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a reliability formulation for structural components subjected

to strength deterioration

F. Guers and R. Rackwitz



1. INIRODUC 10N

The study of the reliability of structural components subjec-
ted to load-induced strength detericration has produced only
partiasl sclutions as of yet. The analytical approaches available
are of a highly phencmenclogical nature. In this study, some of
these formulations are used in an attempt to formulate the
overall reliability problem in view of the fact that structural
components usually fall under "large” loads meeting either an
@ssentially unchanged strength (this is called an extreme value
failure) or a possibly substantially reduced strength, if fatigue

has developed under cyclic loading.

Most fatigue phencmena are associated with the initiation and
the propagation of cracks. The typical fatigue failure occurs if
the growth becomes unstable, i.e. if the energy provided by the
stresses at the zone around the crack tip can no more be balanced
by the amount of energy dissipated into heat,. surface energy.
etc. This physical concept at least applies to most of the

structural materials of brittle nature.

If the materials considered perform essentially ductile, the
effect of crack growth is to reduce the section of the component.
Then, it is proposed to take yielding in the net cross section as

a failure criterion.

The intermediate case where the crack develops in semi-ductile
materials without affecting too much the carrying section will be
studied in some detail herein. The exceedance of a given crack
size not leading to rupture but, for example, to leakage which
alternatively can be defined as a failure criterion 1is not

considered herein.

in a separate paper it will be shown that the formulation

EHEshen 39 the following is particularly useful in the

reliability analysis of redundant structural systems.

FORMULATION OF THE RELIABILITY PROBLEM

The life time of a structural component under random loading

can be subdivided into three phases.

The manufacture and the various operations of installation
usally are responsible for the formation of a multiplicity of
milcroscopic cracks, nucleations and other types of discon-
tinuities which, under sufficiently low constant loading, would
have a certain chance to never grow and merge. If this happens,
one speaks of an endurance limit. Under random virtually un-
limited loading such a limit does not exist, and one can include

this first time interval in the so called initiation phase.

This phase is the one in which the microscopic initial defects
grow to form cracks of visible size and during which the strength

against extreme loading 1s unaffected.

1f there are initial defects of visible size such as notches,

flaws and the like, this first phase is. of course, absent.

The second phase is denoted as the phase of stable crack
propagation: the strength against overloading will be considered
as only insignificantly affected by the presence of cracks,
because their size remains small. If failure occurs, it will he
an extreme load type failure as in the previous phase, but at

a somewhat reduced strength level.

The third and last phase is characterised by rapid crack
growth and crack instability. The brittle behavior of the
material then is the primary source of falilure rather than the
decreasing strength due to the diminuation of the net Cross

section of the component.

This last phase usually is relatively short as compared to the

previous phases; in many cases, the majority of the life-time 1s
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spend in the first phase. And it 1s worth mentioning that pro
+ 2
tective actions i1.e. repaair after inspection, can only be

undertaken in the last two phases.

A representation of the different phases i1s made in figure 1
Let t be the intended time of use of the structure and its
structural compon der T

ponents. Denote by I the random time to classical
£ -
first-passage failure over the assumed constant threshold. T 18
t 5
the random time of crack idnitiation. T 1s the random time of

D e tis o
Crack propagation followin
g T and end
i ding at the time instant

where the residual "strength” represented by the threshold of
crack instability becomes smaller than the strength relevant for

extreme load failure.

Figqur 1: Life phases and failure modes of a component
A
’ Stress
|

m

Figure 1.a: xtrem loading failur (t<T T )

)
g
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! (mode 1)
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time invariant

Figure 1.b: Failure modes for t>Tl.TD

In figure 1.8 it is assumed that t<T1+TpA The threshold

remains constant up to time t. Hence, only extreme value failure
can be possible at random time TE during [0,t]. In the case shown

in figure 1.b, i.e. for t>TL'T either an extreme value up-
crossing has happened before Tl*Tp (mode 1) or the stress pro-

the decreasing fatigue threshold between rle and

cess upcrosses p

t (mode 2 is the realization of a typical fatigue fallure).

In this study the concept of independent barrier crossings 1is
applied throughout the different phases irrespective of the
failure mode. Consequently, i1f fatigue failure 1s possible, the
random time TK leading to failure contains both failure modes
whereas the random time Te only refers to mode 1.

In summary, fallure occurs before t whenever Te is smaller

than t and t<T1'Tn or for c)TL+TD whenever Tk i1s smaller than t.
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Qbviously, h S 5 1
v these fallure events are disjoint. Therefore,

Pftt) = P{failure in [D,t))

= PU{T _<tHi{t<T s P {
& { l4TD}J P(tTk<t}ﬂ{t>Tl-Tp}) (1

The random times T
o ?1. Tp and Tk depend on a set of

un
certain parameters to be described in more detail in th
e

following, and denoted by the vector 8.

3. DERIVATION OF RANDOM TIMES T
J

The T t su
component is assumed to experience 8 scalar loading that

causes £ 3 r
c ar field stresses representable by the stationary

Gaussian stocha
stic process X{t
} with mean value m_ and variance

2

0_.. Further i I

% properties of this pProcess will be given when
necessary.

3.1 TIME TO FIRST EXTREME LOAD FAILURE T
e

Define th 2
e wvarlable L as the Possibly wuncertain time-

invariant i
failure threshold and assume a sufficiently mixing

loadin ro
9 process, Then, for sufficiently high threshold, the time

to first failure is given by [1]

F 3
- {t) =

3 1 - expl-v (L]g)t]

where v'(L| ¥
£] is the upcrossing rate of x(t) for level L possibly

depending on further Parameters of §.

For
Gaussian load Processes it is [1)

. WU L=m,
Ylriey = -2 @i~ %
T o

)

x

.

u'z the variance of the derivative process, wy = the

~ o
~ivative of the normalized process and 9 the

with

o N

variance of the derx

standard normal density. For later use in classical reliability

methods it is necessary to express the randomness in T_ in terms

of an auxiliary standard normal variable Ue {2]. Setting
T T(LIgIT 1 = #(u_}
E4 Bl_f;l) 2 1 = expl-ys | ik =
where ¢ denotes the standard normal distribution, one obtains

1
Vo T g Lnie(-u_1) £z}
v (L]8)

3.2 CRACK INITIATION TIME ?l

No realistic physical models appear to exist for the des-
cription of this phase. Therefore, it is assumed that S-N-tests

are available where N(S) denotes the number of

cycles of constant
stress ranges 5 at which the first macrocrack 1s initiated, i.e.
the first visible crack is observed. The S-N-curves usually are

well approximated by
N(S]SB = A = De {3)

where B and D are random variables expressing the statistical
uncertainity implied by a limited number of tests and £ the
0D

random residual of this relationship. In the sequel, D and €& are

represented by a single variable A.

For a stress history composed of n] cycles of stress ranges Sj
in each of p possible stress states, Palmgren-Miners damage

accumulation rule can be written as:




n

P
: _j_,1

j=1  NI(S_)
= |

where NlSj} is as in eq. (3).

For random stresses, this damage accumulation hypothesis may

also be adopted. A visible crack appears whenever:

I" dan ;
520 wis) b
Let N(Til be the number of load cycles in [0,T.]. For NI(T.)
T X

being large, one can use

dn = N(Tll f(S)dsS

where f i1s the density function of the stress ranges. Eq. (4)
becomes
N(Til B
e e, ST F1S)8S = 1
. 0 (5)

For a narrow-band stress Process, one can write

+*
where v 1
0 15 the mean value upcrossing frequency. Therefore,

eg. (5) leads to

(6)

Witk Ere" . 1™ 5% 4i5)as

For a narrow-band Gaussian process X(t), the stress ranges S

are even Rayleigh distributed and according to [3) or ([4%#), one

has:

ers®y = 28e(r®1 = (2/7)8 o° r‘{:..:.]

Formula (6) shows that Tl is a random variable, because A and
B but possibly also other parameters determining the stochastic
nature of X(t) and S(t) are random.

3.3 CRACK PROPAGATION TIME Tp

One of the simplest crack propagation laws is due to Paris

Erdogan
a2 . ciak)” (1)
dn

where a denotes crack length, AK = Y(a) S/wa the stress intensity

facktor. G and m are material properties which may be taken as
random. The geometry factor Y(a) = Y is considered as constant.
Eq. £T) is separable and, here, can be integrated (see [51)

analytically leading for m>2 to

ME m Zom
alt) = a_(1-K E 51
0 2 3
I=1
where a is the initial crack length and ni(t) the number of

0
cycles experienced up to t from the beginning of crack propaga-

tion. The crack is unstable for K = Y/wma X = KC. This defines the

brittle falilure threshold
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e b i B
2 1y e

b e
m m-2
{ = K (1 £ S
El(t) |L K? bj)
3=
KC m-2 L m-2
With K s === and K, = cly/w) R e
y/ma 2 2

it has been shown in [5], that the dispersion of the threshold

is negligible and, therefore, one approximates ik by its mean
j=1 7
value.

The stable propagation phase is defined to end when the risk
of instability becomes larger than the risk for extreme value
failure for the constant threshold S i.e. when EXT)ICL

Therefore, TD is given by:

For a narrow-band process X(t) as before it is

LPESEE
D T = v m
ey j] Yo Tp ELS73

and by solving for T
o]

L -
1-(E"lm 2
1
T T ——
P . + (8)
2 Yo 7 B |
£ o
Therefore, TD i85 alsoc a random variable depending on Kl‘ il L
and as TL 6n the parameters determining the process X(t).

3.4 TIME {k TO POSSIBLE FATIGUE FAILURE ft;Tl~Tn,

The time the component can spend in the ‘fatigue failure
phase” is short and one can approximate the threshold by a linear
threshold function which 1s exact in the case ms3 for a AAarTow
band process (see figure 1.Db). The failure threshold in [0.t]

then is decomposed in a constant barrier from 0 to T -Tp and 1n a

e

linearly decreasing function during the "fatigue failure phase”.
The time Tk leading to failure can be handled similarly as T9
with the help of the upcrossing concept provided that X({t] is a

sufficiently mixing process. Then,

Fr (t) = 1 - exp(-I; v (z1814d2)

+
where v (2]8) is the upcrossing rate of the threshold relevant at

time 2.

=
‘0
sequently invertable function.

* P
Define I{t) = v (2]181dZ. which 1s an increasing and con-

For a convenient reliability computation, Tk is again

t
ot
.
2
<]

expressed by an auxiliary standard normal variable Uk, in s@
P - T 2 &
F[Tkiﬁi exp(-I(T _[8}) tu,}
gives
s SEE S {~Ln{¢t-uk)}\§3

The integral can be calculated as follows:

resulting 1in




The randomness
sxpressed by the Rosenblatt transformation

1 r pendent standard normal variables
the fatigue threshold faxirdy {ndspandent g

can be written as E({
one can
write the upcrossing

density and the NUMERICAL EXAMPLE Of COMPONENTAL R

d normal
The purpose of thi

At formulation
= : ey | proposed
en, the integral can be given explicitely.

influence of some param
distribution

but they a

a
—[t={T 7 33}
5 i p
,

X
1s now alsoc possible ¥
transformation

IR 1h0 . 2e10ing ¢

the following.

measured in mm and stresses in N/mm .

for the basic variables are given below:

L-m

'TQ]WI——"')¢Ln(¢{

By this ¢
ormula T =
a K 18 seen to be random as depends on




where Nla, B!} (resp. EN(a,B)) is the Normal

distribution with mean value a and standard d

The exponent 1n the S-N-relations ed
exponent in the Paris law. Both v s e
4.2 CHARACTERISTICS OF THE LOAD PROCESS

X(t) is assumed to be a stationary s

narrow band Gaussian process with mean valu

standard deviation o = vel K X w N1 0
x o) g

upcrossing frequency 1is fixed at V. x 0.1

to a mean period of 10 s). This frequency

factor and it wil

be interesting to consider

of load cycles experienced by the component a

e
the basic variables 8 = (L,A,C,a Y.K m,,o
into standardized and independent normal var

the Rosenblatt transformation.

1%
E = 5 10 t « 0,3 U.)
Ry = 27+ 08 u,
\ § =1+« 0,05 U

<If = 2243 exp(0,085 U_)

(resp. Lognarmal)

eviation B.

to. be equal to the
t to be m=B=3.
ufficiently mixing,

- mx - N(50;5) and

The mean value
[s ] (corresponding
ls only a scaling
the mean number v;t

t the time t.

>y FORM or SORM [6]

] are transformed

ables U1 to Ua via

ar C ¥ T T nd d ned in eqs
Therefore, & IL J and T efine qs
(2) (6), (8) (9] are expressed as functions cf the
standardized independent normal variables U] to °|3 where uazua
and u D:u o The computation of eq. (1) is carried out with the
1 k

program SYSREL [6].

4.3 RESULTS

At first,

formula
a function of time

One can see that during the early phases of the life of the
component the global B (curve 1 is identical the extreme

value B (curve 3). Fatigue failure ne
recognizes that it has more and B
{curve 1) up to a certain time s
determined almost entirely by the fatigue criterion. Curve 3
represents the evolution of B when there 1s no strength

deterioration of the component.

Figure 3 shows the influence of the value of
threshold L on B(t). For high value L and const
mechanical characteristics, Tp 18§ reduced and,
fatigue effects occur at earlier times. But even at times where
fatigue is remarkable, 2 10 sec the differences
between the 3 curves ble and disappear only for

larger times.
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; complete reliability formulation for these two types of failure
iv . REEEREMCES
modes 1s given in the context of the so-called upcrossing 7
]

approach. The formulation is adapted to the use of FORM or SORM

in order to facilitate numerical calculations.
[1] Cramer, R Leadbetter, H.T., Stationary and Related

Stochastic Processes. John Wiley and Sons, New York, 1967

(2] Hohenbichler, M. Rackwitz, R., Non Normal Dependent Vectors

in Structural Reliability. Journal of the Engineering

Vol. 107, No. EM6, December 1881,

Mechanics Division, ASCE,

pp. 1227-1238
Structural Fatigue Under Random Loading.

|
! i
[3] Miles, JWi .. On
vol. 21, 1954

1
Journal of the Aeronautical Sciences,

[4]1 Yang, J.N., Statistics of Random Loading Relevant to
Fatigue. Journal of the Engineering Mechanics DOivision,
ASCE, Vol. 100, No. EM3, Proc. Paper 10591, pp. 483-475,

June 1874

[5] Guers, F.. Rackwitz, R., On the Calculation of Upcrossing

Rates for Gaussian Processes Related to Structural Fatigue,

Berichte zur Zuverlaessigkeitstheorie der Bauwerke, Heft 19,

1986, Technische Universitaet Muenchen

[6] User's Manual for Structural Reliability Programs CUTALG-

FORM-SORM-SYSREL, Berichte zur Zuverlaessigkeitstheorie der

Bauwerke, Heft 74, 1985, Technische Universitaet Muenchen

On a Stochastic Model of Fatigue Crack Growth,

[7T) Dolinski, K.,
Heft 78,

Berichte zur Zuverlaessigkeitstheorie der Bauwerke,

1986, Technische Universitaet Muenchen

e L U e
— e —————

=]




avol |

(*oes 0Ol X) owil

21

PTOYsS2Iyy TPTITUT BY3 JO SNTwA 8yl JO BDusNTIUI * € @anb1d

(3)9
-
{-oes. ol x} 8wyl aealk |
O 2 ! l
ﬁhop X) se12h>
((3>31)a), o=

H:&1._.35:;&:&7? g — ey
8 - —_——

{(3> ._._n:To ] 3 1

._ET;LESEEI:..«- g —m—z

(%a), o= § ——n

-

\

xapuy A39jes oy3 JO uOYINTOAZ : Z BANDT4

B R T T S = T S R e———




{*oes m0~ X) ewy3 avak |
3 > ! |
H I H
~ 1 v T
/,. / // VSR 1D s e N/ D
\
/ \ voso——— vy — ——
. : Nl T e ———
LY
// L,
N
//
~
~
o~
o~
+2
2 3uwjsuco uoyiwbedoad xowan ayz jo +E
PUP ¥ PIEp N-5 BYI JO @OouanTIurl @ § eanbig
(a)m
. = e et - e e T e T P e




On the Calculation of Upcrossing Rates for Narrow-Band Gaussian

Processes Reiated to Structural Fatigue

F. Guers and R. Rackwitz
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rack propagation
in some cCases,

fatigue is more

owth phenomena
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for practical
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L4 t ’ = .
hey are lse valid for e ary X{t), except the

1la dodal | PR TR ich a re aticnarity 1in
i sh i stat a
’ l1a 4 For raAsSYy e ice ilater comparisons
c [+ ¢ r ea reterence ater ¥
A T nce H{it). PC e

are given first.

threshold by a Gaussian process

Consider t
1d is obtai in a similar manner as 7| =
thr 1 is obt 1
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The transformation of X{t) into Y{t)
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3 Upcrossing of a deterministic threshold by the envelope p
o rocess

YL aand . Y
(t)lwo(t) are uncorrelated and normalized The

= - | - :
wo imensional pPro S repre n ( nat )
t roce has resentation in polar coordi es):

Y{t) = R(t) sin &(t)

;;T?T = R(t) cos &(t)

o is called

|

ad

an

where #(t) is the phase process. R(t) = [Yz
L

the en wood riv v s u
UEIODE process he time deri ative Rit) 1 Lbaussian
dxstz'.\hured with varianc o which
1 i e 1

R can be computed from the

o0
spectral moments PR J
=) 8% G {w) .
J g A( Jde of X(t). The following formula

l—az
02-52 k:
R=%s 7 where a = is the gula
oa - regularity factor, is well
04
known.

Ue also
can apply another definition for R(t) when X(t) is a

station ; i '
A ary process; one defines R(t) (Yz(t\+§2(t))l/2 %
the Hilbert transform of ¥it): ‘ e
a 1 +0 Y(s5)

In centrast to { y w
Y t) and Y(t & Tt t v 11
( )/ Of }. Y( ) and !’(t] are identica b4

distributed T
herefore, the last definition of R{t) is smoother

than the first
one., In that 2 2 iy
at case, wp = mcﬁl-a‘; vhere 6 = -
ONR
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Independently of these envelope definitions, the upcrossing rate is

E43s

uﬁ(z) = VI g n Pin)#(n/eg) (2.3.1)

2.4 Upcrossing of a Gaussian threshold process by an envelope

'EPDCQ.‘QS

For deterministic thresholds, the wupcrossing rates can be

calculated from Rice’s formula:

L=-

Ugft) = j-

7 TR {n,*)}(F-7) df

Consider here a Gaussian threshold process independent of R. Then:

R +c +00 +o
wated = | ‘5 Eppyn(nfan,0) dF dif dn {2.a2.1)

-0 -0

Remark: The integration over 7 should be done for the domain j-=,0]

assumption, the threshold is non-increasing; the

in [0,w[ becauss the envalop2

because, by
integration over n should carried out

is always positive. However, the errors made by taking -o and +® as

bounds in these integrals can be neglected.

In order to arrive at an analytical result we further make the

following assumptions:

£ 2 f {(which can be criticised because f=f{r)

RRHH - 'mR ‘aH
for Fatigue application)
- covi{n{t),n{t)) & O {which can be verified asymptotically for

fatigue applications in the case of stationarity in the variance of

®(t)). In this case, it is: fHﬁ E fHEﬁ.

28
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distributed.
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interpolation) formula due to Vanmarcke [3] might then be used

with advantage.

seen from the numerical

with one;

For fatigue failure application, it will be
and compared

c: are very small as
n

¥{x} by f2n)_1/2

computation that mé

& = = neg :, The
therefore, we can replace and neglect an

improvement of eq.{2.4.2) as compared with eq.{2.2.1) can be

approximated in that case by:

v_sto 1
4 2 2,372 s mf]
oidut {145~} 2(1+a%) 1
n n n
For small values of o_ and mn_43(1¢a;} , this ratio is larger than
n 1
one and increasing 1in :ﬂ.
o THRESHOLD CHARACTERISTICS FOR FATIGUE
3.1 Crack propagation model
The evolution of a crack of length a during dn cycles is assumed to

llow Paris-Erdogan's law [4]:

da m
e c AR

variation of the

where ¢ and m are material parameters. The

sile | 5 £
intensity factor K during the tensile phase of

1/2 L & : T
AR = Y{a) /7 S a where S is the stress range.

factor Y(a) is taken as constant, we can
Pt T (3.1.2)
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Substitution of eq.(3.1.4 in. eq.(3.1.1 A N ntegration via
1@l tor
nE 2
r 1=
!
st} % I, R .m|2-m
VT - ~ 14 z o i
X U 5 kg \ -‘-3)
1=] |
where ao is the initial crack length and n t of solan
of cycles

counted from the beginning

Failure pccurs if the crack becomes unstable, i.e. for
E = Y(a) X Jma = an where X is the far field stre The brittle
failure threshd can then be defined as:
K
1C
g{t) = —— 3.4.4)
Cl
si1d.1.3) f
{ n ]
>+ - W 1y r a\“;
¢ o Y 32 Z 5:1 e - )
E i=1 |
i e AT
with Ei B and g, = 2 0.0 araf“ =

In order further the threshold process £(t) is expanded

such

a Gaussian process for large

&
]
o
m
[¢]
)

)mes approximately

T.
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anly

the

Because

represents a stress

range during the

n
: R AR e Y
eq.(3.2.1) the of each cycle, we mme that L 54 is constant,
i=1
Plt)=0, during each compression phase. The time interval between a
minimum and the following maximum - compression phase - 1is almost
n X il
constant and equal to — = 7 * Therefore, we assume
&
L8]
n =k
% m oM
Z- 5 - B
te: R e e
sT =z 25 = = —s_
v /3 n
Replacing the first term of e.q. {3.4.1) by its mean value, one
obtains:
f 1
( 1] £
EE_ @& n j—s -1
( 3.1) 2 0 , mi} m— ~Th
‘S Sty oA ek R 51“ 5™
£ | | i
m—2 o | {i=1 g;
L
] T
= { t} = cft} (3.4.2)
g{S,,t} (t} 5,
3, UPCROSSINGS OF THE FAT THRESHOLD
idering the
Jith to the We first reformulate eq.{2.4.1} for the special application to
witl] { 2
brittle fatigue failure.
given by
4.1 Upcrossings of the fatigue threshold by the envelope process
It has been outlined - see eg.{(2.4.2) - that n{t) depends
8 7 s 3 L
explicitely on R = 5 . At an upcrossing point we nave © = § and,
therefore, the uperossing rate can be written as
(3.4.1) R +co +c
g f L Y14 g
v {t) = | | foaglnar ) (r-ginit))dr oy
: - gin,t;
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deterministic function is:

1
e
| ' T 5 2 am| fm-2

: ¢{t) = B, |1-K b n‘i}

=1 = 8

; Because of the narrow band character of XH(t) one can

i

i

? [ n m

T
E| L n E(S")
ll:l
and, therefore,
[
- TEAIES E,|1-E
=
and the process differ by
5
EK | [ n n [ n
12 ~mjim-2 N Lo
‘gs—z_(Ez: | £ B2 Elp§
Z 1 H 1 -
m-2 I i=1 | i=1 li=1
!
L ]

3 This last term approximately increases with /n but
remark made in section 3.2 i 7il small as
deterministic term; its influence on the rate
eg.{2.2.1) and eq.{2.5.2).

3.4 Time derivative of the
HWith eq.{3.1.5) r{t) can be expressed as £«
| E.R, | n i e 1
: g(t) = - - 1-x, = | z 8T
T 2 dt i

‘ i { 1= i

i
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Analogousiy to the ve section the integration over has been rre ion J/in
om the interval [0,®] to ]-o,+w] in good approximation. |
{ | w||‘|
\ - 3 \ @ | [ 1
g o — f Pir/e,) - ¥ d 1 o s :
7 B \ \ T | 2ad to: ;'-n f1]
R 7 L Y.l -0 |
ml B S : m |m_+1-2p
i 2 mj”‘i 2 n a
R +co [;} m : | ( \E % z L o e | il 73 {2p-1) !
h a 9 n lgin,t
w{t) = £ n) ¥ 1 ¢ | ! | 4 Lgoy 2ia il 2p 1 n I 2.
n Ray' "’ |y A VSR * {{1+5_°)
B 1 ; ( | l n 3
|
i ! Im +11
| For the n values for which £, {») ¢ | contributes most to the where E._FL,,? E N is defined analogously to m above. It is
Ray | o e
: Lk
{n,t) remains small and we can adopt the expansion fur ther
X
- — ;3 then
: T + 1 [ - ) ’
= E.‘ng ll ‘mo 1)
| =
2] 2p)t{m +1-2p}?
" " L Y ) Pl o i
| & |+ [
{ o R, | |
- )= B[ o oeln) p|- 2 ;
np |- SRR [ 1 & At
= and (2p-1)t! = |
(2p-1)(2p-3)...1 if pxi
0 m ] |
A m+l .,  § 5
e 2] 1 - ——— + — n %
s, ; | c B | se (¢1 and c(t)
28 | i = |
| J |
for wvalues of m between
in which
aumerical example. Tkerefo
& +o | m q @ n_ rate:
d + an— n - -‘» o v ‘ =W ."" { }
n ° | fhg G} 7| , |
n J1+o_ | 4 0 =1 2
i J vi{t) = et P |- (4.1.2)
n' 2 7 = {
l+o /s < t
n .1“)” v
is the dominating term. The second term is a correction. If one
replaces m by a natural number m_ such that m <zm{(m +1 , denoted as
o . o
one it
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, correlation between envelope and threshold conssquently is:

/n
for t sufficiently large. It decreases with 1//n After a certain

aumber of cycles, the envelope and the threshold, therefore can be
taken as

regular

cumulat

]
0

4.3 Threshold characteristics as a function of time
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Denoting wm=m(t) and o=c(t), the mean wvalue is
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with
NUMERICAL EXAMPLE

E 2 “n Mi+x)o where n t
| = | 1
It follows that: e now study the upcrossing rates as given before 1n Ihe case ot a
center crack in a large plate [4]. The plate has a cragx whose
f ik
| f== initial size is
m(t) = Llg |1-E ri1+2) g™ ¢ | ™2
"t a1yt 2 ot Vs : ni L
i [ J | tationary Gaussian
| : 2
{ N/mm~ and standard
|
I i is T, =218 « The
} The variance has been evaluated in section T 18 fo) [s]
| 1i—J m m " " % Fartr 5 . - ).99 The geometr
| ,:’ "l:cur:‘(Rl,R‘) is assumed as before one easily determines: 0.8 and the regularity actor is = 0.99 E
. 1
1.8 b 4 =] material
! parameter 1s assumed to be i.e Y{a)=1 ate a
- = cons 3 c= length is in mm and stress as
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i 24 B e b b | ¥ v Sl e 3 s 0 b | - -
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this threshold will not be of anvy interes
¥ . In figure 1 the evolution of crack
demonstrated. It appears that the lifetime

relevant threshold is

th of th crack

exapansion can be verified bec

Ause

N

length

relatively hort and can

in comparison with the total propagation time.
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fatigue applications
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a numerical point of v
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6. AND CONCLUSIONS
Some well known results for t
Gaussian processes above det

instaticnary Gaussian

process

generalized to some extent with pa
fatigue. 55 - is found that asymp
the loading process and the proces
the threshold process vanishes. F
has vanishing variance and may be

equal to the mean of the threshold

fatigue formulation

and 5% (in the

eq.{4.1.1) can Dbe
eq.{2.4.2) in
herefore, we can assume for

-1/2

e. replace ¥( ) by (2nm) and

he upcrossing rate of narrow-band
erministic time variant and

thresholds are revieswed and
rticular reference to structural

taken as

n
urthermore, the threshold process

taken as a deterministic function
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An approximation to upcrossing rate integrals Clr, Ko
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1 3N s o f 1:
| F. Guers and R. Rackwitz the failure p ability can be used [1)]
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‘ P.(t) I = expl = »_\T) aT] e
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N
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<
-
-
W
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Herein, according to Rice

: "
f with X = r) and & = of X = Hi(7)
{
j a = a(r}, respectivel is necessary
% H(T) is iciently
t
; P {({R{7)< N {X(7+9)z - P {(R{t)¢xn) . P {(E(7+8}<x) =
}
' for 8 -+ « and any 7. Closed form solutions for eq. 2} have bean
v Cramer/Cryen [3] and others. If, ia particular,
r) is normalized by
u(r) = (E{7) - a{7) {3)
and t
af(r) = (a{7r) - p(r}) o\T i
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sult 5 ic to derin
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£ igue
3. Computation of failure probability
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=

v

R

ol SRR 1 g o R (R exp|[ - I{t)] = P (u o Ty
J Dy g ar) i)

T ¥ T (15a)
Thus, the random time to {(first) failure can be given a
~ar Jive 5
- =1 ;
T = - 170 Ln §(-Uy)) .
(13b)
which enables us to write
P£(t5=P(g(}5}~_:0)=P(T—t;o) (18)

as required by FORM or SORM. The inversion of I(t) usuwally must b
t) usz ; 2

carried out numerically. In noting that I{t) = vit) we

approximately have by iteration

k
k10T + Ln $(-u,)

k+1
D IR T
u('rk,\ {17}
witn 1 = 1,2 denoting one of the approximations in egq {ll}) for
: : 5 £
I{t). It has to be noted that I{T) is an increasing function of
: : ] creasiz function of 7
and the following 2quations, therefore, are =squivalent:
=140
{16a}
— ¥T) — 1t} <0 : }
= Ln ${-U_) - 1(t) <
: (t) <0 (16D)

With tha i
t formulation the numerical inversion can be avoided and it

will b idi
e used to check the validity of the inversion scheme (17}

Introducing now the Rosenblatt-transformatian Q = the

L‘Q(EQ],

failure probability can be determined £ram

81

P (t) 2 P { T{To(UgluUghis it 50}
-1
s $(-8) (1 - B2 {18a)
i=1
: $(-8) (12p)

with 8 the well-known safety index and L the main curvatures in
the A-point. As usual, eq. (18a) represents the SORM- and eq. {18b)
the FORM-result. This formulation is particularly useful in the
analysis of systems (see [8]). It avoids any explicit integration
hut is only approximate yet likely to be sufficiently accurate for

small failure probabilities.

q. Numerical investigatioms for fatigue applications

The proposed reliability formulation (18) makes use of two
sumerical approximations (1i1) and (17) which are now testad at an
example. Firstly, the approximations of eq. {11) for Ii(t!

{i = 1,2) are compared with an “exact” i{t) ocbtained by numeriecal
integration (see table 1). Then, the accuracy of the numerical
inversion of I{t) in eq. (17} is checked by comparing th= results
according to FORM - SORM applied ta the formulations (16a) and

{16b) {see table 2). Finally, it is of interest to compars the two

approximations (18a) and (18b).
Assume that the threshold function is as in [3]

1/C
c
g E{s7] t

a(0) i

a{t) = a(o) - =1

whera a{C)}, ¥, C, K and B are given parameters and X(t) a
standard

stationary, narrow-band Gaussian process with {t) =0,
deviation of(t) = a{0) 7/ N and mn(t) = 2 n, Further, assume that

v = a{0) and E[SP] = {247)® o r(1+B/2). Then,
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Die Berichte zur Zuverlaessigkeil der Bauuerke (BZTB)
dienen der Verbffentlichung technischer Berichte und der
schnellen Verbreitung von Forschungsergebnissen der im
Laboratorium fuer den konstruktiven Ingenieurbau (LEI)
der Technischen Universitaet Muenchen (TUM} zusammenge-
schlossenen Institutionen auf dem weiteren Gebiet der
Zuverlissigkeitstheorie der Bauwerke. In der Regel
werden die Berichte, gegebenenfalls in verinderter Form,
noch bei anderen Publikationsorganen 2zur Veroffent-
lichung eingereicht. Die Verteilung der Berichte ist
hegrenzt. Literaturhinweise sollten sich vorzugsweise
auf die endgitiltige Verdffentlichung beziehen.

The Reports on the Reliabilily Theary of Constructed
Facilities (BITB) serve for the publication of technical
reports and for the early dissemination of ressarch
results on structural reliability from the institutions
at the Labaratory for Structural Engineering {LEI)} at
the Technical University aof Nunich (TuM). Usually, these
reports, possibly modified, are submitted for
publication to further publishing institutions. Their
distribution is limited. Whenever possible reference
should be made to the final publication.
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