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Purpose: To develop a methodology for probing lipid droplet sizes with a clini-
cal system based on a diffusion-weighted stimulated echo–prepared turbo spin-echo 
sequence and to validate the methodology in water–fat emulsions and show its ap-
plicability in ex vivo adipose-tissue samples.
Methods: A diffusion-weighted stimulated echo–prepared preparation was combined 
with a single-shot turbo spin-echo readout for measurements at different b-values 
and diffusion times. The droplet size was estimated with an analytical expression, 
and three fitting approaches were compared: magnitude-based spatial averaging with 
voxel-wise residual minimization, complex-based spatial averaging with voxel-wise 
residual minimization, and complex-based spatial averaging with neighborhood-
regularized residual minimization. Simulations were performed to characterize the 
fitting residual landscape and the approaches’ noise performance. The applicability 
was assessed in oil-in-water emulsions in comparison with laser deflection and in ten 
human white adipose tissue samples in comparison with histology.
Results: The fitting residual landscape showed a minimum valley with increasing 
extent as the droplet size increased. In phantoms, a very good agreement of the mean 
droplet size was observed between the diffusion-weighted MRI-based and the laser 
deflection measurements, showing the best performance with complex-based spatial 
averaging with neighborhood-regularized residual minimization processing (R2/P: 
0.971/0.014). In the human adipose-tissue samples, complex-based spatial averaging 
with neighborhood-regularized residual minimization processing showed a signifi-
cant correlation (R2/P: 0.531/0.017) compared with histology.
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1  |   INTRODUCTION

The assessment of lipid droplet size is important to study 
adipose-tissue (AT) remodeling in both health and metabolic 
dysfunction. In white AT (WAT), adipocytes contain unilocular 
lipid droplets with a diameter between 50 μm and 150 μm and 
a thin surrounding cytoplasm. Thereby, the lipid droplet size is 
typically considered synonymous for the adipocyte size. With 
the onset of obesity, an increase in adipocyte size in subcutane-
ous and visceral WAT can be observed in adults.1,2 WAT ad-
ipocyte size is known to be associated with comorbidities of 
obesity such as type 2 diabetes, dyslipidemia, and cardiometa-
bolic risk.3 Therefore, adipocyte size assessment is highly de-
sirable to identify the patient’s risk to develop obesity-related 
medical conditions. Currently, however, the measurement of 
adipocyte size requires invasive biopsy procedures.4

Diffusion-weighted (DW) MR is a powerful approach 
for the noninvasive probing of tissue microstructure. The re-
duction of the ADC with increasing diffusion times due to 
diffusion-restriction effects has been applied extensively to 
estimate cell size in water-containing tissues.5 Measuring 
lipid-diffusion properties remains challenging, as fat has a 
diffusion coefficient approximately two orders of magnitude 
lower than water.6,7 The low fat diffusivity imposes the re-
quirement for high b-values and long diffusion times to mea-
sure diffusion-restriction effects, inducing further technical 
challenges related to eddy currents8 and increased motion 
sensitivity.9,10 However, even when using high b-values and 
long diffusion times, the extraction of lipid droplet size from 
DW measurements requires high SNR,11 especially due to 
small diffusion-restriction effects when probing large lipid 
droplet sizes in human WAT.

Diffusion-weighted MRS (DW-MRS) is a versatile tool 
that allows to measure diffusion properties of metabolites other 
than water12,13 and has recently been applied to study lipid 
diffusion. Specifically, high b-value single-voxel DW-MRS 
techniques have been applied to study myocellular lipid diffu-
sion,14 to quantify the intramyocellular lipid droplet size15 and 
to study murine brown adipocytes.16 However, most of the ex-
isting lipid DW-MRS work has been performed ex vivo, inves-
tigating small lipid droplets (below 10 μm) using the gradient 
hardware of preclinical systems. Only recently, the feasibility 

of using DW-MRS was reported for the in vivo probing of 
lipid droplet size in human bone marrow adipocytes on a clin-
ical system, which represents a milestone toward probing the 
lipid droplet size in larger WAT adipocytes.11

Single-voxel DW-MRS allows high SNR but is associated 
with important limitations when aiming at clinical transla-
tion of the lipid droplet size measurement: Due to the large 
voxel size, DW-MRS is sensitive to motion-induced intra-
voxel dephasing effects, which results in quantification er-
rors. Acquiring data with smaller voxel size would mitigate 
this effect and is an important step toward in vivo applica-
bility. Neighborhood information could also lead to a more 
robust lipid droplet size fitting, but with single-voxel MRS 
no neighborhood information is encoded. Acquiring spatially 
resolved data would allow regularized parameter fitting in the 
lipid droplet size estimation.

Therefore, a lipid DWI technique is desirable, which al-
lows the acquisition of lipid signals at high b-values and long 
diffusion times to at least partly overcome the aforemen-
tioned limitations of lipid single-voxel DW-MRS. Lipid DWI 
will not only be less sensitive to motion/vibration effects and 
has the possibility to consider the voxel neighborhood in the 
fitting process, but potentially also allows the extraction of 
spatially resolved lipid droplet size maps. Previous work aim-
ing at lipid DWI have been based on DW spin-echo single-
shot EPI.7 However, spin echo–based DW suffers from lower 
SNR when using long diffusion times, whereas EPI readouts 
are highly sensitive to off-resonance effects (including dif-
ferent chemical shift artifacts for the different fat peaks).17 
Instead, a stimulated echo–based (STE) preparation may 
allow to probe diffusion restriction effects at long diffusion 
times, and a single-shot turbo spin-echo (TSE) readout could 
reduce the sensitivity to chemical shift artifacts.18

Therefore, the purpose of the present work was to (1) 
develop a DW-STE-prepared single-shot TSE sequence for 
measuring lipid diffusion using a clinical 3T system, (2) de-
velop the processing for lipid droplet size mapping, (3) vali-
date the methodology in water–fat emulsions by comparing 
the MR results with laser deflection measurements (method-
ology to measure lipid particle-size distributions19) and (4) to 
investigate the methodology in ex vivo human AT samples by 
comparing the MR results with histology.

Conclusion: The proposed acquisition and parameter-estimation methodology was 
able to probe restricted diffusion effects in lipid droplets. The methodology was vali-
dated using phantoms, and its feasibility in measuring an apparent lipid droplet size 
was demonstrated ex vivo in white adipose tissue.
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2  |   METHODS

2.1  |  Pulse sequence

A nonselective 3D DW-STE preparation consisting of four 90° 
Malcom-Levitt RF pulses20 and monopolar diffusion gradients 
combined with a single-shot 2D TSE readout (Figure 1) was 
developed. To eliminate eddy current–induced and motion-
induced phase errors, magnitude-stabilizing gradients following 
Alsop’s method18 were introduced in preparation and readout.21 
The b-value was adjusted by changing the diffusion gradient 
strength. The diffusion time was changed by varying the mixing 
time (TM) of the preparation module. The DW-STE prepara-
tion was designed to allow the strong DW necessary to inves-
tigate lipid diffusion, while offering the possibility to increase 
the diffusion time with minor signal attenuation. The influence 
of residual water signal was reduced by only acquiring DW sig-
nals at b-values above 5000 mm2/s and by a frequency selectiv-
ity of the preparation module that additionally attenuates the 
water signal. The preparation module has a bandwidth of ap-
proximately ±400 Hz, and the Malcom-Levitt RF pulses were 
used to ensure a decent robustness against B1 inhomogeneities 
with moderate specific absorption rate penalty (Supporting 
Information Figure S1). The center frequency was set manually 
to the main fat peak in all subsequent experiments. The maxi-
mum b-value and diffusion time were empirically selected to be 
as large as possible, while simultaneously ensuring a sufficient 
SNR in the measurement protocols listed subsequently.

2.2  |  Reconstruction and preprocessing of 
DW images

The obtained k-space data were low-pass-filtered using a 
Hanning window filter. Different sizes of the filter were 

empirically tested and the results were inspected visually. A 
filter size of half of the k-space window was selected and used 
for the subsequent processing because it provided a robust es-
timation of the low-resolution phase term. The low-resolution 
phase term was extracted and subsequently subtracted from the 
corresponding full-resolution DW image.22 Afterward, the ef-
fective SNR (SNReffective) was increased by spatially averaging 
the DW image under the assumption that the tissue heterogene-
ity is small. Spatial averaging was performed by taking the sig-
nal’s mean within a square with a certain voxels edge length. 
The value of SNReffective was equal to sqrt(N)*SNR0, where N 
is equal to the number of voxels that are averaged and SNR0 is 
the SNR of a single voxel. The 2D spatial averaging was either 
performed on the magnitude or the complex DW images sepa-
rately for each diffusion time, b-value, and average.

2.3  |  Lipid droplet size estimation

The lipid droplet size can be estimated based on DW signals, 
previously measured by DW-MRS11 with the corresponding 
cost function C:

where S0 is the signal without DW; SMurday&Cotts is the theoreti-
cal DW signal,23 d is the restricting spherical barrier diameter, 
D is the free diffusion constant, TM is the DW-STE prepara-
tion’s mixing time, T1 is the longitudinal relaxation constant, 
and Sexp is the measured signal.

The obtained DW images can be used to fit the lipid droplet 
size spatially resolved by minimizing the cost function C voxel-
wise. Fitting was performed using a nonnegative least-squares 
fitting using the trust-region-reflective algorithm by MATLAB 

(1)C =
‖‖‖‖

S0 c. SMurday&Cotts (d, D) c. exp
(
−

TM

T1

)
− Sexp

‖‖‖‖

2

F I G U R E  1   Sequence diagram of the proposed diffusion-weighted (DW) stimulated echo–based (STE)-prepared single-shot 2D turbo spin 
echo (TSE). The DW-STE magnetization preparation consists of four composite 90° Malcom-Levitt RF pulses and monopolar diffusion-sensitizing 
gradients (blue). To eliminate eddy current–induced and motion-induced phase errors, an additional pair of dephasing/rephasing gradients 
(indicated in red), denoted as magnitude stabilizers, are introduced before the last tip-up pulse. Additional, magnitude stabilizers are performed 
immediately before and after every spin-echo formation (also indicated in red). The spoiler gradients within the magnetization preparation are 
indicated in gray. Abbreviations: SE, sping echo; TE, echo time; TM, mixing time
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(MathWorks, Natick, MA). To avoid local minima at each voxel, 
the fitting was performed with multiple initial starting value pairs 
(i) for d and D. The residual resi(r) and the estimated parameters 
di (r) , Di (r) , T1i (r) , S0,i (r) were recorded for each initial start-
ing value pair i and voxel location r. The initial starting values 
were selected to be close to the expected parameter values but 
also covering a large range. Therefore, the initial starting values 
for phantom fitting were d = 4-28 µm in 4-µm steps, D = 6 × 
10−6 mm2/s to 10 × 10−6 mm2/s in 0.5 × 10−6-mm2/s steps, and 
T1 = 300 ms. The value of S0 was estimated based on the other 
initial starting values and the maximum value of the noisy sig-
nal. For the AT samples case, the initial starting values for the 
fitting were d = 20-80 µm in 10-µm steps, D = 6 × 10−6 mm2/s 
to 10 × 10−6 mm2/s in 0.5 × 10−6-mm2/s steps, and T1 and S0 
were the same as in the phantom case.

The final parameters were estimated by finding either a 
voxel-wise minimum or a neighborhood-regularized global 
minimum. Figure 2 shows an overview of the processing 
pipeline. Combined with the possibility of performing a 
magnitude-based (resulting in the residuals resMbi[r]) or 
complex-based (resulting in the residuals resCbi[r]) averag-
ing before the parameter estimation, different processing 
schemes can be distinguished.

Specifically, three different ways of processing were com-
pared: magnitude-based spatial averaging with voxel-wise 
residual minimization (MbV, red color in figures), complex-
based spatial averaging with voxel-wise residual minimiza-
tion (CbV, blue color in figures), and complex-based spatial 
averaging with neighborhood-regularized residual minimi-
zation (CbR, green color in figures). In Figure 2, only the 

F I G U R E  2   Overview of fitting process is shown in one adipose-tissue (AT) sample. Data are acquired with different diffusion times (Δ, 
rows) and diffusion weightings (b-value, diagonal dimension). First, the complex data are phase-corrected and then spatially averaged to increase 
SNR. All data are pooled, and a voxel-wise fitting is performed with different initial starting values. The fitting process leads to different estimates 
for the parameter maps. The final parameter maps can be obtained from the estimates in two different ways. Taking the voxel-wise estimate 
with lowest residual leads to the magnitude-based spatial averaging with voxel-wise residual minimization (MbV) processing (not shown) when 
using magnitude data or CbV processing (blue) using complex data. Using the complex data and additionally imposing a spatially slowly varying 
lipid droplet size (represented by its diameter) leads to the CbR processing (green). Abbreviations: CbR, complex-based spatial averaging with 
neighborhood-regularized residual minimization; CbV, complex-based spatial averaging with voxel-wise residual minimization
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CbV and the CbR processing are shown because the MbV 
processing is identical to CbV besides the performed spatial 
averaging.

2.3.1  |  Magnitude-based spatial averaging with 
voxel-wise residual minimization

Spatial averaging was first performed on the magnitude DW 
images. Fitting was then performed voxel-wise for multiple 
initial starting values, and an analysis of the residuals was 
performed at each voxel location r as follows: 

2.3.2  |  Complex-based spatial averaging with 
voxel-wise residual minimization

Spatial averaging was first performed on the complex DW 
images. Fitting was then performed voxel-wise for multiple 
initial starting values, and an analysis of the residuals was 
performed at each spatial location r as follows: 

2.3.3  |  Complex-based spatial averaging with 
neighborhood-regularized residual minimization

Spatial averaging was first performed on the complex DW 
images, and the fitting was performed voxel-wise with dif-
ferent initial starting values. A global analysis was then 
performed, imposing a small spatial lipid droplet–size vari-
ation. Therefore, the fitted parameters in each voxel were 
selected not only based on the local voxel residual but also 
by penalizing large diameter variations in the Von Neumann 
neighborhood (representing the four adjacent voxels) of the 
voxel (N[r]). A regularized global cost function similar to 
Cui et al24 and Boehm et al25 was used, in which resCb(r) 
replaced the data-consistency term, and the regularization 
term was the estimated diameter’s variation in the voxel’s 
neighborhood. The minimization problem was solved with a 
graph-cut algorithm using a graph construction with convex 
priors that allows for unequally sampled space26 in the diam-
eter dimension: 

The regularization parameter λ was chosen following the 
discrepancy principle and was set to 0.1. The discrepancy 
principle states that the regularization term should be similar 
to the noise floor.27 The used regularization term was approx-
imately 10% of the data consistency term.

2.4  |  Phantom manufacturing

Four high-fat water–fat phantoms (oil-in-water emulsions) 
resembling in vivo AT lipid content were produced. Each 
phantom contained 800 mL sunflower oil (ARO), 200 mL 
water, 20 mL Tween 80 (Sigma-Aldrich, Taufkirchen, 
Germany), and 1 g of sodium benzoate (Roth, Karlsruhe, 
Germany). Emulsification was carried out with a colloid mill 
(IKA Labor-Pilot 2000/4; IKA-Werke, Staufen, Germany) 
at 5000/6000/9000/12 000 revolutions per minute to obtain 
different oil droplet sizes (standardized emulsification pro-
cess28). The particle size was measured by dynamic light scat-
tering using a particle-sizing instrument (Mastersizer 2000; 
Malvern Instruments, Worcestershire, United Kingdom). 
Samples were diluted with 0.5% sodium dodecyl sulfate 
(Serva; Heidelberg, Germany) solution (1:10, vol/vol) to 
separate agglomerates and measure single lipid droplets.19 
From the particle-size distributions, mean diameters were 
extracted.

2.5  |  Adipose tissue sampling

Ten abdominal subcutaneous AT samples were obtained from 
patients undergoing abdominoplasty after severe weight loss. 
The study was approved by the local ethics commission, and 
written consent was obtained. Small pieces from the AT sam-
ples were fixed in formalin for histological processing. After 
slicing and staining with hematoxylin and eosin, images were 
taken in high-definition range at ×200 magnification (VHX-
6000l Keyence, Osaka, Japan). Adipocyte area determination 
was carried out using the proprietary microscope image anal-
ysis software (VHX-6000; Keyence) by automatically identi-
fying round objects within the histology slice and obtaining 
the object’s area. A lower (200 µm2) and upper size limit (16 
000 µm2) were used to remove objects typically representing 
artifacts, cell debris, or ruptured adipocytes. Each image was 
manually inspected after automated identification. Adipocyte 
diameter was calculated assuming a spherical shape.4

2.6  |  Numerical analysis of fitting 
residual landscape

To investigate the residual landscape of the fitting, the differ-
ence of the signal decay curves relative to selected reference 

(2)

[
dMbV (r) , DMbV (r) , T1MbV (r) , S0,MbV (r)

]
= arg min

d(r),D(r),T1(r),S0(r)
resMb (r)

(3)

[
dCbV (r) , DCbV (r) , T1CbV (r) , S0,CbV (r)

]
= arg min

d(r),D(r),T1(r),S0(r)
resCb (r)

(4)

�
dCbR (r) , DCbR (r) , T1CbR (r) , S0,CbR (r)

�

=arg min
d(r),D(r),T1(r),S0(r)

�

r

resCb (r)+� c.
�

s∈N(r)

‖d (r)−d (s)‖
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signals was calculated based on the cost function C (T1 = 300 
ms and S0 = 100 were assumed while varying the free dif-
fusion constant and diameter). The following measurement 
scenarios were distinguished due to different scan protocols.

In the phantom case, the protocol included 50 pairs of    
b-value and TM, with b-values of 5000 to 50 000 s/mm2 in 
5000-s/mm2 steps and TM of 200-400 ms in 50-ms steps. The 
reference signals were simulated for droplet diameters of 4 
µm and 12 µm and for a free diffusion constant of 8 × 10−6 
mm2/s. The difference relative to these two reference signals 
was calculated for a range of combinations of droplet diam-
eter (2-30 µm) and free diffusion constant ([7.5-8.5] × 10−6 
mm2/s).

In the AT sample case, the protocol included 110 pairs 
of b-value and TM, with b-values of 5000 to 50 000 s/mm2 
in 5000-s/mm2 steps and TM of 200-700 ms in 50-ms steps. 
The reference signals were simulated for droplet diameters 
of 50 µm and 60 µm and for a free diffusion constant of 8 × 
10−6 mm2/s. The difference relative to these two reference 
signals was calculated for a range of combinations of droplet 
diameter (20-120 µm) and free diffusion constant ([7.5-8.5] 
× 10−6 mm2/s).

2.7  |  Noise performance analysis

To characterize the three processing approaches, a noise 
simulation was performed using as ground truth the signal 
from the fitting residual landscape numerical analysis (drop-
let diameter in phantom case [12 µm] and droplet diameter 
in AT sample [60 µm]). Gaussian noise was added to the 
real and imaginary part of the complex signal to achieve a 
SNR0 (defined for the first b-value and diffusion time). The 
value of SNR0 was selected as the approximate lower SNR 
limit from the subsequent experimental scans. Spatial aver-
aging was simulated by averaging the magnitude or complex 
data within a square window of 1-11 voxels edge length. 
Therefore, noise was first added over groups of 12/22/32/42/
52/62/72/82/92/102/112 voxels, and the signals were averaged 
in a second step that led to variable SNReffective. At each size 
of the averaging window, the spatially averaged signal was 
then used to perform the fitting with multiple starting values. 
The noisy signal generation and averaging was repeated 1089 
(corresponding to a 33 × 33 voxel 2D slice) times, resulting 
in 1089 noisy samples at each SNR level (depending on the 
size of the averaging window), and statistics were extracted 
for the MbV and CbV processing.

To evaluate the performance of the regularized fitting, 
the 1089 noise samples at each SNR level were rearranged to 
form a 2D slice that was processed with the CbR processing. 
In the phantom case, SNR0 was assumed to be 75, and in the 
AT sample case, SNR0 was assumed to be 50.

2.8  |  Phantom measurements and analysis

Magnetic resonance scanning of the emulsion phantoms 
and coconut oil was performed on a 3T system (Ingenia 
Elition; Philips, Best, Netherlands) using an eight-channel 
wrist coil with the following parameters: FOV = 90 × 90 
mm2, acquisition voxel size = 1.4 × 2.5 × 10 mm3, recon-
struction voxel size = 1.4 × 1.4 × 10 mm3, TSE factor = 
36, TR/TE/TEPrep = 2000/23/61 ms, five averages, 50 pairs 
of b-value and TM with b-values = 5000 to 50 000 s/mm2 
in 5000-s/mm2 steps and TM = 200/250/300/350/400 ms, 
scan time = 8:30 minutes. To minimize vibration artifacts 
induced by the strong diffusion gradients, a wooden sup-
port table was used.10

Neighboring voxels (3 × 3) were averaged to increase 
SNReffective, leading to an effective voxel size of 4.2 × 4.2 × 
10 mm3. The lipid droplet–size fitting was performed with 
the initial starting values described in the noise simulations. 
Each average was treated as a separate b-value/TM measure-
ment pair. The SNR was calculated as the ratio between the 
mean and the SD of the magnitude images across acquired 
averages for the first diffusion time and b-value.

2.9  |  Ex vivo AT sample 
measurements and analysis

The approximately 10 × 10 × 5 cm3 AT samples fixed in 
formalin were scanned using an eight-channel extremity coil 
with the following parameters: FOV = 120 × 120 mm2, ac-
quisition and reconstruction voxel size = 1.9 × 1.9 × 8 mm3, 
TSE factor = 64, TR/TE/TEPrep = 2000/18.5/62 ms, four av-
erages, 110 pairs of TM and b-value with b-values = 5000 to 
50,000 s/mm2 in 5000-s/mm2 steps and TM = 200-700 ms 
in 50-ms steps, and scan time = 14:56 minutes. To minimize 
vibration artifacts, a wooden support table was used10 and the 
ramps of the diffusion gradient were reduced. Additionally, a 
proton density fat fraction map was acquired with a 3D multi-
echo gradient-echo sequence using bipolar gradient readout 
with FOV = 100 × 100 × 65 mm3, voxel size = 1.3 × 1.3 
× 1.3 mm3, TR/TE1/ΔTE = 15/1.4/1.1 ms, flip angle = 5°, 
and six acquired echoes. The vendor’s fat quantification rou-
tine included a phase error correction and a complex-based 
water–fat decomposition using a precalibrated fat spectrum 
with a single T2

* correction.29

A neighborhood of 6 × 6 voxels was averaged to increase 
SNR, resulting in an effective voxel size of 11.4 × 11.4 × 
8 mm3. Each average was treated as a separate b-value/TM 
measurement pair. Voxel-wise SNR was calculated as the 
ratio between the mean magnitude signal at the first diffusion 
time and b-value and the SD of an additional noise scan ac-
quired without RF and gradient power.
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Given that the influence of certain tissue properties (like 
particle-size distribution) on the measurement of the MRI-
based mean lipid droplet size is still unknown in the ex vivo 
AT samples, the term “apparent lipid droplet size” was used 
in the context of the AT study.

3  |   RESULTS

3.1  |  Numerical analysis of fitting residual 
landscape

Figure 3 shows the signal fitting landscape for both measure-
ment scenarios with their respective reference droplet diam-
eters. For the diameter of 4 μm in the phantom case, a distinct 
global minimum in the diameter dimension at the reference 
droplet diameter was observed with different free diffusion 
constants yielding very similar signal decay curves. With in-
creasing diameter, the minimum residual valley got broader 
and more curved. Diameters smaller than the reference diam-
eter with a free diffusion constant larger than the reference as 
well as diameters larger than the reference diameter with free 
diffusion constants smaller than the reference can have simi-
lar DW signal curves. Within the observed minimum residual 
valley, the differences between the signal decay curves were 
small, indicating a small gradient of the fitting’s cost func-
tion. In the AT case, the minimum residual valley got distinc-
tively broader, and the range of diameter and free diffusion 
constant combinations resulting in small residuals increased.

3.2  |  Noise performance analysis

Figure 4 shows the results from the noise analysis for the 
phantom case. The 2D histograms of the estimated diffu-
sion constant and droplet diameter yielded a similarly shaped 

minimum valley, as in Figure 3. The broadness of the diam-
eter and free diffusion constant distribution was reduced at 
higher SNReffective. A noticeable bias of the mean diameter 
was only observed for the initial SNR0 (without averaging) 
for MbV (22.2% overestimation), CbV (22.2% overestima-
tion), and CbR (17.1% overestimation). With increasing 
SNReffective, the mean diameter and free diffusion constant 
approached the true value, and the associated SDs were de-
creasing. For CbR, the estimated parameters followed the 
same trend, but the SD at low SNReffective was reduced com-
pared with MbV and CbV.

In general, the noise analysis for the AT sample case 
(Figure 5) was comparable to the phantom case, but a higher 
variability in the estimated parameters and differences be-
tween the proposed methods were visible. The 2D histogram 
showed a broad distribution for the droplet diameter and free 
diffusion constant estimates for all processing approaches. 
When the SNReffective was low, even two distinct peaks in the 
diameter estimation were visible in the MbV and CbV case. 
With increasing SNReffective, these two peaks tended to merge 
into one. The SD in the diameter estimation appeared similar 
with voxel-wise estimations (MbV and CbV), whereas it was 
reduced with CbR. At high SNReffective, quantification biases 
were still observed. At an SNReffective of 500, the deviation 
from the true value was −10.6 % (MbV), 3.9% (CbV), and 
1.7% (CbR).

3.3  |  Phantom experimental results

Supporting Information Figure S2 shows the DW signal decay 
for each phantom. The mono-exponential diffusion signal 
decay curve at each diffusion time was visible for the water–
fat emulsion phantoms as well as coconut oil. The measured 
ADC of the coconut oil was not dependent on the diffusion 
time indicating free diffusion.

F I G U R E  3   Simulated parameter landscape of the fitting process. The differences in the signal decay curves relative to their respective 
selected signal (reference signal indicated with red cross) were calculated based on Equation 1. The columns show different selected diameters with 
the same free diffusion constant. The first two columns represent the phantom case, whereas the third and fourth columns represent the AT sample 
case. With increasing diameter, the minimum valleys get visually broader, indicating a decreasing gradient of the optimization function. Please note 
the different ranges on the x-axis (diameter dimension)
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Figure 6 shows the obtained phantom diameter maps. The 
two voxel-wise residual minimizations (MbV and CbV) re-
sulted in nearly identical droplet diameter maps with certain 
regions showing local spatial heterogeneity. A trend toward 
larger lipid droplet sizes was observed for decreasing stirring 
frequency. When compared with the voxel-wise fitting, the 
CbR processing showed reduced spatial heterogeneity in the 
droplet diameter map. The free diffusion constant maps were 
similar in all phantoms.

Figure 7 plots the correlation of the MR-based results 
against the reference measurement laser deflection. The 
droplet diameter results from the MbV and CbV were very 
similar; therefore, only the CbV results were shown. In all 
cases, the DW-MRI results agreed well with the valida-
tion measurement (R2 > 0.95 and P < 5%). When the lipid 
droplet–size fitting was performed with CbV, the linear fit 
deviated from the identity line (slope/offset = 1.37/−2.52 

µm). When CbR was used, the linear fit again approached the 
identity line (slope/offset = 1.13/−0.71 µm), and the SD of 
the lipid droplet–size estimation was reduced.

3.4  |  Ex vivo AT sample 
experimental results

Figure 8 depicts the results from two AT samples. AT sam-
ple 1 showed smaller adipocyte sizes in histology, higher 
proton density fat fraction map heterogeneity, and a lower 
overall SNR (mean SNR of 55 compared with 78 in sam-
ple 2 [not shown]). In AT sample 1, smaller apparent lipid 
droplet sizes were observed with MbV compared with the 
other methods. The apparent diameter distribution with 
CbV showed two distinct peaks. With CbR, outliers were 
reduced in the apparent diameter map, and the height of 

F I G U R E  4   Noise performance of the lipid droplet–size estimation in the phantom case (true diameter = 12 µm). The 2D histogram for 
diameter and diffusion constant estimates as well as a diameter histogram are shown. At low SNR, diffusion constant and diameter estimates 
closely reassembling the minimum valley shown in Figure 3 can be observed. The MbV and CbV processing yield very similar results. At low 
SNR, both measurements tend to overestimate the true diameter with an increasing SD. With increasing effective SNR, the mean diameter 
approaches the true value, and the SD in the estimation decreases. The CbR processing follows the trend of the CbV; however, the SD at different 
SNR levels is reduced. At an effective SNR (SNReffective) of 750, the bias of all methods is below 1%
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the peak at larger apparent lipid droplets was decreased. 
In AT sample 2, larger apparent lipid droplet sizes and a 
better agreement among the three processing methods was 
observed. The apparent diameter map obtained by MbV 
showed a relatively large fraction of voxels with small ap-
parent diameter. This fraction decreased when the appar-
ent droplet diameter map was obtained by CbV, and even 
further when CbR was used. The free diffusion constant 
maps obtained by CbR showed similar values in both sam-
ples. The obtained free diffusion constants for all phantoms 
and AT samples are listed in the Supporting Information 
(including a discussion of their agreement with literature 
values).

Figure 9 summarizes the results from the AT sample 
study, showing the mean apparent droplet size estimation ob-
tained by the CbR processing in comparison with histology. 
The depicted SD for the MR-based measurement reflects the 
broadness of the estimated voxel-wise apparent lipid droplet 

size within the acquired 2D slice. The MR-based results and 
the histology measurements correlated significantly (R2/P: 
0.531/0.017). The CbV processing showed a similar trend as 
CbR, and the MbV processing resulted in an underestimation 
of the mean apparent lipid droplet size and no significant cor-
relation with histology (both processing methods not shown 
in Figure 9).

4  |   DISCUSSION

The present study proposes a methodology to noninvasively 
measure lipid droplet size based on a novel lipid DWI ac-
quisition and lipid droplet–size parameter-estimation ap-
proaches. The work shows that it is feasible to measure large 
lipid droplet size in phantoms and to provide an apparent esti-
mate of lipid droplet sizes in ex vivo human specimens using 
a clinical 3T system.

F I G U R E  5   Noise performance of the lipid droplet–size estimation in the AT sample case (true diameter = 60 µm). In the 2D histogram, a 
rather broad distribution for the droplet diameter and free diffusion constant estimates can be observed. The broadness and the SD in the mean 
diameter estimation decrease with increasing SNR. The distributions of the results obtained by MbV and CbV appear similar, whereas the 
broadness is reduced with CbR. At high SNReffective (by spatial averaging), quantification biases can be observed. At a SNReffective of 500, the 
deviation from the true diameter is −10.6% (MbV), 3.9% (CbV), and 1.7% (CbR)
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Regarding lipid DWI acquisition, a high b-value DW-STE 
single-shot TSE acquisition was developed. To measure lipid 
diffusion in water–fat mixtures, the interference with water 
signals needs to be reduced. The proposed sequence is tai-
lored to this need, because the used STE preparation has a 
frequency selectivity with the resonance frequency centered 
on the main fat peak. In addition, only images with very high 

b-values (≥ 5,000 s/mm2) are acquired, which attenuates 
most of the fast-diffusing water. The proposed preparation 
module has the disadvantage of measuring only 25% of the 
available signal. First, 50% of the available signal is lost due 
to the stimulated echo preparation; and second, an additional 
50% of the signal is lost due to the magnitude stabilizing 
gradients. Despite the inherently low SNR, the developed 

F I G U R E  6   Diffusion-weighted imaging data (first row) and corresponding diameter maps for the water–fat emulsion phantoms with the three 
examined processing approaches. For the CbR processing, the free diffusion constant map is also shown (last row). All processing approaches show 
an increasing lipid droplet size with decreasing rotation frequency of the colloid mill. Local overestimations of the measured lipid droplet size are 
visible with the processing approaches with a voxel-vise residual minimization (MbV and CbV), but are reduced with CbR processing. The free 
diffusion constant is rather similar in all investigated phantoms. Abbreviation: rpm, revolutions per minute
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technique enables very strong DW with reduced sensitiv-
ity to motion-induced phase errors (single-shot TSE design 
using magnitude stabilizers) and off-resonance effects (TSE 
design), and allows the acquisition of DW data at varying 
diffusion times (STE preparation). To sensitize the acquired 
signal to diffusion restriction effects, longer diffusion times 
and higher b-values would increase the sensitivity of the 
measurement to lipid diffusion restriction effects. However, 
longer diffusion times or higher b-values would increase the 
required preparation’s TE and TM, and are therefore not eas-
ily realizable because they would further reduce the measure-
ment SNR.

The present work shows that the lipid droplet–size fitting 
is challenging, especially for estimating larger diameters. 
When the DW signal decay curves are compared, different 
parameter combinations result in very similar decay curves, 
even without noise (Figure 3). Specifically, small residual 
variations were observed within a large region around the 
reference diameter and diffusion coefficient. This might not 
be critical for smaller diameters, because the lipid droplet 
diameter can be precisely determined. With increasing size, 
the curvature and the extent of the region with small residual 
variation increases, resulting in underestimated and overesti-
mated diameters with very similar DW signal decays.

With added noise, certain parameter combinations within 
the minimum valley can form local minima. The fitting prob-
lem becomes ill-posed and cannot be solved with a standard 
approach. Using multiple starting values for the fitting pro-
cess is recommended to find the global, and not only a local, 
minimum. However, with low SNR, even the approach with 
multiple starting values can fail, as observed in the noise sim-
ulations (Figures 4 and 5). In a 2D histogram of the diameter 
and corresponding free diffusion constant estimates, similar-
ities to the minimum valleys in Figure 3 can be observed. 
Because of the small gradient within the minimum valley, a 
stopping of the fitting within the minimum valley is likely, 
especially with noisy signals.

When investigating the simulated mean diameter in the 
phantom case, only deviations from the true value are ob-
served for the minimal SNR with smaller SD with the CbR 
processing compared with MbV and CbV. With increasing 
SNReffective, all three processing methods approach the true 
diameter with a small SD. Due to the rather strong restriction 
effects and high SNR0 in this phantom scenario, the results 
from MbV and CbV are similar, whereas the CbR process-
ing shows the same trend but smaller bias and SD. In the 
simulated AT sample case, much broader droplet diameter 
and free diffusion-estimate distributions are observed. This 
can be explained by the small diffusion-restriction effects in 
the AT samples. The SD in diameter estimation decreases 
with increasing SNReffective. A large underestimation bias is 
observed, even at high SNReffective, with the MbV processing. 

F I G U R E  7   Correlation analysis of the droplet diameter 
results obtained with DW MRI compared with the laser-deflection 
measurement. The laser-deflection measurements revealed 
an increasing lipid droplet size and distribution broadness 
with decreasing frequency of the colloid mill. Both presented 
processing methods (CbV and CbR) correlate significantly with 
the reference-method laser deflection (R2 > 0.95 and P < 5%). 
With the CbV processing, the linear fit deviates from the identity 
line (slope/offset: 1.37/−2.52 µm). With the CbR processing, 
the linear fit again approaches the identity line (slope/offset: 
1.13/−0.71 µm)
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F I G U R E  8   Histology slides, proton density fat fraction (PDFF) maps, MbV-based, CbV-based and CbR-based apparent diameter maps, 
CbR-based free diffusion constant, and corresponding histograms for two AT samples. Adipose-tissue sample 1 shows larger heterogeneity in the 
PDFF compared with AT sample 2, and a smaller mean adipocyte size in the histology. The apparent diameter map obtained by MbV processing 
yields very low apparent-diameter estimates in the low-SNR sample compared with the high-SNR sample. When the apparent lipid droplet size is 
estimated with the CbV processing, larger droplet diameters are extracted in both samples. The SD is decreased with the CbR compared to the CbV 
processing (broadness in the diameter histograms). The free diffusion constant maps give similar values in both samples
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Magnitude averaging can lead to a noise floor, which de-
creases the measured ADC at longer diffusion times, corre-
sponding to a signal behavior that is characteristic for smaller 
droplet sizes. With complex averaging, noise bias effects are 
reduced and the true diameter is only slightly overestimated. 
The CbR processing not only reduces the SD but also elimi-
nates the bias. The noise simulation reveals that an accurate 
estimation of large lipid droplet diameters is feasible when 
the SNReffective is high enough and the data are complex-
averaged. The proposed CbR processing yields more accu-
rate and precise results compared with the other two studied 
fitting approaches.

In the water–fat emulsion phantoms consisting of small 
lipid droplets, a decreasing ADC curve with increasing diffu-
sion time is observed, which is a clear indicator of diffusion-
restriction effects. In coconut oil, no such restriction barriers 
exist; therefore, the ADC values do not depend on the diffu-
sion time (Supporting Information Figure S2). This analysis 
can be interpreted as a proof-of-principle experiment, show-
ing the applicability of the presented method to investigate 
restriction effects of diffusing lipids.

Rather homogenous lipid droplet diameter maps are ob-
tained in phantoms with all processing approaches (Figure 
6). The MbV and CbV lead to similar results but show re-
gions with unreasonably large diameters. When the CbR pro-
cessing is used, the diameter map homogeneity is increased. 
When comparing the lipid droplet–diameter results from 

DW-MRI with laser deflection measurement, a high correla-
tion is found. The diameter maps obtained by CbV included 
voxel-wise diameter overestimations; therefore, the agree-
ment with laser deflection deviates from the identity line. 
With the CbV processing, local quantification errors in the 
droplet-diameter estimates can occur, which can be partly re-
covered by the proposed CbR processing, leading to a better 
agreement with the reference method. It can be summarized 
that the presented methodology provides accurate results in 
water–fat emulsions (lipid droplet diameter up to 25 µm).

Measuring the apparent droplet size in AT samples ex 
vivo is challenging because of the small measurable restric-
tion effects due to large droplets and the low lipid diffusivity 
at room temperature. The two AT samples shown in Figure 
8 deviate significantly in their microstructure, as highlighted 
in the histology images and proton density fat fraction maps. 
The MbV processing yields too small apparent lipid droplet–
size estimates, especially in the low SNR sample. When the 
CbV processing is used, two distinct apparent diameter peaks 
are observed in both samples (in agreement with the simula-
tion). When the CbR processing is used, the obtained appar-
ent droplet-diameter map appears smoother and the SD of the 
apparent diameter estimates is reduced. Within both samples 
a spatial variation of the apparent diameter map can be ob-
served for all processing approaches. It is unclear whether 
the observed spatial variation is caused by measurement un-
certainties (as indicated in Figure 5) or due to real spatial 
adipocyte size variations. Given that the used histology pro-
vides only a localized estimate of the adipocyte size from the 
biopsy site, the mean MR-derived apparent droplet diameter 
(averaged over the acquired 2D slice) was used in the com-
parison with histology (shown in Figure 9). In the group anal-
ysis, a large SD is visible in MRI-based apparent droplet size. 
Overall, a significant correlation can be observed between 
the MR-based mean apparent lipid droplet size (with CbR 
processing) and histology. The results acquired in human AT 
samples show that it is feasible to estimate an apparent lipid 
droplet size of ex vivo AT and that a similar trend as his-
tology can observed when examining samples with different 
mean adipocyte sizes.

An MR-based white adipocyte size estimate could po-
tentially serve as a biomarker for the risk of cardiometabolic 
diseases and could replace invasive biopsy measurement. 
Therefore, the proposed technique should be thoroughly val-
idated ex vivo with more AT samples, and the in vivo appli-
cation should be subsequently targeted. However, additional 
significant challenges related to motion and prolonged scan 
times have to be addressed when measuring in vivo.

The described methodology has limitations: First, the 
measured DW signal is the sum over several fat peaks that 
have different T1 relaxation times and potentially different 
diffusion constants. This is not incorporated in the model-
ing, which assumes a single component. Because most of the 

F I G U R E  9   Correlation analysis of the mean apparent droplet 
diameter obtained with CbR processing compared with microscopy in 
AT sample study. A significant correlation was found when comparing 
the mean lipid droplet size (R2/P: 0.531/0.017) obtained by both 
methods, although a large uncertainty was found in the size estimation 
of the MR-based method. Mean values ±1 SD (error bar) are shown
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signal should be associated with the main fat peak, the con-
tribution of these spins should be dominant. Second, the used 
modeling does not incorporate an underlying cell-size dis-
tribution. An asymmetric or multimodal particle-size distri-
bution could induce a bias on the estimated mean adipocyte 
size, leading eventually to an overestimation or underestima-
tion. Incorporating the estimation of the size distribution in 
the fitting process can be considered as very challenging be-
cause it would require the acquisition of DW data at different 
diffusion encodings with higher SNR. In addition, a parame-
trization of the size distribution would need to be known, for 
which currently no consensus can be found in the literature.4 
However, previous work showed that the broadness of a sym-
metric particle distribution has minor influence on the mean 
droplet-size estimation.11 Third, a partially smooth spatial 
variation of the lipid droplet size is assumed. Given the fact 
that subcutaneous fat biopsies are very homogenous and no 
spatial variation is visible on MR images, the assumption of a 
slowly varying droplet diameter might be justifiable. Fourth, 
the balancing term λ is not optimized further, but is instead 
chosen based on the SNR of the acquired data. Optimizing λ 
could further reduce quantification errors and should be dis-
cussed in further research. Fifth, different existing methods 
to obtain the adipocyte size from ex vivo AT samples yield 
different quantitative results.4 However, this work does not 
intend to show a quantitative comparison in the AT samples, 
but rather to demonstrate the feasibility of the developed 
methodology for large lipid droplet sizes. Sixth, this work is 
based on a limited sample size in the phantom and the AT 
study, and includes no optimization of the experimental pa-
rameters. Studies using larger sample sizes and further opti-
mizing the experimental parameters are required.

5  |   CONCLUSIONS

The present work proposes a methodology to probe diffu-
sion restriction effects in lipid droplets in phantoms and ex 
vivo AT samples at a 3T clinical scanner using a long dif-
fusion time and high b-value DW-TSE sequence. The chal-
lenges in estimating the lipid droplet size from DWI data 
were evaluated with simulations, and strategies to improve 
the measurement were proposed. Namely, increasing the 
SNR by complex spatial averaging, using multiple initial fit-
ting starting values, and applying the additional graph-cut 
postprocessing steps improved both accuracy and precision 
in estimating lipid droplet size in phantoms and enabled the 
estimation of an apparent lipid droplet size in ex vivo AT 
samples. The presented method showed excellent agree-
ment in measuring lipid droplet size against laser deflection 
in water–fat phantoms and a correlation when the MR-based 
mean apparent lipid droplet size was compared with histol-
ogy in ex vivo human AT samples.
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the Supporting Information section.

FIGURE S1 Simulated longitudinal magnetization after 
preparation for a stimulated echo preparation with 90° hard 
pulses (left) and 90° MLEV scheme pulses. With MLEV 
scheme 90° a larger insensitivity towards frequency offsets 
can be observed
FIGURE S2 Diffusion signal decay curves at increasing dif-
fusion times (different columns) for the water-fat emulsion 
phantoms and the coconut oil (different rows). At each dif-
fusion time and the investigated phantom, the signal decay is 
mono-exponential. In the water-fat-emulsions a clear ADC 
decay is visible for increasing diffusion time, whereas such a 
trend is not visible in the coconut oil
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