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Gapless state of interacting Majorana fermions in a strain-induced Landau level
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Mechanical strain can generate a pseudomagnetic field, and hence Landau levels (LL), for low-energy
excitations of quantum matter in two dimensions. We study the collective state of the fractionalized Majorana
fermions arising from residual generic spin interactions in the central LL, where the projected Hamiltonian
reflects the spin symmetries in intricate ways: emergent U(1) and particle-hole symmetries forbid any bilinear
couplings, leading to an intrinsically strongly interacting system; also, they allow the definition of a filling
fraction, which is fixed at 1/2. We argue that the resulting many-body state is gapless within our numerical
accuracy, implying ultra-short-ranged spin correlations, while chirality correlators decay algebraically. This
amounts to a Kitaev ‘non-Fermi’ spin liquid and shows that interacting Majorana Fermions can exhibit intricate
behavior akin to fractional quantum Hall physics in an insulating magnet.
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I. INTRODUCTION

Majorana Fermions, elusive as elementary particles, have
been the subject of intense interest as emergent quasiparticles
in condensed matter physics [1–12]. Their practical relevance
derives from the appearance of symmetry protected Majorana
zero modes in topological quantum computing [1,13]. In addi-
tion, as fractionalized degrees of freedom they arise as novel
collective excitations in long-range (LR) entangled quantum
phases of matter [14–17] to the study of which this work is
devoted.

Platforms proposed for collective Majorana phases in-
clude superconductor-topological insulator heterostructures
[13,18], vortex matter in chiral-superconductors [19], and the
ν = 5/2 fractional quantum Hall (FQH) liquid [11,20]. An
intriguing alternative is given by Kitaev’s honeycomb quan-
tum spin liquid [4] (QSL). The starting point of our work is
the exact solution of the eponymous honeycomb model which
identifies Majorana fermions as effective low-energy degrees
of freedom arising from fractionalization of the microscopic
spin degrees of freedom [4]. However, their Dirac dispersions
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imply a vanishing low-energy density of states (DOS), so
that residual spin interactions that lead to short-range (SR)
four-Majorana interactions are a priori irrelevant for the pure
model at the free Majorana fixed point.

Application of mechanical strain, by contrast, modifies
this situation drastically given it acts as a synthetic mag-
netic field to low-energy excitations resulting in nondispersing
Landau levels (LLs) of noninteracting Majorana excitations
[15] like in graphene [21–24] with characteristic signatures
in experimental probes [25]. These LLs provide a nonvan-
ishing DOS for Majorana fermions, allowing for the residual
spin interactions, inevitably present in any real material, to
become extremely interesting. We explore the resulting col-
lective behavior. These extensively degenerate LLs lead to an
intrinsically strongly interacting problem with the potential
for the fractionalized Majoranas of the Kitaev Z2 QSL to
exhibit manifold non-Fermi liquid instabilities, as is famously
the case in FQH at ν = 1/2 [19,26–28].

We thus pose the general questions: how does the many-
body state of the degenerate Majorana fermions change on the
addition of generic perturbations allowed by symmetry, and
for our concrete example of the strained Kitaev model, how is
the collective state reflected in the correlations of the spins?
Starting out with this concrete problem, we also identify a
large class of (generic) interacting Majorana problems with
this particular symmetry realization. There, our analysis finds
correlated spin-disordered ground states.

Our analysis points to a gapless QSL which is reminiscent
of the composite Fermi liquid originally proposed for the FQH
problem at filling ν = 1/2 [19,26–28]. This exhibits spin cor-
relators even more SR than the unstrained Kitaev QSL, while
the “chiral” three-spin correlators decay algebraically with
distance, ∼r−4. Constitutive to our analysis is the nontrivial
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FIG. 1. Effective Hamiltonian: (a) Each hexagon has three chi-
rality terms, Fx, Fy, and Fz, defined in terms of three-spin operators
that couple two Majoranas on A sites in the zero flux sector. Triaxial
strain C acts in the directions shown. (b) Each hexagon has three
rhombic plaquettes (yellow, blue, red) that signify a 4-Majorana
interaction which can arise due to product of Fα operators on neigh-
boring hexagons.

(projective) implementation of the microscopic symmetries on
the fractionalized Majoranas not unlike the low-energy effec-
tive molecular orbitals of the recently studied twisted bilayer
graphene [29,30]. This moves the study of the interplay of
symmetry and LR entanglement from the soluble Kitaev QSL
physics into the realm of a gapless, strongly interacting setting
toward quantum ‘non-Fermi’ spin liquids, so to speak.

The rest of this paper is organized as follows. Starting with
the strained Kitaev model, we present the fate of spin interac-
tions upon projection onto the central LL (cLL), deriving the
terms present in, and the symmetries of, a generic effective
Hamiltonian. This is followed by a numerical analysis using
exact diagonalization (ED) and density matrix renormaliza-
tion group (DMRG), and a study of more tractable related
models. We conclude with an outlook.

II. LOW-ENERGY THEORY AND SYMMETRIES

We consider the Kitaev honeycomb model, H =∑
i j Ji j,ασ α

i σα
j [4], with its bond-dependent nearest-neighbor

Ising exchanges, α ∈ x, y, z for the three different bond
directions (see Fig. 1). Representing each spin S = 1/2 in
terms of four Majorana fermions bx

j, by
j, bz

j , and c j such that
σα

j = ibα
j c j yields the ground state, a Z2 QSL with dynamic

gapless matter Majorana fermions, ci, minimally coupled
to nondynamical Z2 fluxes, with flux gap ≡ � f , formed
by the product of bα

j s around the hexagonal plaquettes. The
ground state lies in the zero flux sector where the Majorana
fermions have a linearly dispersing spectrum at the two Dirac
points ±K.

Triaxial strain (C) is known to generate a uniform pseudo-
magnetic field [15] for a flake in a region of radius, lr , with an
effective magnetic length lB ∼ 1

4
√
C

[23]. This strain breaks
lattice inversion, but not time-reversal symmetry, with the re-
sulting pseudomagnetic field having the opposite direction at
the two Dirac points ±K, as in graphene [31,32]. We work in
the physically relevant hierarchy of length scales 1

� f
< lB < lr

and hence restrict our analysis to the zero Z2 flux sector
and uniform pseudo magnetic field regime. The low-energy
physics thus naturally maps to the problem of nondispersive
matter Majoranas in the cLL.

The wave functions of the cLL reside on only one sublattice
[23,33] (for example A, see Fig. 1) leading to the following
soft mode expansion for the lattice matter Majoranas on A
sites (≡ ciA) (see Appendix A),

ciA =
∑

m

[�0(m, ri )e
iKri f †

m + �∗
0(m, ri )e

−iKri fm], (1)

where �0(m, ri ) = 〈n = 0, m|ri〉 ∝ zme− r2

4 (z = x − iy) is the
cLL form factor in the symmetric gauge and m the angular
momentum [34]; r is measured in units of lB here and in the
rest of the paper. The canonical f -fermions satisfy

{ fn, f †
m} = δnm, { fn, fm} = 0, { f †

n , f †
m} = 0, (2)

and they are related to the underlying Majorana soft modes as

f †
m ≡ cn=0,m,K ≈

∑
i

e−iKri�∗
o(m, ri )P̂ciAP̂, (3)

fm ≡ cn=0,m,K′ ≈
∑

i

eiKri�o(m, ri )P̂ciAP̂, (4)

where P̂ is the projector to the cLL.
Crucial to our analysis is the transformation of the

f -fermions under various microscopic symmetries. Note,
however, that due to the triaxial strain, the two sublattices are
no longer equivalent and hence the surviving symmetries of
the low-energy soft modes are given by (see Appendix A for
details):

(1) Two-dimensional translations, T1(2).
(2) Threefold rotation about plaquette center, C3.
(3) A reflection about a line passing through the x-bonds

of the honeycomb lattice, hx.
(4) Time reversal, T .
Starting with the symmetries of the Hexagonal lattice and

recalling that in the Kitaev-QSL the Majorana fermions ci

transform under a projective representation of various sym-
metries [35–37], we can work out the symmetries of the
f -fermions. This is done in Appendix A. In this case, we
assume that since the flux gap remains intact, the projective
symmetry group (PSG) are the same as those of the unstrained
system except for spatial symmetries explicitly broken by the
application of strain. The transformation of ( fm, f †

m) under
threefold rotations, C3, time reversal, T (TRS), and rotore-
flection, hx is

C3 T hx

f †
m − f †

me−i 2π
3 (m+1) fm − fme−i 2π

6 (m−2)

fm − fmei 2π
3 (m+1) f †

m − f †
mei 2π

6 (m−2)
. (5)

Crucially, these forbid any quadratic term, in the hopping
f †
m fm′ or pairing fm fm′ channels, as seen from the TRS opera-

tion (amm′ f †
m fm′ → a∗

mm′ fm f †
m′).

This impossibility of a quadratic term seems to indicate
that at the level of free fermions, the flatness of the cLL
is symmetry protected. In addition, TRS corresponds to a
particle-hole transformation within the cLL, taking the occu-
pation of the m-th orbital

nm = f †
m fm → 1 − nm. (6)

Thus, as long as TRS is not broken spontaneously, this directly
implies a half-filled cLL.

134427-2



GAPLESS STATE OF INTERACTING MAJORANA … PHYSICAL REVIEW B 103, 134427 (2021)

Further, for an appropriate gauge choice for the Z2 gauge
field [4], the matter Majoranas are manifestly invariant under
honeycomb lattice translations in the zero flux sector. This
is enhanced to a continuous translation symmetry for the
soft modes where translations by a vector a changes f †

m →
f †
meiKa. For the interaction terms this leads to an emergent

number conservation for the fm, taking the form of a global
U (1) symmetry. Thus, quartic Majorana interactions lead to
number-conserving quartic terms for the f ’s. At higher orders,
however, on considering Umklapp processes coupling the soft
modes of the two valleys, we can write down an eight Majo-
rana term reducing U(1) to Z6 (see Appendix A). We expect
such terms to be irrelevant and neglect them in the rest of our
calculations.

III. GENERIC SPIN INTERACTIONS AND EFFECTIVE
HAMILTONIAN

In the absence of a quadratic term, the generic symmetry
allowed form of the leading order effective Hamiltonian in the
cLL thus reads (see Appendix B)

H = 1

2

∑
m1···m4

[
Jm1m2m3m4 f †

m1
f †
m2

fm3 fm4 + H.c.
]
, (7)

where m1...4 are angular momenta indices. The cou-
pling constants, determined from the non-Kitaev interac-
tions, satisfy Jm1,m2,m3,m4 = −Jm2,m1,m3,m4 = −Jm1,m2,m4,m3 =
J∗

m4,m3,m2,m1
from fermion antisymmetry.

Generic spin interactions beyond the soluble Kitaev ones
are both symmetry allowed and important for the material
candidates. These include SR Heisenberg and pseudodipolar
spin interactions [38]. Characteristic to degenerate perturba-
tion theory of strongly correlated systems [39], both these
interactions have a zero projection in the low-energy sector
(i.e., within the cLL) but lead to virtual tunneling between the
cLL states at higher order.

The above interaction can be generated, for example,
specifically through the generation of six-spin terms (see
Appendix B). Interestingly, the leading six-spin term so gener-
ated is a product of two spin-chirality terms [Fx(I ) and Fx(L)]
of two neighboring hexagons (labeled I and L), centered at
positions ri and rl [see Figs. 1(a) and 1(b)]. After projection,
this gives rise to

−Vf (|ri − rl |)ci+ẑci+ŷcl+ẑcl+ŷ, (8)

where Vf (|r|) is the strength of the interaction, with r mea-
sured from the center of the flake. In particular, for a flake
under triaxial strain, a next nearest-neighbor Heisenberg spin
exchanges with amplitude J3, connecting sites of the same

sublattice, gives V (r) = V0(|r|) with V0 ∼ J3
3

J2 . We find it use-
ful to consider a family generalization V (r) = V0|r|β where
β � 0 is an integer. The low-energy couplings in Eq. (7) then
reads

Jm1m2m3m4 = iVδ(m1 + m2 − m3 − m4)

(2π )2
√

2m1+m2+m3+m4 m1!m2!m3!m4!

× (m1 − m2)(m3 − m4)(−m1m2 + m3m4)

× 

(m1 + m2 + m3 + m4 − 2 + β

2

)
, (9)

FIG. 2. Ground state: (a) Ground state energy/(mmax)3/2 ≡ εgs

and total angular momentum eigenvalue for the ground state ≡ MGS

vs mmax (β = 1). MGS follows the time-reversal symmetric value
(= Mo) (dashed line: mean-field energy εvar). (b) Real-space density
in ground state for mmax = 24, 28.

where V = V0a4 (a is lattice constant) is set to unity. Note
that this specific form of J originates from a concrete micro-
scopic setting (considering the energetically dominant spin
interactions in Kitaev materials); the form is also symmetry
constrained in that it allows only for a few variable param-
eters. The resulting family of models can then be used to
analyze various strain profiles (changing β) or by considering
LR/SR interactions (see below).

Despite the striking similarity with that of half-filled LL in
the FQH problem, note that the present one is time-reversal
invariant. Also, the Hamiltonian given in Eq. (7) corresponds
to correlated pair-hopping processes rather than projected
density interactions for the ν = 1/2 lowest LL (LLL) case
[19,26–28,40–43].

IV. NUMERICAL RESULTS

We now summarize the ED results for our system. These
are performed on finite-sized flakes, where restricting the an-
gular momentum indices {m1, . . . , m4} < mmax sets the size of
the flake, which can be systematically increased (mmax � 28).

A. Ground state

Since the total angular momentum, up to commensurability
effects (see Appendix A), closely follows the time-reversal
symmetric value of Mo = mmax(mmax − 1)/4 [see Fig. 2(a)],
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FIG. 3. Excitations: (a) Displaced low-energy spectra (from
ground state energy) vs shifted angular momentum m̃ = M − Mo

(from time-reversal symmetric sector Mo) for the three different
system sizes mmax = 12, 16 and mmax = 24, for β = 1 exact system.
(b) Gap to first and second excited state (�1 and �2) vs 1/mmax.
(c) ρ(r) for the first excited state for mmax = 24 for β = 0, 1.

as in a uniform droplet state in FQH physics, 〈 f †
m fm′ 〉 = 1

2δm,m′

[44]. For finite-sized systems when Mo is not an integer, it can
lead to a degenerate pair of TR partner ground states leading
to commensuration effects in the gap scaling.

In Fig. 2(a) we also plot the normalized ground state
energy, εgs. Note that, with an interaction potential scaling
as Vo|r|β , and the flake radius ∝ √

mmax, we normalize the
ground state energy by mβ/2+1

max ; this normalized ground-state
energy, εgs, slowly saturates with increasing mmax.

The real-space density profile ρ(r) = ∑
m |�o(m, r)|2〈nm〉

is shown in Fig. 2(b). The flat profile at the value of 0.5 all the
way up to the edge suggests a uniform droplet that is in close
correspondence with the FQHE droplet. The corresponding
density profile as a function of m is shown in Fig. 9(a). The
corresponding results for β = 0 is also shown in Fig. 10.

The above observations suggest the tantalizing possibility
of a spatially uniform and time-reversal symmetric ground
state obtained from the fractionalized Majorana fermions of
the Kitaev QSL.

B. Excitations

Turning to the excitations, the droplet appears gapless as
we now discuss. In Fig. 3(a) we plot the low-energy spectrum,
as measured from the ground state, i.e., E − E0 as obtained
from our ED results as a function of the total angular mo-
mentum deviation from its mean value, m̃ = M − M0. While
the spectrum has a lot of structure including selection rules,

we focus on the finite size scaling of energy gap, �, to the
first two excitations vs 1/mmax [see Fig. 3(b)] falls linearly
(for both β = 0 and 1) indicating a gapless state in the ther-
modynamic limit.

These excitations in the half-filled sector correspond to
density fluctuations over the ground state [see Fig. 3(c)]. The
corresponding density fluctuations as a function of m are
shown in Fig. 9.

These ED results for the ground state and the exci-
tations taken together firmly show that the system hosts
a uniform droplet ground state which is gapless, time-
reversal symmetric, and hosts density fluctuations as low-
energy excitations. A self-consistent mean-field theory for
a state |ψMF 〉 can be obtained by decoupling the Hamilto-
nian [Eq. (7)] as f †

m1
f †
m2

fm3 fm4 → −χm1m3 f †
m2

fm4 + · · · where
χm1m3 = 〈 f †

m1
fm3〉. Such a state breaks time-reversal sym-

metry since χm1m2 = 0 for m1 = m2—-at odds with the
ED results and hence fails to capture the essential fea-
tures of the above gapless state. Also, its energy εvar =
〈ψMF |H |ψMF 〉/(mmax)3/2 (β = 1), Fig. 3(a) is unsurprisingly
higher than the ED ground state.

V. SIMPLIFIED MODELS

Our numerical results are limited by the finite size acces-
sible in the ED calculations. In the following, we construct
illustrative limits sharing some essential features of the exact
system [Eq. (9)], namely angular momentum conservation
and the absence of quadratic terms. We show that these
also stabilize time-reversal symmetric gapless states. These
models we call LR and SR, with the exact Eq. (9) replaced
by JLR

m1,m2,m3,m4
= i sign(m1 − m2) sign(m3 − m4) sign(m3m4 −

m1m2)δ(m1 + m2 − m3−m4) and JSR
m1,m2,m3,m4

= i sign(m1−m2)
sign(m3 − m4) sign(m3m4 − m1m2)δ(|m2 − m1| − 3)δ(|m4 −
m3| − 1). Both capture the fundamental microscopic process
of pair hopping of fermions which lies at the heart of Eq. (7).
The LR model also is reminiscent of SYK [45,46] physics
but with angular-momentum conservation and nonrandom
couplings.

Our analysis of LR is still restricted to the small systems
sizes (due to ED), the SR model Hamiltonian

H = i
mmax−4∑

m=0

f †
m f †

m+3 fm+1 fm+2 + H.c., (10)

however, is amenable to DMRG studies. In both models, the
ground state lies in the TR symmetric sector with uniform
〈 f †

i f j〉 = 1
2δi j . The ground states again are found to be gapless

liquids with excitations corresponding to density oscillations.
The gap to the first excited state � and the behavior of 〈nm〉
is shown in Fig. 4. Furthermore, the behavior of the entan-
glement entropy scaling for the SR model suggests that the
central charge of the system is c = 1 as shown in Fig. 5.

VI. SPIN CORRELATORS

The spin correlators in the above state are strictly onsite,
〈�|Sα

i Sβ
j |�〉 = δ

αβ
i j . This is an even shorter range than the

nearest-neighbor correlations of the unperturbed Kitaev QSL
[47] and is due to the sublattice selectivity of the cLL. The

134427-4



GAPLESS STATE OF INTERACTING MAJORANA … PHYSICAL REVIEW B 103, 134427 (2021)

FIG. 4. SR and LR models: (a) Gap to first excited state for both
SR and LR goes to zero with increasing mmax (for LR, the value in
the y axis should be multiplied by a factor 5). (b) Density oscillations
in the first excited state (DMRG for SR; ED for LR).

simplest nontrivial correlations are thence those of chirality
operators, such as 〈Fy(ri )〉 = Sz

i+�xSx
i−�ySy

i+�z. While 〈Fα〉 = 0, as
expected for time-reversal symmetry, the 2-point correlator is

〈Fx(0)Fx(r)〉 =
∑

m

r2m exp(−r2/2)

(2π )22mm!
(〈nonm〉 − 〈no〉〈nm〉).

(11)
For LR and the exact system (where ED studies are done)

〈nonm〉 − 〈no〉〈nm〉, away from the boundaries (2 � m � 12),
it seems to go as ∼1/m2 (see Fig. 6) and appears to saturate as
the system size is approached. The SR model, in DMRG stud-
ies on much bigger systems, shows a persistent 1/m2 behavior
even at large m. This translates to a 〈Fx(0)Fx(r)〉 ∼ 1/r4 for
the radial direction of the droplet in real space.

VII. OUTLOOK

We have engineered and analyzed a system of strongly
interacting Majorana fermions. Its genesis in a concrete

FIG. 5. Central charge: (a) Variation of ground state (SR system)
entanglement entropy (S) of a subregion m/mmax with the rest show-

ing a characteristic behavior S = c
6 ln [ mmax

π
sin( πm

mmax
)] (mmax = 240,

bond dimension χ ∼ 800). (b) Variation of c showing that it goes to
1 with increasing system size for the SR model [see Eq. (10)].

FIG. 6. Density correlator: Behavior of the density correlator in
m space for the ground state for SR, LR and exact system (β = 1,
average density n = 1/2). The behavior in intermediate m (2 � m �
12) goes as 1/m2. The exact and LR saturate (mmax = 24, ED results)
while the SR system shows a clear 1/m2 behavior (mmax = 102,
DMRG results).

microscopic spin model has allowed us to derive nature and
symmetries of a generic Hamiltonian in the cLL. It differs
from the conventional half-filled LL [19,26–28] in the pres-
ence of time-reversal symmetry and consequently an exact
particle-hole symmetry. This provides an entirely novel and
concrete setting to explore the interplay of symmetries and
interactions in a flat band.

From the QSL perspective, our results imply strain can
singularly enhance residual interactions in a Kitaev magnet,
generating qualitatively new interacting gapless QSLs whose
properties presently seem to defy a free particle-type under-
standing. This is a QSL analog of strongly correlated gapless
phases—commonly dubbed as non-Fermi liquids—beyond
the enigmatic spinon-Fermi surface [48–50]. The generality
of our considerations means that studying strain engineering
among the slew of candidate Kitaev QSL materials [51] may
be an auspicious experimental proposition.

The low-energy effective field theoretic understanding of
the present phase, as well as an analysis of its robustness to
disorder, which is often present in Kitaev candidate materials
[52], remain natural questions for future work. Considering
the close parallel, with important differences as mentioned
above, with the ν = 1/2 LL problem, it is tempting to spec-
ulate whether the low-energy-theory of the gapless phase is
obtained in terms of either the well-known formulation in
terms by Halperin, Lee, and Read (HLR) [40] or the more
recent particle-hole symmetric version by D. T. Son [26]. The
difference in the implementation of symmetries, the micro-
scopic interactions, and the robustness of the gapless phase
prevents any straightforward comparison with the existing
low-energy theories at present.

More generally, our work at the crossroads of flat-band sys-
tems and symmetry-protected phases provides a microscopic
route to non-Fermi liquid physics [45,46] traditionally studied
in the context of the quantum Hall effect and more recently in
twisted bilayer graphene [29,53,54].

134427-5



ADHIP AGARWALA et al. PHYSICAL REVIEW B 103, 134427 (2021)

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Dan Arovas,
Andreas Läuchli, Sung-Sik Lee, R. Shankar, and D. T. Son.
A.A. and S.B. acknowledge funding from Max Planck Part-
ner Grant at ICTS and the support of the Department of
Atomic Energy, Government of India, under Project No.
12-R&D-TFR-5.10-1100 and RTI4001. S.B. acknowledges
SERB-DST (India) for funding through project Grant No.
ECR/2017/000504. Numerical calculations were performed
on clusters boson and tetris at ICTS. We gratefully acknowl-
edge open-source softwares QuSpin [55] (for ED) and ITensor
[56] (for DMRG studies). This work was supported in part
by the Deutsche Forschungsgemeinschaft under Grants SFB
1143 (Project-id 247310070) and the cluster of excellence
ct.qmat (EXC 2147, Project-id 390858490).

APPENDIX A: LOW-ENERGY EFFECTIVE
HAMILTONIAN

1. Low-energy noninteracting problem

To derive the low-energy theory, we use notation detailed
in Fig. 7 [36]. The itinerant Majorana modes can be soft mode
decomposed as

cα (i) = c1α (i)eiK·ri + c2α (i)eiK′ ·ri , (A1)

where α = A, B denotes the sublattice index and K and K′ =
−K are Dirac cones.

The continuum description of matter Majoranas under tri-
axial strain in the zero flux sector is given by [15,25] H =
3i
4

∫
drC(r)†HC(r) where

H =

⎛
⎜⎜⎝

0 �x + i�y 0 0
−(�x − i�y) 0 0 0

0 0 0 −(�′
x − i�′

y)
0 0 (�′

x + i�′
y) 0

⎞
⎟⎟⎠

(A2)

FIG. 7. Lattice notations: Three vectors �x = {
√

3
2 , − 1

2 }, �y =
{−

√
3

2 , − 1
2 }, �z = {0, 1} point toward A sites starting from the hexago-

nal plaquette centers. δ1 = {
√

3
2 , 3

2 } and δ2 = {−
√

3
2 , 3

2 } are the lattice
vectors. K = { 4π

3
√

3
, 0} and K′ = {− 4π

3
√

3
, 0} are the two Dirac cones

for the free Majorana dispersion on the honeycomb lattice. These
lengths are measured in units of bond-length a which is set to 1.

and C(r) = Transpose{c1A, c1B, c2A, c2B} and

�α = pα + Aα, and �′
x = pα − Aα, (A3)

where pα = −i∂α . Similar to the treatment of quantum Hall,
one can diagonalize this in the symmetric gauge- as, near
Dirac cone K and K′ with eigenvalues E (1)

n ={
0 �n=0 = (|0〉KA, 0)T for n = 0
3
√

2h̄
4lB

√
n �n>0 = (|n〉KA,−i|n − 1〉KB)T ∀n > 0

(A4)

and E (2)
n ={

0 �n=0 = (|0〉K′A, 0)T for n = 0
3
√

2h̄
4lB

√
n �n>0 = (|n〉K′A, i|n − 1〉K′B)T ∀n > 0

(A5)

where |n〉 label the single particle LL wave functions in sym-
metric gauge [34]. Note that the zero energy states on both the
cones have weights only on the A (same) sublattice. Moreover
the states near −K are time-reversal partners of those at K.
This leads to the Hamiltonian Eq. (7).

2. Symmetry analysis

The Kitaev spin model has the following underlying mi-
croscopic symmetries [35–37]: (i) Two lattice translations
corresponding to the triangular Bravais lattice, T1 and T2; (ii)
a sixfold C6 spin rotation about [111] (this is combined with a
reflection over the plane); (iii) reflection about the z bonds, σ ;
and (iv) time reversal, T . Reference [36] defines hx = σC6

to discuss it as a useful symmetry operator (note that, as
mentioned in the main text; hx is actually a reflection about
a line passing through the x-bonds of the honeycomb lattice
[36]). Lattice matter Majorana fermions transform according
to the following PSG [35].

T1,2 C6 σ T
cA cA cB cB cA

cB cB −cA −cA −cB

(A6)

Under triaxial strain the two sublattices are no longer equiv-
alent and hence the surviving symmetries are given by (i)
translational symmetry (the continuum state), (ii) C3 symme-
try, and (iii) time-reversal symmetry T . Given the flux gap
remains intact [15], it is justified to assume that the PSG of
the Majoranas for the surviving symmetries of the strained
system does not change. Note that while σ and C6 are not
separately the symmetries of the system under distortion, hx

is. The PSG transformation of Majorana fermions under these
residual symmetries is

T1,2 C3 T hx

cA cA −cA cA −cA
(A7)

Starting with the PSG on the lattice matter Majoranas [36],
it is straightforward to work out the symmetries of the soft
modes, c1α, c2α (α = A, B) and hence the cLL modes, fm, f †

m.
This is then given in Eq. (5).

Given these symmetries, given time reversal and hermitic-
ity, no quadratic terms are allowed (either number-conserving
or number conservation-breaking term) (amm′ f †

m fm′ →T

a∗
mm′ fm f †

m′ ).
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a. Umklapp-like terms

Up to conditions of hermiticity and time reversal, we now
check when Umklapp-like (slow varying) terms could be
important. This corresponds to the case when the momen-
tum factors are not fast oscillating. For m f †s, positioned at
r + δi; i = 1, . . . , m and n f s with lattice labels r + δ j ; j =
1, . . . , n provide a term of the kind ∼eia f †

1 f †
2 . . . f †

m f1 f2 . . . fn

has a phase a = K · ((m − n)r) + K(
∑m

i=1 δi − ∑n
j=1 δ′

j ).

Given r = pδ1 + qδ2, we have a = [(m − n)(p − q) 2π
3 ] +

K(
∑m

i=1 δi − ∑n
j=1 δ′

j ). For this to not oscillate, we have
m − n = 3s where s is an integer. The minimal term, which
can be nonnumber conserving and even, corresponds to a spin
term (s = 2, n = 1, m = 7). This breaks the fermionic U (1)
to Z6.

b. Angular momentum conservation

A term of the kind f †
m1

f †
m2

fm3 fm4 puts an constraint (m1 +
m2 − m3 − m4 = 3n) under C3 and (m1 + m2 − m3 − m4 =

6n) under hx. For n = 0, we have angular momentum con-
servation, which is the microscopic term we have focused on
as the leading contribution motivated from the microscopics.
Other microscopic terms, in particular warping effects, can
lead to breaking of these angular momentum conservation
where (m1 + m2 − m3 − m4 = 6).

APPENDIX B: ROLE OF RESIDUAL INTERACTIONS

1. Derivation of generic symmetry allowed interaction vertex

a. General projection

The spin-spin terms are projected to the zero flux sector
and then to the cLL. Given cLL has weight on only one of the
sublattices T allows for couplings only between 4n number of
Majoranas operators on the same sublattice, for example, at
positions i, j, k, l ∼gciAc jAckAclA. Projecting this to the cLL
[using Eq. (1)], keeping slowly varying terms and ignoring
Umklapp processes provide an emergent number conservation
U (1) symmetry for the f operators leading to a form of
Hamiltonian given by

=
∑

m1,m2,m3,m4

(
g1,2,3̄,4̄ f †

m1
f †
m2

fm3 fm4 + g1,2̄,3,4̄ f †
m1

fm2 f †
m3

fm4 + g1,2̄,3̄,4 f †
m1

fm2 fm3 f †
m4

)

+ (
g1̄,2,3,4̄ fm1 f †

m2
f †
m3

fm4 + g1̄,2,3̄,4 fm1 f †
m2

fm3 f †
m4

+ g1̄,2̄,3,4 fm1 fm2 f †
m3

f †
m4

)
(B1)

Note that the sum is unrestricted over all ms. This can
be reorganized where the first two and last two indices
can be antisymmeterized such that the pair of indices
(m1, m2) can be restricted to m2 > m1. The antisymme-
terized g̃1,2,3̄,4̄ = g1,2,3̄,4̄ − g2,1,3̄,4̄ − g1,2,4̄,3̄ + g2,1,4̄,3̄ can be

used to define Jm1,m2,m3,m4 = 1
2 [(g̃1,2,3̄,4̄ − g̃1,3̄,2,4̄ + g̃1,3̄,4̄,2) +

(g̃4,3,2̄,1̄ − g̃4,2̄,3,1̄ + g̃4,2̄,1̄,3)∗]. The effective Hamiltonian is
given by Eq. (7).

2. Microscopic spin terms

We motivate the nature of the interaction vertex we choose
below from the microscopic spin interactions. Consider a
hexagon labeled I centered at position rI ≡ i. Three A-type
Majoranas are located at three vectors �x, �y, and �z surround-
ing the center (see Fig. 1). Three kinds of chiral three-spin
terms can exist which, under projection, can couple two A site
Majoranas.

Fx(I ) = Sx
i+ẑS

y
i−x̂Sx

i+ŷ → −ici+ẑci+ŷ (B2)

Fy(I ) = Sz
i+x̂Sx

i−ŷSy
i+ẑ → −ici+x̂ci+ẑ (B3)

Fz(I ) = Sy
i+ŷSz

i−ẑS
x
i+x̂ → −ici+ŷci+x̂ (B4)

Although every Fα operator couples two A sites, they are
odd under time-reversal symmetry and are therefore not indi-
vidually allowed. However, pair of such terms can engineer an
interaction term between four A sites which form a rhombic
plaquette. Focusing on a hexagon, there are three kinds of

rhombic plaquettes which can be engineered; these are C3

related to each other (see Fig. 1).
This six-spin term leads to the following quartic Majorana

term

Vf (|dI,L|)Fx(I )Fx(L) → −Vf (|dI,L|)ci+ẑci+ŷcl+ẑcl+ŷ, (B5)

where dI,L is the distance between two hexagons I and L (see
Fig. 1) and Vf is the bare interaction strength which depends
on dI,L.

For each such rhombic plaquette, however, there are two
kinds of six-spin terms which can couple the same four Majo-
rana operators on the A sites (see Figs. 1 and 8) for, e.g.,

Vf (|dI,L|)Fx(I )Fx(L) + Vf (|dI,J |)Fz(I )Fz(J )

→ −[Vf (|dI,L|) − Vf (|dI,J |)]ci+ẑci+ŷcl+ẑcl+ŷ. (B6)

FIG. 8. Strain profile: (a) The three kinds of plaquette terms for
quartic Majoranas interaction (v1, v2, v3) are seen in form of a vector
V . (b) The magnitude of V increases linearly away from the center
of the flake and is linearly proportional to C.
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FIG. 9. Density variations: (a) The 〈nm〉gs for the ground state for
two different values of mmax = 24, 28 for β = 1 is shown. (b) The
〈nm〉ex for the first excited state in the half-filled sector for mmax =
24 and values of β = 0, 1 is shown. The corresponding real-space
density profiles are shown in the main text.

These two terms cancel each other when |dI,J | = |dI,L|, i.e,
in the absence of strain. However, in the presence of strain,
these two distances are not the same and for a short-ranged
interaction of the functional form, Vf (d ) ∼ e−d ; this therefore
generates a term of the kind ∼v1(i)ci+ẑci+ŷci+(δ1−δ2 )+ẑci+x̂

where v1 is dependent on the value of strain C and on the
position of the hexagon i; v1 therefore has a varying strength
over all in the flake. Including the other two interactions (v2

and v3), these interactions centered at hexagon I couple the
following Majorana terms:

v1(i) ci+ẑci+ŷci+(δ1−δ2 )+ẑci+x̂

v2(i) ci+x̂ci+ŷci+δ2+ŷci+ẑ

v3(i) ci+ẑci+x̂ci−δ2+ŷci+ŷ

(B7)

To track their behavior, we construct a vector V̂ using
(v1, v2, v3) as V = v1x̂ + v2ŷ + v3ẑ which reflects a plaquette

FIG. 10. β = 0 case: (a) The total angular momentum of the
ground state continues to remain in the time-reversal symmetric
value Mo. (b) Gap to first excited and second excited states goes to
zero for exact model β = 0 with increasing mmax.

directed in the direction of V̂ , with the strength |V |. One finds
that V has a rotational symmetry around in the flake with a
strength which linearly increases as one goes away from the
center. The value of |V | increases linearly with C as shown in
Fig. 8.

3. Form factor

To capture the essential microscopic phenomenology as
discussed above, we consider a hexagon centered at r =
reiθ . The Majorana operators which couple at position r
are, in the coarse-grained picture, centered at (r − a)eiθ ,
rei(θ+α), rei(θ−α), and (r + a)eiθ where α = arctan(a/r) and
a is the order lattice constant. Under cLL projection [us-
ing �o(m, r) = 1√

2π2mm!
zme−r2/4 = 1√

2π2mm!
rme−imθ e−r2/4 =

Bmrme−imθ e−r2/4],

g1,2,3̄,4̄ =
∫

rdrdθV (r)�0(m1, (r − a)eiθ )�0(m2, rei(θ+α(r)) )�∗
0(m3, rei(θ−α(r)) )�∗

0(m4, (r + a)eiθ ) (B8)

= Bm1 Bm2 Bm3 Bm4δ(m1 + m2 − m3 − m4)
∫

drrV (r)(r − a)m1 rm2+m3 (r + a)m4 ei(m2−m3 )α(r)e− 2r2+(r+a)2+(r−a)2

4 (B9)

g̃1,2,3̄,4̄ = Bm1 Bm2 Bm3 Bm4δ(m1 + m2 − m3 − m4) ×
∫

drrV (r)

× ((r − a)m1 rm2 eim2α(r) − (r − a)m2 rm1 eim1α(r) )(rm3 (r + a)m4 e−im3α(r) − rm4 (r + a)m3 e−im4α(r) )e− 2r2+(r+a)2+(r−a)2

4 (B10)

and using the discussion near Eq. (B1)

Jm1,m2,m3,m4 ≈
∏

γ=1..4 Bmγ

2

∫
drrV (r)

(
4irm1+m2+m3+m4−1g(m1,m2,m3,m4 )aα3)e−r2

(B11)
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where g(m1,m2,m3,m4 ) is defined near Eq. (9). Further us-
ing α ∼ a/r and

∫
drrn exp[−r2] = 1

2
[ 1+n
2 ] and generally

for V (r) = Vorβ , one obtains Eq. (9). When β = 1, this
models the microscopic interaction behavior as discussed
above.

APPENDIX C: ADDITIONAL NUMERICAL RESULTS

For β = 1 and β = 0, the ground state density is uni-
form where 〈nm〉 = 0.5 is the angular momentum m space.
This is shown in Fig. 9(a). The corresponding real-space

variation was shown in Fig. 2. The excitations correspond to
density fluctuations where 〈nm〉 deviates away from 0.5 [see
Fig. 9(b)]; the corresponding real-space profile was shown in
Fig. 3.

Further in Fig. 10(a), we show that the ground state for
the β = 0 case remains in the TR symmetric sector where the
total angular momentum of the ground state MGS follows the
time-reversal symmetric value Mo. In Fig. 10(b), we show the
gap to low-energy excitations which seem to go to zero as
mmax (flake size) continues to increase. That way, this system
again appears gapless.
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