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1  |  INTRODUC TION

With advances in sequencing technologies, recovering the demo-
graphic history of a population has become central to many studies in 
evolutionary biology, as it allows us to understand the environmental 
and demographic changes that existing and/or extinct species have 

experienced (population expansion, colonization of new habitats, 
past bottlenecks, migration and admixture events’ Arredondo et al., 
2020; Bergstrom, 2020; Chikhi et al., 2018; Lord, 2020; Mazet et al., 
2016; Palkopoulou, 2018; Rodriguez et al., 2018; Steinrucken et al., 
2019). Inferences of demographic history that rely on genomic data 
(Schraiber & Akey, 2015) can thereafter be linked to archaeological 
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Abstract
Several methods based on the sequentially Markovian coalescent (SMC) make use 
of full genome sequence data from samples to infer population demographic history 
including past changes in population size, admixture, migration events and population 
structure. More recently, the original theoretical framework has been extended to 
allow the simultaneous estimation of population size changes along with other life 
history traits such as selfing or seed banking. The latter developments enhance the 
applicability of SMC methods to nonmodel species. Although convergence proofs 
have been given using simulated data in a few specific cases, an in- depth investigation 
of the limitations of SMC methods is lacking. In order to explore such limits, we first 
develop a tool inferring the best case convergence of SMC methods assuming the true 
underlying coalescent genealogies are known. This tool can be used to quantify the 
amount and type of information that can be confidently retrieved from given data sets 
prior to the analysis of the real data. Second, we assess the inference accuracy when 
the assumptions of SMC approaches are violated due to departures from the model, 
namely the presence of transposable elements, variable recombination and mutation 
rates along the sequence, and SNP calling errors. Third, we deliver a new interpreta-
tion of SMC methods by highlighting the importance of the transition matrix, which 
we argue can be used as a set of summary statistics in other statistical inference 
methods, uncoupling the SMC from hidden Markov models (HMMs). We finally offer 
recommendations to better apply SMC methods and build adequate data sets under 
budget constraints.
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or climatic data, providing novel insights on the evolutionary history 
of species (Barroso et al., 2019; Fulgione et al., 2018; Palkopoulou, 
2018; Willemsen et al., 2020; Yew, 2018). Current statistical tools 
can uncover past population size variation Terhorst et al., (2017), 
Speidel et al., (2019), evidence for migration events (Steinrucken 
et al., 2019; Wang et al., 2020), as well as the genomic consequences 
of human activities on wild and domesticated species (Choo, 2016). 
The inference of demographic changes (e.g. decreasing effective 
population size) via genome data represents another way to mon-
itor habitat loss or fragmentation (Ekblom et al., 2018; Hendricks, 
2018; Kerdoncuff et al., 2020; Oh et al., 2019; Peart, 2020; Poelstra, 
2021; Williams et al., 2020). These tools, when used to study the 
demographic histories of different species in relation to one an-
other Hecht et al., (2018), Oaks et al., (2020), can unveil biological 
or environmental forces driving changes in species abundance and 
changes in ecosystem structuring. With the increased accuracy of 
current methods (Speidel et al., 2019) and the availability of very 
large and diverse data sets (Cao, 2011; Prado- Martinez, 2013; T. G. 
P. Consortium, 2012), the inferred demographic history, especially 
population size variation, is becoming more accessible to better study 
evolution (Willemsen et al., 2020), though there still exist some chal-
lenges (Beichman et al., 2017, 2018; Chikhi et al., 2018). SMC meth-
ods Li and Durbin (2011), Schiffels and Durbin (2014), Terhorst et al., 
(2017), Hecht et al., (2018), Palamara et al., (2018), Barroso et al., 
(2019), Sellinger et al., (2020), Wang et al., (2020), Ki and Terhorst 
(2020), which make use of whole genome polymorphism data, are 
among the most widely used methods for inferring past demogra-
phy (Beichman et al., 2017; Mather et al., 2020; Spence et al., 2018). 
Though some works have addressed the limitations of current in-
ference tools based on the SMC Hawks (2017), Chikhi et al., (2018), 
Rodriguez et al., (2018), Mazet et al., (2016), an in- depth and more 
comprehensive overview and some evaluations of their sensitivity to 
violations of the modelling assumptions are still lacking.

The SMC theoretical framework is founded on modelling the 
Ancestral Recombination Graph (i.e. the distribution of genealo-
gies along the genome in presence of recombinations; McVean & 
Cardin, 2005). The first use of the SMC to infer past changes in pop-
ulation size is the now well- known pairwise sequentially Markovian 
coalescent (PSMC) method (Li & Durbin, 2011). This method uses 
the distribution of SNPs along the genome between two haploid ge-
nomes to account for and infer recombination and population size 
variation, assuming neutrality and panmixia. Although PSMC could 
infer population size variation in time with unprecedented accuracy, 
while requiring only one unphased sequenced diploid individual, 
PSMC had limited power in inferring more recent events. In order 
to address this issue, PSMC has been extended to account for mul-
tiple haploid genomes (i.e. more than two) in the method known as 
the multiple sequentially Markovian coalescent (MSMC) (Schiffels & 
Durbin, 2014). By using more sequences, MSMC better infers recent 
events and also provides the possibility of inferring population splits 
using the cross- coalescent rate but requires the data to be phased. 
Another difference between PSMC and MSMC is that the former is 
based on SMC theory (McVean & Cardin, 2005) and the latter on a 

correction of this theory, known as SMC theory (Marjoram & Wall, 
2006; therefore MSMC applied to only two haploid genomes has 
been defined as PSMC’). Methods developed after MSMC followed 
suit, with MSMC2 (Malaspinas, 2016) extending PSMC’ by incor-
porating pairwise analysis, increasing efficiency and the number of 
sequences that can be inputted (up to a hundred), resulting in more 
accurate results. SMC++ (Terhorst et al., 2017) brings the SMC the-
ory to another level by allowing the use of hundreds of unphased 
sequences and breaking the piece- wise constant population size hy-
pothesis, while accounting for the sample frequency spectrum (SFS). 
Because SMC++ incorporates the SFS in the estimation of popula-
tion size variation, its accuracy is increased in recent times (Terhorst 
et al., 2017). SMC++ is currently the state of the art SMC- based 
method for big data sets (>20 haploid genomes), but seems to be 
outperformed by PSMC when using smaller data sets (Patton, 2019).

Despite SMC methods preforming very well when using simu-
lated data (especially when using simple single- population models, 
based on typical data parameters of the human genome Schiffels & 
Durbin, 2014; Sellinger et al., 2020; Terhorst et al., 2017), we explicit 
here four reasons for which the method would present biased or 
poor estimates when applied to real data.

A first fundamental reason is that the accuracy of estimation 
depends on the ratio of effective recombination over effective mu-
tation rates �

�
 Sellinger et al. (2020), Terhorst et al., (2017), Barroso 

et al., (2019). It is also important to keep in mind that there can be de-
viations between �

�
 and the ratio of recombination rate over mutation 

rate measured experimentally r
�
, as the former can be greatly influ-

enced by life history (e.g. Sellinger et al., 2020). There is no solution 
to this fundamental limitation of demographic inference methods as 
the ratio �

�
 is fixed for a given species (note that in humans, this ratio 

is approximately 1).
A second fundamental issue when analysing past demographic 

events is the confounding role of natural selection (positive, balanc-
ing, purifying or background). For example, when unaccounted for, 
selective sweeps can result in a bottleneck followed by an expansion 
signature (i.e. ‘U’ shaped demographic history; Schrider et al., 2016). 
Moreover, background or pervasive positive selection leads to the 
underestimation of population size coupled with spurious and com-
plex population size variation and a bias towards an expansion signal 
in the recent past Johri et al., (2021). There is currently no solution 
for this issue within the SMC theory, though it could be addressed 
using different theoretical frameworks that are being developed 
(Johri et al., 2020, 2021; Nakagome et al., 2019; Sheehan & Song, 
2016).

Third, a conceptual issue when applying any inference methods 
in population genomics is the large number of underlying hypothe-
ses of the models Li and Durbin (2011), Schiffels and Durbin (2014), 
which are potentially violated in genomic data. Several studies ad-
dress the consequences of hypothesis violation on the accuracy of 
SMC methods (Chikhi et al., 2018; Hawks, 2017; Mazet et al., 2016; 
Rodriguez et al., 2018). In particular, unaccounted for population 
structure, admixture or introgression influence population size vari-
ation estimations (Chikhi et al., 2018; Hawks, 2017). We also showed 
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that ignoring two common traits in both plants and animals which 
are seed/egg banking and self- fertilization can lead to erroneous es-
timates of population size changes Sellinger et al., (2020).

Finally, several technical limitations can affect the inference ac-
curacy or bias the results. For example, methods requiring phased 
data (e.g. MSMC, Schiffels & Durbin 2014) tend to strongly overes-
timate population sizes in recent time when errors in phasing occur 
Terhorst et al. (2017). Some methods have been shown to require 
high coverage for trustworthy results Nadachowska- Brzyska et al. 
(2016), and even though SMC methods seem robust to genome 
quality Patton (2019), there may be past demographic scenarios for 
which this is not the case. Therefore, one should keep in mind that 
the accuracy of SMC- based methods depends on which of the many 
underlying hypotheses are prone to being violated in real data sets 
as well as limitations originating from data quality.

In an attempt to complement previous works, we here study the 
limits and convergence properties of methods based on the sequen-
tially Markovian coalescent, specifically those that focus on infer-
ring changes in population size. It is important to keep in mind, that 
although SMC- based models may be theoretically similar, the dif-
ference in the model implementation can yield different outcomes 
when analysing one data set with different methods. In order to 
address both the theoretical limits and issues linked to the actual 
computational implementation, we compare four methods: MSMC 
(Schiffels & Durbin, 2014), MSMC2 (Malaspinas, 2016), SMC++ 
(Terhorst et al., 2017) and eSMC (Sellinger et al., 2020), which we 
describe in more detail below. We introduce how these methods 
work, and what the underlying hypotheses are, followed by a defini-
tion of the limits of SMC- based methods (i.e. how well they perform 
theoretically), denoted here as the ‘best- case convergence’. This 
convergence is then compared to results obtained using simulated 
sequences, so that we can examine the convergence properties in 
the absence of hypothesis violation. We test several demographic 
scenarios, as well as study the effect of the optimization function 
(or composite likelihood) and the time window of the analysis on the 
estimations of different variables. The effects of commonly violated 
hypotheses are also tested, such as the effect of the variation of 
recombination and mutation rates along the sequence and between 
scaffolds, errors in SNP calls and the presence of transposable ele-
ments. Finally, we provide guidelines to interpret abnormal or un-
expected results, hinting at specific hypothesis violations, so as to 
guide users who wish to apply SMC- methodology to their data sets.

2  |  METHODS

2.1  |  Theoretical foundations of SMC methods

Before detailing how we test the limitations of methods used to infer 
past variation in population size, it is essential to quickly introduce 
the theory of the sequentially Markovian coalescent, hidden Markov 
models and algorithm used for statistical inference. For an additional 
introduction to the SMC, see Mather et al. (2020).

2.1.1  |  The sequentially Markovian coalescent

Inference of past events rely on population genetics theory Wakeley 
(2020). The population history can be recovered based on the gene-
alogy of sampled individuals Gattepaille et al. (2016). It is assumed 
that the population follows a neutral model of evolution and that 
the genealogy of the sample can be described using the Kingman n- 
coalescent model. This model allows the length of the genealogy in a 
sample of size n to be connected with the number of polymorphisms 
observed. In the case of a sample size two, the length of the geneal-
ogy until the most recent common ancestor of the sample is directly 
related to the amount of polymorphic sites.

However, the genealogy varies along the genome due to recom-
bination events, a process which is modelled using the Ancestral 
Recombination Graph (ARG). The distribution of the ancestral re-
combination graph of a sample has been described under a Wright- 
Fisher model in Hudson (1983). Unfortunately, computations under 
this model can become very intensive with increasing sample size or 
sequence length Hudson (1983). This computational load can make 
inferences or simulations intractable. Therefore, a new process has 
been introduced to model the ARG as an inhomogeneous Poisson 
process along the sequence Wiuf and Hein (1999). This Poisson pro-
cess has further been approximated through a Markov chain, imply-
ing that all the information necessary to compute the distribution of 
the genealogy at one position is contained in the genealogy of the 
previous position (McVean & Cardin, 2005).

2.1.2  |  Hidden Markov Models and 
parameter inference

All SMC methods are in fact Hidden Markov Models (HMM). This 
means that the observed data are considered to be a signal that is 
emitted by an underlying, but unobservable, Markov process. Here, 
the exact genealogy of all individuals from a population/species is 
unknown; hence, the genealogy can be considered as a latent (hid-
den/unobserved) variable from which results the observed DNA se-
quences (i.e. the observed data are conditioned on the unobservable 
genealogy). Thus, based on SNP data and molecular parameters (e.g. 
mutation and recombination rates), the ARG can be inferred by con-
sidering the genealogy (or coalescence time to the most recent com-
mon ancestor) as a hidden state, and the sequence polymorphism 
data as the observed signal. The series of hidden states (i.e. the 
coalescent times or times to the most recent common ancestor of a 
sample) along the genome is therefore assumed to be a Markov pro-
cess, which we can model using the SMC theory as explained above.

In practice, we are not interested in the hidden states themselves, 
but the parameters of the Markov process (e.g. population size, re-
combination rates). These parameters can be inferred by maximizing 
the likelihood of the modelled Markov process with all parameters 
calculated from the given sequence data. To do so, there are two 
main options. One can directly maximize the likelihood through the 
Forward Algorithm or the Baum- Welch algorithm. As the first option 
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is computationally very intensive, making optimization intractable 
for complex models, all SMC methods use the much more tracta-
ble Baum- Welch algorithm (described in section 2 of the Supporting 
Information of Terhorst et al. (2017)). The Baum- Welch algorithm 
is an Expectation- Maximization algorithm for HMM. Expectation- 
Maximization (EM) algorithms are iterative and alternate between 
performing the expectation step, to create an objective function 
using the current estimates of the parameters, and the maximiza-
tion step, at which the parameter values maximizing the objective 
function are computed and updated. However, implementations 
can differ and the Baum- Welch algorithm is currently based on two 
different (but very similar) objective functions to infer the model 
parameters during the maximization step. The possible implementa-
tions use either the originally described objective function (denoted 
here as the complete Baum- Welch algorithm), or with a truncated 
objective function (here the incomplete Baum- Welch algorithm). 
The objective function for the complete Baum- Welch algorithm is 
given by:

and the truncated version of the objective function by:

with:

• �Θ: The equilibrium probability conditional to the set of parame-
ters Θ.

• P(X1 |Θ): The probability of the first hidden state conditional to 
the set of parameters Θ.

• E(X,Z |Θt): The expected number of transitions of X from Z condi-
tional to the observation and set of parameters Θt.

• P(X |Z,Θ): The transition probability from state Z to state X, condi-
tional to the set of parameters Θ.

• E(Y,X |Θt) The expected number of observations of type Y that 
occurred during state X conditional to observation and set of pa-
rameters Θt.

• P(Y |X,Θ): The emission probability conditional to the set of pa-
rameters Θ.

Here, P(X |Z,Θ) describes the transition probabilities from state 
Z to state X, conditional to the set of parameters Θ (e.g. the recom-
bination rate and population size). In practice, this probability is rep-
resented by a square matrix of size k (k being the number of hidden 
states). This matrix, which is known as the transition matrix, contains 
the predicted transition probabilities from one hidden state to an-
other (i.e. the probabilities of coalescence times at a given genomic 
position, conditioned one the coalescence time at the previous po-
sition on the genome) calculated using the SMC theoretical frame-
work. In addition, E(X,Z |Θt) is the expected number of transitions of 
X from Z conditional to the observation and set of parameters Θt. 

E(X,Z |Θt) can also be seen as a square matrix of size k, containing 
all the expected numbers of transitions from one state to another 
in our data and the set of parameters Θt. Hence, we call this matrix 
the expected transition matrix. This matrix (calculated during the 
Expectation step) can be efficiently computed through the use of 
the Froward and Backward algorithm, well described in Sand et al., 
(2013), Terhorst et al., (2017). Intuitively, during the Maximization 
step, Q(Θ |Θt) is maximized when the transition matrix (i.e. P(X |Z,Θ)) 
is similar to the estimated one (i.e. E(X,Z |Θt)).

2.1.3  |  Best- case convergence

In order to measure the theoretical performance of SMC methods, 
we use a similar approach to Gattepaille et al. (2016), Johndrow and 
Palacios (2019), in which simulated Ancestral Recombination Graphs 
(ARG) are used as input. Using sequence simulators such as msprime 
(Kelleher et al., 2016) or scrm (Staab et al., 2015), one can simu-
late the Ancestral Recombination Graph (ARG) of a sample, usually 
given through a sequence of genealogies (e.g. a sequence of trees 
in Newick format). This exact ARG is then used to build the series 
of hidden states along the genomes and thus obtain the correct es-
timated transition matrix of the simulated data (mentioned above). 
Using this estimated transition matrix built directly from the exact 
ARG, one can estimate parameters as if the algorithm could correctly 
infer the hidden states (i.e. build the correct objective function). As 
the estimation matrix is built from the correct ARG, the results ob-
tained represent the upper bound of performance for these meth-
ods. Since, in practice, the correct objective function can never be 
built (there are biases in estimating the ARG and the estimation ma-
trix will inevitably be inexact), we choose to call this upper bound the 
best- case convergence. For this study's purpose, a second version 
of the R package eSMC Sellinger et al. (2020) was developed. This 
package enables the building of the estimated transition matrix (for 
eSMC or MSMC) from simulated ARG (or ARG obtained from real 
data) and can then use this matrix to infer population size variation. 
The package and its description can be found at: https://github.com/
TPPSe lling er/eSMC2.

2.2  |  SMC methods

In this study, we focus on four different SMC- based methods: 
MSMC, MSMC2, SMC++ and eSMC. As explained above, all these 
methods are Hidden Markov Models and use whole genome se-
quence polymorphism data as input. The reasons for our model 
choices are as follows: (i) MSMC, unlike any other method, focuses 
on the first coalescence event of a sample of size n, and thus exhib-
its different convergence properties (Schiffels & Durbin, 2014), (ii) 
MSMC2 computes coalescence times of all pairwise analyses from 
a sample of size n and can deal with a large range of sample sizes 
and sequence lengths (Malaspinas, 2016), (iii) SMC++ (Terhorst et al., 
2017) is the most advanced and efficient SMC method and lastly, 

(1)

Q(Θ |Θt) = �Θt log(P(X1 |Θ)) +
∑

X,Y

E(X,Z |Θt)log(P(X |Z,Θ)) +
∑

X,Y

E(Y,X |Θt)log(P(Y |X,Θ))

(2)Q(Θ |Θt) =
∑

X,Y

E(X,Z |Θt)log(P(X |Z,Θ)),

https://github.com/TPPSellinger/eSMC2
https://github.com/TPPSellinger/eSMC2
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(iv) eSMC (Sellinger et al., 2020) is a re- implementation of PSMC’ 
(similar to MSMC2). Using eSMC contributes to highlighting the im-
portance of algorithmic translations as it is presently modified to 
output results and intermediate results necessary for this study. All 
the command lines to analyse the generated data can be found in 
the Appendix S2.

2.2.1  |  PSMC’, MSMC2 and eSMC

PSMC’ and methods that stem from it [MSMC2 (Malaspinas, 2016) 
and eSMC (Sellinger et al., 2020)] focus on the coalescence events 
between only two haploid genomes (or one unphased diploid ge-
nome), and, as a result, do not require phased data. The algorithm 
goes along the sequence and estimates the coalescence time at each 
position. In order to do this, it checks whether the two sequences 
are similar or different at each position. The presence or absence of a 
segregating site along the sequence is used to infer the hidden state 
(i.e. coalescence time). However, the hidden state is only allowed to 
change in the event of recombination (Wiuf & Hein, 1999). Thus, 
the population recombination rate � constrains the inferred changes 
of hidden states along the sequence [for a detailed description of 
the algorithm, see Schiffels and Durbin (2014), Wang et al. (2020), 
Sellinger et al. (2020)]. MSMC2 uses the complete Baum- Welch 
algorithm (equation 1), whereas PSMC’ uses the truncated version 
(equation 2).

2.2.2  |  MSMC

Unlike other SMC methods, MSMC simultaneously analyses and 
models the genealogy of multiple sequences and because of this, 
MSMC requires the data to be phased. In combination with a sec-
ond HMM, to estimate the external branch length of the genealogy, 
it can follow the distribution of the first coalescence event in the 
sample along the sequences. However, due to computational load, 
MSMC cannot analyse more than 10 sequences simultaneously (for 
a detailed description see Schiffels and Durbin (2014)).

2.2.3  |  SMC++

Though conceptually very similar to PSMC’, SMC++ is built with 
different mathematical functions and implementation. SMC++ also 
uses a more complex signal (i.e. observed data) compared to previ-
ous methods. Assuming n haploid genomes, SMC++ calculates the 
sample frequency spectrum of sample size (n − 2) + 2, conditioned 
on the coalescence time of two ‘distinguished’ haploids and (n − 2) 
‘undistinguished’ haploids. As fully describing SMC++ goes beyond 
the scope of this study, we direct indefatigable readers to Section 1 
of the Supporting Information in Terhorst et al. (2017). In addition 
SMC++ offers features such as a cubic spline to estimate population 
size variation to obtain continuous changes in population size, unlike 

other models which discretize changes by assuming a piece- wise 
constant population size.

2.2.4  |  Time window

Each tested SMC- based method has its own specific time window, 
that is the interval of time in the past within which estimations are 
made. Hidden states are generally defined as discretized intervals of 
this time window, and as a consequence, boundaries and the length 
and the number of states implicitly affect the inferred parameters. 
This complicates one- to- one comparisons of the different methods. 
Using the updated eSMC package which allows users to set the time 
window, we test how the defined window affects the accuracy of 
the inference. We analyse the same data with four different settings: 
(i) the PSMC’ time window Schiffels and Durbin (2014), (ii) a ‘long’ 
time window, which goes further in the past and in more recent time, 
used in MSMC2 (Wang et al., 2020; and similar to the one of the 
original PSMC Li & Durbin, 2011), (iii) a time window equivalent to 
the first one (i.e. PSMC’) shifted by a factor five in the past (i.e. mul-
tiplied by five) and (iv) a time window equivalent to the first one, but 
shifted by a factor five in recent time (i.e. divided by five).

2.2.5  |  Regularization penalty

To avoid inferring unrealistic demographic histories with very large 
or very rapid variations in populations sizes, SMC++ introduced a 
regularization penalty. In SMC++, the lower the value of the pen-
alty, the more the estimated population size history becomes flat 
and tends towards constant population size over time. For com-
parison, a regularization penalty is also newly introduced in eSMC. 
Setting the regularization penalty parameter to 0 is equivalent to no 
penalization, and the higher the parameter value, the more popula-
tion size variations are penalized (https://github.com/TPPSe lling er/
eSMC2 for more details). We tested the effect of regularization on 
inferences with both methods using simulated sequence data. The 
sequence data are simulated under sawtooth demographic scenarios 
with different amplitudes of population size variation.

2.3  |  Simulated sequence data

Throughout this study, we simulate different demographic sce-
narios using either the coalescence simulation program scrm Staab 
et al. (2015) or msprime Kelleher et al. (2016). We use scrm for the 
best- case convergence as it can output the genealogies in a Newick 
format (which we use as input). We use scrm to simulate data for 
eSMC, MSMC and MSMC2. We use msprime to simulate data for 
SMC++ since msprime is more efficient than scrm for big sample 
sizes Kelleher et al., (2016) and can directly output.vcf files (which is 
the input format of SMC++). All the command lines to simulate data 
can be found in Appendix S1.

https://github.com/TPPSellinger/eSMC2
https://github.com/TPPSellinger/eSMC2
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2.3.1  |  Absence of hypothesis violation

We simulate five different demographic scenarios consisting of 
changes in population size: sawtooth (successions of population size 
exponential expansion and decrease), bottleneck, exponential expan-
sion, exponential decrease and constant population size. Each of the 
scenarios with varying population size is tested for four amplitudes (i.e. 
by how many fold the population size varies: 2, 5, 10 and 50). In the 
sawtooth demographic scenario, each ‘tooth’ (i.e. episode of expan-
sion/decrease or decrease/expansion) is of the assumed amplitude, 
thus leading to a variation of fold 4, 25, 100 and 2500, respectively, 
between the minimum and maximum observed population size. We 
infer the best- case convergence under four different sequence lengths 
(107, 108, 109 and 1010 bp) and choose the per site mutation and recom-
bination rates recommended for humans in MSMC's manual, respec-
tively, 1.25 × 10−8 and 1 × 10−8 (https://github.com/stsch iff/msmc/
blob/maste r/guide.md). When analysing simulated sequence data, we 
simulate sequences of 100 Mb: two sequences for eSMC and MSMC2, 
four sequences for MSMC and twenty sequences for SMC++ as, ac-
cording to the guidelines provided for each method, they correspond 
to the recommended quantity of data required Terhorst et al. (2017), 
Schiffels and Durbin (2014), Sellinger et al. (2020).

2.3.2  |  Calculation of the mean square error (MSE)

Because of differences in time- windows between methods, we evalu-
ate the accuracy of each method by calculating the mean square error 
(MSE). To do so, we choose ten thousand points uniformly spread 
across the time window (in log10 scale). We then calculate the MSE 
by comparing the actual population size and the one estimated by the 
method at each of the points. We thus have the following formula:

where:

• yi is the population size at the time point i .
• y ∗

i
 is the estimated population size at the time point i .

2.3.3  |  Presence of hypothesis violation

We produce data sets simulated under scenarios which are challeng-
ing for SMC methods: SNP calling error, variation in mutation and 
recombination rates along the genome and presence of transposable 
elements.

2.3.4  |  SNP calling

In practice, SNP calling from next generation sequencing can yield 
different numbers and frequencies of SNPs depending on the chosen 

parameters for the different steps of the bioinformatics pipelines 
(read trimming, quality check, read mapping, and SNP calling), as well 
as the quality of the reference genome, data coverage and depth of 
sequencing and species ploidy (Pfeifer, 2017). Therefore, based on 
raw sequence data, the stringency of filters can lead to excluding 
SNPs (false negatives) or including spurious ones (false positives). 
When dealing with complex genomes or ancient DNA (Chang & 
Shapiro, 2016; Slatkin, 2016), SNPs can be simultaneously mistakenly 
missed or added. We model such events by simulating four sequences 
of 100 Mb under a ‘sawtooth’ scenario and then a certain percentage 
(0, 5, 10 and 25%) of SNPs is randomly added to and/or deleted from 
the simulated sequences. We then analyse the effect of SNP calling 
errors on the accuracy of population size variation estimations. As 
an additional analysis, we test the effect of ascertainment bias on in-
ferences (a prominent issue in microarray SNP studies) by simulating 
100 sequences with msprime where only SNPs above a certain minor 
allele frequency (MAF) threshold (1%, 5% and 10%) are kept, then run 
the SMC methods on a subset of the obtained data.

2.3.5  |  Changes in mutation and recombination rates 
along the sequence

Because the recombination rate and the mutation rate can change 
along the sequence (Barroso et al., 2019), and chromosomes are 
not always fully assembled in the reference genome (which con-
sists of possibly many scaffolds), we simulate short sequences 
where the recombination and/or mutation rate randomly change 
between the different scaffolds around an average value of 
1.25 × 10−8 per generation per base pair (between 2.5 × 10−9 and 
6.25 × 10−8). We simulate 20 scaffolds of size 2 Mb, as this seems 
representative of the best available assembly for non- model or-
ganisms (e.g. Lynch et al., 2017; Stam et al., 2019). We then analyse 
the simulated sequences to study the effect of assuming scaffolds 
share the same mutation and recombination rates. In addition, we 
simulate sequences of 40 Mb (assuming genomes are fully assem-
bled) where the recombination rate along the sequence randomly 
changes every 2 Mbp (up to fivefold) around an average value of 
1.25 × 10−8 (the mutation rate being fixed at 1.25 × 10−8 per gen-
eration per bp) to study the effect of the assumption of a constant 
recombination rate along the sequence.

2.3.6  |  Transposable elements (TEs)

Genomes can contain transposable elements whose dynamics vio-
late the classic infinite site mutational model for SNPs and thus po-
tentially affect the estimation of different parameters. Although 
methods have been developed to detect (Nelson et al., 2017) and 
simulate them (Kofler, 2018), understanding how their presence/ab-
sence influences demographic inferences remains limited. TEs are 
usually masked when detected in the reference genome and thus not 
taken into account in the mapped individuals due to the redundancy 
of read mapping for TEs. Due to their repetitive nature, it can be 

(3)MSE =

∑
104

i= 1

�
yi − y ∗

i

�2

104

https://github.com/stschiff/msmc/blob/master/guide.md
https://github.com/stschiff/msmc/blob/master/guide.md
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difficult to correctly detect and assemble them if using short reads, 
as well as to assess their presence/absence polymorphism in indi-
viduals of a population (Ewing, 2015). In addition, the quality and 
completeness of the reference genome (e.g. using the reference 
genome of a sister species as the reference genome) can strongly 
affect the accuracy of detecting, assembling and masking TEs (Platt 
et al., 2016). To best capture and mimic the effect of TEs unac-
counted for in the data, we altered four simulated haploid sequences 
of length 20 Mb in four different ways. The first way simulates the 
effect of unmapped and unaccounted TEs, done by assuming that 
they exhibit presence/absence polymorphism, hence creating gaps 
in the sequence. For each individual, we remove small pieces of 
sequence of different length (1, 10 or 100 kb), so as to remove a 
percentage (5, 10, 25, 50%) of the original simulated sequence, and 
thus shorten and fragment the sequence to be analysed. The second 
way to model the effects of TEs is to consider unmasked TEs. This 
is done by randomly selecting small pieces of the original simulated 
sequence (1, 10 or 100 kb) that make up a certain percentage of it (5, 
10, 25, 50%) and removing all the SNPs in those regions (i.e. remov-
ing mutations from TEs). The removed SNPs are hence structured 
in many small regions along the genome. Third, we test the conse-
quences of simultaneously having both removed and unmasked TEs 
in the data set by combining the first two methods. Last, to measure 
the importance of detecting and masking TEs, we assume all TEs to 
be present and masked when building the multihetsep file (i.e. con-
sidering TEs as missing data).

3  |  RESULTS

3.1  |  Best- case convergence

In Figure 1, we show the results of the best- case convergence of 
eSMC under the sawtooth demographic scenario, with similar results 
obtained for the three other demographic scenarios (bottleneck, 
expansion and decrease), respectively, displayed in Figures S1– S3. 
We generally find that increasing the sequence length increases ac-
curacy and reduces variability, leading to better convergence and 
reducing the mean square error (see Figure 1a– c for eSMC and Table 
S1). However, when the amplitude of population size variation is too 
great, the population size variation cannot be retrieved, even when 
using very large data sets (see Figure 1d). The bottleneck scenario 
seems especially difficult to infer, requiring large amounts of data, 
and the stronger the bottleneck, the harder it is to detect it, even 
with sequence lengths equivalent to 1010 bp. In Figure S4, we show 
that even when changing the number of hidden states (i.e. number 
of inferred parameters), some scenarios with very strong variation of 
population size remain badly inferred.

In Figures S5– S9, we show the best- case convergence of MSMC 
with four genome sequences and generally find that these estimates 
present a higher variance than eSMC. However, MSMC shows better 
fits in recent times than eSMC and is better able to retrieve popula-
tion size variation (see Figure S5d). Scenarios with strong variation 
of population size (i.e. with large amplitudes) still pose a problem 

F I G U R E  1  Best- case convergence of 
eSMC. Estimated population size variation 
using simulated genealogy over sequences 
of 10, 100, 1000, 10 000 Mb (in red, 
orange, green and blue, respectively) 
under a sawtooth scenario (original 
scenario in black) with 10 replicates 
for different ‘tooth’ amplitudes of size 
change: (a) 2- fold, (b) 5- fold, (c) 10- fold, 
and (d) 50- fold. The recombination rate 
is set to 1 × 10−8 per generation per bp 
and the mutation rate to 1.25 × 10−8 per 
generation per bp
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(Figure S9), and no matter the number of estimated parameters, such 
scenarios are also not retrievable using MSMC.

To better understand these results, we collect the estimated 
transition matrices (see Methods) from the exact ARGs of Figure 1. 
We then examine the coefficient of variation (the ratio of the stan-
dard deviation to the mean, indicating convergence when equal 
to 0) at each entry of the matrix calculated from the ten repli-
cates, to study the distribution of the estimated matrices (results 
are plotted in Figure 2). For small amplitudes of population size 
variation, convergence is zero at almost all the matrix entries 
(Figure 2a). However, strong population size variation can lead to 
partially empty matrices and an increased coefficient of variation 
(Figure 2d). Unobserved transitions and increased coefficients of 
variation stem from the reduced probability of coalescence events 
in those time intervals (i.e. a lack of observation of some hidden 
states). This therefore results in the increased variability of the 
inferred parameters, meaning that SMC methods are incapable, 
even when perfectly inferring the hidden states, to correctly infer 
the population size variation in such cases. However, it is possi-
ble to reduce the coefficient of variation, rendering the inferences 
less variable, by increasing the sequence length, that is the number 
of observed transitions (see Figure S10).

3.2  |  Simulated sequence results

3.2.1  |  Scenario effect

Having defined the theoretical limitations of eSMC and MSMC 
using the exact ARG, we now evaluate how these methods 

perform when inputting simulated sequence data using the same 
parameter values as in the previous section. The difference to the 
previous section is that the SMC methods must additionally esti-
mate the transitions between hidden states, thereby introducing 
another layer of statistical inference and thus possible noise in the 
resulting estimations. We first perform two benchmark analyses: 
the constant population size scenario (Figure S11) and the original 
sawtooth demographic scenario from Schiffels and Durbin (2014) 
(Figure S12). eSMC and MSMC2 are both able to retrieve the con-
stant population size scenario, whereas MSMC fails to do so in 
the far past and SMC++ in recent time (Figure S11). All methods 
can retrieve the sawtooth demographic scenario, despite SMC++ 
displaying high variance in recent times (Figure S12). Second, we 
investigate the effect of amplitude of population size variation 
as in Figure 1. Results for the sawtooth scenario are shown in 
Figure 3, where the different models display a good fit, but are 
not as good as the best- case convergence given the same amount 
of data (orange line in Figure 1 and Table S1 vs the red line in 
Figure 3 and Table S2). As predicted by Figures 1 and 2, increasing 
the amplitude of population size variation diminished inference 
accuracy (see Table S2 for the MSE). All estimations display low 
variance and a relatively good fit in the bottleneck and expansion 
scenarios for small population size variation (see Figures S13a 
and S14a). However, the strengths of expansions and bottlenecks 
are not fully retrieved in scenarios with population size variation 
higher than tenfold the current population size (Figures S13c,d, 
and S14c,d). To study the origin of differences between simula-
tion results and theoretical results, we measure the difference 
between the transition matrix estimated by eSMC and the one 
built from the actual genealogy (i.e. Estimated transition matrix 

F I G U R E  2  Estimated transition matrix 
in sharp sawtooth scenario. Estimated 
coefficient of variation of the transition 
matrix using simulated genealogy 
over sequences of 10 000 Mb under a 
sawtooth scenario of ‘tooth’ amplitude 2, 
5, 10 and 50 (in a– d, respectively) each 
with 10 replicates. Recombination and 
mutation rates are as in Figure 1. White 
squares indicate absence of observed 
transitions (i.e. lack of observed hidden 
state transitions)
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vs True estimated matrix). In Figure S15, we show that the hidden 
states are harder to correctly infer in scenarios with strong popu-
lation size variation, explaining the higher variance in Figure 3 
compared to Figure 1. For the same amount of data, the inevita-
ble inaccuracies in the estimated transition matrix contribute to 
erroneous population size inferences compared to the best- case 
convergence.

The variance observed in the inferences is also influenced by the 
time window, whose effect we tested using eSMC. Increasing the 
time window results in an increased variance of the inferences, as 
does shifting the window to more recent times, in the latter case 
resulting in poor estimations of population size variation (see Figure 
S16). Shifting the window further in the past does not seem to 
strongly impact the demographic inferences, though there are con-
sequences on estimations of the recombination rates, as they are 
greatly over- estimated (Table 1). Concerning the optimization func-
tion, we find that the complete Baum- Welch algorithm gives similar 
results to the incomplete one (Table 1). This result, in addition to re-
sults of Figure 1, demonstrates that all the information is contained 
in the estimated transition matrix.

Adding a regularization penalty to eSMC can drastically impact 
inferences (Figure S17) and reduces performance quality. When 
regularization is added, eSMC fails to correctly capture the ampli-
tude of population size variation and with extreme regularization 
penalty, eSMC infers a constant population size. Yet, adding regu-
larization in SMC++ can increase performance and avoid spurious 

variation of population size (Figure S18). However, strong regu-
larization can lead to the inference of constant population size, 
independently of the underlying demographic scenario, and thus 
poor estimations.

3.2.2  |  Effect of the ratio of the recombination 
over the mutation rate

The ratio of the effective recombination over effective mutation 
rates (�

�
) can influence the ability of SMC- based methods to retrieve 

variation in population size (Terhorst et al., 2017). Under the bot-
tleneck scenario, we find that the lower �

�
, the better the fit of the 

inferred demography by eSMC and SMC++ in the past, but also the 
higher the variance of the inferences (see Figure 4). However, each 
method displays the worst fit when �

�
= 10 (Table S3). SMC++ seems 

slightly less sensitive to �
�
 than other methods. When calculating the 

difference between the transition matrix estimated by eSMC and the 
one built from the actual genealogy (ARG), we find that, unsurpris-
ingly, changes in hidden states are harder to detect when �

�
 increases, 

leading to an overestimation of hidden states on the diagonal (i.e. 
staying in the same hidden sate), explaining the underestimation of 
the recombination rate (see Figures S19– S21).

The reason for these results is as follows: if recombination oc-
curs at a higher rate compared to mutation, then it impedes the 
detection of any recombination events that may have taken place 

F I G U R E  3  Estimated demography 
using simulated sequences as input. 
Estimated population size variation 
under a sawtooth scenario (black) with 
10 replicates using simulated sequences 
for different ‘tooth’ amplitudes of 
population size change: (a) 2, (b) 5, (c) 10 
and (d) 50. Two sequences of 100 Mb 
for eSMC and MSMC2 (in red and green, 
respectively), four sequences of 100 Mb 
for MSMC (orange) and 20 sequences of 
100 Mb for SMC++ (blue) were simulated. 
Recombination and mutation rates 
are, respectively, set to 1 × 10−8 and 
1.25 × 10−8
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before the introduction of a new mutation, and thus biases the es-
timation of the coalescence time (Sellinger et al., 2020; Terhorst 
et al., 2017).

In some instances, we find it is possible to compensate for a 
high value (>1) of the ratio �

�
 by increasing the number of iterations. 

Indeed, by doing so, eSMC better infers population size variation 
(Figure S22), although the correct recombination rate cannot be 
retrieved (Table 2). MSMC is better able to infer the correct re-
combination rate than other methods even when 𝜌

𝜃
> 1, but poorly 

estimates the variation in population size. MSMC2 and SMC++, 
however, are insensitive to an increased number of iterations, as 
the estimated population size variation is not improved (see Figure 
S22 and Table 2).

3.3  |  Simulation results under problematic data and 
unaccounted for phenomena

3.3.1  |  Imperfect SNP calling

We analyse simulated sequences that have been modified by re-
moving and/or adding SNPs in order to mimic errors in SNP call-
ing. We find that, when using MSMC2, eSMC and MSMC, having 
more than 10% of spurious SNPs (e.g. low quality filtering) can lead 
to a strong over- estimation of population size in recent time but 
that missing SNPs have no effects on inferences in the far past 
and only mild effects on inferences in recent time (see Figure 5 for 
MSMC2, Figures S23 and S24 for eSMC and MSMC, respectively). 

TA B L E  1  Average estimated values for the recombination over mutation ratio �
�
 by eSMC over ten repetitions for different sizes of the 

time window

Optimization function Scenario real �
�

Normal window 
�

�

∗ Big Window �
�

∗ Old window �
�

∗

Recent 
window �

�

∗

Incomplete Baum- Welch Sawtooth 0.8 0.79 (0.036) 0.72 (0.039) 0.72 (0.042) 0.94 (0.005)

Complete Baum- Welch Sawtooth 0.8 0.79 (0.044) 0.72 (0.039) 0.72 (0.042) 1.56 (0.087)

Incomplete Baum- Welch Constant 0.8 0.86 (0.019) 0.85 (0.020) 0.84 (0.019) 0.98 (0.002)

Complete Baum- Welch Constant 0.8 0.86 (0.019) 0.85 (0.020) 0.84 (0.019) 1.06 (0.02)

The coefficient of variation is indicated in brackets. Four sequences of 50 Mb were simulated with a recombination rate set to 1 × 10−8 per 
generation per bp and a mutation rate to 1.25 × 10−8 per generation per bp.

F I G U R E  4  Effect of �
�
 on inference 

of population size variation. Estimated 
population size variation under a 
bottleneck scenario with 10 replicates 
using simulated sequences. We simulate 
two sequences of 100 Mb for eSMC 
and MSMC2 (in a and b, respectively), 
four sequences of 100 Mb for MSMC 
(c) and twenty sequences of 100 Mb for 
SMC++ (d). The mutation rate is set to 
1.25 × 10−8 per generation per bp and 
the recombination rates are 1.25 × 10−9, 
1.25 × 10−8 and 1.25 × 10−7 per 
generation per bp, giving �

�
= 0.1, 1 and 2 

and the inferred population size variations 
are in red, orange and green, respectively. 
Sequences are simulated under a 
bottleneck scenario of amplitude 10 and is 
represented in black
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The mean square error is displayed in Table S4, demonstrating that 
the better the filtering quality, the more accurate the population 
size inferences.

As complementary analyses, we analyse simulated sequences 
with a Minor Allele Frequency (MAF) threshold. We find that, the 
more SNPs are removed, the poorer the estimations in recent 
time (Figure S25), showing the impact of severe ascertainment 
bias.

3.3.2  |  Specific scaffold parameters

We simulate sequence data where scaffolds have either been sim-
ulated with the same recombination and mutation rates or with 

different recombination and mutation rates. Data sets are then ana-
lysed assuming scaffolds share or do not share the same recombina-
tion and mutation rates. As shown in Figure 6 (and Table S5), when 
scaffolds all share the same parameter values, estimated population 
size variation is accurate in both cases (i.e. assuming scaffolds share 
or not the same mutation and recombination rate). However, when 
scaffolds are simulated with different parameter values, analysing 
them under the assumption that they have the same mutation and 
recombination rates leads to poor estimations. Assuming scaffolds 
do not share recombination and mutation rates does improve the 
results somewhat, but the estimations remain less accurate than 
when scaffolds all share with same parameter values. If only the 
recombination rate changes from one scaffold to another, the esti-
mated population size variation is only slightly inaccurate (Figure 6c), 

TA B L E  2  Average estimated values for the recombination over mutation ratio �
�
 over ten repetitions. The coefficient of variation is 

indicated in brackets

method Real �
�

Set 1, �
�

∗ Set 2, �
�

∗ Set 3, �
�

∗ Set 4, �
�

∗ Set 5,�
�

∗

eSMC 10 1.35 (0.026) 1.76 (0.047) 1.29 (0.027) 1.74 (0.048) 1.80 (0.041)

MSMC 10 2.70 (0.011) 6.58 (0.031) 2.68 (0.011) 6.57 (0.032) 6.62 (0.030)

MSMC2 10 1.27 (0.055) 1.65 (0.13) 1.26 (0.060) 1.75 (0.060) 1.60 (0.29)

SMC++ 10 0.56 (0.38) 0.48 (0.38) 1.32 (0.15) 0.21 (0.62) 0.98 (0.24)

For eSMC, MSMC and MSMC2, we have: set 1: 20 hidden states; set 2: 200 iterations; set 3: 60 hidden states; set 4: 60 hidden states and 
200 iterations and set 5: 20 hidden states and 200 iterations. For SMC++: set 1: 16 knots; set 2: 200 iterations; set 3: 4 knots in green; set 4: 
regularization penalty set to 3 and set 5: regularization- penalty set to 12.

F I G U R E  5  Consequences of SNP 
calling errors. Estimated population size 
variation using MSMC2 under a Sawtooth 
scenario with 10 replicates using 
four simulated sequences of 100 Mb. 
Recombination and mutation rates are as 
in Figure 1 and the simulated population 
size variation is represented in black. 
(a) Inferred population size variation in 
absence of SNP calling issues (red). (b) 
Inferred population size variation with 
5% (orange), 10% (green) and 25% (blue) 
missing SNPs. (c) Inferred population size 
variation with 5% (orange), 10% (green) 
and 25% (blue) additional SNPs. (d) 
Inferred population size variation with 5% 
(orange), 10% (green) and 25% (blue) of 
additional and missing SNPs
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whereas, if the mutation rate changes from one scaffold to the other, 
population size variation is poorly estimated (Figure 6b).

Even if chromosomes are fully assembled, assuming we have 
one fully assembled scaffold of 40 Mb, there may be variations of 
the recombination rate along the sequence, however this seems of 
little consequence when applying eSMC. As can be seen in Figure 
S26, population size variation is well inferred, despite an increase in 
variance and a smooth ‘wave’ shaped population size variation when 
sequences are simulated with varying recombination rates through-
out the genome compared to those with a fixed recombination rate. 
Overall we see that when the recombination rate is heterogeneous 
along the genome by a factor 5, it is not untypical to falsely estimate a 
two- fold variation of Ne even though the true Ne is constant in time.

3.3.3  |  How transposable elements affect inferences

Transposable elements (TEs) are present in most species, and are (if de-
tected) taken into account as missing data by SMC methods (Schiffels 
& Durbin, 2014). Depending on how TEs affect the data set, we find 
that the different methods are more or less sensitive to TEs, but that 
they generally all follow similar trends. If TEs are unmapped/removed, 
there does not appear to be any bias in the estimated population size 
variation (see Figure 7 and Table S6 for eSMC and Figures S29 and S32 
for MSMC and MSMC2, respectively). However, as can be seen from 
Table 3, there is an overestimation of �

�
, and the higher the propor-

tion of sequences removed, the more �
�
 is over- estimated. For a fixed 

amount of missing/removed data, the smaller the sequences that are 
removed, the more �

�
 is over- estimated (Table 3). If TEs are present but 

unmasked in the data set (and thus are not accounted for as missing 
data by the model; Schiffels and Durbin, 2014), we find that this is 
equivalent to a faulty calling of SNPs, in which SNPs are missing, hence 
resulting in population size variation estimations by eSMC similar to 
those observed in Figure 5a. However, if the size of unmasked TEs in-
creases, different results are obtained. Indeed, in recent times there 
is a strong underestimation of population size and the model fails to 
capture the correct population size variation (see Figures S27 and S28 
for eSMC, Figures S30 and S31 for MSMC and Figures S33 and S34 for 
MSMC2). The longer the TEs, the stronger the effect on the estimated 
population size variation. However, when TEs are detected and cor-
rectly masked, there is no effect on inferring population size variation 
(Figures S35 and S36).

4  |  DISCUSSION

Inference methods based on the Sequentially Markovian Coalescent 
are robust and powerful tools that are being constantly extended to 
account for more complex scenarios. Here, we test the limits of four 
methods developed to infer past changes in size under the assump-
tion of a single unstructured population (MSMC, MSMC2, SMC++ and 
eSMC) and define the parameter ranges in which they can be used more 
or less confidently. Through the application of the four tested SMC 
methods, we show that the inferred demographic history depends on 

F I G U R E  6  Inference of population 
size from scaffolds sharing or differing 
in mutation and recombination rates. 
Estimated population size variation using 
eSMC under a constant population size 
scenario with 10 replicates from twenty 
simulated scaffolds of 2 Mb (sample size 
of 2) assuming scaffolds share (red) or do 
not share recombination and mutation 
rates (orange). The simulated population 
size variation is represented in black. (a) 
Scaffolds share the same parameters, 
recombination and mutation rates are 
set at 1.25 × 10−8, (b) Each scaffold is 
randomly assigned a recombination rate 
between 2.5 × 10−9 and 6.25 × 10−8 and 
the mutation rate is 1.25 × 10−8, (c) Each 
scaffold is randomly assigned a mutation 
rate between 2.5 × 10−9 and 6.25 × 10−8 
and the recombination rate is 1.25 × 10−8 
and (d) Each scaffold is assigned a random 
mutation and an independently random 
recombination rate, both being between 
2.5 × 10−9 and 6.25 × 10−8
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the scenarios and amplitudes of population size changes, as there are 
cases where, even in an ideal situation, the current SMC framework is 
not able to recover the true scenario. Through the objective function 
of the Baum- Welch algorithm, we demonstrate that all the informa-
tion is contained in the estimated transition matrix. We also highlight 
issues that may arise due to technical limitations when using genome 
data, as well as which assumption violations affect the performance of 
these methods. By comparing the different methods, we point out the 
complementarity between these methodologies, with some scenarios 
being better retrieved when using either MSMC or methods based on 
PSMC’ (e.g. eSMC, MSMC2).

As PSMC’, MSMC and other SMC- based methods use the Baum- 
Welch algorithm, they rely on correctly estimating of the ARG (i.e. the 
genealogies along the sequence), any bias in hidden state inferences 
decreases the accuracy of inferences. With this knowledge, users are 
able to associate errors in inference with issues in either the data set 
(for which there may be solutions, see below) or specific hypothe-
sis violations. The package we have developed can be used to infer 
population size variation by inputting ARGs (trees in Newick format 
or sequences of coalescence events), independently of how the ARG 
has been estimated. As HMMs can be a computational burden under 
complex models and new methods are developed to accurately infer 

F I G U R E  7  Consequences of masking 
or removing transposable elements (TEs) 
from data sets. Estimated population 
size variation by eSMC under a sawtooth 
scenario with 10 replicates using four 
simulated sequences of 20 Mb. The 
recombination and mutation rates 
are as in Figure 1, and the simulated 
demographic scenario is represented in 
black. Here the TEs are of length 1 kbp. 
(a) Inferred population size variation in 
absence TEs. (b) Inferred population size 
variation where TEts are removed. (c) 
Inferred population size variation where 
TEs are masked. (d) Inferred population 
size variation where half of the TEs are 
removed and SNPs on the other half 
are removed. Proportion of the genome 
made up by TEs is set to 0% (red), 5% 
(orange), 10% (green), 25% (blue) and 50% 
(purple)
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(d)  TEs removed or undetected

0 % TEs
5 % TEs
10 % TEs
25 % TEs
50 % TEs

TE length Method
Real 
�

�

�

�

∗ and 5% 
TEs

�

�

∗ and 10% 
TEs

�

�

∗ and 25% 
TEs

�

�

∗ and 50% 
TEs

3*1 kb eSMC 1 0.95 (0.021) 0.99 (0.022) 1.16 (0.10) 1.77 (0.36)

MSMC 1 1.31 (0.098) 1.35 (0.11) 1.50 (0.088) 1.91 (0.11)

MSMC2 1 0.87 (0.047) 0.88 (0.049) 1.0 (0.036) 1.35 (0.035)

3*10 kb eSMC 1 0.96 (0.053) 0.98 (0.066) 1.10 (0.18) 1.36 (0.41)

MSMC 1 1.38 (0.074) 1.41 (0.0.090) 1.54 (0.11) 1.68 (0.13)

MSMC2 1 0.87 (0.064) 0.89 (0.067) 0.99 (0.15) 1.13 (0.30)

3*100 kb eSMC 1 0.95 (0.047) 0.95 (0.051) 0.98 (0.070) 1.0 (0.12)

MSMC 1 1.36 (0.048) 1.36 (0.062) 1.40 (0.093) 1.49 (0.12)

MSMC2 1 0.87 (0.056) 0.88 (0.050) 0.91 (0.079) 0.91 (0.073)

The coefficient of variation is indicated in brackets. TEs are of length 1, 10 or 100 kb and are 
completely removed and the proportion of the genome made up by TEs is 5%, 10%, 25% and 50%.

TA B L E  3  Average estimated values for 
the recombination over mutation ratio �

�
 

over ten repetitions
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genealogies (Kelleher et al., 2019; Ki & Terhorst, 2020; Speidel et al., 
2019), we present a renewed interpretation of use of the SMC the-
ory through the use of the estimated transition matrix. This matrix can 
be used for inference under more complex models as well as for hy-
pothesis testing between different models/scenarios (as in Johndrow 
& Palacios, 2019). Our approach differs from previous works in that 
we use the series of hidden states built from the discretization of time 
summarized in a simple matrix, instead of the more computation-
ally heavy estimations using the actual series of coalescence times 
(Gattepaille et al., 2016). The estimated transition matrix could thus 
become a powerful summary statistic in the future, facilitating the 
development of statistical approaches that encompass more compli-
cated processes. Because new developments offer the possibility of 
detecting admixture using the SMC framework (Wang et al., 2020), our 
approach could be extended to account for population structure and 
migration (to some extent Kim et al., (2020)).

As the above conclusions might result from the fact that all SMC 
methods rely on the Baum- Welch algorithm for parameter inference 
(and thus on the accuracy of the HMM to estimate the transition 
matrix), this could potentially lead the algorithm to fall in local ex-
trema when maximizing the likelihood. Convergence properties of 
SMC methods based on the direct optimization of the likelihood re-
main unknown. Therefore, some of the above mentioned issues and 
limitations could be overcome. The convergence properties of SMC 
methods based on maximizing the actual likelihood remains to be 
determined in order to test whether current SMC approaches fail to 
correctly optimize the likelihood or if limitations originate from the 
model itself. The first case would require current approaches to bet-
ter explore the likelihood function to estimate parameters (this can 
be solved with more computational power), the latter would require 
to build a new theoretical framework to overcome those limitations 
to improve accuracy and robustness.

4.1  |  General guidelines when applying SMC- 
based methods

Our aim through this work is to provide guidelines for using SMC- 
based methods. There are several aspects that must be taken into 
account when putting together a data set or analysing an existing 
one. As expected from previous works, the number and size of 
genome copies used both play an important role in the accurate 
estimation of population size variation (Gattepaille et al., 2016; 
Johndrow & Palacios, 2019). However, we find that the amount 
of data required for an accurate fit depends on the underlying de-
mographic population size scenario, with bottlenecks often posing 
a problem. Indeed, SMC methods seem to incorrectly infer sud-
den and strong population size variation, resulting in unreliable 
inferences. Thus, the amplitude of population size variation also 
influences the estimation of model parameters, with high ampli-
tudes leading to unobserved hidden state transition (thus partially 
empty estimated transition matrix), distorting the inferred popula-
tion size variation. We show that the coefficient of variation of 

the estimated transition matrix (using either real or simulated data) 
can indicate whether the amount of data is enough to retrieve a 
specific scenario (see also Figure S10).

It is also important to keep in mind that the accuracy of ARG in-
ference by SMC methods depends on the ratio of the recombina-
tion over the mutation rate (�

�
). As this rate increases, estimations 

lose accuracy. Specifically, increasing �
�
 leads to an over- estimation 

of transitions on the diagonal, which explains the underestimation 
of the recombination rate and inaccurate demographic history es-
timations (Sellinger et al., 2020; Terhorst et al., 2017). As a way 
around this issue, in some cases it is possible to obtain better re-
sults by increasing the number of iterations. MSMC's demographic 
inference is more sensitive to �

�
 but the quality of the estimation of 

the ratio itself is less affected. This once again shows the comple-
mentarity of PSMC’ and MSMC. If the variable of interest is �

�
, then 

MSMC should be used, but if the population size variation is of 
greater importance, PSMC'- based methods should be used. It is 
also advised to evaluate whether the size of the time window is 
adequate for the analysis (even though it is often fixed when using 
the different methods), as increasing its size will also increases the 
variance of the estimations.

4.2  |  Guidelines when applying SMC- based 
methods on problematic data sets

Simulation results suggest that any variation of the recombination 
rate along the sequence slightly increases the variance of the results 
and leads to spurious small waves in population size variation, as ex-
pected from previous works Li and Durbin (2011). However, unlike 
results under the first PSMC method Li and Durbin (2011), if scaf-
folds do not share similar rates of mutation and recombination, but 
are analysed together assuming that they do, estimations are very 
poor. This discrepancy between our results and those in (Li & Durbin, 
2011) may be due to the variation of the mutation rate being within 
a scaffolds in Li and Durbin (2011) compared to between scaffold in 
the present study. The results in Li and Durbin (2011) could also sug-
gest that analyses based on longer scaffolds would be more robust. 
However, this problem can be avoided if each scaffold is assumed 
to have its own parameter values at the cost of increased compu-
tation time. Such analyses with varying rates between scaffolds 
could additionally provide useful insight in unveiling any variation in 
molecular forces along the genome, albeit in a coarser way than in 
Barroso et al., (2019). Since the consequences of a varying recombi-
nation rate might depend on the topology of the recombination map, 
we recommend estimating the recombination map (e.g. using iSMC 
(Barroso et al., 2019) or ReLERNN (Adrion, 2020)). If problematic re-
gions are found they can be masked with almost no negative impact 
on the estimated demography (Figure S35 and S36).

Imperfect data sets, due to technical errors such as SNP calling 
or to biological characteristics such as presence of transposable el-
ements, can affect the inferences obtained using SMC- based meth-
ods. We show that data sets with more than 10% of spurious SNPs 
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lead to poor estimations of the population size variation, whereas 
randomly removed SNPs (i.e. missing SNPs) have a lesser effect on 
inferences. We thus recommend to be stringent during SNP calling, 
as a data set with spurious SNPs is worse than one with missing 
SNPs. Note, however, that this consideration is valid for inferences 
under a neutral model of evolution. If missing SNPs are structured 
along the sequence (as would be the case with unmasked TEs), there 
is a strong effect on inference. If TEs are correctly detected and 
masked, there is no effect on demographic inferences. It is therefore 
recommended that checks should be run to detect regions with ab-
normal distributions of SNPs along the genome.

Surprisingly, simulation results show that removing random 
pieces of sequences have no impact on the estimation of population 
size variation. Taking this into account, removing problematic sec-
tions of sequences seems safer than to introduce sequences with 
SNP call errors or abnormal SNP distributions. However, removing 
pieces of the sequences leads to an over- estimation of �

�
, which 

seems to depend on the number and size of the removed sections. 
The removal of a few, albeit long sequences, have almost no impact, 
whereas removing many short sections of the sequences lead to a 
large overestimation of �

�
. This result could provide an explanation 

for the frequent overestimation of �
�
 when compared to empirical 

measures of the ratio of recombination and mutation rates r
�
, which 

remain mainly unexplained.

4.2.1  |  Suggestions when building a data set 
for inference

In order to make the most out of SMC methods, and thus obtain infer-
ences that are as accurate as possible, we recommend simulating a data 
set corresponding to any suspected demographic scenarios and using, 
if possible, any available knowledge of the relevant genomic character-
istics of the focal species (e.g. recombination and mutation rates). From 
these simulations, the estimated transition matrix for PSMC’ or MSMC 
methods (for a single panmictic population) can be built. Migration 
could also be accounted for using the approach developed in Wang 
et al. (2020). The resulting estimated transition matrix and its coeffi-
cient of variation can therefore be used to guide users as to the neces-
sary quantity of data needed (sequence size and number of genomes) 
for a good inference. Yet, it seems overall better to obtain genome as-
sembly and SNP calls of enhanced quality (see Figure 5). Finally, in some 
cases, SMC- methods are limited by their own theoretical framework 
resulting in demographic scenarios which cannot be recovered. In such 
cases, other approaches can be considered (e.g. ABC) as they might per-
form better and are more flexible regarding the demographic scenarios 
which can be tested. (Beichman et al., 2017; Schraiber & Akey, 2015).

4.2.2  |  Evaluating trustworthiness of results

As mentioned above, there are several instances where the past 
variation in population size may be badly inferred. A simple way to 

determine whether the results obtained are indeed trustworthy is by 
examining the estimated transition matrix. If the matrix is empty in 
some places (i.e. there is no observed transition event between two 
specific hidden states; white squares in Figure 2), it could suggest 
a lack of data and/or strong variation of the population size in this 
specific time interval. To measure the accuracy of the inferred de-
mography, one can simulate data under the estimated demographic 
history and measure how well it is retrieved by the SMC- method 
Arredondo et al., (2020), Chikhi et al., (2018), Rodriguez et al., (2018).

5  |  CONCLUDING REMARKS

Here, we present an extension of the classic SMC framework to help 
assess the accuracy of inferences when applying these methods to 
data sets with suspected flaws or limitations. This analysis can be 
conducted prior to the full analysis of a given data set. We also pro-
vide new interpretations of results obtained when hypotheses are 
known to be violated, and thus offer an explanation as to why re-
sults sometimes deviate from expectations (e.g. when the estimated 
ratio of recombination over mutation is larger than the one meas-
ured experimentally). We propose guidelines for building/evaluating 
data sets when using SMC- based models, as well as a method which 
can be used to estimate the demographic history and recombination 
rate given a genealogy (in the same spirit as Popsicle (Gattepaille 
et al., 2016)). The estimated transition matrix is introduced as a sum-
mary statistic, which can be used to capture and recover pieces of 
the demographic history. This statistic could, in the future, be used 
in scenarios with migration, without the computational burden of 
Hidden Markov Models but keeping the high accuracy and resolu-
tion of SMC methods.
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