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Abstract

Despite enormous technological advances, investing in a robot is usually only worthwhile
if it is used for a longer-term automation task. To address the untapped market of ultra-
flexible automation, we have developed robot modules that can be assembled to task-specific
modular robots at the customer. Previous attempts to commercialize modular robots failed
because they had to be reprogrammed after each assembly. Our novel concept addressed
this shortcoming by realizing the first entirely modular, self-programming robot.

1 Introduction

Robots enjoy an increasingly important role in many sectors due to challenges of population
aging, labor shortages, high-risk tasks for humans, and large variances in the quality of final
products. However, new application areas like construction robotics, agriculture robotics, and
healthcare robotics require different robots compared to a standard industrial application as
new application areas are usually unique with a different set of problems. While various single-
task robots can perform very well, the lack in versatility and flexibility hinders automation
in many emerging fields. Hence, we present versatile robotic modules, which can be flexibly
assembled on-site into custom configurations [1]. We also present methods to find optimal task-
specific robot configurations and to safely perform tasks with formal guarantees. Illustrations
of different generations of our modular robots are shown in Fig. 1.

1st generation 2nd generation 3rd generation

Figure 1: Three generations of modular robots developed at Technical University of Munich.

Most previous works on modular robots used small, identical cubic-shaped or prismatic-shaped
modules [10, 11, 14]. The resulting robot assemblies, however, have a significantly reduced per-
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formance compared to industrial robots since efficient manipulation requires light-weight link
modules and joint modules that have more torque towards the base.

2 Main Idea

To enable the robot to program itself after the modules are assembled, all relevant properties
are stored in a module-integrated memory chip. After assembly, the data from the individual
modules are read and assembled into a kinematic, dynamic, and geometric model of the robot.
This is illustrated in Fig. 2:

(A) Self-programming: 1) Each module contains its characterization. 2) The robot is assem-
bled. 3) The information from each module is collected to automatically build a kinematic,
a dynamic, and a geometric model. 4) The robot fulfills a given task without programming
by a user.

(B) Self-verification during deployment: 1) An intended trajectory is planned based on the
most likely movement of the human. 2) A fail-safe trajectory is created such that the
robot never intersects the reachable set of surrounding humans. 3) At the next point in
time tk+1, the robot updates its intended trajectory. 4) If the new plan can be verified on
time, it is executed; otherwise, the fail-safe trajectory is engaged.

(C) Optimal module composition before deployment: Given 1) modules and 2) a task, we 3)
compute possible compositions and 4) select the optimal composition.

3 Optimal Configurations

One of the main challenges of reconfigurable systems is to find possible combinations of modules
that are able to complete given tasks while meeting constraints. Most studies on reconfigurable
systems focus on obtaining combinations of modules to achieve a given task without consider-
ing the required planning algorithms [2–6, 9, 13]. In contrast to previous works, we developed
configuration synthesis methods considering constraints and planning algorithms; see, e.g. [7,8].
This results in a mixed discrete/continuous optimization problem, which is hard to solve. We
tackle this problem by finding heuristics that quickly drive the solver to reasonable solutions,
since finding the optimal solution is infeasible if one applies this approach to problems of an
industrial scale.

In a nutshell, the following steps are taken [8]:

1. Generate compositions with standard robot kinematics. A selection of standard kinematics
is shown in Fig. 3 taken out of [8].

2. Fast feasibility checks to rule out:

• robots that cannot reach the goal,

• robots that cannot hold the weight,

• robots that collide with obstacles.

3. Out of the remaining configurations, we perform optimizations and choose the best robot.

Recent work also explores reinforcement learning for the synthesis of modular robots [12].
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Figure 2: Self-programming, just-in-time verification, and optimal composition of a modular
robot (taken out of [1]).

4 Conclusions

Modular robots only realize their full potential when combining self- programming, self-verification,
and the ability to find optimal configurations for a given task. When only realizing self-
programming, the created robot might not realize its full potential: for example, in many
applications, a robot with less than six degrees of freedom is sufficient. However, it is typi-
cally puzzling for the human mind to find the kinematics that would still realize the given task
with fewer degrees of freedom. Also, since our modular robots can be easily reconfigured, the
gained flexibility can only be optimally used when a safety cage is no longer required due to
self-verification. The concept of self-programming modular robots is currently realized by the
startup RobCo (robco.de) originating from my research group.
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Figure 3: Standard kinematics of robots (taken out of [8]).
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