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Abstract 
In most structural systems, it is neither possible nor optimal to inspect all system components 
regularly. An optimal inspection-repair strategy controls deterioration in structural systems 
efficiently with limited cost and acceptable reliability. At present, an integral risk-based 

optimization procedure for entire structural systems is not available; existing risk-based 
inspection methods are limited to optimizing inspections component by component. The 
challenges to an integral approach lie in the large number of optimization parameters in the 

inspection-repair process of a structural system, and the need to perform probabilistic inference 
for the entire system at once to address interdependencies among all components. This thesis 

presents solutions to some of those challenges. 

A multi-level hierarchical Bayesian network (BN) model is developed to represent complex 
spatio-temporal deterioration processes. The model provides a flexible and general framework 
to include dependencies in the deterioration states among different locations in the structural 

system. Its implementation in a real-life structure is shown with a case study on corrosion in 
ship vessels, where the deterioration process and other variables involved are estimated based 
on a set of measurements. To obtain such estimations, Markov Chain Monte Carlo is used as 

inference algorithm.  

Performing inference in multi-level hierarchical BNs can be computationally expensive, mainly 
due to the large number of model parameters to estimate. To address this computational 

challenge of the inspection planning problem, a hierarchical dynamic Bayesian network (DBN) 
framework with a tailor-made inference algorithm is proposed. The simpler spatial 
representation (through a single hierarchical level) and the customized inference algorithm 

allow computing rapidly and efficiently the system reliability conditional on inspection results. 
The DBN framework uses a heuristic approach for reducing the number of possible 
inspection/maintenance strategies and nests the DBN inside a Monte Carlo simulation for 

computing the expected cost associated with a system-wide inspection strategy. In contrast to 
existing methods, the DBN framework can simultaneously account for system effects arising 
from (a) the dependence among the deterioration at different components, (b) the joint effect of 

deterioration at multiple components on the system reliability, and (c) the interaction among 
inspection costs, i.e. the reduction in the marginal cost of an inspection if these are grouped in 
larger inspection campaigns. The DBN framework is applicable to a wide variety of structures 

subject to deterioration processes including offshore platforms, bridges, ships, and aircraft 
structures. The accuracy and robustness of the approach is demonstrated in a theoretical 

structure (Daniels system) and a laboratory structure (Zayas frame) subject to fatigue.  
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1 Introduction 

1.1 Overview 

Engineering structures are subject to deterioration, which reduces their service lives and can 
endanger the operation of the structure, workers’ and other people’s lives, and can impact the 

environment. Deterioration processes like corrosion and metal fatigue affect the capacity of the 
components and of the whole structural system, making the latter more vulnerable to conditions 
that were not considered as potentially risky during the first years of the structure’s operation. 

This can lead to wrong or catastrophic decisions. Figure 1 shows a timeline of some of the most 
known catastrophic structural failures caused by metal corrosion and fatigue deterioration. 
NACE International reports that the global cost of corrosion for 2013 is estimated to be US$2.5 

trillion, equivalent to 3.4% of the global Gross Domestic Product of that year (NACE 
International 2016). The same report estimates that between 15% and 35% of the total cost of 
corrosion could be saved by using optimal corrosion management strategies. For this reason, 

significant resources are invested to identify, model, quantify, mitigate, and prevent 

deterioration processes in structures. 

 
Figure 1. Timeline of some of the most known catastrophic structural failures caused by metal corrosion 
and/or fatigue deterioration. 
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Accurate modeling of structural deterioration processes remains a challenge today, due to their 

complexity and inherent uncertainties. To explicitly address the uncertainties in the predictions, 
probabilistic approaches are suitable for deterioration modeling in an engineering context (Lin 
and Yang 1985, Madsen et al. 1985, Ellingwood and Mori 1993, Melchers 1999, Qin and Cui 

2003, Melchers and Jeffrey 2007, Kumar et al. 2015). 

To reduce the uncertainty in deterioration processes, regular inspections are common practice 
for most engineering structures. Ideally, engineers and stakeholders define in advance an 

inspection strategy for the structural system, which specifies when, where, what and how to 
inspect. However, in many cases inspections are carried out in a static or less planned manner. 
In general, static inspection regimes (i.e. those that do not change in time and adapt to new 

circumstances) are not optimal; instead, one should account for results from previous 
inspections and maintenance activities when deciding upon new inspections. In general, an 
inspection strategy should be optimal in the sense it balances the cost of inspections with the 

achieved risk reduction (Figure 2). 

 
Figure 2. Graphical description of the optimal inspection strategy. 

Risk-based optimization of inspection strategies for large engineering systems entails multiple 

challenges in practice. Firstly, the deterioration model should be able to incorporate the 
correlation among deterioration states at different locations. However, most probabilistic 
deterioration models are only developed at the structural component level or for relatively 

simple and small systems. Secondly, one needs to perform probabilistic inference for the entire 
system to address the impact that deterioration at one location has on the rest of the structure. 
Finally, when considering systems, the outcome space of the random variables and the number 

of decision alternatives increase exponentially with the number of time steps ! , and with 
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of Figure 3. This is one of the main reasons why previous work on risk-based inspection 

planning has focused mainly on individual components. 

 
Figure 3. Example of a decision tree with deterioration vector !!,# for all system components, system 
performance "$,! (0: safe, 1: fail), inspection #!,# and repair $!,# decisions at each time step % = 1,… , *, 
and a set of observations +!,# after each inspection decision. A black dot marks the end of a branch, 
which corresponds to either a system failure or the end of service life. 

Prior to this research, an integral risk-based optimization procedure for entire structural systems 

using detailed physics-based deterioration models was not available. 

1.2 State of the art 

Methods for risk-based optimization of inspections of structural systems have been developed 
during the past 40 years (Yang and Trapp 1974, 1975, Thoft-Christensen and Sørensen 1987, 
Madsen et al. 1989, Sørensen et al. 1991, Straub and Faber 2005, Straub and Faber 2006, 
Nielsen and Sørensen 2015). The scientific literature documents a number of industrial 

applications of inspection planning on offshore structures, aircrafts, bridges or ships (e.g., 
Skjong and Torhaug 1991, Pedersen et al. 1992, Faber et al. 1992b, Lotsberg et al. 2000, Faber 
et al. 2005, Moan 2005, Dong and Frangopol 2015). The theory and the applications have 

focused almost exclusively on the optimization at component level, with a simplified treatment 
of the system (Straub and Faber 2005). Only limited research efforts have been directed towards 
optimization procedures for entire systems, accounting for the statistical dependence among the 
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deterioration states of individual structural details (Faber et al. 1992a, Straub and Faber 2004a, 

Straub and Faber 2005, Straub et al. 2009, Papakonstantinou and Shinozuka 2014, Memarzadeh 

and Pozzi 2015) 

There are several challenges when risk-based inspection strategies for large engineering 

systems are to be computed: 

– Firstly, the interdependence among stochastic deterioration processes for all the system 
components must be modeled. The two most common approaches to such an integral 

probabilistic deterioration modeling are random fields (Guedes Soares and Garbatov 
1998, Vrouwenvelder 2004, Stewart and Mullard 2007, Ying and Vrouwenvelder 2007, 
Keßler et al. 2014) and hierarchical models (e.g. Maes and Dann 2007, Maes et al. 2008, 

Qin and Faber 2012, Banerjee et al. 2015, Paper C).  
– Secondly, Bayesian updating is required for computing the probability of failure of all 

components and the system conditional on a potentially large number of inspection 

results. This represents a computationally challenging problem in itself (e.g. Schneider 
et al. 2017, Straub et al. 2020), but is particularly severe in the context of risk-based 
inspection (RBI), where these computations must be performed multiple times for the 

optimization of the inspection strategies.  
– Thirdly, the inspection optimization must consider strategies at the system level, which 

in general leads to a number of optimization parameters that increases considerably with 

the number of components (Straub and Faber 2005). 

Bayesian networks (BNs) can facilitate the solution of the probabilistic modeling and inference 
problem. BNs enable incorporating information from inspections into probabilistic 

deterioration models to quantify the reduction in uncertainty and to update the reliability 
estimate (Tang 1973, Madsen 1987, Moan et al. 2000, Straub et al. 2016). They have been 
applied to engineering risk analysis problems for the last two decades (Torres-Toledano and 

Sucar 1998, Friis-Hansen 2001, Mahadevan et al. 2001, Faber et al. 2002, Grêt-Regamey and 
Straub 2006, Nielsen and Sørensen 2010, Fenton and Neil 2012, Weber et al. 2012, Bensi et al. 

2013). 

A key computational aspect of BNs is performing inference, i.e. Bayesian updating. Through 
the graphical structure of the BN, the conditional independence among model parameters can 
facilitate Bayesian updating. If the deterioration process can be represented by discrete random 

variables (e.g. by discretizing all continuous random variables), exact inference algorithms can 
provide fast and robust solutions to Bayesian updating. These properties have been exploited 
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in Straub (2009) and Paper B, where dynamic Bayesian networks (DBNs) are applied to 

evaluate deterioration at component and system levels. Bespoke exact inference algorithms 
ensure rapid computation of the conditional probability of system failure given all inspection 

results, which is essential for solving the optimal inspection problem. 

The next section summarizes the proposed solution by this thesis to the optimal inspection 

problem and it is based on the results from Paper A, Paper B, Paper C, and Paper D. 

1.3 Statement of purpose and proposed solution 

The goal of this thesis is to outline a methodology for an integral risk-based optimization of 
inspections in large structural systems using a dynamic Bayesian network (DBN) framework. 
The thesis develops a multi-level hierarchical BN model able to represent complex spatio-

temporal deterioration processes (e.g., corrosion in ship vessels), and a hierarchical DBN 
framework with a tailor-made inference algorithm. On the one hand, the multi-level model 
provides a flexible and general framework to represent spatio-temporal dependencies among 

locations in the structural system, but with a high price when performing inference. This makes 
it computationally expensive (and in some cases impractical) for solving the inspection 
planning problem. On the other hand, the single-level hierarchical DBN framework utilizes a 

customized rapid inference algorithm to update the system reliability conditional on inspection 
results with a simpler spatial representation. The inference algorithm combined with a heuristic 
approach to reduce the number of considered inspection/maintenance strategies allows solving 

the optimization problem for large structural systems. The optimization problem is solved by 
nesting the DBN inside a Monte Carlo simulation for computing the expected cost associated 

with a system-wide inspection strategy. 

In contrast to existing methods, the DBN framework can simultaneously account for system 
effects arising from (a) the dependence among the deterioration at different components, (b) 
the joint effect of deterioration at multiple components on the system reliability, and (c) the 

interaction among inspection costs, i.e. the reduction in the marginal cost of an inspection if 

these are grouped in larger inspection campaigns. 

The developed framework is applicable to a wide variety of structures subject to deterioration 

processes including offshore platforms, bridges, wind turbines structures, ships, and aircraft 
structures. The accuracy and robustness of the approach is demonstrated in several structural 
systems: (a) a ship vessel subject to uniform corrosion, (b) a theoretical structure (Daniels 

system) subject to fatigue, and (c) a laboratory structure (Zayas frame) subject to fatigue. 
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1.4 Thesis structure 

Chapter 2 summarizes the main concepts related to Bayesian networks and influence diagrams 
required to follow the proposed DBN framework and optimization approach. This chapter can 

be skipped if the reader is already familiar with these concepts. 

Chapter 3 outlines the mathematical formulation of the risk-based inspection (RBI) problem 
and the main characteristics of the DBN deterioration framework proposed in this thesis. This 

is a summary of the proposed framework developed in Paper B and Paper D. 

Chapter 4 presents five case studies that summarize the results from the publications that 
support this thesis. Section 4.1 shows how a hierarchical DBN can be used to model uniform 
corrosion deterioration in ship vessels (Paper C). Sections 4.2 and 4.3 show how to apply the 

DBN framework from Paper B to model fatigue deterioration in two different types of structures: 
1) the Daniels system (a theoretical structure), and b) the Zayas frame (a laboratory structure). 
These cases demonstrate the accuracy and robustness of the inference algorithm to solve the 

reliability problem. Section 4.4 compares heuristic-based strategies against other approaches 
such as LIMIDs to approximate the optimal inspection strategy of a simplified system model 
(Paper A). Finally, Section 4.5 demonstrates how to combine the DBN framework from Paper 

B with heuristic rules and a simulation-based approach to solve the optimal inspection planning 

problem (Paper D). 

Chapters 5 to 8 present the complete content of papers A to D, respectively. References to 

equations, tables, and figures from these papers are preceded by the letter of the article (e.g. 
Section A.2.2 corresponds to section 2.2. from Paper A) to keep the original numbering of the 

paper as it was published. 

Chapter 9 discusses the advantages and limitations of the proposed DBN framework and some 
recommendations when putting it into practice. Then it continues with suggestions for 

extending the results of the thesis, and finally it presents the thesis’ conclusion. 
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2 Bayesian networks and influence diagrams 
This chapter summarizes the main concepts related to Bayesian networks and influence 
diagrams required to follow the proposed DBN framework and optimization approach. If the 
reader is already familiar with these concepts, it is suggested skipping this section and to go 

directly to Chapter 3, where the proposed DBN deterioration framework is explained. 

2.1 Bayesian Networks 

Bayesian Networks (BN) have become popular in engineering risk analysis due to their intuitive 
nature and their ability to handle many dependent random variables in a Bayesian analysis 

(Jensen and Nielsen 2007, Straub and Der Kiureghian 2010, Weber et al. 2012).  

The graphical structure of the BN is formed by nodes and directed links. The nodes represent 

random variables or deterministic parameters, and the links represent the dependence among 
nodes. Ideally, the link between two nodes is based on a causal relation, but this is not necessary. 
As an example, if deterioration at a certain point in time & is modeled as a function of an 

external random load ' and a material parameter (, then a corresponding BN may look like 
the one in Figure 4. Here, an additional node ) is included to represent the outcome of an 

inspection.  

 
Figure 4. Example of a simple Bayesian network deterioration model with deterioration state D, external 
load S, material parameter M, and inspection outcome Z. 

Since each random variable in the BN is specified by its conditional probability distribution 
given its parents, the inspection outcome is defined by *(+|-) , i.e. the probability of the 
inspection outcome ) = +  given the damage state & = - . This is known as the likelihood 

function and corresponds to classical models used for describing inspection or monitoring 

performance, such as probability of detection (POD).  
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The links in the BN provide information on the dependence between random variables in the 

model. For example, in the BN of Figure 4 ( and ' are assumed to be independent a-priori, 
and hence no direct link between them is present. The link from &  to )  indicates that the 
inspection provides information on the damage state. In this example, the joint probability mass 

function (PMF) of (, ', &, and ) (assuming they all are discrete random variables) is 

*(/, 1, -, +) = *(/) ∙ *(1) ∙ *(-|/, 1) ∙ *(+|-) (1) 

Even though ) provides no direct information on ' and (, it does so indirectly because the 

information obtained on & also updates the probability distribution of ' and (, as long as & is 
not known with certainty. In this way, by observing one random variable, potentially all others 

are updated.  

2.2 Bayesian inference 

Using BNs it is possible to obtain the posterior distribution of a set of random variables given 
a set of observations; this task is called inference. For example, if an inspection result is 

included in the model of Figure 4, i.e. if Z is given, then the (joint) probability distribution of 
the random variables S, M, and D conditional on the observed realization of Z is calculated 

using inference algorithms. 

For the BN of Figure 4, the joint PMF of (, ', and & conditional on the realization ) = + can 

be obtained analytically and it is equal to 

*(/, 1, -|+) =
*(/, 1, -, +)

*(+)
=
*(/) ∙ *(1) ∙ *(-|/, 1) ∙ *(+|-)

∑ *(/, 1, -, +)",$,% 	
 

																								∝ *(/) ∙ *(1) ∙ *(-|/, 1) ∙ *(+|-) (2) 

where *(/) ∙ *(1) ∙ *(-|/, 1) = *(/, 1, -)  represents the prior distribution when no 
observation of ) is available. As can be seen, the inference step simply reduces to computing 

(marginalizing) joint probabilities. 

For efficient computation, all BN inference algorithms make use of the graphical structure by 
performing computations locally, exploiting the conditional independence assumptions 

encoded in the graph. These can be formally described by the --separation property (Pearl 
1988), where - stands for dependence. Basically, if two variables 6& and 6' are independent 
conditional on 7 (i.e. an observation from 6& gives no additional information about 6' once 7 

is known) then 6& and 6' are called d-separated for given 7. 
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As already stated in Section 1.3, this thesis focuses on BN with discrete random variables, for 

which exact inference algorithms exist. 

2.3 Dynamic BNs 

In some cases, BNs contain a repetitive sequence of nodes which are associated with multiple 
times or spatial locations. Such a BN is called dynamic Bayesian network (DBN) and is useful 

for modeling time-dependent processes, such as deterioration.  

Modeling of deterioration often involves random processes, which can be represented in a 

discrete-time manner by a DBN as proposed in Straub (2009). Figure 5 shows an extension of 
the BN in Figure 4 for multiple time steps. The resulting DBN includes a time-variant load '(, 
deterioration state &(, and inspection results )( at points in time 8 = 1,2, … , !. Each vertical 

“slice” of the DBN represents a time step in the deterioration process. 

 
Figure 5. Extension of the BN deterioration model from Figure 4 to a dynamic Bayesian Network. Each 
set of random variables {-! , .! , /!} corresponds to a single time step % = 1, 2, … , *. 

In this example, the random process {'&, '', … , '!} is a Markov chain, where each random 

variable is defined conditionally on the random variables of the previous time step. The 
deterioration &( at time 8 is a stochastic function of the previous deterioration state &()& and 
the current load '( . The probability distributions of the material parameter ( , loads 
{'&, '', … , '!} , and the deterioration states {&&, &', … , &!}  are all updated once inspection 

outcomes )&, )', … , )!, or a subset thereof, are observed. 

To perform inference in DBNs, there exist exact, deterministic approximate, and stochastic 
approximate algorithms (Murphy 2002). All of them require computing >?6(*@A&:,B, i.e. the 

marginal probability of random variable 6* at time step 8 given some observations up to time 
step C. For the case when C = 8, the inference problem is called filtering; if C < 8 it is called 

prediction; and if C > 8 it is called smoothing. Depending on the characteristics of the DBN and 
the amount of observed data, some of the inference algorithms are more convenient than others 
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in terms of the computational effort and accuracy when computing such marginal probabilities. 

The computational cost of exact inference algorithms for discrete random variables is strongly 
affected by the size of the largest conditional probability table in the network (making the 
updating step intractable for some large DBNs) but insensitive to the number of included 

observations; in contrast, stochastic approximate algorithms such as Markov Chain Monte 
Carlo (MCMC) are less sensitive to the size of the network, but affected by the number of 
included observations. An extensive analysis of the complexity of several inference algorithms 

can be found in Murphy (2002). In this thesis, the developed DBN deterioration framework 
(Section 3.3) is based on exact inference algorithms for discrete random variables to perform 

filtering and prediction, where its performance and accuracy are compared to MCMC. 

2.4 Hierarchical BNs 

One challenging aspect of modeling deterioration in structural systems is the representation of 
the interrelation among the system components. Only a limited number of investigations can be 

found in literature that account for the dependence among component deterioration states (e.g. 
Hergenröder and Rackwitz 1992, Faber and Sørensen 2000, Straub and Faber 2004b, 
Vrouwenvelder 2004, Maes et al. 2008, Malioka 2009, Paper C). The two most common 

mathematical representations of such dependence are hierarchical models and random field 
models. The latter are suitable for systems where dependence among component deterioration 
is a function of the geometrical location (Maes 2003, Stewart and Mullard 2007). Hierarchical 

models are suitable when the dependence among component deterioration depends on common 
features and common influencing factors (Maes and Dann 2007, Maes et al. 2008, Banerjee et 
al. 2015). They also have computational advantages over random fields, in particular in the 

context of DBN modeling. 

Because of their simplicity and computational efficiency, hierarchical models are commonly 
used in spatio-temporal system models for representing dependencies among system 

components. Their application to deterioration modeling is reported for deterioration in 
pipelines (Zhang et al. 2014, Qin et al. 2015) and in concrete structures (Qin and Faber 2012, 
Schneider et al. 2015). Hierarchical models can provide efficient probabilistic representations 

of large systems with correlated elements (Raudenbush and Bryk 2008). The observed 
correlation among system components is incorporated in the model through the definition of 
multiple levels, which group components with similar properties. For example, plate elements 

in ship vessels might be grouped according to their structural element type (e.g., main deck and 
bulkhead). These groups can be subdivided again into lower-level groups, which are based on 
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the spatial location in the structure (e.g., compartments inside vessels) and so on. At each level 

in the hierarchy, a group must contain elements with similar characteristics among them but 

different from other groups. 

Probabilistic hierarchical models can be conveniently represented as BNs. In a hierarchical 

Bayesian model, the probability distributions of the random variables at each level are defined 
conditional on the random variables of the next higher level. The parameters of these 
conditional probability distributions, which are themselves random variables, are typically 

located at the highest level and are called hyperparameters (Gelman et al. 2004). The 
hyperparameters define the local and global correlation among the system components. In the 
Bayesian framework, these hyperparameters are learned jointly with the other random variables 

based on the available observations from the system. 

Two distinct graphical representations of the same simple hierarchical Bayesian model with 
two levels are shown in Figure 6. Figure 6a depicts an explicit representation of the problem, 

where all random variables and their dependencies are indicated. However, the number of 
random variables soon becomes prohibitive for such a representation. In contrast, Figure 6b 
shows a compact representation, where each level in the hierarchy is indicated by a 

corresponding box. 

a) b) 

 

 

Figure 6. Example of a hierarchical Bayesian deterioration model (.: deterioration, $: corrosion rate, 
2%: mean of 3, 4%: standard deviation of 3, 5&: number of compartments, 5': number of plates) using 
(a) explicit and (b) compact representations. 
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In general, the main goal in the analysis of hierarchical Bayesian models is the estimation of 

the hyperparameters’ posterior distribution. The benefit of knowing the distribution of the 
hyperparameters is that they can transfer knowledge either among different sections inside a 
structure or among structures with similar characteristics. This property is demonstrated and 

exploited in the case studies of Sections 4.1, 4.2, and 4.3. 

2.5 Influence diagrams 

An influence diagram (ID) is an extension of a Bayesian network to represent graphically a 
decision problem including decision and utility nodes (Jensen and Nielsen 2007). In an ID, 
decisions are shown as squared nodes and utilities as diamond-shaped nodes. Utility nodes 
assign a utility value to each combination of states of the parent nodes, which can be either 

random variables or decision nodes, but not utility nodes. In case there are several utility nodes, 

the total utility is the sum of the individual utilities.  

Decision nodes describe different decision options, which influence the random variables that 

are children of the decision node. This influence is quantified through the conditional PMF of 
these child nodes. Links pointing towards the decision nodes represent the available information 
at the time of making the decision. All parents of the decision nodes are known when making 

the decision. However, there exist different versions of IDs, which differ in the way information 
is handled. Figure 7 shows an example of an ID applied to structural health monitoring (SHM) 

proposed by Straub et al. (2017).  
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Figure 7. ID of an SHM analysis process with: a) parameters and models related to the structure, b) 
aspects related to the SHM, c) repair, maintenance and related actions, and d) analysis methods and 
tools used in the different parts of the process. The box [% + 1] indicates that the link is from a single 
time step to the next one, hence this ID represents a decision process in time (Straub et al. 2017). 

A set of rules defining which decision to make as a function of the available information is 

called a policy. A set of policies of all decision nodes in an ID is called a strategy. The main 
goal in a decision analysis is to find the optimal strategy, i.e. the one that maximizes the total 
expected utility, based on the available information. The more information is used for making 

a decision, the larger the strategy domain and consequently the computational demand. In 
general, IDs are based on the no-forgetting assumption, i.e. when making a decision, all 
previous decisions as well as previous observations are known. The no-forgetting assumption 

leads to significant computational challenges and some assumptions are typically made to 

simplify the decision problem and giving an approximate solution. 

One approach for approximating the optimal strategy is to consider only a subset of the past 

observations (e.g. the $ most recent ones) at each decision step. This approach is known as 
limited memory influence diagram (LIMID) (Lauritzen and Nilsson 2001, Jensen and Nielsen 
2007). LIMID makes an explicit link between the nodes that are known before taking the 

decision and the decision node. Additionally, only direct parents of a decision node are assumed 
to be known at the time of making the decision. This reduces (or limits) the number of nodes 
that will be considered for the decision, decreases the size of the policy domain and facilitates 

the computation of the optimal strategy. However, the size of the solution domain can still 

become intractable as the number of decision nodes increases.  
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Depending on the type of application, some characteristics (e.g. symmetry) can be used to 

reduce the computational demands of the decision problem (Jensen and Nielsen 2007). 
Alternatively, approximate solutions can be obtained. In particular, single policy updating (SPU) 
is an iterative algorithm for solving LIMIDs that runs over each decision node, obtaining its 

locally optimum policy that maximizes the expected utility of the decision problem by keeping 
the remaining policies fixed (Lauritzen and Nilsson 2001). An iteration is completed when all 
decision nodes are locally maximized, and the algorithm stops when the next iteration does not 

further reduce the expected utility. Due to its local nature, the solution obtained with SPU is 

likely to be suboptimal.  

Sections 4.4 and 4.5 show examples of IDs and the optimization of strategies. 
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3 Risk-based inspection planning 
This chapter outlines the mathematical formulation of the risk-based inspection (RBI) problem 
and the main characteristics of the DBN deterioration framework proposed in this thesis. This 

is a summary of the proposed framework developed in Paper B and Paper D. 

3.1 Mathematical formulation of the optimization problem 

The RBI problem belongs to the class of sequential decision problems (see Section D.2.1). 
Solutions to this type of problems can be found through the definition of policies. As already 

mentioned, a policy for a decision at time 8 defines where, what and how to inspect and repair, 
considering the full history of the structure up to 8 (i.e., past inspection outcomes, decisions, 
and repair actions). The set of policies at all times 8 defines a strategy F. If the policies are the 

same for all 8, the strategy is called stationary (Jensen and Nielsen 2007). 

For a structural system with G components subject to deterioration, the inspection optimization 
problem of Figure 2 can be formalized as follows. The joint deterioration state H  of all 

components is represented through a probabilistic system deterioration model with random 
parameters I-. Each component can be inspected and/or repaired at discrete times 8 from 0 to 
the end of service life !. The strategy F defines for each component at each time step if and 

how that component is inspected and repaired, based on all previous inspection outcomes J and 

the repair history of the structure.  

Inspections, repairs and system failure are associated with consequences. These are quantified 

by the present value of total life-cycle cost K! in function of the strategy F and the inspection 
outcomes J. It is defined as the sum of the life-time inspection cost K. , repair cost K/ , and 

failure risk L0: 

K!(F, J) = K.(F, J) + K/(F, J) + L0(F, J) (3) 

The failure risk is a function, among other values, of the conditional probability of system 

failure given the inspection outcomes, and it is defined as: 

L0(F, J) =NO0 ⋅ Q(8) ∙ Pr(T(|J1:()&)
!

(2&
 

= O0 ⋅NQ(8) ∙ UPr?V3,( = TWXY@J1:()&B − Pr?V3,()& = TWXY@J1:()&B[

!

(2&
 

(4) 
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where O0 is the undiscounted cost of a system failure event, Q(8) is a discount factor, T( is the 
event of a system failure during time step 8, and V3,( is the system condition at time step 8.  

The conditional probability Pr?V3,( = TWXY@J1:()&B is the probability of a system failure up to 

time 8 for given inspection outcomes J1:()& . Its computation defines a structural reliability 

problem, which is formulated and solved in Sections 3.3.3 and 3.3.4, and it is explained in detail 
in Paper D. Its solution is not trivial, particularly when the number of system components and 
the number of observations is large. Solving the RBI problem requires evaluating the 

conditional probabilities of Equation (4) multiple times (in the order of 104 − 105), for which 

an efficient and robust solution as the one proposed in Paper B is indispensable.  

Because the inspection outcomes ) are random variables themselves and are not known in 

advance, the total cost is also a random variable. Then the optimal strategy F∗ is defined as the 

one that minimizes the expected total cost with respect to the possible inspection scenarios: 

F∗ = argmin
7
E8[K!(F, J)] (5) 

The two main challenges in finding the optimal strategy are:  

1. The large number of possible inspection strategies F, which increases exponentially 
with the number of time steps and system components (as shown in Figure 2) 

2. The expectation operations in Equations D.3 and D.5 required to solve the structural 

reliability problem with respect to each possible inspection outcome. 

In the following sections of this chapter, it is demonstrated how the proposed DBN deterioration 

framework and heuristic strategies can deal with these challenges to solve the RBI problem. 

3.2 Optimization at the component level 

Risk-based optimization of inspection planning for individual components has been studied 
extensively (e.g. Straub and Faber 2006, Nielsen and Sørensen 2015). In Paper D, some of the 
most common approaches used for RBI at component level are reviewed (limited memory 
influence diagrams LIMIDs, partially observable Markov decision processes and heuristic 

strategies). Sophisticated approaches like LIMIDs (combined with the SPU algorithm) have 
been used to estimate the optimal strategy obtaining near optimal solutions (e.g. Nielsen and 
Sørensen 2011, Paper A). However, its application has been limited to simplified deterioration 

models or using component-based approaches, making it impractical for application to large 

structural systems with more complex deterioration processes and component interaction. 
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For the inspection planning problem at the component level, simple heuristics were defined in 

the past to reduce the solution space (see e.g. Engelund et al. 2000). The two most common 

heuristics are: 

- Periodic inspections (also known as equidistant inspections): Inspections are performed 

with a predefined periodicity. 
- Reliability/Probability threshold: For a given threshold e(9, an inspection is planned at 

time 8 if reliability of the system or component without inspection is smaller than e(9. 

Heuristic-based strategies provide simple rules (and in many cases can be defined by a single 
parameter) that can be easily evaluated to estimate their expected cost. In Paper A two heuristics 
are used to define the times to inspect (periodic inspections and reliability threshold) and one 

to define repair actions (rule: all detected defects are to be repaired). 

The results from Paper A show that the heuristic approach offers a simple and computationally 
convenient approach to simplify the RBI problem at the component level, which can be 

extended for solving the problem at the system level. 

3.3 Optimization at the system level 

The identification of the optimal inspection strategy is significantly more challenging for 
structural systems than for individual components. Firstly, the number of possible inspection 
strategies F considerably increases with the number of components; e.g. in a system with G 
components and considering !  time steps, there are 2:∙!  different ways of defining which 

components to inspect and when to do it. Secondly, the computation of the conditional 
reliabilities is more demanding as the number of components, time steps, and inspection 

observations increase. 

Paper D shows that defining inspection strategies using heuristics provides a computationally 
feasible approach to solving the RBI problem at the system level. This considerably reduces the 
size of the solution space (i.e. possible strategies F) to a few number of optimization parameters, 

whose combinations are considerably less than the set of general strategies. 

The following sections explain the most important aspects of the developed DBN deterioration 

framework, which are: 

- Defining heuristic strategies at the system level to reduce the number of potential 
solutions (from Paper D) 
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- Using a simulation-based approach to approximate the expected cost of a strategy (from 

Paper D) 
- Definition of a DBN to model deterioration in large structural systems (from Paper B) 
- Developing a robust, efficient, and accurate inference algorithm to compute the updated 

probabilities given the inspection outcomes (from Paper B) 

3.3.1 Heuristic strategy approach (to reduce the number of strategies) 

At the system level, identifying heuristics is less straightforward than at the component level. 
On the one hand, some heuristics applied at the component level (e.g. periodic inspections, 
reliability threshold, fixed repair criterion) can be extended to the system level. On the other 
hand, defining the locations of the inspections, i.e. where to inspect, must be defined more 

carefully to avoid strongly suboptimal strategies. 

Paper D proposes the following set of heuristic rules: 

- When to inspect 

o Inspection campaigns are performed at regular time intervals. The time between 
regular campaigns is Δ8.. 

o Whenever the updated system probability of failure exceeds a threshold value 

*(9 , additional inspections must be carried out, either within the existing 
campaign or through an additional inspection campaign. 

- Where to inspect 

o The initial number of inspected components during each inspection campaign is 
fixed at $. . Additional components might be inspected if the probability 
threshold is exceeded during the inspection campaign. 

o The components to inspect during a campaign are determined based on the value 
of information (VoI) associated with the component inspection (Raiffa and 
Schlaifer 1961, Straub and Faber 2005). Here the probability of failure of the 

component is taken as a proxy of the VoI. 
- What/when to repair 

o Repairs are performed according to a fixed repair criterion, e.g., any identified 

defect with a size larger than -/ is repaired. 

A heuristic strategy F< is then a combination of the above stationary rules and is defined by the 
parameters Δ8. , $. , *(9 , and -/ . The combination of these parameters that minimizes the 

expected cost defines the optimal strategy. 
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3.3.2 Simulation-based approach (to approximate the expected cost of a strategy) 

To estimate the total expected life-cycle cost of a strategy F< ,  a Monte Carlo (MC) approach 
is used (Paper D). The expected value is approximated as the average of the total cost associated 
to the strategy F< and a set of $$ simulated samples of inspection outcomes gh<,&, h<,', … , h<,=!i, 

E8[K!(F< , J)] ≈
1
$$
NK!?F< , h<,>B

=!

>2&
 (6) 

The number of samples $$ required to ensure sufficient accuracy is a function of the coefficient 
of variation of the total cost k?". To ensure a relative error in the estimate of less than l with a 

confidence of 1 − m, the required number of samples is 

$$ ≥ o
Φ)&(@)
l

k?"q
'
 (7) 

In all the investigated cases, the value of k?" was around 1.5. If one requires a relative error 

less than 10% (i.e. l = 0.1) with a confidence of 95% (i.e. m = 0.05), the required number of 
samples is $$ ≥ 271 ∙ k?"

' = 609. Typically, the requirements on the accuracy of the estimated 

total expected life-cycle cost are not as strict, and a number of samples in the order of 200 is 

expected to be sufficient for most practical applications. Note that the reason for this relatively 
small number lies in the fact that the conditional probability of failure is computed within each 

MC sample through the DBN. 

3.3.3 DBN deterioration model 

As already mentioned in Section 1.1, to perform reliability analysis of structural systems it is 
essential that the model incorporates the correlation among deterioration states at different 

locations. At the same time, performing inference for such model must be computationally 

efficient and accurate.  

The backbone of this thesis is the extension of the deterioration framework developed in Straub 

(2009). He developed a DBN deterioration model at the component level combined with a 
robust exact inference algorithm. It requires discretizing all continuous random variables, but 
the inference algorithm achieves very good accuracy for standard deterioration models. In 

contrast to other Bayesian analysis methods, this framework combined with the exact inference 

algorithm is not affected by increasing the amount of inspection data. 
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In Paper B the component-level framework from Straub (2009) is extended to the system level. 

The extended framework includes the effect of inspection and monitoring results to update the 
reliability of the system and its components. It accounts for the dependence among deterioration 
parameters of different components and for the complex structural system behavior through a 

hierarchical approach. The DBN uses a set of hyperparameters w that model the correlation 
among deterioration parameters. These hyperparameters w  are the link among the other 
parameters x*,( , y*,(, and deterioration states &*,( in all components (Figure 8). 

 
Figure 8. Hierarchical DBN system deterioration model (Paper B). Node .#,!  represents the 
deterioration state of the 9-th component at time step % as function of the previous deterioration .#,!(), 
time-independent parameters :#,! , a time-dependent parameters ;#,! ; /*,#,! , /+,#,! , and /,,#,!  are 
observations (from inspections or monitoring); "&,#,! and "-,! represent the condition (e.g. safe or failed) 
of the component and the system; < is the set of hyperparameters that links all components. 

Most approximate methods to perform inference in DBNs are sampling based; the most popular 
among these belong to the family of Markov Chain Monte Carlo (MCMC) methods. MCMC 
using Gibb’s sampler is particularly effective, as it exploits the conditional independence 

properties of the BN. Nevertheless, the computational cost of MCMC increases considerably 
as the number of observations included in the model increases and/or the probability of failure 
of interest decreases. This motivates the use of exact inference algorithms with discretized 

random variables, whose performance does not deteriorate with increasing the number of 

observations and is independent of the magnitude of the probabilities of interest. 

For DBN models consisting exclusively of discrete random variables, exact inference 

algorithms exist. In particular the forward-backward algorithm is effective for DBNs. Straub 
(2009) develops a variant of the forward-backward algorithm, which is tailored towards 
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evaluating the generic DBN for deterioration modeling. The next section explains how this 

algorithm is extended to the system level and its computational complexity is kept at a feasible 

level through the hierarchical definition of the system DBN model. 

3.3.4 The inference algorithm (to compute the updated probabilities given the 
inspection outcomes) 

A key element in the proposed framework is the efficiency of the inference algorithm that 
computes the conditional probabilities of failure at the component and system level given the 

inspection outcomes. 

In Paper B an exact inference algorithm is provided for solving the hierarchical DBN from 
Figure 8 based on the results from Straub (2009). The algorithm is formulated in a recursive 

manner for each time step exploiting the d-separability (Pearl 1988) of the hierarchical BN 

when the hyperparameters are given, i.e. 

*?-*#,( , -*$,(@wB = *?-*#,(@wB ∙ *?-*$,(@wB (8) 

Because of the hierarchical structure of the model, the computation time increases 
approximately linearly with the number of components and is independent of the number of 
included observations. Additionally, the algorithm can easily be parallelized per component 

computation.  

The inference algorithm is composed of three main steps: 

1. First, the joint probability distribution of a single component is updated using only 

inspection results from the same component and for a given set of hyperparameter 
values w. This step is repeated for every component and can be done in parallel due to 
Equation (8). 

2. Then, the joint distribution of hyperparameters w is updated with the inspection results 
from all components. 

3. Finally, the results of the first and second steps are combined to obtain the probability 

distributions of all components conditional on all inspection results in the system 

Section B3.5 provides a detailed analysis of the complexity of the algorithm. 

3.3.5 Flowchart of the optimization methodology 

Putting all together, the complete optimization methodology is summarized with the flowchart 

in Figure 9. 
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Figure 9. Flowchart of the optimization algorithm at the system level. 

3.3.6 Additional extensions and improvements to the DBN model 

Bismut et al. (submitted) generalize the proposed solution to the RBI problem using a cross-
entropy-based method (De Boer et al. 2005) to reduce the noise that the Monte Carlo approach 
generates, and they also include adaptive planning in order to incorporate recent inspection and 
monitoring data to modify the current strategy. The details of such extensions and 

improvements to the framework are not discussed in this thesis. 
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4 Case studies / Results 
This chapter summarizes the main case studies that support this thesis: 

- Case 4.1 shows how a hierarchical DBN can be used to model uniform corrosion 
deterioration in ship vessels (Paper C). To obtain the updated estimations given 

inspection data, Markov Chain Monte Carlo (MCMC) is used. 
- Cases 4.2 and 4.3 show how to apply the DBN framework from Paper B to model fatigue 

deterioration in two different types of structures: 1) the Daniels system (a theoretical 

structure), and b) the Zayas frame (a laboratory structure). In both cases the accuracy 
and robustness of the inference algorithm to solve the reliability problem is 
demonstrated and compared to other approaches like MCMC. 

- Case 4.4 compares heuristic-based strategies against other approaches such as LIMIDs 
to approximate the optimal inspection strategy of a component (Paper A) 

- Case 4.5 demonstrates how to combine the DBN framework from Paper B with heuristic 

rules and a simulation-based approach to solve the optimal inspection planning problem 

(Paper D). 

4.1 Hierarchical model for uniform corrosion in ship vessels 

Corrosion in ship structures is influenced by multiple factors that vary in time and space. 
Existing corrosion models used in practice only partially address the spatial variability of the 
corrosion process. Typical estimations of corrosion model parameters are based on averaging 

measurements for one ship type over structural elements from different ships and operational 
conditions. Most models do not explicitly predict the variability and dependency of the 
corrosion process among multiple locations in the structure. This correlation is of relevance 

when determining the necessary inspection coverage, and it can influence the reliability of the 

ship structure.  

In this case study, Paper C developes a probabilistic spatio-temporal corrosion model using a 

hierarchical approach to represent the spatial variability and correlation of the deterioration 
process. It accounts for the dependences among corrosion states at different locations due to 
common influencing factors. The model is learned with data from thickness measurements 

obtained during in-service inspection campaigns and it estimates the current and future 

corrosion in the structure based on such measurements. 

The hierarchical Bayesian model for corrosion in ship vessels has the following main aspects: 
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- Hierarchical levels (from lower to higher): single plate, structural element, frame, 

compartment, vessel, fleet (Figure 10). The framework is flexible and the levels in the 
hierarchy can be arbitrarily increased, modified, or reduced. At the lowest level, which 
is the one of the plate element, the corrosion process can be modeled as a spatial random 

field. 
- Corrosion loss (as deterioration amount): The model considers plate thickness 

diminution (or corrosion loss) to quantify uniform corrosion deterioration. This is 

obtained as the difference between the as-built and current thickness of a plate. 
- Corrosion function: The hierarchical BN uses a corrosion function to model the 

deterioration amount in a structural element. Table B1 shows a list of the most 

commonly used functions to represent uniform corrosion in single plates. 
- Thickness margin: When building ship vessels, it is common that many plates are thicker 

than what construction plans indicate. This difference between the as-built and gross 

thickness (i.e. value given in plans) is defined here as thickness margin. 
- Coating life: It is defined as the time it takes to break the protective coating of a plate 

allowing corrosion to start. 

- Measurement model: It aggregates all sources of errors, of which human and 

measurement devices are the most common types. 

 
Figure 10. Hierarchical structure of the spatial corrosion model. 
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The graphical representation of the hierarchical corrosion model is depicted in Figure 11. 

 
Figure 11. Hierarchical corrosion model for ship structures. Node =# represent the current thickness 
of the plate and /# its observation; 4. represents the variability of the measurement error; :# is the set 
of parameters of the corrosion function; 2% and 4% are the mean and standard deviation of the indicated 
random variable 3; >#  represents the thickness margin; ?#  is the coating life; @), @/, @0, @1, @2  are 
variability factors used to model the difference in corrosion processes at different locations; and A is 
the correlation length when @2 is modeled as a random field. 

The case study consists of two parts. The first part corresponds to a hypothetical study using 
simulated data to assess the performance of the model and the parameter learning against an 
assumed “true” model. The second part presents the learning of the model using thickness 

measurements from a set of sister ship tankers (i.e. vessels with virtually identical design). Then 
the model predicts the corrosion of a specific tanker out of the original training sample. For 
both parts, Bayesian estimation is carried out using Markov Chain Monte Carlo (MCMC). The 

details of the MCMC analysis are presented in Section C3.1. 

The results from the first part show a good agreement between the original and the estimated 
values for most of the parameters that were learned from the simulated data (Table 1). Only for 

one parameter (variability factor m5) the credible interval that the model obtained does not 
contain the “true” value. As more data is included in the model, the uncertainty in the 

estimations decreases (i.e., the estimated posterior distributions become narrower). 
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Table 1. Statistics of the stochastic parameters of the model. 

  Estimates 
 Original (true) value Mean StDev 95% Credible Interval 
Margin     
Mean !%!, [mm] 0.8 0.824 0.032 (0.76,0.89) 
     
Coating     
Mean !%", [years] 7 6.91 0.255 (6.4,7.4) 
     
Corrosion rate and variability 
factors 

    

Vessel variability "& 0.3 0.389 0.118 (0.22,0.68) 
Compartment variability "' 0.2 0.214 0.048 (0.14,0.32) 
Struct. element variability "( 0.3 0.289 0.0149 (0.26,0.32) 
Plate variability ") 0.1 0.129 0.0123 (0.11,0.16) 
Base corrosion rate #*, [mm/yr] 0.3 0.249 0.034 (0.19,0.32) 

 

The second part of the case study includes thickness measurements from real inspection 
campaigns to estimate the distribution of the model parameters. This analysis is focused on 
floor plates (Figure 12a) because they were inspected in all ship tankers. Figure 12b shows the 

spatial distribution of the thickness measurements of one inspection campaign as an example. 

a) b) 

  

Figure 12. a) Location of the structural element Floor in tankers; b) locations of thickness measurements 
in one of the measurement campaigns. 

Because of the small number of inspection campaigns and to avoid convergence problems in 
the MCMC analysis, some model parameters were neglected (i.e., set equal to zero) or assumed 
known and based on previous statistics from literature. The results obtained with the model 

showed a good agreement with those values reported in literature for this type of structural 
elements (Sone et al. 2003). It was also concluded that the variation of the corrosion rate among 
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compartments is larger than the variation within, which agrees with the fact that environmental 

conditions are more even among plates from the same compartment than from different ones. 

Another important outcome of the model is its flexibility to include variables as the thickness 
margin. The model obtained an estimated mean margin of 0.315mm, which is not negligible 

compared to the average corrosion loss observed in floor plates for this type of ships (0.26 mm). 
Not considering this parameter in the model and simply using the gross thickness (i.e. thickness 
from plans) as the initial thickness would lead to estimations of negative corrosion, which 

would clearly be wrong and useless. 

These results are then used as a prior probabilistic model for the analysis of a specific vessel. 
Figure 13 shows the estimated expected value of the thickness margin, coating life, and 

corrosion rate at different locations of the analyzed ship. As a remark, the model obtains not 
only the expected value but a complete distribution for each point shown in the previous figure, 

but for the sake of simplicity, only the mean value is plotted.  

 

  

 
Figure 13. Spatial distribution of the expected value of thickness margin >, coating life ?, and 
corrosion rate $ per measured location. The darkness of a circle represents the mean estimate and the 
size of a circle reflects the deviation of the value at this location from the total mean value (i.e. from 
all measured points). 

Finally, the model can also show the difference between the estimated corrosion rate in the 

original set of ship tankers and the additional ship (Figure 14). 
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Figure 14. Comparison between the prior distribution of the corrosion rate obtained from a fleet of ship 
tankers and the updated (posterior) distribution of a specific ship. 

This spatio-temporal corrosion framework allows to probabilistically quantify the dependence 
among the deterioration states at different locations in the structure. It also provides a systematic 
and effective way of using all available information from inspections and measurement 

campaigns. Using MCMC as inference algorithm, one can estimate the posterior distribution of 
the model parameters. With these results, one can predict the deterioration that might occur in 
the next years, and even estimate the condition at locations that were not inspected during some 

campaigns. If a failure criterion is defined, one can also estimate the probability of failure at 
different levels of the structure (e.g. a single plate failure or a complete cross section failure) 
using structural reliability methods. The deterioration process considered here is uniform 

corrosion in floor plates of tankers, but the model principles are applicable to any ship structural 
elements and to other corrosion process types, such as pitting corrosion, or other deterioration 

processes, such as fatigue. 

The case study presented here also shows some of the limitations of this framework. A critical 
aspect of it is the amount of data. To accurately estimate the posterior distribution of the model 
parameters, one needs large amount of information in space (i.e. many different locations inside 

the structure) and time (i.e. multiple inspection campaigns at different times). Insufficient data 
in one of these aspects might compromise MCMC convergence, forcing to reduce the number 
of model parameters to obtain adequate results. For most applications of this framework, the 

computations can be performed offline in a reasonable time. Only when one requires near real-
time estimations (e.g. deciding during inspection time where else to inspect or even stopping 
the inspection based on what has been already observed), the computation time of MCMC 

might be an issue. In this use case, this approach gives accurate results because it is only focused 
on estimating the posterior distribution of the parameters of the deterioration process, for which 
the number of required samples is still low (less than 105 samples). 
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Even though this framework could theoretically be used for solving the RBI problem, it presents 

several limitations due to the large number of samples that would be required to accurately 
estimate low probabilities of failure, and its computation time would considerably increase with 
the number of observations included in the model. The next case studies show the efficiency 

and accuracy of a different approach, the DBN framework from Paper B, which is compared to 

MCMC for solving a reliability problem of structures with low probabilities of failure. 

4.2 Reliability analysis of a Daniels system 

In this case study from Paper B, the accuracy and robustness of the deterioration DBN 
framework is evaluated using a theoretical structure, the Daniels system. This system facilitates 

studying characteristics of load sharing among the elements in redundant structural systems. 

A Daniels system consists of a set of G load-sharing elements with independent and identically 
distributed random capacities L*, X = 1,… ,G, and an external random load z (Daniels 1945, 
Gollwitzer and Rackwitz 1990). The system is illustrated in Figure 15 and its parameters are 

summarized in Table D.1. 

 
Figure 15. Daniels system with N elements, capacities $#, 9 = 1,… ,5, and external load A. 

Here, the components of the Daniels system are affected by fatigue deterioration. The fatigue 

deterioration is described by a simple fracture mechanics model based on Paris’ law: 

d&*(8)
d8

= |	K* }∆'A,*�Ä&*(8)Å
B+

 (9) 

where | is the stress cycle rate; ∆'A,* = ?EU∆'*
B+[B

#
,+ is the equivalent constant stress range for 

all stress cycles used before, and ∆'* the stress range per cycle; K*, (* are material parameters.  

Failure of the X-th component occurs when the crack depth &*  exceeds a critical value -C . 
Fatigue deterioration is represented by a binary model, in which the X-th component has either 

EI =  

L 

R1 R2 R3 … RN 
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its full capacity (prior to fatigue failure) or zero capacity (after fatigue failure). Any interaction 

between the extreme load z and the fatigue deterioration is neglected. 

Because of the exchangeability of its components, the system reliability is a function only of 
the number of components that have failed. This property is used here to define an alternative 
representation of the convergent connection from the condition of the components V?,&::,( to 
the condition of the system V3,( (see Figure 8) and consequently to reduce the complexity of the 

algorithm. The service life of the structure is discretized in 8 = 0, 1, 2, … , ! time steps. 

Observations of the deterioration state are available through inspections. The observation ) is 
a binary random variable with possible states no crack detection (+ = 0) and crack detection 
(+ = 1). The inspection quality is described by an exponential probability of detection (POD) 

model as a function of the crack depth, i.e. the deeper a crack, the higher the probability of 

detecting it (see Equation B.17).  

The hyperparameters w = (mB , mD , m-) represent the dependence of the deterioration process 

among components, linking material parameters, stress parameters, and initial crack depths. In 
this case, the hierarchy contains one single level represented by three (a-priori) independent 
hyperparameters. These hyperparameters represent the dependence coming from, e.g. a 

common manufacturer (i.e. similar material properties and initial crack conditions among 

structural elements) and common deterioration conditions (i.e. related stresses). 

All the model parameters and the discretization scheme are presented in Tables B.1 and B.2. 

The Daniels system is defined with G = 10 components and ! = 100 time steps. The resulting 

DBN of the Daniels system is presented in Figure 16. 

The results of the proposed inference algorithm are compared to those obtained using Monte 

Carlo simulation (MCS) and MCMC. The computations are done for the unconditional (i.e. 
without observations) and conditional (i.e. with observations from inspections) cases. The 
estimations of the probability of failure at both component and system level using the different 

methods show a good agreement (Figure 17). At the system level, the difference between the 
probability estimates from the proposed DBN model and the Monte Carlo methods is due to the 
discretization scheme of the hyperparameters alpha. This issue can be mitigated by increasing 

the number of discrete states for each hyperparameter with an associated increase in 

computation time. 
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Figure 16. DBN of the Daniels system with 5  components; hyperparameters @3 , @4 , @, ; material 
parameter >; fatigue parameter B; crack depth .; observation /; component condition "&; number of 
failed components 55; and system condition "-. 

a) b) 

  

Figure 17. Reliability index for the unconditional case of a) a component, and b) the Daniels system. 

For the conditional case (i.e. with inspection observations), the results of the DBN model and 
the MCMC match better than for the unconditional case (Figure 18). The necessary computation 

time for the solution of the DBN model using the exact inference algorithm is orders of 
magnitude lower than that for the applied standard MCMC algorithm. The complexity of both 
approaches with respect to the number of system components is linear, but the proposed 
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inference algorithm is not affected by the number of observations or the order of magnitude of 

the probability of failure. 

 
Figure 18. Reliability index of the system for the conditional case (here: no detection of cracks). 

To demonstrate the efficiency of the DBN algorithm as the number of components and 
inspections is increased, this case study from Paper B also investigates a Daniels system with 
G = 100 components and inspection observations for some of its components, as described in 

Table B.3. The results of the computed system reliability for both with and without inspection 
cases are shown in Figure 19. Since the inspection resulted in detection of multiple cracks and 
no repairs are considered in this example, the system reliability is lower after including the 

inspections. MCMC results are not computed for this case due to the associated large 

computation times. 

 
Figure 19. Reliability index of the Daniels system with 100 components with and without inspections. 

As a conclusion, the deterioration DBN framework is able to represent the dependencies among 
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successfully demonstrated in this theoretical case study, showing good agreement with MCMC 

and MCS in the updated probabilities, but with computation times that are orders of magnitude 
lower. This difference in the computation time becomes more remarkable as the amount of 

inspection data increases. 

4.3 Reliability analysis of a 2D tubular structure – the Zayas frame 

In this case study from Paper B, the applicability of the deterioration DBN framework is 

evaluated by investigating a more realistic structure, the Zayas frame. 

The Zayas steel frame is commonly used as a benchmark in structural analysis of steel offshore 
structures (Zayas et al. 1980). It consists of 23 tubular members with welded connections. The 
fatigue hotspots are located at the welded connections of the 13 horizontal and diagonal 

members. There are G = 22 fatigue hotspots, which represent the system components in the 
DBN model. The structure is loaded in horizontal direction by a concentrated force z at the 
upper left node of the structure and by gravity load. The details of the geometrical and material 

properties of the structure are described in Schneider et al. (2017). 

 
Figure 20. Zayas steel frame structure with 22 fatigue hot spots in 13 tubular members (a – m). 

The model used in this case study considers fatigue deterioration in all hotspots of the Zayas 
frame according to Section B4.1.1 with parameters listed in Table B.1. As in the previous case 
study from Section 4.2, a redistribution of fatigue stresses when some system components fail 
is neglected, i.e. Ç*,( is modeled as a time-invariant parameter.  
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The inspection observations have the following characteristics: a) measurements of crack sizes 
at the hotspots are taken; b) observation )*,(  is equal to the true crack sizes plus a random 
measurement error; c) observation )*,( is discretized with the same scheme as the crack depth 
&*,( with one additional state representing no detection. Note that the number of discrete states 

of )*,( has no effect on the computational demand. 

The relation between hotspots, structural elements and system condition has the following 

characteristics:  

- Each structural element has either one or two fatigue hotspots associated to it 
- Condition of hotspots and elements is modeled through random variables V9 and VA, 

respectively 

- It is assumed that an element fails if any of its hotspots fails 

Given the number of structural members in the Zayas frame, the total number of possible system 
configurations (i.e. surviving elements after component failures) is 2&E = 8192, which are 

explicitly managed in this case study. To estimate the probability of failure of the system, the 
ultimate capacity of the structure is obtained for each possible system configuration through a 
pushover analysis. The condition of the system V3,( is defined as a child node of the system 

configuration Ψ3,( and the extreme load z(. The complete DBN model is shown in Figure 21. 

In the unconditional case (i.e. without inspections), the estimations of the reliability index using 
the exact inference algorithm of the DBN approach, MCS, and MCMC give consistent results 

for a single hotspot and the system (Figure 22). 

When including crack measurements (i.e. conditional case), the exact inference algorithm of 
the DBN framework is able to compute the reliability at the component and system level, but 

the MCMC algorithms implemented in OpenBUGS (Lunn et al. 2009) have convergence issues 

and no reliability estimates were obtained (Figure 23). 
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Figure 21. DBN of the Zayas frame with hyperparameters @3 , @4 , @,; material parameter >; fatigue 
parameter B; crack depth .; observation /; hotspot condition "6; structural element condition ".; 
system configuration C-; external load A; and system condition "-. 

 

a) b) 

  

Figure 22. Reliability index for the unconditional case (i.e. without inspections) of a) a single hotspot, 
and b) the complete system (here Zayas frame). 
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a) b) 

  

Figure 23. Reliability index for the conditional case (i.e. with inspections) of a) an inspected single 
hotspot, and b) the complete system (here Zayas frame). 

To demonstrate the flexibility of the DBN framework, a case with more inspection 

measurements at different locations and multiple time steps on the Zayas frame is also analyzed. 
Figure 24 presents the reliability index of the system given multiple observations at hotspots 1 

to 4 and time steps 10, 20, 30, and 40. 

 
Figure 24. Reliability index of the system for the conditional case (i.e. with inspection) with observations 
from hotspots 1 to 4 at time steps 10, 20, 30 and 40. A measurement ND represents a no-detection case. 
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4.4 Full optimization vs heuristic rules 

In this case study from Paper A, multiple approaches to compute the optimal inspection strategy 
based on influence diagrams are compared. For the numerical investigation, a structural element 
subject to fatigue deterioration is studied using a DBN model that incorporates information 

from previous inspection campaigns.  

Figure 25 shows the influence diagram (ID) associated to the decision problem of this case 
study. In the LIMID, only those nodes with links to the decision nodes are assumed to be known 

at the time of making the decision. This assumption strongly reduces the computational effort 
when optimizing the decisions. With increasing memory, i.e. with increasing number of links 
to the decision nodes, the policy domain of the decision nodes increases, making the solution 

of the optimization problem intractable as discussed in Section 2.5. However, reducing the 
number of information links toward the decision node leads to suboptimal solutions, in 

particular if compared to the no-forgetting assumption. 

The elements of this ID are summarized in the following (more details in Paper A): 

- Deterioration state: Fatigue crack depth is represented with node W 
- Inspection decisions: At every time step 8, a decision node &( is included that indicates 

if an inspection is carried or not 
- Observations: In case an inspection is carried out at time 8, the random variable )( will 

indicate if a crack was detected or not 

- Repairs: Repair actions are included in the model as a function of the observed 
conditions of the component and the system. Node W’ represents the deterioration state 
of the component after repair. 

- Component and system condition: Nodes V?  and V3  represent the condition of the 
component and the system before inspection. System failure is defined based on the 
redundancy of the system (more details in Section A.3.2). This simple model does not 

account for multiple element failures. 
- Utilities: Utilities from the system condition, inspection decision, and observation nodes 

are modeled by nodes Ü3,(, Ü.,(, and Ü/,( 

- Memory: It is assumed that no information is available when the inspection decision is 
made. We call this the no-memory ID. The advantage of the no-memory ID is that all 
inspections can be planned a-priori, since no observation during the service life will 

influence the inspection decisions. 
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Figure 25. ID model of the fatigue inspection planning problem for the no-memory case with crack 
depth D before and D’ after repair; inspection decision node .; observation /; component and system 
conditions "&  and "-; and utility nodes F7, F8, and F-. 

The ID from Figure 26 represents an extension of the previous ID (Figure 25), where 

information from past observations and decisions is considered when planning the inspections. 
In this ID, it is assumed that the last inspection observation is known when deciding upon 
inspection. Two additional variables, )(∗  and C( , are included in the model and contain the 

observation from the last inspection and the time when it was performed. We call this ID the 

last-inspection ID. 
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Figure 26. ID model of the fatigue inspection planning problem for the last-inspection case with the 
same original nodes as in Figure 25 and additional nodes /!∗ and G! containing the observation from 
the last inspection and the time when it was performed. 

The inspection planning problem is solved with the periodic inspections and the reliability 
threshold heuristics, with the SPU algorithm for the no-memory and last-inspection cases, and 
with a full search for the no-memory ID case for comparison. The full search approach covers 

all 2&5  possible inspection schedules.Heuristics approximate the solution of the decision 
problem because their possible solution domains are considerably smaller subsets of the 
complete solution domain, thus reducing the computational effort (see Sections 3.2 and 3.3.1). 

Both heuristic approaches define a single parameter optimization problem. Their algorithms 
have a linear complexity order with respect to the number of time steps whereas SPU 
complexity depends on the maximum size of the variable domains considered in the decision 

problem. 
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best strategy is obtained with the last-inspection case using the SPU algorithm. This is not 

surprising, since this is the only strategy that allows adapting the inspection times based on 
inspection results. The optimal policy obtained with this approach is a set of rules that indicate 
when to inspect or not given the information from the last inspection (e.g. inspect after two 

years if the last detected crack depth is larger than á mm). This implies that the exact inspection 
times will not be known in advance but are dependent on how the component deteriorates and 

if such deterioration is detected. 

Table 2. Solutions of the optimal inspection problem using different approaches. 

Approach Expected cost Inspection times CPU time (sec) 

Periodic inspections 14.91 2, 4, 6, 9, 11, 13 0.4 

Reliability threshold 14.70 2, 4, 6, 8, 10, 13 4.3 

SPU (no-memory ID) 14.05 1, 2, 4, 5, 7, 9 164 

Exact solution (no memory ID) 13.97 1, 2, 3, 5, 7, 10 313 

SPU (last-inspection ID) 13.75 Policies for each decision 
node 

165 

 

Comparing the SPU solutions, it is seen that the expected cost decreases from 14.05 to 13.75 

when using the last-inspection case. In this case, the SPU algorithm provides an adaptive policy 
for each decision node. For example, the resulting policy of the decision node &&' indicates that 
an inspection is always carried out unless there was an inspection in the previous year 

(independent of what was observed) or there was an inspection two years ago without crack 
detection. While the SPU algorithm requires significantly more computation time than the 
heuristic approaches, it gives more flexibility adapting the inspections to the results of previous 

observations, as already exemplified. Figure 27 shows the computation time of each evaluated 
approaches for different service life periods !. For illustration purpose, the last two points of 
the exact solution for the no-memory case (! = 25 and ! = 50) are estimated as proportional 

to the number of possible inspection schedules. 
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Figure 27. CPU time for finding the optimal solution. 

In conclusion, SPU is found to give solutions that are slightly better than those obtained with 

simple heuristics, such as reliability threshold or periodic inspections, which is in agreement 
with Nielsen and Sørensen (2011). However, the much larger computation time of adaptive-
policy-based approaches compared to simple heuristics is prohibitive for application to 

structural systems, even when only a reduced number of components is considered. 

The results from this case study provide an argument in favor of using heuristic rules to reduce 
the solution space of the RBI problem at the system level (which is considerably more complex 

and computationally demanding than the one for single components) without much compromise 

in the accuracy of the solution. The following section shows a case study using such approach. 

4.5 Integral risk-based inspection planning 

This case study outlines a methodology for an integral risk-based optimization of inspections 
in structural systems. It extends the results from Section 4.2 for the Daniels system by nesting 
the DBN inside a Monte-Carlo simulation for computing the expected cost associated with a 

system-wide inspection strategy (Section 3.3.2). The solution space of inspection strategies is 
simplified using a heuristic approach (Section 3.3.1). The extension of the DBN model from 

Figure 16 into an ID is represented in Figure 28. 
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Figure 28. Influence diagram of the Daniels system with material parameter >; scale parameter of the 
stress range distribution B; fatigue crack depth .; hyperparameters < = {@3 , @4 , @,}; inspection 
decision #; inspection outcome /,; crack depth after repair .∗; component condition ":; number of 
failed components 55; system condition "-; inspection, repair, and failure costs ?7, ?8, and ?;. 

Inspection campaigns have a fixed cost O?  independent of the number of components to be 
inspected. This is the mobilization cost of personnel and equipment and the cost of interrupting 

operations. Individual inspections and repairs per component have costs O.  and O/ . The 
consequences of system failure are represented by the failure cost O0. All costs are discounted 
to their present value through the following discounting factor based on the real interest rate à 

(i.e. the interest rate after allowing for inflation). Two cost cases are considered in this case 
study: (a) one case with high mobilization costs and potentially large consequences of failure 
(e.g. an offshore structure), and (b) another case with lower failure costs relative to the 

inspection campaign (e.g. metallic bridge structures subject to fatigue). The details of each cost 

case can be found in Table D.4. 

As discussed in Section 3.3.1, an inspection strategy F< is defined through the parameters:  

– ∆8., the time between regular (i.e. fixed-interval) inspections;  
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– *(9, the failure probability threshold at which additional inspections are performed;  

– $., the pre-defined number of components to inspect during a campaign;  

– -/, the repair criterion, which is here set to 0.  

The condition of a repaired component is as new. If no crack is found after inspecting 
component X at time 8, then &*,(∗ =	&*,( . The possible values of the parameters defining the 

heuristic strategies for this case study are given in Table D.5. 

Following the heuristic defined in Section 3.3.1, in each campaign the components with the 

largest VoI are inspected first. Because of the exchangeability of the components in a Daniels 
system, and because the dependence among all components is the identical (at least a-priori), 
the VoI is a direct function of the probability of failure (PoF) of the component. A component 

with a higher PoF has a larger impact on the system reliability; it also has larger uncertainty, 
hence the learning effect is higher for such a component. Therefore, components are selected 

for inspection according to their PoF.  

Finally, the optimal strategy is obtained through an exhaustive search among a discrete set of 
predefined set of parameters as described in Section 3.3. The expected costs of the strategies 

evaluated in this case study for both cost models are shown in Figure 29 and Figure 30. 

 
Figure 29. Comparison of the expected total cost (case 1) varying the number of inspected components 
H7, the probability threshold I!6, and the regular inspections periodicity ∆%7. The first row corresponds 
to ∆%7 = 5L and the second row to ∆%7 = 10L. Columns correspond to the probability thresholds 2 ∙
10

(2, 	6 ∙ 10(2, and 2 ∙ 10(1. 
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Figure 30. Comparison of the expected total cost (case 2) varying the number of inspected components 
H7, the probability threshold I!6, and the regular inspections periodicity ∆%7. The first row corresponds 
to ∆%7 = 5L and the second row to ∆%7 = 10L. The columns correspond to the probability thresholds 
2 ∙ 10

(2, 	6 ∙ 10(2, and 2 ∙ 10(1. 

The DBN framework combined with the heuristic rules shown in this section have also been 

applied to obtain the optimal inspection strategy of the Zayas frame (Bismut et al. 2017) leading 
to similar conclusions than those for the Daniels system in terms of efficiency of the algorithm 

and effectiveness of the approach. 

As a conclusion, the proposed framework determines optimal inspection-repair strategies for 
structural systems in an integral manner considering interdependences among component 
deterioration states and using the information from inspections. It also explicitly includes the 

interaction between the reliability of components and the structural system. By applying the 
DBN framework to computing the conditional reliability given inspection results, the method 

has a computational cost that is suitable for applications in practice. 
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Algorithms for optimal risk-based planning of inspections  

using influence diagrams 

 

Jesus Luque & Daniel Straub 

Engineering Risk Analysis Group, Technische Universität München, Germany (jesus.luque@tum.de, 

straub@tum.de) 

Abstract 

Risk-based optimization of inspection using influence diagrams is investigated. To this end, a 
fatigue deterioration model using a Dynamic Bayesian Network (DBN) approach is presented. 
The DBN incorporates information from previous inspection campaigns. Decision and utility 
nodes are de-fined inside the network to represent inspection and repair activities. The opti-mal 
inspection strategy (subject to safety or utility constraints) is approximated using the Limited 
Memory Influence Diagram (LIMID) approach, and is solved using the single policy updating, 
a local optimization strategy. In a numerical investigation, this method is found to give solutions 
that are slightly better than those obtained with simple heuristics that were previously applied, 
such the reliability threshold or periodic inspection heuristic. Finally, the numerical example 
demonstrates the superiority of adaptive inspection strategies, whereby inspections are planned 

based on the results of previous inspections. 

Keywords 

optimal inspections, Bayesian network, decision models, fatigue, influence diagrams. 
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A.1 Introduction  

Deterioration processes, in particular fatigue and corrosion, lead to a reduction of the reliability 
of structural systems. Because deterioration processes are commonly associated with significant 
uncertainty, inspection and monitoring are often an effective means to increase the reliability. 
Based on the results of inspections, repair and replacement actions can be planned. This is 
known as condition-based maintenance (Swanson 2001). 

The uncertainty in deterioration processes is commonly represented through probabilistic 
models, comprising of deterministic deterioration models whose parameters are represented by 
random variables. In order to assess the effect of different inspection and/or monitoring 
strategies, their expected costs, including the risk associated with potential failures, can be 
computed and compared. This is commonly known as risk-based planning of inspection and 
monitoring (Straub and Faber 2006) and is a special case of the pre-posterior analysis of the 
Bayesian decision theory (Jordaan 2005, Raiffa and Schlaifer 1961). The computation of the 
expected costs for a given inspection strategy requires integration over the entire outcome space 
of all random variables in the deterioration model as well as over all possible inspection 
outcomes. This is a computationally demanding problem. In addition, to compute the expected 
cost it is also necessary to include (and optimize) the maintenance and repair actions into the 
analysis. Since the number of potential alternative inspection and monitoring strategies is very 
large, solving the complete optimization problem is thus computationally intractable for 
realistic applications. For this reason, different heuristics (e.g. Straub and Faber 2006, Nielsen 
and Sørensen 2011) have been developed in order to approximate the optimal solution, 
including periodic inspections (PI) and reliability threshold (RT). More recently, the use of the 

limited memory influence diagram (LIMID) was suggested by Nielsen and Sørensen (2011). 

In this paper, we present and compare different algorithms for the optimal planning of 
inspections in a structural element subject to fatigue deterioration. The fatigue crack growth 
process is represented through a dynamic Bayesian network (DBN). The optimization 
parameters are the times of inspections and times of repair actions. This decision problem is 
modelled as an influence diagram. Besides the classical PI and RT heuristics, we investigate 
two alternative formulations of the problem as a LIMID. We find that the LIMID outperforms 
the classical approaches, but also has increased computational demands. However, the 
complexity of the LIMID algorithm is shown to be of similar order than PI and RT. It is thus a 
viable alternative, which is particularly promising for planning inspections in systems, where 
the number of decision alternatives is much larger and simple heuristics such as PI and RT are 
not available. 
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A.2 Dynamic Bayesian networks and influence diagrams 

A.2.1 Bayesian networks 

A Bayesian network (BN) is a probabilistic model. It consists of a set of random variables 
(nodes) and directed links which form a directed acyclic graph (DAG), i.e. there is no directed 
path from any variable to itself. A discrete BN furthermore fulfils the following requisites 
Jensen and Nielsen (2007): 

- Each variable has a finite domain 
- To each variable ! with parents "!, "", … , "# is attached a conditional probability table 

%('|)!, )", … , )#) = Pr	(! = '|"! = )! ∩ …∩ "# = )#). "$ is called a parent of ! if it 
has a link towards ! . If a variable has no parents, the table corresponds to its 

unconditional probability mass function (PMF). 

In Fig. A.1, exemplarily a simple BN representing the condition of a structural element before 
and after applying a load is shown. The condition of the element is represented by 0% and 0!, 
the damage size (crack depth) before and after the application of load 1!, respectively. Variable 
2! represents a possible inspection outcome of the condition 0! in case an inspection is carried 
out. Nodes 0%  and 1!  are described by unconditional PMFs. The probability table of 0! 
contains the PMFs of the damage size conditional on the previous damage size 0% and the load 
1!. The probability table attached to 2! describes the likelihood of the inspection outcome, i.e. 
the probability of an observation (e.g. detect damage) given the condition 0!. 

 
Fig. A.1. Example of a Bayesian network. 

If the states of some variables are known (i.e. instantiated) in the BN, the PMFs of the remaining 
nodes can be updated to their posterior. For example, in the BN of Fig. A.1, an inspection 
outcome 2! can be included by instantiating the corresponding node with the observed state 3!, 
e.g. no detection of a defect. The PMFs of the remaining nodes 0%, 0!, and 1! are then updated 
to their conditional PMF given 3!. This ability to efficiently perform Bayesian updating makes 
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BNs suitable for modeling deterioration processes when partial observations from inspections 

and monitoring are to be included (Straub 2009). 

A.2.2 Dynamic Bayesian networks 

In some cases, BNs contain a repetitive sequence of nodes which are associated with multiple 
times or spatial locations. Such a BN is called dynamic Bayesian network (DBN) and is useful 
for modeling time-dependent processes, including structural deterioration (Straub 2009). 
Extending the BN of Fig. A.1 to multiple loads 1&, conditions 0&, and observations 2& at times 

4 = 1,… , 6 the DBN shown in Fig. A.2 is obtained. 

 
Fig. A.2. Example of a dynamic Bayesian network. 

A.2.3 Influence diagrams 

BNs can be extended to influence diagrams (ID), which additionally include decisions and 
utility (cost). In the ID, decisions are shown as squared nodes and utilities as diamond-shaped 
nodes. In the latter, a utility value is assigned to each combination of states of the parent nodes, 
which can be either random variables or decision nodes, but not utility nodes. In case there are 
several utility nodes, the total utility is the sum of the individual utilities. In the ID, the optimal 
decision is the one that maximizes the total expected utility, in agreement with classical decision 
analysis (Raiffa and Schlaifer 1961). 

The decision nodes describe different decision options, which influence the random variables 
that are children of the decision node. This influence is quantified through the conditional PMF 
of these child nodes. Links pointing towards the decision nodes represent the available 
information at the time of making the decision. All parents of the decision nodes are known 
when making the decision. However, there exist different versions of IDs, which differ in the 
way information is handled. Often, the ID is based on the no-forgetting assumption: When 
making a decision, all previous decisions as well as previous observations are known. This 
requires that there is a temporal ordering of the decisions. The no-forgetting assumption leads 
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to significant computational demands. For this reason, the limited memory ID (LIMID) was 
introduced, which makes an explicit link between the nodes that are known before taking the 
decision and the decision node (Lauritzen and Nilsson 2001). In the LIMID, only the direct 
parents of a decision node are known at the time of making the decision. This reduces (or limits) 
the number of nodes that will be considered for the decision, decreases the size of the policy 
domain and facilitates the obtaining of the optimal strategy that gives the maximum expected 
utility. In this paper, we use LIMIDs to represent the inspection and repair decision processes.  

Fig. A.3 shows an example ID for the deterioration example presented earlier as a DBN in Fig. 
A.2. Here, the decisions 7& are included on whether or not to repair the structural element at 
times 4 = 1,… , 6. These decisions are made based on the result of the inspections 2&, hence the 
links 2& → 7&. To differentiate the condition of the element before and after the repair, the nodes 
0&'  are introduced. The conditional PMF of these nodes are identical to that of 0& in case no 
repair is carried out, and they differ if a repair is carried out. The utilities 9(,& are the (negative) 
cost of repairs and the utilities 9*,& are the cost associated with failure at time 4. The last slice 

does not include a repair decision, since such an action would be pointless at the end of the 
service life. 

 
Fig. A.3. ID of the multi-decision structure condition example. 

A.2.4 Policies and strategies 

In the ID, decisions are taken based on information available when making that decision. In the 
LIMID, these are the nodes with links pointing to the decision node. A policy consists of a set 
of rules defining which decision to take as a function of the available information. The more 
information is used for making a decision, the larger the policy domain and consequently the 

computational demand. A set of policies of all decision nodes in the ID is called a strategy. 
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A.3 Risk-based planning of inspections using influence diagrams for a 
structural element subject to fatigue 

In condition-based maintenance of structures, it has to be decided when, where and how to 
inspect. Here we restrict ourselves to finding optimal decisions on when to inspect, and we 
present IDs to solve this problem. The optimal inspection strategy is defined as the one that 
minimizes the expected cost, defined as the sum of inspection, repair and failure cost. Note that 
the expected cost of failure is the risk.  

For the numerical investigation, a structural element subject to fatigue deterioration is 
considered. Inspections are possible in each year of the service life, potentially followed by 
repair actions in case of adverse inspection outcomes. 

A.3.1 Fatigue crack growth model 

To model the fatigue crack growth, we consider a simplified case corresponding to crack growth 
in an infinite plate, described by Paris' law (e.g. Ditlevsen and Madsen 1996): 

:0(;)
:; = < =∆?	@A0(;)	B

+
 (A.1) 

where 0 is the crack depth; ; is the number of stress cycles; ∆? is the stress range per cycle 
with constant stress amplitudes; and < and C are empirically determined model parameters. 
Parameters ∆?, <, and C are modeled as time invariant random variables. Using the boundary 
condition 0(; = 0) = 0%, the previous equation leads to 

0(;) = =E1 − C2H<∆?
+A+ "⁄ ; + 0%(!.+ "⁄ )B

(!.+ "⁄ )!"
 (A.2) 

In order to use a DBN for the fatigue model, the time is discretized in intervals of 1 year. If 
;& = ;(4) is the number of cycles at time step 4, then the crack depth at the end of each year 

can be expressed recursively as a function of the crack depth in the previous year as 

0& = JKA+ "⁄ + 0&.!(!.+ "⁄ )L(!.+ "⁄ )!"
 (A.3) 

where K = E1 − +
"H<∆?

+∆;. Here, ∆; = ;& − ;&.! is the number of stress cycles per year. 

Variable K is defined in order to reduce the dimension of the variable space.  

The failure event of the component is defined by the limit state function 

M = 00 − 0(;) (A.4) 
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where 00 represents the critical crack depth. The condition of the component is indicated by the 
binary variable N&, which takes value 1 when M > 0 (i.e. safe event) and 0 when M ≤ 0 (i.e. 
failure event).  

In Straub (2009), a DBN model and algorithm was developed for this simple crack growth law, 
as presented in Fig. A.4a. For the purpose of the present study, the model is simplified by 
eliminating the variables K& and C&, leading to a simple homogeneous Markovian deterioration 
model for 0& as shown in Fig. A.4b. The resulting discrete Markov process for the crack depth 

0& follows the recursive relation 

Q1(4) = R	Q1(4 − 1) (A.5) 

where 4 = 1,2, . . . , 6, R is the transition probability matrix and Q1(4) is the vector describing 
the discretized probability distribution of 0&. Q1(0) is given by the probability distribution of 
0%. The Markov model is homogenous if all random variables in the model are time-invariant. 
Note that the unconditional marginal distribution of the crack depth and the unconditional 
probability of failure of the two models in Fig. A.4 are identical. However, as soon as 
observations are made, the conditional distributions computed with the two models will differ.  

a) b) 

 

 

Fig. A.4. DBN of the original (a) and simplified (b) fatigue crack growth model. 

A.3.2 Influence diagram for modeling inspections  

To assess the effect of inspections and to determine optimal inspection times, the fatigue DBN 
of Fig. A.4 is extended to an influence diagram (ID). The ID is presented in Fig. A.5. The 

elements of this ID are introduced in the following. 
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Fig. A.5. ID modeling the fatigue inspection planning (no-memory ID). 

Inspection decisions. At every time step 4, a decision node T&  is included in the BN. Each 
decision has two possibilities: no inspection (T& = 0) or inspection (T& = 1). In the ID shown 
in Fig. A.5, this decision node has no parents. Because we follow the LIMID convention 
described above, this implies that the inspection is planned without any previous knowledge. 
This assumption will later be relaxed. 

Observations. In case an inspection is carried out at time 4, the random variable 2& will indicate 
if a crack was detected (2& = 1) or not detected (2& = 2). If no inspection was carried out (i.e. 
T& = 0), then the corresponding state of the variable will be no measurement (2& = 3). In case 
an inspection is performed, the probability of detection (PoD) describes the probability of 
detecting the crack. It is a non-decreasing function of the crack depth (i.e. larger cracks have 
larger probabilities to be detected) and is here represented by the following relation (Straub 

2009): 

Pr(2& = 1|0&) = VWT(0&) = 1 − exp(−0& 10mm⁄ ) (A.6) 

Repairs. Repair actions are included in the model as a function of the observed conditions of 
the component and the system. Whether or not to repair at time 4 is in principle also a decision 
that may be optimized jointly with the inspection decision. However, it has been found that 
simple decision rules are sufficient for the repair action in the considered case, and no 
optimization is needed (Straub and Faber 2006). The rule is that if the system fails or a crack is 
detected during an inspection, the component will be repaired. This is included in the ID 
through the variable 0&' . If no repair is carried out, the state of 0&'  will be identical to 0&; if a 
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repair is carried out, its conditional distribution is equal to the distribution of the initial crack 

depth 0%, assuming that the new condition is probabilistically identical to the original one. 

Component and system condition. Structural systems are often redundant, so that failure of an 
element does not necessarily imply a system failure. Here, the redundancy of the system with 
respect to component failure is defined in a simplifying manner as the probability that the 
system does not fail when the component does. N2,& and N3,& denote the condition (i.e. failure 

or safe) of the system and the component, respectively, at time 4. We define the redundancy ] 

as: 

Pr^N2,& = safebN3,& = failuref = ] (A.7) 

In the extreme case with no redundancy ] = 0, element failure will directly lead to system 
failure. Similarly, if the system is fully redundant with respect to element failure, ] = 1, then 
the system will not fail if only this element fails. This simple model does not account accurately 
for multiple element failures, which must be addressed by an advanced model (Straub and der 

Kiureghian 2011). 

Utilities. The variables N2,& (system condition), T& (inspection decision), and 2& (observation) 
are associated with costs. These are modeled by the utility nodes 92,&, 94,&, and 9(,&. The utility 

of an inspection, repair and system failure events are −<4, −<(, and −<2. 

A.3.3 Memory assumptions in the ID model 

In the LIMID, only those nodes with links to the decision nodes are assumed to be known at 
the time of making the decision. This assumption can strongly reduce the computational effort 
when optimizing the decisions. With increasing memory, i.e. with increasing number of links 
to the decision nodes, the policy domain of the decision nodes increases, making the solution 
of the optimization problem intractable. On the other hand, reducing the number of information 
links toward the decision node leads to suboptimal solutions, in particular if compared to the 
no-forgetting assumption.  

In the first ID presented in Fig. A.5, it is assumed that no information is available when the 
inspection decision is made. We call this the no-memory ID. The advantage of the no-memory 
ID is that all inspections can be planned a-priori, since no observation during the service life 

will influence the inspection decisions.  

Alternatively, we consider the ID presented in Fig. A.6, where information from previous 
observations and decisions is taken into account when planning the inspections. In this ID, it is 
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assumed that the observation made at the previous inspection is known when deciding upon 
inspection. Two additional variables, 2&∗  and g& , are included in the model and contain the 
observation from the last inspection and the time when it was performed. We call this ID the 
last-inspection ID. 

 
Fig. A.6. ID modeling the fatigue inspection planning (last-inspection ID). 

A.3.4 Finding optimal inspection times with the ID 

When solving decision problems, the size of the solution domain can quickly become 
intractable as the number of decision nodes increases. Depending on the type of application, 
some characteristics (e.g. symmetry) can be used to reduce the computational demands of the 
decision problem (Jensen and Nielsen 2007). Alternatively, approximate solutions can be 
obtained. In particular, single policy updating (SPU) is an iterative algorithm for solving 
LIMIDs that runs over each decision node, obtaining its locally optimum policy that maximizes 
the expected utility of the decision problem by keeping the remaining policies fixed. An 
iteration is completed when all decision nodes are locally maximized, and the algorithm stops 
when the next iteration does not further reduce the expected utility. Due to its local nature, the 
solution obtained with SPU is likely to be suboptimal. 

For the inspection planning problem, simple heuristics were defined in the past to reduce the 
solution space (see e.g. Straub and Faber 2006). The two most common heuristics are 
summarized in the following. 

Periodic inspections (PI), also known as equidistant inspections: The number of possible 
inspection times of the decision problem increases exponentially with the number of time steps 
6 (i.e. 26 combinations). However, if it is required that the inspection intervals are fixed, then 
the number of possible combinations is reduced to 6 . The optimization problem can be 
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formulated in terms of a single variable, the number of inspections ;7 . If ;7  periodic 

inspections are performed in 6 time steps, then the inspection times are 

h 6
;7 + 1

i , h 26
;7 + 1

i ,… , h ;76;7 + 1
i (A.8) 

where ⌊	∙	⌋ is the smaller integer function. The goal is to find the optimal number of equally 
spaced inspections that gives the maximum expected utility. 

 

Reliability threshold (RT). The reliability of the component at time step 4 is its probability of 
being in a safe condition Pr(m&n ) = Pr(03 − 0& > 0) . Often, it is expressed through the 
reliability index o& = Φ.!(Pr(m&n )) , with Φ.!  being the standard normal cumulative 
distribution function. A reliability threshold o+ defines a lower bound of the reliability index. 
For a given threshold, an inspection is planned at time 4 if it would hold that o&8! < o+ without 
this inspection. In this way, the inspection times follow directly from o+ . Note that the 
implementation of the RT heuristic with the ID differs slightly from the original version, 
because the computation of Pr(m&	rrr) and o& is based on the averaged performance, i.e. it is not 

computed based on the actual repair history as in Straub and Faber (2006).  

The PI and RT heuristics approximate the solution of the no-memory decision problem. Their 
possible solutions domains are considerably smaller subsets of the complete solution domain, 
thus reducing the computational effort. Both PI and RT approaches define a single parameter 
optimization problem. Their algorithms have a linear complexity order with respect to the 
number of time steps whereas SPU complexity depends on the maximum size of the variable 

domains considered in the decision problem. 

A.4 Numerical investigations 

To investigate the different algorithms for optimizing the inspection planning with respect to 
the minimal life cycle cost, the simple DBN crack growth model presented in Sec. A.3.1 is 
implemented. The parameters of the model are summarized in Tab. A.1. These parameters as 
well as the discretization scheme are taken from Straub (2009). In Tab. A.2, the variables of the 
IDs are summarized. The cost of repair, <(, and system failure, <2, are expressed relative to the 
cost of inspection, <4 . The transition matrix R  of Eq. (A.5) is estimated by Monte Carlo 
simulation with 109 samples of parameters <, ∆? and C according to the prior distributions of 

Tab. A.1. 
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In this analysis, the following parameter values were assumed for the life cycle model: total 
time period 6 = 15 years; system failure cost <2 = 5000; inspection cost <4 = 1; repair cost 
<( = 0.1; and redundancy ] = 0.2. Discounting was neglected for the purpose of this example.   

The inspection planning problem was solved for the no-memory ID (Fig. A.5) with the PI and 
RT heuristics, with the SPU algorithm and – for comparison – with a full search (i.e. covering 
all 2!: possible inspection schedules). Furthermore, it was solved for the last-inspection ID (Fig. 
A.6) with the SPU algorithm. 

Tab. A.1. Parameters of the decision problem. 

Variable Distribution Mean Standard deviation 
and correlation 

!!	[mm]  Exponential 1 1 

!" 	[mm]  Deterministic 50 − 

∆(	[N	mm#$]  Normal 60 10 

ln(-),/ a Bi-Normal (-33; 3.5) (0.47; 0.3), 
0 = −0.9 

Δ6	[yr#%]  Deterministic 105 − 
a Dimensions corresponding to Newton and millimeter 

The total expected cost of the inspection planning solutions obtained with the PI and the RT 
heuristics are shown in Fig. A.7. For the PI approach, the optimal number of inspections is 
found to be 6, with the RT approach the optimal reliability threshold is found to be o+ = 	3.34. 

a) b) 

  
Fig. A.7. Expected cost of inspection schedules with (a) periodic inspections and (b) reliability 

thresholds. 

The total expected costs for all five solution strategies are summarized in Tab. A.3. The 
difference in the total expected cost among the optimal solutions is relatively small despite the 
inspection times and disaggregated costs (i.e. failure, inspection and repair costs) being quite 
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different among the solutions. As an example, Fig. A.8 shows the disaggregated expected costs 
for the PI and the SPU (no-memory ID) solution. The reason for the small differences in 
expected costs is likely the fact that all optimal solutions of the no-memory ID have six 
inspections, and the minimum reliability obtained with these optimal solutions is also fairly 

similar, as evident from Fig. A.9. 

Tab. A.2. Domains and variable discretization. 

Variable Number 
of states 

Discretization / states Conditional Probability Distribution 

!# (mm) 80 0,	exp{ln(0.01): 
[ln(50) − ln(0.01)] 78⁄ : 

ln(50)},∞ 

Pr;!#∈ =$>!#%& ∈ ='? = A$,' 
where =$ is the B-th interval of the discretization 

of !# or !#%&) . 

C*,#  2 1: Safe 
0: Fail 

Pr;C*,# = D>!#? = E

0 FG	D = 1, !# ≥ !+
1 FG	D = 0, !# ≥ !+
1 FG	D = 1, !# < !+
0 FG	D = 0, !# < !+

 

C,,#  2 1: Safe 
0: Fail 

Pr;C,,# = D>C*,#?

=

⎩
⎨

⎧
M- FG	D = 1, C*,# = 0

1 − M- FG	D = 0, C*,# = 0
1 FG	D = 1, C*,# = 1
0 FG	D = 0, C*,# = 1

 

 

N,,#  1 − 
N,,# = O

0 FG	C#
, = 0

−P, FG	C#
, = 1

 

Q#  2 0: No inspection 
1: Inspection 

 

N.,#  1 − N.,# = R
0 FG	Q# = 0
−P. FG	Q# = 1 

S#  3 1: Insp. with detection 
2: Insp. with no detection 

3: No measurement 

Pr(S# = T|!# , Q#)

= E

1 FG	Q# = 0, T = 3
WXQ(!#) FG	Q# = 1, T = 1

1 − WXQ(!#) FG	Q# = 1, T = 2
0 XZℎDM\F]D

 

N/,#  1 − N/,# = R
0 FG	S# = 2,3
−P/ FG	S# = 1  

!#
)  (mm) 80 

 

0,	exp{ln(0.01): 
[ln(50) − ln(0.01)] 78⁄ : 

ln(50)},∞ 

Pr;!#
) ∈ =$>!# , S# , C,,#?

=

⎩
⎪
⎨

⎪
⎧Pr;!0 ∈ =$? FG	C,,# = 0

Pr;!0 ∈ =$? FG	C,,# = 1, S# = 1
1 FG	C,,# = 1, !# ∈ =$ , S# = 2,3	
0 XZℎDM\F]D

 

where =$ is the B-th interval of the discretization 
of !# or !#%&) . 

  



 58 

Tab. A.3. Optimal solutions obtained with different algorithms. 

Approach Expected cost Inspection times CPU time (sec) 

PI 14.91 2, 4, 6, 9, 11, 13 0.4 

RT 14.70 2, 4, 6, 8, 10, 13 4.3 

SPU (no-memory ID) 14.05 1, 2, 4, 5, 7, 9 164 

Exact solution (no memory) 13.97 1, 2, 3, 5, 7, 10 313 

SPU (last-inspection ID) 13.75 Policies for each decision 
node 

165 

a) b) 

  
Fig. A.8. Expected cost of optimal solution for: a) PI, and b) SPU (no-memory ID). 

a) b) 

  
c) d) 

  
Fig. A.9. Reliability index of the optimal solutions for (a) periodic inspections; (b) reliability 

threshold; (c) SPU (no-memory ID); and (d) the exact solution (no-memory ID). 
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The optimal solution is obtained with the last-inspection ID, solved using the SPU algorithm. 
This is not surprising, since this is the only strategy that allows adapting the inspection times 
based on inspection results. The disadvantage of this strategy is that inspections cannot already 
be planned at the beginning of service life. 

Comparing the SPU solutions obtained for the two different IDs, it is seen that the minimum 
expected cost decreases from 14.05 to 13.75 when the observation from the last performed 
inspection is taken into account for deciding on the next inspection (the last-inspection ID). In 
this case, the SPU algorithm provides an adaptive policy for each decision node. For example, 
the resulting policy of the decision node T!" indicates that an inspection is to be carried out 
unless there was an inspection in the previous year (independent of what was observed) or two 

years ago without crack detection. 

The computation time for the SPU solution is considerably larger than for PI and RT. The same 
is observed when increasing the considered service life period 6, and hence the number of steps 
in the DBN (see Fig. A.10). However, all these algorithms show a similar complexity order (a 
linear increase with the number of time steps). In contrast, the exact solution of the no-memory 
ID was obtained by a complete search among all possible combinations of inspection times. 
This procedure has an exponential complexity order with respect to the number of time steps. 
For illustration purpose, the last two points of the exact solution (no-memory) curve in Fig. 
A.10 (6 = 25 and 6 = 50) were estimated by extrapolation. 

 
Fig. A.10. CPU time for finding the optimal solution. 

While the SPU algorithm requires significantly more computation time than the PI and RT 
heuristics, it is more flexible because it allows to adapt the inspections to the results of previous 
observations, as shown for the case of the last-observation ID. If the observations from the 
previous inspections are considered before deciding to inspect, an adaptive policy is followed. 
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Since any information can only increase the expected utility of optimal decisions (Jordaan 2005, 
Straub 2014), it follows that the maximum expected utility of the last-observation ID (or any 
other adaptive policy implemented through an ID with memory) must be larger or equal than 
that of a fixed inspection schedule based on the no-memory ID. 

A.5 Conclusions and outlook 

In this paper, the optimal inspection times for a structural element subject to fatigue are 
identified through a set of algorithms. The optimization problem is formulated through 
influence diagrams, whereby varying assumptions regarding the adaptivity of the inspection 
schedule were made. As expected, the adaptive inspection scheduling leads to lower expected 
costs. Among the algorithms for optimizing a non-adaptive inspection plan, the one obtained 
with the single policy updating (SPU) algorithm performs the best. However, the examined 
heuristics, which allow to significantly reduce the computational effort in the optimization, also 
perform well.  

These results of this paper are useful in the investigation of inspection planning problems in 
systems with multiple elements, whose deterioration characteristics are correlated. The 
proposed DBN/ID framework can be extended to solve such problems, but the associated 
computational complexity will increase with increasing system size, and simple heuristics are 
no longer readily available. Therefore, it is essential to have efficient algorithms for solving 
these problems, and the SPU algorithm seems promising for this purpose. 
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Reliability Analysis and Updating of Deteriorating Systems  
with Dynamic Bayesian Networks 

 

Jesus Luque & Daniel Straub 

Engineering Risk Analysis Group, Technische Universität München (jesus.luque@tum.de, straub@tum.de, 

www.era.bgu.tum.de) 

Abstract 

To estimate and update the reliability of deteriorating structural systems with inspection and 

monitoring results, we develop a modeling and computational framework based on dynamic 

Bayesian networks (DBNs). The framework accounts for dependence among deterioration at 

different system components and for the complex structural system behavior. It includes the 

effect of inspection and monitoring results, by computing the updated reliability of the system 

and its components based on information from the entire system. To efficiently model 

dependence among component deterioration states, a hierarchical structure is defined. This 

structure facilitates Bayesian model updating of the components in parallel. The performance 

of the updating algorithm is independent of the amount of included information, which is 

convenient for large structural systems with detailed inspection campaigns or extensive 

monitoring. The proposed model and algorithms are applicable to a wide variety of structures 

subject to deterioration processes such as corrosion and fatigue, including offshore platforms, 

bridges, ships, and aircraft structures. For illustration, a Daniels system and an offshore steel 

frame structure subjected to fatigue are investigated. For these applications, the computational 

efficiency of the proposed algorithm is compared with that of a standard Markov Chain Monte 

Carlo algorithm and found to be orders of magnitude higher.  

Keywords 

Bayesian analysis; System reliability analysis; Deterioration; Inspection; Fatigue.  
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B.1 Introduction 

Engineering structures are commonly subjected to deterioration processes, which can reduce 

their service life and affect the safety of the environment, people and the structure itself. For 

this reason, significant resources are invested to identify, model, quantify, mitigate and prevent 

deterioration processes in structures (Swanson 2001, Brownjohn 2007, Farrar and Worden 

2007). Structural deterioration, such as metal corrosion and fatigue, is mathematically 

represented using mostly empirical or semi-empirical models (e.g. Stephens 2001, Gardiner and 

Melchers 2003, Qin and Cui 2003, Wells and Melchers 2014). Because of their empirical nature, 

predictive deterioration models are typically associated with significant uncertainty. Hence 

deterioration is ideally modeled probabilistically (e.g. Madsen et al. 1985, Lin and Yang 1985, 

Melchers 1999, Frangopol et al. 2004).  

Probabilistic deterioration models are developed mainly at the structural component level. 

However, deterioration at different locations in a structural system is typically correlated, and 

system considerations should be made (Moan and Song 2000, Vrouwenvelder 2004, Straub and 

Faber 2005). Probabilistic models of deterioration in large structural systems have been 

proposed and applied to different types of structures and deterioration processes (e.g. Guedes 

Soares and Garbatov 1997, Kang and Song 2010, Straub 2011b, Luque et al. 2014, Schneider 

et al. 2015).  

Bayesian methods have been used to combine probabilistic deterioration models with 

inspection and monitoring outcomes (e.g., Tang 1973, Madsen et al. 1985, Maes et al. 2008, 

Straub 2009). They allow quantifying the impact of inspections and monitoring on the reliability 

of the structure, and so facilitate maintenance decisions and the planning of future inspections 

(e.g. Thoft-Christensen and Sørensen 1987, Faber et al. 2000, Moan 2005, Straub and Faber 

2005). Bayesian analysis is mainly performed at the component level, where the probability of 

failure of a structural component due to deterioration is updated with the inspection and 

monitoring outcomes. Only a few publications consider the updating of the reliability at the 

structural system level. Therein, the dependence among component deterioration states is 

modeled either through the correlation among the deterioration limit states (Moan and Song 

2000, Lee and Song 2014, Maljaars and Vrouwenvelder 2014) or through a hierarchical model 

(Mahadevan 2001, Faber et al. 2006, Maes and Dann 2007, Straub et al. 2009, Schneider et al. 

2017). More recently, a number of researchers have considered the planning and optimization 

of inspection and maintenance actions in structural systems with dependent component 

deterioration (Straub and Faber 2005, Qin and Faber 2012, Nielsen and Sørensen 2014, 

Memarzadeh et al. 2014).  
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A challenge in Bayesian system reliability analysis is to keep the computation time at a feasible 

level. Methods belonging to classical structural reliability methods are efficient for estimating 

the probability of system failure, but do not facilitate Bayesian analysis or have computation 

times that increase exponentially with the number of observations. Recently, a class of methods 

has been proposed that efficiently combine structural reliability methods with Bayesian 

updating (Straub 2011a, Straub and Papaioannou 2015). Nevertheless, also this approach has 

the drawback that its performance is a function of the number of inspection and monitoring data, 

which can be considerable in structural systems.  

Bayesian Networks (BNs) have become popular in engineering risk analysis due to their 

intuitive nature and their ability to handle many dependent random variables in a Bayesian 

analysis (Jensen and Nielsen 2007, Straub and Der Kiureghian 2010, Weber et al. 2010). The 

graphical structure of the BN is formed by nodes and directed links. The nodes represent 

random variables or deterministic parameters, and the links the dependence among nodes. 

Ideally, the link between two nodes is based on a causal relation, but this is not necessary. As 

an example, if deterioration ! is modeled as a function of an external random load " and a 

material parameter #, then a corresponding BN may look like the one in Figure B.1. Here, an 

additional node $ is included, representing an outcome of an inspection. Since each random 

variable in the BN is specified by its conditional probability distribution given its parents, the 

inspection outcome is defined by %('|)), i.e. the probability of the inspection outcome $ = ' 

given the damage state ! = ). This is known as the likelihood function, and corresponds to 

classical models used for describing inspection or monitoring performance, such as Probability 

of Detection (POD). Generally, the BN is established using commonly available probabilistic 

models; it allows combining these in a consistent and (in most cases) intuitive manner. 

Using BNs it is possible to obtain the posterior distribution of a set of random variables given 

a set of observations. This task is called inference. For instance, if an inspection result is 

included in the previously presented example, i.e. if $ is given, then the (joint) probability 

distribution of the random variables " , #  and !  conditional on the observed value of $  is 

calculated using inference algorithms. There are many algorithms available for inference in 

BNs (e.g. Hanea et al. 2006, Langseth 2009, Shenoy and West 2011). In this paper, the focus is 

on BN with discrete random variables, for which exact inference algorithms exist (e.g. Murphy 

2002, Jensen and Nielsen 2007).   
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Figure B.1. BN deterioration model example. 

The links in the BN provide information on the dependence between random variables in the 

model. For example, in the BN of Figure B.1, # and " are assumed to be independent a-priori, 

and hence no direct link between them is present. The link from !  to $  indicates that the 

inspection provides information on the damage state. It provides no direct information on " and 

#. However, it does so indirectly, because the information obtained on ! also updates the 

probability distribution of " and #, as long as ! is not known with certainty. In this way, by 

observing one random variable, potentially all others are updated. However, for efficient 

computation, all BN inference algorithms make use of the graphical structure by performing 

computations locally, exploiting the conditional independence assumptions encoded in the 

graph. 

Modeling of deterioration often involves random processes, which can be represented in a 

discrete-time manner by dynamic Bayesian networks (DBN), as proposed in Straub (2009). For 

illustration, we extend the BN of Figure B.1 to include a time-variant load "! and inspection 

results at multiple points in time , = 1,… , 0. The resulting DBN is shown in Figure B.2. Each 

“slice” of the DBN represents a time step in the analysis. The random process {"", "#, … , "$} is 

a Markov chain where each random variable is defined conditionally on the random variables 

of the previous time step. The deterioration !! at time , is a stochastic function of the previous 

deterioration state !!%" and the current load "!. The probability distributions of the material 

parameter # , the loads {"", "#, … , "$} , and the deterioration states {!", !#, … , !$}  are all 

updated once inspection outcomes $", …, $$, or a subset thereof, are observed. 

 
Figure B.2. DBN deterioration model example. 
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In this paper, the DBN model for structural deterioration from Straub (2009) is extended from 

the component to the system level, based on work presented by the authors in Luque and Straub 

(2015). An efficient algorithm is developed, which assesses the reliability of a deteriorating 

system when partial observations of its condition are available. The deterioration factors of the 

system components are interrelated using a hierarchical structure and a set of hyperparameters, 

which model the correlation structure among components. In the following section, the concept 

of dynamic Bayesian networks and its application to efficiently model component deterioration 

are presented. Thereafter, in Section B.3, the model is extended to represent the complete 

structural system. Sections B.4.1 and B.4.2 present two case studies where the model and 

algorithm are applied and compared to other methods for estimating the system probability of 

failure. To demonstrate the advantages of the proposed algorithm, the number of system 

components is increased to a point where classical MCMC algorithms are no longer efficient 

for estimating the system reliability. 

B.2 Dynamic Bayesian network for assessing component deterioration 

B.2.1 DBN model of a single component 

The DBN model framework developed in Straub (2009) is used to represent the deterioration 

of components. This model includes the following elements: 

• Time-invariant model parameters 3, which are constant in time. 

• Time-variant model parameters 4!, which vary with time steps , = 0,… , 0. 

• Deterioration model: A parametric function ℎ  for describing the deterioration !  as a 

function of ,, 3, 4&, . . . , 4! and the deterioration level at the previous time step !!%", i.e. 

!! = !(,) = ℎ(,, !!%", 3, 4", . . . , 4!),				, = 1,… , 0 (B.1) 

• Observations: At any time step ,, information on the condition of a model parameter or the 

deterioration !!  may be available from inspections, monitoring systems, recordings of 

environmental parameters or other measurements, which are related to the model 
parameters. These observations are denoted by $',! , $),! , and $*,! , depending on the 

random variables to which they relate. 

Figure B.3 depicts the generic DBN deterioration model for a single component, where vectors 

3", … , 3$ are added in order to have a repetitive sub-BN for each time step. These vectors are 
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deterministically defined as 3! = 3!%" = 3&  for all , = 1,… , 0. The DBN model illustrates 

how the parameters and the deterioration of a single component are related in time. Each set 
93! , 4! , !! , $',! , $),! , $*,!: represents a time step , in the DBN. 

 
Figure B.3. Generic DBN of the deterioration model at the component level (following Straub 2009). 

B.2.2 Computation of the posterior distribution 

DBN models can be evaluated using exact or approximate inference algorithms. Most 

approximate methods are sampling-based; the most popular among these belong to the family 

of Markov Chain Monte Carlo (MCMC) methods. MCMC using Gibb’s sampler is particularly 

effective, as it exploits the conditional independence properties of the BN (Gamerman and 

Lopes 2006). Nevertheless, the computational cost of MCMC increases considerably as the 

number of observations included in the model increases and/or the probability of failure of 

interest decreases. This motivates the use of exact inference algorithms with discretized random 

variables, whose performance does not deteriorate with increasing amount of observation and 

is independent of the magnitude of the probabilities of interest.  

For DBN models consisting exclusively of discrete random variables, exact inference 

algorithms exist. In particular the forward-backward algorithm (Murphy 2002, Russell and 

Norvig 2003) is effective for DBN. In Straub (2009), a variant of the forward-backward 

algorithm is proposed, which is tailored towards evaluating the generic DBN for deterioration 

modeling shown in Figure B.3.  

B.2.3 Discretization of continuous random variables 

With the exception of some special cases, exact inference algorithms can be applied only to 

DBNs with exclusively discrete random variables. However, most deterioration models include 

continuous random variables. To apply the exact inference algorithms, these must be discretized. 

To this end, the original continuous domain of each random variable is partitioned into discrete 
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intervals and the probability of each interval is computed from the conditional or the marginal 

PDF of the random variable. Even though these algorithms are exact for a given discretization, 

the discretization itself does introduce an error. The number and location of the discrete 

intervals have an impact on the computation time and accuracy of the approximation. Several 

algorithms have been developed to obtain optimal intervals based on a specific estimation, 

typically the probability of failure (Chang and Chen 2005, Neil et al. 2007, Marquez et al. 2010, 

Zwirglmaier and Straub 2016).  

Here the heuristic principles presented in Straub (2009) to define the discretization scheme are 

used. To keep the model simple, the discretization scheme, and hence the conditional 

probabilities, are the same in all time steps, resulting in a homogenous DBN. The discretization 

scheme of the random variables 3 and 4!  is chosen so that after applying the deterioration 

model ℎ, they result in approximately equally spaced intervals in !. This method is simple to 

implement and has proven to be effective. For more details on discretization approach, the 

reader is referred to Straub (2009). 

B.3 Bayesian network model of system deterioration 

One challenging aspect of modeling deteriorating structural systems is the representation of the 

interrelation among the system components and the common factors that affect their condition. 

Only a limited number of investigations of the dependence among component deterioration 

states can be found in the literature (e.g. Hergenröder and Rackwitz 1992, Vrouwenvelder 2004, 

Maes et al. 2008, Malioka 2009, Luque et al. 2014). The two most common mathematical 

representations of such dependence are hierarchical models and random field models. The latter 

are suitable for systems where dependence among component deterioration is a function of the 

geometrical location (Maes 2003, Stewart and Mullard 2006). Hierarchical models are suitable 

where the dependence among component deterioration depends on common features and 

common influencing factors (Maes and Dann 2007, Maes et al. 2008, Banerjee et al. 2015). 

They have computational advantages over random fields, in particular in the context of DBN 

modeling.  

In the DBN model, care is required to correctly represent the statistical dependence among the 

random variables without increasing the complexity and computational cost of the inference. 

For general statistical dependence among components, most DBN models of systems rapidly 

become computationally intractable when the number of components in the system or the 

number of random variables increases. Strategies for reducing the computational efforts when 
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representing random fields in the BN have been proposed (Bensi et al. 2011), but their 

applicability is still limited. In the proposed approach, the dependence structure is modeled by 

hierarchical models. Hierarchical models can capture the dependence structure of deterioration 

in most structural systems quite adequately, because the dependence is typically caused mainly 

by common influencing factors rather than geometrical proximity.  

B.3.1 Hierarchical models 

Hierarchical models are an effective way of representing systems whose characteristics can be 

grouped using multiple levels (Raudenbush and Bryk 2008). The random variables within a 

level are interrelated through common influencing parameters, which are modeled at a higher 

level in the hierarchy. The random variables at the highest level are called hyperparameters. As 

a simple example, Figure B.4 shows a BN representing a set of random variables {;", ;#, … , ;+} 

with common mean value <. As long as the value of < is uncertain, the random variables 
{;", ;#, … , ;+} are statistically dependent. The correlation between ;, and ;- will depend on the 

distribution parameters. If the random variables ;, conditional on <	all have standard deviation 
=., and < has standard deviation =&, then the linear correlation between any pair ;, and ;-, > ≠

@, is 

AB;, , ;-C =
=&
#

=&
# + =.

# (B.2) 

 
Figure B.4. Hierarchical BN with a hyperparameter !. 

B.3.2 Hierarchical model based on correlation models 

In many instances, influencing parameters are not modeled explicitly, as in the example above, 

but instead models of the correlation among components are available. In this section, we 

describe how such correlation models are translated into a BN. To simplify the presentation, 

we consider an equi-correlated set of random variables E = [;", … , ;+]$ , for which the 

correlation between any two components is A.. All ;,’s have identical marginal distribution, 

described by the cumulative distribution function (CDF), H.. The extension to more general 
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cases is outlined afterwards. The presentation is limited to the (commonly implied) case that 

the joint distribution of E follows a Gaussian copula, i.e. the Nataf transformation can be used 

for transforming the E to equivalent standard normal random variables (Liu and Der Kiureghian 

1986).  

Following the principle of the Nataf transformation, the ;, are related to corresponding standard 

normal distributed I, through the following marginal transformation: 

;, = H.
%"[Φ(I,)] (B.3) 

where H.%" is the inverse CDF of ;, and Φ is the standard normal CDF.  

The I, are jointly normal distributed with correlation coefficient A/, which is the equivalent 

correlation in standard normal space and is a function of A. and H.. Its value is such that, after 

applying the transformation H.%"[Φ(∙)] , the resulting random variables ;", … , ;+  have 

correlation A.. A/ can be found numerically or from the approximate expressions provided in 

(Liu and Der Kiureghian 1986). 

The dependence among the equi-correlated standard normal random variables I", … , I+ can be 

defined through a hierarchical structure. To this end, a standard normal hyperparameter < is 

introduced, as shown in Figure B.5. The I, are defined as normal random variables conditional 
on < with mean LA/ ∙ < and standard deviation L1 − A/. The unconditional I", … , I+ are then 

standard normal random variables with mutual correlation coefficient A/. 

 
Figure B.5. Hierarchical BN of equally correlated random variables. 

To reduce the number of random variables in the BN, the auxiliary random variables I, can be 

eliminated and replaced by a direct link between < and the ;,. The resulting BN is the one in 

Figure B.4. The corresponding conditional distribution of ;, given < is: 
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H.|1(N) = ΦO
Φ%"BH.(N)C − LA/ ∙ <

L1 − A/
P 

(B.4) 

The conditional CDF of the random variables ;, of Eq. (B.4) is used to generate the conditional 

probability table (CPT) of ;, in the DBN system deterioration model.  

The above model approach can be extended to random variables ;", … , ;+  with different 

marginal distributions and varying mutual correlation coefficients. As long as the pairwise 
correlation coefficients A/,,- of the underlying standard normal I,′R are of the Dunnett-Sobel 

class (see e.g. Thoft-Christensen and Murotsu 1986, Kang and Song 2009), the BN structures 

of Figure B.4 and Figure B.5 still hold. No additional computational efforts are necessary in 

these cases. 

B.3.3 DBN model of the system 

The hierarchical DBN modeling approach is applied to model dependence among component 

deterioration in structures. To extend the component DBN model of Section B.2.1 to a model 
of the structural system, a set of hyperparameters S = T<', <), <*!U

$ are defined.  In the system 

model, all components are connected through these hyperparameters S  (Figure B.6). All 

random variables in the DBN are now indexed by the component number > = 1,… ,V and the 
time step , = 0,… , 0, i.e. !2,"& is the damage of component 3 at time step 10. 

The S parameters may be determined from known correlation among components, following 

Section B.3.2, or derived from common influencing factors. In many cases, they will represent 

model uncertainties, which are typically shared among similar components within a system. In 

this case, the corresponding S parameters can be obtained by first estimating the magnitude of 

common model uncertainties relative to component-specific uncertainties, then determining the 

corresponding correlations through Eq. (B.2) and from those the S  parameters following 

Section B.3.2. 
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Figure B.6. DBN model of the structural system deterioration. 

In the full system model DBN of Figure B.6, the binary random variable W3,,,! represents the 

condition (i.e. W3,,,! = 0: not failed, W3,,,! = 1: failed) of component > at time step ,. W3,,,! is a 

(possibly probabilistic) function of the deterioration state !,,!. The binary random variable W4,! 

represents the system condition (i.e. W4,! = 0: not failed, W4,! = 1: failed) as a function of all 

component conditions. W3,,,! and W4,! can be extended to multi-state random variables, if a more 

detailed description of the components and system condition is desirable. The relation between 
the system condition W4,! and the condition of its components W3,,,!, > = 1,… ,V, is quantified 

by the probability of system failure given the conditions of its components. To obtain these 

conditional probabilities, a probabilistic model of the structural system is necessary and 

structural reliability computations must be performed in a pre-processing step.  

For many real structural systems, the number of system components subject to deterioration is 

large, and hence there is a prohibitively large number of combinations of component 

deterioration states in the system, as discussed in Straub and Der Kiureghian (2011). In the 

DBN model of Figure B.6, this is reflected by the number of links pointing from the component 
condition nodes W3,,,!, > = 1,… ,V to the system condition node W4,!. For each combination of 

possible element conditions, a system configuration X!  is defined. A total of 25  different 

system configurations must be examined, which rapidly becomes intractable as the number of 

components increases, because a system reliability analysis must be carried out for each 
configuration to determine Pr(W4,! = 1|X! = \!). In specific applications of the framework, it 

is therefore necessary to use a more efficient representation of structural system behavior. For 
this purpose, the convergent connection from the W3,,,! to W4,! may be replaced by an alternative 

dependence structure. Different techniques can be used to this end, in function of the considered 

system. One possible alternative is to reduce the number of system configurations to consider 
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based on their contribution to the probability of failure (Kim et al. 2013). Alternatively, in many 

systems one can exploit the fact that some components are (approximately) exchangeable with 

respect to their static function. In this case, it is sufficient to consider the number of component 

failures in the group (Straub and Der Kiureghian 2011). In the numerical investigations 

presented later, we consider a Daniels system to demonstrate the DBN modeling in such cases. 

Furthermore, in some systems it is possible to pursue a hierarchical modeling approach also for 

the static functions. Such a strategy is utilized in the second numerical example presented later. 

B.3.4 Inference algorithm 

To perform inference with the system DBN, i.e. to compute the probability of component and 

system failure given inspection and monitoring results, the forward-backward algorithm 

presented in Straub (2009) for exact inference is extended to the system level. The algorithm 

presented here is limited to the forward operation, which is used to solve the filtering problem, 
i.e. to compute the posterior distribution of the random variables S, 3,, 4,,!, !,,!, W3,,,! and W4,! 

for all > = 1,… ,V  given the observations up to time , . The algorithm is formulated in a 

recursive manner for each time step and exploits the property of the hierarchical model that all 

components are statistically independent for given hyperparameters. 

B.3.4.1 Component partial updating (forward operation) 

This first part of the algorithm is applied to each component separately. The conditional joint 
probability mass function (PMF) of deterioration state !,,!, the time-variant parameters 4,,!, 

and the time-invariant parameters 3, are computed conditionally on the hyperparameters S and 
on all observations of the component up to time step ,. The latter are denoted by ],,&:!, and 

include all observations of the damage state $*,,,&:! , time-variant $),,,&:!  and time-invariant 

parameters $',,,&:!, i.e. ],,&:! = T$*,,,&:! , $),,,&:! , $',,,&:!U
$. From application of Bayes’ rule, and 

accounting for the independence properties encoded in the DBN structure, it follows: 

%B),,! , 4,,! , 3,,!^S, _,,&:!C 

∝ %B),,! , 4,,! , 3,,!^S, _,,&:!%"C	%B'*,,,!^),,!C%B'),,,!^4,,!C%B'',,,!^3,,!C (B.5) 

where > = 1,… ,V , , = 1,… , 0 . The proportionality constant is found by normalization: 
∑ ∑ ∑ %B),,! , 4,,! , 3,,!^S, _,,&:!C'",$)",$7",$ = 1. The first term on the right-hand side of Eq. (B.5) 
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is calculated from the joint probability at the previous time step 
%B),,!%", 4,,!%", 3,,!%"^S, _,,&:!%"C through: 

%B),,! , 4,,! , 3,,!^S, _,,&:!%"C 

= b %B),,!^),,!%", 4,,! , 3,,!C
7",$%&

b %B4,,!^),,!%", 4,,!%", 3,,!C
)",$%&

 

× b %B3,,!^3,,!%"C
'",$%&

%B),,!%", 4,,!%", 3,,!%"^S, _,,&:!%"C 
(B.6) 

The algorithm is applied recursively, starting at , = 0, for which the joint probability is 

%B),,&, 4,,&, 3,,&^S, _,,&C 

∝ %B'*,,,&^),,&	C%B'),,,&^4,,&C%B'',,,&^3,,&C%B),,&^SC%B4,,&^SC%B3,,&^SC (B.7) 

Note that all conditional probabilities required in Eqs. (B.5-B.7) are available from the 

definition of the BN. 

B.3.4.2 Hyperparameter updating 

Observations of each component have an indirect effect on the posterior distribution of the 

remaining components. These distributions are updated through the hyperparameters. For this 

reason, the second step is updating the hyperparameters given the observations from all random 
variables up to time ,, i.e. %BS^_":5,&:!C. This is calculated recursively with respect to > (i.e. 

component by component) as: 

%BS^_":,,&:!C ∝ %BS^_":,%",&:!Cd%B_,,-^SC

!

-8&

 
(B.8) 

for > = 2,… ,V, and 
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%BS^_",&:!C ∝ %(S)d%B_",-^SC

!

-8&

 (B.9) 

where %BS^_":,,&:!C is the conditional probability of the hyperparameters given all observations 

in components 1,… , > up to time , and %(S) is the prior probability of the hyperperameters (i.e. 
before observations). %B_,,!^SC is the inverse of the normalizing constant of Eq. (B.5), for 

component > and time step ,. Equation (B.8) can also be expressed as a product over the index 

>, but it is expressed in recursive form here to indicate that the conditional probability of the 

hyperparameters given the observations can be partially calculated after each component is 

updated.  

B.3.4.3 Posterior distributions  

The next step in the algorithm is the computation of the joint posterior probability 
%B),,! , 4,,! , 3,,! , S^_":5,&:!C, the updated component state probability given the observations 

from all components up to time ,: 

%B),,! , 4,,! , 3,,! , S^_":5,&:!C = %B),,! , 4,,! , 3,,!^S, _,,&:!C%BS^_{":5}∖{,},&:!C (B.10) 

where _{":5}∖{,},&:! are the observations of all components excluding those of component >. Any 

marginal posterior distribution can be computed from these results. As an example, the posterior 

distribution of the damage in component > at time , is: 

%B),,!^	_":5,&:!C =bbb%B),,! , 4,,! , 3,,! , S^	_":5,&:!C
<'",$)",$

 (B.11) 

B.3.4.4 Posterior reliability of components and system  

Finally, the updated probability of the component condition W3,,,!  is obtained by simple 

application of the total probability theorem: 

%Be3,,,!^_":5,&:!C =b%Be3,,,!^),,!C %B),,!^_":5,&:!C
7",$

 (B.12) 
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where e3,,,! is a realization of the random variable W3,,,!. The updated probability distribution 

of the system condition is: 

%Be4,!^_":5,&:!C 

= b %Be4,!^f3,":5,!Cb%Bf3,":5,!^S, _":5,&:!C %BS^_":5,&:!C
<=',&,$,…,=',(,$

= b %Be4,!^f3,":5,!Cb%BS^_":5,&:!Cd%Be3,,,!^S, _":5,&:!C
,<=',&,$,…,=',(,$

 
(B.13) 

where f3,":5,! = Te3,",! , … , e3,5,!U
$ is a realization of g3,":5,! = TW3,",! , … , W3,5,!U

$. 

B.3.5 Computational complexity of the algorithm 

The computational complexity of the forward operation for a single component is 

h[i?(, + 1)(i*
#i@ +i*i@

# )] , where i* , i@ , i?  are the number of states of the 
discretized random variables !,,!, 3,,!, 4,,! (see Straub 2009). In analogy, the complexity of the 

algorithm described in Section B.3.4.1 for updating all components with their respective 

observations is h[i?i1V(, + 1)(i*
#i@ +i*i@

# )], where i1 is the number of states of the 

hyperparameters. The complexity of the hyperparameter updating step of Section B.3.4.2 is 

h[i*i@i?i1V]. The complexity of updating the condition of all components is h[i3i*V] 
and that of updating the system reliability is h j[(V + 1)i1 + 1]iA)iA'

5 k	in the general case 

(Section B.3.4.3). 

With the exception of the updating of the system condition W4, the complexity of the algorithm 

is proportional to the number of components and time steps and it is independent of the number 

of observations included in the analysis. However, updating of W4  can quickly become 

intractable as the number of components increases, unless a more efficient system 

representation than the convergent connection (Figure B.6) can be found. Such strategies were 

already discussed in Section B.3.3. Alternatively, if such alternative system representations are 

not possible or not convenient, the conditional system reliability may be evaluated using 

sampling-based structural reliability methods. This could be achieved by employing the 

conditional probability distributions computed with the DBN algorithm to generate samples 

from the posterior. 

A second important aspect of computational performance is the necessary memory allocation. 

This is strongly influenced by the size of the largest joint PMF used in the procedure, which 
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can be either %B!,,! , 4,,! , 3,,!^SC or %B4,,!^!,,!%", 4,,!%", 3,,!C. Memory allocation as well as 

computational complexity are therefore a direct function of the discretization scheme, which 

must be defined carefully to find an optimal trade-off between accuracy and computational cost. 

B.4 Numerical investigation 

The following numerical examples serve to investigate and illustrate the workings of the 

proposed model and inference algorithm. For validation purposes, the results obtained with the 

exact inference algorithm are compared to those obtained with two alternative methods: 1) 

Monte Carlo simulation (MCS) for the case without observations, and 2) MCMC for cases with 

and without observations. The MCMC computations are implemented with OpenBUGS (Lunn 

et al. 2009). 

B.4.1 Daniels system 

For illustration purposes, we consider a Daniels system (Daniels 1945, Gollwitzer and Rackwitz 

1990), which consists of a set of V  elements with independent and identically distributed 

capacities l, for > = 1,… ,V. The elements have ideally brittle material behavior. The system 

is subject to a load m (Figure B.7).  

 
Figure B.7. Daniels system. 

Prior to the application of the load, each component in the system is in one of two possible 

states: a) full capacity, or b) zero capacity due to a fatigue failure. For a discussion of this model 

see Straub and Der Kiureghian (2011). 
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B.4.1.1 Deterioration model 

The system components are subject to fatigue deterioration, which - for illustration purposes - 

is modeled by simple fracture-mechanics-based crack growth model (e.g. Ditlevsen and 

Madsen 1996). It uses Paris' law to describe the growth of the crack depth !, at component >: 

d!,(o)
do

= p, j∆"=,,Lr!,(o)k
B"

 (B.14) 

where o = number of stress cycles; ∆"=,, = (E[∆",
B])

&
* = equivalent stress range per cycle 

with E[∙] being the expectation operator; ∆", = stress range per cycle; p, , #, = empirically 

determined material parameters.  

The long-term distribution of the fatigue stress range ∆", is described by a Weibull distribution 
with scale and shape parameters t, and u,. ∆"=,, is then given by (Madsen 1997): 

∆"=,, = t,Γ w1 +
#,

u,
x

"
B"

 (B.15) 

where Γ(∙) is the Gamma function. Using the initial condition !,(o = 0) = !,,&, the following 

analytical solution for the crack depth after o stress cycles can be obtained from Eq. (B.14): 

!,(o) = yw1 −
#,

2
xp,∆"=,,

B"rB" #⁄ o + !,,&
"%B" #⁄ z

("%B" #⁄ )%&

 (B.16) 

B.4.1.2 Observations and probability of detection 

In this example, we only consider observations of the deterioration state through inspections, 

e.g. visual inspections or non-destructive evaluation of the fatigue hot spots. The observation 
$*,,,! is a binary random variable with possible states “no crack detection” (i.e. $*,,,! = 0), and 

“crack detection” (i.e. $*,,,! = 1 ). The inspection quality is described by an exponential 

probability of detection (POD) model with parameter {, in function of the crack depth ): 

Pr($ = 1|! = )) = POD()) = 1 − exp w−
)
{
x (B.17) 



 78 

B.4.1.3 Relation between component and system conditions  

Failure of the >-th component after , time steps (equivalent to o = o(,) stress cycles) occurs 
when the crack depth exceeds the critical value )F , i.e. 9W3,,,! = 1: = 9!,,! ≥ )F: . If the 

component has not failed, it is assumed to have its full capacity.  

In a Daniels system, due to the exchangeability of the components, the probability of having a 

system failure at time step , is a function only of the total number of component failures. 
Following Section B.3.3, to avoid a convergent connection between the W3,,,!  and W4,! , the 

cumulative number of component failures up to component >, VG,":,,!, is defined as follows: 

VG,":,,! =bW3,-,!

,

-8"

= W3,,,! + VG,":,%",! (B.18) 

The relation between the component conditions W3,,,! , > = 1,… ,V and the system condition 

W4,! defined in the general model of Figure B.6 can be replaced by the network depicted in 

Figure B.8. The complete DBN of the Daniels system is presented in Figure B.9. 

 
Figure B.8. DBN model of the Daniels system condition. "!,#:%,&  is the total number of component 

failures among the first # components at time $. 

A Daniels system with V = 10  components and 0 = 100  time steps is investigated. The 

parameters of the fatigue deterioration model are summarized in Table B.1 and the 

corresponding discretization scheme is presented in  

Table B.2. Each time step corresponds to Δo = 5 ∙ 10H fatigue stress cycles. The correlation of 
fatigue parameters among components are A*! = 0.5, AB = 0.6, and AI = 0.8.  
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Figure B.9. DBN of the Daniels system. 

 

Table B.1. Parameters of the fatigue deterioration model. 

Random variable Distribution Mean  Std. deviation 
!+! Normal 0 1 
!, Normal 0 1 
!- Normal 0 1 
$.,/ (mm) Exponential 1 1 
%.,/ Normal 3.5 0.3 
%0,/ %0,/ = %012,/ 	   
+, -0,/ ln -0,/ = −3.34%0,/ − 15.84	
3.,/ Lognormal 1.6 0.22 
30,/ 30,/ = 3012,/ 	   
6/ Deterministic 0.8  
73 (mm) Deterministic 50  
8 (mm) Deterministic 10  

 

Table B.2. Discretization scheme. 

Random variable Number of states Final interval boundaries 
!+!, !-, !, 5 Φ12(0: 0.2: 1)	
$ (mm) 80 0, exp{ln(0.01) : [ln(50) − ln(0.01)] 78⁄ : ln(50)} ,∞	
% 20 0, ln{exp(2.2) : [exp(4.8) − exp(2.2)] 18⁄ : exp(4.8)} ,∞	
3 20 0, {0.86 ∶ (2.83 − 0.86) 18⁄ : 2.83}	,∞	
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The load m is lognormal distributed with coefficient of variation ÜJ = 0.25, the capacities l,, 

> = 1,… ,10, are independent and normal distributed with ÜK = 0.15 and the mean safety factor 
is oáK" áJ⁄ = 2.9 . The conditional probability of failure of the system given @  failed 

components is computed according to Eq. (B.19) and is presented in Figure B.10. 

PrBW4,! = 1^VG,":5,! = @C = Präbl,

+%-

,8"

− m ≤ 0å (B.19) 

 
Figure B.10. Probability of failure of the Daniels system conditional on the number of components with 

fatigue failures. 

B.4.1.4 Results 

For the unconditional case (i.e. without observations), the reliability index ç calculated with 

the proposed inference algorithm is compared to the results obtained using MCS and MCMC 

for a single component (Figure B.11) and the system (Figure B.12). The reliability index is 

defined as ç = −Φ%"[Pr(W = éè>ê)], with Φ%" being the inverse standard normal CDF.  

A good agreement among the three methods is observed at the component level. At the system 

level, the difference between the probability estimates from the proposed DBN model and the 

Monte Carlo methods is due to the discretization of the hyperparameters S in the DBN. The 
relatively coarse discretization of <*! , <B , and <I  using i14! = i1* = i15 = 5 discrete 

states each ( 

Table B.2) leads to an underestimation of the correlation in the fatigue performance among 

components. This in turn leads to an overestimation of the system reliability in a redundant 

system, such as the Daniels system. The effect can be mitigated by increasing the number of 
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discrete states for each hyperparameter, with an associated increase in computation time. 

Following Section B.3.5, the computation time is linear with respect to i1, the total number of 
states of the hyperparameters. Here it is i1 = i14! ∙ i1* ∙ i15, and doubling the number of 

states of all hyperparameters would lead to an 8-fold increase in computation time. As shown 

later, the performance of the present discretization scheme in the case with observation is much 

better, and the accuracy is thus deemed acceptable.  

 
Figure B.11. Reliability index of a single component. 

 
Figure B.12. Reliability index of the Daniels system 

To better understand the dependence among component deterioration, the correlation among 
crack depths !,  and !-  and among component failure events W3,, = 1  and W3,- = 1  is 

computed. These are obtained directly from the DBN or the Monte Carlo samples. Figure B.13 
shows the correlation between the crack depth of two components !,,!  and !-,!  using the 

proposed algorithm for DBNs, MCS and MCMC. As expected, the correlation is slightly 

underestimated by the DBN algorithm. 
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The dependence in fatigue performance among components is here due to inter-correlation of 

three parameters: a) the material parameter #, b) the stress parameter t, and c) the initial crack 

depth !&. The correlation between the crack depths in two components at the beginning of the 

service life is dominated by the correlation in the initial crack depth !& . The effect of the 

correlation in the material and stress parameters, # and t, increases with time.  

The correlation between component failure events is shown in Figure B.14. The correlation is 

low at the beginning of the service life, due to overall low probabilities of failure. In agreement 

with the above results, the DBN slightly underestimates the correlation.  

 
Figure B.13 Correlation between the crack depths of two system components as a function of time, 

estimated using the DBN algorithm, MCS and MCMC. 

 
Figure B.14. Correlation between the condition states %'  (i.e. failed/not failed) of two system 

components as a function of time, estimated using the DBN algorithm and MCS. 

The relevant case for the DBN model is the conditional case, i.e. with the inclusion of 

inspections results. It is assumed that one component is inspected every 5 ∙ 10L cycles, i.e. after 
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component is considerably larger than in the unconditional case, due to the no-detection 

observation (Figure B.15). This observation also affects the non-inspected components, due to 

the correlation defined by the hyperparameters (Figure B.16). The reliability of the system is 

affected by the reliability of both the inspected and the non-inspected components (Figure B.17). 

By inspection only one component every 10 time steps, and assuming that the inspections 

always result in a no-detection, the system reliability index at the end of the service life 

increases from 1.1 to 2.1. 

In Figures B.15-B.17, the results of the DBN model are compared with results obtained by 

MCMC for verification. The results from the two algorithms match very well, and the slight 

differences observed in the unconditional case (Figure B.12) are not seen here. 

 
Figure B.15. Reliability index of the inspected component after no detection of a crack at inspections 

every 10 time steps. 

 
Figure B.16. Reliability index of a non-inspected component given the no-detection outcome of the 

inspected component. 
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Figure B.17. Reliability index of the system after no detection of a crack in all inspection times. 

It is pointed out that the necessary computation time for the solution of the system DBN is 

orders of magnitudes lower than that for the applied standard MCMC algorithm. Additionally, 

the computation time of the forward-backward algorithm is not affected by the number of 

observations or the order of magnitude of the probability of failure, which is not the case of 

MCMC. If the number of system components increases, the computation time in both the 

forward-backward algorithm and MCMC increases linearly with number of components.  

To demonstrate the efficiency of the DBN algorithm as the number of components and 

inspections is increased, we analyze a Daniels system with V = 100 components, in which 5 

components are inspected every 10 time steps. The assumed inspection outcomes of the five 

components are specified in Table B.3. The probability of failure of the system using the 

forward-backward algorithm is shown in Figure B.18. Since the inspection resulted in detection 

of multiple cracks, and no repairs are considered, the system reliability is lower after including 

the inspections. MCMC results are not computed for this case, due to the associated large 

computation times. 

Table B.3. Inspection outcomes of the Daniels system with 100 components. 

 Inspection time step 
Component  10 20 30 40 50 60 70 80 90 

1 û ü ü ü ü ü ü ü ü 
2 û û û ü ü ü ü ü ü 
3 û û û û û ü ü ü ü 
4 û û û û û û û ü ü 
5 û û û û û û û û û 

ü: Detection;    û: No detection 
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Figure B.18. Reliability index of the Daniels system with 100 components for cases with and without 

inspections. 

B.4.2 Steel frame 

The Zayas steel frame shown in Figure B.19 is commonly used as a benchmark in structural 

analysis of steel offshore structures (Zayas et al. 1980). It consists of 23 tubular members with 

welded connections. The fatigue hotspots are located at the welded connections of the 13 

horizontal and diagonal members. There are V = 22 fatigue hotspots, which represent the 

system components in the DBN model. The structure is loaded in horizontal direction by a 

concentrated force m at the upper left node of the structure and by gravity load. The details of 

the geometrical and material properties of the structure are described in (Schneider et al. 2017). 

 
Figure B.19. Zayas steel frame structure with 22 fatigue hotspots in 13 tubular members (a – m). 
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B.4.2.1 Deterioration model 

For ease of presentation, fatigue deterioration in all hotspots of the Zayas frame structure is 

represented by the same model as used in Section B.4.1.1 with the parameters listed in Table 

B.1. In a real structure, fatigue stresses will vary among hotspots. However, this has no impact 

on the computational demand and the accuracy of the reliability computations and the updating. 

As in example 1, a redistribution of fatigue stresses when some system components fail is 
neglected, i.e. t,,! is modeled as a time-invariant parameter. 

B.4.2.2 Crack measurements as observations 

In this example, measurements of crack sizes at the hot spots are included. To this end, the 
observation $,,! conditional on !,,! is defined as  

Pr($,,! = '|!,,! = )) = éM(' − )) 

where éM is the normal probability distribution of the measurement error with zero mean and 
standard deviation == = 0.1mm. The observation $,,! is discretized with the same scheme as 

the crack depth !,,! , with one additional state representing no detection. Note that the 

discretization of $,,! has no effect on the computational demand.  

B.4.2.3 Relation between hotspots, structural elements and system condition 

To each of the structural elements, one or two fatigue hotspots are associated (Figure B.19). 

The condition of hotspots and elements is modeled through the random variables WN and W=, 

respectively. It is assumed that an element fails if any of its hotspots fails, where a hotspot 

failure is defined according to Section B.4.1.3. Considering the number of structural members 

included in the Zayas frame, the total number of possible system configurations is 2"2 = 8192, 

which is still manageable. To estimate the probability of failure of the system, the ultimate 

capacity of the structure is obtained for each possible system configuration through a pushover 

analysis. The ultimate capacity of the structure when all components are intact is 2.8 ∙ 10ON. 
The condition of the system W4,! is defined as a child node of the system configuration and the 

extreme load m!  observed during time step ,. The load m affecting the structure is assumed 

lognormal distributed with mean 4 ∙ 102N and standard deviation 2 ∙ 10PN. The complete DBN 

model is shown in Figure B.20. 
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Figure B.20. DBN of the Zayas frame. 

B.4.2.4 Results 

The accuracy of the proposed algorithm is compared to MCMC and MCS results. In the 

unconditional case, the three methods give consistent results for a single hotspot (Figure B.21) 

and the system (Figure B.22). 

 
Figure B.21. Reliability index of a single hotspot for the unconditional case (i.e. without inspection). 
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Figure B.22. Reliability index of the system for the unconditional case (i.e. without inspection). 

For the conditional case, it is assumed that hotspot 1 (in structural element 1) is inspected at 
time step , = 10. A crack of depth $*,","& = 3mm is measured, which should be compared to 
the expected crack depth before the observation of ET!","&U = 1.2mm. Results are obtained 

using the algorithm described in Section B.3.4 for the inspected hotspot (Figure B.23), a non-

inspected hotspot (Figure B.24), and the system (Figure B.25). When including crack 

measurements, MCMC using OpenBUGS has convergence issues and no reliability estimates 

are obtained.  

 
Figure B.23. Reliability index of the inspected hotspot. 
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Figure B.24. Reliability index of a non-inspected hotspot for the conditional case (i.e. with inspection). 

 
Figure B.25. Reliability index of the system for the conditional case (i.e. with inspection). 

Although the measured crack is larger than the expected crack depth for that hotspot, the 

reliability of the inspected hotspot increases after the inspection due to the combination of two 

factors: 1) the measurement of 3mm is considerably smaller than the critical crack length 50mm, 

2) the measurement error is small, and the overall uncertainty on the crack length is reduced. 

However, because the measured crack is larger than the expected, the reliability indexes of the 

other components are reduced, and this leads to a reduction in the estimate of system reliability. 

As stated earlier, increasing the number of observations does not affect the computation time 

of the proposed algorithm. To include an example with more inspection results, Figure B.26 

presents the reliability index of the system given multiple observations at hotspots 1 to 4 and 

time steps 10, 20, 30, and 40.  
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Figure B.26. Reliability index of the system for the conditional case (i.e. with inspection) with 

observations from hotspots 1 to 4 at time steps 10, 20, 30 and 40. A measurement ND represents a no-

detection case. 

B.5 Discussion 

We propose the use of a hierarchical DBN model for probabilistically representing deterioration 

in structural systems and for updating the probabilities and reliability when inspection and 

monitoring results are available. We also introduce an efficient algorithm for evaluating the 

hierarchical DBN. A major motivation for the use of the DBN in conjunction with the exact 

inference algorithm is its fast and robust computational performance. With the exception of the 

last step, the system deterioration model presented in Figure B.6 can be solved with almost 

linear computational complexity with respect to the number of time steps and the number of 

components. Importantly, the computation time is not affected by the number of inspection and 

monitoring outcomes included in the model. In addition, due to the hierarchical definition of 

the model, the proposed inference algorithm can be run in parallel for each component before 

and after the hyperparameters are updated. This part of the algorithm represents a considerable 

percentage of the total computation time, e.g. more than 90% for the Daniels system and 80% 

for the Zayas frame examples investigated in this paper.  

For the last step, the updating of the system condition, a direct modeling of the structural system 

is in most cases prohibitively expensive for realistic structural systems, as this entails 

considering 25  system configurations, with V  being the number of affected components. 

Different application-specific modeling strategies for dealing with this issue are available. In 
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some cases, as demonstrated in the numerical investigations, components can be grouped and 

it is sufficient to consider their cumulative effect on the system reliability. The DBN model of 

the system behavior can accommodate such a modeling. Alternatively, approximate models of 

system behavior may be applied, such as the model proposed in Straub and Der Kiureghian 

(2011), which requires only the marginal effect of component failure on the system reliability 

as an input. Finally, one might combine the proposed exact algorithm with sampling-based 

methods to be used in the last step. Samples of the correlated component behavior can be 

generated from the posterior distribution of the component states obtained with the DBN 

algorithm. This has not been investigated in this paper and further work is needed on finding 

efficient representation of structural system behavior with component deterioration failures. 

However, it is important to realize that the challenges associated with the system representation 

are independent of the algorithm used for performing the Bayesian updating of the system 

reliability. 

The investigated examples demonstrate the advantages of the proposed inference algorithm 

over a standard MCMC algorithm. The former leads to computation times that are orders of 

magnitude lower. Although a direct comparison of computation time has only a limited value 

due to the difference in software used for their implementation, the difference in computational 

complexity is noticeable. In particular, the performance of MCMC deteriorates when increasing 

the amount and accuracy of inspection and monitoring results. With tailor-made MCMC 

algorithms, its performance could be significantly increased, but it will always vary with the 

data. In addition, current simulation-based methods (e.g. MCMC) are not well suited to estimate 

small probabilities of failure, even if recent developments are improving this (e.g. Straub and 

Papaioannou 2015, Schneider et al.2017).   

The limitations of the proposed approach are related to the discretization of the continuous 

random variables. More specifically, the computational complexity is a linear or quadratic 

function of the number of states used for discretizing the random variables (Section B.3.5). 

Therefore, the number of random variables that can be included explicitly in the DBN model is 

limited. While the deterioration model considered in this paper includes only four random 

variables, published state of the art models often include more random variables. Nevertheless, 

the problem is less critical as it may seem at first glance. The number of random variables can 

often be reduced by combining multiple random variables to a single random variable, as 

exemplarily shown in Straub (2009). In addition, in models with many random variables it is 

often possible to consider some as deterministic with limited loss of accuracy. Besides the need 

to limit the number of random variables, the second drawback of the proposed algorithm is the 
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increased effort in pre-processing. The choice of the discretization scheme and its 

implementation lead to an increased effort by the analyst. For this reason, the DBN framework 

is mainly of use when computations have to be performed repetitively (e.g. multiple function 

evaluations to solve an optimization problem) and/or included in software. This is e.g., the case 

when analyzing portfolios of structures, or in the operational planning of inspections, 

monitoring, maintenance activities, and in near-real-time situations.  

B.6 Conclusions 

A hierarchical dynamic Bayesian to model the deterioration process in structural systems is 

proposed. The model includes the dependence among system components when assessing the 

effect of (partial) observations of system components on the probability of system failure. An 

efficient algorithm for performing Bayesian updating at the system level is provided, which 

operates recursively among components and time steps. The hierarchical definition of the 

components facilitates parallelizing the code to further reduce computation time. The accuracy 

and performance of the model is tested through two case studies. A comparison with Markov 

Chin Monte Carlo (MCMC) shows good agreement in the updated probabilities, with 

computation times that are orders of magnitude lower. A particular advantage is that the 

computational cost of the proposed algorithm is independent of the number of included 

inspection and monitoring results and of the magnitude of the probability of failure. This 

efficiency and robustness make the proposed algorithm suitable for integral planning and 

optimization of monitoring, inspection and maintenance activities in structural systems.  
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Abstract 

Corrosion in ship structures is influenced by a variety of factors that are varying in time and 

space. Existing corrosion models used in practice only partially address the spatial variability 

of the corrosion process. Typical estimations of corrosion model parameters are based on 

averaging measurements for one ship type over structural elements from different ships and 

operational conditions. Most models do not explicitly predict the variability and correlation of 

the corrosion process among multiple locations in the structure. This correlation is of relevance 

when determining the necessary inspection coverage, and it can influence the reliability of the 

ship structure. In this paper, we develop a probabilistic spatio-temporal corrosion model based 

on a hierarchical approach, which represents the spatial variability and correlation of the 

corrosion process. The model includes as hierarchical levels vessel – compartment – frame – 

structural element – plate element. At all levels, variables representing common influencing 

factors (e.g. coating life) are introduced. Moreover, at the lowest level, which is the one of the 

plate element, the corrosion process can be modeled as a spatial random field. For illustrative 

purposes, the model is trained through Bayesian analysis with measurement data from a group 

of tankers. In this application, the spatial dependence among corrosion processes in different 

parts of the ships is identified and quantified using the proposed hierarchical model. Finally, it 

is demonstrated how this spatial dependence can be exploited when making inference on the 

future condition of the ships.  

Keywords: Bayesian analysis; Hierarchical modeling; Probability; Deterioration, Corrosion; 

Inspection.   
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C.1 Introduction 

Time-dependent structural degradation (including corrosion, fatigue cracking, mechanical 

damage) influences the safety of ships. The effect of structural degradation on safety increases 

with increasing age and often becomes critical when aging vessels with poor maintenance 

continue operating beyond their design service life (typically after 25 to 30 years). One of the 

most common causes of structural degradation in vessels is metal corrosion (Gardiner and 

Melchers 2003). It can occur as uniform (general) corrosion or as localized (pitting) corrosion. 

Both types can decrease the load bearing capacity of the structure and can lead to leakage or 

water ingress.  

Significant resources are spent to delay or slow down the deterioration processes (Herzberg et 

al. 2010). Inspection, repair and renewal of corroded plates are crucial elements of structural 

strength maintenance strategies, in order to prevent structural failure and related consequences 

to person on board and environment. The challenge for inspection and maintenance schemes is 

to put the focus on the critical areas relevant for ship condition in order to comply with the 

safety expectations and minimize the effort.  

Previous research on corrosion initiation and development has led to a set of deterministic 

relations that predict the amount of corrosion as a function of time. The resulting models range 

from simple linear models to more complex functions based on an understanding of the 

chemical and physical processes. An overview on models describing the corrosion process as a 

function of time is provided in Table C.1. Other models have been proposed for describing the 

direct effect of the influencing factors (e.g. temperature, salinity, pressure) on the corrosion 

amount (Paik et al. 2004, Melchers and Jeffrey 2007). However, all existing corrosion models 

are only a simplified representation of reality and cannot include all relevant influencing factors 

simultaneously. Additionally, most of those factors are not usually known and may vary during 

the deterioration process. For this reason, probabilistic approaches have been used to 

complement deterministic models. The uncertainty of the influencing factors is typically 

included by modeling them as random variables, described through their probability density 

function (PDF). By combining those PDFs with the deterministic mathematical functions for 

the corrosion loss, a probabilistic corrosion model is obtained (Southwell et al. 1979, Guedes 

Soares and Garbatov 1999, Melchers 1999, Qin and Cui 2003, Ayyub et al. 2015). Alternatively, 

stochastic process models have been proposed (e.g. Straub and Faber 2007), but these are not 

commonly applied in practice. 
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Table C.1. General corrosion models (without initiation time). 

Model   
Linear model (Guedes Soares 1988, Shi 
1993)  
 
! = #	%  

 
 
!: corrosion loss 
%: time 
#: constant corrosion rate 
 

 
Trilinear and power models (Shreir 1976, 
Shi 1993, Melchers 1998) 
 

! = &
'!% 0 ≤ % < +!

," + '"% +! ≤ % < +"
,# + '#% +" ≤ % ≤ +#

	  

 
! = '	%$ 

 
 
,", ,#, '!, '", '#: empirical 
model parameters 
 
 
/, ': empirical model 
parameters 
 

 

Guedes Soares and Garbatov’s model 
(Guedes Soares and Garbatov 1999)  
 

! = 0% 11 − 4
& !
"#5  

 
6': scale parameter 
0%: long-term loss 
 

 
Qin and Cui’s model (Qin and Cui 2003)  
 

! = 0% 71 − 4
&	) !"#*

$

8  

 
 
6': scale parameter 
0%: long-term loss 
9: shape parameter 
 

 
Melchers’ Physically-based model for steel 
immersed in sea water (Melchers 2003) with 
corrosion stages:  
1: Initial corrosion 
2: Diffusion controlled 
3: Aerobic activity 
4: Anaerobic activity 

 
 

 
 

Past investigations have shown how the corrosion process in ship structural elements is affected 

by their spatial location (Gardiner and Melchers 2003). To account for this dependence, 

corrosion rate and coating life have been estimated based on thickness measurements separately 

for different structural element types (Sone et al. 2003, Wang et al. 2003a, Wang et al. 2003b). 

Such approaches represent the state of the art in the marine industry. 

Corrosion among different spatial locations in a ship structure is correlated, due to spatial 

proximity, but mainly due to common influencing factors, such as environment (temperature, 

humidity), cargo or maintenance. This correlation has an effect on what one can learn from 
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individual inspections. Intuitively, this is well understood: If multiple measurements in a 

particular section of the ship indicate a good condition, one implicitly assumes that the 

remainder of this section is also in a good condition. However, such correlation has not been 

modeled and analyzed quantitatively based on empirical data for ship structures.  

Probabilistic models for representing spatial dependence among deteriorated elements in ship 

structures using random fields can be found in the literature (Guedes Soares and Garbatov 1997). 

For other types of structures, hierarchical models are commonly applied to represent spatial 

dependence (Maes 2002, Straub et al. 2009, Qin and Faber 2012, Andrade and Teixeira 2015, 

Schneider et al. 2015). These hierarchical models can be used to perform Bayesian analysis and 

reliability updating. 

In this contribution, we present a hierarchical Bayesian model for representing the spatial 

variability of uniform corrosion in ship structures, based on work reported in Luque et al. 2014. 

The model accounts for the dependences among corrosion at different locations due to common 

influencing factors, and is able to estimate the current and future corrosion in the structure based 

on measurements from actual data. The model is defined with multiple spatial hierarchical 

levels and includes a random field at the lowest level. The model is learned with data from 

thickness measurements obtained during in-service inspection campaigns using Markov Chain 

Monte Carlo (MCMC).  

Two case studies are presented to investigate the correlation of the corrosion process and to 

exemplify the implementation of the hierarchical Bayesian model in real structures. The 

deterioration process considered here is general corrosion in floor plates of tankers, but the 

model principles are applicable to any ship structural elements and to other corrosion process 

types, such as pitting corrosion, or other deterioration processes, such as fatigue. The first case 

study is based on simulated measurement campaigns and the second one on inspection data 

from a group of vessels with identical design and similar operational conditions. It is shown 

that the main spatial factors affecting corrosion progress can be clearly identified. The second 

case study also demonstrates how the proposed model can be used in an operational setting, 

when the model is updated during the service life with results from inspection campaigns.  
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C.2 Spatio-temporal corrosion models for ship structures 

C.2.1 Hierarchical Bayesian models 

Due to their simplicity and computational ease, hierarchical models are commonly used in 

spatio-temporal system models for representing dependencies among system elements. Their 

application to deterioration modeling is reported for deterioration in pipelines (e.g. Zhang et al. 

2014, Qin et al. 2015) and in concrete structures (e.g. Qin and Faber 2012, Schneider et al. 

2015). Hierarchical models can provide efficient probabilistic representations of large systems 

with correlated elements (Raudenbush and Bryk 2008). The observed correlation among system 

elements is incorporated in the model through the definition of multiple levels, which group 

elements with similar properties. In vessel structures, plate elements might be grouped 

according to their structural element type (e.g. main deck, bulkhead). These groups can be 

subdivided again into lower-level groups, which are based on the spatial location in the vessel 

(e.g. compartment), and so on. At each level in the hierarchy, a group must contain elements 

with similar characteristics among them but different from other groups.  

In a Bayesian hierarchical model, the probability distributions of the random variables at each 

level are defined conditional on the random variables of the next higher level. The parameters 

of these conditional probability distributions, which are themselves random variables, are 

typically located at the highest level and are called hyperparameters (Gelman et al. 2004). In 

the Bayesian framework, these hyperparameters are learned jointly with the other random 

variables from available observations. The hyperparameters define the local and global 

correlation among the elements of the system. Such Bayesian hierarchical models can represent 

spatio-temporal processes (Maes et al. 2008, Ntzoufras 2009). 

Probabilistic hierarchical models can be conveniently represented as Bayesian Networks (BN). 

A BN is a probabilistic model that consists of a set of random variables (nodes) and directed 

links, which represent conditional dependencies (Jensen and Nielsen 2007). As their name 

suggests, BNs facilitate Bayesian analysis, which makes them suitable for probabilistically 

modeling deterioration processes when partial observations from inspections and monitoring 

systems are to be included (Straub 2009). They allow to decomposing problems involving many 

random variables into multiple local problems. This facilitates Bayesian analysis through 

MCMC with Gibb’s sampler (Gamerman and Lopes 2006). 
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For illustration purposes, two distinct graphical representations of the same simple hierarchical 

Bayesian model with two levels are shown in Figure C.1. Figure C.1a depicts an explicit 

representation of the problem, where all random variables and their dependencies are indicated. 

The number of random variables, however, soon becomes prohibitive for such an illustration. 

In contrast, Figure C.1b shows a hierarchical representation, where each hierarchical level is 

indicated by a corresponding box. In Figure C.1, !!" is the deterioration of the "-th plate inside 

the # -th compartment, which is modeled by the corrosion rate $!" . %#+  and &#+  are 

hyperparameters, and are the mean and standard deviation of the mean corrosion rate %$,! in 

compartments # = 1,… ,+& . The parameter &$, the standard deviation of the corrosion rate, is 

here a deterministic constant. In this illustration, and throughout this paper, the following 

notational convention is used:  

- Stochastic nodes are represented by circles and deterministic nodes by double circles. 

- Single arrows define stochastic conditional dependencies and double arrows 

deterministic dependencies (i.e. mathematical functions or logical relations) between 

the child node and its parents. 

- Dashed lined squares represent the different levels in the hierarchy and they group the 

corresponding nodes that belong to each level. 

- Indices are used to distinguish among the different elements in a group. 

- Grey circles depict a random field. 

The hierarchical structure of the example is defined through the hyperparameters %#+ and &#+ 

at the top level in the hierarchy, the mean corrosion rate per compartment %$,! at the second 

level, the corrosion rate $!" and deterioration !!" for the "-th plate in the #-th compartment at 

the third level, and the variability of the corrosion rate per plate, &$, as a deterministic parameter. 

Each hyperparameter has a prior probability distribution ,#  and ,' , respectively, which are 

based on previous knowledge (in case there is no available information, a weakly informative 

distribution can be used as prior distribution).  
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a) 

 

b) 

 

Figure C.1. Example of a hierarchical Bayesian deterioration model (!: deterioration, ": corrosion 
rate, #: mean, $: standard deviation) using (a) explicit and (b) hierarchical representations. 

A main goal in the analysis of hierarchical Bayesian models is the estimation of the 

hyperparameters’ posterior distribution. The hyperparameters are assumed to be globally valid, 

hence they allow one to transfer information from ships (or structures, systems) with inspection 

data to other ships belonging to the same population. The information contained in observations 

made at specific elements of a specific ship is used to update the distribution of the 

hyperparameters. These posterior distributions are then used as prior distributions when 

inspecting or making predictions of other ships.  

C.2.2 Hierarchical structure of the corrosion model 

To represent the spatial correlation of corrosion in vessels, several hierarchical levels are 

defined. The different levels are introduced in the following and illustrated in Figure C.2: 

- Single plate: Plates are the basic elements at the lowest level of the spatial hierarchy. At 

this level, the spatial variability of the corrosion loss may be modeled using random 

fields. In this way, the correlation of corrosion loss among elements can be defined as a 

function of their distance.  

- Structural Element: Single plates are grouped according to the structural element class 

they belong to (e.g. bulkhead, inner bottom, main deck). The reason for this aggregation 

is that plates from the same structural element type have similar design properties and 

may exhibit similar corrosion loss. This defines the second level of the hierarchical 

model. 



 100 

- Frame: Vessels are usually assembled or repaired frame by frame. Plate elements from 

those frames can therefore have characteristics that are common among them. 

- Compartment: Plates inside the same compartment are mostly subject to similar 

environmental and operational conditions. Since these are expected to influence 

corrosion significantly, compartments define the next level in the hierarchy. 

- Vessel: This level corresponds to the complete vessel, which groups all compartments 

of the structure. Vessels are affected by conditions that depend on the characteristics of 

the structure itself and its operational profile (e.g. stress distribution, loads, temperature, 

cargo). 

- Fleet: This is the top level, corresponding to the population of vessels that can be 

described by the same model (e.g. all vessel of a certain type such as bulk carriers or 

tankers; or all vessels built according to a similar design with similar materials). 

This framework is flexible and it is possible to leave out some levels or define additional levels 

in the hierarchy, depending on the amount and detailing of the available information. For 

example, a level between the compartment and structural element levels can be introduced if a 

certain characteristic (e.g. bottom-middle-upper areas, orientation) provides additional 

information on the corrosion process. Also the operational characteristics (e.g. cargo type) and 

the geometry of the vessel can define additional levels between the vessel and fleet levels, 

helping to distinguish the information from distinct ships in the analysis. 

In the following, the corrosion estimation for all plates, as well as every thickness measurement, 

will be uniquely identified by indices (#(, #), #*, #+, #,)  corresponding to the levels in the 

hierarchy (i.e. #(-th vessel, #)-th compartment, #*-th frame, #+-th structural element, and #,-th 

plate). To simplify the index notation, a set of consecutive indices #(, … , #- is denoted simply 

as #(:-. 
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Figure C.2. Hierarchical structure of the spatial corrosion model. 

C.2.3 Thickness measurements 

The most common inspection method for estimating corrosion loss is to perform thickness 

measurements at different times and locations. On a plate, the thickness is typically measured 

at multiple points (e.g. corners and midpoint) and the average is used to represent its current 

thickness value. The measured corrosion loss of a plate is the difference between its as-built 

and its current thickness; the corresponding linear corrosion rate is estimated by dividing the 

corrosion loss by the exposure time of the plate to the corrosive environment.  

The direct estimation of the corrosion rate from thickness measurements is hindered by several 

factors. Firstly, most plate elements are protected against corrosion (usually with a coating paint) 

and the time when this protection breaks down is not generally known. If the corrosion rate is 

approximated by dividing the estimated corrosion loss by the vessel age (i.e. without subtracting 

the coating life) then the corrosion rate might be considerably underestimated. Secondly, 

measurement campaigns usually contain a non-negligible percentage of plates with measured 

thickness larger than the thickness reported in plans, producing a negative estimated corrosion 

loss. The main reason for this obviously unrealistic result is that the originally built-in plates 
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are thicker than those reported in plans due to reasons of plate fabrication as well as yard 

building process. The difference between the as-built and gross thickness (i.e. value given in 

plans) is called thickness margin. In general, this margin is not known at the moment of making 

thickness measurements and it can cause biased corrosion estimates. 

Both coating life and thickness margin directly affect the estimation of the corrosion rate based 

on measurements. If any of them is not considered, the corrosion rate will be underestimated. 

For this reason, coating life and thickness margin are important parameters that are included in 

the proposed spatial hierarchical Bayesian model of corrosion loss.  

C.2.4 Corrosion model 

A corrosion function (example models are presented in Table C.1) is combined with the 

proposed spatial Bayesian hierarchical model. It is assumed that the corrosion loss is zero before 

the coating breaks; this occurs when reaching the stochastic coating life / . If the time-

dependent corrosion model 0  with parameters 1 = 23(, … , 3/,4  defines the corrosion loss, 

where 50 is the number of model parameters, then the resulting corrosion loss ! as a function 

of time 6 is:  

!(6) = 7 0 #0			6 ≤ /
0(6 − /; 1) #0			6 > / (C.1) 

Let >?  be the plate gross thickness reported in plans, and @ is the thickness margin. The actual 

plate thickness A at time 6 is: 

A(6) = >? +@ − !(6) (C.2) 

The parameters 1 of the corrosion model 0 (e.g. the corrosion rate $ in the linear corrosion 

model), coating life /, and thickness margin @ are modeled as random variables, which vary 

from plate to plate depending on their spatial location. In the following sections, these random 

variables and their hierarchical structure are defined in detail. 

C.2.5 Thickness margin 

To arrive at a prior probabilistic model for the thickness margin of a plate element, the following 

considerations and assumptions are made. The thickness margin is defined as a non-negative 
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random variable. Standards do allow small negative margins (up to 0.6 mm for plates thinner 

than 25 mm) depending on the quality of the class (Germanischer Lloyd Group 2009) but this 

possibility is neglected here. Large margins are less likely than small margins, mainly due to 

the cost of steel. To account for the possible correlation among margins within a frame (plates 

are typically renewed by frame), a common uncertain mean margin %1,!-:/ is defined for all 

structural elements of the same type within a frame. The distribution of %1,!-:/  is as the 

exponential distribution with mean %#0 . The plate margin @!-:1  is modeled as lognormal 

distributed with mean %1,!-:/  and coefficient of variation C1 . The thickness margin of each 

plate is constant in time and assumed to be independent of the spatial location of the plate inside 

the frame. The hierarchical probabilistic model of the margin is depicted in Figure C.3, 

where	,#20  and ,20 are the prior distributions of the hyperparameters. 

 
Figure C.3. Hierarchical representation of the thickness margin. 

C.2.6 Coating life 

All plate elements in the #(-th vessel and #)-th compartment are modeled with the same mean 

coating life %&,!-:3 and standard deviation && . The latter parameter is defined as independent of 

the compartment (i.e. it is a hyperparameter) and it represents the variability of the coating life 

among plates within one compartment. The mean coating life %&,!-:3 is modeled as a lognormal 

random variable, whose mean %#4 and standard deviation &#4 are hyperparameters. Figure C.4 

summarizes the hierarchical modeling of the coating life. Here,	,#24 , ,'24  and	,'4 are the prior 

distributions of the hyperparameters. 
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Figure C.4. Hierarchical representation of the coating life. 

C.2.7 Parameters of the corrosion model 

The parameters 1 = 23(, … , 3/,4 of the corrosion model 0 for a single plate are modeled as 

constant during the life of the plate, which is the common approach in corrosion modeling. The 

spatial variability of parameters 1 is hierarchically defined using variability factors D(, D), D*, 

D+ and D, and a set of base parameters 13 = 23(,3, … , 3/,,34. The idea behind this definition is 

to distinguish between the uncertainty in the mean (modeled with the base parameters) and the 

variance (modeled with the variability factors) of the deterioration model parameters. Model 

parameters 1 in a specific plate at location #(:, are defined as a product of the corresponding 

variability factors with the base parameters 13: 

1!-:1 = D(,!-D),!-:3D*,!-:5D+,!-:/D,,!-:113 (C.3) 

Factors D(,!- , D),!-:3 , D*,!-:5 , D+,!-:/ , and D,,!-:1  correspond to vessel, compartment, frame, 

structural element, and plate element levels. These factors are modeled as lognormal random 

variables with parameters %45676 = 0 and &45676 = &" for " = 1,… ,5, and they are independent 

of the corrosion model parameters. It is noted that the choice of the %45676 is irrelevant, since 

these parameters are redundant with 13 (increasing %45676 by Δ will lead to a decrease of ln 13 

by Δ). Hence the %45676 are set to zero and not learnt with the data. The standard deviations 

&(, … , &, and the base parameters 13 = 23(,3, … , 3/,,34 are defined as hyperparameters and are 

independent of the position of the plate.  
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For given location indices #(:+ (i.e. for a particular vessel, compartment, frame and structural 

element type), the set of + variability factors D,,!-:/,(, …, D,,!-:/,8 in the lower hierarchical level 

is modeled through a random field. The correlation among the logarithm of their values is 

represented by the correlation matrix I!-:/. This matrix is defined through a correlation model, 

based on the distance between points. The characteristic parameters are the correlation lengths 

J9 and J: in x- and y-direction (Vanmarcke 2010). Here, an isotropic correlation function is 

used, which depends only on the total distance between two points, and hence the only 

hyperparameter defining the correlation matrix is the correlation length J.  

Figure C.5 presents the hierarchical structure among the variability factors D(,!-, D),!-:3, D*,!-:5		, 
D+,!-:/ , D,,!-:1 , the base parameters 13 , and corrosion model parameters 1!-:1 . As mentioned 

before, gray nodes depict a random field in the model.  

 
Figure C.5. Hierarchical representation of the corrosion model parameters. 

 

Since the variability factors are lognormal distributed, the logarithms of the corrosion model 

parameters, log 3-,!-:1, M = 1,… , 50, are normal distributed given the hyperparameters &(,…&, 

and 13, with mean and variance as follows: 

%456 <7,9-:1 = log 3-,3 (C.4) 
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&456 <7,9-:1
) 	= &() + &)) + &*) + &+) + &,) (C.5) 

where &" is the standard deviation of the logarithm of the variability factor D", " = 1,… ,5 and 

&456 <7,:)  is the variance of the logarithm of the base parameter 3-,3. Through Eq. (C.3) and Eq. 

(C.5), the conditional correlation (given the hyperparameters) between the logarithm of the 

same deterioration model parameter at two different plates can be obtained as follows: 

N= =O&-)
=

->(
O&-)
,

->(
P  (C.6) 

where Q is the lowest level of hierarchy that is common to two plates. For example, if two plates 

are in the same vessel but in different compartments, i.e. they share the same index #( and #) ≠
#)∗, then Q = 1 and the correlation between their model parameters is: 

STlog 3-,!-,!3:1 , log 3-,!-,!3:1∗ U =
&()

&() + &)) + &*) + &+) + &,)
= N( (C.7) 

If two plates are from the same vessel, compartment, frame and structural element (i.e. they 

share the same indexes #(:+), the correlation between their deterioration model parameters is 

also affected by the correlation structure defined by the matrix I!-:/ and is obtained as follows: 

STlog 3-,!-:/,!1 	 , log 3-,!-:/,!1∗ 	U =
&() + &)) + &*) + &+) + &,) ∙ I!-:/(#,, #,∗)

&() + &)) + &*) + &+) + &,)
	

= (1 − N+) ∙ I!-:/(#,, #,∗) + N+ 
(C.8) 

Knowledge of the correlation among different plates can help deciding whether or not to inspect 

a location, based on a set of measurements from other locations. 

Note: the expressions given above for the variance and the correlation coefficients are for given 

hyperparameters. The uncertainty on hyperparameters, which is a purely statistical uncertainty, 

introduces additional correlation, which decreases as the amount of data for learning the model 

increases. 
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C.2.8 Measurement model 

Thickness measurements are described by an additive error model. The measured thickness 

W!-:< at time 6 is equal to the actual current thickness A!-:< plus a measurement error with zero 

mean and standard deviation &@, where 6 is defined as an additional hierarchical level (i.e. #A). 

This measurement error aggregates all sources of errors, of which human and device are the 

most common types. The outcomes of thickness measurements are included in the Bayesian 

model as the variables W!-:<, which are normally distributed random variables with mean value 

A!-:< and standard deviation &@, i.e. W!-:< 	~	+TA!-:< , &@U. The distribution of the measurement 

error is assumed to be independent of the measurement location. 

C.2.9 Complete hierarchical corrosion model 

By combining the hierarchical definitions for the individual model parameters, the complete 

hierarchical corrosion model is obtained, as depicted in Figure C.6. 

Previous analyses reported in the literature provide estimates of percentiles of the corrosion rate 

and coating life (Sone et al. 2003). These values can be used as prior information in the proposed 

hierarchical Bayesian model. If these sources have used information from different fleets, then 

it must be reflected through the variability of the parameters from vessel to vessel. If no previous 

information is available, then weakly informative prior distributions should be used. 

 
Figure C.6. Hierarchical representation of the full corrosion model, including measurements. 
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C.2.10 Parameter estimation  

The parameters of the proposed hierarchical corrosion model are learnt from data (here: 

thickness measurements) using Bayesian analysis. We thereby distinguish between (a) learning 

the hyperparameters, which describe the fleet-wide model, and (b) learning the parameters that 

are specific to a vessel, a compartment or any lower-level hierarchical element. Part (a) is 

referred to as general estimation and it is based on records of measurements from multiple 

vessels. Part (b) corresponds to the analysis of a specific vessel. Here, the estimated probability 

distributions obtained in part (a) from the analysis of other vessels are used as prior distributions 

in part (b), which are updated with the new measurements from the specific vessel. The 

differentiation between part (a) and (b) is motivated purely by practical reasons, since it allows 

analyzing each vessel individually. The Bayesian methodology itself does not require one to 

make this distinction; rather, a joint model of all vessels can and should be developed. Ideally, 

whenever a new measurement in any of the vessels is available, the entire model of all vessels 

should be updated.  

For parameter learning, Bayesian analysis is implemented and solved using Markov Chain 

Monte Carlo (MCMC). MCMC is a simulation-based method that generates samples of the 

posterior distribution through a Markov chain, whose stationary distribution is the sought 

posterior distribution (Gilks et al. 1996, Gamerman and Lopes 2006).  

C.3 Numerical investigations 

In the following sections, two case studies are presented. The first one presents a hypothetical 

study using simulated data, which allows assessing the performance of the model and the 

parameter learning against an assumed “true” model. The second case study presents the 

learning of the model with thickness measurements from a set of sister tankers (i.e. vessels with 

virtually identical design). Based on the learned model, a spatial probabilistic prediction of 

corrosion in a specific tanker is presented.  

For simplicity, the linear corrosion model from Table C.1 with a single parameter (i.e. the 

corrosion rate $) is used as the corrosion function, which is combined with the coating life (Eq. 

(C.1)). However, the probabilistic framework can be applied in combination with more 

advanced corrosion functions. 
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The Bayesian estimation is carried out with OpenBUGS, which is open-source software for 

performing Bayesian inference (Lunn et al. 2009). The MCMC analysis is carried out with a 

burn-in period of 1,000. A total of 50,000 samples are generated to estimate the joint PDF of 

the model parameters. The estimated mean values, standard deviations, 95% credible intervals 

and posterior distributions of the parameters are presented for each case study, where credible 

intervals were obtained as the 2.5 and 97.5 percentiles of the posterior distribution. 

C.3.1 Case study 1: Simulated scenario 

To assess the quality of the Bayesian parameter estimation for the proposed hierarchical model, 

a first example with synthetic data is presented.  

The number of hypothetical vessels, compartments, frames, structural elements, measured 

plates and measurement campaigns are summarized in Table C.2. Here, several model 

parameters are assumed to be deterministic with values as given in Table C.3. The resulting 

hierarchical model is shown in Figure C.7, where the deterministic parameters are represented 

by double circle nodes. Note that the choice of a correlation length J = 0 implies that no 

conditional (i.e. given the hyperparameters) spatial correlation of the plates within a 

compartment is considered. 

Table C.2. Number of elements at the different hierarchical levels. 

Number of vessels 10 
Compartments per vessel 5 
Frames per compartment 5 
Structural elements per frame 3 
Plates per structural element 10 
Measurement campaigns after 5, 8, 10, 12 years 

Table C.3. Deterministic parameters. 

Margin variability := [mm] 0.08 
Coating variability among compartments :>? [mm] 1.5 
Coating variability inside compartments :@ [mm] 0.5 
Frame variability :# 0 
Correlation length ; 
(i.e. correlation matrices <A%:' = =!B×!B) 

0 

Measurement error :D [mm] 1 
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Figure C.7. Hierarchical representation of the simulated example. 

Weakly informative priors are used for the hyperparameters, i.e. probability distributions with 

large uncertainty, e.g. +(% = 0, & = 10*) or YZ[[Z(\ = 10B*, M = 10B*) are taken as prior 

distributions.  

Good agreement between the original and the estimated values for most of the parameters is 

obtained (Table C.4 and Figure C.8). The variability factor &, is the only variable in which the 

true value is not inside the 95% credible interval obtained in the Bayesian analysis.  

As more data becomes available, the uncertainty in the estimations will decrease (i.e. the 

posterior distributions become narrower). Using Bayesian analysis one can estimate the 

distribution of each random variable in the model and use this information for estimating the 

deterioration in both the complete fleet and a particular vessel.  

  
Figure C.8. Exemplary estimated marginal PDFs of model parameters. 
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Table C.4. Statistics of the stochastic parameters of the model. 

  Estimates 
 Original (true) Value Mean StDev 95% Credible Interval 
Margin     
Mean >>(, [mm] 0.8 0.824 0.032 (0.76,0.89) 
     
Coating     
Mean >>), [years] 7 6.91 0.255 (6.4,7.4) 
     
Corrosion rate and variability 
factors 

    

Vessel variability :! 0.3 0.389 0.118 (0.22,0.68) 
Compartment variability :" 0.2 0.214 0.048 (0.14,0.32) 
Struct. element variability :E 0.3 0.289 0.0149 (0.26,0.32) 
Plate variability :F 0.1 0.129 0.0123 (0.11,0.16) 
Base corrosion rate ?B, [mm/yr] 0.3 0.249 0.034 (0.19,0.32) 

C.3.2 Case study 2: Corrosion in tanker floors 

This case study is based on thickness measurements of floor plates from four inspected tankers. 

All tankers in the database have the same structural design (i.e. the spatial locations of plates, 

structural elements and compartments are the same for all vessels) and similar operational 

characteristics. The inspections were performed when the tankers were between 14 and 18 years 

old and included many different structural elements from different locations. The reason for 

studying the floor plates in this analysis is that these belong to the few structural elements for 

which data is available from two inspection campaigns. All inspected tankers had a major repair 

when they were 10 years old, which is considered in the model by subtracting 10 years from 

the inspection time. The underlying assumption is that following the repair all plates were as-

built. Main characteristics of the thickness measurements are summarized in Table C.5. 

Table C.5. Characteristics of the thickness measurements used for the case study 2. 

Tanker 
Inspection time 

[years] Structural element 
Number of 

compartments 
Number of 

measurements 
T1 15.0 / 16.5 Floor 12 128 / 436 
T2 14.7 / ---- Floor 12 92 / ---- 
T3 14.9 / 17.8 Floor 12 127 / 178 
T4 14.9 / 17.9 Floor 12 128 / 172 

 

The compartment numbers correspond to the numbering of the cargo tanks that are above the 

floor plates. This means that floor plates from different compartments might not be physically 
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separated but they can still be affected by different conditions (e.g. stress distribution due to 

different cargo tanks above floor plates). Figure C.9 shows the location of floor plates in all 4 

tankers and the spatial distribution of the thickness measurements of one inspection campaign 

as an example. 

 

a)

 

b)

 

Figure C.9. a) Location of the structural element Floor in tankers; b) locations of thickness 
measurements in one of the measurement campaigns. 

In this example, the vessel-specific factor is omitted (i.e. &( = 0) and corrosion rates are 

assumed to be independent of the frame (i.e. &* = 0). Moreover, because of the small number 

of inspection campaigns per vessel, the number of possible combinations of corrosion rate, 

coating life, and thickness margin that give the same observed corrosion loss is not unique. For 

this reason, the parameters related to the coating life are not learned but taken from Sone et al. 

(2003) and fixed to %#4 = 6  years, &#4 = 0 , && = 5  years. The measurement error has a 

standard deviation of &@ = 1 mm. 

In order to see how the corrosion estimates from this database compare with results from the 

literature, weakly informative distributions with large uncertainty were used as prior 

distributions of the hyperparameters, as in the case study 1. The estimated median of the 

corrosion loss for vessels with 20 years is approximately 0.26 mm. This is in good agreement 

with Sone et al. (2003), where the median of corrosion loss in floor plates in single side skin 

bulk carriers after 20 years is reported as 0.42 mm. The estimated posterior distributions and 

statistics of the parameters based on the measurements are shown in Table C.6 and Figure C.10. 

Analyzing the estimated parameters from Table C.6, one can observe that the variation of the 

corrosion rate among compartments is larger than the variation within. This result is in 

agreement with the fact that conditions affecting corrosion are more even among plates within 

a compartment than between compartments. It is also noted that the estimated mean thickness 

margin of 0.315 mm represents a non-negligible value, given the low corrosion rate observed 



 113 

in floor plates. Uncertainty in the estimation of the corrosion rate would decrease if the correct 

initial thicknesses were reported. 

  
Figure C.10. Exemplary posterior distribution of parameters of the corrosion model for the tankers 
example. 

Table C.6. Statistics of the stochastic parameters of the model. 

 Estimations 
 Mean StDev MC error 95% Credible Interval 
Margin     
Mean margin >>( [mm] 0.315 0.041 1.3e-3 (0.24,0.4) 
Coefficient of variation @= 0.05 0.0214 8.4e-4 (0.021,0.1) 
     
Corrosion rate and variability factors     
Compartment variability :" 0.81 0.205 6.96e-3 (0.5,1.28) 
Plate variability :F 0.247 0.151 3.87e-3 (0.039,0.55) 
Base corrosion rate ?B 0.021 0.006 2.2e-4 (0.009,0.32) 

C.3.3 Analysis of a specific vessel 

Once a first estimate of the hyperparameters for the entire population of vessels (here: tankers) 

is available, it can be used as a prior probabilistic model for the analysis of a specific vessel. In 

the following, the results presented in Table C.6 are used as prior distributions and two 

inspection campaigns of an additional tanker at years 15 and 17 are included as observations. 

The measurements and results available for this tanker also serve to illustrate some of the 

general issues encountered with all data sets. 

In one of the inspection campaigns, 27% of measurements of floor plates result in a positive 

thickness diminution (i.e. the measured thickness is smaller than gross thickness), 14% result 

in no diminution, and 59% of measurements correspond to a negative diminution (i.e. the 

measured thickness is larger than the reported gross thickness). As discussed earlier, negative 

diminutions are due to thickness margins that are not reported in plans or due to measurement 
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errors. The percentage of measurements with negative diminution in tanker 5 is almost double 

of that encountered in the general population (33% of measurements). Therefore, the posterior 

distribution of the thickness margin for this vessel is expected to significantly differ from the 

prior. Figure C.11 shows the locations of the measured plates and the measured thickness 

differences. It can be clearly seen how measurements from the same frame (i.e. vertical lines) 

are correlated. Since frames are defined as a level in the hierarchical model, this dependence is 

reflected in the resulting estimates. This dependence cannot come from the corrosion rates (due 

to the assumption of &* = 0) or the coating life (in the model, mean coating life is independent 

of the frame) but from the mean thickness margin %1,!-:/, which varies from structural elements 

in one frame to those in another frame. If the effect of the frame in the corrosion rate is to be 

estimated, then the frame variability hyperparameter &* must be included in the model. 

 
Figure C.11. Measurement campaign in tanker 5 at year 17 used for model updating (the diameter of 
the circle is proportional to the measured thickness diminution). 

It is pointed out that in traditional statistical analyses of corrosion loss in ships, the 

measurements with a negative thickness diminution are commonly neglected, which reduces 

the number of available measurements and introduces a bias. In this study, all measurements 

are included in the estimation of the corrosion rate, coating life and thickness margin. The 

updated means and standard deviations of all parameters are presented in Table C.7 and the 

PDFs of the mean margin and base corrosion rate in Figure C.12. 

Major differences between the prior and updated (posterior) distributions are observed for the 

mean margin %#0 and the base corrosion rate 3̂. This difference is mainly due to the small 

number of available tankers in the database. With increasing the number of tankers available in 

the database, the uncertainty in the hyperparameters will reduce. Any additional measurements 

will thus lead to smaller changes in the distribution. 
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Table C.7. Parameters update. 

 Prior distribution  Posterior estimates 
 Mean StDev  Mean StDev 
Margin      
Mean margin >>( [mm] 0.315 0.041  0.43 0.041 
Coefficient of variation @= 0.05 0.0214  0.044 0.013 
      
Corrosion rate and variability factors      
Compartment variability :" 0.81 0.205  0.75 0.167 
Plate variability :F 0.247 0.151  0.151 0.081 
Base corrosion rate ?B [mm/yr] 0.021 0.006  0.014 3.6e-3 

 

  
Figure C.12. Comparison between the original (prior) and the updated (posterior) distribution. 

To estimate the particular deterioration process of tanker 5, the nodes inside the hierarchical 

BN (i.e. below the hyperparameters) have to be considered. The spatial distribution of the 

margin, coating life and corrosion rate can be obtained for each location through their posterior 

PDF. The expected value of these variables is presented in Figure C.13 for every measured 

plate, but it can also be estimated for plates without measurements, due to the spatial hierarchy 

of the model. The resulting mean of the expected margin, coating life and corrosion rate of all 

measured locations in the ship are 0.6 mm, 5.9 years, and 0.012 mm/year, respectively.  

The results in Figure C.13 show how each random variable is affected by the spatial location 

of the plate. The spatial pattern is particularly obvious for thickness margins (dependence on 

the frame) and for corrosion rates (dependence on compartments). Negative diminutions 

observed in the measurement campaigns (Figure C.11) are explained due to fabrication 

thickness margins for those plates. Using the proposed model, it is possible to obtain corrosion 

rates also from those measurements with negative diminutions, thus enabling the consistent use 

of all available information.  
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Figure C.13. Spatial distribution of the expected margin, coating life and corrosion rate per measured 
location. The color of a circle represents the mean estimate and the size of a circle reflects the deviation 
of the value at this location from the total mean value (i.e. from all measured points). The larger circles 
are values in the tails of the distribution. 

C.4 Discussion 

The proposed spatio-temporal corrosion modeling framework probabilistically quantifies the 

dependence of the deterioration process among different locations in the structure. It provides 

a systematic and effective way of making the best use of all available information from 

inspection and measurement campaigns. In the following, important aspects of the model are 

analyzed in more detail, and some extensions are discussed.  

The spatio-temporal Bayesian model is learnt from data using MCMC. It allows the estimation 

of the posterior PDFs of the hyperparameters (as presented in the previous section), but the 

remaining parameters (e.g. the mean coating life of a specific compartment) are also learned 

without additional computations. Once the hyperparameters are estimated, it is possible to 

extrapolate inspection results to locations without inspections (due to the dependence structure 

defined with the hierarchical model) and predictions can be made about future corrosion 

performance (based on the corrosion function used in the model). Moreover, a failure criterion 

can be defined at any level of the structure (e.g. plate or cross section failure) and the probability 

of failure as a function of time can be calculated through structural reliability methods. 

The homogeneity of the systems and locations from which inspections are obtained (i.e. 

similarity in the operational characteristics and design of the vessels in the fleet) impacts the 

accuracy of the model results. In the optimal case, the measurement data contains multiple 
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inspection campaigns at different times and the fleet has vessels with similar characteristics. In 

general, the larger the number of inspection times and the more homogeneous the fleet is, the 

smaller the uncertainty in the estimated parameters will be. However, this does not imply that 

information from different types of vessels cannot be used in the same analysis. The hierarchical 

approach allows the model to identify whether or not the data sources have similar 

characteristics. If measurements from inhomogeneous sources are used in the analysis, then the 

hierarchical Bayesian model will result in distributions with high dispersion. For example, a 

large variance &( of variability factor D( will indicate that there is a substantial difference in the 

deterioration process among vessels. If the results obtained from vessels with different 

characteristics are used as prior distribution in the analysis of a specific vessel, the effect of this 

information is rapidly reduced (due to the large initial variance) as new measurements of the 

analyzed vessel itself are obtained. It can be beneficial to include additional hierarchical levels 

related to known characteristics of vessels (such as cargo type) when measurements come from 

an inhomogeneous fleet. 

At the lowest level of the hierarchy (plates), we propose the use of a random field model, whose 

main parameter is the correlation length J. In this paper, J is assumed to be fixed and equal to 

zero, which implies that the spatial dependence represented by the random field is neglected. 

Even though the correlation length can in principle be estimated directly using the developed 

Bayesian framework, such an approach requires sufficient number of measurements from 

components of the same type within the same frame. It is pointed out that J does not affect the 

correlation beyond the random field (see Eqs. (C.6) and (C.7)), and the overall accuracy of the 

corrosion estimates is not compromised.  

Another model aspect that is treated in a simplifying manner is the relation between the 

variability factors and the model parameters. At present, the variability factors are defined as 

being the same for all the deterioration model parameters (see Eq. (C.3)), e.g. the variability 

factor per compartment D!3 is the same for all parameters 3(,3),… in the corrosion model. For 

the implementations presented here, this has not effect, as the linear corrosion rate is the only 

parameter. When extending this to models with multiple parameters, the spatial variability of 

all parameters will not be generally the same. The extension of the model is straightforward, by 

defining a set of variability factors D!-,- ,…, 	D!1,-  per model parameter 3- , M = 1,… , 50 . 

However, the implementation will be feasible only if sufficient data is available to learn the 
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additional parameters. Otherwise the statistical uncertainty will outweigh the benefit of having 

a more flexible model.  

The proposed approach hinges upon the systematic availability of large amounts of data from 

in-service inspections. These are – in principle – available at owners and classification societies. 

However, efforts are needed to bring the data to a format that is needed to make them accessible. 

We are convinced that such efforts will pay off in the long run, as the models for estimating 

corrosion will continuously improve with the inclusion of more data. The Bayesian approach 

offers the necessary flexibility for this, and the associated computational challenges can – as 

demonstrated in this paper – be handled well. The improved models will enable a much more 

targeted scheduling of inspections and maintenance activities.  

C.5 Conclusions 

A spatio-temporal probabilistic model based on a hierarchical approach is developed for 

analyzing the dependence of the corrosion process at different locations in a ship structure using 

data from inspection campaigns. The deterioration model parameters are modeled as separate 

random variables for each plate element. The dependence of the deterioration process among 

different locations is modeled by a hierarchical structure, whereby plate elements are grouped 

according to their structural element type, and the frame, compartment and vessel they belong 

to. These hierarchical levels are related through common factors and conditions that affect the 

corrosion process. The model can be used to estimate multiple parameters of the deterioration 

process (such as corrosion rate and coating life) based on thickness measurements. The 

flexibility of the model allows changing the levels in the hierarchy, the corrosion type (e.g. 

general or pitting corrosion), the model type (e.g. linear or nonlinear), and additional relevant 

variables to be estimated (e.g. thickness margin). With the hierarchical Bayesian model, it is 

possible to identify current locations with high corrosion rates, areas with ineffective coatings, 

and to estimate which points are more likely to have problems in future years. During the last 

years, Classification Societies and the International Maritime Organization have worked on 

incorporating risk-based methods into rules and regulations. The proposed hierarchical 

Bayesian model serves as a step towards achieving this goal.  
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Abstract 

In most structural systems, it is neither possible nor optimal to inspect all system components 
regularly. An optimal inspection-repair strategy controls deterioration in structural systems 
efficiently with limited cost and acceptable reliability. At present, an integral risk-based 
optimization procedure for entire structural systems is not available; existing risk-based 
inspection methods are limited to optimizing inspections component by component. The 
challenges to an integral approach lie in the large number of optimization parameters in the 
inspection-repair process of a structural system, and the need to perform probabilistic inference 
for the entire system at once to address interdependencies among all components. In this paper, 
we outline a methodology for an integral risk-based optimization of inspections in structural 
systems, which utilizes a heuristic approach to formulating the optimization problem. It takes 
basis in a recently developed dynamic Bayesian network (DBN) framework for rapid 
computation of the system reliability conditional on inspection results. The optimization 
problem is solved by nesting the DBN inside a Monte-Carlo simulation for computing the 
expected cost associated with a system-wide inspection strategy. The proposed methodology is 
applied to a structural system subject to fatigue deterioration and it is demonstrated that it 
enables an integral risk-based inspection planning for structural systems. 

Keywords 

Deterioration; inspection planning; reliability; Bayesian networks; optimization  
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D.1 Introduction 

Deterioration processes in engineering structures lead to a reduction of service life and can 
affect the safety of the structures. Accurate modeling of deterioration remains a challenge today, 
due to the complexity of the processes and their inherent uncertainties. To address explicitly 
the prediction uncertainties, probabilistic approaches are suitable for deterioration modeling in 
an engineering context (Lin and Yang 1985, Ellingwood and Mori 1993, Melchers 1999, Qin 
and Cui 2003, Melchers and Jeffrey 2007, Kumar et al. 2015).  

To reduce the uncertainty in deterioration processes, regular inspections are common practice 
for most engineering structures. An optimal inspection strategy balances the cost of inspections 
with the achieved risk reduction. An inspection strategy defines (Faber 2002): (a) what to 
inspect for (e.g., thickness diminution due to corrosion or erosion, fatigue cracks), (b) how to 
inspect (the inspection technique), (c) when to inspect, and (d) where to inspect (which 
components). Each combination of these factors defines an inspection strategy, among which 

the optimal one is sought.  

Methods for risk-based optimization of inspections on structural systems have been developed 
during the past 40 years (Yang and Trapp 1974, 1975, Thoft-Christensen and Sørensen 1987, 
Madsen et al. 1989, Sørensen et al. 1991, Straub and Faber 2005, Straub and Faber 2006, 
Nielsen and Sørensen 2015). The scientific literature also documents industrial applications of 
inspection planning on offshore structures, aircrafts, bridges or ships (e.g., Skjong and Torhaug 
1991, Pedersen et al. 1992, Faber et al. 1992b, Lotsberg et al. 2000, Faber et al. 2005, Moan 
2005, Dong and Frangopol 2015). The theory and the applications have focused almost 
exclusively on the optimization at the component level, with a simplified treatment of the 
system (Straub and Faber 2005). Only limited research efforts have been directed towards 
optimization procedures for entire systems, accounting for the statistical dependence among the 
deterioration states of individual structural details (Straub and Faber 2004a, Straub and Faber 

2005, Straub et al. 2009, Papakonstantinou and Shinozuka 2014, Memarzadeh and Pozzi 2015). 

Risk-based optimization of inspection-repair strategies for large engineering systems is 
challenging in practice. Firstly, the interdependence among stochastic deterioration processes 
for all the system components must be modeled. The two common approaches to such an 
integral probabilistic deterioration modeling are random fields (Guedes Soares and Garbatov 
1998, Vrouwenvelder 2004, Stewart and Mullard 2007, Ying and Vrouwenvelder 2007, Keßler 
et al. 2014) and hierarchical models (e.g. Maes and Dann 2007, Maes et al. 2008, Qin and Faber 
2012, Banerjee et al. 2015, Luque et al. 2017). Secondly, Bayesian updating is required for 
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computing the probability of failure of all components and the system conditional on a 
potentially large number of inspection results. This is a computationally challenging problem 
in itself (e.g. Schneider et al. 2017). In the context of inspection planning, these computations 
must be performed multiple times for the optimization of the inspection strategies. Thirdly, the 
inspection optimization must consider system-wide strategies, which – in the general case – 
leads to a number of optimization parameters that is exponentially increasing with the number 
of components (Straub and Faber 2005).  

Bayesian methods enable incorporating information from inspections into probabilistic 
deterioration models to quantify the reduction in uncertainty and to update the reliability 
estimate (Tang 1973, Madsen 1987, Moan et al. 2000, Straub et al. 2016). Bayesian Networks 
(BNs) can facilitate such analyses. BNs have been applied to engineering risk analysis problems 
during the last two decades (Torres-Toledano and Sucar 1998, Friis-Hansen 2001, Mahadevan 
et al. 2001, Faber et al. 2002, Grêt-Regamey and Straub 2006, Nielsen and Sørensen 2010, 
Fenton and Neil 2012, Weber et al. 2012, Bensi et al. 2013). Conditional independence among 
model parameters encoded in the graphical structure of the BN can facilitate the Bayesian 
updating. In addition, if a process can be represented by discrete random variables (e.g. by 
discretizing all continuous random variables), exact inference algorithms can provide fast and 
robust solutions to the Bayesian updating. These properties have been exploited in Straub (2009) 
and Luque and Straub (2016), where dynamic Bayesian networks (DBNs) are utilized to 
evaluate deterioration at the component and system level. Bespoke exact inference algorithms 
ensure rapid computation of the conditional probability of system failure given all inspection 
results, which is essential for solving the optimal inspection problem. 

In this paper, we propose a heuristic approach to finding the optimal inspection strategy in 
structural systems.  In contrast to existing methods, the approach can simultaneously account 
for system effects arising from (a) the dependence among the deterioration at different 
components, (b) the joint effect of deterioration at multiple components on the system reliability, 
and (c) the interaction among inspection costs, i.e. the reduction in the marginal cost of an 
inspection if these are grouped in larger inspection campaigns. This is achieved with the 
proposed heuristic approach to the optimization, which enables the definition of a system-wide 
inspection plan with just a few parameters. The optimization criterion is the total expected life-
cycle cost, whose computation is made feasible by a novel two-level approach, in which the 
system DBN algorithm of Luque and Straub (2016) is nested within a Monte-Carlo simulation 
that addresses the uncertainty on the inspection outcomes. The DBN algorithm allows to 
compute the conditional probability of system failure given inspection outcomes.  
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The proposed methodology is demonstrated and investigated by application to a Daniels system, 

an idealized redundant structural system, whose components are subject to fatigue deterioration.  

D.2 Methodology 

D.2.1 The inspection optimization problem 

An inspection strategy for a structural system defines when, where, what and how to inspect. 
In general, static inspection regimes are not optimal; instead, one should account for results 
from previous inspections and maintenance activities when deciding upon new inspections. For 
this reason, the optimal inspection-planning problem belongs to the class of sequential decision 
problems (Arrow et al. 1949; Kochenderfer 2015).  

The sequential inspection planning problem is visualized in the decision tree of Figure D.1. 
Branches following a circular node represent random outcomes (e.g. the deterioration state of 
the system, or the inspection outcomes) and branches after a square node represent possible 
decision alternatives (e.g. if and where to inspect or repair). This decision tree is equally 
applicable to single components or entire systems. When considering systems, the outcome 
space of the random variables and the number of decision alternatives increase exponentially 
with the number of components. This is one of the main reasons why previous work on risk-

based inspection planning has focused mainly on individual components.  
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Figure D.1. Example of a decision tree with deterioration vector !!,# for all system components, the 
system performance "$,! (0: safe, 1: fail), inspection and repair decisions at each time step # = 1,… , (, 
and a set of observations )!,# after each inspection decision. A black dot marks the end of a branch, 
which corresponds to either a system failure or the end of service life. 

Solutions to sequential decision problems can be found through the definition of policies. Here, 
a policy for a decision at time ! defines where, what and how to inspect and repair, taking into 
account the full history of the structure up to !, i.e. past inspection outcomes and repair actions. 
The set of policies at all times ! is the strategy ". If the policies are the same for all !, the 
strategy is stationary (Jensen and Nielsen 2007). 

For a structural system with # components subject to deterioration, the inspection optimization 
problem of Figure D.1 can be formalized as follows. The joint deterioration state $ of all 
components is represented through a probabilistic system deterioration model with random 
parameters %!. Each component can be inspected and/or repaired at discrete times ! from 0 to 
the end of service life &. The strategy " defines for each component at each time step if and 
how that component is inspected and repaired, based on all previous inspection outcomes ' and 

the repair history of the structure.  

Inspections, repairs and system failure are associated with consequences. These are quantified 
by the present value of total life-cycle cost (" in function of the strategy " and the inspection 
outcomes '. It is defined as the sum of the life-time inspection cost (# , repair cost ($ , and 
failure risk )%: 



 124 

("(", ') = (#(", ') + ($(", ') + )%(", ') (D.1) 

For a given strategy " and inspection outcomes ', the inspection and repair actions are fixed. 
Hence, (#(", ') and ($(", ') can be directly evaluated in function of the cost of individual 
inspections and repairs, and the relevant discount rate.  

The failure risk )% is defined as:  

)%(", ') =/0% ⋅ 2(!) ∙ Pr(6&|'':&)*)
"

&+*

 

= 0% ⋅/2(!) ∙ 8Pr9:,,& = 6;<=>'':&)*? − Pr9:,,&)* = 6;<=>'':&)*?A
"

&+*

 
(D.2) 

where 0% is the undiscounted cost of a system failure event, 2(!) is a discount factor, 6& is the 
event of a system failure during time step !, and :,,& is the system condition at time step !.  

The conditional probability Pr9:,,& = 6;<=>'':&)*? is the probability of a system failure up to 

time ! for given inspection outcomes '':&)*. Its computation is a structural reliability problem, 
which can be formulated as an integral over all random variables % of the problem (which 

include the deterioration parameters %!, but also load parameters): 

Pr9:,,& = 6;<=>'':&)*? = B C8D,,&(E) ≤ 0A ∙ H.|0!:#$%(E)	dE
1&

 (D.3) 

D,,&(E) ≤ 0 is the limit state function describing system failure up to !, C[∙] is the indicator 
function and H.|0!:#$%  is the conditional probability density function of %  given inspection 

outcomes '':&)*. 

The solution of Eq. (D.3) is non-trivial, in particular if the system size and the number of 
observations are large. First Order Reliability Method- (FORM) and sampling-based solutions 
to this problem are available (Straub 2011a, Straub et. al 2016, Schneider et al. 2017). In 
inspection planning, the conditional probability must be evaluated many times, and an efficient 
and robust solution of Eq. (3) is thus required. For this reason, we apply DBNs to solve Eq. 
(D.3) following Luque and Straub (2016). 

Because the inspection outcomes ' are random variables themselves and are not known in 
advance, the total cost is also a random variable. If H0 is the probability distribution of the vector 
of inspection outcomes, whose support  Ω0(3) depends on the strategy ", then the expected total 

life-cycle cost associated with the strategy " is obtained as 
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E0[("(", ')] = B ("(", O) H0(O) dO
1'())

 (D.4) 

The optimal strategy "∗ is defined as the one that minimizes the expected total cost: 

"∗ = argmin
3
E0[("(", ')] (D.5) 

This optimization is commonly subject to constraints on the minimum reliability and the 
maximum budget for inspections.  

The two main challenges in finding the optimal strategy through Eq. (D.5) are (a) the large 
number of possible inspection strategies ", which increases exponentially with time steps and 
number of components (Figure D.1), and (b) the expectation operations in Eqs. (D.3) and (D.5). 
These challenges are already non-trivial for single components. For this reason, we first review 
existing approaches at the component level to solve the optimization problem defined by Eq. 
(D.5) (Section D.2.2), before presenting a solution at the system level (Section D.2.3). The 
approach employs the DBN framework for computing the conditional probabilities 
Pr9:,,& = 6;<=>'':&)*?, which is summarized in Section D.2.4. 

D.2.2 Optimization at the component level 

Risk-based optimization of inspection planning for individual components has been studied 
extensively (e.g. Straub and Faber 2006, Nielsen and Sørensen 2015). In the following, we 
briefly review the solutions based on influence diagrams, Markov decision processes, and 

stationary strategies. 

D.2.2.1 Influence diagrams  

An influence diagram (ID) is an extension of Bayesian networks, which includes decision and 
utility nodes (Jensen and Nielsen 2007). An example ID is shown in Figure D.2. 



 126 

 
Figure D.2. Example influence diagram for inspection planning of a single component. Circular nodes 
are random variables, square nodes are decisions and diamond-shaped nodes are costs. Node *! 
represents the component deterioration state at time step # as a function of the previous deterioration 
*!%&  and a time-dependent parameter +! ; "',!  represents the condition (e.g. safe or failed) of the 
component; ,! is the inspection outcome; -! and .! are the inspection and repair decisions; /(,!, /),!, 
/*,! are the failure, inspection and repair cost nodes. 

The ID is a graphical representation of a decision problem, not a solution method. The classical 
ID is based on the no-forgetting principle, i.e. when making a decision, it is conditional on all 
previously available information. The solution of such a general ID therefore faces the same 
exponential complexity as described earlier for the decision tree of Figure D.1. A common 
approach for approximating the optimal solution is to consider only a subset of the past 
observations (e.g. the U most recent ones) at each decision step. This approach is known as 
limited memory influence diagram (LIMID) (Lauritzen and Nilsson 2001, Jensen and Nielsen 
2007). A widely-used algorithm to approximate the optimal solution is the single-policy-
updating algorithm (Lauritzen and Nilsson 2001). This algorithm considers a strategy "  as 
(locally) optimal if changing only one its policies (i.e. the set of rules at only one decision node) 
does not lead to a better strategy in terms of the cost function. This approach has been used to 
estimate the optimal solution at the component level, e.g. in Nielsen and Sørensen (2011) and 
Luque and Straub (2013). However, these applications were limited to simplified deterioration 
models at the component level, because the available optimization algorithms require many 
evaluations of the expectations in Eqs. (D.3) and (D.5), including the solution of conditional 
reliability problems.  

D.2.2.2 Markov decision processes  

If deterioration can be described by a Markov process, the optimal inspection problem can be 
solved by means of Markov decision processes (MDPs). Markov chains (discrete time Markov 
processes) have been frequently used for modeling deterioration processes in engineering 
applications (Rocha and Schuëller 1996, Mishalani and Madanat 2002). Even non-Markovian 
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processes can be translated into Markov chains by state-space augmentation (Straub 2009). 
MDPs have been proposed and applied by a series of authors for obtaining the optimal strategy 
of engineering components or systems described by simple deterioration models (Tao et al. 
1995, Robelin and Madanat 2007). 

One distinguishes between fully and partially observable decision processes, depending on the 
type of available information. If all parameters of the deterioration process are directly 
observable, the process is fully observable. This is applicable only to simple, typically empirical 
deterioration models. In reality, the full deterioration process is observable only indirectly or 
incompletely; partially observable Markov decision processes (POMDPs) are then applied. The 
model of Figure D.2 is a POMDP, in which the state of the component is represented by the 
three random variables V& , W& and :6,& and X& is the (potential) inspection outcome The partial 

observability implies that not only X& , but all past inspection outcomes X*, … , X&)* have an 
effect on the probability distribution of V& , W& and :6,&. For this reason, the POMDP is solved 

by introducing a so-called belief state, which represents the knowledge of the decision maker 
at each point in time, summarizing the past inspection history (Kochenderfer 2015).  

POMDPs have been used to find the optimal strategy at the component level (Nielsen and 
Sørensen 2015, Schöbi and Chatzi 2016) and at the system level (Papakonstantinou and 
Shinozuka 2014, Memarzadeh and Pozzi 2015), but their application to larger systems is still 
computationally challenging. In addition, a main limitation of these approaches for their 
application to structural systems as considered in this paper is that they cannot handle problems 
in which the costs at the system level are a non-linear function of the costs at the component 
level. This is however the case when the failure of the system is described by a structural model 

in function of component states. 

D.2.2.3 Heuristic strategies 

The most common approach to risk-based inspection planning for components consists of 
limiting the set of possible strategies " to a small number of parametrized stationary strategies, 
based on simple heuristics. The two most commonly applied heuristics are briefly summarized 
in the following. 

Probability threshold: The stationary strategy is specified by a threshold on the probability of 
component failure Z&7 . An inspection is required in any time step before the probability of 
failure (conditional on previous inspection results) exceeds Z&7, as illustrated in Figure D.3.  
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Figure D.3. Probability of failure of a structural element using the probability threshold heuristic with 
0!+ = 10%,  and 0!+ = 5 ∙ 10%, . An inspection is performed prior to exceeding the threshold. The 
probability of failure shown here is conditional on not having identified any defect in past inspections.  

Fixed-interval (periodic) inspections: Inspections are performed at fixed regular intervals ∆!#, 
e.g. inspections every ten years (Figure D.4). This approach is commonly used in practice 
because it is easier to incorporate into the overall asset integrity management of a structure. 

 
Figure D.4. Probability of failure of a structural element using periodic inspections every 5 and 10 
years. The probability of failure shown here is conditional on not having identified any defect in past 
inspections.  

In both heuristics, the repair policy can be fixed in advance. In most applications, it is required 
that any identified damage is immediately repaired. In this case, the optimization of Eq. (D.5) 
reduces to finding either the optimal value of Z&7 or the optimal interval between inspections 
∆!#. Alternatively, it is also possible to add a parameter for the repair criterion, in which case 
two optimization parameters have to be considered (Nielsen and Sørensen 2014). By assuming 
that a repaired component performs like a new component, it is possible to reduce the number 
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of evaluations of the conditional probability of failure of Eq. (D.3), following Straub and Faber 

(2006). 

It has been demonstrated that heuristic approaches give a good approximation of the optimal 
solution in risk-based inspection planning, with orders of magnitude less computation effort 
than other approaches like LIMIDs or POMDPs (Nielsen and Sørensen 2011, Luque and Straub 
2013). Figure D.5 shows a comparison between the optimal inspection strategy of a single 
component using LIMIDs and heuristic approaches (periodic inspections and probability 
threshold) from a theoretical example investigated in Luque and Straub (2013). The expected 
inspection, repair, and failure costs of the optimal solutions are compared in Figure D.6.  

a)

 

b)

 

Figure D.5. Comparison between a) the LIMID solution and the Periodic Inspection heuristic; and b) 
the LIMID solution and the Probability Threshold heuristic (Luque and Straub 2013). 

 
Figure D.6. Expected costs associated with the optimal strategies by periodic inspection, probability 
threshold, and LIMID approaches obtained at the component level (Luque and Straub 2013) 
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D.2.3 Optimization at the system level  

The identification of the optimal inspection strategy is significantly more challenging for 
structural systems than for individual components. The number of possible inspection strategies 
" in Eq. (D.5) increases exponentially with the number of components, and the computation of 
the conditional reliabilities in Eq. (D.3) are much more demanding. This is because inspection 
results and deterioration failure events from the entire structure must be considered in a single 
integral computation. Given the difficulties one encounters already in solving the optimization 
problem at the component level, it appears that heuristics are the most promising, if not the only 
practically feasible, approach to optimizing inspections at the system level. In the following 
Section D.2.3.1, we present such a heuristic for the system-level inspection planning. 

Even with a heuristic approach to defining inspection-repair strategies, to solve the optimization 
problem at the system level necessitates a computationally efficient and robust algorithm for 
computing conditional probabilities of failure (Eq. (D.3)). The DBN framework developed in 

Luque and Straub (2016) provides such an algorithm; it is presented in Section D.2.4.  

D.2.3.1 Heuristic strategy at the system level 

At the system level, identifying heuristics is less straightforward than at the component level, 
mainly because it is not only necessary to identify the timing, but also the locations of 
inspections (Straub and Faber 2005). Nevertheless, we find that the heuristics applied at the 
component level can be extended to the system level. Our proposed heuristic takes into account 
that it is typically cheaper to bundle component inspections in campaigns and that regular 
inspection intervals are preferred for organizational purposes.  

The proposed heuristic distinguishes between inspection campaigns (when to inspect?) and 

individual inspections (where to inspect?). It can be summarized as follows:  

1. Inspection campaigns are performed at regular time intervals, in analogy to the fixed-
interval heuristic for single components. The time between regular campaigns is ∆!#. 

2. The initial number of inspected components during each inspection campaign is fixed 
at U#. 

3. The components to inspect during a campaign are determined based on the value of 
information (VoI) (Raiffa and Schlaifer 1961) associated with the component inspection, 
following the idea of Straub and Faber (2005). Exact computation of the VoI is difficult, 
hence a proxy must be identified that provides a similar ranking than the VoI. This is 
further elaborated for the specific structural system considered in Section D.3.4. 



  131 

4. Whenever the updated system probability of failure exceeds a threshold value Z&7 , 
additional inspections must be carried out, either within the existing campaign or 
through an additional inspection campaign. 

5. Repairs are performed according to a fixed repair criterion, e.g., any identified defect 

with a size larger than \$ is repaired. 

Adjustments to these rules can and should be made according to the operational environment 
and constraints. In summary, the heuristic strategy "8 is a combination of the above stationary 

rules and is defined by the following parameters:  

- the frequency of regular inspections ∆!#,  
- the failure probability threshold Z&7,  
- the number of components to inspect U#, 
- the repair criterion \$. 

The optimal combination of these parameters is found by solving Eq. (D.5). This requires the 

computation of the expected cost associated with a strategy "8 = (∆!# , Z&7 , U# , \$).  

D.2.3.2 Computation of the expected cost of a strategy 

A Monte Carlo approach is employed to estimate the total expected life-cycle cost of a strategy 
"8 defined according to Eq. (D.4). The expected value is approximated as 

E0[("("8 , ')] ≈
1
U9
/("9"8 , O8,:?

;+

:+*

 (D.6) 

where _O8,*, O8,<, … , O8,;+`  are Monte Carlo samples of inspection outcomes, and U9  is the 

number of samples. To obtain these samples, one first generates random samples of the 
deterioration history of the entire structure, and then generates random inspection results 
conditional on these deterioration histories. The total cost ("  is computed according to Eq. 

(D.1). 

The number of samples U9 required to ensure sufficient accuracy is a function of the coefficient 
of variation of the total cost a6,. To ensure a relative error in the estimate of less than b with a 

confidence of 1 − c, the required number of samples is 

U9 ≥ e
Φ)*9=<?

b
a6,g

<

 (D.7) 
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In all cases we investigated, the value of a6, was around 1.5. If one requires a relative error 

less than 10% (i.e. b = 0.1) with a confidence of 95% (i.e. c = 0.05), the required number of 
samples is U9 ≥ 384a6,

< = 864. Typically, the requirements on the accuracy of the estimated 

total expected life-cycle cost are not as strict, and a number of samples in the order of 200 is 
expected to be sufficient for most practical applications. Note that the reason for this relatively 
small number lies in the fact that the conditional probability of failure is computed within each 
MC sample through the DBN.  

D.2.4 DBN framework 

A key element in the proposed procedure is an efficient computation of the updated probabilities 
of failure at the component and the system level given inspection results, i.e. a fast solution to 
Eq. (D.3). At the component level, Straub (2009) developed a DBN framework for 
stochastically modeling deterioration processes and updating the failure probability, which was 
shown to be efficient and robust. In contrast to other Bayesian analysis methods, the DBN 
combined with exact inference algorithms has the advantage that its performance does not 
deteriorate with increasing amount of inspection data. Recently, Luque and Straub (2016) 
extended this framework to the system level through a hierarchical definition of the 

deterioration model parameters. Its main characteristics are summarized in the following. 

The framework developed in Straub (2009) enables translating commonly employed 
probabilistic deterioration models into a DBN. The probability of failure conditional on 
inspection results is computed by an adaptation of general purpose inference algorithms for 
DBNs (Murphy 2002). The approach requires a discretization of continuous random variables, 
but very good accuracy can be achieved for standard deterioration models (Straub 2009). Other 
researchers have implemented this framework at the component level (e.g. Nielsen and 
Sørensen 2010, Zhu and Collette 2015). 

The framework by Luque and Straub (2016) extends the DBN to the structural system level, 
accounting for dependence among deterioration parameters of different components through a 
hierarchical approach. To model the correlation structure among the deterioration parameters, 
a set of hyperparameters n is included in the DBN model. These hyperparameters are the link 
among time-independent parameters o (e.g. material properties), time-dependent parameters p 
(e.g. temperature), and deterioration state $  in all components (Figure D.7). Through the 
hyperparameters, any inspection result ' at a component will affect the reliability estimates of 



  133 

the other components. The system reliability is evaluated through the binary nodes :,,& (with 

:,,& = H;<= representing system failure at time !), in function of the component conditions :6,>,&. 

In the DBN model of Figure D.7 there are no links from :,,& to :,,&?*. This is an approximation, 
because a structure that has failed at time ! (:,,& = 6;<=) will also be in a failed state in year 
! + 1 (:,,&?* = 6;<=). The probability Pr9:,,&?* = 6;<=? computed with the DBN of Figure 

D.7 without these links is therefore an underestimation of the true probability of failure. 
However, introducing this link would significantly increase computational costs of the DBN. 
The approximation error is small if the dominant contribution to the probability of system 
failure is from the deterioration. This must be checked for a specific application. Alternatively, 
an upper bound to the probability of failure can be obtained from the DBN by considering the 
failure events in different time steps as independent events; this upper bound has been used 
frequently in the literature, e.g. (Val et al. 2000). 

 
Figure D.7. Hierarchical DBN system deterioration model (Luque and Straub, 2016). Node *#,! 
represents the deterioration state of the 4 -th component at time step #  as function of the previous 
deterioration *#,!%& , the time-independent parameter 5#,! , and the time-dependent parameter 6#,! ; 
observations ,-,#,!, ,.,#,!, and ,/,#,!; "0,#,! and "1,! represent the condition (e.g. safe or failed) of the 
component and the system; 7 is the set of hyperparameters that links all components. 

An exact inference algorithm for solving the hierarchical DBN is available from Luque and 
Straub (2016). Because of the hierarchical structure of the model, the computation time 
increases approximately linearly with the number of components. The algorithm also facilitates 
the use of parallel computation. The following is a short summary of the algorithm, for details 
on the method, the reader is referred to (Luque and Straub 2016).  
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In a first step of the algorithm, for all components the joint probability distribution of 
component < is updated with inspection results from component <, for given hyperparameter 
values n. In the hierarchical DBN, the deterioration states are statistically independent among 
components for fixed hyperparameters, i.e. 

Z9\>%,& , \>-,&>n? = Z9\>%,&>n? ∙ Z9\>-,&>n? (D.8) 

for all components <*, << = 1,… ,# with <* ≠ <<. This independence property can be exploited 
to parallelize the computations of the conditional probabilities given inspection results for 

individual components in the first step.  

In the second step, the joint distribution of the hyperparameters n is updated with the inspection 
results from all components. Finally, the results of the first and the second step are combined 
to obtain the probability distributions of all components < conditional on all inspection results 
in the system. 

To speed up computation, it is possible to partly reuse updated probability distributions. If the 
sampled inspection results for a component < are identical among two samples r* and r<, the 
first step in the computation can be avoided, and the previously computed probabilities can be 
utilized. Additionally, for time steps !  prior to the first inspection campaign, the system 
reliability will be identical among all samples r and has to be calculated only once. Further 
computational savings may be possible for specific cases, e.g. if components have the same 
deterioration model. 

D.2.5 Summary of the proposed methodology 

The proposed procedure for integral optimization of inspections in a structural system consists 
of the following steps: 

1. Define system-wide inspection strategies "8 through the heuristic of Section D.2.3.1, 
with optimization parameters ∆!# , Z&7 , U# , and \$ . Alter the proposed heuristic if 
necessary to account for operational constraints. 

2. Choose an optimization algorithm to identify the solution of Eq. (D.5). The algorithm 
must be able to handle numerical noise, because the objective function is evaluated with 
MCS. Perform steps 3–5 to determine the expected total cost associated with a strategy.  

3. For every strategy "8 (i.e. combination of optimization parameter values), generate U9 
Monte Carlo samples of inspection outcomes O8:, where r = 1,… , U9. These define the 
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times and locations of inspections and their outcomes. U, must be chosen sufficiently 
high (see Eq. (D.7)). 

4. For every strategy "8 and inspection sample O8::  

a. Compute the conditional probabilities of system failure over the service life (Eq. 
(D.3)) by means of the DBN. 

b. Compute the failure risk (Eq. (D.2)). 
c. Compute the total cost (Eq. (D.1)). 

5. Estimate the total expected life-cycle cost of each strategy "8 by means of Eq. (D.6). 

The procedure deals with the two main challenges outlined in the last paragraph of Section 2.1 
by (a) extending the heuristic approach from the component level to the system level, through 
the use of suitable system-wide heuristics, and (b) by computing the expected risk and cost 
through nesting a DBN computation insight a MCS that integrates over future inspection 
outcomes. 

D.3 Numerical investigations 

The proposed methodology is applied to optimize the inspection-repair strategy of a Daniels 
system subject to fatigue deterioration. This system facilitates the numerical investigation of 

the effect of system wide inspection strategies.  

D.3.1 System definition 

A Daniels system consists of a set of # load-sharing elements with independent and identically 
distributed random capacities )>, < = 1,… ,#, and an external random load s (Daniels 1945). 
The system is illustrated in Figure D.8 and its parameters are summarized in Table D.1. The 
Daniels system facilitates studying the characteristics of load-sharing among the elements in 

redundant structural systems (Gollwitzer and Rackwitz 1990). 

 
Figure D.8. Daniels system with N elements. 
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Table D.1. Parameters of the Daniels system, following Luque and Straub (2016). 

Parameter Type Mean Std. deviation Correlation 
!  Lognormal ". #. = 0.25 ∙ ".  

*/  Normal "0! #0! = 0.15 ∙ "0! 0 
,  Deterministic 10   
Mean safety factor Deterministic , ∙ "0! ".⁄ = 2.9   

 

The examples presented in this paper are for a system of # = 10 components. 

In this study, the components of the Daniel system are affected by fatigue deterioration (Section 
D.3.2). At the system level, this deterioration is represented by a binary model, in which the 
component < either has its full capacity (prior to fatigue failure) or zero capacity (after fatigue 

failure). We neglect any interaction between the extreme load s and the fatigue deterioration.  

Because of the exchangeability of components in the Daniels system, the system reliability is a 
function only of the number of components that have failed because of fatigue, #@,A,& . The 
conditional system failure probability Pr(:,,& = H;<=| #@,A,& = U) is presented in (Luque and 

Straub 2016).  

D.3.2 Deterioration and inspection model 

All components of the Daniels system are affected by a fatigue deterioration process W. Based 
on the case study presented in Straub (2009) and Luque and Straub (2016), a simple fracture-
mechanics based fatigue model is used to describe the crack depth W> at component < of the 

Daniels system at time !: 

dW>(!)
d!

= t	(> u∆vB,>wxW>(!)y
C1

 (D.9) 

where t is the stress cycle rate; ∆vB,> = 9E8∆v>
C1A?

%
21 is the equivalent stress range per cycle 

with E[∙] being the expectation operator and ∆v>  the stress range per cycle, and (> , z>  are 
material parameters.  

With W>,' being the initial crack depth of component < at time ! = 0, an analytical expression 

for the crack depth at time ! is found from Eq. (D.9): 

W>(!) = {|1 −
z>

2
~(>∆vB,>

C1xC1 <⁄ t! + W>,'
*)C1 <⁄ �

(*)C1 <⁄ )$%

 (D.10) 

The service life of the structure is discretized in ! = 0, 1, 2, … , & time steps.  
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To represent dependence of the deterioration process among components, a set of 
hyperparameters n = {cC , cE , c!} is used to link material parameters, stress parameters, and 
initial crack depths. More details on the definition of the hyperparameters and their application 
in the DBN model can be found in Luque and Straub (2016). 

The component condition at each time step, :6,>,&, is either safe or fail. A safe component has 

its full capacity, whereas a failed component has zero remaining capacity.  The failure event is 
defined through a critical crack depth \F as _:6,>,& = H;<=` = _W>,& ≥ \F`.  

The inspection X!,>,&  of the < -th component at time step !  has two possible outcomes: (a) 

detection, or (b) no detection (of a fatigue crack). The probability of each outcome is a function 
of the crack depth W>,& and is represented here with an exponential probability of detection (PoD) 

model with parameter Ç: 

Pr9X!,>,& = 1>W>,& = \? = PoD(\) = 1 − exp |−
\
Ç
~ (D.11) 

The deterioration state after the inspection, W>,&∗ , is a (stochastic) function of the deterioration 

state W>,&  before inspection, the inspection outcome X!,>,& , and the repair policy. Here, we 

postulate that all detected cracks are repaired (\$ = 0 ), and the condition of a repaired 
component is as new. If no crack is found at the inspection, it is simply W>,&∗ = W>,&. 

The parameters and random variables of the hierarchical DBN and deterioration model, the 
discretization scheme, and the corresponding influence diagram of the DBN model are 
presented in Table D.2, Table D.3, and Figure D.9. The analysis is performed for an anticipated 
service life time of & = 40 years.  
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Table D.2. Parameters of the DBN deterioration model, following Luque and Straub (2016). 

Parameter Units Type Mean  Std. deviation Correlation 
,  - Deterministic 10   

/  year Deterministic 40   

1 stress cycles per 
year 

Deterministic 5 ∙ 103   

24 , 25, 26 - Normal 0 1  

4/,8 mm Exponential 1 1 0.5 
5/,8 - Normal 3.5 0.3 0.6 

5/,9 - Function  5/,9 = 5/,9:; 
ln :/,9  corresponding 

to N and mm 
Function ln :/,9 = −3.345/,9 − 15.84 

∆>/,9 N Weibull  scale parameter ?/,9 shape parameter	A = 0.8  

∆><,/,9 N Function 
∆><,/,9 = ?/,9ΓC1 +

5/,9
A E

;
4!,#

 

?/,8 N/mm2 Lognormal 1.6 0.22 0.8 

?/,9 N/mm2 Function	 ?/,9 = ?/,9:; 
F= mm Deterministic 50   

G mm Deterministic 10   

Γ(∙): Gamma function 

Table D.3. Discretization scheme. 

Random variable Number of states Final interval boundaries 
25$, 24, 26 5 Φ:;(0: 0.2: 1)	
4 [mm] 80 0, exp{ln(0.01) : [ln(50) − ln(0.01)] 78⁄ : ln(50)} ,∞	
5 [-] 20 0, ln{exp(2.2) : [exp(4.8) − exp(2.2)] 18⁄ : exp(4.8)} ,∞	
? [N/mm2] 20 0, {0.86 ∶ (2.83 − 0.86) 18⁄ : 2.83}	,∞	
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Figure D.9. Influence diagram of the Daniels system. Nodes 8, +, and * are the material parameter, 
the scale parameter of the stress range distribution, and the fatigue crack depth with hyperparameters 
7 = {:2 , :3 , :/}. - is the inspection decision, ,/ is the inspection outcome, and *∗ the crack depth 
after a possible repair. "', <5, and "1 are the component condition, the number of failed components, 
and the system condition. /), /*, and /( are the inspection, repair, and system failure costs. 

The effect of the approximation made by omitting links between :,,& and :,,&?* in the DBN is 

investigated through a MCS analysis for the unconditional case. We find that the DBN 
underestimates the probability of failure by a factor of 2, hence the DBN results are adjusted 
by this factor.  

D.3.3 Costs and failure risk 

Inspection campaigns have a fixed cost 06  independent of the number of components to be 
inspected. This is the mobilization cost of personnel and equipment and the cost of interrupting 
operations. Individual inspections and repairs per component have costs 0#  and 0$ . The 
consequences of system failure are represented by the failure cost 0%. All costs in Eqs. (D.1) 
and (D.2) are discounted to their present value through the following discounting factor based 
on the real interest rate à (i.e. the interest rate after allowing for inflation): 

2(!) =
1

(1 + à)&	
 (D.12) 
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The ratio of inspection and repair to failure costs can vary significantly among different systems. 
Two cost cases are considered in this example, summarized in Table D.4. The first case 
corresponds to a structure with high mobilization costs, such as an offshore structure, and 
potentially large consequences of failure. The second case corresponds to a case with lower 
failure costs relative to the inspection campaign, and is motivated by the situation of metallic 
bridge structures subject to fatigue. 

Table D.4. Inspection, repair and failure cost for two different cases. 

Cost 
Case 1  

(offshore structure) 
Case 2  

(bridge structure) 
Inspection campaign, V= 1 1 
Component inspection, V> 0.1 0.1 
Component repair, V0 0.3 1 
System failure, V? 3 ∙ 10@ 10A 
Discount rate, W 0.02 0.02 

D.3.4 Optimization  

Following Section D.2.3.1, the inspection strategy "8  is defined through the optimization 
parameters: ∆!# , the time between regular (i.e. fixed-interval) inspections; Z&7 , the failure 
probability threshold at which additional inspections are performed; U#, the pre-defined number 

of components to inspect during a campaign; \$, the repair criterion, which is here set to 0.  

The optimization is performed through an exhaustive search among a discrete set of parameter 
values according to Table D.5. 

Table D.5. Parameters defining the heuristic strategies. 

Parameter Values 
Time between campaigns, ∆X> [year] {5,10}	
PoF threshold, Y9B {2 ∙ 10:C, 6 ∙ 10:C, 2 ∙ 10:@}	
Number of inspected components, Z> {1,2,3, … ,10}	
Repair criterion, F0 0	

 

Following the heuristic, in each campaign the components with the largest VoI are inspected 
first. Because of the exchangeability of the components in a Daniels system, and because the 
dependence among all components is the identical (at least a-priori), the VoI is a direct function 
of the probability of failure (PoF) of the component. A component with a higher PoF has a 
larger impact on the system reliability; it also has larger uncertainty, hence the learning effect 
is higher for such a component. Therefore, components are selected for inspection according to 
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their PoF. Because components are repaired upon detection of a damage, this implies that non-

inspected components will be prioritized. 

D.3.5 Results 

Based on Equation (7), the strategies "8 are evaluated with U9 = 1000 samples to compute the 
associated total expected life-cycle cost through Eq. (D.4). (As discussed in Section 2.3.2, a 
smaller number of samples would be sufficient for most practical purposes.) Each sample r 
corresponds to a possible future inspection history O8: . To illustrate the workings of the 

algorithm, results for single inspection histories are presented first, followed by the evaluation 
and optimization of the total expected cost. In Section D.3.5.3, the results are compared to those 
obtained with classical component-based inspection planning. 

D.3.5.1 Illustrative results for a single inspection sample 

A sample inspection outcome O8:  for a strategy "8 	 defined by (∆!# = 10yr, Z" = 2 ∙

10)G, U# = 3) is summarized in Table D.6. Figure D.10 presents the component and system 

failure probabilities associated with this inspection history.  

 

Table D.6. Sample inspection outcome, for a strategy with regular inspections interval ∆#) = 10yr, 
probability threshold 06 = 2 ∙ 10%7 , and ?) = 3  planned component inspections per campaign. 
Additional inspection campaigns at years 17, 19, 27 and 37 are necessary because of a threshold 
exceedance. In year 17, two additional component inspections are required during the campaign 
because of the identified defects.  

 Time step of inspection 
Component  10 17* 19* 20 27* 30 37* 

1 ü  ü   ü  
2 ü   ü  ü  
3 ü   ü   ü 
4  û      
5  ü  û    
6  û      
7  ü*   ü  ü 
8  ü*   ü  ü 
9   ü  ü   
10   ü   ü  

ü: Inspected without detection of a crack, û: Inspected with detection of a crack 
* Extraordinary inspection campaign or additional inspected component due to a threshold exceedance 
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a) System 

 

b) Components 

 

Figure D.10. Probability of failure of the (a) system and (b) individual components conditional on the 
sample inspection outcome from Table D.6. Point A represents the PoF before the inspection at # =
17yr; B represents the PoF after inspecting the originally planned components (4, 5, and 6); C 
represents the PoF after inspecting two additional components (7 and 8) to comply with the threshold. 

The system PoF associated with all 1000 samples of inspection histories are shown in Figure 
D.11. 

 
Figure D.11. System probability of failure for all sampled inspection histories. The dark curve 
corresponds to the outcome defined in Table D.6 and plotted in Figure D.10a. 

The total life-cycle cost associated with an inspection history is computed according to Eqs. (1-
3). For the inspection history of Table D.6 and cost case 1 (Table D.4), the present value 
(discounted to ! = 0) of the costs are (# = 4.51 + 1.50 = 6.01 for the inspection campaign 
and component inspections, ($ = 0.63 for component repairs and )% = 0.44 for failure risk. 
This amounts to a total present value life-cycle cost of (" = 7.08. The breakdown of these 
present values over the service life is shown in Figure D.12. This analysis is repeated for all 
U, = 1000  samples, enabling the MCS estimation of the total expected life-cycle cost 
following Eq. (D.6). 
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Figure D.12. Expected present values (discounted to # = 0) of costs for the inspection outcome from 
Table D.6. The system PoF from Figure D.10a is included as a reference.  

D.3.5.2 Expected costs and optimal inspection strategy 

The expected costs of the strategies defined in Table D.5 are shown in Figure D.13 for cost case 
1 and Figure D.14 for cost case 2.  

 

Figure D.13. Comparison of the expected total cost (case 1) varying the number of inspected 
components ?), the probability threshold 0!+, and the regular inspections periodicity ∆#). The first row 
corresponds to ∆#) = 5B and the second row to ∆#) = 10B. The columns correspond to the probability 
thresholds 2 ∙ 10%7, 	6 ∙ 10%7, and 2 ∙ 10%8. 
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Figure D.14. Comparison of the expected total cost (case 2) varying the number of inspected 
components ?), the probability threshold 0!+, and the regular inspections periodicity ∆#). The first row 
corresponds to ∆#) = 5B and the second row to ∆#) = 10B. The columns correspond to the probability 
thresholds 2 ∙ 10%7, 	6 ∙ 10%7, and 2 ∙ 10%8. 

Among the strategies presented here, the optimal strategy for cost model 1 is to perform an 
inspection campaign every 10 years with inspection of 8 elements, following a probability 
threshold of 6 ∙ 10)G . For cost model 2, the optimal strategy is to perform an inspection 
campaign every 10 years with inspection of 3 elements, following a probability threshold of 
2 ∙ 10)H. 

D.3.5.3 Comparison to component-based inspection planning 

For comparison we show the results of a classical component-based inspection planning for the 
considered Daniels system. The analysis follows the procedure outlined in Straub and Faber 
(2006).  

Because all components are identical in terms of their probabilistic deterioration model and 
their effect on the system integrity, the optimal inspection plan will be the same for all 
components a-priori. Figure D.3 shows the component probability of failure associated with 
different reliability thresholds and Figure D.4 shows the one associated with periodic 

inspections.  

To estimate the cost of a component failure, one has to account for the effect of a component 
failure on the system reliability. In risk-based inspection planning, the system redundancy with 
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respect to failure of component < is typically expressed by the change in the probability of 
system failure when removing component <  (Moan 2005, Faber et al. 2005). This can be 
measured in terms of the single element importance measure (Straub and Der Kiureghian 2011), 
which is defined as  

v:C> = Pr(vãå!çé	H;<=èàç|H;!<Dèç	H;<=èàç	êH	0êéZêUçU!	<) 

 −Pr(vãå!çé	H;<=èàç|Uê	H;!<Dèç	H;<=èàçå) 
(D.13) 

For the considered Daniels system, it is v:C> = 4.2 ⋅ 10)G − 6.5 ⋅ 10)I = 3.6 ⋅ 10)G. 

When computing the component-based optimal inspection plan with these inputs, the resulting 
plan is not to perform any inspection. The reason lies in the underestimation of the consequence 
of a failure in the component-based approach. These are estimated as (% ⋅ v:C>, which with cost 
model 1 results in a component failure cost of 3 ⋅ 10H ⋅ 3.6 ⋅ 10)G = 1.08, and with cost model 
2 in 10J ⋅ 3.6 ⋅ 10)G = 0.036. With such low failure consequences, inspections are not cost-
effective. The problem with the v:C> measure is that it neglects the possibility of two or more 
simultaneous component failures. For redundant system this underestimates the true risk, in 
some cases severely, as shown in (Straub and Der Kiureghian 2011).  

Table D.7 presents the comparison of the total expected life-cycle cost associated with not 
performing any inspection with the cost of the inspection plan obtained by the proposed system 
RBI planning. Clearly, the component-based approach is not suitable to determine optimal 
inspection plans for this structural system. It is noted that in practice such a plan would not be 
implemented and a minimum number of inspections would be performed, based on reliability 
constraints on the components. Furthermore, an improved redundancy measure (e.g. following 
Straub and Der Kiureghian 2011) could provide more realistic estimates of the consequences 
of component failures. Nevertheless, the integral system-based optimization will outperform 
any purely component-based optimization.  

Table D.7. Expected costs associated with the optimal strategies identified with component-based and 
the proposed system-wide optimization approach, for cost case 1. Note that the system-wide solution is 
not the global optimum; it is the optimum among the investigated strategies following Table D.5 and 
Figure D.13. 

Optimization algorithm Component-based  Proposed system-
wide  

Expected cost for inspections :> 0 3.56 
Expected cost for repairs :0 0 0.47 
Risk * 117.3 1.54 
Total expected cost :D 117.3 5.57 
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D.4 Discussion 

The proposed framework determines optimal inspection-repair strategies for structural systems 
in an integral manner considering interdependences among component deterioration states and 
among the information from inspections. It also explicitly includes the interaction between the 
reliability of components and the structural system. By applying the DBN framework to 
computing the conditional reliability given inspection results, the method has a computational 
cost that is suitable for applications in practice.    

To manage the complexity of the decision problem underlying the optimal inspection planning, 
the approach employs heuristics for defining possible system-wide inspection strategies. The 
heuristic approach results in inspection plans that are likely close to but not identical to the 
globally optimal plans. Because it is not actually possible to compute the optimal plan even for 
simple structures such as the Daniels system studied in this paper, there is no reference against 
which to evaluate goodness of the results. However, the computation of the expected cost for a 
fixed strategy is accurate (bare the Monte Carlo error and approximations in the deterioration 
model); it is therefore possible to compare the proposed inspection strategies against any other 
proposal.  

The results also show that – in analogy to the optimization of inspections for components – the 
total expected life-cycle cost of different inspection strategies is rather flat around the optimum 
(see Figure D.13 and Figure D.14). For this reason, it is sufficient to restrict the optimization to 
investigating a discrete set of values of the optimization parameters, taking into account 
operational constraints.  

In practice, inspection planning is commonly performed following a reliability-based rather 
than risk-based approach, i.e. instead of optimizing the total expected life-cycle cost one aims 
at minimizing inspection and repair cost while ensuring a minimum level of reliability. The 
proposed framework is also applicable in this context, by fixing the probability threshold at the 
system reliability level, and then optimizing the number of inspection campaigns and the 
number of inspections per campaign. For example, if the minimum reliability is associated with 
a probability of structural failure of 10)G  per year, then the optimum strategies change 
following Figure D.13 and Figure D.14. The advantage of the proposed approach is also that it 
correctly computes the system reliability, which component-based inspection planning can get 
wrong completely (see Section D.3.5.3).  

In the numerical investigation presented in this paper, we apply the framework to an idealized 
structure and an idealized deterioration model, which are chosen for demonstration purposes. 
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In real-life applications, these models will be more sophisticated, which leads to additional 
challenges, but does not affect the main findings of this paper. It is rather straightforward to 
include more sophisticated deterioration models into the DBN, as long as the number of random 
variables in each time step is limited. This can be achieved in most cases by grouping random 
variables in the DBN (see Straub 2009 for an example). The extension of the DBN model to 
more complex structural systems is discussed in (Luque and Straub 2016) and an application of 
the system RBI framework to such a system is presented in (Bismut et al. 2017). 

With respect to the optimization procedure, the presented Daniels system is simplified in that 
all elements have the same structural importance and the fatigue performance is assumed to be 
the same for all elements. This allows using a simple proxy for the VoI, because the learning 
potential is a function of the element probability of failure only. It remains to be investigated 
what is a good proxy for the VoI in structural systems whose elements have different degrees 
of importance. The optimization problem presented in this paper is also further complicated 
when deciding among multiple types of inspection techniques, or when considering structural 
health monitoring to complement inspections. These aspects are left for future investigation.   

D.5 Conclusions 

A framework to determine optimal inspection-repair strategies for deteriorating structural 
systems subject to reliability constraints is proposed. The framework – for the first time – 
enables a system-wide optimization, which accounts for (a) the interaction among element 
deterioration states, (b) the relation between the reliability of the structural elements and the 
structural system, and (c) the effect of information obtained on one element of the structure on 
the remaining elements and the overall system. The framework also enables the use of state-of-
the-art deterioration models for the individual elements. To tackle the computational challenges 
associated with this complex pre-posterior optimization problem, we propose heuristics for 
planning inspections, which are informed by practical constraints commonly encountered in the 
asset integrity management of engineering structures. To compute the expected cost of a 
system-wide inspection strategy, we nest a dynamic Bayesian network (DBN) algorithm inside 
a Monte Carlo analysis that accounts for uncertain inspection outcomes. The numerical 

investigation demonstrates the effectiveness of the proposed framework.  
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9 Concluding remarks 
This chapter discusses the advantages and limitations of the proposed DBN framework and 
makes some recommendations for implementing it. Then it continues with some suggestions 
for extending the results of the thesis and ends with the thesis’ main conclusion. 

9.1 Discussion 

Based on the results of the case studies presented in Chapter 4, the main advantages and 
limitations of the DBN deterioration framework proposed in this thesis are discussed. 

 

Advantages of the framework 

Firstly, the DBN framework explicitly considers the spatial and temporal dependence of 
deterioration processes among multiple locations in the structure. The temporal dependence is 
modeled using dynamic Bayesian networks and the spatial dependence is represented through 
hierarchical levels, which allow accounting for the effect of common influencing factors. Such 
an approach facilitates the representation of complex deterioration processes in the proposed 
framework and the interpretation of the model parameters when the model is learned. 

Secondly, the exact inference algorithm specifically developed for the DBN framework leads 
to considerably small computation times that are orders of magnitude lower than other 
approaches, such as MCMC. Although a direct comparison of computation time has only a 
limited value due to the differences in software used for their implementation, the difference in 
computational complexity is noticeable. In particular, the performance of MCMC deteriorates 
when increasing the amount of inspection and monitoring results. This is not the case of the 
exact inference algorithm, whose complexity is independent of the amount of data used. 
Additionally, except for the step when the system probability of failure is updated in the model, 
the inference algorithm has almost linear complexity with respect to the number of components 
and time steps. Finally, because of the hierarchical definition of the DBN model, it can be run 

in parallel for each component, significantly decreasing the total computation time. 

To handle the complexity of the optimal inspection planning problem, the proposed framework 
uses a heuristic approach that not only simplifies the solution of the problem, but also makes 
the framework more applicable to real-life cases because of the easiness to interpret its solution 
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and relatively fast computation. The heuristic approach defines a set of possible system-wide 
inspection strategies, which can be easily characterized by a reduced number of parameters that 
are easy to interpret. Even though the heuristic approach results in inspection plans that are 
likely close to (but not identical to) the globally optimal plans, it offers a feasible manner to 

approximate the solution of the RBI problem. 

One can also speed up the computation of the optimization methodology through partly reusing 
updated probability distributions. For example, if the simulated inspection results for a 
component ! are identical among two samples "!  and "" , then the first step of the inference 
algorithm (i.e. updating each component using only observations from that component) can be 
avoided, and the previously computed probabilities can be reutilized. Another example is 
reusing the computed component and system probabilities of failure for time steps before the 
first inspection campaign is performed, which must be the same for every simulated sample. 
Further computational savings are also possible for specific cases, e.g. when components have 
the same deterioration model and the computed results of one can be reused in another one 
before observations are included. 

Finally, one of the main advantages of the proposed risk-based approach is that it correctly 
computes the system reliability, which component-based inspection planning cannot do. 
Component-based approaches may produce inspection plans that are far from the real optimal 
solution (see Section D.3.5.3). The main reason for this is that they neglect the possibility of 
two or more simultaneous component failures. Improved redundancy measures (e.g. following 
Straub and Der Kiureghian 2011) could provide more realistic estimates of the consequences 
of component failures such as considered in Mendoza et al. (2021). Nevertheless, the integral 

system-based optimization will outperform any purely component-based optimization. 

 

Limitations of the framework 

A limitation of the proposed algorithm is the required effort in pre-processing. The choice of 
the discretization scheme and its implementation lead to an increased effort by the analyst. For 
this reason, the DBN framework is mainly of use when computations must be performed 
repetitively, as in the solution of the RBI problem where multiple function evaluations must be 
performed. 

An important consideration is the complexity of the inference algorithm with respect to the size 
of the discretization scheme (i.e. the number of states generated after discretizing continues 
variables). The computational complexity is a linear or quadratic function of the number of 
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states used for discretizing the random variables. Therefore, the number of random variables 
that can be included explicitly in the DBN model is limited. While the deterioration models 
considered in this thesis include less than five random variables, published state-of-the-art 
models often include more. Nevertheless, the problem is less critical as it may seem at first 
glance. The number of random variables can often be reduced by combining multiple random 
variables to a single random variable, as shown in Straub (2009). In addition, in models with 
many random variables it is often possible to consider some as deterministic with limited loss 

of accuracy. 

Another aspect to take into account when discretizing random variables is the location of the 
discrete states (i.e. the values from the original variable domain that are used to represent the 
discrete states). The number and location of the discrete intervals have an impact on the 
computation time and accuracy of the approximation. There exist several algorithms that obtain 
the optimal intervals based on a specific estimation, typically the probability of failure. In this 
thesis heuristic principles to define the discretization scheme are used, which have shown 
accurate results when compared to other inference algorithms with the original continuous 
random variables. However, this situation is case dependent and must be checked before 

applying the methodology outlined here for risk-based inspection planning. 

Finally, the DBN model developed in the proposed framework makes a subtle but strong 
simplification in the consideration of the system condition. As pointed out in Paper D, the node 
that represents the system condition ##,% has no direct link to its previous or following condition, 
##,%&! and ##,%'!. Introducing these links would break the independence among components 

given the hyperparameters, which would significantly increase the computational cost of the 
inference algorithm. This is an approximation because a structure that has failed at time $ 
should also be in a failed state at time $ + 1 . Therefore, the probability Pr)##,% = +,!-. 
computed with the DBN model without these links is therefore an underestimation of the true 
system probability of failure. The approximation error is small if the dominant contribution to 
the system probability of failure is from the deterioration (and not from, e.g., external extreme 
loads), but this must be checked for a specific application. This aspect is discussed in detail in 
Straub et al. (2020). Alternatively, an upper bound to the probability of failure can be obtained 
by considering the failure events in different time steps as independent events as shown in Paper 
D and applied to the case study from Section 4.5. 
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Practical recommendations: 

This section contains suggestions that can be used to better understand and interpret the results 
of the model when implemented in real-life cases. 

In the numerical investigations presented here, the DBN framework is applied to idealized 
structures and with idealized deterioration models, which are chosen for demonstration 
purposes. In real-life applications, these models might be more sophisticated, which would lead 
to additional challenges, but does not affect the main findings from this thesis. It is rather 
straightforward to include more elaborated deterioration models into the DBN, as long as the 
number of random variables in each time step is limited. As mentioned in the previous section, 
this can be achieved in most cases by grouping random variables or replacing less important 

ones with deterministic parameters in the DBN. 

After the deterioration model is chosen, one can define the discretization scheme. As mentioned 
above, the discretization of continuous random variables in the proposed framework introduces 
a tradeoff between accuracy and computational cost (including memory allocation and 
computational complexity) that must be balanced when solving the RBI problem. An adequate 
discretization scheme can be obtained either from heuristic rules (as in this thesis) or using more 
sophisticated methods (e.g. Zwirglmaier and Straub 2016). In general, the optimal discretization 
is case dependent and it is recommendable to compare more than one discretization scheme to 
prevent potential major errors when estimating system probabilities of failure and the optimal 

inspection strategy. 

Using the optimization parameters of this framework in a different manner allows one to apply 
it to other problem settings. For example, the framework is applicable to solve reliability-based 
inspection planning, i.e. instead of optimizing the total expected life-cycle cost one aims at 
minimizing inspection and repair cost while ensuring a minimum level of reliability. To do this 
in the proposed framework, one only needs to fix the probability threshold at the system 
reliability level, and then optimizing the rest of the parameters that define the strategy. Another 
example is when deciding among multiple types of inspection techniques (e.g. visual inspection, 
ultrasonic devices, etc.). To solve this problem, one can include one additional optimization 
parameter that indicates the inspection technique to be used. Then one simply needs to find the 
expected total cost for each combination of parameters for each value of the inspection 
technique parameter. As a remark, there is no constraint in how the optimal inspection technique 
is evaluated in the model. It is possible to have a set of different optimization parameters for 
each inspection technique (for example, when measurement observations require a different 
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model or are related to different nodes in the DBN) and then choosing the technique with the 

combination of parameters that have the smallest expected total cost. 

It is also possible to include observations from monitoring systems and sensors in the DBN 
framework. As already mentioned, the computation time of the inference algorithm is not 
affected by the amount of observed data. However, it is sensitive to the number of time steps. 
Therefore, including raw sensor/monitoring data (which can be available in periodicities from 
minutes to milliseconds) would increase considerably the number of time steps, making the 
optimization methodology infeasible. As a possibility, one can summarize the sensor or 
monitoring data and represent it in the DBN model through, for example some basic statistics 
(e.g. mean, median, standard deviation, minimum, maximum, percentiles) or other aggregated 
values (frequencies, natural frequencies, equivalent stress ranges for the case of loads) at each 
time step, so the inference algorithm takes a similar time to update the probabilities as the 
original setting (Schneider 2019, Kamariotis et al. 2020). As a remark, sensor and monitoring 
data must be kept in the model at the component level. This means, sensors cannot be associated 
to a system property (e.g. structure’s natural frequency). This constraint comes from the 
construction of the inference algorithm for the DBN model that requires independence among 
components given the hyperparameters. If one includes system-level observations (either from 
sensors or from inspections), then the independence of components given the hyperparameters 
does not occur, and the exact inference algorithm developed here is not applicable. 

Finally, the proposed optimization methodology can also be extended to more complex 
structural systems. For example, Bismut et al. (2017) obtains the optimal inspection and 
maintenance strategy for the Zayas frame. In this case, they propose a prioritization index as a 
proxy of the value of information for inspecting components. The main results of Bismut et al. 
(2017) confirm the computational efficiency and effectiveness of the DBN framework to solve 
the optimal inspection planning problem when applied to more real-life cases. 

9.2 Future research 

This section contains possible extensions of the DBN framework that can improve its 
applicability to more complex structural systems or deterioration processes. In some cases, the 
presented extensions might need a small change in the current methodology; in other cases, 
they could require strong modifications in the assumptions of the framework, making their 
feasibility a bit uncertain. These are ideas that have arisen during the development of this 

research as potential continuations of the results obtained here. 
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Varying initial correlations 

The DBN framework assumes that the correlation among the initial deterioration /(, time-
dependent parameters 0( , or time-independent parameters 1(  (see Figure 8) does not vary 
among components in the system. This assumption keeps the complexity and computational 
cost of the inference algorithm at a feasible level. If different correlations among components 
are present, then it is recommendable to separate the original structural system into subsystems, 
where the components of each subsystem are equi-correlated. If subsystems are assumed 
independent, then the solution of the problem would not require any modification of the 
framework. If dependence among subsystems is to be included, then an additional hierarchical 
level can be included with a new set of hyperparameters that links them as demonstrated in 
Paper C. The original inference algorithm would require obtaining the conditional probabilities 
given all hyperparameters (i.e. original hyperparameters linking components plus additional 
hyperparameters linking subsystems). Theoretically this is possible, and the complexity of the 
inference algorithm with respect to the total number of hyperparameter states is linear (see 
Section B.3.5). However, the size of the conditional probability tables will considerably 
increase, generating potential memory issues. As stated at the end of Section B.3.2, another 
alternative is to use the Dunnett-Sobel class (Thoft-Christensen and Murotsu 1986, Kang and 
Song 2009), which would keep the computational effort at the same level. 

 

Including monitoring and sensor information 

As already mentioned in the practical recommendations of Section 9.1, the most critical aspect 
of including monitoring and sensor data in the DBN framework is its near real-time 
observability. This information must be summarized, e.g., through some of its statistics, so that 
the number of time steps in the model is not increased and consequently the computation time 
remains constant. The optimization problem implies simulating outcomes of monitoring and 
sensor systems, which requires more detailed and thorough probabilistic models to generate 
realistic samples than for the inspection case. Further analysis must also be done to calculate 
the number of samples required to estimate the expected total cost with a given confidence. 
Finally and most important, one must develop a model to relate the monitor and sensor data to 
the deterioration amount of the component (e.g. how the observed natural frequency of the 
component or system is related to the condition of the component). Depending on the type of 
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observed data, such model will most likely be based on the outcome of a numerical structural 

analysis made for multiple system configurations. 

 

Defining a more general proxy for the value of information 

As mentioned in Section 3.3.1, the heuristic rule for defining which components to inspect first 
is based on the value of information (VoI). This value is not straightforward to compute. 
Depending on the structural system, a proxy for the VoI must be defined and its computation 
should be considerably easier and faster than the VoI. Case study 4.5 and Bismut et al. (2017) 
define proxies applied to the Daniels system and Zayas frame, respectively. However, other 
proxies for the VoI could lead to inspection strategies with lower expected costs. 

 

Number of system configurations 

In general, the ultimate capacity of a structural system is a function of the capacity of its 
components. Each combination of possible component capacities defines a different system 
configuration. In the simple case when a component can have either its full capacity or zero 
capacity (because of failure), a system with 2 components can have a total of 2)  different 
configurations. Considering explicitly all system configurations is in most cases prohibitively 
expensive for computing the conditional system reliability given the observed data. In some 
cases, as demonstrated in case study 4.2, components can be grouped, and it is sufficient to 
consider their cumulative effect on the system condition. In other cases, it is possible to pursue 
a hierarchical modeling approach also for the mechanical models; such a strategy is utilized in 
case study 4.3. Alternatively, approximate models of system behavior may be applied (e.g. the 
model proposed in Straub and Der Kiureghian 2011, which requires only the marginal effect of 
component failure on the system reliability as an input) or other types of surrogate models. 
Another possible alternative is to reduce the number of system configurations to consider based 
on their contribution to the probability of failure (Kim et al. 2013). If an alternative 
representation of the system configuration is not possible or not convenient, it is also possible 
to combine the proposed exact algorithm with sampling-based methods. After learning the 
model using the exact inference algorithm of the DBN framework, one could generate samples 
of the deterioration conditions in the components and then evaluate the condition of the system 
to estimate its probability of failure. One can use efficient simulation methods to estimate the 
low probability of failure, for example sequential importance sampling (Papaioannou et al. 
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2016). In this way, one would avoid the large computation time of MCMC approaches to learn 

the model and generate samples of system failures given the data.  

 

Redistribution of stresses and sequential failure 

As mentioned in Sections 4.2 and 4.3, the model developed in this thesis for the Daniels’ system 
and Zayas frame considers neither redistribution of stresses after component failures nor 
sequential failure. The immediate way to include redistribution of stresses to the model is 
adding links between component states and stresses. However, these new links break the d-
separability of the components’ layers when the hyperparameters are given and, in consequence, 
the inference algorithm of the DBN framework does not apply anymore. This would imply 
making some assumptions to keep the d-separability or developing a new inference algorithm 
for this extended model. For the case of sequential failure, some approaches have been 
developed for estimating the sequences that have the largest probability of occurring and 
producing a system failure (e.g. Kang and Song 2009, Lee and Song 2014). Then, instead of 
explicitly considering all possible system configurations in the model, one can include these 
most-likely failure sequences in the model when computing the conditional probability of 
system failure given component failure. The conditional probability table will not only consider 
individual component failure, but also those sequences that start with this component failure 
will be included in the same row. This approximation of the system probability of failure will 
reduce the number of rows in the conditional table from 2) (number of system configurations) 
to 2 + 1 (number of components plus one – no component failure). The main difficulty of this 
approach is to accurately estimate the sequences with the highest contribution to the system 
probability of failure (i.e. probability of the sequence times probability of system failure given 
the sequence) due to the strong impact of stress redistributions in the computation. 

 

Multi-level hierarchical model 

The current model utilizes a set of hyperparameters through a one-level hierarchical structure 
to represent the interdependence among components. This representation assumes that the 
initial correlation among initial conditions is the same among components. However, this is not 
always the case for all types of structures. One solution to represent complex structures is to 
separate the system into several subsystems (e.g. by spatial or operational areas in the structure) 
and to model each of them separately and independently with the proposed DBN framework. 
A more accurate approach would be to consider all subsystems as interrelated “components” 
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through an additional level in the hierarchy of the model (i.e. a second set of hyperparameters 
that would link all subsystems). Then the inference algorithm would need to be extended and 
applied to the second hierarchical level because the subsystems, which would keep the property 
of being independent given the new set of hyperparameters (i.e. the d-separability would be 
preserved). The extended model implies additional challenges in its development and testing, 
especially in the direction of computational complexity and applicability of potentially new 
heuristic rules to keep the computation time at a feasible level. 

9.3 Conclusions 

This thesis proposes an integral framework to determine optimal inspection-repair strategies for 
deteriorating structural systems subject to reliability constraints.  

At first, a probabilistic multi-hierarchical framework for modeling deterioration is developed, 
which is able to represent the time dependence and spatial variability of the deterioration 
process. It accounts for the dependence among corrosion states at different locations due to 
common influencing factors. In the case study from Section 4.1, this framework is applied to 
model uniform corrosion deterioration in ship vessels using real thickness measurements 
obtained during in-service inspection campaigns. Using MCMC as inference algorithm, the 
posterior distribution of the model parameters is estimated, and the current and future corrosion 
in the structure. The framework also allows computing probabilities of failure at different levels 
of the structure (e.g. a single plate failure or a complete cross section failure) using structural 
reliability methods if a failure criterion is defined. Even though one could use this framework 
to solve the RBI problem, MCMC can be computationally expensive when solving reliability 
problems with low probabilities of failure. For this reason, a DBN deterioration framework with 

a tailor-made inference algorithm is developed to solve the RBI problem more efficiently. 

The developed DBN framework – for the first time – enables a system-wide optimization of 
inspections, which accounts for: a) the interaction among element deterioration states, b) the 
relation between the reliability of the structural elements and the structural system, and c) the 
effect of information obtained on one element of the structure on the remaining elements and 
the overall system. The framework also enables the use of state-of-the-art deterioration models 
for the individual elements. To tackle the computational challenges associated with this 
complex pre-posterior optimization problem, a heuristic approach for planning inspections is 
used, which inspections are informed by practical constraints commonly encountered in the 
asset integrity management of engineering structures. To compute the expected cost of a 
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system-wide inspection strategy, a dynamic Bayesian network framework is developed with an 
accurate, robust, and efficient inference algorithm at the system level to solve the reliability 
problem for computing probabilities of system failures. The developed inference algorithm is 
then nested inside a Monte Carlo analysis to account for the uncertainty in the inspection 
outcomes. The DBN framework was successfully applied in two different case studies (Daniels 
system and Zayas frame) obtaining fast and accurately probabilities of failure due to fatigue 
deterioration, and in another case study showing step by step how to solve the optimal 

inspection planning problem. 
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