
Received: 2 December 2019 Revised: 4 September 2020 Accepted: 14 October 2020 Published on: 20 November 2020

DOI: 10.1002/nav.21963

R E S E A R C H A R T I C L E

Walrasian equilibria from an optimization perspective: A guide to
the literature

Martin Bichler Maximilian Fichtl Gregor Schwarz

Department of Informatics, Technical University

of Munich, Munich, Germany

Correspondence
Martin Bichler, Department of Informatics,

Technical University of Munich, Munich, Germany.

Email: bichler@in.tum.de

Funding information
Deutsche Forschungsgemeinschaft (DFG),

Grant/Award Number: BI 1057/1-8.

History
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Abstract
An ideal market mechanism allocates resources efficiently such that welfare is max-
imized and sets prices in a way so that the outcome is in a competitive equilibrium
and no participant wants to deviate. An important part of the literature discusses
Walrasian equilibria and conditions for their existence. We use duality theory to
investigate existence of Walrasian equilibria and optimization algorithms to describe
auction designs for different market environments in a consistent mathematical
framework that allows us to classify the key contributions in the literature and open
problems. We focus on auctions with indivisible goods and prove that the relaxed
dual winner determination problem is equivalent to the minimization of the Lya-
punov function. This allows us to describe central auction designs from the literature
in the framework of primal-dual algorithms. We cover important properties for exis-
tence of Walrasian equilibria derived from discrete convex analysis, and provide
open research questions.
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1 INTRODUCTION

Many markets match supply and demand for multiple goods
or services (which we also refer to as items) via optimization.
Typically, the auctioneer computes an allocation and linear
(i.e., item-level), anonymous prices. Linear and anonymous
competitive equilibrium prices are often referred to as Wal-
rasian prices in honor of Léon Walras, a French mathematical
economist, who pioneered the development of general equi-
librium theory. Prominent examples include financial mar-
kets (Klemperer, 2010), day-ahead electricity markets (Meeus
et al., 2009; Triki et al., 2005), environmental markets (Bich-
ler et al., 2019), logistics (Caplice & Sheffi, 2003; Bichler
et al., 2006; Ağralı et al., 2008) or spectrum auctions (Bich-
ler & Goeree, 2017). In some of these markets the auctioneer
computes prices that are in a competitive equilibrium with

linear and anonymous prices (aka. a Walrasian equilibrium),1

in others Walrasian prices even lead to efficiency losses
(Özer & Özturan, 2009; Lessan & Karabatı, 2018; Bichler
et al., 2018; Meeus et al., 2009; Madani & Van Vyve, 2015).
This raises the question, which market characteristics admit
Walrasian equilibria.

While this is an established and central question in the
economic sciences, there have been a number of significant
contributions in computer science, economics, and operations
research in recent years. The literature on auction algorithms
initiated by Bertsekas (1988) is one of the early examples of
the fruitful interplay between optimization and equilibrium

1There are also competitive equilibria with nonlinear prices (Bikhchandani
& Ostroy, 2002). However, some authors only use competitive equilibrium
to refer to one with linear and anonymous prices.
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theory. In this paper, we survey the literature and describe
established and more recent results. We primarily draw on
convex analysis and linear programming duality, and provide
a consistent mathematical optimization framework to position
and explain the key results of this broad literature.

1.1 Competitive equilibrium

Early in the study of markets, general equilibrium theory
was used to understand how markets could be explained
through the demand, supply, and prices of multiple com-
modities or objects. The Arrow–Debreu model shows that
under convex preferences, perfect competition, and demand
independence there must be a set of competitive equilibrium
prices (Arrow & Debreu, 1954; McKenzie, 1959; Gale, 1963;
Kaneko, 1976). Market participants are price-takers, and they
sell or buy goods in order to maximize their value subject to
their budget or initial wealth in this model. The results derived
from the Arrow–Debreu model led to the well-known wel-
fare theorems, important arguments for markets as efficient
or welfare-maximizing ways to allocate resources. Stability
in the form of competitive equilibria where each participant
maximizes his utility at the prices is central to this theory.
More specifically, the theory focuses on Walrasian equilib-
ria where there is one equilibrium price per good (aka. linear
prices) and the price is the same for all bidders (aka. anony-
mous prices). The first theorem states that any Walrasian
equilibrium leads to a Pareto efficient allocation of resources.
The second theorem states that any efficient allocation can be
attained by a Walrasian equilibrium under the Arrow–Debreu
model assumptions.

However, general equilibrium theory assumes divisible
goods and convex preferences, and the results do not carry
over to markets with indivisible goods and complex (noncon-
vex) preferences and constraints. Also, in general equilibrium
models money does not have outside value and bidders max-
imize value subject to a budget constraint (Cole et al., 2016).
More importantly, bidders are assumed to be nonstrategic
price-takers. Based on the work by Vickrey (1961), atten-
tion in economics shifted to auction theory, which focuses on
small and imperfectly competitive markets, where strategic
players can influence prices. These bidders have a quasi-
linear utility function, that is, they aim to maximize payoff
(i.e., value minus price) (Krishna, 2009). Bayesian Nash
equilibria (rather than competitive equilibria) are the cen-
tral equilibrium solution concept in the auction literature, a
branch of noncooperative and incomplete information game
theory which led to remarkable results. Most importantly, the
Vickrey–Clarke–Groves (VCG) mechanism was shown to be
incentive-compatible, and truthful bidding to be a dominant
strategy for bidders (Vickrey, 1961).

Many markets that have been implemented for trading
financial products, electricity, or environmental access rights
as discussed earlier are large markets involving many items
and many market participants. Participants want to maximize

payoff, but they might not be able to influence prices on such
markets. As a consequence, much of the literature is based on
a complete-information game-theoretical analysis where bid-
ders are price-takers rather than an incomplete-information
game (Baldwin & Klemperer, 2019). Competitive equilib-
ria are the main design desideratum. Unfortunately, it is
well known that in many of these markets linear (i.e.,
block-level) prices might not allow for a welfare-maximizing
trade and that there might not be competitive equilibria
(Meeus et al., 2009; Madani & Van Vyve, 2015b).

Such new markets have led to a renewed interest in the ques-
tion of existence and computation of competitive equilibria
(Kim, 1986; Bikhchandani & Mamer, 1997; Bikhchandani &
Ostroy, 2002; Baldwin & Klemperer, 2019; Leme, 2017). The
problem is fundamentally rooted in mathematical optimiza-
tion, as we will show. In this survey, we will focus on central
and recent results in competitive equilibrium theory and mul-
tiobject auction design and reformulate them in the language
of optimization, specifically duality theory and primal-dual
algorithms.

1.2 Outline

There are various ways how surveys are written. Some arti-
cles collect and categorize a larger number of papers in a
new and emerging field (Herroelen & Leus, 2005; Galindo
& Batta, 2013; Olafsson et al., 2008), others provide a guide
to a larger literature and introduce important concepts in a
unified framework. Examples include a survey on bilevel pro-
gramming by Colson et al. (2005) or a survey on the gross
substitutes condition in economics by Leme (2017). We fol-
low the latter path and discuss competitive equilibrium theory
using duality theory and linear programming as a frame-
work. While most of the literature on this subject is published
in economics journals, key insights of this literature can be
introduced conveniently using the mathematical framework
of optimization. Fundamentally, auctions are algorithms for
optimal resource allocation and there are plenty of questions
where the OR community can contribute as we discuss in the
last section.

The survey starts with markets for divisible goods and
shows that the concave conjugate to the aggregate value
function of all bidders yields prices, and that the mini-
mizer of the Lyapunov function results in Walrasian prices
if the aggregate value function is concave. A condition
for concavity of the aggregate value function is concav-
ity of the individual value functions, which is equivalent
to diminishing marginal returns. The Lyapunov function is
convex so that a simple subgradient algorithm finds the min-
imum efficiently. This algorithm has an interpretation as an
auction.

We will next show that the same principles from duality
theory carry over to markets with indivisible objects. For
this, we describe the allocation problem as a binary program.
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Whenever the linear programming relaxation of this binary
program has integer solutions, then the dual variables of
the capacity constraints have an interpretation as Walrasian
prices for the respective resources. We prove that the dual
of the linear programming relaxation of this binary program
is equivalent to the Lyapunov function. Economic literature
discusses conditions on individual value functions that allow
for Walrasian equilibria. This is the case if the convolution
of these individual functions results in a discrete concave
aggregate value function.

As in the continuous case with divisible goods, we can
use a steepest descent algorithm to find the minimizer of the
Lyapunov function, which is equivalent to determining Wal-
rasian prices for the market. This is exactly what the auction
mechanism by Ausubel (2005) does, a central contribution
to auction design. Primal-dual algorithms are well-known
algorithms to solve linear programs, and they have a nice
interpretation as a market with an auctioneer and the bidders
optimizing alternatively. The steepest descent algorithm that
minimizes the Lyapunov function is equivalent and we show
the connections.

We contribute the equivalence of the Lyapunov function
and the dual linear programming relaxation of the alloca-
tion problem in markets with indivisible goods, as well as
the equivalence of primal-dual algorithms with central auc-
tion designs for selling multiple indivisible goods. These two
results allow us to organize the material and use duality theory
to discuss the literature on existence of Walrasian equilib-
ria, and linear programming algorithms to discuss auction
designs leading to Walrasian equilibria if it exists. The survey
helps scholars with a background in mathematical optimiza-
tion to understand central results in competitive equilibrium
theory and draws important connections between competitive
equilibrium theory, mathematical optimization, and discrete
convexity.

In Section 2 we introduce the notation and standard
assumptions in the economic literature for readers from oper-
ations research. Then we introduce important concepts for the
understanding of Walrasian equilibria such as the Lyapunov
function for markets with divisible goods in Section 3. The
same concepts play a role for markets with indivisible goods
and discrete value functions in Section 4. In Section 5 we use
primal-dual algorithms and show that these are equivalent to
important auction designs discussed in economics. Finally,
we provide a research agenda and discuss open research
problems for the operations research community.

2 NOTATION AND ECONOMIC
ENVIRONMENT

In the auction market, there are m types of items or
goods, denoted by k ∈  = {1, … ,m}, and n bidders
i∈ = {1, … , n}. In the multi-unit case, we have s ∈ Z

m
≥0

units available, that is, s(k) homogeneousunits for each of

the heterogeneous m items k ∈ . A bundle for bidder i is
described by a vector xi ∈ Z

m
≥0. In case of single-unit supply

the vector is binary, that is, xi ∈ {0, 1}m. We will sometimes
omit the subscript i for convenience. Each bidder i has a value
function vi ∶ Z

m
≥0 → Z≥0 over bundles of items or objects

xi. We assume integer-valued functions vi as it will be more
convenient to analyze the optimality of auction algorithms.
Moreover, integer-valued functions vi allow to use integral
prices in ascending auctions without losing efficiency.

Unless stated otherwise this paper we assume that bidders
have preferences described via a valuation function with the
following properties:

• Pure private values: Bidder i’s value vi(xi) does not change
when she learns other bidder’s information.

• Quasilinearity: Bidder i’s (direct) utility from bundle xi is
given by 𝜋i(xi, p) = vi(xi)− ⟨p, xi⟩, where ⟨⋅, ⋅⟩ is the dot
product.

• Monotonicity: The function vi ∶ Z
m
≥0 → Z≥0 is weakly

increasing with vi(0) = 0 and, if xi ≥ xi
′, then vi(xi)≥ vi(xi

′).

An auctioneer wants to find an allocation of items to bid-
ders. Such an allocation is feasible when the supply suffices
to serve the aggregate demand of the bidders. Furthermore,
the auctioneer aims for allocative efficiency. This means
the auctioneer wants to maximize social welfare which is the
sum of the utilities of all participants (the bidders and the
auctioneer). Maximization of welfare is also referred to as
a utilitarian welfare function. In case of quasilinear utility
functions, prices cancel and the social welfare is defined as∑

i∈vi(xi).
For the remainder of this survey we assume that the auc-

tioneer’s valuation for all items is zero. As a consequence,
the auctioneer would sell items to bidders for a price of zero.
In some auction scenarios, however, the auctioneer may want
to set reserve prices which are the minimum prices at which
the auctioneer would be willing to sell the goods. Often these
reserve prices can be implemented by introducing a dummy
bidder who simply bids the reserve prices on behalf of the
auctioneer in the auction. In case the dummy bidder wins any
items in the auction, these items remain unsold.

The goal of the auctioneer is to find an efficient alloca-
tion that yields linear (i.e., item-level) and anonymous market
clearing prices p = {p(k)}k∈ ∈ R

m. The linearity of prices
refers to the property that individual prices are set for each
item k ∈ ; the price for a bundle x is then simply the sum
of the prices of its components, that is, it is given by the dot
product ⟨p, x⟩. Anonymity means that the resulting prices p are
the same for all bidders and there is no price differentiation.
Furthermore, prices p are market clearing when the aggregate
demand of all bidders at the given prices p meets the supply s.

With linear and anonymous prices p = (p(1), … , p(k),
… , p(m)), the bidder’s indirect utility function is defined as

ui(p) = max
x∈Z

m
≥0

{vi(x) − ⟨p, x⟩}.
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The indirect utility function is widely used in economics and
returns the maximal utility that bidder i can obtain for any
bundle at prices p. The demand correspondence Di(p) is the
set of bundles that maximize the indirect utility function at
prices p, that is,

Di(p) = arg max
x∈Z

m
≥0

{vi(x) − ⟨p, x⟩}.
If in an outcome (consisting of an allocation and prices) all
bidders are allocated a bundle from their demand set, then the
outcome is envy-free. No bidder would want to get another
bundle, as a bidder cannot increase her utility at these prices.
Envy-free prices always exist. For example, if prices were
higher than the valuations, then every bidder would only want
the empty set. If in addition to envy-freeness all items are
allocated,

∑
i∈xi = s, then the outcome is a competitive

equilibrium.

Definition 1 (Competitive equilibrium, CE).
A price vector p* and a feasible allocation
(x1, … , xn) form a competitive equilibrium if∑

i∈xi = s and xi ∈ Di(p*) for every bidder
i∈.

If there were unsold items, an auctioneer could always add
unsold units to the allocation of a bidder without decreas-
ing welfare as bidders are assumed to have monotone value
functions vi.

In our setting with linear and anonymous prices, a com-
petitive equilibrium is also called a Walrasian equilibrium.
If there exists a Walrasian price vector p* such that p* ≤ p′

for any other Walrasian price vector p′, then p* is called the
bidder-optimal Walrasian price vector. For Walrasian equilib-
ria the well-known welfare theorems hold:

Theorem 1 First and second welfare
theorem (following Blumrosen and Nisan
(2007)) Let x = (x1, … , xn) be an equilibrium
allocation induced by a Walrasian equilibrium
price vector p, then x yields the optimal social
welfare. Conversely, if x is a Pareto efficient
allocation, then it can be supported by a Wal-
rasian price vector p so that the pair (p, x)
forms a Walrasian equilibrium.

3 WALRASIAN EQUILIBRIA WITH
DIVISIBLE GOODS AND CONJUGACY

In this article, we focus on markets with indivisible goods.
However, for instructive purposes, we briefly consider the
case of divisible goods to introduce relevant concepts. These
can then be transferred to the indivisible case. Our aim is to
give an intuitive graphical and analytical interpretation of how
the aggregate valuation function is connected to the indirect
utility function, the Lyapunov function and the market prices.

We consider a market with multiple bidders i∈ and mul-
tiple divisible goods k ∈  with | | = n and || = m. The
aggregate value function v is defined as the supremum con-
volution of concave functions vi ∶ R

m
≥0 → R where vi is the

value function of the ith bidder.

v(s) = max
{xi}i∈

{∑
i∈

vi(xi) | xi ∈ R
m
≥0 and

∑
i∈

xi = s

}
.

By compactness and continuity, the maximum exists. Con-
cavity implies that vi((1− 𝛼)x+ 𝛼y)≥ (1− 𝛼) vi(x)+ 𝛼 vi(y)
with x, y∈R≥0 and 𝛼 ∈ (0, 1). The economic interpretation
of a concave valuation function is that it exhibits decreasing
marginal valuations. Since every function vi is concave, also
their convolution v is concave.

The aggregate indirect utility is defined as u(p) =
∑

iui(p)
and the aggregate demand set is given by the Minkowski sum
D(p) =

∑
iDi(p).

For the sake of simplicity of the following graphical inter-
pretation of indirect utility and the concept of conjugacy, we
consider a market with multiple bidders but only a single
divisible good x∈R≥0. However, our explanations carry over
directly to markets with multiple goods. It is also worth men-
tioning that in the presence of only a single bidder i the aggre-
gate valuation function v becomes the individual valuation
function vi of the single bidder. Thus, even though the follow-
ing example illustrates the aggregate valuation and indirect
utility function of multiple bidders, it similarly applies to the
valuation and indirect utility function of an individual bidder.

In our example, we assume v(x) = ln(x+ 1). It is well
known that for concave functions v local optimality implies
global optimality and this yields efficient optimization algo-
rithms.

At a given price, every rational bidder i∈ only demands
a quantity of good x which maximizes her utility at this price.
The utility of such a quantity is described by the indirect util-
ity function ui(p) = maxx{v(x)− ⟨p, x⟩}, which is convex as
it is the maximum of affine linear functions. As the aggregate
indirect utility function u(p) is a sum of convex functions, it
must also be convex.

A quantity x* is demanded at prices p if and only if
v(x*)− ⟨p, x*⟩≥ v(x)− ⟨p, x⟩ for all x∈R. When rearrang-
ing terms to v(x*)+ ⟨p, x− x*⟩≥ v(x), it becomes clear
that the left-hand side of the inequality describes the tan-
gent at v(x*) (see Figure 1). In other words, a quantity x*

is demanded at prices p whenever the slope of the tangent at
v(x*) equals the price p. The aggregate utility of quantity x*

is given by 𝜋(x*, p) = v(x*)− ⟨p, x*⟩. As x* ∈D(p), the
aggregate utility 𝜋(x*, p) equals the aggregate indirect utility
u(p). The graphical interpretation of the aggregate indirect
utility function u(p) is the intercept of the tangent at v(x*)
with the ordinate.

We can now compute the quantity of good x that gen-
erates maximum utility at prices p. In our illustrative
example with v(x) = ln(x+ 1), the aggregate utility 𝜋(x,
p) = ln(x+ 1)− ⟨p, x⟩ at given prices p is maximized when
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FIGURE 1 Graphical representation of v (x) = ln(x+ 1) with tangent at

v (x*)

𝜕𝜋 /𝜕x = 1/(x+ 1)− p = 0. This means, at a price of p = 1/3
for example, the total utility 𝜋 is maximized for a demand
of x* = 2. Thus, the aggregate indirect utility function at
prices p = 1/3 equals u(1/3) = 𝜋(2, 1/3) = ln(3)− 2/3.
The concave conjugate (or Legendre transformation) of v
is defined as v•


(p) = minx{⟨p, x⟩ − v(x)}, which is the

aggregate indirect utility function multiplied by −1. We also
note that convex and concave conjugates are connected via
v•

(p) = −(−v)∗(−p), so u(p) = (−v)*(−p). From these

results, we can make the following connection: In order to
construct the concave conjugate v•


(p) of v(x) = ln(x+ 1) for

a fixed p, we must calculate the minimum of ⟨p, x⟩− ln(x+ 1).
Taking the derivative, we see that a minimizing x must solve
x = 1/p− 1, so we get v•


(p) = 1− p+ ln(p) and consequently

u(p) = −v•

(p) = p − ln(p) − 1. For a given price of p = 1/3

the reader may verify that the bidders’ aggregate indirect util-
ity equals u(1/3) = 1/3− ln(1/3)− 1 = ln(3)− 2/3, which is
in line with our calculations above.

Unlike in this single-item example, the price p is not known
in an auction setting. Instead, the auctioneer tries to find a
price vector p* for which the supply s is a maximizer of the
aggregate utility function 𝜋(x, p*). Note that such a p* is
a Walrasian equilibrium price vector, because s maximizes
𝜋(s, p*) = v(s)− ⟨p*, s⟩ and the aggregate demand of the
bidders equals the supply s.

We will now return to a market with multiple divisible
goods k ∈ . First, we introduce important notions from
convex analysis.

Definition 2 Let f : Rd →R∪ {+∞} be a
convex function. The subdifferential of f at x is
the set of all tangents of f at x:

𝜕f (x) = {y ∈ R
d|f (x′) ≥ f (x) + ⟨y, x′ − x⟩∀x′ ∈ R

d}.

Any element of 𝜕f (x) is called a subgradient. The convex
conjugate or Legendre transform of f is the convex function

f ∗(y) = sup
x∈R

d
⟨y, x⟩ − f (x).

Under additional mild assumptions on the convex func-
tion f , the conjugate of the conjugate is again f , f ** = f ,
and subdifferentials of f and f * are connected in the follow-
ing way: y ∈ 𝜕f (x) ⇔ x ∈ 𝜕f *(y). For more details, we refer
to Rockafellar (2015). The concave conjugate defined above
and the convex conjugate are related as follows: If g is con-
cave, then g•(y) = −(−g)*(−y). In particular, we have for
the indirect utility function u(p) = (−v)*(−p). We make
the following important observation: The bundle x is in the
demand set D(p), if and only if v(x)− ⟨p, x⟩≥ v(x′)− ⟨p,
x′⟩ for all x′ ∈ R

||. By rearranging terms we see that this
is equivalent to −v(x′)≥−v(x)+ ⟨−p, x′ − x⟩ and thus to
−p∈ 𝜕(−v)(x). Convex analysis tells us that this is equivalent
to x∈ 𝜕(−v)*(−p) = − 𝜕u(p). Consequently, demand sets
are equal to subdifferentials of the indirect utility function—a
fact that allows us to interpret auctions as descent algorithms.

The Lyapunov function was a central concept already in
the early literature on general equilibrium theory (Arrow &
Hahn, 1971). The same function plays a central role in more
recent auction designs for markets with indivisible goods
(Ausubel, 2006). Since this function plays such a central role,
we introduce it in detail for the continuous case.

Definition 3 (Lyapunov function). The Lya-
punov function is defined as L(p) =

∑
i∈ui(p)+⟨p, s⟩, where s is the supply and ui(p) is the indi-

rect utility function of bidder i∈ at prices p.

The Lyapunov function has its roots in the dynamical sys-
tems literature (La Salle & Lefschetz, 2012). Since the indi-
rect utility ui(p) is convex in p, also the Lyapunov function is
convex, because it is the sum of convex functions. For con-
vex functions such as L(p) the vector p* minimizes L iff 0 is
a subgradient at p*. The first-order condition for L(p) yields
−
∑

i∈xi + s = 0, where xi ∈ Di(p).
∀i∈. In words, the prices are minimized when supply

equals demand:

Proposition 1 A vector p* ∈Rm is a Wal-
rasian equilibrium price vector for supply s if
and only if it is a minimizer of the Lyapunov
function L(p) = u(p)+ ⟨p, s⟩.
Proof If there is a Walrasian equilibrium, then∑

i∈xi = s and xi ∈ Di(p*) need to hold. The
minimizer p* of L(p) requires that 𝜕L(p) =
s −

∑
i∈xi = 0, which is equivalent to the

first condition of a Walrasian equilibrium. Also,
when L(p) =

∑
i∈maxxi{vi(xi) − ⟨p, xi⟩} +⟨p, s⟩ attains the minimum, then each bidder is

assigned a bundle xi that maximizes her util-
ity vi(xi)− ⟨p, xi⟩. This implies xi ∈ Di(p*) for
all i, so that the second condition of a Wal-
rasian equilibrium is fulfilled. Thus, if L(p) is
minimized then both conditions of a Walrasian



BICHLER ET AL. 501

equilibrium are satisfied. By reversing the argu-
ment it becomes evident that any price vector p*

supporting s in a Walrasian equilibrium is also
a minimizer for L(p). ▪

Similar results can be found in Ausubel and Mil-
grom (2006) or later in Murota (2016). One way to find
Walrasian equilibria is now to minimize the Lyapunov func-
tion. Since we can interpret the subdifferential of ui at price
p as the demand set at this price—for an auction setting it is
natural to utilize standard subgradient methods for (approx-
imately) minimizing L(p)—computing subgradients is then
equivalent to asking bidders for their demand sets at a given
price. Note that it is in general not possible to compute exact
minimizers to general convex functions—algorithms for min-
imizing a convex function f can in general only provide
complexity bounds for finding an 𝜀-approximate solution x′,
in the sense that

f (x′) ≤ 𝜀 + min
x

f (x).

Note that in general x′ does not even have to be close to the
true minimizer x without additional assumption on f . Since
the aim of our treatment of divisible economies is mainly to
motivate the ideas in the indivisible case, we will not go into
more detail here. If no additional regularity assumptions on
L are imposed, it can be shown that finding 𝜀-approximate
solutions has a worst-case running time of Θ(1/𝜀2) (Nes-
terov, 2018). Interestingly, for markets with indivisible goods
where Walrasian equilibria exist, we will show that the Lya-
punov function equals the dual of the allocation problem.

Central results of convex economic theory with divisi-
ble goods are reasonable approximations to large economies
where nonconvexities vanish in the aggregate (Starr, 1969).
However, most markets are such that indivisibilities and non-
convexities matter. As one would assume, the analysis of
markets with indivisible items has proven much harder.

4 EXISTENCE OF WALRASIAN
EQUILIBRIA WITH INDIVISIBLE GOODS

In this section, we discuss sufficient and necessary condi-
tions for the individual value functions of bidders such that
Walrasian equilibria exist in markets with indivisible goods.

4.1 Conditions on aggregate value functions

A simple multi-item market with remarkable properties is the
assignment market by Shapley and Shubik (1971). In assign-
ment markets each bidder can bid on multiple items but wants
to win at most one (aka. unit-demand). As a consequence,
the allocation problem reduces to an assignment problem,
that is, the problem of finding a maximum weight match-
ing in a weighted bipartite graph. On an aggregate level, the
LP relaxation of the assignment problem is always integral.
This is a consequence of the unit demand on an individual

level and the resulting total unimodularity of the constraint
matrix, and this is a sufficient condition for the existence
of Walrasian prices. The environment of assignment mar-
kets allows for incentive-compatible auctions. Besides, sim-
ple ascending clock auctions yield bidder-optimal Walrasian
prices (Demange et al., 1986).

4.1.1 The allocation problem
Let us first extend the assignment market to a more general
multi-item, multi-unit market which allows for package bids.
Let i ⊆ Z

m
≥0 denote all bundles for which bidder i submit-

ted a bid. For simplicity, we make the natural assumption that
every bidder submits a bid with value 0 for the empty bun-
dle. Let zi(x) ∈ {0, 1} be a binary decision variable denoting
whether bidder i wins bundle x ∈ i. The allocation or win-
ner determination problem WDP can then be written as an
integer program as follows:

max
∑
i∈

∑
x∈i

vi(x)zi(x) (WDP)

s.t.
∑
x∈i

zi(x) ≤ 1 ∀i ∈  (𝜋i)∑
i∈

∑
x∈i

x(k)zi(x) ≤ s(k) ∀k ∈  (p(k))

zi(x) ∈ {0, 1} ∀i ∈ ,∀x ∈ i

For a given supply s the WDP determines an allocation of
bundles to bidders maximizing social welfare. The LP relax-
ation RWDP in standard form replaces zi(x) ∈ {0, 1} by
zi(x) ≥ 0 and introduces additional slack variables. We use the
standard form with slack variables (ai, bk) because it will be
helpful in our algorithmic treatment of the subject.

max
∑
i∈

∑
x∈i

vi(x)zi(x) (RWDP)

s.t.
∑
x∈i

zi(x) + ai = 1 ∀i ∈  (𝜋i)∑
i∈

∑
x∈i

x(k)zi(x) + bk = s(k) ∀k ∈  (p(k))

zi(x), ai, bk ≥ 0 ∀i ∈ ,∀x ∈ i,∀k ∈ 

In contrast to the assignment problem where bidders have
unit demand, the RWDP does not yield integer solutions in
general.

Example 1 Consider a market with three
items  = {A,B,C} and two bidders with val-
uations v1 and v2

xø xA xB xC xAB xAC xBC xABC

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

v1(x) 0 1 2 1 2 2 2 2

v2(x) 0 1 2 2 3 2 3 3

The optimal solution of the RWDP
given these valuations is fractional:
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z1(xB) = z1(xAC) = z2(xC) = z2(xAB) = 0.5 with
all other decision variables set to 0. The opti-
mal value of the RWDP with respect to this
fractional solution is 4.5. An optimal integral
solution (e.g., assigning bundle xAC to the first
and xB to the second bidder) only leads to a
social welfare of 4.

Let us also introduce the dual DRWDP of the RWDP.

min
∑
i∈

𝜋i +
∑
k∈

s(k)p(k) (DRWDP)

s.t. 𝜋i +
∑
k∈

x(k)p(k) ≥ vi(x) ∀i ∈ ,∀x ∈ i (zi(x))

𝜋i ≥ 0 ∀i ∈  (ai)
p(k) ≥ 0 ∀k ∈  (bk)

We will draw on these models in the subsequent sections.

4.1.2 Integrality of the linear program
Bikhchandani and Mamer (1997) describe a multi-item,
single-unit market. Their central theorem shows that there
exist clearing prices for the indivisible single-unit problem if
and only if the RWDP has an integer solution. In this case, the
set of equilibrium prices is the set of solutions to the dual LP
projected to the price coordinates. The result can be proven
via the strong duality theorem in linear programming (Blum-
rosen & Nisan, 2007). As was already noted by Bikhchandani
and Mamer (1997), the result for multi-item, multi-unit mar-
kets also directly follows from their result, by considering
each of the multiple units as separate items. As the proof is
a particularly nice application of duality theory, we provide
a direct proof in the Appendix. Note that this theorem proves
the welfare theorems from general equilibrium theory (see
Theorem 1).

Theorem 2 Walrasian prices exist for the
supply s if and only if the RWDP has an optimal
integral solution.

The proof can be found in Appendix A.
As indicated, the RWDP typically does not yield an inte-

gral solution, and there can be a significant integrality gap
between the objective function value of the RWDP and that
of the optimal integer program WDP. In the next sections,
we will discuss conditions on the individual value functions,
which yield integral solutions of the RWDP and Walrasian
prices.

Before we do this, let us return to the Lyapunov function
that has proven so helpful in our analysis of markets with
divisible goods. A minimizer to this function yielded the
Walrasian prices in Section 3, where we analyzed markets
with divisible goods. It turns out that the Lyapunov func-
tion is actually equivalent to the DRWDP, as we show in the
following proposition.

Proposition 2 A vector p* ∈Rm minimizes
the DRWDP if and only if it is a minimizer of the
Lyapunov function L(p) = u(p)+ ⟨p, s⟩.
Proof We can substitute the utilities 𝜋i in
the dual objective function min

∑
i∈𝜋i +∑

k∈s(k)p(k) by the tight dual constraints 𝜋i =
vi(x) −

∑
k∈x(k)p(k) of the optimal DRWDP

and get the following convex function:

min
p

∑
i∈

max
x∈Z

m
≥0

[
vi(x) −

∑
k∈

x(k)p(k)

]
+
∑
k∈

s(k)p(k). (4.1)

Note that this is equivalent to mini-
mizing the Lyapunov function L(p) =∑

i∈ui(p) + ⟨p, s⟩. Obviously, ⟨p, s⟩ in L(p)
is equal to

∑
k∈s(k)p(k), and ui(p) equals

maxx∈Z
m
≥0

[
vi(x) −

∑
k∈x(k)p(k)

]
for every bid-

der i. Since the equivalence of the Lyapunov
function and the DRWDP holds for any price
vector p, minimizing prices of the Lyapunov
function also constitutes a minimal solution to
the DRWDP and vice versa. ▪

In summary, both the Lyapunov function and the LP
approach yield equilibrium prices, and such prices are min-
imizers of both problems. We will leverage this insight,
when we analyze auction algorithms to solve the RWDP in
Section 5.

4.2 Conditions for individual value functions

In practical applications a market designer often wants to
understand which assumptions on the individual value func-
tions vi allow for integer solutions of the LP relaxation and
Walrasian prices. Discrete convex analysis identifies classes
of convex functions defined on a subset of the discrete lat-
tice Zm, which allow for integrality and efficient optimization
algorithms.

First, we discuss single-unit, multi-item auctions. There
are several classes of integrally convex functions such as
separable-convex functions on Zm or gross substitutes set
functions on {0, 1}m, which yield a discrete concave aggre-
gate value function v and integral solutions of the RWDP,
such that Walrasian equilibria exist.

4.2.1 Single-unit multi-item auctions
Let us first define monotonicity and submodularity, two
well-known properties of set functions that allow for efficient
function minimization.

Definition 4 For a finite set  of items, the
set function v ∶ 2 → R is

• monotone if v(S)≤ v(T) for all S,T ⊆  with
S⊆T ,
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• submodular if v(S ∪{k})− v(S)≥ v(T
∪{k})− v(T) for all S,T ⊆  with S⊆T and
for all k∉T .

In the above definition, submodularity can be understood
as diminishing marginal values. Alternatively, submodularity
can be defined as v(S)+ v(T)≥ v(S ∪ T)+ v(S ∩ T) for all
S, T . The vector notation v : {0, 1}m →R in the single-unit
case maps a set S to a vector x ∈ {0, 1}m by setting x(k) = 1
whenever k ∈ S and x(k) = 0 otherwise.

It is well-known that the minimization of unconstrained
submodular functions can be done in polynomial time, for
example via the ellipsoid method (Grötschel et al., 1981).
The ellipsoid method is notoriously slow in practice. How-
ever, there are also more effective algorithms such as the
Fujishige-Wolfe algorithm (Chakrabarty et al., 2014) and
specialized subgradient methods (Chakrabarty et al., 2017).
Unfortunately, even when submodularity and monotonicity
are satisfied, this does not guarantee the integrality of a
welfare maximization problem such as the RWDP.

Example 2 The reader may verify that the
valuation functions of both bidders in example 1
satisfy monotonicity and submodularity. How-
ever, the optimal solution of the RWDP is not
integral.

The subset of submodular valuations called gross substi-
tutes valuations, however, has this desirable property. Gross
substitutes roughly means that a bidder regards the items as
substitute goods or independent goods but not complementary
goods.

Definition 5 (Gross substitutes, GS). Let p
denote the prices on all items, with item k
demanded by bidder i if there is some bundle
S, with k ∈ S, for which S maximizes the util-
ity vi(S′) −

∑
j∈S′p(j) across all bundles S′ ⊆ .

The gross substitutes condition requires that, for
any prices p′ ≥ p with p′(k) = p(k), if item
k ∈  is demanded at the prices p then it is still
demanded at p′.

The definition includes both substitute goods and indepen-
dent goods, but rules out complementary goods.2

Example 3 Consider a market with three
items  = {A,B,C} and a single bidder with a
valuation function v fulfilling the gross substi-
tutes condition

xø xA xB xC xAB xAC xBC xABC

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

v(x) 0 1 2 3 3 3 5 5

2Sometimes the word “gross” used by Kelso and Crawford (1982) is omitted,
but it is useful to distinguish the single-unit case from substitutes valuations
in other environments, such as the strong substitutes definition that we will
introduce later.

At prices p = (0, 1, 2) the bidder’s indirect
utility is u(p) = 2 and the bidder’s demand set
is given by D(p) = {xAB, xBC, xABC}, that is,
items A, B, and C are demanded as for each item
there exists at least one bundle in the demand
set containing the item. If the price for item A
is raised to 1 but stays constant for items B and
C, then the gross substitutes condition implies
that items B and C must still be demanded at
the new prices p′ = (1, 1, 2). This is obviously
true as the demand set at the new prices p′ is
given by D(p′) = {xBC}. Note that price vectors
p and p′ were only chosen for illustrative pur-
poses. In fact, valuation function v satisfies the
gross substitutes condition for any price vectors
p, p′ ∈ R

3
≥0 with p′ ≥ p.

Kelso and Crawford (1982) show that if all agents have
GS valuations, then a Walrasian equilibrium always exists,
which implies that the RWDP has an optimal integral solu-
tion. Ausubel and Milgrom (2002) prove that a bidder has
GS valuations if and only if the indirect utility function u is
submodular. Gross substitutes appear to be a rather restricted
type of valuations, but it contains important subclasses such
as unit-demand valuations (Shapley & Shubik, 1971) and
additive valuations. Gul and Stacchetti (1999) show that GS
excludes complementarity between goods and show equiva-
lence with the so called single improvement property. The
latter property states that whenever a bundle is not opti-
mal at the given prices, then a better bundle can be found
which is derived from the original one by performing any
of the following operations: removing an item, adding an
item, or doing both. Leme (2017) provides a survey of the
extensive literature on the gross substitutes condition and
its alternative definitions for multi-item, single-unit markets,
and show that additive valuations ⊂ GS⊂ submodular valu-
ations⊂ subadditive valuations. We also refer to Shioura and
Tamura (2015) for an extensive survey of GS.

Sun and Yang (2006) identify the gross substitutes and
complements (GSC) condition, which also guarantees for
Walrasian equilibria in single-unit, multi-item markets. It
describes an exchange economy with two classes of goods,
where each class only contains substitutes, but there are com-
plements across these classes of goods. Teytelboym (2014)
generalizes the GSC condition in the sense that goods are par-
titioned into more than two classes. His generalized version
of the GSC condition is satisfied if it is possible to partition
goods into several classes so that whenever considering the
bidders’ valuations for items contained in only two of these
classes in isolation, there exist some bidders for which these
valuations satisfy the GSC condition.

4.2.2 Multi-unit ulti-item auctions
Let us now concentrate on more general conditions for x ∈
Z

m
≥0 rather than x ∈ {0, 1}m. A⊂Zm is integrally convex if
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A= (conv A)∩Zm. First, we define the convex closure f of f as

f (x) = sup
p∈R

m
,𝛼∈R

{⟨p, x⟩ + 𝛼 | ⟨p, y⟩ + 𝛼 ≤ f (y) ∀y ∈ Z
m}.

Geometrically, the epigraph of f is the convex hull of the
epigraph of f . If the convex closure coincides with f on the
set of integer vectors, that is, if f (x) = f (x) for all x∈Zm, f is
called convex-extensible. In the same way, we can define the
concave closure of f by−(−f ). The definition can be restricted
to the integral neighborhood of a bundle x∈Rm and is then
referred to as a local convex extension f̃ of f (Murota, 2003,
Chap. 3). Formally, set N(x) = {y ∈ Z

m | ⌊x(k)⌋ ≤ y(k) ≤⌈x(k)⌉∀k = 1, … ,m}. Then the local convex extension is
given by

f̃ (x) = sup
p∈R

m
,𝛼∈R

{⟨p, x⟩ + 𝛼 | ⟨p, y⟩ + 𝛼 ≤ f (y) ∀y ∈ N(x)}.

Definition 6 A function f : Zm →R is called
integrally convex if the local convex extension
of f is convex, or integrally concave if the func-
tion − f is integrally convex.

Integrally convex functions share with convex functions
the property that local minima are also global minima
(Murota, 2016). We have already seen in the divisible case
that concavity of the valuation functions is necessary for equi-
librium prices to exist. We also want to make this connection
here in the indivisible case, by explaining how convexity is
related to integrality of the WDP—which is necessary and
sufficient for the existence of equilibrium prices. To start
with, consider the aggregate valuation function v(s), given
by the value of the WDP for the supply s, and the “relaxed”
aggregate valuation function ṽ(s), given by the value of the
RWDP at s. Note ṽ is well-defined for all real supply vec-
tors s≥ 0 and attains finite values at each such s. A central
observation is the following: ṽ is the concave extension of
v . This shows that v is concave-extensible, and thus vI = ṽ
if and only if for every integral supply vector s, the RWDP
has an integral solution, which—as we have seen—is equiva-
lent to the existence of equilibrium prices. While the stronger
assumption of integral concavity is not necessary for the exis-
tence of equilibrium prices, it is not hard to imagine, that this
property is of importance for the algorithmic problem of com-
puting equilibrium prices. Loosely speaking, since the value
of the concave extension can then be evaluated at any point s
by considering an easy to characterize neighborhood of s, the
computation of subgradients of v gets much simpler. Unfor-
tunately, concave extensibility, and even integral concavity of
the individual valuation functions does not suffice to guaran-
tee concave extensibility of the aggregate valuation function,
or equivalently, existence of equilibrium prices. It is thus of
central importance to identify conditions on the individual
valuations that imply concave extensibility of the aggregate
valuation, or equivalently integrality of the RWDP.

Definition 7 A function f : Zm →R∪ {∞} is
said to be M♮-convex if for x, y ∈ domf and
j ∈ supp+(x − y)

(i) f (x)+ f (y)≥ f (x−1j)+ f (y+1j) or
(ii) f (x)+ f (y)≥ f (x−1j +1k)+ f (y+1j −1k)

for some k ∈ supp−(x − y).

A function f is M♮-concave if the function −f
is M♮-convex. A set X ⊆Zm is an M♮-convex set
if its indicator function 𝛿X is M♮-convex.

Here 1j denotes the jth unit vector, whereas the posi-
tive and negative support are defined as supp+(x) = {k ∈
|x(k) > 0} and supp−(x) = {k ∈ |x(k) < 0}, respec-
tively. The effective domain is domf = {z ∈ Z

m|f (z) ≠

∞}. An M♮-convex function is integrally convex, and thus
convex-extensible (Murota, 2003, Theorem 6.42). Since the
exchange property (ii) is closely related to the exchange axiom
of a matroid, the M stands for “matroid”. It means that if we
add the jth unit-vector to one point x and exchange it with
the ith unit vector of another point y, then the function value
decreases or stays the same. Fujishige & Yang, 2003 showed
that for the single-unit case the GS condition is equivalent to
M♮-concavity.

Theorem 3 (Fujishige and Yang (2003)). A
value function v : {0, 1}m →R satisfies the GS
condition if and only if it is an M♮-concave
function.

This equivalence extends to multi-unit extensions of the
gross substitutes property. Milgrom and Strulovici (2009)
distinguish between weak and strong substitutes. The weak
substitutes condition can be seen as the natural extension of
the original gross substitutes property to the multi-unit set-
ting by simply quantifying the demand for every item. Note
however, that weak substitutes do not correspond to M♮ func-
tions anymore (Shioura & Tamura, 2015). The strong sub-
stitutes condition, on the other hand, transforms a multi-unit
to a single-unit valuation function by treating each copy of
a good as an individual item. Whenever the corresponding
single-unit valuation function fulfills the original gross substi-
tutes property (as defined by Kelso and Crawford (1982)), the
multi-unit valuation function satisfies the strong substitutes
condition.

Definition 8 (Strong substitutes, SS). Let
 = {k1, k2, … , km} be the set of items with
di ∈N denoting the number of units available
of item ki. Treating each copy of a good as an
individual item leads to the definition of a set
s = {(ki, z)|ki ∈ , 1 ≤ z ≤ di}. A multi-unit
valuation function v ∶ N

m
0 → R can then be

transformed to a single-unit valuation function
vs ∶ {0, 1}s → R by setting vs(xs) = v(x)
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for xs ∈ {0, 1}s where x(i) =
∑di

z=1 xs(ki, z).
The valuation v fulfills the strong substitutes
condition if vs is a gross substitutes valuation
function.

There exist many equivalent definitions of the strong substi-
tutes condition, among them the binary single-improvement
property as shown by Milgrom and Strulovici (2009).

Danilov et al. (2001) and Milgrom and Strulovici (2009)
show that a Walrasian equilibrium exists for every finite set
of strong substitutes valuations. Ausubel (2006) shows that in
case of strong substitutes valuations the Lyapunov function is
submodular which ensures the existence of a bidder-optimal
Walrasian price vector. While the strong substitutes property
is a sufficient condition for the existence of Walrasian equi-
libria, it is not a necessary one and alternatives exist.

Shioura and Yang (2015) extend the gross substitutes and
complements (GSC) condition to a multi-unit and multi-item
economy with two classes of items, where units of the same
type are substitutable, whereas goods across two classes are
complementary. When there is only one class of indivisible
goods, their generalized gross substitutes and complements
(GGSC) condition becomes identical to the strong-substitute
valuation of Milgrom and Strulovici (2009). Further, if each
type of good has only one unit, it becomes the gross substitute
condition of Kelso and Crawford (1982).

Baldwin and Klemperer (2019) provide an innovative
approach characterizing preferences where Walrasian equilib-
ria exist. Instead of working with the value functions, their
framework is based on properties of the geometric structure of
the regions in the price space where a bidder demands differ-
ent bundles. A demand type is defined by a list of vectors that
give the possible ways in which the individual or aggregate
demand can change in response to a small price change. Intu-
itively, given a valuation vi, consider the set i = {p|Di(p)| >
1} of all prices at which more than one bundle is in the
bidder’s demand set. i can be shown to form a so-called
polyhedral complex, and in particular is a union of hyper-
planes, which splits price space into multiple full-dimensional
regions where a unique bundle is demanded, which are called
unique demand regions (UDRs). Now given a set of integral
vectors, vi is of the demand type defined by  if all normals
of all hyperplanes in i are integral multiples of vectors in
.

3 We say that the demand type defined by  is unimodu-
lar if any linear independent subset of vectors in  can be
extended with integral vectors to a basis with determinant
in {−1, 1}. It can be shown, that if participants’ valuations

3The normals of these hyperplanes have the following economic meaning:
Consider a path in price space starting in some UDR. Each time the path
crosses an indifference hyperplane, and thus entering another UDR, the
demanded bundle changes by the normal vector of the crossed hyperplane,
which points into the opposite direction of the price path. In Figure 2 for
example, if the price path goes from the UDR (0, 1) to the UDR (1, 0) in a
straight line, we cross the hyperplane with normal (1, −1), and of course (1,
0) = (0, 1) + (1, −1).

(0,0)

(1,1)
(0,1)

(1,0)

1

2

FIGURE 2 Illustration of i (gray). For each indifference hyperplane, we

indicate one of the two normal vectors associated with this hyperplane. We

can directly see that these normals all lie in  as defined in Example 4. The

tuples (x1, x2) indicate the bundles that are demanded in the respective UDRs

are concave and all have the same unimodular demand type
, then a Walrasian equilibrium exists. There are several
proofs for the unimodularity theorem, see Baldwin and Klem-
perer (2019); Danilov et al. (2001); Tran and Yu (2015). The
authors further show that an equilibrium is guaranteed for
more classes of pure complements than of pure substitutes
preferences. Note that while all agents being drawn from an
equal certain valuation type (SS, GGSC, pure complements)
allows for Walrasian equilibria, agent valuations drawn from
a mixture of these types in general do not allow for one. Uni-
modularity of the demand types is a sufficient condition for
the existence of Walrasian equilibria. Remarkably, it is also
necessary: Given valuations of the agents, there exist equilib-
rium prices for every given supply if and only if the agents’
demand types are unimodular. Again, whenever the unimod-
ularity condition holds, the optimal solution to the RWDP is
integral.

Example 4 Consider a market with two items
 = {A,B} and a single bidder with a valuation
function v, given by the following table

xø xA xB xAB

x (0, 0) (1, 0) (0, 1) (1, 1)

v(x) 0 2 3 4

The set  is shown in Figure 2. We can see
that v is of the demand type given by  =
{±(1, 0),±(0, 1),±(1,−1)}. It can be checked
that  is actually unimodular.

4.2.3 From individual to aggregate value functions
We now want to understand when we can expect individ-
ual value functions vi to yield aggregate value functions
v that are integrally concave. The aggregation of value
functions is referred to as convolution (see Section 3).
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FIGURE 3 For a market with two units of a single indivisible item x, the

figure shows the aggregate valuation function v (x), the aggregate utility

function u , and the Lyapunov function L (p). The Lyapunov function is

minimized at p = 2, denoting the Walrasian equilibrium prices. Note that

p = 2 is also the supergradient of v (x) at x = 2

Murota (2016)[p. 196] shows that if the individual value
functions vi of all bidders i∈ are M♮-concave, also their
convolution is M♮-concave. Similarly, one can define the
aggregate demand correspondence D(p), which is equal to
the Minkowski sum

∑
i∈Di(p).

For M♮-concave functions there is a supergradient at any
point that determines a Walrasian price p. To show this,
let us consider an arbitrary bounded, integrally convex set
A ⊂ Z

m
≥0. Let v : A→Z be an M♮-concave valuation on

this set. A bundle x ∈ A is demanded at price p∈Rm iff
v(x)− ⟨p, x⟩≥ v(x′)− ⟨p, x′⟩ ∀ x′ ∈A, which is equivalent
to v(x)+ ⟨p, x′ − x⟩≥ v(x′) ∀ x′ ∈A (as for divisible goods
in Section 3). Figure 3 now illustrates an integrally concave
value function on the left and the resulting indirect utility
function u(p) as well as the Lyapunov function L(p) for a
single item on the right.

With indivisible items and an integrally concave aggregate
value function v , bundle x is demanded at p if and only if p
is a supergradient of v at x. The superdifferential 𝜕v(x) of
an integrally concave function v ∶ Z

m
≥0 → R ∪ {−∞} at

x∈ dom v is defined as

𝜕v(x) = {p ∈ R
m
≥0 | v(y) − v(x) ≤ ⟨p, y − x⟩ ∀y ∈ Z

m
≥0}.

The individual and aggregate value functions are nondecreas-
ing such that the gradient p* of the superdifferential is p* ≥ 0.
With an integrally concave value function v there exists an
integral equilibrium price vector p* (Murota et al., 2016).
The integrality of the prices follows from the fact that an
integer-valued M♮-concave function v on Z

m
≥0 has an inte-

gral subgradient at every point x in dom v . As both v(x) and
the subgradient at x are integral, the tangent at v(x) has an
integral slope p, which can be verified in Figure 3.

An underlying assumption in the study of competitive
equilibria is that agents are price-takers, that is, agents

honestly report their true demand in response to prices in
each round of an auction. Mechanism design, a line of
research initiated by Hurwicz (1972), wants to understand
how such markets perform when agents are strategic about
their demands. Unfortunately, Gul and Stacchetti (1999)
showed that even if goods are substitutes, Walrasian markets
are not incentive-compatible. The assignment market, where
bidders have unit-demand is an exception where straightfor-
ward bidding is actually an ex post equilibrium (Shapley &
Shubik, 1971; Demange et al., 1986).

5 ALGORITHMIC AUCTION MODELS

Auctions can be understood as algorithms to solve a welfare
maximization problem. Some algorithms provide models that
allow us to understand when an auction can be expected to be
efficient and when it yields a Walrasian equilibrium.

The auction proposed by Ausubel (2005) for strong substi-
tutes valuations follows a greedy steepest descent algorithm to
minimize the (integrally convex) Lyapunov function (Murota
& Tamura, 2003). This algorithm has an intuitive interpreta-
tion as an ascending auction: subgradients of the Lyapunov
function at p are oversupplies at this price: 𝜕L(p)= s−D(p).4

Knowing that the Lyapunov function is equivalent to the
DRWDP (see Proposition 1), the overall auction can now be
described as a primal-dual algorithm to solve the RWDP. For
the price minimization, both algorithms require all subgradi-
ents at each point, that is, the entire demand set needs to be
revealed. A specific version of a primal-dual algorithm yields
the same steps.

We focus on primal-dual algorithms as a consistent algo-
rithmic framework to model Walrasian auction mechanisms.
Let us first describe the auction by Ausubel (2005) as a
steepest descent algorithm before we introduce the overall
primal-dual auction framework.

5.1 The auction by Ausubel (2005)

The auction algorithm starts with an arbitrary price vector p
below the bidder-optimal Walrasian prices, possibly p(k) = 0
for all k ∈ . The algorithm then searches iteratively in
each round t ∈ T for a subset of goods S ⊆  such that
L(pt)−L(pt +1S) is maximized. Here, pt denotes the prices
in round t. This is equivalent to determining the direction of
steepest descent to find the global minimum of this function:

4Note that subgradient and steepest descent algorithms for convex minimiza-
tion are equivalent for differential functions but not for the minimization of
discrete functions as in the case of markets with indivisible goods. The dif-
ference between the two algorithms is that the steepest descent algorithm
evaluates all subgradients at a point, while subgradient algorithms use only a
single subgradient. This is equivalent to eliciting the entire demand demand
correspondence or only a single bundle from the demand correspondence. As
a result, the primal-dual algorithm needs fewer iterations to converge to the
exact solution (de Vries et al., 2007).
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FIGURE 4 A primal-dual algorithm following Papadimitriou and Steiglitz (1998)

(i) At pt the auctioneer asks each bidder i∈

for her entire demand set Di(pt).
(ii) For all potential price update vectors p̃ ∈

{1S ∶ S ⊆ } the auctioneer determines
each bidder’s decrease of the indirect
utility. The auctioneer chooses the price
update p̃ ∈ {1S ∶ S ⊆ } such that the
Lyapunov function is decreased the most,
that is, L(pt) − L(pt + p̃) is maximized. In
case there are multiple such minimizers,
the p̃ with the smallest number of posi-
tive entries is selected. This price vector is
referred to as the minimal minimizer and is
guaranteed to be unique.

(iii) If no nonempty subset S can be found
satisfying L(pt)−L(pt +1S)> 0, then the
submodularity of the Lyapunov function
guarantees that pt is the bidder-optimal
Walrasian price vector and the algorithm
terminates. Otherwise the price pt+1 is set
to pt + p̃ and the algorithm continues.

With integer valuations, L(p) decreases by at least 1 in each
iteration and therefore converges after finitely many steps.
Murota et al. (2016) analyze the convergence and number of
iterations of this steepest descent algorithm. In particular, if
the auction algorithm is initialized with p(k) = 0 for all k ∈ 

and p* is the minimal equilibrium price, the algorithm termi-
nates in exactly ||p∗||∞ = maxk∈|p∗(k)| iterations. The price
update step described in this subsection can now be inter-
preted as an operation in a primal-dual algorithm to solve the
WDP, as we show next.

5.2 The primal-dual auction framework

Let us now describe the auction by Ausubel (2005) in
the context of the more general primal-dual framework.
Primal-dual algorithms (Papadimitriou & Steiglitz, 1998) can
be used to compute solutions of the RWDP and DRWDP (see
Section 4.1.1). Based on a feasible solution of the DRWDP,
one derives a restricted primal RP that determines whether
supply equals demand at these prices or not. If this is not
the case, the dual restricted primal DRP determines the price
increment, which is then added to the current price vec-
tor of the dual DRWDP, before a new restricted primal is

computed. The overall process is illustrated in Figure 4. There
is some flexibility in choosing each iteration’s direction of
price adjustment. In this primal-dual auction framework, we
compute the price update that yields the steepest descent of
the DRWDP.

Instead of solving the RWDP and the DRWDP directly,
the primal-dual algorithm replaces these linear programs by
a series of other linear programs known as the restricted pri-
mal RP and the dual of the restricted primal DRP. As the
primal dual algorithm follows the same price trajectory as
Ausubel’s auction as we will show below, exactly ||p*||∞
iterations must be executed where p* is the minimal equi-
librium price vector (Murota et al., 2016). In each iteration
two linear programs (the RP and DRP) must be solved which
both are of exponential size in the number of goods. Clearly,
the primal dual algorithm does not give any runtime bene-
fits over solving the RWDP and DRWDP directly. However,
executing the primal-dual algorithm instead of solving the
RWDP and DRWDP directly allows to interpret the auc-
tion by Ausubel (2005) in terms of a primal-dual framework.
Moreover, unlike the solution obtained by solving the RWDP
and DRWDP directly, the allocation and prices computed by
the primal-dual algorithm are guaranteed to constitute the
Walrasian equilibrium with bidder-optimal prices.

Let us discuss the algorithm in more detail. In an ascending
auction the components of the initial price vector are set to
p(k) = 0 for all k ∈ . To obtain an initial feasible dual solu-
tion, the dual is solved with these prices to find initial values
for the indirect utility 𝜋i of every bidder i.

With a feasible dual solution, one can exploit the com-
plementary slackness conditions to derive an optimal primal
solution which defines a welfare-maximizing allocation of
bundles to bidders. Naturally, not every feasible dual solu-
tion allows for an optimal primal solution. To check this, one
solves an optimization problem known as the restricted primal
RP problem.

max−
∑
i∈

𝜆ici −
∑
k∈

𝜇kdk (RP)

s.t.
∑
x∈i

zi(x) + ai + ci = 1 ∀i ∈ (𝜋i)∑
i∈

∑
x∈i

x(k)zi(x) + bk + dk = s(k) ∀k ∈ (p̃(k))

zi(x), ai, bk ≥ 0 ∀zi(x) ∈ z,∀ai ∈ a,∀bk ∈ b

zi(x) = 0, ai = 0, bk = 0 ∀zi(x) ∉ z,∀ai ∉ a,
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∀bk ∉ b

ci, dk ≥ 0 ∀i ∈ ,∀k ∈ 

Given a feasible dual solution for the DRWDP, any tight
dual constraint 𝜋i ≥ vi(x) −

∑
k∈x(k)p(k) corresponds to

a bundle x that maximizes the utility of bidder i at prices
p. Thus, the set of tight dual constraints z corresponds to
the bidders’ demand sets. In case the given dual solution is
optimal, the complementary slackness conditions mandate
that whenever the dual constraint has slack, that is, 𝜋i >

vi(x) −
∑

k∈x(k)p(k), the corresponding primal variable zi(x)
defining whether bidder i is allocated bundle x equals zero.
The interpretation of this is that a bidder is never allocated
a bundle not being part of her demand set. Of course, if the
given dual solution is not optimal, there might not exist an
allocation such that each bidder receives a bundle from her
demand set. Therefore, additional slack variables ci and dk are
introduced to the RP that measure by how much the comple-
mentary slackness conditions are violated. A violation may
either occur due to bidder i not being allocated a bundle from
her demand set (ci > 0) or an item k remaining (partially)
unsold (dk > 0). The restricted primal problem tries to find an
allocation in which these violations are minimized. In fact,
when the optimal solution of the RP equals 0, the comple-
mentary slackness conditions are fulfilled so that the current
primal and dual solution constitute a Walrasian equilibrium.
Otherwise, the price of some items needs to be raised.

Complementary slackness conditions must also hold for
the dual constraints 𝜋i ≥ 0 and p(k)≥ 0. We denote the set of
tight dual constraints by a and b respectively. Due to com-
plementary slackness, the primal variable ai must equal zero
whenever the corresponding dual constraint 𝜋i ≥ 0 has slack.
In other words this means that whenever a bidder’s indirect
utility is positive, she must be allocated a nonempty bun-
dle from her demand set. Similarly, complementary slackness
implies that when a price of an item k ∈  is greater than
zero, then slack variable bk must equal zero, which guarantees
that all units of item k are allocated in an optimal solution.

In the primal-dual framework of Papadimitriou and Stei-
glitz (1998) all coefficients 𝜆i and 𝜇k in the objective function
of the restricted primal RP equal 1. Note that as long as 𝜆i
and 𝜇k are chosen to be strictly positive, their specific values
do not influence the termination criterion of the primal-dual
algorithm as one only checks whether the objective equals
zero. However, the particular choice of 𝜆i and 𝜇k affects the
constraints in the dual of the restricted primal DRP, and we
will take advantage of this to find a particular price update
vector when solving the DRP.

In case the RP objective does not equal zero, the current
dual solution of the DRWDP is updated using the solution to
the dual of the restricted primal DRP. Solving the DRP essen-
tially means computing a direction 𝜋, p̃ in which the dual
objective function can be improved the most. We set 𝜋, p̃ such
that it minimizes the function

∑
i∈(𝜋i+𝜋i)+

∑
k∈s(k)(p(k)+

p̃(k)). This is equivalent to finding a subgradient to the Lya-
punov function as we will show below.

As there may exist multiple potential directions (𝜋, p̃) that
minimize the Lyapunov function, we need to make small
adaptions to the DRP such that the gradient found by the
DRP is equivalent to the minimal minimizer in Ausubel’s
auction. For this purpose we introduce additional constraints
0 ≤ p̃(k) ≤ 1 for all k ∈ . As proven in Ausubel (2005),
the Lyapunov function restricted to the unit ||-dimensional
cube {p + p̃ ∶ 0 ≤ p̃(k) ≤ 1 ∀k ∈ } is minimized on the
vertices of this cube. Thus, limiting price updates p̃(k) to the
interval [0, 1] for all k ∈  ensures that the same potential
price updates as in Ausubel’s auction (i.e., {1S ∶ S ⊆ }) are
considered. Note that this also implies that in each iteration of
our primal-dual auction framework the respective prices and
price updates are integer valued.

Another adaption to be made is to chose 𝜆i suitably large
for all i∈ so that the decrease of utility for each bidder i is
unrestricted when raising prices. To guarantee that the gradi-
ent found by the DRP is not only a minimizer of the Lyapunov
function but a minimal minimizer, price penalties 𝜏k > 0 are
added to the objective function that are small enough so that
their impact on the objective value is negligible.

min
∑
i∈

𝜋i +
∑
k∈

(s(k) + 𝜏k)p̃(k) (DRP)

s.t. 𝜋i +
∑
k∈

x(k)p̃(k) ≥ 0 ∀i, x ∶ zi(x) ∈ z (zi(x))

𝜋i ≥ 0 ∀i ∶ ai ∈ a (ai)
𝜋i ≥ −𝜆i ∀i ∶ ai ∉ a (ci)
p̃(k) ≥ 0 ∀k ∶ bk ∈ b (bk)
p̃(k) ≥ −𝜇k ∀k ∶ bk ∉ b (dk)
0 ≤ p̃(k) ≤ 1 ∀k ∈ 

In the following we make the connection between the DRP
and the price update step of Ausubel’s ascending auction
explicit by demonstrating how to transform one approach into
the other. Recall that in Ausubel (2006) the goal is to find a
p̃ ∈ {1S ∶ S ⊆ } leaving all entries of p + p̃ nonnegative
and minimizing

L(p + p̃) − L(p).

Ausubel (2006) shows that for a fixed p̃ it holds that

L(p + p̃) − L(p) =
∑
i∈

max
x∈Di(p)

{
−
∑
k∈

x(k)p̃(k)

}
+
∑
k∈

s(k)p̃(k).

The term maxx∈Di(p)
{
−
∑

k∈x(k)p̃(k)
}

is clearly equal to

min 𝜋i

s.t. 𝜋i ≥ −
∑
k∈

x(k)p̃(k) ∀x ∈ Di(p)

Consequently, by adjusting notation and noting that z rep-
resents the demand set Di(p), we can rewrite the problem of
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minimizing L(p + p̃) − L(p):

min
∑
i∈

𝜋i +
∑
k∈

s(k)p̃(k)

s.t. 𝜋i +
∑
k∈

x(k)p̃(k) ≥ 0 ∀i, x ∶ zi(x) ∈ z

p(k) + p̃(k) ≥ 0 ∀k ∈ 

0 ≤ p̃(k) ≤ 1 ∀k ∈ 

As argued above, all price updates and consequently also the
prices are integral in each step of our primal-dual auction
framework. Hence, the second last set of inequalities can be
replaced by

p̃(k) ≥ 0 ∀k ∶ bk ∈ b

since b represents all indices where p(k) equals 0.
The only remaining difference to the DRP is that we are

missing the inequalities 𝜋i ≥ 0 for ai ∈ a. From the
definition we see, however, that ai ∈ a if and only if the util-
ity of bidder i at price p is 0. But this means that the empty
bundle is in her demand set. Hence, 𝜋i ≥ 0 is actually one of
the constraints 𝜋i +

∑
k∈x(k)p̃(k) ≥ 0. As a result we get that

one step of the Lyapunov minimization approach is exactly
the same as one step of the primal-dual algorithm.

We restricted our attention so far on explaining the
relationship between the primal-dual algorithm and the
ascending version of the tâtonnement process described by
Ausubel (2005). However, similar observations can also be
made for the descending version. The only adaptions to be
made in our argument concern the formulation of the DRP.
Instead of applying positive price penalties 𝜏k in the objective
function, negative ones have to be used to ensure that a max-
imal minimizer is found in each iteration. Furthermore, the
price updates p̃(k) need to be bounded to the interval [−1, 0]
instead of [0, 1]. Of course, this also implies that 𝜇k must be
chosen suitably large, that is, 𝜇k ≥ 1, in order to allow for price
updates of −1.

While the auction described by Ausubel (2005) requires
the bidders’ valuations to satisfy the strong substitutes con-
dition, the primal-dual algorithm also works for other envi-
ronments, in particular for economies where the preferences
of the bidders fulfill the more general GGSC condition. Sun
and Yang (2006) propose the dynamic double-track auction
(DDT) that terminates in a Walrasian equilibrium if bidders
bid straightforwardly and have GSC valuations. Given two
sets S1 and S2 describing two classes of goods, the auction-
eer announces start prices of zero for items in S1 and suitable
high start prices in S2 such that items in S1 are overdemanded
while items in S2 are underdemanded. In the course of the
auction the auctioneer simultaneously adjusts prices of items
S1 upwards but those of items in S2 downwards.

Shioura and Yang (2015) introduce the generalized
double-track auction which is an extension of the DDT to
multi-item multi-unit economies where bidders’ valuations
satisfy the GGSC condition. Their auction starts with an arbi-
trary integral price vector and then proceeds in two phases.

While in the first phase the auctioneer adjusts prices of items
in S1 upwards and prices in S2 downwards, the price update
directions are reversed in the second phase.

Similar to the auction proposed by Ausubel (2005),
the price updates in the generalized double-track auction
correspond to the steepest descent direction of the Lya-
punov function, which can be embedded into a primal-dual
algorithm. Essentially, the primal-dual algorithm for the gen-
eralized double-track auction combines the DRP adaptions
for the ascending and descending version of the auction by
Ausubel (2005) as described above. Let the set S1 and S2

denote the set of items with an upward and downward moving
price trajectory, respectively. While price updates for items
in S1 are bounded to the interval [0, 1], they are restricted to
interval [−1, 0] for items in S2. Similarly, the price penalties
in the objective of the DRP are positive for items in S1 and
negative for items in S2. Once the generalized double-track
auction moves from the first to the second phase, the price
trajectories of items in S1 and S2 are inverted so that the adap-
tions made to the DRP for items in S1 now apply for items in
S2 and vice versa.

5.3 Allocation of items

While our paper focuses on the process of determining equi-
librium prices, of course, the auctioneer must determine an
equilibrium allocation as well. That is, given a target supply
s and an equilibrium price vector p*, we must find alloca-
tions xi ∈ Di(p*) for every bidder, such that

∑
i∈xi = s. Since

we assume access to demand oracles, that is, each bidder i
reports her whole demand set Di(p*) in each iteration of the
auction, and as demand sets only contain integer points, we
could just try every of the finitely many combinations of allo-
cations xi ∈ Di(p*) in order to match the target supply. This
approach is however not very efficient: the number of com-
binations we possibly have to check is Πi∈ |Di(p*)|, which
can clearly be exponential.

The allocation problem can also be interpreted as a flow
problem: Consider the directed graph G= (V , A) consisting of|| ⋅ || vertices bi(k), describing bidder i’s demand of good
k, and || vertices t(k), describing the total supply of good
k. For each i∈ and k ∈ , there is an arc pointing from
t(k) to bi(k). Now consider a flow x on this graph, where xi(k)
denotes the amount of flow from vertex bi(k) to vertex t(k).
We interpret xi(k) as the number of units of good k bidder i
receives. As usually, given a flow x, and a node v in the graph,
the excess at node v is the difference of the flow entering the
node and the flow leaving the node:

𝜕x(v) =
∑

(w,v)∈A
x(w, v) −

∑
(v,w)∈A

x(v,w).

We call the vector 𝜕x the boundary of x. In our above defined
graph, we have 𝜕x(bi(k)) = xi(k) and 𝜕x(t(k)) = −

∑
i∈xi(k).

The total number of goods of type k should be equal to the sup-
ply of good k. Hence, we have the constraint 𝜕x(t(k)) = −s(k).
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Also, each bidder should receive an allocation in her demand
set Di(p*), so (𝜕x(bi(1)), … , 𝜕x(bi(||)) ∈ Di(p∗) should
hold. Thus, the allocation problem can be interpreted as find-
ing a feasible flow with respect to these constraints on the
boundary. In the case of strong-substitutes valuations, the
demand sets Di(p*) are all M♮-convex, so this is an instance
of the M-convex submodular flow problem. Polynomial-time
algorithms have been developed for this problem, many
of them are based on well-known algorithms for min-cost
flows. For an overview, see for example (Murota, 2003,
Ch. 10).

6 SUMMARY AND RESEARCH AGENDA

A number of assumptions are crucial for the existence of
Walrasian equilibria. Apart from (a) integral concavity of the
aggregate value function, (b) the bidders’ valuations need to
be independent of each other, and all bidders need to be pure
payoff maximizers, that is, have a (c) quasilinear utility func-
tion. Also, we assume that (d) the bidders are price-takers and
truthfully reveal their demand correspondence in each round.
With these assumptions we can guarantee Walrasian equilib-
ria. However, these are strong assumptions, which might not
hold in the field.

(i) Bidder valuations in real-world auctions
include complements and substitutes such
that Walrasian equilibria might not even
exist. Competitive equilibria with nonlin-
ear and personalized prices always exist in
ascending auctions under the assumptions
above.5

(ii) Quasilinearity is not always given as
there might exist budget constraints, spite-
fulness, or market-power effects. For
example, if bidders have financial con-
straints, quasilinearity is violated, and
ascending auctions with budget con-
strained bidders have only been analyzed
recently (Gerard van der Laan, 2016; Yang
et al., 2018). Even if one tries to set bud-
get constraints endogenously for bidders,
it might not always be possible to imple-
ment an efficient outcome via an auction
(Bichler & Paulsen, 2018).

(iii) Finally, bidders might not bid straightfor-
ward in a simple clock auction and behave
strategically. A number of papers discusses

5For example, Sun and Yang (2014) introduces an ascending and
incentive-compatible auction in markets with only complements using
non-linear and anonymous prices. Ausubel and Milgrom (2002), Parkes and
Ungar (2000) and de Vries et al. (2007) discuss ascending auctions for
markets where bidders have substitutes and complements and allow for dis-
criminatory and non-linear prices. These auctions are incentive-compatible
if the bidders’ valuations were gross substitutes.

variations or extensions of simple clock
auctions, which yield incentive compati-
bility (Ausubel, 2006). These are, however,
quite different from the simple clock auc-
tions we see in the field.

The assumptions (i)–(iii) above also lead to corresponding
research challenges for the operations research community.

1. Most resource allocation problems analyzed
in operations research (e.g., scheduling
or packing problems) do not satisfy the
assumptions that allow for Walrasian equi-
libria. Duality breaks for nonconvex integer
programming problems and new concepts
for competitive equilibrium prices need to be
derived. The literature on integer program-
ming duality can provide useful insights
and guidance how to derive equilibrium
prices for such nonconvex allocation prob-
lems (Wolsey, 1981).

2. Budget constraints play a major role in many
markets. We need to understand equilibria in
markets where bidders maximize payoff, but
are financially restricted. Very recent results
suggest that budget constraints have a sub-
stantial impact on the computational com-
plexity of the allocation and pricing problem
and require bilevel integer programs which
are known to be Σp

2-hard (Bichler & Wald-
herr, 2019). Overall, it will be useful to
analyze utility models different from the
standard quasi-linear utility function as they
have been observed in advertising and other
domains where bidders might not maximize
payoff but their net present value or return
on investment (Fadaei & Bichler, 2017;
Baisa, 2017; Baldwin et al., 2020). Effective
ways to compute market equilibria in such an
environment still need to be developed.

3. Finally, incentive-compatibility plays an
important role in small markets where par-
ticipants can influence the price. Recent
research tries to design simple ascend-
ing auction and pricing rules that are
incentive-compatible (Baranov, 2018).
Incentive-compatibility is very restric-
tive in most environments. For example,
in markets with purely quasilinear utili-
ties, the Vickrey–Clarke–Goves mechanism
is unique (Green & Laffont, 1979). For
larger markets it can also be useful to
understand weaker notions of robustness
against strategic manipulation (Azevedo &
Budish, 2018).
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Overall, competitive equilibrium theory is closely related
to mathematical optimization and it provides a rich field for
operations research to contribute.
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APPENDIXA.

Proof of Theorem 2. First, let {z∗i (x)}i∈,x∈i be an opti-
mal solution to the RWDP and ({𝜋∗

i }i∈ , {p∗(k)}k∈) be an
optimal solution to the DRWDP. By assumption, the optimal
value of the WDP is equal to the one of the RWDP, so we may
assume that all z∗i (x) are in {0, 1}. We may further assume
without loss of generality that for each bidder i, there exists
exactly one x with z∗i (x) = 1: If z∗i (x) = 0 for all x ∈ i, we
can just set z∗i (0) = 1, where 0 is the empty bundle, without
altering the value of the WDP, since vi(0) = 0. Similarly, if for
some k ∈ ,

∑
i∈

∑
x∈i

x(k)z∗i (x) < s(k), we may distribute
the remaining items of type k arbitrarily among the agents.
This does not decrease the value of the WDP because of
monotonicity of the agents’ valuations. The (possibly altered)
variables z∗i (x) thus constitute an allocation where the whole
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supply is distributed among the agents—so the first criterion
of a Walrasian equilibrium is satisfied. Let us now check that
every bidder receives a bundle in her demand set: If z∗i (x) = 1,
that is, bidder i receives bundle x, we have by complementary
slackness 𝜋i = vi(x) −

∑
k∈x(k)p∗(k). Since 𝜋∗

i is part of an
optimal solution,

𝜋∗
i = max

x∈i
vi(x) −

∑
k∈

x(k)p∗(k).

Otherwise, we could decrease 𝜋∗
i , making the value of the

DRWDP smaller. Consequently, vi(x) −
∑

k∈x(k)p∗(k) =
maxx∈i vi(x) −

∑
k∈x(k)p∗(k), so x is in the demand set

of bidder i at prices {p∗(k)}k∈. The second condition of a
Walrasian equilibrium is thus satisfied, and {p∗(k)}k∈ are
equilibrium prices.

For the other direction, let {p∗(k)}k∈ be equilibrium prices
together with an allocation, described by binary variables
{z∗i (x)}i∈,x∈i . Let x be the bundle with z∗i (x) = 1. Set 𝜋∗

i =
vi(x)−

∑
k∈x(k)p(k). Since x is in the demand set of bidder i,

𝜋∗
i ≥ vi(x)−

∑
k∈x(k)p(k) for all bundles x, so ({p∗(k)}, {𝜋∗

i })
is feasible for the DRWDP (𝜋∗

i ≥ 0 follows from choosing
x = 0 in the above inequality). By definition of the Wal-
rasian equilibrium, {z∗i (x)} is also feasible for the (R)WDP.
All inequalities in the WDP actually hold with equality—so
complementary slackness of the primal problem is trivially
fulfilled. From the choice of 𝜋∗

i we also directly see, that
complementary slackness is satisfied for the dual problem. It
follows that the optimal value of the WDP equals the optimal
value of the DRWDP.


