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Two-loop effects on the right-handed neutrino masses can have an impact on the low-energy
phenomenology, especially when the right-handed neutrino mass spectrum is very hierarchical at the
cutoff scale. In this case, the physical masses of the lighter right-handed neutrinos can be dominated by
quantum effects induced by the heavier ones. Further, if the heaviest right-handed neutrino mass is at
around the Planck scale, two-loop effects on the right-handed neutrino masses generate, through the seesaw
mechanism, an active neutrino mass that is in the ballpark of the experimental values. In this paper we
investigate extensions of the Planck-scale lepton number breaking scenario by additional Higgs doublets
(inert or not). We find that under reasonable assumptions these models lead simultaneously to an overall
neutrino mass scale and to a neutrino mass hierarchy in qualitative agreement with observations.
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I. INTRODUCTION

The Standard Model (SM) predicts that neutrinos are
massless particles. However, neutrino oscillation experi-
ments have established that at least two active neutrinos
have a tiny, albeit nonzero, mass (for a recent determination
of the neutrino parameters from a global fit to oscillation
experiments, see [1]). The simplest scenario that explains
the tininess of the neutrino masses is the so-called type-I
seesaw mechanism [2–5]. In this scenario, the SM particle
content is extended by at least two spin-1=2 particles,
singlet under the Standard Model gauge group. The gauge
symmetry allows a Yukawa coupling of the fermion
singlets to the Standard Model Higgs and lepton doublets,
Y, which leads after the breaking of the electroweak
symmetry to a Dirac neutrino mass; for this reason, the
fermion singlets are also known as right-handed neutrinos
(RHNs). The gauge symmetry also allows a Majorana mass
for the RHNs, M, which breaks lepton number by two
units. This mass is unrelated to the electroweak symmetry
breaking scale, v ¼ 246 GeV, and can take a priori any
value between 0 and the cutoff scale of the model, usually
taken to be the Planck scale. The seesaw mechanism
assumesM ≫ Yv, leading in turn to active neutrino masses

mν ∼ Y2v2=M, which are suppressed with respect to the
electroweak symmetry breaking scale by the small factor
v=M, thus explaining the smallness of neutrino masses.
The seesaw mechanism provides a qualitative explan-

ation for the smallness of the neutrino masses, but not
quantitative, since the Yukawa couplings and the RHN
masses are free parameters of the model. It has been
conjectured that some RHN masses could be at the
Planck scale, from the fact that Planck-scale physics is
expected to break all global quantum numbers [6,7].
Regardless of possible theoretical motivations, it is worth-
while from the phenomenological standpoint to entertain
this possibility, since the number of free parameters of the
model is then somewhat reduced.
In a tree-level analysis, the Planck-scale RHNs do not

seem to contribute significantly to the low-energy neutrino
phenomenology, since v2=MP ∼ 10−5 eV. Nevertheless, it
was pointed out in Refs. [8,9] that quantum effects can
dramatically alter the conclusions when the RHN masses
are very hierarchical at the cutoff scale. Since the total
lepton number is broken already, there is no symmetry
protecting the lighter right-handed neutrino masses against
quantum effects. The latter can then receive sizable con-
tributions from two-loop quantum effects (possibly dom-
inant), thereby affecting the low-energy phenomenology.
Interestingly, when the lepton number is broken at around
the Planck scale, this scenario predicts an overall neutrino
mass scale in the ballpark of the experimental values. We
denominate this scenario as Planck-scale lepton number
breaking scenario. The predicted neutrino mass hierarchy,
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however, is typically much larger than the measured value,
as generically expected in the type-I seesaw mechanism
[10], unless the parameters take special values (not neces-
sarily fine-tuned). The observed mild neutrino mass hier-
archy could then be regarded as a hint that the type-I seesaw
model must be extended, and in particular its realization
with Planck-scale lepton number breaking.
A simple extension of the seesaw model consists in

adding to the particle content a scalar particle with identical
gauge quantum numbers as the Standard Model Higgs
doublet. The extra doublet, even if it is heavy, can play an
important role in the low-energy neutrino phenomenology.
Concretely, if the active neutrino mass hierarchy is very
large at the decoupling scale of the lightest right-
handed neutrino, quantum effects on the active neutrino
masses induced by the second Higgs doublet can generate
a mild neutrino mass hierarchy, in agreement with
observations [11,12].
In a variant of this model, so-called scotogenic, the

fermion singlets and the extra scalar doublets are furnished
with a Z2 symmetry. Then, neutrino masses are not
generated at tree level, but at the one-loop level [13].
Further, the model contains one dark matter candidate,
usually the Z2-odd scalar (the “inert” doublet), or in some
regions of the parameter space the singlet fermion. The
predicted mass hierarchy among the active neutrinos is
again too large in general. However, a mild mass hierarchy
can be generated in the presence of more than one Z2-odd
inert doublet [14,15].
In this paper we will analyze the Planck-scale lepton

number breaking scenario, which is successful in predicting
the correct overall neutrino mass, with an extended scalar
sector, which is successful in explaining the observed mild
neutrino mass hierarchy. We will show that, under plausible
assumptions, it is possible to reproduce simultaneously
the correct neutrino mass scale and mass hierarchy. In
Sec. II we calculate the quantum effects on the right-handed
neutrino parameters in the two-Higgs doublet model, and in
Sec. III we determine the mass spectrum of right-handed
neutrinos in the Planck-scale lepton number breaking
scenario. In Sec. IV we explore the implications for the
active neutrino masses in this scenario, and in Sec. V for
its scotogenic variant. Finally, in Sec. VI we present our
conclusions.

II. QUANTUMEFFECTS ON THE RIGHT-HANDED
NEUTRINO MASS MATRIX IN THE
TWO-HIGGS DOUBLET MODEL

We consider in this section the two-Higgs doublet model
(2HDM) extended by three RHNs, Ni, i ¼ 1, 2, 3. The
scalar potential reads

V ¼
X
a;b

μ2abΦ
†
aΦb þ

X
a;b;c;d

λabcdðΦ†
aΦbÞðΦ†

cΦdÞ; ð1Þ

where Φa, a ¼ 1, 2, are scalar SUð2Þ doublets with
hypercharge Y ¼ 1. The Hermiticity of the potential
requires μ2ab ¼ ðμ2baÞ� and λabcd ¼ λ�badc (for a comprehen-
sive review of the 2HDM, see [16]). The part of the
Lagrangian involving the RHNs reads:

LN ¼ 1

2
Nii=∂Ni −

1

2
MijNc

i Nj − YðaÞ
αi LαNiΦ̃a þ H:c:; ð2Þ

where Lα (α ¼ e, μ, τ) are the lepton doublets. Further,
Φ̃a ¼ iσ2Φ�

a denotes the charge conjugated scalar fields,
and Nc

i ¼ −iγ2N�
i the charge conjugated RHN fields.

The parameters of the Lagrangian in Eq. (2) are subject
to quantum corrections, which can have significant
impact on the phenomenology. The leading quantum
effects can be calculated using the renormalization group
equations (RGEs). Including up to two-loop effects, the
RGE of the RHN mass matrix reads:

dM
d log μ

¼
X
a;b

ðMQðabÞ þQðabÞTM þ 4PðbaÞTMPðabÞÞ; ð3Þ

where for convenience, we have defined

PðabÞ ¼ 1

16π2
YðaÞ†YðbÞ; ð4Þ

QðabÞ ¼ ð1þ GÞPðabÞδab −
1

4
PðabÞPðbaÞ

−
�
9

2

Tr½YðaÞ
u YðbÞ†

u �
16π2

þ 3

2
Tr½PðbaÞ�

�
PðabÞ; ð5Þ

G ¼ 1

16π2

�
17

8
g21 þ

51

8
g22

�
: ð6Þ

Here, g1 and g2 are the Uð1ÞY and SUð2ÞL gauge couplings

and YðaÞ
u are the up-quark Yukawa coupling matrices to

both Higgs doublets (we assume that the Yukawa couplings
of the other SM fermions to both Higgs doublets are
negligible). For the purposes of this paper, it is sufficient
to consider the one-loop RGE of the neutrino Yukawa
coupling. Using SARAH [17], we obtain:

ð16π2Þ dYðaÞ

d log μ
¼

�
3
X
b

TrðYðaÞ
u YðbÞ†

u Þ

þ
X
b

TrðYðaÞYðbÞ†Þ − 3

4
g21 −

9

4
g22

�
YðaÞ

þ
X
b

YðbÞYðbÞ†YðaÞ þ
X
b

1

2
YðaÞYðbÞ†YðbÞ:

ð7Þ

We will work in the basis where the RHN mass matrix is
real and diagonal at the cutoff energy scale Λ:
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MðμÞjμ¼Λ ¼

0
B@

M1 0 0

0 M2 0

0 0 M3

1
CA: ð8Þ

Integrating Eq. (3), one can calculate the RHN mass matrix
at the scale μ < Λ. Keeping terms up to the orderOðPðabÞ2Þ
we obtain:

MðμÞ ≃
�
1þ

X
a

�
PðaaÞtþ 1

2
PðaaÞ2t2

��
T

×M

�
1þ

X
b

�
PðbbÞtþ 1

2
PðbbÞ2t2

��

þ 4
X
ab

PðbaÞTMPðabÞtþOðPðabÞ3Þ; ð9Þ

where we have denoted t ¼ logðμ=ΛÞ.
We are interested in the scenario where the mass matrix

at the cutoff scale is approximately rank-1, M1;M2 ≪ M3

and where M3 ∼MP, being MP ¼ 1.2 × 1019 GeV the
Planck mass. To emphasize the main features of the RGE,
let us consider the limiting scenario where M1 ¼ M2 ¼ 0,
namely when the mass matrix is exactly rank 1 (our
conclusions, however, apply to a wider class of scenarios,
as we will discuss below). One can readily check that at
OðPðabÞÞ, i.e., keeping just the first line of Eq. (9), the mass
matrix at the scale μ is also rank-1. However, at OðPðabÞ2Þ,
the mass matrix in general becomes rank 3: the RGE
evolution generates radiatively nonzero values for M1;2ðμÞ
proportional to M3, through the diagram shown in Fig. 1.
This effect was explored in [9] for the seesaw scenario with
one Higgs doublet (see also [18]). In that case, however, a
rank-1 mass matrix at the scale Λ remained rank 1 at order
OðPÞ, became rank 2 at order OðP2Þ, and became rank 3
only at order OðP4Þ. However, the existence of an addi-
tional RHN Yukawa coupling in the 2HDM (and thereby
the existence of additional flavor symmetry breaking
parameters), allows us to increase the rank of the mass
matrix at lower order in perturbation theory. Here, we have
considered the limiting case where the mass matrix is
exactly rank 1 at the cutoff scale. For an approximately

rank-1 mass matrix, one finds that the physical masses of
the two lightest RHNs can be dominated by the quantum
contribution induced by the heaviest RHN. Correspon-
dingly, their tree-level masses would not play any role in
the phenomenology, thus rendering a more predictive
scenario.
In order to construct the low-energy effective theory of

the Planck-scale lepton number breaking scenario, we first
integrate out the heaviest RHN at the scale μ ¼ M3. The
effective Lagrangian reads:

Leff ≃
1

2

YðaÞ
α3 Y

ðbÞ
β3

M33

����
μ¼M3

ðLαΦ̃aÞðΦ̃T
bL

c
βÞ − Y ðaÞ

αi LαΦ̃aNi

−
1

2
MijNc

i Nj þ H:c:; ð10Þ

with Yukawa and mass matrices given by

Y ðaÞ
αi ≃

�
YðaÞ
αi −

Mi3Y
ðaÞ
α3

M33

�����
μ¼M3

;

Mij ≃
�
Mij −

Mi3Mj3

M33

�����
μ¼M3

; ð11Þ

with i, j ¼ 1, 2.
The first term in Eq. (10) is a Weinberg operator giving

rise to a contribution to the active neutrino masses sup-
pressed byM3. In the Planck-scale lepton number breaking
scenario M3 is close to the Planck scale. Hence, this term
gives a negligible contribution to the neutrino masses. We
will drop this term henceforth, and describe the effective
theory as a two-right handed neutrino model with the
Lagrangian:

Leff ≃ −Y ðaÞ
αi LαΦ̃aNi −

1

2
MijNc

i Nj þ H:c:; ð12Þ

with Y and M given in Eq. (11). Using Eq. (9), and using
that Mi3=M33jμ¼M3

is a small parameter, one can further
approximate

Y ðaÞ
αi ≃ YðaÞ

αi ;

Mij ≃ −4M3 log

�
Λ
M3

�X
a;b

PðbaÞ
3i PðabÞ

3j ; ð13Þ

where we have assumed generic Yukawa couplings at the
scale Λ, and that the running does not significantly modify
the Yukawa couplings. However, two-loop quantum effects
lift the zeroes in the RHN mass matrix and generate
radiatively two mass eigenvalues. The implications for
the mass spectrum of right-handed neutrinos and active
neutrinos will be discussed in the next sections.

FIG. 1. Leading two-loop diagram generating radiatively right-
handed neutrino masses from the breaking of lepton number
by M3.
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III. RIGHT-HANDED NEUTRINO MASSES

Let us first calculate the mass spectrum of heavy
neutrinos in our scenario. The eigenvalues can be calcu-
lated from Eq. (13) using the tensor invariants1

I1 ¼ Tr½M� ¼ M1 þM2jμ¼M3
;

I2 ¼ det½M� ¼ M1M2jμ¼M3
: ð14Þ

Assuming a hierarchy between the eigenvalues, one obtains

M2jμ¼M3
≃ I1;

M1jμ¼M3
≃
I2
I1
; ð15Þ

which are complicated expressions that depend on the
Yukawa couplings.
In order to gain some analytical understanding of the

results, let us consider for simplicity rank-1 Yukawa
matrices. The Yukawas YðaÞ can be expressed in terms
of the nonvanishing eigenvalues, ya, and the tensor

products of two vectors in flavor space u⃗ðaÞL , u⃗ðaÞR (normal-
ized to unity):

YðaÞ ¼ yau⃗
ðaÞ
L ⊗ u⃗ðaÞTR : ð16Þ

In a similar notation, the RHN neutrino mass matrix can be
cast as

MðΛÞ ¼ M3ω⃗ ⊗ ω⃗T: ð17Þ

Clearly, the physical RHN masses can only depend on
invariant quantities. In our simplified scenario, we have

three vectors in the RHN flavor space, ω⃗ and u⃗ðaÞR , and two
vectors in the left-handed neutrino (LHN) flavor space,

u⃗ðaÞL . There are then only four invariant quantities related to

the relative orientation among these vectors, ðu⃗ð1ÞR · ω⃗Þ,
ðu⃗ð2ÞR · ω⃗Þ, ðu⃗ð1ÞR · u⃗ð2ÞR Þ, and ðu⃗ð1ÞL · u⃗ð2ÞL Þ, as well as the three
eigenvalues y1, y2, andM3. In terms of these invariants, the
radiatively generated RHN masses M1 and M2 at the scale
μ ¼ M3 read

M2jμ¼M3
≃ −

4M3 logð Λ
M3
Þ

ð16π2Þ2
X
a;b

y2ay2bðu⃗ðaÞR · ω⃗Þðu⃗ðbÞR · ω⃗Þðu⃗ðaÞL · u⃗ðbÞL Þ2½1 − ðu⃗ðaÞR · ω⃗Þðu⃗ðbÞR · ω⃗Þ�;

M1jμ¼M3
≃ −

4M3 logð Λ
M3
Þ

ð16π2Þ2
y41y

4
2ðu⃗ð1ÞR · ω⃗Þ2ðu⃗ð2ÞR · ω⃗Þ2ðω⃗ · ðu⃗ð1ÞR × u⃗ð2ÞR ÞÞ2½1 − ðu⃗ð1ÞL · u⃗ð2ÞL Þ4�P

a;by
2
ay2bðu⃗ðaÞR · ω⃗Þðu⃗ðbÞR · ω⃗Þðu⃗ðaÞL · u⃗ðbÞL Þ2½1 − ðu⃗ðaÞR · ω⃗Þðu⃗ðbÞR · ω⃗Þ�

; ð18Þ

where the square of the triple product explicitly reads

ðω⃗ · ðu⃗ð1ÞR × u⃗ð2ÞR ÞÞ2 ¼ 1 − ðu⃗ð1ÞR · ω⃗Þ2 − ðu⃗ð2ÞR · ω⃗Þ2 − ðu⃗ð1ÞR · uð2ÞR Þ2 þ 2ðu⃗ð1ÞR · ω⃗Þðu⃗ð2ÞR · ω⃗Þðu⃗ð1ÞR · uð2ÞR Þ: ð19Þ

From these equations one concludes that in order to

generate a nonvanishing M2 either u⃗ð1ÞR or u⃗ð2ÞR must be
nonorthogonal to ω⃗. Further, in order to generate a non-
vanishing M1, the three following conditions must be

simultaneously fulfilled: (i) both u⃗ð1ÞR and u⃗ð2ÞR must be

nonorthogonal to ω⃗, (ii) u⃗ð1ÞR and u⃗ð2ÞR must point in different

directions, and (iii) u⃗ð1ÞL and u⃗ð2ÞL must also point in different
directions. In more generality, generating M2 requires at
least two independent directions in the RHN flavor space,
and generating M1 requires three independent directions
in the RHN flavor space, as well as two independent
directions in the LHN flavor space. This can also be
understood from the breaking of the global flavor group,
Uð3ÞL ×Uð3ÞR → nothing, by the Yukawa couplings [8].

In the Standard Model extended with RHNs, a rank-1
Yukawa matrix and a rank-1 mass matrix provide two
directions in the RHN flavor space, and therefore this
model generates only M2, but not M1 [due to a residual
global Uð1Þ symmetry]. A rank-2 Yukawa matrix can
generate via quantum effects a nonvanishing M1, although
suppressed by the next-to-largest Yukawa eigenvalue and
only beyond two-loop order. In the 2HDM extended with
RHNs there are many more directions in flavor space, and
therefore it is possible to generate radiatively both M1 and
M2 with rank-1 Yukawa couplings. From these expres-
sions, one can also construct the limit where one of the
RHNs, say N1, has no coupling to the left-handed doublets;
this would correspond to a model with only two RHNs.

In this case, u⃗ð1ÞR , u⃗ð2ÞR , and ω⃗ are coplanar and there-
fore M1jμ¼M3

¼ 0.
For our analysis we will find convenient to use as

invariants the following four angles:

1In this paper we assume all parameters to be real for
simplicity. In the complex case, the corresponding invariants
are I1 ¼ Tr½M†M� ¼ M2

1 þM2
2 and I2 ¼ det½M†M� ¼ M2

1M
2
2.
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u⃗ð1ÞL · u⃗ð2ÞL ¼ cos θL;

u⃗ð1ÞR · u⃗ð2ÞR ¼ cos θR;

u⃗ð1;2ÞR · ω⃗ ¼ cos θ1;2; ð20Þ

as well as the three eigenvalues y1, y2, and M3. With this parametrization, the eigenvalues in Eq. (18) can be written as

M2jμ¼M3
≃ −

4y21y
2
2

ð16π2Þ2M3 log

�
Λ
M3

���
y1
y2

s1c1

�
2

þ
�
y2
y1

s2c2

�
2

þ 2c2Lc1c2ðcR − c1c2Þ
�
;

M1jμ¼M3
≃ −

4y21y
2
2

ð16π2Þ2M3 log

�
Λ
M3

�
c21c

2
2ð1 − c4LÞð1 − c21 − c22 − c2R þ 2c1c2cRÞ

ðy1y2 s1c1Þ2 þ ðy2y1 s2c2Þ2 þ 2c2Lc1c2ðcR − c1c2Þ
; ð21Þ

with si ¼ sin θi and ci ¼ cos θi (i ¼ 1; 2; L; R).
Below the scale M3, both RHN masses are subject to

additional quantum effects, although in this case they
amount to small corrections. Therefore, one can approxi-
mate the physical masses for N1 and N2 by the running
masses at the scale μ ¼ M3 in Eq. (21).
The overall mass scale of bothM1 andM2 is determined

by the parameter

M0 ≡ 4y21y
2
2

ð16π2Þ2M3 log
�

Λ
M3

�
: ð22Þ

Numerically, in the Planck-scale lepton number breaking
scenario

M0 ∼ 2 × 1015 GeVy21y
2
2

�
M3

MP

�
log

�
M3

MP

�
; ð23Þ

which is generically at the seesaw scale. The concrete
values ofM1 andM2 depend on complicated combinations

of angles and y1=y2. We show in Fig. 2 a scan plot with the
ratios of the physical masses M2=M1 vs M2 from solving
the RGEs numerically between the cutoff scale Λ and the
scale μ ¼ M3. For the plot, we have taken Λ ¼ MP,
M3 ¼ MP=

ffiffiffiffiffiffi
8π

p
, M1 ¼ M2 ¼ 0, y1 ¼ y2 ¼ 1, and random

angles θL; θR; θ1;2 at the cutoff. One concludes from the
figure that for y1 ∼ y2 ∼ 1, two-loop quantum effects
generate nonvanishing values for M1 and M2, with M2 ∼
1014 GeV and M2=M1 being typically smaller than ∼100.
Let us note that the same conclusion holds whenever the

physical masses of N1 and N2 are dominated by quantum
contributions proportional toM3, even if they do not vanish
at the cutoff scale. In this case, quantum effects can milden
the hierarchy between the two lighter eigenvalues, leading
to M2jμ¼M3

∼M1jμ¼M3
. The consequences for the light

neutrino mass spectrum are expected to be dramatic. If two-
loop effects had been neglected and M1 ≪ M2 at the
decoupling scale, the generation of a mild mass hierarchy
m3 ∼m2 would look rather accidental. However, the
quantum effects induced at two loops by the two Higgs
doublets generically lead to a mild hierarchy between M1

andM2, and therefore it will be easier to generatem3 ∼m2.

IV. ACTIVE NEUTRINO MASSES

At energy scales below the mass of the lightest RHN, the
phenomenology of the model can be properly described by
the following effective Lagrangian:

Leff ≃
1

2

X
a;b

X
i;j

κðabÞij ðLiΦ̃aÞðΦ̃T
bL

c
jÞ þ H:c:; ð24Þ

where the Wilson coefficients at the scale μ ¼ M1 can be
calculated in the usual manner by integrating out the heavy
RHNs:

κðabÞjμ¼M1
≃ Y ðaÞM−1Y ðbÞT; ð25Þ

with Y ðaÞ andM given in Eq. (13) (for calculating κðabÞ, we
neglect the contribution from integrating-out N3, which as

100

101

102

103

104

105

106

1012 1013 1014 1015

FIG. 2. Scan plot showing the mass hierarchy jM2=M1j vs jM2j
for the radiatively generated masses in the Planck-scale lepton
number breaking scenario with two Higgs doublets, assuming
Λ ¼ MP, M3 ¼ MP=

ffiffiffiffiffi
8π

p
, y1 ¼ y2 ¼ 1, and random angles

between 0 and 2π.
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mentioned above is subdominant). For rank-1 Yukawa
couplings one finds

κðabÞjμ¼M1
≃
u⃗ðaÞL ⊗ u⃗ðbÞTL

u⃗ðaÞL · u⃗ðbÞL

X
i; j¼1;2

PðabÞ
ij ðM−1Þij; ð26Þ

with PðabÞ ≡ Y ðaÞTY ðbÞ. Using the notation of Eq. (16) we
explicitly find:

κðabÞjμ¼M1
≃
yayb
M0

y21y
2
2

y2ay2b

u⃗ðaÞL ⊗ u⃗ðbÞTL

cos θa cos θb

×

�
1=ð1 − cos4θLÞ a ¼ b;

−cos2θL=ð1 − cos4θLÞ a ≠ b:
ð27Þ

Furthermore, to determine the low-energy neutrino param-
eters, we include quantum contributions to κðabÞ. As in the
rest of this paper, and due to the large separation between
M1 and the energy scale of neutrino oscillation experi-
ments, the dominant quantum contributions to κðabÞ can be
encoded in the RGE [19–22]:

dκðabÞ

d log μ
¼ 1

16π2
βκðabÞ ; ð28Þ

with dominant terms of the β function at one loop given by

βκðabÞ ¼ −3g2κðabÞ þ
X2
c;d¼1

4λacbdκ
ðcdÞ

þ
X2
c¼1

½3Tr½YðaÞ
u YðcÞ†

u �κðcbÞ þ 3Tr½YðbÞ
u YðcÞ†

u �κðacÞ�;

ð29Þ

where we have neglected all gauge and Yukawa couplings
except for the top-quark coupling for the analytical treat-
ment. The Wilson coefficient of the Weinberg operator at
the scale mH is

κðabÞjμ¼mH
¼ κðabÞjμ¼M1

þ 1

16π2
βκðabÞ log

�
mH

M1

�
: ð30Þ

Finally, after the electroweak symmetry breaking through
the expectation value of the neutral components of the
Higgs fields, hΦ0

ai ¼ va=
ffiffiffi
2

p
, with v21 þ v22 ¼ v2, a 3 × 3

neutrino mass matrix is generated:

Mν ≃ −
1

2

X
a;b

κðabÞ
���
μ¼mH

vavb; ð31Þ

where we have neglected the effects of the running between
the scale mH and the scale of the experiment, since the
most relevant RGE effects occur between M1 and mH.
The impact of quantum effects is twofold. First, each

Wilson coefficient κðabÞ receives quantum corrections
proportional to itself, which changes the values of the

different entries κðabÞij by Oð1Þ factors. Second, and more

importantly, the different Wilson coefficients κðabÞ can mix
through the running, due to “Higgs changing interactions”
in the Weinberg operators, induced by Higgs quartic
couplings. This effect is characteristic of the model with
an extended Higgs sector, and can significantly affect the
low-energy phenomenology [11,12,23,24].
In order to better differentiate the impact on the phe-

nomenology of the quantum effects above and below the
RHN decoupling scale, two scenarios are analyzed. We first
discuss a scenario where the operator mixing between the
scales M1 and mH is negligible, and then a scenario where
the operator mixing is sizable.

A. Operator mixing between κðabÞ negligible
Following our analysis of Sec. II, we assume that the

RHN Yukawa coupling and mass matrices are rank 1 at
the cutoff scale Λ. Then, from Eq. (27), and neglecting the
effects of the running below the scale μ ¼ M1, one obtains

Mν ≃
X
a;b

mabu⃗
ðaÞ
L ⊗ u⃗ðbÞTL ; ð32Þ

where

mab ¼
ðyavaÞðybvbÞ

2M0

y21y
2
2

y2ay2b

1

cos θa cos θb

×

�
1=ð1 − cos4 θLÞ a ¼ b;

− cos2 θL=ð1 − cos4 θLÞ a ≠ b:
ð33Þ

The active neutrino mass eigenvalues can be calculated
using the tensor invariants:

I1 ¼ Tr½Mν� ¼ m1 þm2 þm3;

I2 ¼
1

2
ðTr½Mν�2 − Tr½M2

ν�Þ ¼ m1m2 þm1m3 þm2m3;

I3 ¼ det½Mν� ¼ m1m2m3: ð34Þ
From Eqs. (32) and (33) one obtains:

I1 ¼ m11 þm22 þ ðm12 þm21Þ cos θL;
I2 ¼ ðm11m22 −m12m21Þ sin2 θL;
I3 ¼ 0: ð35Þ

Therefore, m1 ¼ 0 in the approximation that only two
RHNs contribute to the mass matrix.2 The other two
eigenvalues read, under the assumption m3 ≫ m2:

2Strictly, m1 is nonvanishing although much smaller than the
atmospheric and solar neutrino mass scales, since m1 receives
contributions at tree level of the order of v2=M3 ∼ 10−5 eV.
Further, it receives quantum contributions proportional to m3,
although at two loops [25–27].

BONILLA, HERMS, IBARRA, and STROBL PHYS. REV. D 103, 035010 (2021)

035010-6



m3 ≃ I1 ¼ m0

y1y2
ð1 − cos4θLÞ

×

�
y2
y1

cos2β
cos2θ1

þ y1
y2

sin2β
cos2θ2

−
2 sin β cos βcos3θL

cos θ1 cos θ2

�
;

m2 ≃
I2
I1

¼ m0y1y2sin2θL

×
�
y2
y1

cos2θ2
sin2β

þ y1
y2

cos2θ1
cos2β

−
2 cos θ1 cos θ2cos3θL

sin β cos β

�
−1
;

ð36Þ

where we have used v1 ¼ v cos β and v2 ¼ v sin β, and we
have defined the overall mass scale

m0 ¼
1

2

v2

M0

; ð37Þ

with M0 defined in Eq. (22). Numerically,

m0 ≃ 0.05 eV

�
M3

MP

�
−1
�
y1
0.7

�
−2
�
y2
0.7

�
−2
; ð38Þ

which is in the right ballpark if M3 is around the Planck
scale, and the largest Yukawa eigenvalues are Oð1Þ.
It is evident in Eq. (36) that a necessary condition to

generate a nonvanishing m2 is to have a misalignment

between u⃗ð1ÞL and u⃗ð2ÞL (i.e., sin θL ≠ 0). Further, the overall
scales of m2 and m3 are determined by the same parameter
m0. Therefore, for generic values of the misalignment
angles, for y1 ∼ y2 and for tan β ∼ 1 one expects a mild
hierarchy between m2 and m3. Concretely, the mass
hierarchy is estimated to be

����m3

m2

���� ∼ ðy2 cos θ2 sin βy1 cos θ1 cos β
þ y1 cos θ1 cos β

y2 cos θ2 sin β
− 2 cos3 θLÞ2

sin2 θLð1 − cos4 θLÞ
; ð39Þ

which is ∼1–10 under the assumptions listed above.
This result is independent of the alignment of the neutrino
Yukawa couplings Yð1;2Þ with the charged lepton Yukawa
eigenbases. Predictions for the leptonic mixing matrix
are hence not possible unless one imposes restrictions on
the flavor structure of the Yukawa couplings, e.g., from
flavor symmetries. Generic misalignment angles at high
energies will lead at low energies to an “anarchic” structure
for the leptonic mixing matrix, with angles which are
neither small nor maximal, in qualitative agreement with
observations.
These expectations are confirmed by our numerical

analysis. We consider different realizations of our scenario
at the cutoff Λ ¼ MP, assuming a rank-1 RHN mass matrix
with M3 ¼ MP=

ffiffiffiffiffiffi
8π

p
and rank-1 Yukawa matrices with

eigenvalues y2 ¼ 1, and y1 ¼ 1 or 0.01. The Yukawa

eigenvectors uðaÞR;L are chosen randomly. We then solve

numerically the two-loop RGEs for the RHN parameters
above the scale M1, and the one-loop RGEs for the Wilson
coefficients below the scale M1, neglecting the terms in
Eq. (29) that mix the different κðabÞ. Finally, we calculate
the neutrino mass matrix assuming tan β ¼ 1 or 0.01. The
resulting values for m3 and jm3=m2j are shown in the
scan plot in Fig. 3, for the cases (i) y1 ¼ 1 and tan β ¼ 1
(green points), (ii) y1 ¼ 1 and tan β ¼ 0.01 (orange points),
and (iii) y1 ¼ 0.01 and tan β ¼ 1 (blue points). When
the Yukawa eigenvalues are y2 ∼ y1 ∼ 1 and tan β ∼ 1 the
predicted neutrino parameters are in the ballpark of the
experimental values. However, when y1=y2 and/or tan β are
very different from 1, the predicted neutrino mass hierarchy
is generically too large. It is remarkable that this simple
scenario can already reproduce the observations for rea-
sonable parameters. Further, and as we will see in the next
subsection, the allowed parameter space widens when
including the operator mixing induced by quantum effects
below the scale M1.

B. Operator mixing between κðabÞ nonnegligible

We consider in what follows the phenomenologically
interesting case of the 2HDM in the decoupling limit,
where the lighter CP-even scalar resembles the Standard
Model Higgs, while the other scalars are very heavy. In this
case, tan β ¼ v2=v1 ≃ 0, so that Mν ¼ κð11Þv21=2, with
v1 ¼ v. If quantum effects between M1 and mH were
negligible, the decoupling limit would lead to a very large
neutrino mass hierarchy, cf. Eq. (39). However, operator
mixing below the scale M1 can significantly modify this
conclusion.

FIG. 3. Scan plot showing the mass hierarchy between the two
heavier active neutrinos jm3=m2j vs jm3j in the Planck-scale
lepton number breaking scenario with two Higgs doublets, in the
case where RGE-induced mixing between the κðabÞ is negligible.
We take Λ ¼ MP, M3 ¼ MP=

ffiffiffiffiffi
8π

p
, y2 ¼ 1, random angles

between 0 and 2π, and y1 ¼ 1, tan β ¼ 1 (green points),
y1 ¼ 1, tan β ¼ 0.01 (orange points); y1 ¼ 0.01, tan β ¼ 1 (blue
points).
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The relevant Wilson coefficient κð11Þ at the scale mH is
calculated from κ11jmH

¼ κ11jM1
þ δκ11 where

δκ11 ≃ −
1

16π2
βκ11

���
μ¼M1

log

�
M1

mH

�
: ð40Þ

Using the explicit form of the β function, this correction can
be schematically written as [11]

δκ11 ≃ B1aκ
a1 þ κ1aBT

1a þ bκ22; ð41Þ

which makes clear the operator mixing through the RGE
running. Here B1a denote 3 × 3 matrices whereas b is a
number. Explicitly,

b ¼ −
2λ5
16π2

log

�
M1

mH

�
; ð42Þ

which depends linearly on the coefficient of the potential
term 1

2
λ5ðΦ†

1Φ2ÞðΦ†
1Φ2Þ while only logarithmically on the

ratio between the scale of the RHN and the overall scale of
the extra scalars H0, H�, A0.3 Due to the large separation
of scales between M1 and mH, the large logarithm
logðM1=mHÞ partially compensates the loop factor, result-
ing in b ∼Oð0.1Þ for λ5 ∼Oð1Þ. Concretely,

b ≃ −0.3λ5 log
��

M1

1014 GeV

��
mH

10 TeV

�
−1
�
; ð43Þ

where we have taken mH ≫ v to implement the decou-
pling limit.
Expressing Mν in terms of mass parameters mab as in

Eq. (32), we find for the case tan β ¼ 0:

m11 ¼ −
m0

ð1 − cos4 θLÞ
y22

cos2 θ1
;

m22 ¼ −
m0

ð1 − cos4 θLÞ
by21

cos2 θ2
;

m12 ¼ m21 ¼ 0: ð44Þ

Using the invariants from Eq. (35), we obtain for the largest
active neutrino mass:

m3 ≃ −m0

y1y2
ð1 − cos4 θLÞ

�
y2

y1 cos2 θ1
þ by1
y2 cos2 θ2

�
; ð45Þ

and the mass hierarchy

����m3

m2

���� ≃ 1

sin2θL

�
y2 cos θ2ffiffiffi
b

p
y1 cos θ1

þ
ffiffiffi
b

p
y1 cos θ1

y2 cos θ2

�
2

: ð46Þ

Therefore, for y1 ∼ y2, generic angles θ1; θ2; θL, and
λ5 ∼Oð1Þ [so that b ¼ Oð1Þ], a mild neutrino mass
hierarchy is generically expected. The effect of λ5 in the
running is illustrated in Fig. 4, which considers the same
scenarios as in Fig. 3, but including the running between
M1 and mH setting λ5 ¼ 1. Clearly, for plausible values of
λ5 the operator mixing has a significant impact on the
phenomenology and widens the allowed parameter space of
the model.

V. PLANCK-SCALE LEPTON NUMBER
BREAKING SCOTOGENIC SCENARIO

We consider now a variant of the previous scenario
where the SM symmetry group is extended with a discrete
Z2 symmetry, assumed to be exact in the electroweak
vacuum. All SM particles are even under the Z2 symmetry.
Further, the SM particle content is extended with fermion
singlets, Ni, and scalar doublets with identical gauge
quantum numbers as the SM Higgs boson, ηa, all odd
under the Z2 symmetry.
With this setup, all lepton number violating interac-

tions involving only SM particles vanish at tree level. In
particular, the Weinberg operator arises at the one-loop
level. Further, the lightest particle of the Z2-odd sector
constitutes a dark matter candidate. This is the so-called
scotogenic model [13]. This model, however, presents the
same drawbacks as the type-I seesaw model in regards of
predicting the correct neutrino mass and neutrino mass
hierarchy. It was argued in [14,15] that the extension of the
scotogenic model by an additional Z2-odd scalar doublet
leads in general to a mild neutrino mass hierarchy. In this
section, we will investigate whether the breaking of the
lepton number at the Planck scale in a variant of the

FIG. 4. Same as Fig. 3, but for a scenario with λ5 ¼ 1, such
that the operator mixing due to running below μ ¼ M1 is
non-negligible.

3In the notation of Eq. (1), λ5 ¼ 2λ1212 ¼ 2λ�2121.
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scotogenic model, extended by an additional Z2-odd scalar
doublet, can simultaneously lead to the correct neutrino
mass and mass hierarchy.
The part of the Lagrangian containing the Z2-odd

fermions and scalars reads

LN ¼ 1

2
Nii=∂Ni −

1

2
MkNc

kNk − YðaÞ
αi LαNiη̃a þ H:c:; ð47Þ

with a ¼ 1, 2. Here we have chosen without loss of
generality to work in the basis for the singlet fermions
where the mass matrix is diagonal with eigenvalues Mk.
The scalar potential can be split into three separate parts

VpotðΦ; η1; η2Þ ¼ VΦðΦÞ þ Vηðη1; η2Þ þ V intðΦ; η1; η2Þ;
ð48Þ

with a ¼ 1, 2. Here, VΦðΦÞ ¼ μ2Φ†Φþ λ
2
ðΦ†ΦÞ2 is the

potential for the Z2-even scalar doublet (the SM Higgs
doublet), Vη has the form of Eq. (1), replacing Φa by ηa,
and

V intðΦ; η1; η2Þ ¼
1

2
λðabÞ3 ðΦ†ΦÞðη†aηbÞ þ

1

2
λðabÞ4 ðΦ†ηaÞðη†bΦÞ

þ 1

2
λðabÞ5 ðΦ†ηaÞðΦ†ηbÞ þ H:c: ð49Þ

is the interaction potential between the Standard Model
Higgs doublet and the inert doublets. The masses of the

neutral components of the inert doublets will be denoted
by mηa.
As in the rest of this paper, we assume the RHN mass

matrix to be approximately rank 1 at the cutoff scale of the
theory, for which we take Λ ¼ MP. We set for simplicity
M3 ∼MP and M1;M2 ¼ 0. Two-loop quantum effects
induced by the inert doublets generate nonzero values
for M1 and M2, given by Eq. (18), with the appropriate
substitutions. Integrating out the heavy particles, a single
Weinberg operator arises, shown in Fig. 5, corresponding to
the effective Lagrangian

Leff ≃
1

2

X
α;β

καβðLα Φ̃ÞðΦ̃TLc
βÞ þ H:c:; ð50Þ

with

καβ ≃
X
a;b;k

YðaÞ
αk Y

ðbÞ
βk λ

ðabÞ
5

16π2
Mk

m2
ηb −M2

k

�
m2

ηb

m2
ηa −m2

ηb

log

�
m2

ηa

m2
ηb

�
−

M2
k

m2
ηa −M2

k

log

�
m2

ηa

M2
k

�	
: ð51Þ

Using that in our scenario Mk ≫ mη1 , mη2 , one can simplify4

ðMνÞαβ ≃
X
a;b;k

λðabÞ5

32π2
YðaÞ
αk Y

ðbÞ
βk

v2

Mk
log

�
m2

η

M2
0

�
; ð52Þ

where in the logarithm we have approximated both scalar masses by mη, and both fermion masses by M0 [see Eq. (22)].
It is now straightforward to calculate approximate expressions for the largest active neutrino mass, using the rank-1

assumption for the Yukawa and RHN mass matrices as previously

m3 ≃ TrðMνÞ ≃ −
1

16π2
m0y1y2

ð1 − cos4 θLÞ
�

y2λ
ð11Þ
5

y1 cos2 θ1
þ y1λ

ð22Þ
5

y2 cos2 θ2
−
2 cos3 θLλ

ð12Þ
5

cos θ1 cos θ2

�
log

�
m2

η

M2
0

�
; ð53Þ

and for the neutrino mass hierarchy

����m3

m2

���� ≃ ½TrðMνÞ�2
1
2
jTrðMνÞ2 − TrðM2

νÞj
≃
½y2y1

cos θ2
cos θ1

λð11Þ5 þ y1
y2

cos θ1
cos θ2

λð22Þ5 − 2 cos3 θLλ
ð12Þ
5 �2

½λð11Þ5 λð22Þ5 − ðλð12Þ5 Þ2 cos4 θL� sin2 θL
: ð54Þ

FIG. 5. One-loop diagram generating neutrino masses in the
scotogenic scenario with two inert doublets.

4This result differs by the one reported in [13,14] by factors of 2, as pointed out in [15,28]. Note that [28] defines v ¼ hΦ0i, while [15]
takes v ¼ hΦ0i= ffiffiffi

2
p

, as we do, hence our formula coincides with the one in [15].
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The overall neutrino mass scale is suppressed with respect
to m0, given in Eq. (38), as well as the loop factor, but also
enhanced by the large logarithm logðm2

η=M2
0Þ. Therefore,

when the relevant couplings y1, y2, and λðabÞ5 are all Oð1Þ,
and for generic misalignment angles, one again finds an
overall neutrino mass scale in the ballpark of the exper-
imental values. Similarly to our conclusions in Sec. IV, it is
necessary to have sin θL ≠ 0 (i.e., a misalignment between

the vectors u⃗ð1ÞL and u⃗ð2ÞL ) in order to generate a non-
vanishing m2. These results of the neutrino mass eigen-
values are again independent of the misalignment between
neutrino and charged lepton Yukawa couplings. Taking this
misalignment to also be generic, one expects a leptonic
mixing matrix with mixing angles which are neither small
nor maximal, in qualitative agreement with observations.
Our conclusions are illustrated in Fig. 6, which shows the

largest neutrino mass and mass hierarchy for a random scan
of the flavor directions for the scotogenic scenario, assuming
Λ ¼ MP,M3 ¼MP=

ffiffiffiffiffiffi
8π

p
,mη1 ¼ 100 TeV, andmη2 ¼ 2mη1 ,

as well as y1 ¼ y2 ¼ 1, and λð11Þ5 ¼ λð22Þ5 ¼ 0.1, λð12Þ5 ¼
λð21Þ5 ¼ 0. As anticipated, most points lie in the region with
jm3j ¼ 0.001–0.1 eV, and jm3=m2j < 100.

VI. CONCLUSIONS

We have considered an extension of the type-I seesaw
model by extra scalar doublets, assuming that the total
lepton number is broken by a right-handed neutrino mass

close to the Planck scale. In this setup, lighter right-handed
neutrino masses receive contributions at two loops, propor-
tional to the mass of the heaviest. In this work we have
focused on the scenario where the lighter masses are
dominated by these quantum contributions. This scenario,
that we denominate Planck-scale lepton number breaking
seesaw scenario, has a larger predictive power compared to
the general seesaw framework, since the whole neutrino
mass spectrum is determined by only two mass scales, the
Planck scale and the electroweak symmetry breaking scale,
which are known.
We have shown that under fairly general conditions,

this scenario leads to active neutrino masses in the
ballpark of the experimental values. At very high energies,
two-loop quantum effects induced by the two Higgs
doublets, generate comparable masses for the lighter
right-handed neutrinos. Integrating out the right-handed
neutrinos leads to small neutrino masses through the
seesaw mechanism. One of the active neutrinos is pre-
dicted to be m3 ∼ ð16π2Þ2v2=MP ∼ 0.1 eV. Further, the
mild hierarchy between the two lighter right-handed
neutrino masses generically leads to mild hierarchies
between the two largest eigenvalues of the Wilson
coefficients of the Weinberg operators. This already
suggests the generation of solar and atmospheric mass
scales with a mild hierarchy. Further quantum effects due
to the operator mixing among the Weinberg operators
assist in the generation of a mild neutrino mass hierarchy,
which then becomes a fairly generic expectation of the
model. Moreover, one expects angles in the leptonic
mixing matrix which are neither small nor maximal,
although the precise values cannot be predicted in our
phenomenological approach, which does not impose any
restriction on the flavor structures at high energies. Let us
also stress that this scenario does not require a light exotic
Higgs sector and the same conclusions apply in the
decoupling limit, where lepton flavor and CP-violating
processes have suppressed rates.
We have finally considered a “scotogenic” variant of this

scenario with three fermion singlets and two scalar doublets
carrying a Z2 charge. The same conclusions apply for the
neutrino phenomenology. Further, the “inert” doublets in
this case make for a viable dark matter candidate.
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FIG. 6. Scan plot showing the mass hierarchy between the two
heavier active neutrinos jm3=m2j vs jm3j in the scotogenic
Planck-scale lepton number breaking scenario with two inert
doublets, assuming Λ ¼ MP, M3 ¼ MP=

ffiffiffiffiffi
8π

p
, and inert doublet

masses mη1 ¼ 100 TeV and mη2 ¼ 2mη1 . The Yukawa couplings
have eigenvalues y1 ¼ y2 ¼ 1 and random misalignment angles,

and the quartic couplings are λð11Þ5 ¼ λð22Þ5 ¼ 0.1 and all other
quartic couplings are taken to be zero for simplicity.
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Mena, C. Ternes et al., 2020 Global reassessment of the
neutrino oscillation picture, arXiv:2006.11237.

[2] P. Minkowski, μ → eγ at a rate of one out of 109 muon
decays? Phys. Lett. 67B, 421 (1977).

[3] T. Yanagida, Horizontal gauge symmetry and masses of
neutrinos, Conf. Proc. C 7902131, 95 (1979).

[4] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and
Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44,
912 (1980).

[5] J. Schechter and J. W. F. Valle, Neutrino masses in SUð2Þ ×
Uð1Þ theories, Phys. Rev. D 22, 2227 (1980).

[6] E. K. Akhmedov, Z. G. Berezhiani, and G. Senjanovic,
Planck Scale Physics and Neutrino Masses, Phys. Rev.
Lett. 69, 3013 (1992).

[7] V. Berezinsky, M. Narayan, and F. Vissani, Low scale
gravity as the source of neutrino masses? J. High Energy
Phys. 04 (2005) 009.

[8] A. Ibarra, P. Strobl, and T. Toma, Neutrino Masses from
Planck-Scale Lepton Number Breaking, Phys. Rev. Lett.
122, 081803 (2019).

[9] A. Ibarra, P. Strobl, and T. Toma, Two-loop renormalization
group equations for right-handed neutrino masses and
phenomenological implications, Phys. Rev. D 102,
055011 (2020).

[10] J. Casas, A. Ibarra, and F. Jimenez-Alburquerque, Hints on
the high-energy seesaw mechanism from the low-energy
neutrino spectrum, J. High Energy Phys. 04 (2007) 064.

[11] A. Ibarra and C. Simonetto, Understanding neutrino proper-
ties from decoupling right-handed neutrinos and extra Higgs
doublets, J. High Energy Phys. 11 (2011) 022.

[12] W. Grimus and H. Neufeld, Three neutrino mass spectrum
from combining seesaw and radiative neutrino mass mech-
anisms, Phys. Lett. B 486, 385 (2000).

[13] E. Ma, Verifiable radiative seesaw mechanism of neutrino
mass and dark matter, Phys. Rev. D 73, 077301 (2006).

[14] D. Hehn and A. Ibarra, A radiative model with a naturally
mild neutrino mass hierarchy, Phys. Lett. B 718, 988 (2013).

[15] P. Escribano, M. Reig, and A. Vicente, Generalizing the
Scotogenic model, J. High Energy Phys. 07 (2020) 097.

[16] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher,
and J. P. Silva, Theory and phenomenology of two-Higgs-
doublet models, Phys. Rep. 516, 1 (2012).

[17] F. Staub, Sarah, arXiv:0806.0538.
[18] A. Aparici, J. Herrero-Garcia, N. Rius, and A. Santamaria,

On the nature of the fourth generation neutrino and its
implications, J. High Energy Phys. 07 (2012) 030.

[19] K. Babu, C. N. Leung, and J. T. Pantaleone, Renormaliza-
tion of the neutrino mass operator, Phys. Lett. B 319, 191
(1993).

[20] P. H. Chankowski and Z. Pluciennik, Renormalization
group equations for seesaw neutrino masses, Phys. Lett.
B 316, 312 (1993).

[21] S. Antusch, M. Drees, J. Kersten, M. Lindner, and M. Ratz,
Neutrinomass operator renormalization in twoHiggs doublet
models and the MSSM, Phys. Lett. B 525, 130 (2002).

[22] W. Grimus and L. Lavoura, Renormalization of the neutrino
mass operators in the multi-Higgs-doublet standard model,
Eur. Phys. J. C 39, 219 (2005).

[23] A. Ibarra and A. Solaguren-Beascoa, Lepton parameters in
the see-saw model extended by one extra Higgs doublet,
J. High Energy Phys. 11 (2014) 089.

[24] D. Jurčiukonis, T. Gajdosik, and A. Juodagalvis, Seesaw
neutrinos with one right-handed singlet field and a second
Higgs doublet, J. High Energy Phys. 11 (2019) 146.

[25] K. Babu and E. Ma, Natural Hierarchy of Radiatively
Induced Majorana Neutrino Masses, Phys. Rev. Lett. 61,
674 (1988).

[26] D. Choudhury, R. Gandhi, J. Gracey, and B. Mukhopad-
hyaya, Two loop neutrino masses and the solar neutrino
problem, Phys. Rev. D 50, 3468 (1994).

[27] S. Davidson, G. Isidori, and A. Strumia, The smallest
neutrino mass, Phys. Lett. B 646, 100 (2007).

[28] A. Merle and M. Platscher, Running of radiative neutrino
masses: The scotogenic model—revisited, J. High Energy
Phys. 11 (2015) 148.

NEUTRINO PARAMETERS IN THE PLANCK-SCALE LEPTON … PHYS. REV. D 103, 035010 (2021)

035010-11

https://arXiv.org/abs/2006.11237
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevLett.69.3013
https://doi.org/10.1103/PhysRevLett.69.3013
https://doi.org/10.1088/1126-6708/2005/04/009
https://doi.org/10.1088/1126-6708/2005/04/009
https://doi.org/10.1103/PhysRevLett.122.081803
https://doi.org/10.1103/PhysRevLett.122.081803
https://doi.org/10.1103/PhysRevD.102.055011
https://doi.org/10.1103/PhysRevD.102.055011
https://doi.org/10.1088/1126-6708/2007/04/064
https://doi.org/10.1007/JHEP11(2011)022
https://doi.org/10.1016/S0370-2693(00)00769-3
https://doi.org/10.1103/PhysRevD.73.077301
https://doi.org/10.1016/j.physletb.2012.11.034
https://doi.org/10.1007/JHEP07(2020)097
https://doi.org/10.1016/j.physrep.2012.02.002
https://arXiv.org/abs/0806.0538
https://doi.org/10.1007/JHEP07(2012)030
https://doi.org/10.1016/0370-2693(93)90801-N
https://doi.org/10.1016/0370-2693(93)90801-N
https://doi.org/10.1016/0370-2693(93)90330-K
https://doi.org/10.1016/0370-2693(93)90330-K
https://doi.org/10.1016/S0370-2693(01)01414-9
https://doi.org/10.1140/epjc/s2004-02075-0
https://doi.org/10.1007/JHEP11(2014)089
https://doi.org/10.1007/JHEP11(2019)146
https://doi.org/10.1103/PhysRevLett.61.674
https://doi.org/10.1103/PhysRevLett.61.674
https://doi.org/10.1103/PhysRevD.50.3468
https://doi.org/10.1016/j.physletb.2007.01.015
https://doi.org/10.1007/JHEP11(2015)148
https://doi.org/10.1007/JHEP11(2015)148

