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Butterfly effect and spatial structure of information spreading in a chaotic cellular automaton
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Inspired by recent developments in the study of chaos in many-body systems, we construct a measure of local
information spreading for a stochastic cellular automaton in the form of a spatiotemporally resolved Hamming
distance. This decorrelator is a classical version of an out-of-time-order correlator studied in the context of
quantum many-body systems. Focusing on the one-dimensional Kauffman cellular automaton, we extract the
scaling form of our decorrelator with an associated butterfly velocity vb and a velocity-dependent Lyapunov
exponent λ(v). The existence of the latter is not a given in a discrete classical system. Second, we account for
the behavior of the decorrelator in a framework based solely on the boundary of the information spreading,
including an effective boundary random walk model yielding the full functional form of the decorrelator. In
particular, we obtain analytic results for vb and the exponent β in the scaling ansatz λ(v) ∼ μ(v − vb)β , which
is usually only obtained numerically. Finally, a full scaling collapse establishes the decorrelator as a unifying
diagnostic of information spreading.
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I. INTRODUCTION

A central hallmark of chaotic systems [1] is their sensitivity
to perturbations: even a small change in initial conditions
leads to entirely unpredictable, and large, differences in the
state of the system at later times. This is popularly captured
by the “butterfly effect” [2], which in many-body systems
encodes two distinct notions: first, the exponential growth of
the perturbation, giving rise to the notion of the Lyapunov
exponent λ, characterizing the growth with time [3], and,
second, information spreading in space, whereby the “effect”
of the butterfly’s wingbeat is felt at a distant location only with
a time delay given by the “ballistic” propagation speed known
as butterfly velocity vb [4,5].

A prominent recent line of investigation of chaos in
quantum many-body systems revolves around the study of
information scrambling, where out-of-time-order correlators
(OTOCs) have been employed to measure the propagation of
quantum chaos [6]. OTOCs can be understood as two-time
correlation functions in which operators are not chronologi-
cally ordered and are a simple measure of the “footprint” of
an operator that spreads in space [7], thus naturally measuring
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the spread of information. In chaotic systems, this quantity
may grow exponentially in time, governed by the Lyapunov
exponent λ [8]. Recently, OTOCs have been studied exten-
sively as an early- to intermediate-time diagnostic of quantum
chaos or information spreading in a number of different
quantum models whose time evolution can be generated by
different dynamics such as Floquet dynamics [9,10], random
unitary circuits [11–14], and time-independent Hamiltonians
such as integrable spin chains [15,16], generalized Sachdev–
Ye–Kitaev models [17], diffusive metals [18], and Luttinger
liquids [19].

In that context, analogs of OTOCs were recently developed
for classical systems [20–26]. For example, for spin chains the
decorrelator D(x, t ) = 1 − 〈SA(x, t ) · SB(x, t )〉 between two
copies of spin configurations SA/B, which at t = 0 differs
locally by only a small spin rotation, is a semiclassical ver-
sion of an OTOC [20]. For Heisenberg magnets, this exhibits
ballistic propagation with a light-cone structure governed by a
butterfly velocity even in the high-temperature regime without
long-range magnetic order but with spin diffusion [20].

A common feature observed in classical and quantum
models is the exponential growth (or decay) of the OTOCs
(analogs) along rays of constant velocity v = dx

dt quantified
by velocity-dependent Lyapunov exponents (VDLEs) [8]. For
intermediate/late times it takes the scaling form

D(x, t ) ∝ e−μ(v−vb)β t = e−λ(v)t . (1)

Intriguingly, a unifying framework of VDLEs with
λ(v) = μ(v − vb)β captures the spatiotemporal structure of
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information spreading in many-body quantum, semiclassical,
and classical chaotic systems [1,3,5,20,27].

In this work, we provide a basic description of such infor-
mation spreading in a minimal chaotic setting: the Kauffman
cellular automaton (KCA). Our system choice is motivated
by the fact that KCAs are minimal chaotic many-body mod-
els [28] which display a rich phenomenology, including a
phase transition as a function of a tuning parameter, a prob-
ability p. They exhibit universal scaling, e.g., of the directed
percolation universality class [29], and lend themselves to
analytical insight [30]. Additionally, KCA have a wide range
of applicability [30–36]: initially introduced to study fitness
landscapes of biological systems and gene expression [37],
they now appear also in optimization problems [38], random
mapping models [39], and, most pertinently, the emergence of
chaos [40].

Surprisingly, despite decades of research on chaotic CAs
(see Ref. [41] for a review), the dynamics of chaos has been
investigated only in terms of the global Hamming distance,
and a local diagnostic has thus far been missing. Here, we
construct an OTOC analog for KCA and explore the VDLE
phenomenology. This analog enables us to uncover the ballis-
tic spatiotemporal structure of perturbation spreading in the
chaotic phase [Fig. 1(b)], in contrast to the decay of such
“damage” [42] spreading in the frozen phase [Fig. 1(a)]. We
develop a full microscopic theory of the VDLE, recovering
the functional form (1), including an analytical calculation
of the exponent β. Thus, we provide the tools for describing
the sensitivity of chaotic many-body systems to perturbations
through the framework of VDLEs.

II. KCA MODEL AND CLASSICAL OTOC ANALOG

We focus on a generic dissipative dynamical system called
an NK model. Concretely, a local KCA is a system of N
Boolean elements σ (x, t ) = ±1 which evolve in discrete time
steps through rules which depend upon each site and its 2K
nearest neighbors in one dimension [41]. Our KCA system
evolves under a set of (annealed) local rules { fx,t }:
σ (x, t + 1) = fx,t [σ (x − K, t ), . . . , σ (x, t ), . . . , σ (x+ K, t )],

(2)

which are random with probability p in space and time:

fx,t =
{+1 with probability p,
−1 with probability 1 − p.

(3)

Essentially, such local rules map (2K + 1) inputs to a single
output whose value is +1 or −1. At any particular t , the same
local inputs always lead to the same output.

In a pioneering work, Derrida and Stauffer [43] showed
that KCAs display a chaotic-to-frozen phase transition con-
trolled by the parameter p (see Fig. 1, inset). The two phases
are distinguished by the decay or spread of localized pertur-
bations diagnosed with the global Hamming distance,

H (t ) = 1

2N

〈∑
x

|σ A(x, t ) − σ B(x, t )|
〉

p

, (4)

between two copies of the system σ A/B(x, t ) which differ by
a single inverted site in the initial state at t = 0. This measure

FIG. 1. Light-cone structure of the decorrelator D(x, t ) with N =
2048 and K = 4, with a single spin flip at the origin x = 0 when
t = 0. (a) The frozen phase at p = 0.11 and (b) the chaotic phase
at p = 0.40. In the chaotic phase, the two dashed lines are vb and
vmax, respectively. Inset: Mean-field prediction (dashed line) of the
long-time Hamming distance H∞ = H (t → ∞) as a function of
p, compared with numerical data. pc = 0.13. Close agreement is
observed for p > 0.27.

is then ensemble averaged over realizations with the same
probability p. The distance grows linearly in the chaotic phase
up to the physical boundary of the system and decays to zero
in the frozen phase (see Fig. 1).

Analogous to the classical Heisenberg chain [20], we take
the classical OTOC as the local distance between two copies
of the same system which differ by only a local perturbation
of the initial conditions, thus leading to the decorrelator

D(x, t ) = 1
2 [1 − 〈σ A(x, t ) · σ B(x, t )〉p]. (5)

It is nothing but a local Hamming distance, which is related to
the global distance by H (t ) = 1

N

∑
x D(x, t ).
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FIG. 2. The decorrelator D(x, t ) along rays of different veloci-
ties for p = 0.4, which is representative of all p > pc. As ln D =
−λ(v)t = −μ(v − vb)βt , the slopes represent −μ(v − vb)β . Thus,
vb = 2.9 where the slope is zero. We compare the full D(x, t ) nu-
merical data (solid lines) and the prediction (dashed lines) of the
boundary random walk model.

III. NUMERICAL RESULTS

In Fig. 1 we show the spatiotemporal evolution of the
decorrelator D(x, t ) for representative values of p below and
above pc. First, in the frozen phase D(x, t ) initially spreads
but then decays in time and space to zero. This attenuation of
the local decorrelator reflects the vanishing of the long-time
value of the Hamming distance in the frozen phase. Second, in
the chaotic phase D(x, t ) spreads with an apparent light-cone
structure.

Because of the locality of KCA rules, the speed of the dam-
age spreading measured with D(x, t ) is necessarily bounded
by the maximum velocity vmax = K , but the actual spread is
slower, with the butterfly velocity vb < K . To demonstrate
the presence of vb, we plot the behavior of the decorrelator
along rays of constant velocity. In Fig. 2 we see that, after
a transient effect, there is a ray (blue lines, corresponding to
v = 2.9) along which D(x = vbt, t ) is constant for t > 100.
This establishes the presence of a butterfly velocity vb < vmax

and is an efficient way of extracting vb as a function of p (see
blue dots in the inset of Fig. 3).

Next, we investigate whether such behavior follows the
general VDLE phenomenology of Eq. (1). We note that in
contrast to previous work on Heisenberg spin chains, the
presence of Lyapunov exponents in KCA is far from obvious.
In fact, for small distances one does not expect an exponential
pickup as a function of time because the local perturbation
between the two copies σ A/B is necessarily big because of the
discrete and bounded nature of the inverted site. However, we
find that for distances x far away from the perturbation and
after disorder averaging one may still observe an exponential
pickup in time of the OTOC analog. Because of the discrete
nature of the variables the scaling behavior appears in only a
small window around vb as the decorrelator quickly saturates
to D = D0 for velocities v < vb and quickly decays to D = 0
for v > vb.

FIG. 3. Scaling collapse performed for a range of p according to
Eq. (14). At each specific p, the data are obtained by taking the value
of D in the t → ∞ limit as permitted by computational power. The x
axis is rescaled to

√
μ(v − vb), where both μ and vb are obtained by

the slope method exemplified in Fig. 2, assuming β = 2 in the scaling
form. The black dashed line is obtained by numerically evaluating
D(x, t ) from Eq. (11) for p = 0.5. Inset: Comparison between vb

obtained from the full D(x, t ) data (blue dots), from the boundary
velocity (green line), and from the analytic calculation (8) (orange
line).

Again, a clear picture emerges by studying D(x, t ) along
“rays” of constant velocity v = x/t . As shown in Fig. 2,
we observe an exponential decay of the OTOC in time,
with a VDLE λ(v). For rays with v > vb, the linear decay
of ln D(x = vt, t ) = −λ(v)t in the long-time limit demon-
strates that the decorrelator indeed decays exponentially with
a VDLE λ(v).

Overall, the numerical results establish the presence of
a butterfly velocity vB and validate the VDLE framework
in KCA systems at long times. This is a surprising feature
given the discrete, and large, nature of “perturbations” in the
Boolean network, as such a framework is usually observed for
continuous and infinitesimal perturbations [8].

To quantitatively analyze the small active region around
the wave front set by vb where the damage actively spreads,
we define for each sample the boundary of a spreading pertur-
bation as the farthest point from the center which differs from
the unperturbed system. As shown in Fig. 4, the probability
density of boundary positions P(x) approaches a Gaussian
profile in the long-time limit with a width σx ∝ √

t . We find
that its mean is in quantitative agreement with the probability-
dependent butterfly velocity vb(p) for all p (see the inset in
Fig. 3). The Gaussian behavior of the boundary therefore
motivates a random-walk-like description of the active region.

IV. BOUNDARY RANDOM WALK MODEL

We can now develop a microscopic statistical model of the
boundary dynamics starting from the microscopic KCA rules.
The basic ingredient for our random walk model is the expec-
tation value of the outwards move of a damage site in each
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FIG. 4. Scaled probability density of boundary positions (defined
in the text) of 104 different initial configurations plotted against
time. The black dotted line is the Gaussian profile predicted by the
random walk model. The earliest two times (t = 50, 100) show slight
deviations from the equilibrium/long-time limit. Top inset: Unscaled
boundary probability density at t = 50, 100, . . . , 300. Bottom inset:
Raw data of boundary positions plotted against time. The red line is
the average boundary, with the velocity v = x/t = 2.9.

time step: The farthest the boundary could move outwards in
one time step is K , with probability p(K ) = pd = 2p(1 − p);
the probability of moving x < K steps is p(x) = pK−x

s pd ,
where ps = p2 + (1 − p)2. From this we obtain the mean and
variance of the boundary steps, and the central limit theorem
(CLT) allows us to obtain the full distribution (valid in the
long-time and p 	 pc limits) as a Gaussian.

This model correctly predicts various aspects of the decor-
relator. First, we obtain the long-time value of D(x, t ) inside
the light-cone as given by D0 = D(x, t → ∞) = 2p(1 − p),
which corresponds to the spins pointing up and down with
random probabilities p and 1 − p. In the chaotic phase, D0 is
independent of x, and therefore, H∞ = D0 = 2p(1 − p) based
on the sum rule [see the dashed line in the inset in Fig. 1(a)].

Second, the model predicts the butterfly velocity. The ex-
pectation of the outwards movement of the boundary in a
single time step is approximated by1

〈�x〉 =
K∑

x=−∞
xp(x) =

K∑
x=−∞

xpK−x
s pd , (6)

so that the spatial profile as a function of time is 〈x(t )〉 =
t〈�x〉. By the CLT, one expects this profile to approach a
Gaussian at large times, with a variance given by σ 2(t ) =
t[〈(�x)2〉 − 〈�x〉2]. One may evaluate the moments of the
probability density using the following manipulation:

〈�xn〉 =
K∑

x=−∞
xn pK−x

s pd =
(

d

d ln ps
+ K

)n ∞∑
x=0

eln psx. (7)

This expression may be evaluated using the geometric series
and gives a surprisingly simple expression for the butterfly

1The use of −∞ as the lower limit of the sum is a useful approxi-
mation for large K as it provides a simple closed-form expression for
vb and σ .

velocity:

vb(p) = K − ps

pd
= (K − 1) − (1 − 2p)2

2p(1 − p)
. (8)

It agrees with the full model’s butterfly velocity at large p
away from pc, as shown in the inset in Fig. 3.

Third, the standard deviation of the boundary
distribution is

σ 2(t ) = t

(
ps

pd
+ p2

s

p2
d

)
≡ t

2μ2(p)
, (9)

which confirms the Gaussian form of the boundary random
walk with a variance that scales linearly with time, as shown
in Fig. 4.

Fourth, the cumulative distribution of the boundary then
allows us to obtain the complete functional form of the OTOC
as a function of v, governed by its inverse width μ(p). For
any one realization, the boundary will trace a biased random
walk in time, and inside of its chaos spreading will be its own
scrambling region with the expected value D0 for the OTOC.
The OTOC therefore acts like the cumulative probability den-
sity function of the boundary’s probability density, weighted
such that it has a central value of D0 = 2p(1 − p):

D(x, t ) = D0

∫ ∞

x
G(x′, t ) dx′, (10)

where G(x′, t ) is the Gaussian distribution. In our approximate
model at high p and late times we may take the Gaussian limit,
therefore deriving the following form for the OTOC in terms
of the error function erf (x):

D(x, t ) = D0(p)

2

[
1 − erf

(
x − vb(p)t√

2σ (t )

)]

= p(1 − p)[1 − erf ([v − vb(p)]
√

μ(p)t )], (11)

where we have used x = vt and σ 2(t ) = t/2μ2(p). By taking
the series expansion of the error function in v − vb for large
x we recover an exponential decay of D(x, t ); in logarithmic
form this is (when v > vb)

ln D(v, t ) = ln p(1 − p) − 1
2 ln μ(v − vb)2πt − μ(v − vb)2t .

(12)

Comparing this result to the general scaling forms predicted
by previous works on spin chains,

ln D(v, t ) ∼ −μ(v − vb)βt, (13)

one may identify the same behavior in the long-time limit.
Figure 2 shows the predicted analytic form of the decorrelator
(dashed lines) compared to the numerical data (solid lines).
This quantitative agreement in the long-time limit confirms
that the boundary controls the dynamics of chaos spreading of
the full KCA model.

Most notably, in the long-time limit the analytical model
recovers the linear decay of the decorrelator in time, described
by a VDLE for v close to vb:

ln D(x = vt, t ) = −λ(v)t = −μ(p)(v − vb)2t, (14)

with an exponent β = 2. Therefore, in this regime we ex-
pect a data collapse around vb by plotting ln(D)/t against

094109-4



BUTTERFLY EFFECT AND SPATIAL STRUCTURE OF … PHYSICAL REVIEW B 103, 094109 (2021)

√
μ(p)(v − vb). Indeed, as shown in Fig. 3, the data of these

two variables for a range of probabilities fall onto the single
curve of the analytical prediction (black dashed line).

V. DISCUSSION

Given the discrete nature of the dynamics, the quantitative
agreement between our model and the full numerical sim-
ulation is somewhat surprising but highlights the universal
features of chaos spreading. Crucially, our analysis is valid
only after sample averaging and in the long-time limit, where
the effects of the discrete perturbation and dynamics have
been smoothed out. In particular, when approaching the criti-
cal point pc from above, we see systematic deviations due to
fluctuations.

Our work on a minimal classical model was inspired
by recent developments in the study of chaos in quantum
many-body systems where OTOCs have become a powerful
quantitative tool. One important prediction in that context is
that the butterfly velocity is bounded at high temperatures
vb(T → ∞) ∼ vLR [44], where vLR is the Lieb-Robinson
velocity, which is the upper limit of information prop-
agation in short-range interacting nonrelativistic quantum
systems [27,45]. For KCA one may connect the model param-
eter p to a temperature T via p = e−1/T /(e1/T + e−1/T ) [46].
Then from Eq. (8) we can obtain the full temperature depen-
dence of the butterfly velocity,

vb(T ) = (K − 1) −
∑

k even

2k

k!

1

T k
(15)

= (K − 1) − 2

T 2
− 2

3T 4
− · · ·, (16)

and the high-temperature limit is vb(T → ∞) = K − 1. This
expression confirms that also in our classical many-body sys-
tem the maximum velocity of information spreading is always
less than the maximum vmax = K allowed by the local dynam-
ics.

VI. CONCLUSION AND OUTLOOK

We have constructed a local diagnostic of information
spreading for a one-dimensional random CA in analogy with
recent semiclassical versions of OTOCs. We demonstrated
that it displays ballistic propagation characterized by a but-
terfly velocity and exponential growth in time captured by a
VDLE. We developed a random walk model of the boundary

of information spreading which permits the calculation of the
full functional form of the classical OTOCs, including the
exponent β of the VDLE.

An obvious extension of our work is to consider the two-
dimensional KCA where an even richer phenomenology is
expected. Even though our boundary random walk model pro-
posed here is simple, it has many physical and mathematical
aspects that remain unexplored. For example, if the random
walk is approximated to have a continuous walk distance
which still follows the same probability distribution, can it
have a closed-form solution for early times without having
to invoke the CLT? Alternatively, it would be worthwhile to
explore a Langevin-like description of the boundary, which is
particularly useful when considering KCA in higher dimen-
sions. For example, in two-dimensional KCAs, we expect a
diffusionlike process for the perturbation which could poten-
tially percolate across the lattice. In particular, it is interesting
to investigate whether this falls into any percolation universal-
ity class where established critical exponents could be linked
to the exponent of the classical OTOCs.

Generally, we expect our decorrelator and theoretical tools
to be applicable to other stochastic models with discrete
variables, which are widely used to describe the dynamics
of both quantum and classical many-body systems. While,
here, we use a classical random walk model to understand
the decorrelator in KCAs, we note that recently, quantum
random walk techniques have resulted in improved bounds
on the growth of OTOCs in large-S models [47]. We expect
that different variants of the boundary theory developed here
should be able to predict the scaling forms in these systems as
well. In particular, it would be interesting to see them applied
to models with charge or dipole conservation rules [48,49]
in which conjectured critical exponents could potentially be
derived analytically.
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