
get now optimized to reproduce these image positions.

– As starting values for the SIE central coordinates, use the obtained lens light center
as lens mass center and keep it fixed for now to reduce the number of free parame-
ters. Assume the axis ratio and position angle from the lens light fit as well, which
only vary if four or more image positions are specified to not underconstrain the
model. The Einstein radius is estimated from the identified image positions and al-
ways allowed to vary. Assume no shear for now to minimize the number of free
parameters.
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– optimize the model based on the source position with simulated annealing. Perform
at least one optimization but maximal three, stopping earlier if χ2red ≤ 1.

– optimize the model based on the image positions with simulated annealing. Perform
at least one optimization but maximal three, stopping earlier if χ2red ≤ 1.

4.) Arc light modeling with GLEE & GLaD:

– Transfer the best fit values to a GLaD configuration file. Assume the source profile
located at the predicted weighted source position of the specified image positions
with the current mass model.

– (m=1) Perform first again a quick lens light-only optimization, to reduce the min-
imal differences in the model raised though differences between GLEE & GLaDin
subsampling the PSF and the different usage of the masks3.

− For this, run first an emcee chain to obtain a new covariance matrix.

Alternate then between

− a basin-hopping iteration and

− an MCMC chain, to obtain a new covariance matrix but also save the new best
set of parameter values from the chain.

until ∆ log P ≤ 2 is achieved in the MCMC chain.

– (m=2) Fix now all lens light parameters to the best values obtained in the previous
modeling sequence. Instead, allow now the source light axis ratio qs ∈ [0.5, 1], the
position angle θs ∈ [−π,+π], the amplitude As ∈ [0, 50], and the effective radius
reff,s ∈ [0.01, 10] to vary in the specified prior ranges, but assume again the same
structural parameters across the different bands. Include from now on in the opti-
mization also the regions specified in the arcmask which was previously excluded to
fit only to the light from the lens.

− Run an emcee chain to update the covariance matrix.

− Then perform a dual annealing optimization, followed by

− an MCMC chain and

− a basin-hopping optimization.

– (m=3) Allow now the coordinates of the source light center xs ∈ [xs − 1′′, xs + 1′′]
and ys ∈ [ys−1′′, ys +1′′] to vary and increase the prior range of the source axis ratio
to qs ∈ [0.01, 1]. Optimize now the model until reaching ∆ log P ≤ 2 by a repeated
sequence of

− a basin-hopping optimization,

− an emcee chain to update the covariance matrix (max 10 times in total) and

3GLEE exclude directly all pixels that are specified in the mask when summing up the χ2 (compare Eq. (2.40)),
while we incorporate in GLaD the masked regions implicitly in the error map through significantly boosting of
the uncertainty values such that these contripute effectively not to the χ2.
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− an MCMC chain to save always the new best set of parameter values and update
the covariance matrix.

– (m=4) After optimizing the lens light and source light, allow now in addition to the
source light the lens mass axis ratio qlm ∈ [0.3, 1], the position angle θ, lm ∈ [−π,+π],
and the Einstein radius θE ∈ [0.5′′, 10′′] to vary. Moreover, include from now on also
an external shear component with γext ∈ [0, 0.2] and θext ∈ [−π,+π]. Optimize until
∆ log P ≤ 2 through a repeated sequence of

− a dual annealing iteration,

− an emcee chain to update the covariance matrix (max 15 times in total), and

− an MCMC chain to save the new best set of parameters and update the covari-
ance matrix.

– (m=5) Vary now additionally the source Sérsic index ns ∈ [0.5, 6], which was pre-
viously fixed to 3.

− Run an emcee chain to obtain a covariance matrix for the new set of varying
parameters.

Optimize then all varying parameters through a repeated sequence consisting of

− a dual annealing iteration, and

− an MCMC chain to save the best and update the covariance matrix

until ∆ log P ≤ 2 is reached.

– (m=6) After now all parameters got optimized, refine once more the lens light pa-
rameters which were fixed during the last optimization steps. For this, allow now
the lens light to vary again, but fix instead all other parameters, i.e the lens mass,
external shear, and the source light components.

− Run first one emcee chain to obtain a covariance matrix.

Optimize then until ∆ log P ≤ 2 through a repeated sequence of

− a dual annealing iteration and

− an MCMC chain to save the best values and update the covariance matrix.

– (m=7) Fix again all lens light parameters and vary again the source light, lens mass
and external shear by using the same prior ranges as before, but update the parameter
range for the source light center to again xs ∈ [xs−1′′, xs +1′′] and ys ∈ [ys−1′′, ys +

1′′].

− Run first one emcee chain to obtain a new covariance matrix.

Optimize until ∆ log P ≤ 2 through a repeated sequence of

− a dual annealing iteration and

− an MCMC chain to save the best parameter set and update the covariance ma-
trix.
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– (m=8) Double the length of the MCMC chains to 400, 000 and run chains until a
chain is fully converged based on the power spectrum. Take always the best set of
parameter values of the chain and update the covariance matrix. In case the tenth
MCMC chain of this optimization sequence did not converge, the number of sam-
pling steps get increased to 600, 000.

This procedure was developed through extensive testes on all our 32 SuGOHI lenses and is
therefore optimized for ground based observations with a parametrized source light distribution.
The code is able to predict within few hours the lens light model, within around a minute the
source and image position model, and the extended image modeling with source SB reconstruc-
tion within around a day. It runs on a single core and launches automatically 60-core parallized
jobs for the emcee optimizations. This allows to model uniformly a larger sample of galaxy-
galaxy lensed without much user input to provide a basic model of the observations.

5.4.2 Flexible modeling code gleeauto.py

Using the automated procedure described in Sect. 5.4.1, we modeled all 32 SuGOHI lenses
uniformly. Because every lens system is individual and different from the others, the automated
procedure is not working for all of them perfectly. Since the main focus of this work is the
comparison between network prediction and conventional methods rather than developing and
testing this automation code in detail, we improved several models afterwards by hand. However,
the automation code gives at least a very good starting point for further individual optimization
with minimal user input time.

For the individual modeling, we developed gleeauto.py, a flexible GLEE based code to auto-
mated several optimization steps when modeling with GLEE & GLaD. This means one provides
as usual a configuration file to the code that specifies the data, the number of profiles, the varying
parameters, starting values, the adopted cosmology, and similar other required information. One
can then specify a list of available optimization iterations that the code shall sequentially perform
without further input from the user. This helps to reduce the user input time while giving the
flexibility to assume any setup (e.g., number of filter or profiles, kinematic data, multiplane lens-
ing etc.). Also, saving the best new set of parameters from an MCMC or emcee chain as well as
computing the covariance matrix and updating in the configuration file, which is normally done
always manually by hand, can be included in the list of tasks.

Since the code does not include any decision criteria as the code presented in Sect. 5.4.1,
gleeauto.py can be used for any lens system configuration and does not rely on the assumption of
galaxy-galaxy lensing. This means, it can be used to model ground based images like from HSC
or soon from LSST, but also high-resolution images from space. Moreover, it is independent of
the lensing regime, which means it is helpful for modeling any lensing system.

In addition to the sampling opportunities, we added to gleeauto.py several other frequently
needed tools such as visualization of the obtained fits (compare Fig. A.1-Fig. A.32) with GLEE
and GLaD4, running the amplitude test introduced in Sect. 5.4.1, an update from all linked

4This plotting tool is adapted from a code provided by Dr. Giulia Chirivì with the GLaD extension (Chirivì et al.,
2020).
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parameters within the configuration file, and generating masks such as the required arcmask and
lensmask5.

5.4.3 Results and discussion of MCMC modeling

We model each of the presented lens sample with our automated pipeline introduced in
Sect. 5.4.1, and depending on the χ2, MCMC chain convergence, and residuals, improve them
further manually where we make extensive use of gleeauto.py. Since we are mainly interested in
the comparison to the network predictions instead of demonstrating the power of our automated
code, we only report the results of the final models.

The obtained median values with 1σ uncertainties computed from our final MCMC chain
for the external shear and the SIE parameters are reported in Tab. 5.2 and Tab. 5.3, respec-
tively. Since these quantities are in complex notation in analogy to the network predictions
from Sect. 5.3, we also provide the values for these quantities in the typical notation in Tab. A.1
and Tab. A.2, respectively, for more straightforward interpretation, comparison to other publi-
cations, and possible follow-up work. While the median values are directly convertible through
Section 2.2.1 and Section 3.2.1, this is not that straightforward for the uncertainties. Therefore,
we converted first the full MCMC chain and computed from that the median and uncertainty
values. We further quote in Tab. A.1 the obtained χ2 and the χ2

red values, which gives an indi-
cation how good the obtained model is. From this list, we see that the χ2 is only for five of the
32 lenses (HSCJ020141-030946, HSCJ023322-020530, HSCJ135138+002839, HSCJ144132-
005358, HSCJ150112+422113, HSCJ230521-000211) above 1.5. This means we can fit all lens
systems overall well.

In contrast to the network, we have to model with the traditional method also the lens light
and source light, which also influence the quoted χ2 and χ2

red. The resulting parameter values
are given in the appendix A as well. The best fitted values for the Sérsic profile amplitudes for
the source light are listed in Tab. A.3, the corresponding structural parameters in Tab. A.4, and
the lens light in Tab. A.5. We further show all 32 final models in the appendix A as Fig. A.1 to
Fig. A.32. Each plot shows from left to right the observed image, the model, and the normalized
residuals. The four rows correspond to the four different filters in the order g, r, i, and z.

Through the modeling, we made several general observations which we discussed in the fol-
lowing.

In several models, for instance HSCJ020955-024442, HSCJ023217-021703, HSCJ124320-
004517, HSCJ125254+004356, HSCJ135138+002839, HSCJ145242+425731, the model seem
to be sharper and contain more details than the observed image. Nevertheless, we use for all
models the provided PSF files and can still fit the observations overall well.

In general, the lens center is in all models very well constrained (1σ ≤ 0.001). The offsets with
respect to the image center are also relative small, only seven systems (HSCJ022610-042011,
HSCJ085046+003905, HSCJ090429-010228, HSCJ141815+015832, HSCJ142720+001916,
HSCJ150021-004936, HSCJ223733+005015) have a difference larger than halve a pixel
(0.084′′) and not larger than one pixel (0.168′′). The source center is of course not that well
constrained, but surprisingly well with typically 1σ < 0.1′′.

5This tool was written by Dr. Yiping Shu (Shu et al., 2016b).
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Several sources seem to be very elongated; twelve out of 32 have an axis ratio below 0.2 and
24 out of 32 below 0.5. This could be because of the lens search strategy from SuGOHI as they
search specifically for blue arcs (compare Sect. 1.2), which come typically from star-forming
galaxies. Since the arcs must be bright, galaxies with higher surface area are more likely to
be detected sources. That are then typically edge-on galaxies, i.e. have very low q. This is in
agreement with a relative low Sérsic index; 17 out of 32 systems have ns < 1.

The estimated Einstein radius is, apart from lens HSCJ015618-010747 with θE = 0.99′′, al-
ways above 1′′. Lens system HSCJ150021-004936 has the largest image separation with 3.063′′,
followed by system HSCJ135138+002839 with 2.216′′. All other systems have an Einstein ra-
dius between 1′′and 2′′.

In the following we discuss aspects of individual lens systems that were not mentioned above.

• HSCJ023322-020530: This lens system has one very bright source, lensed into two im-
ages. Since those two lensed images are extremely compact, it is very hard to model them
with GLaD, which is optimal for modeling extended sources but not point like objects.
Additionally, it seems that the PSF is not perfectly symmetric, leading to distortions in
the model. Since there is another fainter source lensed into extended arcs, we included
manually here a second source at the same redshift. Given the strong residuals, also a
manually optimization is very difficult such that the best model has still a relative high
χ2

red with 1.87. We tried several different options such as including additional profiles or
relaxing assumptions on the structural parameters but obtained no notable improvement
justifying to increase the complexity in the model.

• HSCJ090429-010228: Lens system HSCJ090429-010228 is analyzed in detail in Jaelani
et al. (2020b) and it appears like it has a point like source, like an AGN. However, based
on Jaelani et al. (2020b), it is a compact Lyman alpha break galaxy.

• HSCJ135138+002839: This lens system has overall relative low residuals, resulting in
a good χ2. The somewhat higher reducted χ2 of 1.65 is related to the relative large part
of the image in the south-west (bottom-right) that is masked out due to luminous objects.
This reduces the the number modeled pixels and thus the number of degrees of freedom
notable. Although those masked pixel are not taken into account when computing the χ2,
the reduction in the number of degrees of freedom increases effectively the χ2

red which need
to be taken into account when comparing to the χ2

red of other lens systems. Nonetheless,
it shows that the model is not perfectly representing the observations. There are two
additional areas in the image masked, one on the south-east of the lens and the other on the
north-west. Given the orientation, shape and color (compare Fig.5.1, this could be from a
second source behind the lens. To confirm this, either further multiplane model analysis,
which is however beyond of the scope of this work, or spectroscopic observations would
be needed.

• HSCJ141815+015832: Two images (g and r band) of this lensing system are unfortu-
nately slightly corrupted. Nonetheless, we modeled this system masking out the specific
regions. We find that the remaining lensing information is sill enough to constrain the
parameter values and provide a reasonable fit, most likely as we model the different filter
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simultaneously and assume to have the same structural parameters for the lens light. This
is, however, not obvious as it belongs the most relevant filters and both masked areas go
directly through the lens and arcs.

• HSCJ150112+422113: The best model of this system represent the observed structure
in lens and arcs relatively well, but shows still notable residuals, both in the lens light as
well as in the arcs, and thus result in a higher reduced χ2 of 1.63. To improve the model a
flexible lens and source center across the different bands might help.

• HSCJ230521-000211: The final model of this lens system represent the observed struc-
ture in lens and arcs, but has slight differences especially also in the positions. Therefore,
a different lens center for each band might improve the fit slightly but is beyond of the
uniform modeling.

5.4.4 Conclusion of MCMC modeling

For modeling our sample of 32 SuGOHI lenses, we developed an automated modeling pipeline
presented in Sect.5.4.1. This automation helps to reduce the user input drastically, as the remain-
ing parts are only to prepare the input region file and masks. These steps are hard to automate
while not including the possibility of masking wrong parts or identifying wrong objects as lensed
images. Unfortunately, this limit the applicability to only smaller samples of around dozens of
lenses but is not scalable to hundreds or thousands of lenses. The automation reduces signifi-
cantly the computational time compared to fully manual modeling, but remains at few days in
total, which limit also the applicability to moderate sample sizes. Since the main code is not par-
allelized and require not much memory, one can, however, easily model many lensing systems
at the same time and thus increase effectively the amount of modeled lenses per day.

As expected, such automated modeling codes to uniformly model larger samples provide
typically a good to reasonable fit depending on the complexity of the individual lens system.
It provides a basic model of the full sample, which can then be used for individual follow up
modeling if needed. For this we present gleeauto.py, a python code that allows e.g., running
several different optimization steps with GLEE & GLaD through one submission without any
assumption of the lensing system setup.

With the combination of both pipelines, we are able to obtain good fits for all 32 lens systems
and reconstruct the SB of the background source which is described by a single Sérsic profile.
The lens light is described by two concentric Sérsic profiles, where we additionally assume the
same structural parameters across the different filters. The lens mass is parametrized through a
SIE profile, where we include also an external shear.

5.5 Comparison and Discussion

After modeling our comparison sample with our ResNet from Chapter 4 and with GLEE &
GLaD as the traditional method, we compare now directly the obtained SIE+γext parameter val-
ues. For this, we show them in Fig. 5.3 as histograms (left) and plotted against each other (right),
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with the traditional obtained values on the x axis and network predictions on the y axis. We fur-
ther show the difference between the traditionally and network based values as a histogram in
Fig. 5.4.
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Figure 5.3: Comparison of the SIE+γext values obtained with GLEE & GLaD as the traditional method
(orange histogram) and our ResNet (blue histogram). We show for each parameter a his-
togram (left) and also plot them agains each other (right).

As we can see from Fig. 5.3, the Einstein radius is very well constrained through the traditional
procedure because we use at the beginning the image positions as constrains. These image
positions are constraining already good the Einstein radius, which is then further refined through
the extended image modeling. The network has more difficulties, especially on faint images, but
performs overall very well. Especially the systems with wide image separation matches perfectly
the predictions from the traditional modeling. This is not obvious given the performance on the
test set for the under represented systems with wide-image separations as we see in Fig. 4.5.
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5.5 Comparison and Discussion
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Figure 5.4: Difference of the SIE+γext values obtained with GLEE & GLaD as the traditional method
and our ResNet.
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Also for the systems with Einstein radius between ∼ 1′′ and ∼ 1.5′′ the network performs good,
although a few are out of the 1σ range.

It is interesting to see that the network assigns to two systems very large error bars; lens sys-
tem HSCJ150021-004936 got a value of 3 ± 1 and lens HSCJ144132-005358 a value of 2 ± 1
from the ResNet. When we look at their color image in Fig 5.1, we see essentially no arcs,
explaining the difficulty for the network and reason for the large uncertainties. Also, if we look
at each filter alone in Fig. A.23 and Fig. A.26, the arcs are very faint. Both systems have only
a measured lens redshift but no source redshift. Lens system HSCJ150021-004936 was found
through the Space Warps citizen science project but missed by YattaLens (see also Sect. 1.2.3)
while system HSCJ144132-005358 where missed by both Space Warps and YattaLens and just
noticed serendipitously (Sonnenfeld et al., 2020). The non-detection from YattaLens, a method
that looks for arc-like features and classify the images based on a fit, demonstrates the difficulty
to model them in an automated way. Therefore, it is understandable that the network has diffi-
culties on these Einstein radii and predicts an extremely large uncertainty. This is actually a very
good sign, as the network seems to be able to adjust the uncertainty prediction.

The network assigned also a relative large error to system HSCJ121504+004726 with 0.9±0.4,
while we obtained with GLEE & GLaD a very precise estimate of 1.398+0.008

−0.007. The reason for
creating troubles for the network is probably the asymmetric alignment of the images which
we can see in Fig. 5.1 and also Fig. A.16. The brightest image on the south-west side is much
further away than the fainter counter image on the east side, possibly confusing the network.

The coordinates of the lens center x and y are very well constrained by both methods. The
traditional modeling predicts a lens center very close to the image center, i.e. within ±1 pixel.
Here we have to remember that we assume the light center to be coincident with the lens mass
center, which is not the case for the network. Since the lens light has a relative large influence
on the χ2 and thus on the lens center, the predicted value will be highly influenced by the lens
light. A possible offset to the true mass center can be compensated through a change in the
external shear. This could be a reason that the network predicts for several systems a larger
offset to the image center, especially for the x coordinate. The largest offset is −0.34′′ for
system HSCJ150112+422113 correspond to around two pixels, where the ResNet performs very
well on the test data (see Fig. 4.5). This lens system has also larger residuals from the manual
modeling, resulting in an χ2

red of 1.63, such that also the parameter values obtained with GLEE &
GLaD are not that trustworthy. The fact that we can model all lenses well with GLEE & GLaD
by assuming a coincidence lens light and mass center, implies that we could also adopt this
assumption when generating our network training data. Moreover, if we assume the traditional
obtained value to be more accurate, a lens center offset of ±1 pixel is enough instead of an offset
of ±3 pixels currently used in the simulations. This would simplify slightly the task for the
network and thus increase the performance of the network, including also the other parameters.
On the other hand, most lens systems got also from the traditional procedure a slight offset to the
cutout center. Therefore, it is good to include a lens center and to predict five parameters for the
SIE profile, instead of assuming that the lens light and mass center fall both exactly on the cutout
center and thus predicting only three parameters (ellipticity and Einstein radius) as done in other
modeling networks (Hezaveh et al., 2017; Perreault Levasseur et al., 2017; Pearson et al., 2019,
2021). This implies a more complex model and task for the network, increasing possibly the
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5.6 Summary and conclusion

inaccuracies and uncertainties on the prediction. This is worth it although the influence of the
lens center, if within ∼ 1 pixel, is expected to be minor.

The ellipticity instead shows better agreement as most of the 1σ bars, which are typically
much larger predicted by the network, reach the 1:1 line for ey. In general, the network predicts
values closer to zero than the values obtained with the traditional modeling, which was expected
from the performance on the test data (compare Fig. 4.5). This is most likely a result of having
nearly two orders of magnitude more systems with ellipticity ∼ 0 than ∼ ±0.5. Since the ellip-
ticity is set by real observations, a more flatter distribution, which would lead to an improvement
on the currently underrepresented values, is difficult to achieve. Given this, it is good to see that
the network can predict, for system HSCJ144132-005358, an ellipticity component of 0.3±0.17
that matches perfectly the value 0.334+0.008

−0.008 obtained with GLEE & GLaD.
The external shear is as expected very difficult to estimate. This is especially valid for the

ResNet, but also the traditionally obtained error bars for γ1 are often relatively large indicating
the difficulty to constrain that parameter. For γ2 we find a good cluster of systems that got ∼ 0
assigned from both methods.

In general, it is interesting and surprising that the values often matches better for one axis than
the other one, although there is no real dependency. The histograms of the difference in Fig. 5.4
are much peakier, indicating better agreement between the two methods, for y and γ2 compared
to x and γ1, respectively.

While the conventional method is considered to give better predictions in general, few of
those models show residuals in their fit as we can see from Fig. A.1 - Fig. A.32, resulting
in an higher χ2

red as noted in Sect. 5.4.3. For instance, lens systems HSCJ023322-020530 and
HSCJ150112+422113 remained with a χ2

red of 1.87 and 1.63, respectively, for which the network
predict very similar Einstein radii but quite different lens center coordinates and ellipticities as
well as a different external shear, possibly to some extend because the traditional model is not
that accurate. System HSCJ023322-020530 was difficult to model with GLEE & GLaD, as it
shows two very bright objects, for which we had to adopt at least a second Sérsic profile to
describe it with acceptable accuracy. Moreover, it shows an extended, relative faint arc which
seems to be offset to the source giving the bright images, such that we modeled those arcs with
a separate Sérsic component. Nonetheless, it resulted in visible residuals (see Fig. A.9) and
higher χ2

red as noted above.
Special consideration is also required for system HSCJ141815+015832, as it has corrupted

data which we try to avoid in the training of the network. As we noted already in Sect. 5.4.3, the
traditional modeling worked quite well regardless of the missing data. This surprisingly holds
also for the network in general. The lens center is not in agreement within 1σ, but the ellipticity,
the Einstein radius, and the external shear matches very good without larger uncertainties than
other systems. This demonstrates that our network is able to handle such cases it was not trained
on.

5.6 Summary and conclusion

In this chapter, we compared the predictions of our residual neural network from Chapter 4
to the SIE+γext parameter values obtained through modeling with GLEE & GLaD. For this
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comparison we selected known galaxy-galaxy lenses detected in HSC, as the network is trained
for these kind of systems and for this image quality. This resulted in a sample of 32 grad-A
lenses, which we presented in Sect. 5.2. We then apply our trained network to that sample, and
report the obtained values with 1σ uncertainties in Tab. 5.2 and Tab. 5.3.

We further model the full sample of 32 lenses with GLEE & GLaD, a software based on
Basian optimizations algorithms such as simulated annealing and MCMC sampling and thus
referred to as traditional, non-machine learning technique. Because of the iterative sampling, this
procedure is very time and resource consuming. To minimize the user input time, we automated
most of the modeling steps and developed a dedicated procedure to model galaxy-galaxy strong
lensing systems from ground based surveys like those in our comparison sample. Because this
code is specifically optimized for ground based observations, we adopted a parameterized source
SB reconstruction rather than a pixelated reconstruction. This means we adopt one Sérsic profile
to describe the light distribution of the background source.

Since each lens is unique especially also because of the environment, the presented uniform
modeling sequence does not produce a perfect fit for all lenses. Because we are mainly inter-
ested in the comparison, and thus want to have very good models for each individual lens, we
further refine some of the models by manually modeling. For this, we develop gleeauto.py, a
software package that accepts an configuration file for GLEE & GLaD and a list of optimiza-
tion algorithms. These specified optimization steps are then performed directly after each other
without any further input of the user.

With both codes, we were able to model all 32 lens systems to an acceptable quality and in
an acceptable amount of time, allowing us to compare directly the parameter estimates. We
find in general very good agreement for the Einstein radius, especially for the wide-separation
systems (θE ≥ 1.5′′). This is not completely expected given the performance on the test set
(compare Fig. 4.5) because of the under-representation of these systems in the training set. It is
very interesting and good to see that the network predicts high uncertainties for the two systems
HSCJ150021-004936 and HSCJ144132-005358 where the arcs are extremely faint. The pre-
dicted Einstein radii from the traditional modeling is comparably very good constrained, which
comes at least partly from using our visually identified image positions as constrains to get a
first estimate.

For the lens center, all values predicted through the traditional modeling procedure are within
±1 pixel with respect to the cutout center, while the network predicts for some systems larger
offsets. This could partly be a result from our assumption of a coincidence between lens light
and mass center for the traditional modeling, which is not the case when generating our training
data. The ellipticity is relative well constrained by both techniques, while the network tend to
predict values closer to zero compared to GLEE & GLaD. This is in agreement with the network
performance on the test set and a result of a realistic, but non-uniform distribution in the training
sample. As expected, the external shear is not well predicted by the network, resulting in the
prediction of larger uncertainties. Nonetheless, the performance of the network is overall very
good, especially when taking into account of the user in put time and final computational time.
We were able to predict all seven SIE+γext values for the full sample within a fraction of a
minute, while the traditional modeling, even with our automated code, requires more than one
day per lens in addition to possible follow-up modeling.
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5.6 Summary and conclusion

In total, we confirm with our comparison that the network preforms similar well on real lenses
than on our test set. This demonstrates that our mocks are indeed very realistic and that we can
expect similar performance on a large sample of hundreds to thousands systems, which can be
modeled easily with our network. This would allow a detailed statistical analysis of lens mass
properties. In contrast to that, we are able to model a sample of dozens of lenses with our
automated pipeline to better accuracy and we can also confirm the quality of the fit in terms of
a χ2 which is not possible for the network output. The gleeauto.py code enables us to refine
further the models obtained with our fully automated procedure for galaxy-galaxy lenses or
also other dedicated automated modeling codes (e.g., Ertl et al., in prep.; Hezaveh et al., 2017;
Nightingale et al., 2018, 2021a,b; Pearson et al., 2019, 2021; Perreault Levasseur et al., 2017).
The combination of all three codes enable us to handle all different sample sizes of lenses, and
thus bring us a huge step forward in handling the new detected lenses in current (e.g., Cañameras
et al., 2020, 2021; Cañameras et al., in prep.; Jaelani et al., in prep.; Knabel et al., 2020; Rojas
et al., 2021; Savary et al., 2021; Shu et al., in prep.) and upcoming wide-field imaging surveys
such as HSC, LSST and Euclid.
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6 Photometric redshift estimation with a
convolutional neural network: NetZ

Summary
Redshifts of astrophysical objects such as galaxies are a key quantity required for nearly all
astrophysical studies. This redshift can be determined precisely through analysis of the corre-
sponding spectrum. Since those objects are first detected trough imaging surveys, this would
require additional resources such as time of a telescope and an expert to analyze the spectrum.
Given the past and current wide-field imaging surveys, spectroscopic redshifts are only available
for a very small fraction. Therefore, several photometric redshift techniques were developed in
the past decades. Such methods will be also crucial for forthcoming surveys such as LSST,
detecting billions of galaxies that need redshifts assigned. Therefore, we developed NetZ, a ma-
chine learning based photo-z method published in Schuldt et al., A&A 651, A55, 2021, which is
reproduced in this chapter of the thesis.

While most of the other photo-z methods use photometric quantities such as color-magnitude
or size-compactness measurements that are extracted from the image and thus often limited
to a narrow redshift range (e.g., z ≤ 1), we use directly the images as input to the network
NetZ. To demonstrate this possibility, we train a CNN on HSC images using all five available
filter g, r, i, z and y to provide color information to the network. As ground truth are either
spectroscopic redshifts or ∼ 30 band photometric redshifts used that pass our criteria listed in
Sect.6.2. In detail, we train three different networks; first, NetZmain, a network trained on the
full redshift range between 0 and ∼ 4 of our data set, second, NetZLRG, a network trained on
only LRGs, and third, NetZlowz, a network trained only in the range 0 < z ≤ 1 as many other
photo-z networks. We compare the precision and accuracy for all three networks in detail to
our reference redshifts, and also compare NetZmain to another photo-z method Direct Empirical
Photometric (DEmP) (Hsieh & Yee, 2014), that was specifically run on our data set to obtain a
fair comparison. With this comparison, we find overall very good performance of NetZmain that
is comparable to DEmP. One of the main advantages of NetZ is the opportunity of simple data
augmentation by rotating/mirroring/flipping the image. By using this kind of data augmentation
to increase the fraction of photo-z galaxies such that our training sample result in a more
equally distributed sample, we obtain notable better performance in the high-z range, while the
performance in the lower range remains nearly stable. We finally run NetZmain on more than 34
million galaxies and publish our photometric redshifts.

Author contribution
I contributed the main driving force to this project. I have developed the network code and done
all corresponding training and testing of the networks. I have created all figures included in this
publication and I am also the main author of it.
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Photometric redshift estimation with a convolutional neural
network: NetZ

S. Schuldt, S. H. Suyu, R. Cañameras, S. Taubenberger, T. Meinhardt,
L. Leal-Taixé, and B. C. Hsieh

ABSTRACT
Galaxy redshifts are a key characteristic for nearly all extragalactic studies. Since spectroscopic
redshifts require additional telescope and human resources, millions of galaxies are known
without spectroscopic redshifts. Therefore, it is crucial to have methods for estimating the
redshift of a galaxy based on its photometric properties, the so-called photo-z. We have devel-
oped NetZ, a new method using a convolutional neural network (CNN) to predict the photo-z
based on galaxy images, in contrast to previous methods that often used only the integrated
photometry of galaxies without their images. We use data from the Hyper Suprime-Cam Subaru
Strategic Program (HSC SSP) in five different filters as the training data. The network over the
whole redshift range between 0 and 4 performs well overall and especially in the high-z range,
where it fares better than other methods on the same data. We obtained a precision |zpred − zref|

of σ = 0.12 (68% confidence interval) with a CNN working for all galaxy types averaged
over all galaxies in the redshift range of 0 to ∼4. We carried out a comparison with a network
trained on point-like sources, highlighting the importance of morphological information for
our redshift estimation. By limiting the scope to smaller redshift ranges or to luminous red
galaxies (LRGs), we find a further notable improvement. We have published more than 34
million new photo-z values predicted with NetZ. This shows that the new method is very simple
and swift in application, and, importantly, it covers a wide redshift range that is limited only
by the available training data. It is broadly applicable, particularly with regard to upcoming
surveys such as the Rubin Observatory Legacy Survey of Space and Time, which will provide
images of billions of galaxies with similar image quality as HSC. Our HSC photo-zestimates
are also beneficial to the Euclid survey, given the overlap in the footprints of the HSC and Euclid.

Credit: Schuldt et al., A&A 651, A55, 2021, published in A&A with Open Access MPI agree-
ment c©Schuldt.
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6.1 Introduction

Past imaging surveys have detected billions of galaxies over the sky, a number that will grow sub-
stantially with forthcoming wide-field surveys, such as the Rubin Observatory Legacy Survey of
Space and Time (LSST). In most applications for which galaxies are used, redshifts are needed,
but spectroscopic redshifts are available only for a small fraction of them. Therefore photometric
redshift techniques (hereafter photo-z, see Hildebrandt et al., 2010, and references therein) were
developed and improved over the last decades (e.g., Coupon et al., 2009; Hildebrandt et al., 2008,
2012; Dahlen et al., 2013; Bonnett et al., 2016; Tanaka et al., 2018). Typically, photometry in
multiple wavelength bands has been used to minimize the difference between spectroscopically
confirmed redshifts and the predicted photometric redshifts.

Today, there are two main families of photo-z methods, namely: template fitting and machine
learning (ML) methods. They are complementary to one another and both are capable of pre-
dicting very precise photo-z. Template fitting codes (e.g., Arnouts et al., 1999; Bolzonella et al.,
2000; Feldmann et al., 2006; Brammer et al., 2008; Duncan et al., 2018b) are mainly based on
galaxy spectral energy distribution (SED) template libraries. This method is physically moti-
vated and well studied thus far. The templates are used to match the observed colors with the
predicted ones (via the so-called nearest neighbor algorithms). Such an approach represents the
opportunity to provide photo-z estimates in regions of color-magnitude space where no refer-
ence redshifts are available. Additionally, ML provides another approach to get very precise
and fast photo-z estimates (e.g., Tagliaferri et al., 2003; Collister & Lahav, 2004; Lima et al.,
2008; Wolf, 2009; Carliles et al., 2010; Singal et al., 2011; Hoyle, 2016; Tanaka et al., 2018;
Bonnett, 2015; D’Isanto & Polsterer, 2018; Eriksen et al., 2020; Schmidt et al., 2020). The main
requirement is a training sample with known (i.e., spectroscopic or very good photo-z) reference
redshifts, which should match the expected redshift distribution. Depending on the network ar-
chitecture, ML codes generally look for specific features in the training sample and try to extract
the important information. So far, most algorithms are based on photometric parameters like
color-magnitude measurements or also size-compactness measurements and often limited to a
narrow redshift range, for example, up to z = 1 (e.g., Bonnett, 2015; Hoyle, 2016; Sadeh et al.,
2016; Almosallam et al., 2016b; Pasquet-Itam & Pasquet, 2018; Pasquet et al., 2019; Eriksen
et al., 2020; Campagne, 2020).

Based upon the success of CNNs in image processing, we move on to our investigation of
a network that estimates photo-z based directly on images of galaxies. This is similar to the
work done by Hoyle (2016), where images of galaxies are converted into magnitude images and
pixel color maps to feed the architecture, however, our network accepts the images directly as
observed. Moreover, while Hoyle (2016) used a classification network whereby the galaxies are
sorted into redshift bins between 0 and 1, we use a regression network. This means our network
predicts one specific number for the galaxy redshift. The work presented by D’Isanto & Polsterer
(2018) and Pasquet et al. (2019) explores both networks with CNN layers on SDSS galaxies
to obtain a probability density function (PDF). D’Isanto & Polsterer (2018) tested networks for
either quasars or galaxies as well as a combination of stars, quasars, and galaxies. For the galaxy
sample, they limited their study to 0 < z < 1, although most galaxies are at the lower end, such
that Pasquet et al. (2019) directly limit the range up to z = 0.4. In comparison to those two
networks, we have many more galaxies with higher redshifts (z ∼ 1 − 3) and thus we do not set
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6 Photometric redshift estimation with a convolutional neural network: NetZ

limits on the redshift range for the purpose of obtaining a more powerful network that is directly
applicable to the expected redshift range covered by LSST. Based on the available reference
redshifts, we tested the performance up to a redshift of 4. Since we provide images of different
filters, our CNN is able to extract the color and magnitude parameters internally and output a
photo-z value at the end. It is trained on images observed in five different filters, specifically on
Hyper Suprime-Cam Subaru Strategic Program (HSC SSP, hereafter HSC; Aihara et al., 2018a)
grizy images of galaxies with known spectroscopic or reliable ∼30-band photometric redshifts.

The outline of the paper is as follows. In Sect. 6.2, we describe the training data we applied
and we give a short introduction and overview of the network architecture we used in Sect. 6.3.
Our main network, NetZmain, is presented in Sect. 6.4 and we compare our results to other model
techniques in Sect. 6.5. We show, in Sect. 6.6, our results based on the network NetZLRG, which
is specialized for Luminous Red Galaxies (LRGs) and NetZlowz, which is specialized for the low
redshift range. We summarize our results in Sect. 6.7.

6.2 Training data

We use images from PDR2 of the HSC-SSP1 survey (Aihara et al., 2019) for the training of the
CNN. The HSC is a wide-field optical camera with a field of view of 1.8 square degrees (1.5
degree in diameter) installed at the 8.2m Subaru Telescope. The data release covers over 300
square degrees of the night sky in five optical filters known as grizy. The exposure time is 10
minutes for the filters g and r and 20 minutes for i, z, and y, yielding limiting magnitudes of
around 26. The pixel size is 0.168′′, such that our cutouts with 64 × 64 pixels result in images
of around 10′′ × 10′′. The median seeing in the i-band is 0.6′′.

The catalog of all available galaxies from HSC PDR2 in the wide area that pass the following
criteria:

• {grizy}_cmodel_flux_flag is False

• {grizy}_pixelflags_edge is False

• {grizy}_pixelflags_interpolatedcenter is False

• {grizy}_pixelflags_saturatedcenter is False

• {grizy}_pixelflags_crcenter is False

• {grizy}_pixelflags_bad is False

• {grizy}_sdsscentroid_flag is False

includes around 190 Million galaxies and is represented by a green box in Figure 6.1. The
corresponding HSC images can be used as input data for the network NetZ.

As ground truth, we use the spectroscopic redshifts provided by the HSC team, which is
a collection from various spectroscopic surveys (zCOSMOS DR3 (Lilly et al., 2009), UDSz
(Bradshaw et al., 2013; McLure et al., 2012), 3D-HST (Skelton et al., 2014; Momcheva et al.,

1HSC webpage: https://hsc-release.mtk.nao.ac.jp/doc/
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6.2 Training data

Figure 6.1: Sketch of the available data and the intersection of the data D (dotted) used for training (R),
validation (V), and testing (T) of the main network NetZmain, as presented in Sect. 6.4.

2016), VVDS (Le Fèvre et al., 2013), VIPERS PDR1 (Garilli et al., 2014), SDSS DR14 (Alam
et al., 2015), GAMA DR2 (Liske et al., 2015), DEEP3 (Davis et al., 2003; Newman et al., 2013),
PRIMUS DR1 (Coil et al., 2011; Cool et al., 2013)). Since we aim to obtain a network that is
applicable to all morphological types, the above list does not include spectroscopic surveys that
are most strongly biased towards specific galaxy types of similar morphology. Specifically, we
do not consider objects from SDSS BOSS/eBOSS to train our main network NetZmain as those
surveys explicitly target LRGs at z<1 and known quasars. We do consider training exclusively on
LRGs in our separate network NetZLRG. Furthermore, we do not include the WiggleZ catalog
(Drinkwater et al., 2010), which targets UV bright emission line galaxies and which would
further steepen the redshift distribution of the training set at low-redshift (see below). Despite
unavoidable biases due to the selection function of each survey, we expect that this collection
of spectroscopically-confirmed redshifts has limited morphological pre-selection. This spec-z
sample is cleaned with the following criteria:

• source type is GALAXY or LRG

• z > 0

• z , 9.99992

• 0 < zerr < 1

2This is the upper limit of the catalog and thus treated as no spec-z available, i.e. excluded
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• the galaxy identification number (ID) is unique

• specz_flag_homogeneous is False (homogenized spec-z flag from HSC team)

This spec-z sample is used in combination with COSMOS2015 (Laigle et al., 2018), a photo-
z catalog of the COSMOS field based on around 30 available filters, where we enforce the
following criteria:

• flag_capak is False

• type = 0 (only galaxies)

• χ2(gal) < χ2(star) and χ2(gal)/Nbands < 5 (fits are reasonable and better than stellar alterna-
tives)

• ZP_2< 0 (no secondary peak)

• log(M?) > 7.5 (stellar mass successfully recovered)

• 0 < z < 9

• max(z84 − z50, z50 − z16) < 0.05(1 + z) (1σ-redshift dispersion < 5%)

This selection primarily follows the criteria from the other HSC photo-z methods (Tanaka
et al., 2018; Nishizawa et al., 2020). We then select galaxies with i-band magnitudes brighter
than 25 mag and a Kron radius larger than 0.8′′ in the i band. The limit on the Kron radius is
chosen with the aim of obtaining a set that best represents the sample that we are applying NetZ
to. These criteria ensure that we have accurate and reliable reference redshifts for our training,
validation, and testing. While such criteria could lead to potential selection bias in the objects,
our combination of photo-z and spec-z helps mitigate selection biases. Furthermore, we verify
that the color space spanned by the objects from the cleaned catalog is similar to that of the
objects in the HSC PDR2 with a Kron radius above 0.8”. This allows us to apply the trained
NetZ based on the reference redshifts to those HSC PDR2 galaxies. The cleaned catalog used
for training, validation, and testing is shown as a yellow box in Figure 6.1, and the overlap with
available good HSC images in all five filters (green box) contains 406,540 galaxies.

Based on various tests during the development stage, we found a significant improvement by
masking the background and surrounding objects next to the galaxy of interest with the source
extractor (Bertin & Arnouts, 1996) before feeding them into the CNN. As a boundary, we use
the 3σ level of the background. Fully deblended neighboring objects in the field can be ex-
cluded by requesting the object center to be within five pixels of the image center. With this
method, we keep only the central galaxy(ies) in the image cutout. At the end we convolve the
extracted image with a gaussian kernel of size 3×3 pixels and a width of 1.5 pixels to smooth
out the boundaries very slightly. We show color images of random galaxies from our NetZmain
test sample in Figure 6.2 as examples. The masked background is shown in blue and has pixel
values set to zeros in the image. We provide the reference redshift, which can be either a spec-
troscopic or photometric redshift, and our predicted redshift at the top of each image. The HSC
identification number is given in the bottom of each image. From these examples, it can be seen
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that the extraction procedure works well overall, but has its limitations; for instance, the first
image of the second row is partly truncated because of a masked bright neighbouring object.
Since this procedure is aimed at masking only obvious and well deblended companions, while
beeing purposely conservative and retaining blended galaxies. Therefore, the third image in the
first row in Figure 6.2 is expected.

zref=0.128; zpred=0.129

42291911603525289

zref=0.378; zpred=0.379

41113926628283593

zref=0.417; zpred=0.470

42640031587764230

zref=0.450; zpred=0.553

43158588759219830

zref=0.496; zpred=0.522

41012625529662353

zref=0.633; zpred=0.786

42634817497497739

zref=0.888; zpred=0.890

37485533961674386

zref=1.963; zpred=1.868

43158464205190762

Figure 6.2: Overview of galaxies from our data set. The masked neighbouring objects and background
are shown in blue and have pixel values of zeros in the image. The images are 10.75′′×10.75′′

(64 × 64 pixels) and based on the three filters g, r, and i. In each panel, the reference and
predicted redshifts of the object are indicated at the top and the HSC identification number is
at the bottom.

The reference redshift selection criteria described above give us a sample of galaxies with
accurate reference redshifts, zref. Since the sample D is dominated by galaxies with zref < 1,
we test the effect of data augmentation. Explicitly, we include rotated images for zref > 1, and
in addition, mirrored images for zref > 2. An alternative to data augmentation is to introduce
weights for the galaxies. For example, Lima et al. (2008) proposed a relative weighting of
galaxies in order to match their spectroscopic sample to observables of the photometric sample.
Although we could also adapt a similar weighting scheme to balance the redshift distribution,
we favor the data augmentation technique that is commonly used in neural networks.

Since the distribution of the reference redshifts in the training set is very important for the
network and still dominated by the lower redshift end, we limit each redshift bin of width 0.01
to have no more than 1000 galaxies from those passing the above criteria. With this limit, we
obtain a uniform distribution up to zref ∼ 1.5 This essentially limits the number of low-redshift
galaxies that would otherwise be over-represented in the training set. As a result, the redshift
distribution becomes more uniform and allows the CNN to learn and predict redshifts for the full
redshift range rather than only the lower redshift end. The excluded galaxy sample is marked in
the underlying yellow box with lines in Figure 6.1, while sample D is used for our main network
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6 Photometric redshift estimation with a convolutional neural network: NetZ

NetZmain, shown with a red histogram in Figure 6.3. We show the distribution of the augmented
sample as a black dashed histogram in Figure 6.3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
zref

101

102

103

104

NetZmain
NetZmain with 
data augmentation
NetZlowz
NetZLRG

Figure 6.3: Histograms of the redshift samples used in this work. For NetZmain, we show the original
redshift distribution in red, and the data augmented distribution in dashed black (with more
galaxies at zref > 1) that was used for our final network. The distribution used to train our
two specialized networks (see Sect. 6.6 for details) is overplotted for NetZlowz in blue and for
NetZLRG in orange.

6.3 Deep learning and the network architecture

Neural networks (NN) are very powerful tools that serve many different tasks, especially in
works involving a huge amount of data. Substantial efforts have therefore been dedicated to deep
learning (DL) developments in recent years. In general, for supervised learning, it is necessary
to have a data set where the input and output, that is, the so-called ground truth, are known. On
this data, the network is trained and can afterwards be applied to new data where the output is
not known. The main advantages of NN include the variety of architectures and thus the broad
range of problem they can be applied to, as well as the speed of those networks in comparison to
other methods. Generally, there are two kinds of networks: classification networks distinguish
between different classes of objects, whereas regression networks predict specific numerical
quantities. The latter is the kind of network we are using here, namely it is the network that
predicts a specific value for the redshift of a galaxy.

Depending on the task, there are different types of networks. Since our input consists of im-
ages of galaxies, a typical type is the CNN where the fully-connected (FC) layers are preceded
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6.3 Deep learning and the network architecture

by a number of convolutional (conv) layers. The detailed architecture depends on various pa-
rameters such the specific task, the size of the images, and the size of the data set. We tested
different architectures and found an overall good network behavior with two convolutional layers
followed by three FC layers. We tested different constructions of CNN architecture by varying
the number of convolutional or FC layers, strides, and kernel sizes but with no improvement. A
sketch of the final architecture is shown in Figure 6.4. The input consists of five different filters
for each galaxy and each image has a size of 64 × 64 pixels, corresponding to an image size of
around 10′′ × 10′′. The convolutional layers have stride s = 1 and a kernel size of 5 × 5 × C,
where C = 5 in the first convolutional layer, and C = 32 in the second layer. We used 32 kernels
and 64 kernels in the first and second convolutional layers, respectively. Each convolutional
layer is followed by max pooling of size 2 × 2 and of stride 2. This results in a data cube of size
13× 13 × 64, which, after flattening, is passed on to the FC layers to obtain the single output
value, namely, the redshift of the galaxy.

Figure 6.4: Overview of the CNN architecture. It contains two convolutional (conv) layers with max
pooling and three fully connected (FC) layers. The input consists of images of size 64×64
pixels in five different filters (grizy). The output displays the predicted photometric redshift.

Independent of the network architecture, the network can contain hundreds of thousands (or
more) neurons. Even though at the beginning, the values of the weight parameters and bias of
each neuron are random, they are updated at every iteration of the training. To see the network
performance after the training, we need to split the data into three sets, the training set R, the
validation set V , and the test set T (see Figure 6.1). In our case, we used 56% of the data set
as training set, 14% as validation set, and 30% as test set. We trained over 300 epochs and
divided each epoch into a number of iterations by splitting the training, validation, and test set
into batches of a size N. In each iteration, a batch is passed through the entire network to predict
the redshifts zpred (forward propagation). The difference between those predicted values and the
ground truth is quantified by the loss function L, where we use the mean-square-error (MSE)
defined as 3

L =
1
N

N∑
k=1

(zpred,k − zref,k)2 . (6.1)

After completing the forward propagation and computing the loss for the batch, the informa-
tion is propagated to the weights and biases (back propagation) that are then modified using a
stochastic gradient descent algorithm with a momentum of 0.9. This procedure is repeated for

3This definition is for only one parameter, which in our case is the redshift. For a general expression, one would
also sum over the different parameters.
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6 Photometric redshift estimation with a convolutional neural network: NetZ

all batches in the training set and a total training loss for this epoch is thus obtained. Afterwards,
the loss is computed within the validation set to determine the improvement of the network,
which concludes the epoch.

We perform a so-called cross validation to minimize bias in the validation set, which com-
prises training the NN on the training set and using the validation set to validate the performance
after each epoch as described above. These steps are repeated by exchanging the validation set
within the training set, such that we have with our splitting five cross-validation runs. In the end,
the network is trained on training and validation set together and terminated at the best epoch
of all cross validation runs. The best epoch is defined as the epoch with the minimal average
validation loss. This network is then applied to the test set, which contains data the network has
never seen before.

6.4 Main Redshift Network NetZmain

In this section, we present our main network NetZmain which is trained in the full redshift range
(0 < z . 4). We find that this CNN is overall very precise in predicting redshifts. Figure 6.5
shows a comparison of our final network predictions zpred to the reference redshifts zref of the
test set T . In detail, the left panel of this plot shows a histogram of the reference redshifts (red)
and predicted values (blue). On the right panel, a 1:1 comparison of reference and predicted
redshifts is plotted. The red line shows the median and the gray bands the 1σ and 2σ confidence
levels.
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Figure 6.5: Performance of the final network on the test set T . On the left hand side, histograms of the
reference and predicted redshift distributions are shown in red and blue, respectively. On the
right hand side, a 1:1 comparison of reference and predicted redshifts is plotted. The red line
shows the median predicted redshift per bin and the gray bands the 1σ and 2σ confidence
levels. While the red line follows the black dashed reference line for low redshift very nicely,
NetZmain tends to underpredict the high end.
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6.4 Main Redshift Network NetZmain

While the network performance is good in the redshift range between 0 and ∼2, the network
starts to underestimate the higher redshifts. This is understandable as the network is trained
on many more images in the lower reshift range as we can see directly from the histogram.
The reason is the limited amount of available training data (reference redshifts) above z ∼ 2.
Moreover, these distant galaxies are typically faint and small in extent, which complicates the
learning procss with regard to their morphological features.

As described in Sect. 6.3, we use cross-validation and train always over 300 epochs. We
do not see much overfitting from the loss curve, where overfitting means that after a certain
number of epochs the network learns to predict the redshifts better for the training set than
for the validation set. Based on our testing of different hyper-parameters such as batch size or
learning rate, the best moment for terminating the training of NetZmain is at epoch 135 with a
loss of 0.1107 according to the loss function L. This network has a learning rate of 0.0005 and
a batch size of 128. We also tested drop-out, which means to ignore during each training epoch
a new random set of neurons. This can help to reduce overfitting and balance the importance
of the neurons in the network. We carried out a test using a dropout rate of 0.5 between the FC
layers, but it turned out that drop-out was not necessary for this network.

We tested the network performance by varying the masking, such as the deblending threshold
and the kernel for the smoothing. The difference of . 0.01 in the predictions is small compared
to the typical photo-z uncertainty (as we see in the scatter of Figure 6.5). This network stability
is important in case the extraction is not done perfectly as planned and done for the training. The
masking is done in the exact same way for the newly predicted photo-z values as for training and
testing.

It turns out that the network predicts similar but slightly different values for the augmented
images, which shows that the network does not identify the rotated or mirrored images as dupli-
cates. The possibility to use such data augmentation and hence boost the performance at high
redshifts is a major strength of NetZ.

As a further test, we replaced the image cutouts of the galaxies with point-like sources using
the corresponding PSF images and scaling them to the correct magnitudes. This way, the images
contain only the information available from the catalogs (as used in typical photo-z methods)
but exclude any morphological information such as the galaxy shapes from the real cutouts. We
tested a few different hyper-parameter combinations by varying the learning rate and also the
number of convolutional layers, but with the result of worse performance in predicting redshifts,
as shown in Figure 6.6. For more detail, we show on the left panel the performance of the
network trained on the point-like images in analogy to the right panel of Figure 6.5; and on the
right panel, we make the direct comparison between the network trained on the correct image
cutouts (red) and the network trained on images of point-like sources (blue). We can directly
see the smaller scatter in the predicted redshift when using the correct cutouts, especially on
the high-redshift range even with our use of data augmentation in this redshift range. This test
shows the importance of the morphological information for this method and that it contributes
significantly to the robustness of the photo-z predictions.
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Figure 6.6: Performance of the network trained on images of point-like sources in place of galaxies (blue)
with 1 and 2σ ranges on the left (gray), and as a comparison to NetZmain (red) on the right
panel with 1σ ranges (dotted). We directly see that the original galaxy images and thus their
morphological information improve the network.

6.5 Comparison of NetZmain to other photo-z methods

6.5.1 Detailed comparison to HSC method DEmP

Since there are already different photo-z methods developed and applied to the HSC data, we
show a comparison here. It is very important to use the same data set for a fair comparison.
Thus, we can only make a comparison with the DEmP (Hsieh & Yee, 2014) method, where we
have a predicted photo-z value for each galaxy within our test set T and using identical training
and validation sets as for NetZmain, without data augmentation – since DEmP also relies on
the reference distribution. DEmP is one of the best-performing methods from the HSC photo-z
team (Tanaka et al., 2018; Nishizawa et al., 2020) and, thus, it stands as a good performance
benchmark. DEmP is a hybrid photo-z method by combining polynomial fitting and a N-nearest
neighbor method based on photometric values on a catalog level. Therefore, the input data
are totally different from those of NetZ, which is based on the pixelated image cutouts of the
galaxies.

For the comparison, we adopted three quantities from the HSC photo-z papers (Tanaka et al.,
2018; Nishizawa et al., 2020), which are defined as follows for each redshift bin:

Bias: Median (∆zi) = Median
( zpred,i−zref,i

1+zref,i

)
, (6.2)

Dispersion: σ = 1.48 ×MAD(∆zi) =

= 1.48 ×Median (|∆zi −Median(∆zi)|) , (6.3)

Outlier rate: foutlier =
N(|∆zi |>0.15)

Nbin
. (6.4)
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Figure 6.7: NetZmain (black points) performance in terms of bias (top-left panel), dispersion (bottom-
left panel), and outlier rate (bottom-right panel) as functions of the reference redshift zref in
comparison to DEmP (red bars). Definitions of bias, dispersion and outlier rate are given in
Eqs. (6.2)-(6.4). We show also with blue bars the results from a network where we do not use
data augmentation to increase the number of zhigh-z galaxies. The values in dashed bars are
based on limited number of galaxies. The histogram in the top-right panel shows the number
of galaxies as a function of redshift in the test set T used for the comparison. NetZ performs
substantially better than DEmP at zref & 2, with smaller bias, lower dispersion and lower
outlier rate, by up to a factor of 2.

where i denotes the ith galaxy in the redshift bin, zpred the predicted photometric redshift, zref the
reference redshift, N the number of galaxies satisfying the specified condition, and Nbin the total
number of galaxies in the bin. The dispersion is defined using the median absolute deviation
(MAD), as expressed above. The multiplication factor comes from statistics and is the relation
factor for normally distributed data between MAD and the standard deviation (Rousseeuw &
Croux, 1993).

The comparison is shown in Figure 6.7, with black triangles showing the performance of
NetZmain and red bars showing the performance of DEmP. Since we use data augmentation
(rotation and mirroring of images; see Sect. 6.2 for details) to increase the number of high-z
galaxies, which is not possible for DEmP, we also trained a network without data augmentation
– we show both in Figure 6.7 for comparison. For the range zref . 1.5, the performances of both
methods are very good especially for the bias, with DEmP performing slightly better than NetZ.
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6 Photometric redshift estimation with a convolutional neural network: NetZ

If we compare the range zref & 1.5, the performance of both methods decreases, but NetZ with
data augmentation now performs noticeably better than DEmP.

A decrease in performance in the redshift range around z ≈ 2 is expected, as the used filter set
grizy does not cover the prominent 4000Å break but, in contrast to the other methods presented
in Tanaka et al. (2018), NetZ and partly DEmP can at least break the degeneracy between low
redshifts (z < 0.5) and the redshift range around 3 to 4, which is not the case for Mizuki from
Nishizawa et al. (2020) and several methods from Tanaka et al. (2018) that used HSC images
with similar reference redshifts. A more detailed and direct comparison is difficult since the pre-
dicted redshifts from these methods are not publicly available for our whole test set; moreover,
some of the galaxies in our test set could be in the training data of these methods, which would
artificially improve their performance.

The very low dispersion of DEmP in the highest-redshift bin comes from DEmP underesti-
mating consistently most of the redshifts, and hence the outlier rate is large. Although the outlier
rate is high in the range zref & 2 in general, the performance is primarily limited by the number
of existing reference redshifts in this range. While DEmP is developed and tested with a big
enough training sample also for higher redshifts, we used here for DEmP the exact same data
set as for NetZ for a fair comparison. Since there is no sufficient training sample at zref > 2
for both NetZ without data augmentation and DEmP, we plot these values in dashed because
they are less reliable. It is nonetheless encouraging to see the significant reduction in the bias,
dispersion, and outlier rate of NetZ with data augmentation for the high-z range, up to a factor
of 2 relative to DEmP, thanks to the use of the spatial information from the galaxy images in
addition to photometry. Especially for upcoming surveys such as LSST, which will provide rel-
atively deep images, it is important to have methods prepared and tested on the higher redshift
range.

As a further comparison, we show in Figure 6.8 a scatter plot of zpred versus zref for DEmP
(Hsieh & Yee, 2014) and our neural network NetZmain with data augmentation. From this plot
we can again see the good performance for the low-z range, where we note that the number
of outliers from NetZ is negligible compared to the number of galaxies in the bins, which is
also evident in the outlier rate. If we assume that all catastrophic outliers for zref < 1.5 are
misplaced at high redshift, which is very conservative, then > 77% of the galaxies predicted to
be at zpred > 1.5 are actually at zref > 1.5. In the high-z range, NetZ tends to predict too low
redshifts, but it does not have the cluster of catastrophic outliers at zpred ∼ 0.5 and zref between 3
and 3.5 that DEmP does and this is due to the Lyman-break or Balmer-break misclassification.
Even for the galaxies where the NetZ redshifts are classified as outliers, these redshifts are closer
to the true redshift than for DEmP. The outlier rate for NetZ is dominated by blue-star-forming
galaxies and galaxies with a small spatial extent (covering ≈ 20 − 30 pixels) that provide little
information for the CNN to extract features. We therefore note that galaxies covering a small
number of pixels are more prone to be catastrophic outliers in their redshifts and should be
treated with caution.

6.5.2 Photo-z with morphological information

The studies presented by, for instance, Soo et al. (2018) and Wilson et al. (2020) aim to include
morphological information of galaxies to improve photo-z estimations. In particular, Wilson
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Figure 6.8: Network performance as scatter plot comparing the predicted with the reference redshifts for
NetZmain (this work) and DEmP (Hsieh & Yee, 2014). The scatter looks overall comparable
at zref . 2, while NetZmain does not contain the catastrophic outliers at zref ∼ 3 and zpred ∼ 0.5
that DEmP has.

et al. (2020) make use of optical and near infrared observations, some of which are obtained
with the Hubble Space Telescope (HST). Therefore the considered data cover a wider wave-
length range and are additionally of better spatial resolution than our ground based HSC images.
However, Wilson et al. (2020) consider only photometric measurements and four morpholog-
ical measurements (half-light radius, concentration, asymmetry, and smoothness), rather than
the pixels directly. By working directly with the image pixels in our CNN, we use the maximal
amount of information and we are independent of the pipelines and uncertainties when extract-
ing morphological measurements. Moreover, Wilson et al. (2020) limit the range to 0 < z < 2,
which makes the network not directly applicable to deep imaging surveys, especially since we
are focusing on the high-redshift range. As we show in the next section, we also obtain very
good results within a limited range. With these differences in the assumptions and data sets, it
is difficult to directly compare the results of Wilson et al. (2020) and NetZ. Nonetheless, if we
compare our outlier fraction with ∼0.05 up to z ∼ 1.7 (see Figure 6.7) to that from Wilson et al.
(2020), which is called OLF, with ∼0.1-0.2 up to z = 2 (see Tables 2 and 3 of Wilson et al.
(2020)), NetZ yields a good improvement. While Soo et al. (2018) and Wilson et al. (2020) find
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that morphological measurements do not provide a notable improvement in photo-zpredictions
when compared to using only multi-band photometric measurements, our NetZ results (Fig-
ure 6.6) show that the pixels in the image cutouts that contain morphological information are
useful. This suggests that a promising avenue for future developments of photo-z methods is to
combine photometric measurements (as typically used for current photo-z methods) with direct
image cutouts (as used for NetZ) instead of morphological measurements.

6.5.3 Photo-z estimates for LSST

Schmidt et al. (2020) present a collection of different photo-z methods tested on LSST mock
data. In particular, they compare 12 different codes, of which three methods are based on
template fitting (BPZ, Benítez (2000); EAZY, Brammer et al. (2008); LePhare, Arnouts et al.
(1999)), seven are based on machine learning (ANNz2, Sadeh et al. (2016); CMN,Graham et al.
(2018); FlexZBoost, Izbicki et al. (2016); GPz, Almosallam et al. (2016a); METAPhoR, Cavuoti
et al. (2017); SkyNet, Graff et al. (2014); TPZ, Carrasco Kind & Brunner (2013)), one is a hy-
brid method (Delight, Leistedt & Hogg, 2017), and one is a pathological photo-z PDF estimator
method (trainZ, Schmidt et al., 2020). The last method trainZ is designed to serve as an ex-
perimental control, and not a competitive photo-z PDF method. It assigns to each galaxy set a
photo-z PDF by effectively performing a k-nearest neighbor procedure. As training data, they
use < 107 LSST like mock data limited to 0 < z < 2 and an i band magnitude limit of 25.3 to
match the LSST gold sample (for further details see Schmidt et al., 2020). The main advantage
of these methods in Schmidt et al. (2020) compared to the current version of NetZ is the proba-
bility density function estimates, whereas NetZ does not require photo-z pre-selection and shows
a good performance over a broader redshift range (0 < z < 4). Based on the different redshift
range and data sets, a detailed and fair comparison is not possible. If we compare Figure 6.5
to Figure B1 of Schmidt et al. (2020) quantitatively, we see an overall similar performance, but
most of the LSST methods have a cluster of outliers at zref ∼ 0.5 and zref ∼ 1.7 which we do
not see with NetZ. The kink at zref ∼ 1.7 might be related to the drop of data points and an edge
effect near the end of the assumed range since we observe a similar effect with NetZ for higher
redshifts (zref ∼ 3). Comparing the machine learning methods is difficult as well. The network
architectures, as with nearest-neighbour algorithms, random forests, prediction trees, or sparse
Gaussian processes, which are presented in Schmidt et al. (2020), are simply too different from
the image-based CNN we present with NetZ.

6.6 Limited-range and LRG-only redshift network

During our testing, we found we could obtain substantial improvement by restricting the redshift
range. We explored, for instance, networks with redshift ranges limited to 0 < z < 1 and
1 < z < 2, but not to higher redshift intervals, due to the limitations in available reference
redshifts for z > 2. Limiting to 0 < z < 1 is also done in several other works (e.g., Hoyle,
2016; Pasquet et al., 2019; Campagne, 2020). To benefit from these refined networks in any
practical application, we would first need to predict the correct redshift range and then these
networks could be used in a specified range. We also considered combining multiple networks
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and iteratively refining the photo-z predictions, that is, start with NetZmain to predict zpred and
then, based on the value of zpred, we could subsequently apply a network that is trained in a
narrower range around zpred to refine the zpred estimate. However, we find that outliers from
NetZmain limit the gain we can achieve in refining zpred. A practical possibility to use a redshift
network for the lower-redshift end of the distribution would be to restrict the sample by the
galaxy brightness. If we restrict our data set D to galaxies with an apparent i-band AB magnitude
brighter than 22, the catalog includes only 1.3% objects with zref ≥ 1 and we miss 12.9% of all
galaxies from the original set D with zref ≤ 1. For the training of NetZlowz itself we limit only to a
narrow redshift range but not in magnitude. The performance of NetZlowz is shown in Figure 6.9,
on the left a histogram of the reference (red) and predicted (blue) redshifts. The distribution of
the predicted redshift follows that of the reference redshift very well. On the right side, we
show a 1:1 correlation plot, with the median as a red line and in gray the 1σ and 2σ areas. If
we compare the two (Figure 6.5), we can see that NetZlowz performs significantly better than
NetZmain, as expected.
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Figure 6.9: Performance of the network NetZlowz trained on all types of galaxies in the range 0 < zref ≤ 1.
On the left hand side, histograms of the redshift distributions are shown, in red the distribution
of the reference redshifts used to train the network (ground truth) and in blue the predicted
redshift distribution. On the right panel, a 1:1 comparison of reference and predicted redshifts
is plotted. The red lines show the median and the gray bands show the 1σ and 2σ confidence
levels.

We further show in Figure 6.10 the bias, dispersion, and outlier rate for NetZlowz (red). If we
compare this performance to NetZmain applied to the same galaxies for a fair comparison (blue),
we find a good improvement in the bias and, with a factor of ∼ 2 reduction, in the dispersion.
Only the outlier rate is comparable. If we compare the performance of NetZmain on the full
test set that of the network, we still see an improvement for the network NetZlowz without the
i magnitude limitation. This confirms that the improvement is related to the network range. A
scatter plot of NetZlowz is shown in Figure 6.11.

149



6 Photometric redshift estimation with a convolutional neural network: NetZ

0.050

0.025

0.000

0.025

0.050

z
=

(z
pr

ed
z r

ef
)/(

1+
z r

ef
)

NetZlowz
NetZmain

0.000

0.025

0.050

0.075

=
1.

48
M

AD
(

z)

0.0 0.2 0.4 0.6 0.8 1.0
zref

0.0000

0.0125

0.0250

0.0375

ou
tli

er
 ra

te

Figure 6.10: Network performance of NetZlowz compared to NetZmain in terms of bias, dispersion, and
outlier rate (see eq. (6.2)-(6.4)) as functions of the reference redshift zref. For this compari-
son, we use the overlap between both test sets and only galaxies with an i-band magnitude
brighter than 22 as NetZlowz would be applied only to them.
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Figure 6.11: Predicted redshifts zpred against the reference redshifts zref for the networks NetZLRG and
NetZlowz of their test set. We see directly a lower outlier rate for NetZLRG than NetZlowz.

Instead of applying networks trained for specific redshift ranges, which is difficult to do in
practice, we can consider specific classes of galaxies that can be selected a priori, such as LRGs.
Therefore we investigate a redshift estimation network specialized on LRGs that are useful for
various studies including strong lensing and baryon acoustic oscillations. Since nearly all LRGs
out of our reference sample have zpred < 1, we show here the network performance of NetZLRG
in comparison to the network NetZlowz trained on all galaxy types. Figure 6.12 shows on the left
a histogram and on the right the 1:1 comparison of zref and zpred.

We show further the bias, dispersion, and outlier rate (defined in eq (6.2)-(6.4)) in Figure 6.13.
The network NetZLRG performs better in most redshift bins. Finally, in Figure 6.11 we show a
scatter plot of this network without magnitude limitation in comparison to NetZlowz. From this
we can see again the redshift limits of the LRG sample and also the good improvement.

Both networks NetZLRG and NetZlowz show that photo-z for subsamples of galaxies does
overall better than the main network NetZmain that is trained on all galaxies. Therefore, for
specific subsamples, it would be beneficial to train a CNN specific to that sample.
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Figure 6.12: Performance of the network NetZLRG trained on LRGs only. On the left-hand side, his-
tograms of the redshift distributions are shown, in red we show the distribution of the ref-
erence redshifts used to train the network (ground truth) and in blue the predicted redshift
distribution. On the right panel, a 1:1 comparison of reference and predicted redshifts is
plotted. The red lines show the median and the gray bands the 1σ and 2σ confidence levels.

6.7 Summary and conclusions

With current and upcoming imaging surveys, we anticipate that billions of galaxies will be the
subject of observations, while just a small fraction of them will have spectroscopically confirmed
redshifts. Therefore, it is necessary to have tools to obtain good photometric redshifts, especially
for the higher redshift range as the upcoming surveys will provide deeper images where previous
photo-z methods have strong limitations. With the success of ML and especially CNNs in image
processing, we investigated a new CNN based technique to estimate the photo-z of a galaxy.
The method is very general; it accepts directly cutouts of the observed images and predicts the
corresponding redshift. Therefore it is directly applicable to all HSC cutouts after applying
simple cuts on the Kron radius and i band magnitude observables.

For training the network and testing the performance, we carry out a comparison with to
reference redshifts from various, mostly magnitude-limited surveys. In this paper, we focus on
HSC data with a pixel size of 0.168′′ and use the available five filters grizy, which are also part
of the upcoming LSST4. In principle, it is also possible to include additional filters, such as
the near-infrared (NIR) range from the same or a different telescope which would improve the
performance even more, as shown by Gomes et al. (2018), for the low redshift range (z . 0.6).
The only constraint from the CNN is the constant pixel size over all different filters. Since
NIR images have typically larger pixel sizes, an interpolation and resampling to the same pixel
resolution as the optical images would be necessary. What remains to be seen is how much NetZ
could benefit from such additional filters, especially in the high-z range, and this would need to
be tested. In addition, NetZ could be trained on additional Euclid images that are high-resolution

4LSST has in addition u-band observations.
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Figure 6.13: Network performance of NetZLRG compared to NetZlowz applied to LRGs only in terms of
bias, outlier rate, and dispersion (see eq. (6.2)-(6.4)) as functions of the reference redshift,
zref.
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from space in the visible and infrared range. Even without combining Euclid with ground-based
images, our photo-z estimates from HSC are useful for Euclid given the overlap in the footprints
of HSC and Euclid.

With our trained network on HSC images, we find an overall very good performance of the
network with a 1σ uncertainty of 0.12 averaged over all galaxies from the whole redshift range.
Our CNN provides a point estimate for each galaxy with uncertainties adopted from the scatter
in each redshift bin of the test set. Based on the amount of available data, the network performs
better in the redshift range below z = 2. In the range above z = 2, we are using, as a way of
gaining an advantage over state-of-the art methods like DEmP, data augmentation by rotating
and mirroring the images. While the bias for DEmP and NetZmain as well as the dispersion for
DEmP increases significantly in this range, with NetZmain we obtain by using data augmentation
similar values as for the lower redshift range. We also obtain better outlier rates for the highest
redshift bins by using data augmentation but the improvement is less pronounced. In particular,
NetZ does not under-predict the redshifts of galaxies with zref ∼ 3 − 3.5 by as much as DEmP
and other methods due to the Lyman and Balmer break misclassification. The main limitations
that all photo-z methods face when predicting redshifts for distant galaxies is the low number of
reference redshifts. In our case, the number drops by a factor of around 1000 compared to the
range where z < 2. Therefore, using the image cutouts gives a good advantage as we can use
data augmentation by rotating and mirroring the images. The effect is impressive as one can see
in Fig 6.7. Since this is not possible for other photo-z methods, several of them focus only on
the lower redshift range z < 1 or even lower (e.g., Hoyle, 2016; Pasquet et al., 2019; Campagne,
2020). If we also limit the redshift range to z < 1, we find a substantial improvement in our
network‘s performance.

In cases where we set our focus on a specific galaxy type like LRGs, we find a further im-
provement with regard to the network. This is understandable as the network can learn better the
specific features of this galaxy type. Based on the small number of LRGs with redshift above
z = 1, we limit the range of NetZLRG to 0 < z < 1 and compare it to a network trained on all
galaxy types in the same redshift range for a fair comparison.

This paper provides a proof of concept for using a CNN for photo-z estimates. Based on
the encouraging results of NetZ particularly at high redshifts, we propose further investigations
along the lines of combining our CNN with a nearest-neighbor algorithm or a fully-connected
network that ingests catalog-based photometric quantities (see Leal-Taixé et al., 2016). There are
several methods, like DEmP and other methods (e.g. D’Isanto & Polsterer, 2018; Schmidt et al.,
2020), which provide a probability distribution function for the redshifts. Further developments
of our CNN approach to provide a probability distribution function of the photo-z require more
complex networks such as Bayesian neural networks (e.g., Perreault Levasseur et al., 2017) or
mixture density networks (D’Isanto & Polsterer, 2018; Hatfield et al., 2020; Eriksen et al., 2020).
While this is beyond the scope of the current paper, such Bayesian or mixture networks are worth
exploring.

In this work, we show that a very simple convolutional neural network is able to predict
accurate redshifts directly from the observed galaxy images. NetZ therefore has the advantage
of using maximal information from the intensity pixels in the galaxy images, rather than relying
on photometric or morphological measurements that could be prone to uncertainties and biases,
especially for images of blended galaxies. We ran NetZmain on 34,414,686 galaxies from the
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HSC public data release 2 (PDR2) wide survey and provide the catalog here5 . We flagged
all negative predictions and clear catastrophic outliers (zpred > 5), which are 15,043 and 3,314
objects, respectively, as −99. In Figure 6.14, we show a histogram of the newly available photo-z
values (blue filled), whose distribution resembles the magnitude-limited sample of the cleaned
COSMOS2015 (Laigle et al., 2018, orange histogram), which was scaled by a factor of 1010, to
have the same sample size for the purposes of making a direct comparison. This check shows
that our NetZ predictions indeed produce a realistic galaxy redshift distribution expected for a
depth similar to that of LSST.

0 1 2 3 4 5
z

102

103

104

105

106
zpred by NetZ
COSMOS2015

Figure 6.14: Histogram of the newly predicted photo-z values with NetZ based on images of the HSC
PDR2 (blue filled) and, for comparison, the distribution of COSMOS2015 (Laigle et al.,
2018) scaled by a factor of 1010 to have the same sample size (orange open). The similarity
in the two distributions shows that NetZ produces a realistic galaxy redshift distribution.

As the image quality, depth and processing of HSC and LSST first-year data are expected to
be similar (the image processing pipeline of HSC is a branch of the LSST pipeline), the method
we have developed here will be directly applicable and beneficial to the glslinkLSSTLSST.
The additional u-filter in the LSST will likely further improve photo-z predictions. When
applying our method to the LSST data, we do not expect to necessarily have to test the network
architecture, however, it is likely that some hyper-parameter combinations would need testing.
Since training is more optimally carried out on real images, rather than on mock images as
done, for instance, in Schmidt et al. (2020, and references therein), we suggest that it is optimal

5The catalog is available at https://www.dropbox.com/sh/grjfo0gkcxsj9n2/AAD-B7D6m7_
1i6GGTX0Ionwja?dl=0
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to train a new network on LSST images as soon as they are available.
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7 Conclusion & Outlook

Strong gravitational lensing with its versatile nature has become a very powerful tool leading
to remarkable achievements in astrophysics and cosmology. It enables the opportunity to probe
many different aspects and help to answer outstanding questions in those research fields. This
thesis aims to model galaxy-galaxy lensing systems in a fast and efficient way, which is highly
needed to cope with the current and upcoming wide-field imaging surveys from which we expect
100,000 lenses. The presented modeling networks and pipelines allow us to cope with this
amount of lenses, and thus help to pave the way for further dedicated studies of the lenses.
Especially lensed time-variable objects such as SNe require fast and dedicated modeling of their
host galaxies to predict when and where the next strongly lensed image will appear. This allows
us to observe the SN spectra before the peak luminosity is reached. Early spectra are crucial
to shed light onto their progenitor systems, which are still unclear. Moreover, strongly lensed
SNe allows to measure the Hubble constant H0 through the time delay between the different
appearing images. This helps to resolve the current debate between early and late Universe
measurements and clarifies whether new physics is required for this.

For nearly all studies in astrophysics and cosmology, a redshift of the analyzed object, like a
SN, quasar, star or directly a full galaxy, is needed. This holds also for lensing studies, where a
lens and a source redshift is required and a possibility to confirm the lensing nature. Therefore,
well tested photo-z methods with good performance are indispensable for the huge amount of
observed objects. This is the second aspect of the thesis, where we present an extensively tested
novel approach to estimate their photo-z.

7.1 Lens mass modeling

In Chapter 3, we presented a CNN to predict the SIE parameters of strongly lensed galaxy-galaxy
lens systems. Since most of the lenses are detected with ground based facilities, our network is
trained specifically for images from HSC, which is a wide-field imaging survey in multi-band
and with very good image quality. To train the network, it is crucial to use realistic mock data to
obtain trustworthy performance on the test set, which is also simulated. For this we developed
a simulation pipeline to essentially lens the image of a real observed galaxy and paint these arcs
to another real observed image. In our case, we use images from HSC PDR2 as lens image,
together with measured velocity dispersion and redshifts from SDSS. As background sources
we used images and redshifts from HUDF by taking advantage of their high redshift and very
good resolution compared to HSC. Given the HSC pixel size of 0.168′′, we set a lower limit on
the Einstein radius θE of 0.5′′ to ensure the detectability of the arcs. With this procedure, we
generate three samples of ∼ 100, 000 mock images with different Einstein radius distributions.
The first sample represents a naturally distribution on θE, the second a flat distribution up to
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∼ 2′′, and the third sample has a lower limit of θE = 2′′. We present for all three samples
specific CNNs through extensive tests on the architecture and hyper-parameter combination. In
general, we find good performance of the networks, and advocate finally a flat distribution as it
gives much better performance on the systems with larger image separation with an acceptable
performance on the very small image separation systems. Moreover, we test in this chapter the
improvement by training a network specifically for quads (four image configurations) and test
as well the possibility of a network dedicated for doubles (two image configurations).

We further demonstrate in this chapter the possibility of using the CNN output to predict the
lensed image position(s) and time delay(s), in case a short-lived transient such as a SN is addi-
tionally lensed in such a system. We find in general similar performance for all three different
samples and no strong correlation on the lens/source brightness ratio as shown in Fig. 3.13. The
accuracy is very good for the time delay, time-delay ratio and also image positions, while the
precision is as expected for the adopted SIE profile and ground-based images.

In Chapter 4 we built upon this work and show the ability of predicting the SIE+γext parame-
ters with corresponding 1σ uncertainties through a residual neural network. For this, we upgrade
the simulation pipeline by adding the external shear component, but also improve by including
the Poisson noise on the arcs. We further refine the lens center and ellipticity estimation of the
first and second brightness moments by including a proper mask of the lens. We then recenter
the lens cutout and finally shift the mock image by up to ±3 pixel to enforce the network to learn
the lens mass center instead of the cutout center. With the upgraded pipeline, we generate again
∼ 100, 000 mock images with a flat distribution of the Einstein radius up to θE ∼ 2′′ for better
performance over the full range. The most difficult parameters to infer are those of the external
shear, possibly as the influence is very minor and only encoded in the arcs. However, our tests
with a simplified setup suggest that the network is in general able to extract the external shear
and blending with the arcs are not the main issue. Providing the network further information
though including the FWHM values or the PSF directly as image did not result in an improve-
ment on the external shear. Although we carried out extensive tests, investigations are needed to
further test possible reasons for the difficulty and options to overcome it.

Even if the light distribution of the lens galaxy and the unlensed source galaxy are real, the
presented networks are trained on mock images. Therefore we present in Chapter 5 a direct
comparison on real lenses. The comparison sample consists of 32 grade A galaxy-scale lenses
found in the SuGOHI program (Sonnenfeld et al., 2018a; Wong et al., 2018; Sonnenfeld et al.,
2019; Chan et al., 2020; Jaelani et al., 2020a; Sonnenfeld et al., 2020; Jaelani et al., 2021). We
apply the trained network from Chapter 4 to that sample, and also model them with GLEE &
GLaD, state-of-the-art software packages with Bayesian inference. Since these techniques are
very time and resource consuming, we develop a dedicated procedure to model galaxy-galaxy
lenses observed with ground based facilities to reduce the required user input time. After mod-
eling all 32 lenses uniformly with this code, we further refine some models to further improve
the fit for the comparison. For this, we present gleeauto.py, a software package that allows the
user to specify an optimization sequence which then the code performs without any further user
input. Using both presented GLEE & GLaD automation codes, we obtained good models for
our 32 lenses, which we then compared to our network predictions. We find overall very good
performance of the network compared to the performance on the test set. This highlights how
realistic our mocks are.
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Since the main focus was on the model comparison rather than performing many dedicated
tests with our automated modeling pipeline, there are several possibilities to improve the code
further both in terms of fitting and computational time. For instance the second part, the lens
light fit, is currently performed with GLEE and for the fourth part, the arc light modeling, trans-
ferred to GLaD. By performing directly the lens light modeling in GLaD, the first optimization
step (m=1) would be unnecessary, resulting in a clear reduction of computational time. More-
over, the sampling sequences can be better tested and then optimized. Beside these technical
improvements mainly to reduce the computational time, also investigations in automating the
masking and parameter estimate would be helpful such that this code can fully autonomously
model lenses. A possibility is to use auto encoders to deblend source and lens as suggested e.g.,
in Rojas et al. (2021) and Savary et al. (2021), or by making use of color information from differ-
ent filters as done in Chitah (Chan et al., 2020). This would allow to apply the code to a larger
set of lenses and, for instance, use the obtained model to rule out some false-positives. This
would increase the purity of lenses in our sample and save spectroscopic follow-up resources.
We demonstrate this procedure in Taubenberger et al. (in prep.) with a dozen lens candidates
and confirm with spectroscopic observations.

Given the higher uncertainties predicted by the network compared to GLEE & GLaD, a com-
plete new project would be to combine DL and state-of-the-art optimization directly in one
modeling pipeline in analogy to Pearson et al. (2021). This means the code first predict the
SIE+γext values through an optimized network, and use then these estimates as starting values
for an MCMC sampling for refinement. One could also use the network output to select peculiar
lensing systems with e.g., high image separation and just analyze them further. A direct combi-
nation of network and GLEE & GLaD, however, need definitively an automation in the masking
or automated image position detection for an source/image position optimization.

Despite these possibilities of further developments, combining the modeling tools devel-
oped and presented in this thesis, ranging from machine-learning CNNs and ResNets to au-
tomated stat-of-the-art modeling tools, we are able to efficiently model the expected number of
∼ 100, 000 lenses from current and upcoming wide-field imaging surveys. This enables statisti-
cal analysis of thousands of lenses, fast and also detailed modeling without much user input for
follow-up observations of lensed SNe allowing us to study their progenitor systems as well as
time-delay cosmography to measure H0.

7.2 Redshift estimation with NetZ

Beside the lensing aspect, we develop and present in Chapter 6 a novel approach to systemati-
cally predict photometric redshifts for galaxies. For this the network is trained directly on the
image cutouts instead of extracted quantities such as color-magnitude or size-compactness infor-
mation of a galaxy. The performance of the network has been demonstrated with HSC images
through a detailed comparison to DEmP, another photo-z code that gave the best accuracies on
HSC data. We find that our main network performs especially well in the high-redshift range
without drastic cuts on e.g., the brightness, which will be very important for upcoming deep
imaging surveys such as LSST. One of the main advantages of our technique is the possibil-
ity of data augmentation in the training process to obtain a more uniformly distributed training
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sample. With this network we have predicted and published > 34 million photometric redshifts.
Moreover, we present dedicated networks for the low end of the redshift range, which resulted in
NetZlowz, and also for LRGs, as specific type of galaxies, resulting in NetZLRG. Both networks
are also trained on HSC data and show very good results. Given the similarity of HSC images
to the expected image quality and filters of LSST, this method will be immediately applicable
with similar performance to LSST and thus enables a variety of science applications in the next
decade.

The presented network demonstrate the possibility of using image cutouts directly and we
are able to achieve encouraging performance. Therefore, a straight forward improvement of
NetZ would be to include an uncertainty prediction similar as we have done for the modeling
network in Chapter 4. A possibility here is to test also for NetZ whether a residual neural network
provide an additional improvement. Another extension would be a hybrid network, which means
the input data are a combination of image cutouts and extracted catalog entries such as color,
magnitude, or size of the galaxy. This might result in an even better performance. In that case,
one need to be careful if data augmentation like our image rotation and flipping is still possible
given that the catalog entries are not changing at all. Although there are many options to test and
possibly improve the performance, the presented results are very good for a novel technique.
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A Model details of the 32 SuGOHI lens
systems

In this chapter we provide the best-fit parameter values for the 32 HSC SuGOHI lenses obtained
through our modeling with GLEE & GLaDas described in Sect. 5.4. In detail, we give in Tab. A.1
the obtained χ2 and χ2

red values of the final model. Moreover, we give the best.fit values for the
external shear, and in Tab. A.2 the best-fit values of the corresponding SIE profile describing the
mass distribution of the lens. The obtained best-fit values for the source light distribution are
given in Tab. A.3 (amplitudes) and Tab. A.4 (structural parameters).We provide in Tab. A.5 the
obtained parameter values of the Sérsic profiles describing the lens light distribution.

We further show here figures (Fig. A.1 - Fig. A.32) of all the 32 lenses to visualize the models.
Each figure show one lens system, from left to right the observed, the model, and the normalized
residuals, and from top to bottom the four different filters g, r, i, and z.

Table A.1: Achieved χ2 values and best fit values for the external shear by modeling the 32 HSC SuGOHI
lenses with GLEE & GLaD. Column 2 and 3 give, respectively, the χ2 and the reduced χ2,
which is defined as χ2 divided by the degrees of freedom (i.e. number of modeled pixel minus
varying parameters). This is followed by the external shear strength γext and its orientation
θext.

Name χ2 χ2
red γext θext [rad]

HSCJ015618-010747 1.68 × 104 1.19 0.084+0.005
−0.005 −0.47+0.09

−0.08

HSCJ020141-030946 1.97 × 104 1.55 0.073+0.003
−0.003 0.76+0.02

−0.02

HSCJ020241-064611 2.08 × 104 1.35 0.12+0.01
−0.03 −0.5+0.1

−0.1

HSCJ020955-024442 1.70 × 104 1.14 0.033+0.005
−0.005 1.62+0.07

−0.07

HSCJ021737-051329 1.55 × 104 1.18 0.067+0.02
−0.008 1.61+0.02

−0.03

HSCJ022346-053418 1.66 × 104 1.22 0.010+0.003
−0.002 −0.5+0.1

−0.1

HSCJ022610-042011 1.90 × 104 1.46 0.07+0.01
−0.02 3.0+0.1

−0.1

HSCJ023217-021703 1.72 × 104 1.15 0.040+0.005
−0.005 2.18+0.09

−0.09

HSCJ023322-020530 2.52 × 104 1.87 0.108+0.001
−0.001 0.8214+0.005

−0.005

HSCJ085046+003905 1.97 × 104 1.36 0.058+0.01
−0.005 3.14+0.01

−0.04

HSCJ085855-010208 1.84 × 104 1.30 0.074+0.003
−0.003 1.12+0.02

−0.02

HSCJ090429-010228 1.71 × 104 1.22 0.053+0.002
−0.002 1.622+0.006

−0.01

HSCJ094427-014742 1.58 × 104 1.12 0.085+0.005
−0.01 −2.47+0.3

−0.07
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A Model details of the 32 SuGOHI lens systems

Table A.1 Continued: Achieved χ2 values and best fit values for the external shear by modeling the 32
HSC SuGOHI lense with GLEE & GLaD.

Name χ2 χ2
red γext θext [rad]

HSCJ120623+001507 1.61 × 104 1.14 0.120+0.009
−0.02 0.98+0.09

−0.09

HSCJ121052-011905 1.92 × 104 1.29 0.040+0.005
−0.005 2.218+0.007

−0.007

HSCJ121504+004726 1.91 × 104 1.38 0.080+0.002
−0.004 1.96+0.07

−0.08

HSCJ124320-004517 1.58 × 104 1.17 0.086+0.003
−0.07 −2.02+0.03

−0.02

HSCJ125254+004356 1.70 × 104 1.24 0.087+0.003
−0.006 −2.98+0.04

−0.04

HSCJ135138+002839 1.82 × 104 1.65 0.048+0.001
−0.001 0.87+0.01

−0.01

HSCJ141136-010215 1.82 × 104 1.27 0.032+0.006
−0.006 3.05+0.05

−0.06

HSCJ141815+015832 1.62 × 104 1.17 0.09+0.01
−0.01 2.85+0.04

−0.06

HSCJ142720+001916 1.60 × 104 1.14 0.090+0.003
−0.005 1.06+0.05

−0.05

HSCJ144132-005358 1.97 × 104 1.69 0.06+0.02
−0.01 2.89+0.06

−0.02

HSCJ144320-012537 1.86 × 104 1.30 0.058+0.001
−0.001 2.27+0.02

−0.02

HSCJ145242+425731 1.56 × 104 1.24 0.060+0.006
−0.005 0.60+0.03

−0.03

HSCJ150021-004936 1.78 × 104 1.30 0.102+0.001
−0.003 3.045+0.006

−0.01

HSCJ150112+422113 2.03 × 104 1.63 0.134+0.001
−0.001 1.557+0.009

−0.008

HSCJ223733+005015 2.01 × 104 1.36 0.114+0.002
−0.005 3.126+0.007

−0.007

HSCJ230335+003703 1.91 × 104 1.26 0.027+0.003
−0.003 −0.59+0.03

−0.03

HSCJ230521-000211 2.08 × 104 1.53 0.049+0.001
−0.001 −0.59+0.02

−0.02

HSCJ233130+003733 2.10 × 104 1.45 0.075+0.001
−0.001 0.45+0.01

−0.01

HSCJ233146+013845 1.76 × 104 1.21 0.084+0.003
−0.003 1.78+0.01

−0.01

Table A.2: Obtained best fit parameter values for the SIE mass profile by modeling the 32 HSC SuGOHI
lense with GLEE & GLaD. The SIE mass parameters are the lens center xl and yl, the lens
mass axis ratio qlm, its orientation θlm, and the Einstein radius θE.

Name xl[′′] yl[′′] qlm θlm [rad] θE[′′]
HSCJ015618-010747 5.3+0.001

−0.001 5.446+0.001
−0.001 0.42+0.02

−0.01 0.32+0.05
−0.04 0.99+0.02

−0.01

HSCJ020141-030946 5.371+0.001
−0.001 5.324+0.001

−0.001 0.79+0.01
−0.01 1.77+0.04

−0.04 1.406+0.007
−0.007

HSCJ020241-064611 5.369+0.001
−0.001 5.437+0.001

−0.001 0.78+0.08
−0.04 2.7+0.2

−0.2 1.26+0.03
−0.02

HSCJ020955-024442 5.305+0.001
−0.001 5.397+0.002

−0.002 0.78+0.02
−0.02 1.74+0.03

−0.03 1.043+0.003
−0.003

HSCJ021737-051329 5.323+0.001
−0.001 5.448+0.001

−0.001 0.793+0.02
−0.02 0.08+0.08

−0.02 1.252+0.007
−0.02

HSCJ022346-053418 5.287+0.001
−0.001 5.356+0.001

−0.001 0.719+0.004
−0.004 2.499+0.01

−0.008 1.397+0.004
−0.003
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Table A.2 Continued: Obtained best fit parameter values for the SIE mass profile by modeling the 32
HSC SuGOHI lense with GLEE & GLaD.

Name xl[′′] yl[′′] qlm θlm [rad] θE[′′]

HSCJ022610-042011 5.435+0.001
−0.001 5.353+0.001

−0.001 0.90+0.06
−0.05 2.1+0.4

−0.3 1.16+0.02
−0.02

HSCJ023217-021703 5.318+0.001
−0.001 5.331+0.001

−0.001 0.65+0.02
−0.02 1.03+0.03

−0.03 1.345+0.009
−0.009

HSCJ023322-020530 5.343+0.002
−0.002 5.433+0.001

−0.001 0.74+0.003
−0.001 −2.284+0.006

−0.006 1.669+0.001
−0.001

HSCJ085046+003905 5.284+0.001
−0.001 5.383+0.001

−0.001 0.70+0.03
−0.02 4.59+0.02

−0.02 1.750+0.006
−0.01

HSCJ085855-010208 5.369+0.001
−0.001 5.391+0.001

−0.001 0.769+0.006
−0.007 1.04+0.02

−0.01 1.065+0.002
−0.002

HSCJ090429-010228 5.335+0.001
−0.001 5.269+0.001

−0.001 0.81+0.005
−0.005 0.08+0.005

−0.007 1.232+0.002
−0.002

HSCJ094427-014742 5.371+0.001
−0.001 5.458+0.001

−0.001 0.49+0.02
−0.08 1.59+0.06

−0.03 1.08+0.05
−0.01

HSCJ120623+001507 5.315+0.001
−0.001 5.36+0.001

−0.001 0.73+0.06
−0.04 −1.83+0.08

−0.1 1.07+0.01
−0.02

HSCJ121052-011905 5.405+0.001
−0.001 5.281+0.001

−0.001 0.733+0.001
−0.001 1.046+0.005

−0.005 1.529+0.008
−0.008

HSCJ121504+004726 5.324+0.001
−0.001 5.399+0.001

−0.001 0.96+0.03
−0.03 1.2+0.2

−0.1 1.398+0.008
−0.007

HSCJ124320-004517 5.410+0.001
−0.001 5.406+0.001

−0.001 0.86+0.02
−0.02 3.99+0.06

−0.08 1.506+0.004
−0.005

HSCJ125254+004356 5.336+0.001
−0.001 5.442+0.001

−0.001 0.91+0.01
−0.02 1.8+0.1

−0.1 1.899+0.007
−0.005

HSCJ135138+002839 5.444+0.001
−0.001 5.359+0.001

−0.001 0.777+0.002
−0.002 0.706+0.008

−0.008 2.216+0.001
−0.001

HSCJ141136-010215 5.32+0.001
−0.001 5.442+0.001

−0.001 0.77+0.01
−0.01 0.54+0.02

−0.03 1.081+0.003
−0.004

HSCJ141815+015832 5.283+0.001
−0.001 5.438+0.001

−0.001 0.81+0.04
−0.04 1.82+0.08

−0.07 1.34+0.01
−0.01

HSCJ142720+001916 5.253+0.001
−0.001 5.285+0.001

−0.001 0.73+0.03
−0.03 1.23+0.04

−0.04 1.491+0.009
−0.010

HSCJ144132-005358 5.377+0.001
−0.001 5.335+0.001

−0.001 0.608+0.005
−0.007 0.41+0.01

−0.01 1.078+0.02
−0.006

HSCJ144320-012537 5.410+0.001
−0.001 5.349+0.001

−0.001 0.665+0.004
−0.004 0.580+0.008

−0.008 1.206+0.001
−0.001

HSCJ145242+425731 5.436+0.001
−0.001 5.456+0.001

−0.001 0.663+0.005
−0.007 −2.75+0.02

−0.01 1.99+0.01
−0.01

HSCJ150021-004936 5.465+0.001
−0.001 5.47+0.001

−0.001 0.716+0.003
−0.004 2.56+0.01

−0.02 3.063+0.01
−0.008

HSCJ150112+422113 5.31+0.001
−0.001 5.384+0.001

−0.001 0.531+0.008
−0.008 0.255+0.005

−0.005 1.117+0.002
−0.001

HSCJ223733+005015 5.391+0.001
−0.001 5.461+0.001

−0.001 0.622+0.003
−0.003 0.565+0.001

−0.001 1.58+0.006
−0.004

HSCJ230335+003703 5.359+0.001
−0.001 5.441+0.001

−0.001 0.992+0.002
−0.002 3.0+0.1

−0.2 1.020+0.003
−0.003

HSCJ230521-000211 5.452+0.001
−0.001 5.456+0.001

−0.001 0.618+0.005
−0.005 −0.085+0.005

−0.005 1.777+0.003
−0.003

HSCJ233130+003733 5.324+0.001
−0.001 5.349+0.001

−0.001 0.688+0.004
−0.004 0.961+0.005

−0.005 1.502+0.001
−0.001

HSCJ233146+013845 5.380+0.001
−0.001 5.346+0.001

−0.001 0.882+0.006
−0.005 −0.50+0.03

−0.03 1.481+0.001
−0.001
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Table A.3: Reconstructed amplitudes of the adopted Sérsic profiles representing the source light obtained
with GLEE & GLaD. We give for the different components (column 2) the amplitudes A for
all four modeled filters g, r, i and z.

Name component Ag,s,comp Ar,s,comp Ai,s,comp Az,s,comp

HSCJ015618-010747 1 93+18
−30 116+22

−37 83+28
−30 238+47

−76

HSCJ020141-030946 1 2.205+0.09
−0.09 3.0+0.1

−0.1 3.4+0.1
−0.1 3.6+0.2

−0.2

HSCJ020241-064611 1 0.87+0.2
−0.2 1.1+0.2

−0.2 0.85+0.2
−0.2 0.97+0.2

−0.2

HSCJ020955-024442 1 0.71+0.04
−0.04 2.6+0.1

−0.1 1.92+0.1
−0.09 1.71+0.1

−0.09

HSCJ021737-051329 1 9.2+2
−3 10+2

−3 11+2
−4 12+2

−4

HSCJ022346-053418 1 25+1
−1 35+2

−2 48+1
−3 75+3

−4

HSCJ022610-042011 1 2.6+2
−0.7 2.8+2

−0.8 4+2
−1 6+4

−2

HSCJ023217-021703 1 0.48+0.09
−0.06 0.9+0.2

−0.1 0.8+0.2
−0.1 0.8+0.1

−0.1

HSCJ023322-020530
1 146.6+0.5

−0.7 262.6+0.4
−0.4 513.7+0.5

−0.6 772+1
−2

2 11.5+0.3
−0.3 7.76+0.2

−0.2 16.4+0.4
−0.4 9.76+0.5

−0.6
3 1.24+0.05

−0.05 0.674+0.03
−0.03 3.43+0.1

−0.1 0.90+0.08
−0.07

HSCJ085046+003905 1 3.31+0.08
−0.09 3.85+0.1

−0.1 3.8+0.1
−0.1 3.66+0.06

−0.08

HSCJ085855-010208 1 1.24+0.06
−0.06 1.67+0.08

−0.08 2.5+0.1
−0.1 3.8+0.2

−0.2

HSCJ090429-010228 1 7.16+0.09
−0.1 16.4+0.1

−0.2 18.9+0.2
−0.3 18.67+0.09

−0.06

HSCJ094427-014742 1 11+1
−2 20+2

−3 28+3
−4 45+4

−6

HSCJ120623+001507 1 41+6
−10 40+6

−10 40+6
−10 37+6

−9

HSCJ121052-011905 1 24+2
−3 33+2

−4 36+3
−5 46+3

−6

HSCJ121504+004726 1 11.2+0.2
−0.2 11.3+0.2

−0.2 11.6+0.2
−0.2 17.1+0.3

−0.3

HSCJ124320-004517 1 1.43+0.09
−0.1 2.1+0.1

−0.1 2.3+0.1
−0.2 2.5+0.2

−0.2

HSCJ125254+004356 1 0.28+0.02
−0.02 0.37+0.02

−0.02 0.66+0.04
−0.04 0.87+0.05

−0.05

HSCJ135138+002839 1 0.64+0.06
−0.05 0.68+0.06

−0.06 0.73+0.06
−0.06 0.82+0.07

−0.07

HSCJ141136-010215 1 39+4
−5 44+4

−6 42+4
−5 39+4

−5

HSCJ141815+015832 1 1.6+0.1
−0.1 2.2+0.2

−0.2 2.1+0.2
−0.2 2.4+0.2

−0.2

HSCJ142720+001916 1 1.6+0.1
−0.1 1.8+0.2

−0.2 2.2+0.2
−0.2 3.2+0.3

−0.3

HSCJ144132-005358 1 39+6
−13 36+5

−12 30+4
−10 41+6

−15

HSCJ144320-012537 1 4.62+0.08
−0.08 5.08+0.08

−0.08 5.25+0.08
−0.08 5.36+0.09

−0.1

HSCJ145242+425731 1 0.7+0.6
−0.3 1.04+0.8

−0.4 1.5+1.2
−0.6 1.6+1

−0.6

HSCJ150021-004936 1 10+8
−5 12+9

−6 8+6
−4 13+11

−7

HSCJ150112+422113 1 15.4+0.4
−0.4 19.9+0.5

−0.4 18.4+0.4
−0.4 23+0.6

−0.6
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Table A.3 Continued: Reconstructed amplitudes of the adopted Sérsic profiles representing the source
light obtained with GLEE & GLaD.

Name component Ag,s,comp Ar,s,comp Ai,s,comp Az,s,comp

HSCJ223733+005015 1 44+3
−4 44+3

−4 39+3
−4 46+3

−5

HSCJ230335+003703 1 40+4
−7 44+4

−8 50+5
−8 49+5

−8

HSCJ230521-000211 1 12.5+0.2
−0.2 12.3+0.2

−0.2 11.2+0.2
−0.2 10.8+0.2

−0.2

HSCJ233130+003733 1 10+0.9
−0.7 13+1

−1 15+1
−1 18+2

−1

HSCJ233146+013845 1 2.3+0.2
−0.2 4.0+0.4

−0.3 4.8+0.5
−0.4 5.6+0.6

−0.4
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Table A.4: Reconstructed structural parameter values describing the source light distribution of the 32
HSC SuGOHI lenses obtained with GLEE & GLaD. We give, respectively for the Sérsic
profile(s) specified in column 2, the unlensed source center coordinates xs and ys, the axis
ratio qs, its orientation θs, the effective radius reff,s, and the Sérsic index ns.

Name component xs,comp[′′] ys,comp[′′] qs,comp θs,comp [rad] reff,s,comp ns,comp

HSCJ015618-010747 1 6.0+0.1
−0.1 6.23+0.04

−0.05 0.25+0.04
−0.04 −1.36+0.04

−0.04 0.06+0.02
−0.01 2.61+0.85

−0.87

HSCJ020141-030946 1 5.02+0.03
−0.01 5.35+0.03

−0.03 0.140+0.005
−0.005 −2.889+0.009

−0.009 0.240+0.006
−0.006 0.52+0.03

−0.02

HSCJ020241-064611 1 5.6+0.2
−0.2 6.08+0.1

−0.2 0.38+0.08
−0.08 1.0+0.1

−0.1 0.13+0.01
−0.01 1.03+0.3

−0.2

HSCJ020955-024442 1 5.5+0.044
−0.043 5.24+0.03

−0.03 0.27+0.02
−0.02 0.02+0.02

−0.03 0.082+0.003
−0.003 0.51+0.03

−0.01

HSCJ021737-051329 1 5.45+0.04
−0.04 5.11+0.04

−0.1 0.38+0.04
−0.04 0.07+0.1

−0.06 0.059+0.009
−0.005 0.6+0.2

−0.06

HSCJ022346-053418 1 5.08+0.02
−0.02 5.60+0.02

−0.02 0.068+0.006
−0.005 1.761+0.007

−0.01 0.096+0.007
−0.006 0.512+0.02

−0.009

HSCJ022610-042011 1 5.1+0.1
−0.1 5.1+0.1

−0.1 0.20+0.06
−0.04 2.26+0.05

−0.04 0.18+0.02
−0.03 1.0+0.3

−0.2

HSCJ023217-021703 1 5.75+0.05
−0.05 5.35+0.05

−0.05 0.13+0.01
−0.01 −1.58+0.02

−0.02 0.30+0.02
−0.02 1.82+0.30

−0.24

HSCJ023322-020530
1 5.477+0.008

−0.007 4.650+0.007
−0.006 0.302+0.004

−0.005 −3.098+0.004
−0.004 0.064+0.001

−0.001 0.503+0.005
−0.002

2 ≡ xs1 ≡ ys1 0.128+0.004
−0.004 2.092+0.002

−0.003 0.201+0.002
−0.003 0.502+0.003

−0.001
3 4.839+0.009

−0.007 4.660+0.007
−0.006 0.202+0.003

−0.002 3.10+0.02
−0.02 0.179+0.005

−0.005 0.506+0.01
−0.005

HSCJ085046+003905 1 4.97+0.04
−0.06 5.93+0.04

−0.02 0.53+0.04
−0.04 0.29+0.1

−0.1 0.06+0.003
−0.002 2.39+0.2

−0.5

HSCJ085855-010208 1 5.34+0.02
−0.02 4.76+0.02

−0.02 0.29+0.01
−0.01 −2.21+0.01

−0.01 0.208+0.005
−0.005 1.00+0.04

−0.04

HSCJ090429-010228 1 5.79+0.01
−0.02 4.954+0.006

−0.004 0.065+0.008
−0.007 0.498+0.003

−0.003 0.064+0.002
−0.002 0.53+0.04

−0.02

HSCJ094427-014742 1 4.7+0.3
−0.06 4.78+0.06

−0.2 0.20+0.03
−0.06 −0.38+0.05

−0.03 0.096+0.01
−0.009 0.55+0.07

−0.04

HSCJ120623+001507 1 4.66+0.09
−0.1 4.41+0.2

−0.09 0.6+0.1
−0.1 3.04+0.07

−0.09 0.031+0.005
−0.003 1.3+0.3

−0.3

HSCJ121052-011905 1 5.46+0.04
−0.04 5.64+0.02

−0.02 0.01+0.001
−0.001 2.269+0.001

−0.001 0.16+0.01
−0.01 1.9+0.4

−0.3

HSCJ121504+004726 1 6.62+0.01
−0.03 5.27+0.09

−0.09 0.60+0.02
−0.02 −0.05+0.03

−0.03 0.128+0.002
−0.002 0.88+0.04

−0.03

HSCJ124320-004517 1 5.66+0.04
−0.03 4.96+0.05

−0.03 0.15+0.01
−0.01 −1.399+0.01

−0.01 0.28+0.008
−0.007 0.52+0.02

−0.01
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Table A.4 Continued: Reconstructed structual source light parameter values obtained with GLEE &
GLaD.

Name component xs,comp[′′] ys,comp[′′] qs,comp θs,comp [rad] reff,s,comp ns,comp

HSCJ125254+004356 1 4.34+0.04
−0.04 5.73+0.05

−0.05 0.58+0.03
−0.03 0.64+0.05

−0.05 0.272+0.008
−0.008 1.49+0.1

−0.09

HSCJ135138+002839 1 5.280+0.005
−0.005 5.02+0.01

−0.01 0.27+0.02
−0.02 −0.03+0.02

−0.02 0.157+0.008
−0.008 1.9+0.2

−0.1

HSCJ141136-010215 1 5.05+0.04
−0.04 5.60+0.04

−0.02 0.22+0.01
−0.02 −2.94+0.03

−0.03 0.033+0.004
−0.004 1.5+0.5

−0.4

HSCJ141815+015832 1 5.38+0.09
−0.08 6.01+0.08

−0.08 0.19+0.01
−0.01 2.97+0.02

−0.02 0.20+0.01
−0.01 0.89+0.1

−0.08

HSCJ142720+001916 1 5.56+0.07
−0.07 4.28+0.04

−0.02 0.133+0.009
−0.008 0.5+0.02

−0.01 0.28+0.01
−0.01 0.78+0.1

−0.09

HSCJ144132-005358 1 5.17+0.09
−0.09 5.93+0.1

−0.06 0.011+0.001
−0.001 3.112+0.005

−0.005 0.31+0.07
−0.04 0.7+0.3

−0.1

HSCJ144320-012537 1 5.748+0.008
−0.009 5.39+0.01

−0.01 0.586+0.008
−0.008 −3.11+0.02

−0.02 0.108+0.001
−0.001 0.69+0.03

−0.03

HSCJ145242+425731 1 4.72+0.05
−0.05 5.42+0.01

−0.01 0.026+0.004
−0.003 −1.221+0.003

−0.003 0.5+0.1
−0.1 5.4+0.5

−0.9

HSCJ150021-004936 1 4.87+0.02
−0.02 5.715+0.009

−0.01 0.041+0.006
−0.005 0.192+0.004

−0.006 0.12+0.04
−0.02 5.7+0.2

−0.5

HSCJ150112+422113 1 5.78+0.01
−0.01 4.64+0.01

−0.01 0.72+0.02
−0.02 −3.137+0.005

−0.003 0.081+0.002
−0.001 0.501+0.001

−0.001

HSCJ223733+005015 1 5.04+0.03
−0.02 6.56+0.02

−0.02 0.016+0.001
−0.001 1.53+0.003

−0.003 0.134+0.009
−0.007 0.52+0.02

−0.01

HSCJ230335+003703 1 5.26+0.02
−0.02 5.856+0.01

−0.01 0.011+0.001
−0.001 −0.851+0.001

−0.001 0.159+0.006
−0.005 0.55+0.07

−0.04

HSCJ230521-000211 1 5.79+0.02
−0.02 5.882+0.007

−0.008 0.51+0.01
−0.01 2.51+0.02

−0.02 0.07+0.001
−0.001 0.60+0.01

−0.01

HSCJ233130+003733 1 4.627+0.002
−0.002 5.04+0.02

−0.02 0.76+0.02
−0.02 0.40+0.05

−0.05 0.049+0.002
−0.002 2.6+0.2

−0.2

HSCJ233146+013845 1 5.84+0.02
−0.02 5.16+0.02

−0.02 0.209+0.01
−0.01 −2.971+0.009

−0.009 0.086+0.002
−0.003 1.1+0.1

−0.1
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Table A.5: Lens light parameter values obtained with GLEE & GLaD for the 32 HSC SuGOHI lenses.
We give, respectively for the first and second Sérsic profile the axis ratio qll, its orientation
θll, the effective radius reff,ll, Sérsic index nll, the amplitudes All for the four different filters
g, r, i, and z.

Name
qll,1 θll,1 [rad] reff,ll,1 nll,1 Ag,ll,1 Ar,ll,1 Ai,ll,1 Az,ll,1
qll,2 θll,2 [rad] reff,ll,2 nll,2 Ag,ll,2 Ar,ll,2 Ai,ll,2 Az,ll,2

HSCJ015618-010747
0.62+0.02

−0.03 0.42+0.04
−0.05 2.5+0.1

−0.1 0.53+0.04
−0.02 0.09+0.01

−0.01 0.044+0.004
−0.004 0.49+0.06

−0.05 0.29+0.05
−0.05

0.645+0.009
−0.009 0.69+0.02

−0.02 0.63+0.05
−0.05 3.3+0.2

−0.3 1.7+0.2
−0.2 0.37+0.05

−0.04 3.9+0.5
−0.4 6.2+0.8

−0.7

HSCJ020141-030946
0.563+0.003

−0.003 1.615+0.003
−0.003 0.71+0.03

−0.03 4.6+0.1
−0.1 2.7+0.2

−0.2 0.45+0.03
−0.03 5.7+0.4

−0.4 8.4+0.6
−0.5

0.80+0.02
−0.02 2.60+0.05

−0.05 2.37+0.03
−0.03 0.76+0.04

−0.04 0.167+0.006
−0.005 0.059+0.001

−0.001 0.25+0.01
−0.01 0.30+0.02

−0.02

HSCJ020241-064611
0.946+0.005

−0.006 1.61+0.05
−0.05 0.541+0.003

−0.003 1.79+0.02
−0.02 2.98+0.05

−0.06 0.709+0.009
−0.01 6.90+0.07

−0.07 5.9+0.4
−0.3

0.97+0.02
−0.03 −0.5+0.5

−0.6 0.69+0.02
−0.02 2.9+0.1

−0.2 0.03+0.03
−0.02 0.002+0.004

−0.002 0.01+0.02
−0.01 2.3+0.3

−0.3

HSCJ020955-024442
0.88+0.01

−0.01 1.15+0.05
−0.06 0.98+0.01

−0.01 1.14+0.07
−0.06 0.38+0.01

−0.01 0.121+0.005
−0.005 0.78+0.02

−0.02 1.06+0.03
−0.04

0.78+0.08
−0.06 1.787+0.2

−0.2 0.115+0.007
−0.007 0.58+0.1

−0.06 5.9+0.4
−0.5 0.3+0.2

−0.2 28+1
−3 46+2

−4

HSCJ021737-051329
0.85+0.01

−0.01 2.87+0.04
−0.05 3.7+0.3

−0.3 3.4+0.3
−0.3 0.044+0.006

−0.005 0.017+0.002
−0.002 0.076+0.01

−0.009 0.11+0.02
−0.01

0.97+0.02
−0.02 −0.1+0.2

−0.2 0.20+0.01
−0.02 5.90+0.08

−0.2 3.29+0.48
−0.33 0.36+0.06

−0.06 13+2
−1 21+4

−2

HSCJ022346-053418
0.683+0.006

−0.006 2.98+0.02
−0.02 0.36+0.02

−0.02 2.8+0.2
−0.1 4.7+0.3

−0.4 0.75+0.05
−0.05 11.5+0.8

−0.9 17+1
−1

0.553+0.005
−0.005 2.639+0.006

−0.007 2.92+0.08
−0.07 1.82+0.08

−0.08 0.24+0.02
−0.02 0.071+0.003

−0.003 0.48+0.03
−0.03 0.66+0.04

−0.04

HSCJ022610-042011
0.802+0.004

−0.004 2.64+0.02
−0.02 0.63+0.08

−0.05 5.98+0.02
−0.03 1.8+0.2

−0.3 0.36+0.05
−0.05 4.1+0.5

−0.6 6.0+0.8
−0.9

0.831+0.01
−0.009 −0.95+0.03

−0.05 1.69+0.01
−0.01 0.9+0.1

−0.1 0.27+0.02
−0.02 0.074+0.004

−0.004 0.50+0.04
−0.05 0.75+0.05

−0.08

HSCJ023217-021703
0.845+0.006

−0.007 0.72+0.02
−0.02 1.18+0.02

−0.02 1.16+0.05
−0.05 0.44+0.01

−0.01 0.112+0.004
−0.004 0.99+0.03

−0.03 1.43+0.04
−0.04

0.84+0.02
−0.03 1.36+0.08

−0.08 0.152+0.006
−0.005 0.9+0.1

−0.1 12.4+0.7
−0.7 2.3+0.1

−0.1 30+2
−2 44+3

−2

HSCJ023322-020530
0.636+0.008

−0.008 0.30+0.01
−0.01 0.499+0.004

−0.004 0.504+0.006
−0.003 1.66+0.02

−0.02 0.22+0.02
−0.02 6.63+0.06

−0.07 11.1+0.1
−0.1

0.873+0.01
−0.01 0.18+0.05

−0.05 2.19+0.03
−0.03 0.92+0.05

−0.05 0.118+0.003
−0.003 0.079+0.003

−0.002 0.283+0.009
−0.009 0.46+0.01

−0.01

HSCJ085046+003905
0.78+0.06

−0.06 2.4+0.2
−0.2 0.028+0.006

−0.005 1.3+0.7
−0.4 3+1

−2 20.7+0.5
−0.4 48+1

−2 47+2
−2

0.839+0.009
−0.01 1.58+0.03

−0.03 0.71+0.01
−0.01 3.3+0.1

−0.1 0.255+0.008
−0.009 0.046+0.003

−0.003 0.83+0.03
−0.03 1.85+0.05

−0.07
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Table A.5 Continued: Lens light parameter values obtained with GLEE & GLaD for the 32 HSC SuG-
OHI lenses.

Name
qll,1 θll,1 [rad] reff,ll,1 nll,1 Ag,ll,1 Ar,ll,1 Ai,ll,1 Az,ll,1
qll,2 θll,2 [rad] reff,ll,2 nll,2 Ag,ll,2 Ar,ll,2 Ai,ll,2 Az,ll,2

HSCJ085855-010208
0.78+0.02

−0.02 0.43+0.04
−0.04 1.52+0.05

−0.07 4.9+0.1
−0.2 0.21+0.03

−0.02 0.044+0.006
−0.003 0.50+0.06

−0.04 0.73+0.09
−0.05

0.77+0.01
−0.01 0.76+0.02

−0.02 0.998+0.007
−0.006 0.71+0.02

−0.02 1.31+0.02
−0.03 0.342+0.008

−0.009 2.41+0.04
−0.06 3.30+0.06

−0.08

HSCJ090429-010228
0.37+0.02

−0.02 3.41+0.02
−0.02 0.19+0.03

−0.02 5.7+0.7
−0.8 0.05+0.05

−0.03 0.016+0.008
−0.004 6+2

−2 19+6
−5

0.92+0.02
−0.02 1.64+0.1

−0.1 1.30+0.02
−0.02 0.501+0.001

−0.001 0.207+0.004
−0.004 0.05+0.002

−0.002 0.25+0.006
−0.006 0.35+0.01

−0.01

HSCJ094427-014742
0.81+0.02

−0.02 3.11+0.03
−0.04 0.27+0.04

−0.02 5.88+0.09
−0.2 3.1+0.6

−0.7 0.60+0.09
−0.09 9+2

−2 14+2
−3

0.90+0.03
−0.03 −1.3+0.1

−0.1 2.8+0.3
−0.4 3.0+0.5

−0.4 0.06+0.02
−0.01 0.020+0.006

−0.003 0.10+0.03
−0.02 0.15+0.05

−0.03

HSCJ120623+001507
0.751+0.009

−0.009 2.47+0.02
−0.02 0.159+0.002

−0.002 1.3+0.1
−0.1 11.7+0.2

−0.3 2.17+0.05
−0.05 33.3+0.5

−0.7 48.9+0.7
−1

0.877+0.004
−0.004 2.25+0.02

−0.02 1.58+0.02
−0.01 1.64+0.05

−0.05 0.305+0.005
−0.006 0.078+0.002

−0.002 0.78+0.01
−0.02 1.12+0.02

−0.02

HSCJ121052-011905
0.91+0.01

−0.01 −2.03+0.2
−0.07 0.148+0.004

−0.003 5.9+0.1
−0.3 4.2+0.2

−0.3 0.02+0.03
−0.009 16.1+0.5

−0.9 24.8+0.8
−1

0.651+0.007
−0.006 1.418+0.009

−0.01 1.99+0.02
−0.03 2.07+0.05

−0.06 0.126+0.004
−0.003 0.062+0.002

−0.001 0.352+0.008
−0.007 0.56+0.01

−0.01

HSCJ121504+004726
0.602+0.008

−0.01 1.14+0.01
−0.01 0.586+0.008

−0.007 5.94+0.04
−0.07 0.77+0.01

−0.01 0.017+0.007
−0.005 3.04+0.05

−0.03 4.55+0.07
−0.07

0.64+0.01
−0.01 −2.84+0.02

−0.02 1.43+0.03
−0.03 2.93+0.1

−0.09 0.243+0.01
−0.009 0.126+0.005

−0.004 0.48+0.02
−0.02 0.8+0.03

−0.03

HSCJ124320-004517
0.706+0.006

−0.006 0.01+0.01
−0.01 1.47+0.04

−0.04 5.96+0.03
−0.07 0.197+0.009

−0.008 0.035+0.002
−0.002 0.66+0.03

−0.02 0.99+0.04
−0.04

0.64+0.02
−0.02 2.69+0.03

−0.03 1.64+0.03
−0.03 0.506+0.01

−0.004 0.146+0.006
−0.006 0.063+0.003

−0.003 0.22+0.01
−0.01 0.31+0.02

−0.02

HSCJ125254+004356
0.738+0.001

−0.001 1.804+0.008
−0.003 0.94+0.01

−0.01 5.989+0.008
−0.007 0.494+0.009

−0.01 0.078+0.002
−0.003 1.77+0.03

−0.04 2.79+0.06
−0.06

0.9+0.001
−0.001 2.149+0.02

−0.008 1.979+0.02
−0.008 0.502+0.003

−0.001 0.119+0.002
−0.002 0.070+0.002

−0.002 0.216+0.009
−0.008 0.269+0.007

−0.008

HSCJ135138+002839
0.768+0.001

−0.002 0.626+0.006
−0.006 0.424+0.002

−0.002 3.24+0.01
−0.01 4.30+0.03

−0.03 0.728+0.009
−0.008 10.25+0.06

−0.07 14.44+0.09
−0.09

0.87+0.001
−0.001 2.986+0.007

−0.008 2.047+0.005
−0.005 0.501+0.001

−0.001 0.343+0.002
−0.002 0.128+0.001

−0.001 0.666+0.004
−0.005 0.904+0.007

−0.008

HSCJ141136-010215
0.38+0.02

−0.02 0.84+0.01
−0.01 0.136+0.005

−0.004 2.2+0.4
−0.3 4.8+0.2

−0.3 0.03+0.04
−0.02 20.7+0.5

−1 49+1
−2

0.56+0.02
−0.01 0.694+0.02

−0.02 1.29+0.02
−0.03 0.503+0.005

−0.002 0.117+0.007
−0.007 0.069+0.003

−0.003 0.24+0.02
−0.02 0.55+0.04

−0.04

HSCJ141815+015832
0.81+0.02

−0.02 1.18+0.05
−0.06 0.38+0.06

−0.03 5.6+0.3
−0.4 2.4+0.3

−0.4 0.35+0.05
−0.06 6.5+0.8

−1 10+1
−2

0.71+0.03
−0.03 1.66+0.04

−0.04 2.4+0.2
−0.1 2.0+0.2

−0.2 0.09+0.02
−0.01 0.057+0.006

−0.006 0.22+0.03
−0.04 0.32+0.05

−0.05
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Table A.5 Continued: Lens light parameter values obtained with GLEE & GLaD for the 32 HSC SuG-
OHI lenses.

Name
qll,1 θll,1 [rad] reff,ll,1 nll,1 Ag,ll,1 Ar,ll,1 Ai,ll,1 Az,ll,1
qll,2 θll,2 [rad] reff,ll,2 nll,2 Ag,ll,2 Ar,ll,2 Ai,ll,2 Az,ll,2

HSCJ142720+001916
0.829+0.006

−0.007 −0.13+0.02
−0.02 0.35+0.02

−0.008 5.7+0.2
−0.5 2.7+0.1

−0.1 0.54+0.03
−0.02 8.07+0.3

−0.4 12.2+0.5
−0.6

0.752+0.006
−0.007 0.21+0.02

−0.02 1.44+0.06
−0.03 2.14+0.07

−0.1 0.26+0.01
−0.02 0.062+0.005

−0.005 0.58+0.04
−0.04 0.91+0.06

−0.07

HSCJ144132-005358
0.678+0.005

−0.004 0.414+0.005
−0.005 0.55+0.02

−0.02 1.71+0.03
−0.03 2.62+0.07

−0.07 0.60+0.02
−0.02 7.2+0.2

−0.2 10.9+0.3
−0.3

0.509+0.002
−0.002 0.471+0.002

−0.002 3.96+0.04
−0.04 1.33+0.03

−0.03 0.281+0.005
−0.005 0.037+0.001

−0.001 0.76+0.01
−0.01 1.13+0.02

−0.02

HSCJ144320-012537
0.52+0.01

−0.01 0.57+0.01
−0.01 1.18+0.04

−0.04 4.0+0.2
−0.1 0.094+0.006

−0.006 0.010+0.001
−0.001 0.38+0.02

−0.02 0.99+0.05
−0.05

0.87+0.02
−0.02 −1.19+0.06

−0.06 1.33+0.02
−0.02 0.502+0.004

−0.002 0.179+0.006
−0.006 0.134+0.003

−0.003 0.208+0.009
−0.009 0.29+0.02

−0.02

HSCJ145242+425731
0.77+0.02

−0.02 2.73+0.04
−0.05 2.42+0.06

−0.06 0.86+0.07
−0.06 0.067+0.004

−0.004 0.03+0.002
−0.002 0.20+0.01

−0.01 0.3+0.02
−0.02

0.65+0.01
−0.01 2.99+0.02

−0.02 0.252+0.004
−0.004 5.8+0.1

−0.3 3.90+0.09
−0.08 0.58+0.03

−0.03 16.0+0.4
−0.3 24.4+0.5

−0.5

HSCJ150021-004936
0.878+0.004

−0.004 2.74+0.03
−0.02 0.281+0.003

−0.004 2.08+0.06
−0.06 11.8+0.2

−0.3 2.06+0.05
−0.07 26.6+0.5

−0.6 37.9+0.7
−0.9

0.88+0.003
−0.003 2.08+0.01

−0.01 1.80+0.02
−0.03 2.49+0.1

−0.08 0.52+0.02
−0.01 0.128+0.004

−0.004 0.99+0.04
−0.03 1.40+0.06

−0.04

HSCJ150112+422113
0.756+0.006

−0.005 0.23+0.01
−0.01 0.684+0.008

−0.007 2.90+0.07
−0.1 3.7+0.1

−0.2 0.37+0.06
−0.06 0.8+0.2

−0.3 2.2+0.3
−0.4

0.711+0.005
−0.005 0.308+0.009

−0.008 0.59+0.01
−0.01 5.8+0.1

−0.2 0.2+0.2
−0.1 0.78+0.06

−0.06 6.3+0.2
−0.2 7.1+0.3

−0.3

HSCJ223733+005015
0.841+0.005

−0.005 −2.59+0.02
−0.02 0.114+0.001

−0.001 5.6+0.3
−0.4 16.5+0.2

−0.4 3.9+0.1
−0.1 49.3+0.5

−1 77.5+0.8
−2

0.909+0.006
−0.005 2.40+0.03

−0.03 1.277+0.007
−0.008 0.8+0.02

−0.01 0.310+0.006
−0.005 0.091+0.003

−0.003 0.81+0.02
−0.01 1.25+0.03

−0.02

HSCJ230335+003703
0.672+0.004

−0.003 3.005+0.009
−0.009 0.335+0.006

−0.006 3.29+0.06
−0.05 4.59+0.1

−0.09 0.74+0.02
−0.02 10.3+0.3

−0.2 15.0+0.4
−0.3

0.847+0.004
−0.004 −3.10+0.01

−0.01 1.89+0.02
−0.01 2.04+0.04

−0.03 0.329+0.006
−0.006 0.094+0.002

−0.002 0.68+0.01
−0.01 0.91+0.02

−0.02

HSCJ230521-000211
0.86+0.005

−0.005 0.04+0.02
−0.02 0.183+0.002

−0.001 5.94+0.05
−0.1 13.15+0.1

−0.2 1.97+0.05
−0.05 33.5+0.3

−0.6 49.4+0.4
−0.9

0.777+0.005
−0.005 3.08+0.01

−0.01 1.497+0.008
−0.008 0.98+0.02

−0.02 0.418+0.005
−0.005 0.134+0.003

−0.003 0.867+0.008
−0.008 1.16+0.01

−0.01

HSCJ233130+003733
0.402+0.001

−0.001 0.850+0.003
−0.002 1.60+0.02

−0.02 2.508+0.02
−0.009 0.351+0.006

−0.004 0.052+0.002
−0.002 1.054+0.02

−0.007 1.68+0.03
−0.02

0.445+0.001
−0.001 0.797+0.007

−0.006 2.25+0.02
−0.02 0.518+0.008

−0.003 0.191+0.005
−0.005 0.102+0.003

−0.003 0.324+0.009
−0.01 0.38+0.01

−0.02

HSCJ233146+013845
0.71+0.01

−0.01 2.63+0.02
−0.02 1.71+0.02

−0.02 0.52+0.03
−0.02 0.193+0.007

−0.006 0.057+0.003
−0.003 0.37+0.01

−0.01 0.61+0.02
−0.02

0.893+0.004
−0.004 2.38+0.02

−0.03 0.88+0.02
−0.02 3.32+0.04

−0.04 0.99+0.03
−0.03 0.195+0.007

−0.007 2.24+0.07
−0.07 3.10+0.1

−0.09
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Figure A.1: Fit of lens HSCJ015618-010747. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.2: Fit of lens HSCJ020141-030946. Top to bottom: g, r, i, and z filters.
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Figure A.3: Fit of lens HSCJ020241-064611. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.4: Fit of lens HSCJ020955-024442. Top to bottom: g, r, i, and z filters.
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Figure A.5: Fit of lens HSCJ021737-051329. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.6: Fit of lens HSCJ022346-053418. Top to bottom: g, r, i, and z filters.
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Figure A.7: Fit of lens HSCJ022610-042011. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.8: Fit of lens HSCJ023217-021703. Top to bottom: g, r, i, and z filters.
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Figure A.9: Fit of lens HSCJ023322-020530. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.10: Fit of lens HSCJ085046+00390. Top to bottom: g, r, i, and z filters.
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Figure A.11: Fit of lens HSCJ085855-010208. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.12: Fit of lens HSCJ090429-010228. Top to bottom: g, r, i, and z filters.
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Figure A.13: Fit of lens HSCJ094427-014742. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.14: Fit of lens HSCJ120623+001507. Top to bottom: g, r, i, and z filters.
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Figure A.15: Fit of lens HSCJ121052-011905. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.16: Fit of lens HSCJ121504+004726. Top to bottom: g, r, i, and z filters.

222



Figure A.17: Fit of lens HSCJ124320-004517. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.18: Fit of lens HSCJ125254+004356. Top to bottom: g, r, i, and z filters.
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Figure A.19: Fit of lens HSCJ135138+002839. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.20: Fit of lens HSCJ141136-010215. Top to bottom: g, r, i, and z filters.
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Figure A.21: Fit of lens HSCJ141815+015832. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.22: Fit of lens HSCJ142720+001916. Top to bottom: g, r, i, and z filters.
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Figure A.23: Fit of lens HSCJ144132-005358. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.24: Fit of lens HSCJ144320-012537. Top to bottom: g, r, i, and z filters.
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Figure A.25: Fit of lens HSCJ145242+425731. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.26: Fit of lens HSCJ150021-004936. Top to bottom: g, r, i, and z filters.
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Figure A.27: Fit of lens HSCJ150112+422113. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.28: Fit of lens HSCJ223733+005015. Top to bottom: g, r, i, and z filters.
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Figure A.29: Fit of lens HSCJ230335+003703. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.30: Fit of lens HSCJ230521-000211. Top to bottom: g, r, i, and z filters.
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Figure A.31: Fit of lens HSCJ233130+003733. Top to bottom: g, r, i, and z filters.
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A Model details of the 32 SuGOHI lens systems

Figure A.32: Fit of lens HSCJ233146+013845. Top to bottom: g, r, i, and z filters.

238


	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Overview of gravitational lensing
	1.1.1 Weak gravitational lensing
	1.1.2 Microlensing
	1.1.3 Strong gravitational lensing
	1.1.3.1 Lens mass studies
	1.1.3.2 High-z studies
	1.1.3.3 Hubble constant measurements using quasar time delays
	1.1.3.4 Studies with lensed SNsupernovae


	1.2 Searches for strong galaxy-scale lenses
	1.2.1 Pattern based searches
	1.2.2 Spectroscopic searches
	1.2.3 Search techniques using modeling
	1.2.4 Lens searches as citizen science
	1.2.5 MLMachine learning based searches
	1.2.6 Searches of lensed quasars

	1.3 Imaging surveys
	1.3.1 Current wide-field imaging surveys
	1.3.2 Upcoming surveys and facilities
	1.3.3 The HSCHyper Suprime-Cam Subaru Strategic Program

	1.4 Redshifts
	1.4.1 The need of redshifts
	1.4.2 Spectroscopic redshifts
	1.4.3 Photometric redshifts
	1.4.3.1 Template fitting techniques
	1.4.3.2 Photo-z through MLmachine learning


	1.5 MLMachine learning
	1.5.1 CNNConvolutional neural networks
	1.5.2 ResNetResidual neural networks
	1.5.3 Training process for supervised learning

	1.6 Thesis outline

	2 Lensing formalism and traditional lens modeling
	2.1 Lensing formalism
	2.1.1 Lens equation
	2.1.2 Convergence and the critical mass density
	2.1.3 Deflection angle and the lens potential
	2.1.4 SBSurface brightness conservation, magnification, and shear
	2.1.5 Multi-plane lensing

	2.2 Traditional lens modeling
	2.2.1 Source/Image position model and the SIESingular Isothermal Ellipsoid profile
	2.2.2 Lens light modeling with the Sérsic or the chameleon profile
	2.2.3 Arc light modeling and source SBsurface brightness reconstruction
	2.2.4 Composite mass modeling
	2.2.5 Degeneracies and breaking them through stellar kinematics
	2.2.6 Lensed quasar modeling
	2.2.7 Cluster modeling
	2.2.8 Optimization algorithms


	3 Lens mass modeling through a CNNCNN assuming SIESIE-only
	3.1 Introduction
	3.2 Simulation of strongly lensed images
	3.2.1 Lens galaxies from HSCHSC
	3.2.2 Sources from HUDFHUDF
	3.2.3 Mock lens systems

	3.3 Neural networks and their architecture
	3.4 Results
	3.4.1 Naturally distributed Einstein radii with lower limit 0.5
	3.4.2 Naturally distributed Einstein radii with lower limit 2.0
	3.4.3 Uniformly distributed Einstein radii with lower limit 0.5

	3.5 Further network tests
	3.5.1 Data set containing double or quads only
	3.5.2 Comparison to lens galaxy images only

	3.6 Prediction of lensed image position(s) and time-delay(s)
	3.7 Comparison to other modeling codes
	3.8 Summary and conclusion

	4 Lens modeling with a residual neural network assuming SIE+shearSIE with external shear with error estimation
	4.1 Introduction
	4.2 Simulation of strongly lensed images
	4.3 The residual neural network architecture
	4.4 Network results and performance
	4.5 Network tests
	4.5.1 Network architecture
	4.5.2 Hyper-parameter search
	4.5.3 Variations of the input data
	4.5.4 Over-fitting tests
	4.5.5 Test with fixed lens-source pairs

	4.6 Summary and conclusion

	5 Direct model comparison of network and traditional method
	5.1 Introduction
	5.2 Comparison data set
	5.3 Neural Network models
	5.4 Traditionally obtained models
	5.4.1 Automated modeling code for galaxy-galaxy lenses
	5.4.2 Flexible modeling code gleeauto.py
	5.4.3 Results and discussion of MCMCMCMC modeling
	5.4.4 Conclusion of MCMCMCMC modeling

	5.5 Comparison and Discussion
	5.6 Summary and conclusion

	6 Photometric redshift estimation with a CNNconvolutional neural network: NetZ
	6.1 Introduction
	6.2 Training data
	6.3 DLDeep learning and the network architecture
	6.4 Main Redshift Network NetZmain
	6.5 Comparison of NetZmain to other photo-z methods
	6.5.1 Detailed comparison to HSCHSC method DEmPDEmP
	6.5.2 Photo-z with morphological information
	6.5.3 Photo-z estimates for LSSTLSST

	6.6 Limited-range and LRGLRG-only redshift network
	6.7 Summary and conclusions

	7 Conclusion & Outlook
	7.1 Lens mass modeling
	7.2 Redshift estimation with NetZ

	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	Bibliography
	A Model details of the 32 SuGOHISuGOHI lens systems

