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Abstract

The importance of computational methods has grown tremendously in ev-

ery field of life sciences. Especially personalized therapies such as cancer im-

munotherapy, which rely on genomic, transcriptomic and proteomic informa-

tion about an individual patient, cannot be developed without computational

support, machine learning algorithms in particular. Cancer immunotherapy

is based on the idea of enabling the patient’s immune system to attack and

destroy tumor cells. This requires a deep understanding of interactions be-

tween tumor and immune system, which are highly patient-specific and there-

fore need to be assessed individually by methods suitable to identify tumor

antigen expression and immune profiling. For adoptive T cell therapy, where

potent anti-tumor T cell receptors (TCRs) are introduced into the patient’s

own T cells, two concrete challenges ensue. First, potential cross-reactivity of

a TCR needs to be assessed to avoid recognition and therefore destruction of

healthy tissue. To tackle this task, the tool Expitope was created and further

developed to version 2.0. For a given peptide sequence, which is the target se-

quence for a therapeutic TCR candidate, all similar peptide sequences present

in healthy tissue are identified, including an estimation of cross-reaction sever-

ity by calculating a weighted tissue score. Second, the high-throughput testing

of therapeutic TCR candidates can yield ambiguous results regarding the pres-

ence of more than one chain for either the α or β locus at the mRNA level,

where only one chain of each locus is required for a functional TCR. To en-

able in silico screening, TCRpair was developed to predict which chain is part

of the functional TCR that recognizes the tumor antigen when sequencing

results show two expressed chains for one locus. Furthermore, various compu-
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Abstract

tational methods used for cancer immunotherapy applications are described

in the review titled “Machine learning for cancer immunotherapies based on

epitope recognition by T cell receptors”. This includes different approaches

for the identification of neoepitopes, which are T cell targets derived from

tumor-specific mutations, and methods to predict epitope-TCR binding.
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Zusammenfassung

Computerbasierte Methoden haben in jedem Bereich der Lebenswissenschaften

erheblich an Bedeutung gewonnen. Besonders personalisierte Therapien wie

Krebsimmuntherapie, die sich auf genomische, transkriptomische und pro-

teomische Informationen jedes einzelnen Patienten stützt, kann nicht ohne

Computerunterstützung, allen voran maschinelles Lernen, entwickelt werden.

Krebsimmuntherapie fußt auf der Idee, es dem Immunsystem einer Patientin

zu ermöglichen, Tumorzellen anzugreifen und zu zerstören. Dafür ist ein

tiefgehendes Verständnis der Interaktionen zwischen Tumor und Immunsys-

tem notwendig, die für jeden Patienten spezifisch sein können und deswegen

individuell bewertet werden müssen, wobei passende Methoden zur Identifika-

tion von Tumorantigen-Expression und Analyse des Immunprofils angewendet

werden. Für die adoptive T-Zell-Therapie, bei der den T-Zellen einer Patientin

potente T-Zell-Rezeptoren (TCRs) hinzugefügt werden, ergeben sich daraus

zwei konkrete Herausforderungen. Zum einen muss ein TCR auf mögliche

Kreuzreaktivität hin untersucht werden, um die Erkennung und daraus fol-

gende Zerstörung von gesundem Gewebe zu verhinden. Um diese Aufgabe zu

lösen wurde das Programm Expitope erstellt und zu Version 2.0 weiterentwick-

elt. Für eine Peptidsequenz, die das Ziel eines therapeutischen TCRs ist, wer-

den alle ähnlichen Peptide, die in gesundem Gewebe vorhanden sind, ermittelt

und der Schweregrad einer Kreuzreaktivität basierend auf einem gewichteten

Gewebescoring berechnet. Zum anderen kann die Hochdurchsatztestung von

therapeutischen TCR Kandidaten uneindeutige Resultate ergeben, wenn mehr

als eine Kette des α oder β locus auf RNA-Level präsent ist, wobei nur eine

Kette jedes loci für die Bildung eines funktionalen TCRs benötigt wird. Für in
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Zusammenfassung

silico Screening wurde TCRpair entwickelt, um vorherzusagen, welche Kette

Teil des funktionalen TCRs ist, der das Tumorantigen erkennt, falls zwei Ket-

ten für einen locus in den Sequenzierergebnissen vorhanden sind. Des Weiteren

werden im Review “Machine learning for cancer immunotherapies based on epi-

tope recognition by T cell receptors” verschiedene computerbasierte Methoden,

die für Krebsimmuntherapien verwendet werden, beschrieben. Dazu gehören

verschiedene Ansätze zur Identifizierung von Neoepitopen, T-Zellen-Ziele aus

tumorspezifischen Mutationen, und Methoden zur Vorhersage von Bindung

zwischen Epitop und TCR.
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1 Introduction

1.1 Motivation

Cancer immunotherapy has made remarkable progress in the last years

and has become a reliable part of cancer treatment methods. This is

possible not only because our understanding about immune response to

cancer, tumor microenvironment and tumor-immune system interaction

grows but also because a variety of computational methods assist in tack-

ling the vast amount of information gathered by in vitro experiments,

especially next-generation DNA and RNA sequencing. The development

of computational tools, mainly based on machine learning, expands to-

gether with the availability of data (Mösch et al., 2019).

In this thesis, the focus lies on T cell based immune responses against tu-

mors, especially the so called adoptive T cell therapy, which is described

in subsection section 1.3.2. How T cells are able to detect and eliminate

cancer cells is described in subsection 1.2.1 and in subsection 1.2.2.

To aid the development of tumor antigen-specific adoptive T cell therapy,

the tool Expitope has been developed and was further improved as seen

in the publication “Expitope 2.0: a tool to assess immunotherapeutic

antigens for their potential cross-reactivity against naturally expressed

proteins in human tissues” (Jaravine et al., 2017). TCRpair has also

been created to tackle a problem associated with high-throughput scan-

ning of T cell receptor (TCR) candidates. In about 30% of the T cell

clones analyzed, two α chains can be expressed, but only one of them is
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1 Introduction

part of the functional, i.e. tumor antigen recognizing TCR. Predicting

which α/β chain pair is the functional one is the goal of TCRpair (Mösch

and Frishman, 2021).

1.2 T cell based immune response

The human body has two ways to react to foreign particles or aberrant

cells. The first one is the so called innate immune system, which is the

invariable reaction to pathogenic treats and is available to an individ-

ual from birth. The second one, the adaptive immune system, is able

to learn from previous encounters with pathogens and can build a long

term memory that enables the immune cells to react more quickly to

reoccurring threats.

T cells are a core element of the adaptive immune system. Together with

antibody producing B cells, they belong to the lymphocytes, which are

part of the circulating white blood cells. T cells are involved in the acute

immune response by killing infected cells and cytokine signaling. A sub-

population of T cells stays in the system as so called memory T cells,

which are part of the long term immune memory. Cancer immunothera-

pies are developed around the T cell’s ability to directly eliminate cancer

cells (Coulie et al., 2014).

1.2.1 Antigen presentation

The process of antigen presentation happens comparably in almost ev-

ery cell of the human body, although there are also specialized antigen

presenting cells (APCs) like dendritic cells. APCs are very efficient in

presenting peptides they acquire to T cells, which, in case of recognition,

will launch an immune response to find and eliminate all other cells pre-

senting these peptides.
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Figure 1.1: Major histocompatibility complex (MHC) class I antigen pre-
sentation pathway for peptides recognized by CD8+ cytotoxic T
cells. Source: Mösch et al. (2019)

There are two pathways of antigen presentation, one mediated by the

major histocombatibility complex (MHC) class I and one by MHC class

II. They differ mainly in the source of the peptides and the type of T

cells that can recognize these peptides. For MHC class II, peptides are

acquired from external sources by APCs and are recognized by CD4+ T

cells, so called helper T cells, which release stimulating cytokines upon

binding to a peptide to activate other immune cells (Andreatta et al.,

2017). For MHC class I, on which the focus lies in this work since this

pathway is mainly exploited for anti-tumor immune responses, CD8+

T cells eliminate cells upon recognizing a foreign peptide (Leone et al.,

2013)). These peptides come from infections, cancer-specific mutations

or gene expression changes or other changes to a healthy cell’s peptidome

and are processed and presented on the cell surface.

A protein present in a cancer cell will eventually be digested by the

cell’s proteasome, which is responsible for cleaving unneeded, faulty or

damaged proteins in peptides. Some of these peptides will bind to the

transporter associated with antigen processing (TAP), which transports

these peptides to the endoplasmic reticulum (Peters et al., 2003). There,

MHC class I molecules bind some of the peptides and present them on

the cell surface (see Figure 1.1). These peptides are also called epitopes,

3



1 Introduction

Figure 1.2: Number of HLA alleles identified and named by the WHO
Nomenclature Committee for Factors of the HLA System from
1987 to June 2021. Source: http://hla.alleles.org, Robinson et al.
(2015)

which is the exact part or sequence of the antigen that leads to an im-

mune response (Coulie et al., 2014).

For every aspect of the antigen presentation pathway, the peptide’s

properties, i.e. its amino acid composition, are responsible whether and

how a peptide is processed. Therefore, computational methods can pre-

dict every step of the antigen presentation, although in recent years the

focus has mainly been on MHC binding. MHC class I molecules pos-

sess a tremendous variety among the human population, because the

human leukocyte antigen (HLA) loci encoding for MHC class I, espe-

cially HLA-A, HLA-B, and HLA-C, are highly polymorphic. There are

4



1.2 T cell based immune response

more than 30,000 HLA known alleles, which belong to five different HLA

genes and 12 HLA pseudogenes (see Figure 1.2, Robinson et al. 2015).

This variability is responsible for the large diversity of peptides that can

be presented on cell surfaces, since each MHC can bind different pep-

tides. On a person’s individual level, each gene has two alleles, although

there are some alleles encoding for more efficient MHCs, as there are

also individuals homozygous for one or more loci (Boegel et al., 2014;

Gragert et al., 2013). Therefore, the HLA type of a patient needs to

be known in order to apply a suitable HLA-dependent immunotherapy.

On population level, differing HLA allele frequencies have developed,

which poses additional challenges for immunotherapeutic approaches as

more data is available for predominant alleles in populations that are

more often subject to data collection. One HLA allele on which plenty

of data is available and one of the most reliable binding predictions is

HLA-A*02:01, the most common allele in Caucasian populations. Since

machine learning methods rely on diverse datasets, this can lead to bias

in prediction algorithms requiring HLA-specific information.

1.2.2 T cell recognition

The T cell receptor (TCR) is a heterodimer usually consisting of an α

and a β chain. Together with the respective co-receptor CD8+ or CD4+,

it allows the T cell to bind to a peptide-MHC (pMHC) presented on a

cell surface (see Figure 1.3). If the TCR binds, the T cell gets stimulated

and, depending on whether it is a cytotoxic T cell or T helper cell, it will

directly eliminate the cell presenting the antigen or release cytokines like

interferon gamma (IFNγ) to signal other immune cells to react.

Each of the TCR’s chains consists of three complementarity-determining

regions (CDRs) that bind to different parts of the pMHC. The most

important CDR responsible for the vast diversity of an individual’s TCR

repertoire is CDR3 (Arstila, 1999; Hughes et al., 2003). This region of a
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1 Introduction

Figure 1.3: T cell receptor (TCR) binding to a peptide presented by major
histocompatibility complex (MHC) class I. Source: Mösch et al.
(2019)

TCR chain is created by the so called V(D)J recombination, referring to

the V and J genes for the α chain and β chain and to the D gene for the

β chain. Each human possesses several alleles of the V, D and J genes,

which, in addition to the recombinant nature of the CDR3 region, allow

for a high variety of CDR3 sequences. Also, TCRs are not limited to

recognizing only one single pMHC (Yates, 2014). However, as this would

mean that TCRs can react to all peptides presented on cell surfaces, even

peptides belonging to the normal human peptidome, there is a selection

process for the T cells. In the thymus, where they mature, T cells and

therefore their receptors are exposed to the healthy peptidome before

they are released into the blood stream. If a TCR binds to a pMHC

with a peptide which is present in healthy tissue the respective T cell

gets eliminated and will never be part of the TCR repertoire meant to

recognize infected or aberrant cells.

T cells are activated by APCs, which present foreign peptides, and will

proliferate if they are stimulated by binding to a pMHC. This procedure

6



1.3 T cell receptor based cancer immunotherapy

is used for cancer vaccines, which contain these peptides, as well as for

identifying T cell clones suitable for adoptive T cell therapy (Hu et al.,

2017; Wilde et al., 2009).

1.3 T cell receptor based cancer

immunotherapy

1.3.1 Tumor-specific T cell antigens

The ideal T cell antigen is highly expressed in tumors but not expressed

in healthy tissue. Suitable antigens can come from different sources like

overexpressed tumor-associated antigens, germline-derived tumor anti-

gens and so-called neoantigens, which are the result of tumor-specific

mutations (Vigneron, 2015; Mösch et al., 2019). Especially the so-called

cancer-testis antigens (CTAs) are often chosen as targets for adoptive

T cell therapy based on TCRs, since they are shared among patients

and cancer types, which means that a TCR recognizing a CTA can be

used for multiple patients over multiple indications (Almeida et al., 2009;

Davari et al., 2021). Neoantigens, on the other hand, are patient- and

tumor-specific as they are generated by individual immunogenic muta-

tions within the tumor. This has the advantage of reduced potential

cross-reactivity but makes it necessary to develop treatments individu-

ally for each patient. For this reason, cancer immunotherapy targeting

neoantigens are often vaccines, which are easier to produce specifically

for a patient than generating a TCR therapy from healthy donor TCR

repertoires (see 1.3.2, Ott et al. 2017; Sahin et al. 2017; Brennick et al.

2017).

7



1 Introduction

8

Leukapheresis &
T cell isolation

Patient

Personalized cancer treatment with TCRs

GMP: activation of T cells and
transfer of TCR from TCR pipeline

GMP: expansion, freezing 
and quality tests

Thawing and re-
infusion into patient

1

23

4

TCR-T cell
product

Figure 1.4: Personalized cancer treatment with TCRs. GMP means good
manufacturing practice to ensure quality of the T cell product.
Source: https://www.medigene.de, Annual Report Presentation
2018
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1.3 T cell receptor based cancer immunotherapy

1.3.2 Adoptive T cell therapy

Adoptive T cell therapy is based on the idea that a patient’s immune

response against the tumor can be boosted by modifying their T cells in

a way that allows them to recognize cancer cells (Hammerl et al., 2018).

To achieve this, T cells are extracted from the patient’s blood, cultured,

receive an additional TCR and given back to the patient (see Figure 1.4).

There are two different approaches regarding the type of receptor that

is being added to the patient’s T cells. The first one introduces a so

called chimeric antigen receptor (CAR), which is an artificially designed

receptor relying on antibody binding mechanisms (Sadelain et al., 2013;

Figueroa et al., 2015). The second approach introduces an α/β T cell

receptor derived from a natural T cell repertoire with optional modifica-

tions to enhance TCR pairing and surface expression as well as binding

avidity. To obtain more potent TCRs, screening for candidates can be

done by circumventing the thymic selection (see Figure 1.5, Wilde et al.

2009). In this case, T cells are challenged with peptides presented on

MHC alleles which are different to the MHC alleles of the T cell donor.

1.3.3 Cross-reactivity

Unexpected cross-reactivity (CR) of TCRs introduced to a patient’s T

cells by adoptive T cell therapy can cause severe symptoms and even

death (Linette et al., 2013; Morgan et al., 2013). There are two main

types of CR, the first is on-target/off-tumor CR and the second is off-

target CR. Both can have devastating consequences as in both cases

healthy tissue is destroyed by the T cells. The difference is the antigen

present on healthy cells which is recognized by the TCR. In the first

case, the target antigen is not exclusively presented on tumor cells but

also on healthy cells (Morgan et al., 2013). In the second case, the TCR

9
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Lead PRAME-TCR was isolated from a non-tolerized T cell repertoire

TCR-4 selected as lead PRAME-TCR

PRAME RNA
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Figure 1.5: Priming of T cells with mature dendritic cells using
PRAME as antigen and HLA-A2 as presenting MHC. Source:
https://www.medigene.de, Half-Year Report Presentation 2021
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1.4 Computational methods for immunology

recognizes an antigen presented on healthy cells which is similar but not

identical to the target antigen (Linette et al., 2013). To minimize the

risk of bringing cross-reactive TCRs into the clinic, thorough screening

of the candidate TCRs is necessary. To assist with this process in silico,

the tool Expitope was developed and further improved, as more data

became available (Jaravine et al., 2017; Haase et al., 2015). The input

peptide sequence, which is the desired target epitope, is matched to a

reference. Additionally, peptide sequences containing one or more mis-

matched amino acid positions are also identified from this reference. For

all these peptide sequences, the probability of antigen processing and

presentation as well as the expression of the associated protein and gene

in healthy tissue is calculated. This allows quick identification of ex-

pression of the target peptide in healthy cells and provides information

of potential cross-reactive peptides against which the TCR needs to be

tested.

1.4 Computational methods for immunology

1.4.1 Epitope prediction

The focus of computational immunology has been on the ability to pre-

dict epitopes that elicit an immune response. Various computational

methods, especially from the area of machine learning, have evolved

alongside the growing availability of data. These methods also profited

from the development of protein sequence-based methods and protein-

peptide interaction models. One example is the usage of the diagonal

of the BLOSUM matrix to encode peptide sequences, which was origi-

nally created to improve alignments of protein sequences to identify re-

lated proteins and is widely applied to epitope binding prediction meth-
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ods (Henikoff and Henikoff, 1992; Andreatta and Nielsen, 2016).

The review “Machine learning for cancer immunotherapies based on epi-

tope recognition by T cell receptors” (see Chapter 3 and Appendix B,

Mösch et al. 2019) describes how methods evolved which predict pro-

teasomal cleavage, TAP transport and MHC binding and presentation.

From the first sequence motif-based algorithms to highly advanced deep

learning techniques like convolutional neuronal networks (CNNs), the re-

view lists methods and presents the progress in gathering suitable train-

ing data from binding assays and MHC-eluted peptides analyzed by mass

spectrometry.

Epitope prediction is also key to identifying neoepitopes, which are a

highly relevant target for personalized cancer immunotherapy (see sub-

section 1.3.1). Pipelines are developed to determine patient-specific

neoepitopes most likely to provoke an immune response if used in a vac-

cine or other immunotherapeutic treatments. These approaches often

require only the patient’s sequencing information on DNA- and RNA-

level to identify tumor-specific mutations, the patient’s HLA type, and

expression levels of the mutated genes. This data will be processed and

used for epitope prediction machine learning methods and neoepitope

candidate rankings (Bjerregaard et al., 2017; Hundal et al., 2016; Bais

et al., 2017; Kim et al., 2018).

1.4.2 Long short-term memory networks for sequence

based T cell receptor predictions

Machine learning methods, especially neural networks for deep learn-

ing, are specialized for different tasks. CNNs are mainly used for image

recognition and image classification tasks, whereas recurrent neural net-

works are more suited for temporal or sequence based predictions. A

type of recurrent neural networks are long short-term memory (LSTM)

12
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Figure 1.6: Deep learning model architecture of TCRpair using two bidirec-
tional LSTMs. Source (slightly modified): Mösch and Frishman
(2021)
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1 Introduction

networks, which can remember information over a long time or a long se-

quence of amino acids. This makes them ideal for training on sequences

with information spread across their whole length (Hanson et al., 2016;

Yamada and Kinoshita, 2018). LSTM layers are used for the TCRpair

neural network architecture, as they ensure that relevant information

from the beginning of the α chain of the TCR is kept until the end of

the β chain (Mösch and Frishman, 2021). Additionally, the LSTM layers

used for TCRpair are bidirectional, which means that the LSTM also

runs backwards and can therefore learn information about any amino

acid position with the knowledge of the sequence before and behind this

position (see Figure 1.6). This helps to understand context, which is

necessary for meaningful predictions using TCR sequence pairs as input.
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2 Expitope 2.0: a tool to assess

immunotherapeutic antigens for

their potential cross-reactivity

against naturally expressed

proteins in human tissues

2.1 Abstract

Background: Adoptive immunotherapy offers great potential for treat-

ing many types of cancer but its clinical application is hampered by

cross-reactive T cell responses in healthy human tissues, representing

serious safety risks for patients. We previously developed a computa-

tional tool called Expitope for assessing cross-reactivity (CR) of antigens

based on tissue-specific gene expression. However, transcript abundance

only indirectly indicates protein expression. The recent availability of

proteome-wide human protein abundance information now facilitates a

more direct approach for CR prediction. Here we present a new version

2.0 of Expitope, which computes all naturally possible epitopes of a pep-

tide sequence and the corresponding CR indices using both protein and

transcript abundance levels weighted by a proposed hierarchy of impor-

tance of various human tissues.
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2 Expitope 2.0

Results: We tested the tool in two case studies: The first study quan-

titatively assessed the potential CR of the epitopes used for cancer im-

munotherapy. The second study evaluated HLA-A*02:01-restricted epi-

topes obtained from the Immune Epitope Database for different disease

groups and demonstrated for the first time that there is a high variation

in the background CR depending on the disease state of the host: com-

pared to a healthy individual the CR index is on average two-fold higher

for the autoimmune state, and five-fold higher for the cancer state.

Conclusions: The ability to predict potential side effects in normal tis-

sues helps in the development and selection of safer antigens, enabling

more successful immunotherapy of cancer and other diseases.

2.2 Contribution

For version 2.0 of the Expitope webserver, I developed the tissue scoring

function described in section “Calculation of the tissue weighted CR-

index”, which I also wrote. Additionally, I contributed to the analysis

of the case studies, especially the section “IEDB epitopes”. For the full

text of this publication see Appendix A.
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3 Machine learning for cancer

immunotherapies based on

epitope recognition by T cell

receptors

3.1 Abstract

In the last years, immunotherapies have shown tremendous success as

treatments for multiple types of cancer. However, there are still many

obstacles to overcome in order to increase response rates and identify ef-

fective therapies for every individual patient. Since there are many possi-

bilities to boost a patient’s immune response against a tumor and not all

can be covered, this review is focused on T cell receptor-mediated thera-

pies. CD8+ T cells can detect and destroy malignant cells by binding to

peptides presented on cell surfaces by MHC (major histocompatibility

complex) class I molecules. CD4+ T cells can also mediate powerful im-

mune responses but their peptide recognition by MHC class II molecules

is more complex, which is why the attention has been focused on CD8+

T cells. Therapies based on the power of T cells can, on the one hand, en-

hance T cell recognition by introducing TCRs that preferentially direct

T cells to tumor sites (so called TCR-T therapy) or through vaccina-

tion to induce T cells in vivo. On the other hand, T cell activity can

17



3 Machine learning for cancer immunotherapies

be improved by immune checkpoint inhibition or other means that help

create a microenvironment favorable for cytotoxic T cell activity. The

manifold ways in which the immune system and cancer interact with

each other require not only the use of large omics datasets from gene, to

transcript, to protein, and to peptide but also make the application of

machine learning methods inevitable. Currently, discovering and select-

ing suitable TCRs is a very costly and work intensive in vitro process.

To facilitate this process and to additionally allow for highly personal-

ized therapies that can simultaneously target multiple patient-specific

antigens, especially neoepitopes, breakthrough computational methods

for predicting antigen presentation and TCR binding are urgently re-

quired. Particularly, potential cross-reactivity is a major consideration

since off-target toxicity can pose a major threat to patient safety. The

current speed at which not only datasets grow and are made available

to the public, but also at which new machine learning methods evolve,

is assuring that computational approaches will be able to help to solve

problems that immunotherapies are still facing.

3.2 Contribution

For this review, I planned the overall structure and individual sections

and wrote most of the introduction, for which I also created Figure 1. For

parts of the section “Prediction of T Cell Epitopes”, especially “Peptide-

MHC Binding Prediction”, I contributed literature research and text. I

wrote most of the section “Immunotherapy-specific Applications of Epi-

tope Prediction”, especially “Neoepitope Identification”, for which I also

did literature research and data analysis with results shown in Table 1

and Figure 3. I also participated in literature research and writing of

the section “TCR Binding Prediction” and generated Figures 4 and 5.

Furthermore, I contributed parts of the conclusion and outlook section
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3.2 Contribution

and arranged all contributions from my co-authors for the review.

All my co-authors have commented on and greatly helped with the polish-

ing of the final manuscript. For the full text of this review see Appendix

B.
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4 TCRpair: prediction of

functional pairing between

HLA-A*02:01-restricted T cell

receptor α and β chains

4.1 Abstract

The ability of a T cell to recognize foreign peptides is defined by a sin-

gle α and a single β hypervariable complementarity determining region

(CDR3), which together form the T-cell receptor (TCR) heterodimer. In

30–35% of T cells, two α chains are expressed at the mRNA level but

only one α chain is part of the functional TCR. This effect can also be

observed for β chains, although it is less common. The identification of

functional α/β chain pairs is instrumental in high-throughput character-

ization of therapeutic TCRs. TCRpair is the first method that predicts

whether an α and β chain pair forms a functional, HLA-A*02:01 specific

TCR without requiring the sequence of a recognized peptide. By taking

additional amino acids flanking the CDR3 regions into account, TCRpair

achieves an AUC of 0.71.
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4 TCRpair

4.2 Contribution

The idea and concept of TCRpair was developed by me. I also de-

signed, trained and evaluated the TCRpair algorithm of this publication.

Furthermore, I gathered and preprocessed the data used for the train-

ing of TCRpair, designed and created Figures 1 and S1 and wrote the

text with great support from my supervisor Prof. Dr. Dmitrij Frish-

man. The full text of this publication can be accessed online: Mösch A.,

Frishman D: TCRpair: prediction of functional pairing between HLA-

A*02:01-restricted T-cell receptor α and β chains. Bioinformatics 37

(21): 3038-3940 (2021), doi: 10.1093/bioinformatics/btab573.
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5 Conclusion

Antigen presentation and recognition by cytotoxic T cells is an exquisitely

complex biological process. Precise modeling of T cell antigen recognition

by machine learning methods can reduce the costs and efforts required

by in vitro methods. The tool Expitope, which identifies potential cross-

reactive epitopes, is a good example for making use of such machine

learning methods (Jaravine et al., 2017). The quality-oriented collection

and usage of data, especially on patterns of peptide processing and pre-

sentation and optimal T cell thriving conditions including T cell receptor

formation, are paramount to improve the reliability of machine learning

powered predictions. It is essential for the development of such predic-

tion algorithms to be able to estimate quality, potential and limitations

of different data sources. This applies to the difference between mass

spectrometry derived peptide data and binding assays as well as various

experimental methods to measure or identify T cell recognition (Mösch

et al., 2019).

As antigen processing and presentation was in the focus of machine learn-

ing applications for the last decades, the attention shifts to T cell re-

ceptors as more data becomes available, especially from single cell se-

quencing methods. There are, for example, needs to automate high-

throughput identification of T cell receptor pairing, which we addressed

with TCRpair (Mösch and Frishman, 2021), but many other applications

of machine learning algorithms like TCR-peptide binding and cytotoxic

qualities of T cells are possible. Different machine learning methods like
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5 Conclusion

LSTMs, convolutional networks or combinations of several methods need

to be explored for their suitability to predict these various features of T

cell receptors, which ultimately will define the success of treatment in

adoptive TCR-T cell therapy.

The developments of the past years, especially regarding the improve-

ment of data availability and quality as well as the application of novel

machine learning algorithms, demonstrate that the goal of patient spe-

cific cancer immunotherapies is achievable. Immunotherapies supported

by computational methods can be expected to deliver convincing results

and become an integral part of patient treatment.
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Mösch, A. and Frishman, D. (2021). TCRpair: prediction of functional pairing between HLA-A*02:01-

restricted T-cell receptor and chains. Bioinformatics, 37(21), 3938–3940.
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Luxemburger, U., Schrörs, B., Omokoko, T., Vormehr, M., Albrecht, C., Paruzynski, A., Kuhn, A. N.,

Buck, J., Heesch, S., Schreeb, K. H., Müller, F., Ortseifer, I., Vogler, I., Godehardt, E., Attig, S.,

Rae, R., Breitkreuz, A., Tolliver, C., Suchan, M., Martic, G., Hohberger, A., Sorn, P., Diekmann, J.,

Ciesla, J., Waksmann, O., Brück, A.-K., Witt, M., Zillgen, M., Rothermel, A., Kasemann, B., Langer,

D., Bolte, S., Diken, M., Kreiter, S., Nemecek, R., Gebhardt, C., Grabbe, S., Höller, C., Utikal, J.,

Huber, C., Loquai, C., and Türeci, (2017). Personalized RNA mutanome vaccines mobilize poly-specific

therapeutic immunity against cancer. Nature, 547(7662), 222–226. Number: 7662.

Vigneron, N. (2015). Human Tumor Antigens and Cancer Immunotherapy. BioMed Research Interna-

tional, 2015, 1–17.

Wilde, S., Sommermeyer, D., Frankenberger, B., Schiemann, M., Milosevic, S., Spranger, S., Pohla, H.,

Uckert, W., Busch, D. H., and Schendel, D. J. (2009). Dendritic cells pulsed with RNA encoding

allogeneic MHC and antigen induce T cells with superior antitumor activity and higher TCR functional

avidity. Blood, 114(10), 2131–2139. Number: 10.

Yamada, K. D. and Kinoshita, K. (2018). De novo profile generation based on sequence context specificity

with the long short-term memory network. BMC Bioinformatics, 19(1). Number: 1.

Yates, A. J. (2014). Theories and Quantification of Thymic Selection. Frontiers in Immunology, 5.

27



Jaravine et al. BMC Cancer  (2017) 17:892 
DOI 10.1186/s12885-017-3854-8

SOFTWARE Open Access

Expitope 2.0: a tool to assess
immunotherapeutic antigens for their
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Abstract

Background: Adoptive immunotherapy offers great potential for treating many types of cancer but its clinical
application is hampered by cross-reactive T cell responses in healthy human tissues, representing serious safety risks
for patients. We previously developed a computational tool called Expitope for assessing cross-reactivity (CR) of
antigens based on tissue-specific gene expression. However, transcript abundance only indirectly indicates protein
expression. The recent availability of proteome-wide human protein abundance information now facilitates a more
direct approach for CR prediction. Here we present a new version 2.0 of Expitope, which computes all naturally
possible epitopes of a peptide sequence and the corresponding CR indices using both protein and transcript
abundance levels weighted by a proposed hierarchy of importance of various human tissues.

Results: We tested the tool in two case studies: The first study quantitatively assessed the potential CR of the
epitopes used for cancer immunotherapy. The second study evaluated HLA-A*02:01-restricted epitopes obtained
from the Immune Epitope Database for different disease groups and demonstrated for the first time that there is a
high variation in the background CR depending on the disease state of the host: compared to a healthy individual the
CR index is on average two-fold higher for the autoimmune state, and five-fold higher for the cancer state.

Conclusions: The ability to predict potential side effects in normal tissues helps in the development and selection of
safer antigens, enabling more successful immunotherapy of cancer and other diseases.

Keywords: Cancer, Immunotherapy, Tumor immunology, Cross-reactivity, T cell epitope, Immunoinformatics, Tumor
antigen expression

Background
The principles of how the immune system can opti-
mally control infections and early stages of cancer under-
pin the development of immunotherapies. Among these
approaches, adoptive transfer of antigen-specific T cells is
emerging as a particularly attractive form of immunother-
apy to treat patients with more advanced stages of cancer
and unresolved infectious diseases. This approach utilizes
transfer of tailored antigen-specific immune T cells and
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1Department of Bioinformatics, Wissenschaftszentrum Weihenstephan,
Technische Universität München, 85354 Freising, Germany
3St Petersburg State Polytechnical University, 195251 St Petersburg, Russia
Full list of author information is available at the end of the article

provides the possibility of clinically efficient treatment of
infectious diseases and human malignancies [1].
One major stumbling block precluding wider applica-

tion of adoptive immunotherapy is the occurrence of
adverse effects of off-target cross-reactivity (CR), which
may result in significant, even lethal, toxicity. The cause of
toxicity is a hyper-activated T cell response with reactiv-
ity directed against normal tissue [2]. Immune CR arises
when T cells recognizing a selected target epitope are
transferred back to the patient and exhibit recognition of
self-epitopes in non-cancerous tissues. On the molecu-
lar level this effect is usually the consequence of a high
degree of sequence similarity between the target and the

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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self-epitopes, resulting in the binding of a stable self-
peptide-MHC complex to the T cell receptor (TCR) and,
consequently, cross-activation of unwanted autoimmune
T cell responses [3]. Depending on the sequence similarity
there can be on-target/off-tumor or off-target recogni-
tion. The former is directed against the identical epitope
that is also present in a non-cancerous tissue, while the
latter is directed against a similar epitope also present
in a healthy tissue. The ability to predict the scope and
extent of on- and off-target effects can help in selection of
safer antigens, and consequently enable more successful
immunotherapy treatment [4].
A computational strategy for the prediction of potential

peptide-HLA cancer targets and evaluation of the likeli-
hood of off-target toxicity for the targets was developed
by Dhanik et al. [5]. The strategy utilizes a sequence-based
algorithm similar to the one used in our previous stud-
ies [6] and in our current work, but it is not available as a
web-service.
We have developed the Expitope server as a tool to

assess epitope expression in various tissues (freely accessi-
ble at http://webclu.bio.wzw.tum.de/expitope2). Expitope
incorporates the most recent genome-wide information,
including protein sequences and protein abundance data
across various tissues and cell lines. It enables researchers
to screen their epitopes in silico for potential CR in human
tissues, before moving their therapeutic candidates into
clinical trials.

Approach
CR to an immunotherapeutic epitope may arise if a pro-
tein normally expressed in healthy cells is cleaved by
one of the proteasomes to produce a peptide with an
amino acid sequence that is similar to the given epitope.
Another prerequisite for CR is the presentation of the nat-
ural epitope by major histocompatibility complex class I
molecules (MHC-I) in various tissues. We model this pro-
cess by themethod described by Keşmir et al. [7]. To quan-
titatively assess the natural occurrence of epitopes, we use
experimental data on gene expression and abundance of
proteins in which the epitopes are present. The methods
are described in detail in our previous publication [8] on

the iCrossR tool, which has been merged into the cur-
rent version 2.0 of Expitope. The iCrossR project’s aim
was to perform a quantitative characterization study of
all MHC-I epitopes listed in the cancer immunotherapy
database. A new feature of Expitope 2.0 is the calcula-
tion of the tissue-weighted cross-reactivity (CR) indices.
Below we test the approach and provide information on
the new data sources and a new tissue-weighted CR-index
formula.

Material and Implementation
Gene and protein expression data
The previous version 1.0 of Expitope [6] assessed the
expression of human antigens based on one combined
gene expression database [9] and the Illumina Body Map
database [10]. Interestingly, HLA-typing of samples from
the Illumina BodyMap andWang et al. [9] showed that the
tissues used for expression analysis are most likely derived
from the same individual except for seven brain samples
[11]. In order to avoid data redundancy with the new
Illumina Body Map database, we now only use the brain
expression data fromWang et al. [9]. The new version 2.0
of Expitope incorporates three gene expression and four
protein abundance datasets (Table 1). It should be noted
that in contrast to the PaxDB and Human Proteome Map
datasets, which contain ppm values, the Human Protein
Atlas data has been generated by immunohistochemistry,
which makes the accuracy of the data dependent on the
specificity of the antibodies used. The values range from
0 to 3, indicating no detectable expression (0) up to high
expression (3).

IEDB datasets
We selected four groups of peptides (Table 2) from the
Immune Epitope Database (IEDB) [12], containing a total
of 1720 epitopes of 7-25 amino acids in length (Additional
file 1: Table S1, Additional file 2: Table S2, Additional
file 3: Table S3, Additional file 4: Table S4). The selection
for all groups was restricted to the following tags: ’human
HLA-A*02:01’, ’Linear Epitopes’, ’Positive Assays only’, ’T
cells Assays’, ’MHC ligand Assays’, ’No B-cell assays’, ’Host:
Homo Sapiens (Human)’, from which the selection was

Table 1 Sources of gene expression and protein abundance data

Data source ID Name Number of tissues Type References

PaxDB Pax4 PaxDB v4.0 22 Protein abundance [24]

Expression Atlas E-Prot-3 Human Protein Atlas 44 Protein abundance [25, 26]

Expression Atlas E-Prot-1 Human Proteome Map 23 Protein abundance [25, 27]

Expression Atlas E-Mtab-513 Illumina Body Map 16 Gene expression [10, 25]

Expression Atlas E-Mtab-5214 GTEx 53 Gene expression [25, 28]

Wang et al. 2008 Wang Wang 2008 7 Gene expression [9]

Expression Atlas E-Mtab-3358 FANTOM5 RIKEN 56 Gene expression [25, 29]
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Table 2 Four epitope groups from the IEDB database

Group ID in IEDB Disease state of host Number of entries Peptide length range (average)

1 DOID:0050117 Infectious diseases 588 8-20 (9)

2 DTREE_00000014 Healthy (no disease) 461 8-25 (10)

3 DOID:417 Autoimmune diseases 155 8-21 (10)

4 DOID:162 Cancer 516 7-25 (11)

further restricted for each of the four groups using the tag
corresponding to a disease state of the host (column 3 of
Table 2).

Identification of natural epitopes
Amino acid sequences of epitopes were matched against
the RefSeq database [13] of all naturally occurring human
protein sequences, including annotated isoforms, down-
loaded from the National Center for Biotechnology Infor-
mation (NCBI). The matching procedure yields a list of
protein segments, which we call “natural epitopes” (NEs).
Potential immunogenicity of eachNEwas calculated using
the formula developed by Keşmir et al. [7], which com-
bines the predicted scores for proteasomal cleavage, TAP
affinity and MHC-binding predictions. The quantitative
score Q of epitope presentation on MHC-I is defined as:

Q = PCL/ (ATAP ∗ AMHC) (1)

where PCL is the proteasomal cleavage probability, while
ATAP and AMHC are the IC50-affinities to the transporter
molecule associated with antigen processing (TAP) and
to the MHC complex, respectively. Lower values for ATAP
and AMHC correspond to higher predicted affinities, as
IC50-affinity is defined as a dose of peptide that displaces
50% of a competitive ligand.

Calculation of the tissue weighted CR-index
In this version, we modified the CR-index calculation
formula [8] to include tissue weighting, reflecting the per-
ceived importance of different tissue types in the human
body. For each database, the tissue profile S(t) for a given
epitope was calculated as follows:

S(t) =
K∑

k=0

⎧
⎨

⎩v(k) · log10
⎡

⎣
M(k)∑

i=1
a(i, t)

⎤

⎦

⎫
⎬

⎭ (2)

where k is the allowed number of mismatches and K is
the maximal k; t is the tissue index in a given database
of T tissues; i is the running index in the list of match-
ing NEs for each k, and M(k) is the size of the list; v(k)
is the normalized mismatch weight, and a(i,t) is the pro-
tein or transcript abundance in the tissue t corresponding
to the i-th NE. The sum over i includes only the unique
NEs that have the scores Q(i) (Equation 1) above a chosen
threshold. The normalized mismatch weight is calculated
as v(k) = (1/P(k))/

∑
k(1/P(k)), where P(k) is the probability

of finding a random peptide of length l with k mismatches
in our protein sequence database of the total length of
N=6.5e7 amino acids, P(k) = 1-(1-0.05l-k)N-l+1. For exam-
ple, for a peptide of length 9, the mismatch weights are:
v(k=0,1,2,3) = 0.95, 0.0475, 0.0023, 0.0002.
The weighted CR-index is defined as a tissue-weighted

average of the tissue profiles S(t):

ICR = 1
∑T

t w(t)

T∑

t
w(t)S(t) (3)

where w(t) represents the weight assigned to the tissue
type t (Table 3). The ICR index error is obtained as one
standard deviation from the mean upon bootstrapping,
which involves repeating index calculation 10 times using
90% of randomly subsampled data. The weight values
range between 0 and 1, with the weight of 1 correspond-
ing to the most vital organs and systems according to the
Sequential Organ Failure Assessment (SOFA) score used
to evaluate the condition of patients in Intensive Care
Units (ICUs) [14]. The second highest weight of 0.8 is
assigned to tissues that belong to vital organs where a
failure does not immediately threaten a patient’s life. A
weight of 0.5 is assigned to tissues where CR is not nec-
essarily life threatening, but can nevertheless cause severe
complications. The second lowest weight of 0.3 refers to
tissues and organs that can be surgically removed without
major complications. Finally, the weight of 0 was assigned
to irrelevant tissues such as testis, where expression of an
antigen does not cause an immune response, as well as
to the tissues that are only present during pregnancy and
other samples that do not correspond to healthy human
tissue, e.g. cancer cell lines.
Consequently, large ICR values may indicate potentially

life-threatening CR of the epitope. The higher the num-
ber of hits to different NEs that are close in sequence to
a therapy peptide, and their total abundance/expression
levels in the tissues with high weights, the higher is the
probability of CR. Higher thresholds for Q correspond
to choosing a higher probability of the selected natu-
ral epitope to be immunogenic, while the parameter K
controls the sequence similarity: exact match (K=0) for
prediction of on-target/off-tumor recognition, and K> 0
for off-target recognition. The values of these parameters
can be set by Expitope users. In this work, we chose K=1,
i.e. up to one mismatch in amino-acid sequence, and two
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Table 3 Weight values and categorization of tissue types

Consequence Damage immediately life Damage life threatening Damage not immediately

threatening life threatening

Weight 1 0.8 0.5

Tissues Lung/Respiratory system Digestive system Urinary bladder

Brain/Nervous system (except appendix) Various glands

Blood/Immune system Soft tissue Prostate

Heart Skin

Kidney Eyea

Liver

Consequence Damage not life Tissue not affected

threatening

Weight 0.3 0

Tissues Reproductive organs Cancer cell lines

Mammary tissue Testis

Tonsils Fetal tissue

Appendix

Gall bladder

Spleen

aThe weight for eye tissue is set to 0.5, as T cells are able to infiltrate it [30]

thresholds forQ: 0.02 corresponding to top 10% immuno-
genic NEs found for all epitopes in this study, and 1e-4
corresponding to top 50% of the NEs, i.e. top-scored for
proteasomal cleavage, TAP transport and MHC-I bind-
ing. However, calculation of the indices with the numbers
of mismatches K=[0,3] and the combined scores Q=0.02,
1e-4, 1e-5 gave very similar results (Additional file 5:
Tables S5-S7; Figure S2).
While a high ICR means that severe complications are

expected for a target epitope, its low value hints towards
minor or non-life-threatening side effects. An index
greater than zero always means that there is some expres-
sion present that should be investigated in detail. The
index is only an estimate, which does not take into account
many patient-specific factors, and therefore should not be
used as the sole measure for making decisions. As the tis-
sue classification is not exhaustive and not all organs are
completely represented by the tissue types of which they
consist, a high expression value in a low rated tissue could
correspond to a tissue type not covered, but also present in
other more vital organs. Nonetheless, the weighted index
offers a short summary of the rather extensive result tables
that are produced by Expitope 2.0, and contain individual
expression values for each tissue and all NEs. Therefore,
the weighted index allows for quick rejection of target epi-
topes that are likely to cause severe side effects caused
by CR.
The ICR indices were calculated with the default param-

eters (except Q and K ) for each peptide and each database

using Eq. 3, and were averaged over the seven databases to
give the average ICR indices for each peptide. For the plots
the ICR indices are averaged for all peptides in each group.

Web server
Expitope 2.0 is a web application that can be easily used
by the researchers inexperienced in bioinformatics, espe-
cially from the immunotherapy domain. There is no login
requirement to the website and user IP addresses are not
stored.Multiple clients can connect to the server, and con-
current clients are served one query at a time. The jobs
are submitted to high-performance computational infras-
tructure. The results are displayed once they are ready;
alternatively the user can return to the results later, using
the session URL. It is also possible to download the results
as a spreadsheet to be used with Microsoft Excel or sim-
ilar software. This allows to sort and filter the results
according to individual criteria, e.g. for sorting epitopes
by binding affinity predicted by netMHC.
The workflow of Expitope is shown in Fig. 1. The user

inputs a peptide sequence and specifies parameters for
sequence matching and for the computation of MHC
class I binding affinity via the html forms displayed in
a web-browser (white). The server performs the search
for natural epitopes (NEs) and calculates their Q scores.
Computations are performed by the client process at the
backend of the server (large gray rectangle). Results are
returned to the user in the form of text files and graphi-
cal visualizations (dark gray). The user selects a particular
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Fig. 1Workflow of the Expitope 2.0 web server

database and a plot type for visualization (white). The
parameters that can be changed by users in the forms have
the following default values: the TAP weight is 0.2, the
cleavage threshold is 0.7, theQ score threshold is 1e-4 and
the number of mismatches is 2.

Results and discussion
Known cross-reactive epitopes
For the first version of the Expitope web server, the
MAGEA3 epitope EVDPIGHLY was tested that had been
associated with cross-reactivity caused by the TCR rec-
ognizing an epitope with four mismatches derived from
titin, which is expressed in heart muscle tissue [6, 15]. We
were able to reproduce these findings by using Expitope
2.0 with default the parameters except for allowing up to
four mismatches and additionally, the newly added pro-
tein databases showed an even clearer result with values of
2.98e+03 ppm (PaxDB) and 2.86e+03 ppm (Human Pro-
teome Map) and the maximum value of 3 for the Human
Protein Atlas. Another case of observed cross-reactivity
has been a TCR recognizing theMAGEA3/MAGEA9 epi-
tope KVAELVHFL [16]. Expitope 2.0 with the default
parameters finds this and all other epitopes from various
members of the MAGE family the TCR was able to detect.
This includes one epitope of MAGEA12, which was found
to be expressed in brain where it led to cross-reactivity.
We found expression values of 0.2 FPKM and less but no
protein expression for MAGEA12, which is also not con-
tained in the Human Protein Atlas and Human Proteome
Map. This demonstrates the importance of taking even
small amounts of expression into account when assessing
potential cross-reactivity and also comparing the results
obtained from all databases, especially for crucial tissues
like heart, brain and lung.

Case studies
Cancer immunity peptides
Here we provide an overview of our previous study [8],
where we analyzed short (8-15 amino acids) peptide
sequences from the Cancer Immunity Peptide Database
[17] as well as peptides of viral origin. The CR-index

calculation was based only on the PaxDB protein abun-
dance database and without tissue weighting.
The peptide dataset consisted of four groups of cur-

rently known human MHC class I epitopes including:
mutation antigens displayed by tumor cells (40 pep-
tides, group A), cancer-testis (CT) antigens (67 peptides,
group B), differentiation antigens (57 peptides, group C),
and overexpressed proteins (94 peptides, group D). In
addition, 89 epitopes originating from viral sources (group
E) were investigated. When matched exactly, the group of
“mutation” antigens produced no hits to the proteins nor-
mally expressed in human tissues, since the epitopes of the
group have sequences that originated from mutations of
normal human protein sequences. The second validation
is from the CT antigens, which at small numbers of mis-
matches (0-1), showed few matches to proteins expressed
in the majority of human tissues, with the expected excep-
tion of ovary/testis, where multiple hits were found. The
hit patterns were very similar for all epitopes of this
group. This is exactly as expected, since CT antigens are
expressed mostly in these two tissues. In contrast to the
results for groups A and B, the antigens of the groups C
and D showed more hits, both for exact matches and for
high numbers of mismatches. This is also as expected as
the proteins containing the epitopes are expressed in a
wide variety of normal tissues. Finally, the epitopes orig-
inating from the viral sources showed noticeably fewer
matches to the human proteins compared to the cancer
peptides.

IEDB epitopes
We sought to assess quantitatively the extent of potential
“background” CR of the epitopes derived from the host
individuals having different disease states - ranging from
healthy to cancer. Such background CR is not caused by
one single therapy but accumulates due to many factors,
including an unknown history of diseases.
The ICR indices of individual epitopes calculated across

the seven databases used in this study are highly cor-
related, since for each database they are obtained by
summation of the abundance (or expression) values for
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the same proteins. There are high correlations between
the ICR values computed for the peptides using the three
abundance databases as well as between the ICR val-
ues derived from the four expression databases (data not
shown). Similarly, the correlations between the abun-
dance and expression indices are high (Additional file 5:
Figure S1), with the Pearson’s coefficients in the range
0.94-0.96. Averaging of the indices allows one to obtain a
more accurate prediction of CR due to increased signal-
to-noise ratio, as the databases are derived from different
data sources.
Figure 2 shows the ICR indices for the four epitope

groups described in Table 2 (group ICR indices before
averaging by databases can be found in Additional file 5:
Tables S5-S7). The indices for the epitopes computed
from 10% top-scoring NEs (Q=0.02, Fig. 2 left) are on
average 3-times lower, compared to those from 50% top-
scoring NEs (Q=1e-4, Fig. 2 right), corresponding to lower
numbers of matching NEs. Higher thresholds for Q cor-
respond to a higher probability of the selected NEs to be
immunogenic. It has been reported that the top-scoring
7-10% epitopes identified by the immunogenicity predic-
tion methods have 85% probability of being immunogenic
[18]. In this work we have chosen two thresholds of
10% and 50% of sequence matches. The rationale for this
choice was to ensure a low amount of false positives in the
immunogenicity prediction for the 10% ICR index, and to
compare it with the 50% value containing medium to high
immunogenic peptides. Two groups - ‘Infectious diseases’
and ‘Healthy’ - have average indices close to zero on both
plots, indicating low amounts of cross-reactive epitopes in
the critical tissues. The groups ‘Autoimmune diseases’ and
‘Cancer’ exhibit approximately 2- to 5-fold higher aver-
age index values compared to the ‘Healthy’ group, in each
plot respectively, corresponding to considerably higher
presentation level of the cross-reactive peptides in these
states.

The interpretation of these results is as follows. The epi-
topes in the ‘Infectious diseases’ group are derived from
non-human organisms rather than from human hosts.
Thus, compared to the epitopes from the other three
groups, which are of human origin, a lower ICR index is
expected, implying low sequence identity to the host and
thus a low probability of CR. The slightly elevated index
for the ‘Healthy’ group is most likely due to the pres-
ence of common pathogens (such as Herpes simplex virus
or Epstein-Barr virus) mimicking human sequences, an
immune escape strategy known as immune camouflage
[19]. A higher ICR for the ‘Autoimmune’ group compared
to the ‘Healthy’ group is not surprising, as autoimmu-
nity is a response of the human body’s immune system
directed against human proteins overexpressed or aber-
rantly presented in healthy tissues. For example, multi-
ple sclerosis, the most frequently occurring disease in
this group, is due to autoimmunity to the myelin basic
protein (MBP), expressed in the tissues of the central
nervous system [19]. Other epitopes in this group with
very high index values are derived, e.g. from the proteins
actin, myosin-9, septin-2 and vimentin, which are nor-
mally expressed in various tissues. Normally, peripheral T
cells are trained to recognize pathogen-derived epitopes
and ignore self-antigens, however some T cells escape
this selection and are able to recognize self-antigens, thus
initiating an autoimmune response and becoming self-
reactive. Consequently with respect to autoimmunity, the
term CR is defined as the recognition by T cell TCRs of
many different peptide antigens, presented by the HLA
of an individual [20], which can also be referred to as
cross-recognition.
The significantly higher CR index for the cancer group

compared to the other three groups indicates a presence
of a high background level of CR when targeting cancers.
Cancer epitopes originate either from wild-type proteins
overexpressed in tumors, or as a result of cancer-specific

Fig. 2 The ICR indices for the four IEDB peptide groups (Table 2), obtained by averaging over the seven databases listed in Table 1. Q=2e-2 (left),
Q=1e-4 (right), with up to one mismatch (K=1). Thick black line: median; gray: the lower and the upper quartiles (25th and 75th percentiles); upper
and lower whiskers: highest and lowest values
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mutations in the genes, named neoepitopes. On average,
neoepitopes have lower similarity to self-antigens com-
pared to the wild-type cancer epitopes, thus potentially
are less cross-reactive. Since T cells with TCRs binding to
self-antigens are negatively selected in the thymus, there
will generally be a lack of the T cells that can fight tumors,
producing overexpressed wild-type proteins. In contrast,
the cancers producing neoepitopes can be effectively con-
trolled by the immune system provided that suitable T
cells are available. Thus, different types of cancer pro-
duce epitopes of varying cross-reactivity, which explains
the larger variance seen in Fig. 2 for the cancer group
compared to the other groups.
High ICR for the ‘Autoimmune disease’ and ‘Cancer’

groups may also be due to an activated state of the
immune system, when immunoproteasomes create larger
amounts of immunogenic (in comparison to standard pro-
teasomes) epitopes, including those from the residuals of
normal cells killed by the immune system [21]. In addi-
tion, disruption of the normal functioning of the ubiquitin
proteasome system may result in creation of abnormally
presented immunogenic epitopes, leading to many types
of disorders, including malignancies, neurodegenerative
diseases and systemic autoimmunity [22, 23].
Thus, multiple reasons for a high variability in presented

CR epitopes appear to exist depending on the host disease
state. This CR, which we tentatively call “background”
CR, is independent of any immune therapy. Clearly, a
collection of epitopes present in a particular individual
is different from our datasets obtained from the IEDB
database. Likely, it will include only a subset of the pep-
tides, but a statistical distribution in many patients may
exhibit a pattern similar to the one reported in this work.
Eventually, it remains to be seen if there can be any inter-
ference between the background CR and the CR invoked
by a therapy, but both types are important to assess the
safety of the therapy.

Conclusion
It is a long-standing dream of many medical practition-
ers to use the immune system for effective treatment
and permanent cure of human disease conditions. With
the number of tested and approved immunotherapies
growing, evidence of the side effects associated with the
current therapies also increased. Consequently, therapy
developers require reliable tools for predicting unwanted
cross-reactions.
The Expitope web tool for predicting CR of T cell epi-

topes is based on experimental protein abundance and
expression data obtained from a growing number of pub-
licly available databases. We demonstrate its performance
for a large number of epitopes detected in the human
organism for various cancer types and at various diseases
states, ranging from healthy to cancer. The results of our

study of Cancer Immunity Peptides [8] showed that the
currently known cancer epitopes display a very large CR
variability across a range of tissues. Our predictions are in
close agreement with the results of several clinical stud-
ies, with the CR indices being high in the tissues where
actual side effects have been reported, and close to zero
for no side-effects. Thus, Expitope enables researchers to
assess potential side effects of their selected antigens for
therapy and to identify specific human tissues where such
side effects could be expected. Since any immunotherapy
can cause side effects, we suggest using this tool at both
early and late stages of a therapy development process. CR
index values calculated by Expitope can serve as an esti-
mate of the amount of potential CR for in silico assessment
of immunotherapeutic strategies.
For the first time we demonstrate that there is a high

variation in the CR of peptides presented at different dis-
ease states of the host: it is on average 2-fold higher for
individuals with an autoimmune state and 5-fold higher
for individuals with cancer in comparison to individuals
in an apparent healthy state. Presumably, a similar back-
ground CR may exist prior to an immune therapy, which
may differ by the host disease state. Since the human
organism negatively pre-selects T cells binding to self-
antigens, there will be a small number or no T cells fight-
ing disease tissue cells marked by highly cross-reactive
epitopes. Consequently, the similarity of presented epi-
topes to self-antigens is an obstacle for disease elimina-
tion both for the organism itself and for immunotherapy.
Thus, therapy developers should consider the possibility
of background CR interfering with a therapy.
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In the last years, immunotherapies have shown tremendous success as treatments for 
multiple types of cancer. However, there are still many obstacles to overcome in order to 
increase response rates and identify effective therapies for every individual patient. Since 
there are many possibilities to boost a patient’s immune response against a tumor and 
not all can be covered, this review is focused on T cell receptor-mediated therapies. CD8+ 
T cells can detect and destroy malignant cells by binding to peptides presented on cell 
surfaces by MHC (major histocompatibility complex) class I molecules. CD4+ T cells can 
also mediate powerful immune responses but their peptide recognition by MHC class 
II molecules is more complex, which is why the attention has been focused on CD8+ 
T cells. Therapies based on the power of T cells can, on the one hand, enhance T cell 
recognition by introducing TCRs that preferentially direct T cells to tumor sites (so called 
TCR-T therapy) or through vaccination to induce T cells in vivo. On the other hand, T cell 
activity can be improved by immune checkpoint inhibition or other means that help create 
a microenvironment favorable for cytotoxic T cell activity. The manifold ways in which 
the immune system and cancer interact with each other require not only the use of large 
omics datasets from gene, to transcript, to protein, and to peptide but also make the 
application of machine learning methods inevitable. Currently, discovering and selecting 
suitable TCRs is a very costly and work intensive in vitro process. To facilitate this process 
and to additionally allow for highly personalized therapies that can simultaneously target 
multiple patient-specific antigens, especially neoepitopes, breakthrough computational 
methods for predicting antigen presentation and TCR binding are urgently required. 
Particularly, potential cross-reactivity is a major consideration since off-target toxicity can 
pose a major threat to patient safety. The current speed at which not only datasets grow 
and are made available to the public, but also at which new machine learning methods 
evolve, is assuring that computational approaches will be able to help to solve problems 
that immunotherapies are still facing.

Keywords: cancer immunotherapy, T cell receptor, neoepitope, neoantigen, cross-reactivity, MHC binding affinity 
prediction
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INTRODUCTION
Immunotherapies have gained more and more importance over 
the last decades. Checkpoint inhibitors mainly targeting PD1/
PDL1 and CTLA4 and personalized cancer vaccines (Gubin et al., 
2014; Ott et al., 2017; Sahin et al., 2017) have been and still are 
heavily investigated in clinical trials. Both depend on patient 
individual tumor-specific mutations enabling the boost of a 
cancer-specific T cell-mediated immune response (Snyder et al., 
2014; Rizvi et al., 2015; Łuksza et al., 2017). A more direct approach 
utilizes the adoptive transfer of a patient’s autologous T cells, 
either genetically modified with a transgenic chimeric antigen 
receptor (CAR) or T cell receptor (TCR). For CAR-T cell as well 
as TCR-T cell therapy a defined target, the epitope, needs to be 
identified. CARs, carrying the functional antigen-binding domain 
of an antibody, recognize three-dimensional peptide structures 
on the surface of a cell (Sadelain et al., 2013). By contrast, TCRs 
recognize predominantly linear peptides presented by the major 
histocompatibility complex (MHC) called human leucocyte 
antigen (HLA) in humans. For MHC class I presentation and thus 
CD8+ T cell detection, these peptides come from proteins that are 
intracellularly processed by either the constitutive proteasome 
or the IFNγ induced immunoproteasome (Griffin et al., 1998; 
Neefjes et al., 2011). After cleavage, the peptides are transported 
to the endoplasmic reticulum (ER) by the transporter associated 
with antigen processing (TAP) complex, where they are loaded 
onto MHC class I molecules. The peptide-MHCs (pMHCs) 
are shuttled to the cell surface where they can potentially be 
recognized by CD8+ cytotoxic T cells, either naturally carrying 
or engineered to bear a pMHC-specific TCR (see Figure 1). 
However, there are more than 16,000 different alleles for HLA-
A, -B, and -C genes, which bind and present different epitopes 
(Robinson et al., 2015). Besides MHC class I mediated CD8+ 
cytotoxic T cell responses, MHC class II bound peptides can 
induce CD4+ T cell responses that are also reported to play an 
important role in tumor detection and elimination (Nielsen et al., 
2010; Linnemann et al., 2014; Kreiter et al., 2015; Andreatta et al., 
2017; Veatch et al., 2018).

A wide spectrum of bioinformatics tools exists for modeling 
all steps of the MHC class I antigen presentation pathway, 
including proteasomal cleavage, translocation of the peptides 

to the ER by TAP, peptide binding to the MHC molecules, and 
TCR recognition. The overarching goal of these efforts is to 
enhance our understanding of how T cell epitopes are selected 
from a virtually unlimited number of short peptides that can be 
proteolytically generated from the human proteome. The origin 
of these T cell epitopes can be naturally occurring proteins or 
peptides derived from somatic mutations. For personalized cancer 
immunotherapy, these patient- and tumor-specific mutations are 
usually separately assessed for each patient by exome sequencing, 
mutation detection and peptide binding prediction (Robbins 
et al., 2013; Blankenstein et al., 2015; Schumacher and Schreiber, 
2015). Predicting these so called neoepitopes or neoantigens 
is a prevailing challenge for computational methods for 
immunotherapy and essential for a high-throughput approach 
to narrow down mutations to be included in vaccines or to be 
evaluated in vitro for T cell recognition, since only very few 
mutations are truly immunogenic (Yadav et al., 2014; Strønen 
et al., 2016; Bjerregaard et al., 2017a).

It is also of utmost importance to evaluate potential cross-
reactivity of target-candidate epitopes based on various omics 
data such as proteomics and peptidomics (Haase et al., 2015; 
Jaravine et al., 2017a; 2017b). However, all existing approaches 
based on epitope presentation are only a surrogate for T cell 
recognition, for which no universal and computationally viable 
approach exists so far, although the first promising results have 
been published (Jurtz et al., 2018; Ogishi and Yotsuyanagi, 2019). 
By now, datasets have been generated that allow sequence-based 
prediction approaches using deep learning (Shugay et al., 2018; 
Vita et al., 2018).

In this review, we summarize the current state at the 
development of prediction algorithms and methods for all 
steps of antigen presentation, evaluate neoepitope prediction 
approaches, and discuss progress toward sequence-based TCR 
binding prediction.

PREDICTION OF T CELL EPITOPES

Proteasomal Cleavage Prediction
In order to develop an accurate prediction algorithm for 
proteosomal cleavages, a thorough mechanistic understanding of 

FIGURE 1 | Major histocompatibility complex (MHC) class I antigen presentation pathway for peptides recognized by CD8+ cytotoxic T cells.
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the cutting process is required. The PAProC algorithm by Kuttler 
et al. (Kuttler et al., 2000) relies on a biologically motivated model, 
which postulates that proteolytic sites are mostly determined 
by the local sequence context, generally not further away in 
the sequence than six amino acid residues. The two residues 
immediately adjacent to the cut make the greatest contribution 
to the affinity to the active subunits of the proteasome, while 
the influence of the other surrounding residues is lower. The 
recognition model is additive in that the total affinity, which 
ultimately determines the probability of the cut, is considered to 
be the sum of all individual contributions. Bioinformatics analyses 
revealed that the amino acids in the six positions preceding 
the cut and four positions downstream contain sufficient 
information to reproduce a training dataset of experimentally 
determined cleavage motifs of 20S proteasomes by a network-
based technique. Keşmir et al. (Keşmir et al., 2002) demonstrated 
that good results in detecting proteasomal cleavage motifs can 
be achieved by combining experimental data on degradation 
by the constitutive proteasome with the sequences of peptides 
bound by the MHC class I molecules, which may be generated 
either by the constitutive or by the immunoproteasomes. A neural 
network trained on such a composite dataset, called NetChop, 
and an updated version NetChop 3.0 (Nielsen et al., 2005), 
achieved a reasonable accuracy and also yielded useful insights 
into cleavage-promoting and inhibiting residues as well as into 
N-terminal extension of peptides after proteasomal cleavage. 
A recurrent difficulty in predicting proteasomal cleavage is the 
lack of experimentally verified noncleavage sites. However, such 
negative data can be artificially generated by considering internal 
positions of confirmed MHC ligands or randomly generated sites.

TAP Binding Prediction
An early study of Daniel et al. (1998), in which the TAP binding 
affinity for a large number of peptides of length nine was 
measured by a peptide binding assay, revealed that positions one 
to three and nine of the 9-mers make the largest contribution to 
the selectivity of TAP to peptides. An artificial neural network 
trained on these data was able to predict the IC50 values with 
high accuracy. The study also found that HLA class I molecules 
differed significantly with respect to TAP affinities of their 
ligands. The predictive scope was later extended to peptides of 
arbitrary length using a stabilized matrix approach and a scoring 
scheme that only considers the first three N-terminal residues 
and the last C-terminal residue (Peters et al., 2003). Since it has 
been established that the selectivity of peptide transport by TAP 
is entirely determined by the peptide-binding step (Gubler et al., 
1998), affinity predictions can be equated with translocation 
likelihood predictions. A number of further machine learning 
methods for predicting peptide binding to TAP were trained on 
9-mer data, which is the typical length of the peptides that will 
subsequently bind to the MHC complex (Bhasin, 2004; Zhang 
et al., 2006; Diez-Rivero et al., 2010; Lam et al., 2010).

Peptide-MHC Binding Prediction
Sequencing of peptides eluted from MHC class I molecules 
(Falk et al., 1991) as well as mass-spectrometric (MS) (Hunt 

et al., 1992) and crystallographic (Madden, 1995) evidence 
revealed common properties of the epitopes, in particular the 
typical length range of 8–12 residues. Additionally, it showed 
the existence of MHC allele-specific anchor residues, usually in 
positions two and nine of the core nonameric segments, as well 
as auxiliary anchors, where amino acid preferences are less strict 
(Rammensee et al., 1993).

Starting from the early nineties, efforts were made to collect 
available information on MHC class I ligands (Brusic et al., 
1994; Rammensee et al., 1995,Rammensee et al.,1999) and to 
predict them using simple motif- and profile-based techniques 
(Rothbard and Taylor, 1988; Parker et al., 1994; Reche et al., 
2002), based on the notion that peptides highly similar in 
sequence to experimentally characterized ligands will have a 
higher binding potential than more distantly related peptides 
and that individual amino acid side chains make independent 
contributions to the overall binding energy. Machine learning 
techniques, such as neural networks and hidden Markov models 
(Bisset and Fierz, 1993; Mamitsuka, 1998; Nielsen et al., 2003) 
outperform matrix-based methods in predicting peptide binding 
affinity (Peters et al., 2006; Lin et al., 2008). They are able to deal 
with peptides of variable length (Lundegaard et al., 2008) and 
to take into account nonadditive effects, which may arise, e.g., 
when two amino acids compete for the same site in the peptide-
binding groove of the MHC heterodimer. The latest version of 
the widely used NetMHC algorithm 4.0 (Andreatta and Nielsen, 
2016) was trained on many thousands of quantitative affinity 
measurements for peptides of length 8–11 and the total of 118 
MHC class I alleles from human, other primates, and mouse. 
Neural networks trained on all peptides (allmer networks) 
significantly outperformed the networks trained on peptides 
of each individual length separately. The study also suggested 
specific binding modes for 10- and 11-mers, which are predicted 
to bulge out of the MHC grove in contrast to 8- and 9-mers, which 
are strictly linear epitopes. MHCflurry, which relies on affinity 
measurement and peptide elution MS data, also uses neural 
networks trained individually for each HLA allele (O’Donnell 
et al., 2018b). Additionally, it allows users to train networks 
locally on data of their choice. This can be important especially 
for cancer immunotherapy applications, since peptide-binding 
affinity predictions are traditionally focused on viral epitopes.

There is also a growing group of pan-specific methods, 
including PickPocket (Zhang et al., 2009), NetMHCpan 4.0 (Jurtz 
et al., 2017), PSSMHCpan (Liu et al., 2017), and ACME (Hu 
et al., 2019), which take as input both the peptide and the HLA 
sequence and are able to predict the binding of any peptide to any 
allele. Most predictions are focused on MHC class I, but there are 
also methods available for MHC class II, such as NetMHCII 2.3 
and NetMHCIIpan 3.2 (Jensen et al., 2018), ProPred (Singh and 
Raghava, 2001), SMM-align (Nielsen et al., 2007), and NNAlign 
(Nielsen and Andreatta, 2017), of which the latter also allows to 
train and use own models, as Garde et al. did for MHC class II 
prediction using both affinity measurement and MS data (Garde 
et al., 2019). Many of the aforementioned prediction methods 
for both MHC class I and II and consensus methods, such as 
NetMHCcons (Karosiene et al., 2012) and the consensus method 
by Moutaftsi et al. (Moutaftsi et al., 2006), are integrated into 
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the IEDB epitope analysis resource and can be accessed online 
(Wang et al., 2010; Fleri et al., 2017; Vita et al., 2018; Dhanda 
et al., 2019). In addition, combinatory pipelines and frameworks 
have been published, namely, EpiJen (Doytchinova et al., 2006), 
NetCTL (Larsen et al., 2007), NetCTLpan (Stranzl et al., 2010), 
and FRED2 (Schubert et al., 2016), modeling the complete 
antigen presentation pathway by including proteasomal cleavage 
and TAP transport predictions.

Epitope presentation, however, is only one step toward T 
cell recognition. NetMHCstab (Jørgensen et al., 2014) and 
NetMHCstabpan (Rasmussen et al., 2016) are methods to 
predict the stability of pMHC complexes, presuming that epitope 
presentation lasting longer increases the likelihood of T cell 
recognition and thus immunogenicity. Calis et al. proposed 
a scoring model to predict true immunogenicity of T cell 
epitopes (Calis et al., 2013). Despite these efforts, however, true 
immunogenicity remains far more difficult to predict than mere 
MHC-binding affinity.

Beyond sequence-based approaches, significant methodological 
progress has been made in modeling peptide binding to MHC 
class I molecules on structure level. The diversity of the cognate 
peptide repertoire and the experimental binding profiles for a 
particular MHC protein can be accurately captured using both 
general purpose modeling packages, such as Rosetta (Yanover and 
Bradley, 2011), and faster specialized methods, such as GradDock 
(Kyeong et al., 2018), DockTope (Menegatti Rigo et al., 2015), 
and LYRA (Klausen et al., 2015), of which the latter two are also 
integrated in the IEDB. Docking experiments are becoming 
increasingly successful in reproducing crystallographically known 
peptide-MHC binding geometry (Bordner and Abagyan, 2006; 
Antunes et al., 2018).

Immunopeptidomics Data
The recent availability of large-scale immunopeptidomics data 
allowed to explicitly model peptide length distributions and the 
interdependence between individual sequence positions, leading 
to more accurate predictions of naturally presented MHC class I 
ligands (Gfeller et al., 2018). MS profiling provides novel insights 
into the antigen processing rules, including the discovery of 
binding motifs, improved description of proteasomal cleavage 
signatures, cellular localization and sequence features of peptide 
source proteins, and better understanding of the role of gene 

expression, protein abundance and degradation (Bassani-
Sternberg et al., 2015; Bassani-Sternberg et al., 2017; Abelin et 
al., 2017). In particular, Abelin et al. (2017) reported that neural 
networks trained on MS-derived peptides bound to 16 different 
HLA alleles outperformed affinity-trained predictors.

For immunogenicity, T cell epitope verification by TCRs or 
TCR-like antibodies would constitute an ideal dataset to train 
prediction algorithms (Dolan, 2019), but both approaches 
are highly dependent on specificity and affinity of TCRs and 
antibodies used and do not reach the high-throughput efficiency 
of immunopeptidomics. HLA-peptidomics, which is the MS 
analysis of MHC-eluted peptides, is the most sophisticated 
method for high-throughput qualitative and quantitative 
detection of MHC ligands and thereby of potential T cell epitopes 
(Hunt et al., 1992; Caron et al., 2011; ; Hassan et al., 2014; Álvaro-
Benito et al.,2018; Freudenmann et al., 2018).

The isolation of pMHC complexes from cell surfaces (Sugawara 
et al., 1987;Storkus et al., 1993; Bassani-Sternberg et al., 2015; 
Marino et al., 2019) or out of serum (Ritz et al., 2016, 2017) is the 
first critical step for a high-quality MS HLA-peptidome analysis. 
After elution from pMHC complexes, peptides are purified, 
separated by high pressure liquid chromatography (HPLC), and 
directly injected and analyzed in a mass spectrometer followed 
by computational processing of MS spectra data (see Figure 2). 
Successful peptide detection is determined by various factors, 
such as HLA enrichment, which is dependent on HLA-antibody 
quality, efficient elution, and physicochemical characteristics of a 
peptide defined by its amino acid composition. Relevant peptide 
properties can be mass, hydrophilicity, and hydrophobicity, its 
ability to be ionized, as well as cysteine content (Gfeller and 
Bassani-Sternberg, 2018). Therefore, not all peptides are equally 
likely to be detected by MS but it is difficult to assess how many 
peptides are missed. Peptide sequences are often determined by 
tandem MS: a precursor mass spectrum called MS1 spectrum 
of the eluted peptides is generated and only peptides with high 
intensities are isolated for fragmentation and analyzed, resulting 
in a MS2 or MS/MS spectrum. Observed mass spectra are then 
compared with theoretical mass spectra in general reference 
databases. Proteogenomic computational pipelines using 
customized reference datasets also allow the identification of 
peptides originating from noncanonical and allegedly noncoding 
reading frames (Laumont and Perreault, 2017; Laumont et al., 
2018), unconventional, genomic coding-sequences (Erhard et al., 

FIGURE 2 | Workflow to analyze of major histocompatibility complex (MHC)-eluted peptides by mass-spectrometric (MS). A sample is lysed, pMHC complexes are 
captured and peptides are purified by immunoaffinity purification using MHC-specific immobilized antibodies. Eluted peptides are separated by high pressure liquid 
chromatography (HPLC), analyzed by MS, and the resulting data are computationally processed.
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2018) as well as neoepitopes from somatic alterations (Yadav 
et  al., 2014; Carreno et al., 2015) or intron retentions (Smart 
et al., 2018). In addition, the generation of customized spectral 
library databases of high confidence peptides can be used for 
data-independent acquisition approaches (Ritz et al., 2017), 
resulting in increased reproducibility and sensitivity.

Peptides are often assigned to the HLA molecule from which 
they were originally eluted by predicting the binding affinity 
(Freudenmann et al., 2018; Bilich et al., 2019). For common HLA 
alleles, usually a sufficient number of peptides are identified as 
binders, resulting in datasets large enough to train prediction 
algorithms. However, for less frequent HLA alleles, the pool of 
identified and correctly assigned peptides is more limited, which 
leads to variability in performance of prediction techniques 
depending on the rarity of each HLA allele (O’Donnell et al., 
2018b). If MS datasets annotated by binding affinity predictions 
are used to train machine learning algorithms, a self-amplifying 
bias is introduced. MS profiling of mono-allelic cells (Giam et al., 
2015; Abelin et al., 2017) as well as deconvolution approaches 
(Bassani-Sternberg and Gfeller, 2016) can circumvent this 
problem and improve the quality of available training data and 
prediction performance.

IMMUNOTHERAPY-SPECIFIC 
APPLICATIONS OF EPITOPE PREDICTION

Neoepitope Identification
Cancer-specific mutations have been demonstrated to be viable 
targets for tumor-infiltrating lymphocytes (TILs) enabled by 
checkpoint inhibitors that block CTLA4 or PD1/PDL1 or by 
vaccine-induced immune responses (van Rooij et  al., 2013; 
Carreno et al., 2015; Cohen et al., 2015; Gros et  al., 2016; 
McGranahan et al., 2016; Ott et al., 2017; Zacharakis et al., 2018; 
Hilf et al., 2019). These mutations alter amino acid sequences 
of proteins and are recognized as so called neoepitopes or 
neoantigens, with both terms used ambiguously and oftentimes 
synonymously in the literature. Here, we use the term neoepitopes 
for epitopes predicted to be presented by a certain MHC and the 
term neoantigens for confirmed immunogenic mutations. By 
definition, neoantigens are tumor-specific, which makes them 
ideal immunotherapy targets, but they are also to a large degree 
patient-specific. Despite many efforts, only very few shared 
neoantigens such as KRASG12D/V or BRAFV600E, could be identified, 
making an off-the-shelf therapy approach hardly feasible (Warren 
and Holt, 2010; Angelova et al., 2015; Tran et al., 2015; Thorsson 
et al., 2018). Furthermore, a high individual tumor mutation 
burden and the ambition to provide personalized medicine 
for more patients do not allow for testing the immunogenicity 
of every mutation in vitro. Therefore, the current standard 
procedure for individual patients relies on exome sequencing 
followed by mutation calling and machine learning-based 
neoepitope prediction, which represents the main application 
of pMHC-binding prediction algorithms in the field of cancer 
immunotherapy. Here, we reviewed more than 70 publications 
using binding prediction algorithms to identify neoepitopes of 
which 49, that provided quantifiable data, are shown in Table 1. 

Not all studies stated all steps of their neoepitope selection process, 
including which algorithm parameters were used, how many 
neoepitopes were found when applying a threshold or how many 
and what types of mutation were used for predicting neoepitopes, 
which makes quantitative evaluation and reproducibility difficult. 
This is aggravated by the large variance in ratio of predicted 
neoepitopes per mutation, which is caused by thresholds of 
varying strictness, the number of features used for filtering, 
and the approach to counting neoepitopes or neoantigens, i.e., 
if a mutation was counted only once even if presented by more 
than one HLA allele or contained in multiple epitopes predicted 
to be immunogenic. Furthermore, some studies could only 
experimentally validate a subset of predicted neoepitopes and 
experimental validation was determined by biological assays of 
varying sensitivity from MHC-ligand confirmation to ELISPOT 
assays using patient-specific TILs.

Not surprisingly, most publications investigated cancer 
types known for high mutation loads, such as non-small cell 
lung carcinoma and melanoma, but glioblastoma and chronic 
lymphocytic leukemia were also shown to harbor neoantigens 
identified by neoepitope prediction (Rajasagi et al., 2014; Hilf 
et  al., 2019; Keskin et al., 2019). Regarding mutation types, 
the focus clearly lies on single nucleotide variants (SNVs) 
considering their abundance in tumors above all other types of 
mutation, their comparatively easy detection by mutation calling 
software and easier computational generation of mutated and 
wild-type peptide sequences (Bailey et al., 2018; Ellrott et  al., 
2018). However, larger indels, frameshifts, and other more 
complex mutation types can be the source of more neoepitopes 
that are also less similar to self and thus highly interesting 
immunotherapeutic targets. More recent studies from Kahles 
et al., Koster et al., and Schischlik et al. investigated these types 
of mutation, benefitting from improvements on sequencing 
and mutation calling techniques (Kahles et al., 2018; Koster 
and Plasterk, 2019; Schischlik et al., 2019). Nevertheless, 
identification of cancer-specific mutation remains a critical step 
in every neoepitope identification pipeline and the number of 
mutations obtained varies greatly dependent on the software and 
thresholds employed (Tran et al., 2015; Karasaki et al., 2017).

The focus of most publications lies on MHC class I presented 
neoepitopes that can be detected by CD8+ T cells. MHC class I 
prediction algorithms are more commonly used but there is clear 
evidence that MHC class II mediated CD4+ T cell responses play 
a major role in neoantigen immune responses and thus should 
also be considered for neoepitope detection. (Linnemann et al., 
2014; Kreiter et al., 2015; Tran et al., 2015; Hugo et al., 2016; Ott 
et al., 2017; Reuben et al., 2017; Sahin et al., 2017; Sonntag et al., 
2018; Vrecko et al., 2018).

All studies, except Koster et al., who investigated 10-mers only, 
looked at peptides with a length of 8–10 or 8–11 amino acids or 
just at 9-mers alone, which are the majority of peptides presented 
by MHC class I (Trolle et al., 2016). Most studies also relied on 
matching HLA types for the samples used, often determined 
by one of the following HLA typing algorithms: ATHLATES, 
HLAminer, OptiType, PHLAT, POLYSOLVER, and seq2HLA 
(Boegel et al., 2012; Warren et al., 2012; Liu et al., 2013; Szolek 
et  al., 2014; Shukla et al., 2015; Bai et al., 2018). In contrast, 
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TABLE 1 | Publications describing the application of machine learning approaches to neoepitope prediction.

Publication Indication Sample type 
and number

number of 
HLAs used

Estimated 
ratio of 

predicted 
neoepitopes 

from 
mutations

Estimated 
ratio of 

experimentally 
confirmed 

neoantigens

Number 
of 

features

Algorithms

(Segal et al., 2008) BRCA/CRC 11 patients 1 0.17 N/A 1 NetMHC, SYFPEITHI, BIMAS, 
RANKPEP

(Castle et al., 2012) MEL 1 murine cell line N/S 0.05 0.32T 2 NetMHC
(Khalili et al., 2012) various 312 genes 

(COSMIC)
57 1.40 N/A 2 NetMHC 3.2

(Robbins et al., 2013) MEL 3 patients 2 0.18 0.03 T 3 NetMHCpan 2.4
(van Rooij et al., 2013) MEL 1 patient 4 0.42 <0.01 T 3 NetChop, NetMHC 3.2
(Boegel et al., 2014) various 167 cancer cell 

lines
6 0.44 N/A 1 IEDB 2.9

(Duan et al., 2014) SARC 2 murine tumors 3 0.75 0.56 T 2 NetMHC 3.0
(Snyder et al., 2014) MEL 64 patients 6 0.42 <0.01 T 3 NetMHC 3.4, RANKPEP, IEDB 

immunogenicity, CTLPred
(Yadav et al., 2014) CRC/PRAD 2 murine cell 

lines
2 0.03 0.02 T 3 NetMHC 3.4

(Angelova et al., 2015) CRC 552 TCGA 
patients

6 0.41 N/A 2 NetMHCpan

(Carreno et al., 2015) MEL 7 samples/3 
patients

1 0.04 0.43 B 3 NetMHC 3.4

(Cohen et al., 2015) MEL 8 patients 2 0.02 0.02 T 2 IEDB
(Rizvi et al., 2015) NSCLC 34 patients 6 0.62 <0.01 T 2 NetMHC 3.4
(Rooney et al., 2015) various 4250 TCGA 

patients
6 0.14 N/A 2 NetMHCpan 2.4

(Tran et al., 2015) GIC 10 patients 12 0.03 0.21 T 2 NetMHCpan 2.8, NetMHCIIpan 
3.0

(Van Allen et al., 2015) MEL 110 patients 6 1.56 N/A 2 NetMHCpan 2.4
(van Gool et al., 2015) UCEC 245 TCGA 

patients
1 0.06 N/A 3 NetMHCpan 2.8

(Bassani-Sternberg 
and Gfeller, 2016)

MEL 1 patient 6 1.43 <0.01 B 1 NetMHCpan 2.8

(Goh et al., 2016) MCC 49 patients 4 0.09 N/A 1 NetMHC 3.4
(Gros et al., 2016) MEL 3 patients 6 0.03 0.55 T 2 IEDB
(Hugo et al., 2016) MEL 38 patients 12 0.06 N/A 3 NetMHCpan 2.8, NetMHCIIpan 

3.0
(Kalaora et al., 2016) MEL 1 patient 6 5.30 <0.01 B 1 NetMHCpan 2.8
(Karasaki et al., 2016) NSCLC 15 patients 6 0.62 N/A 1 NetMHCpan 2.8
(Löffler et al., 2016) CHOL 1 patient 6 3.68 0 B 2 NetMHC 3.4, NetMHCpan 2.8, 

SYFPEITHI
(Strønen et al., 2016) MEL 3 patients 1 0.05 0.19 T 4 NetChop, NetMHC 3.2, 

NetMHCpan 2.0
(Anagnostou et al., 
2017)

NSCLC 10 patients 6 0.76 <0.01 T 4 SYFPEITHI, NetMHCpan, 
NetCTLpan

(Chang et al., 2017) PED 540 patients 6 0.42 N/A 2 NetMHCcons 1.1
(Karasaki et al., 2017) NSCLC 4 patients 6 0.20 N/A 2 NetMHCpan 2.8
(Kato et al., 2017) BRCA 5 patients 6 0.47 N/A 2 NetMHC 3.4, NetMHCpan 2.8
(Miller et al., 2017) MM 664 patients 6 0.16 N/A 3 NetMHC 4.0
(Ott et al., 2017) MEL 6 patients 6 0.01 0.60 T 3 NetMHCpan 2.4
(Sahin et al., 2017) MEL 13 patients 10 0.02 0.60 T 2 IEDB 2.5 (MHC class I & II)
(Zhang et al., 2017) BRCA 3 patients 6 0.01 0.16 T 3 NetMHC 3.2
(Kalaora et al., 2018) MEL 15 patients/cell 

lines
6 9.57 0.15 T 2 NetMHCpan 3.0

(Kinkead et al., 2018) PAAD 1 murine cell line 2 0.27 0.16 T 2 NetMHC 3.2/3.4, NetMHCpan 
2.8

(Martin et al., 2018) OV 1 patient 6 1.57 0,09 T 2 NetMHCpan 2.4
(O’Donnell et al., 
2018a)

OV 92 patients 6 0.02 N/A 2 NetMHCpan 2.8

(Sonntag et al., 2018) PDAC 1 patient 10 2.00 0.75 T 3 NetMHC, NetMHCIIpan 3.1, 
SYFPEITHI

(Continued)
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Wu et al. made predictions based on the 100 most frequent HLA 
alleles in their dataset and Wood et al. based on the general 
145 most frequent alleles (Wood et al., 2018; Wu et al., 2018). 
Whether or not such approaches yield substantial information 
gain is a debatable issue since most immunogenic mutations are 
highly individual and restricted by a patient’s individual HLA 
type (Marty et al., 2017; McGranahan et al., 2017; Rosenthal et al., 
2019). HLA-A*02:01 has been extensively studied since it is the 
most common allele in Caucasian populations and therefore was 
exclusively used by Segal et al. for their analysis (Segal et al., 2008). 
Since predictions for A*02:01 still belong to the best performing 
group and can be more easily validated compared to other alleles 
due to established in vitro protocols and reagents, Carreno et al., 
Spranger et al., Strønen et al., van Gool et al., and Hilf et al. also 
only used A*02:01 for their predictions and the studies that carried 
out experimental validation accomplished high confirmation 
of predicted neoepitopes (Carreno et al., 2015; van Gool et al., 
2015; Spranger et al., 2016; Strønen et al., 2016; Hilf et al., 2019). 
Similarly, Koster et al. only used A*02:01 for an unfiltered TCGA 
dataset although they did not perform experimental validation. 
Similar to Wood et al., they did not use HLA typing information 
for TCGA samples, which has been generated but can only be 
obtained by applying for access to restricted data (Shukla et al., 
2015; Charoentong et al., 2017; Marty et al., 2017).

For most studies, algorithms from the NetMHC family 
were chosen as they are widely known and represent the 

state-of-the-art prediction methods for binding of a peptide 
to a given MHC molecule. Van Allen et al. showed that out 
of 17 validated neoantigens, 14 passed the 500 nM standard 
threshold, indicating high sensitivity (van Buuren et al., 2014). 
However, only a handful of the predicted binders will also be 
recognized by T cells, which requires additional filtering or 
prediction improvement (Anonymous, 2017). Indeed, using 
more filtering criteria leads to fewer predicted neoepitopes per 
mutation, as seen in Figure 3A, although the false negative rate 
remains unknown. Only a few publications rely on predicting 
the binding affinity of mutated peptides alone and most use at 
least one additional threshold criterion, of which gene expression 
as a premise for antigen recognition is the most common. As 
RNA-Seq data was not available for Anagnostou et al., Le et al. 
and Reuben et al., they used TCGA expression data as a proxy 
to further filter the mutations to test for immunogenicity. 
Binding of the wild-type peptide was also considered by some 
studies, but not always used for filtering. Duan et al. proposed 
a “differential agretopicity index” (DAI), which is the difference 
between the predicted mutated and wild-type binding affinity, to 
use as a filtering criterion for neoepitope prediction. Although 
it yielded promising results based on their mouse data, it 
seemed less reliable in further investigations by Bjerregaard et 
al. and Koşaloğlu-Yalçın et al. using human data (Duan et al., 
2014; Bjerregaard et al., 2017b; Koşaloğlu-Yalçın et al., 2018). 
In another study by Ghorani et al., DAI was more predictive for 

TABLE 1 | Continued

Publication Indication Sample type 
and number

number of 
HLAs used

Estimated 
ratio of 

predicted 
neoepitopes 

from 
mutations

Estimated 
ratio of 

experimentally 
confirmed 

neoantigens

Number 
of 

features

Algorithms

(Thorsson et al., 2018) various 8546 TCGA 
patients

6 0.74 N/A 2 NetMHCpan 3.0, pVAC-Seq 
4.0.8

(Vrecko et al., 2018) HCC 1 patient 3 0.05 0.15 T 2 SYFPEITHI, IEDB (MHC class II)
(Wu et al., 2018) various 7748 TCGA 

samples
100 1.18 N/A 1 NetMHCpan 4.0

(Bulik-Sullivan et al., 
2019)

NSCLC 7 patients 6 0.10 0.08 T >4 EDGE

(Hilf et al., 2019) GBM 10 patients 1 0.03 0.85 T 3 IEDB 2.5
(Keskin et al., 2019) GBM 8 patients 6 0.20 0.07 T 3 NetMHCpan 2.4
(Koster and Plasterk, 
2019)

various 10186 TCGA 
patients

1 0.02 N/A 2 NetMHC 4.0

(Liu et al., 2019) OV 20 patients 12 0.15 0.24 T 3 NetMHCpan 3.0, NetMHCIIpan 
3.1

(Löffler et al., 2019) HCC 16 patients 6 1.79 0 B 2 NetMHC 4.0, NetMHCpan 3.0, 
SYFPEITHI

(Rosenthal et al., 
2019)

NSCLC 164 samples/64 
patients

6 0.86 N/A 2 NetMHC 4.0, NetMHCpan 2.8

(Schischlik et al., 
2019)

PNMN 113 patients 6 2.53 0.66 B 2 NetMHCpan

N/S means not specified. Cancer type abbreviations: adenocarcinoma (AC), breast cancer (BRCA), cholangiocarcinoma (CHOL), colorectal cancer (CRC), glioblastoma (GBM), 
gastrointestinal cancer (GIC), hepatocellular carcinoma (HCC), merkel cell carcinoma (MCC), melanoma (MEL), multiple myeloma (MM), non-small cell lung cancer (NSCLC), ovarian 
cancer (OV), pancreatic ductal adenocarcinoma (PDAC), pediatric cancers (PED), Ph-negative myeloproliferative neoplasms (PNMN), prostate adenocarcinoma (PRAD), sarcoma 
(SARC) and uterine corpus endometrial cancer (UCEC). T indicates experimentally confirmed T cell responses (e.g., IFNγ ELISPOT), B indicates experimentally confirmed major 
histocompatibility complex (MHC) binding (e.g., mass spectrometric [MS] of eluted peptides), and N/A indicates that no experimental validation was done. Features are mutated 
peptide binding prediction, wild-type peptide binding prediction, gene expression, sequence-based features like sequence similarity scores, and immunogenicity predictions. If 
available, version information of algorithms is included.
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immune infiltration in melanoma and lung cancer compared 
to neoantigen or mutation load, suggesting that while some 
neoepitope responses might be enhanced by a reduced cross-
reactivity potential, there are also many validated neoantigens 
whose wild-type counterparts are predicted to bind comparably 
strong (Ghorani et al., 2018; Koşaloğlu-Yalçın et al., 2018).

There is evidence that taking more than one feature into 
account promises greater success for experimentally validating 
predicted neoepitopes (see Figure 3B). However, the results of 
experimental validation are dependent on the sensitivity of the 
technique used and the reactivity of neoantigen-specific TILs 
can additionally be hampered by other factors, such as tumor 
immune suppression or T cell exhaustion (Anonymous, 2017; 
Bulik-Sullivan et al., 2019).

Some studies chose a quantitative approach, mostly linking 
neoepitope load and survival (Brown et al., 2014; Rizvi et al., 2015; 
Miller et al., 2017; Ghorani et al., 2018). It has to be mentioned 
that neoepitope load and mutational burden are usually highly 

correlated (Pearson r = 0.89 based on 38 publications with less 
than 1 neoepitope per mutation from Table 1) and although 
it can be assumed that an increased survival is linked to the 
immunogenicity of mutations, quantifying predicted neoepitopes 
does not necessarily transport more information than mutation 
burden alone (Nathanson et al., 2017). There are, however, 
also studies that correlated survival with neoepitopes but not 
mutational burden or found contradictory results depending on 
patient cohorts (Snyder et al., 2014; Ghorani et al., 2018).

Among well-described approaches for neoepitope 
identification based on affinity binding prediction algorithms, 
there are also pipelines available that automate all analytic 
steps and rank potential neoepitopes based on peptide affinity 
prediction and other features (see Table 2). They differ greatly as 
to their properties and outputs, thus offering choices depending 
on research questions and dataset sizes. Their availability 
demonstrates how important neoepitope prediction has become 
as an application for binding affinity prediction algorithms.

FIGURE 3 | (A) Neoepitopes per mutation grouped by the number of features used for neoepitope selection. Data based on publications that offered comparable 
data, e.g., not obviously counting a neoepitope predicted to be presented by multiple major histocompatibility complexes (MHCs) multiple times (n = 38). (B) Ratio 
of confirmed to predicted neoepitopes grouped by the number of features used for neoepitope selection. Data based on publications that experimentally validated 
all predicted neoepitopes (n = 30)

TABLE 2 | Neoepitope prediction pipelines based on mutation data input. Additional features are cancer driver status of the mutated gene used by MuPeXI; differential 
agretopicity index (DAI), sequence-based immunogenicity score, and more used by Neopepsee; DAI, cleavage, and stability prediction used by pVACtools.

MuPeXI CloudNeo Neopepsee pVACTools

Algorithms NetMHCpan NetMHCpan NetCTLpan, IEDB Bayes 
classifier

8 MHC class I predictors 4 MHC 
class II predictors

Input VCF gene expression TSV VCF BAM VCF RNA-Seq FASTQ VCF BAM (RNA and DNA)
HLA typing user input integrated user input or integrated user input or integrated
Mutation types SNVs indels frameshifts SNVs SNVs SNVs indels fusions (additional 

input)
Wild type peptide yes yes yes yes
Gene expression yes (optional) no yes yes
Additional features yes no yes yes
Availability local, webserver cloud local local
Reference (Bjerregaard et al., 2017a) (Bais et al., 2017) (Kim et al., 2018) (Hundal et al., 2019)
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Since a variety of different neoepitope identification 
approaches exist and it is not clear which features are predictive 
for immunogenicity, Koşaloğlu-Yalçın et al. and Kim et al. 
integrated and compared features additional to the standard 
MHC binding affinity by either comparing areas under the 
curve of receiver operating characteristics or evaluating feature 
importance derived from trained classifiers (Kim et al., 2018; 
Koşaloğlu-Yalçın et al., 2018). Both studies found that binding 
affinity prediction performs best or is the most informative 
feature. This is not surprising for viral epitopes constituting 
a major part of data on which most prediction algorithms are 
trained nor for neoantigens from literature mainly selected by 
predicted binding affinity, which introduces a bias toward this 
feature. It still remains unclear how many potential neoantigens 
are not detected because their binding affinity is predicted to 
lie beyond thresholds. An approach avoiding this bias has been 
proposed by Bulik-Sullivan et al. (Bulik-Sullivan et al., 2019). 
Like the most recent generation of neural network binding 
prediction algorithms, they developed a deep learning neural 
network trained on MS data, but apart from improved peptide 
sequence modeling, they also included features unrelated to the 
pMHC interaction, namely, quantified gene expression, flanking 
sequence, and protein family. Although their model is currently 
limited to HLA alleles of the training data, the approach 
demonstrated an increased performance of neoepitope discovery 
over peptide binding prediction and can also be expanded to 
MHC class II presented antigens.

Cross-Reactivity Assessment
A major challenge for immunotherapies introducing TCRs into 
patient recipient T cells is the choice of safe target antigens. If an 
engineered TCR-T cell cross-reacts with self-antigens in healthy 
tissue, the side-effects can be devastating. Possible TCR toxicity 
scenarios can be generally divided into on-target and off-target 
toxicities. On-target toxicities include all aspects of a specific 
target antigen or epitope expression that lead to an unintentional 
TCR-mediated destruction of healthy tissues. An example of 
on-target toxicity is melanocyte destruction, hearing loss, and 
retina infiltration mediated by MART1-targeting TCR-T cells 
relating to the same epitope in all cases (Johnson et al., 2009).

Off-target toxicities, in contrast, can appear by unexpected 
recognition of alternative epitopes that contain amino acid 
exchanges (mismatches) compared to the known epitope 
sequence. In rare cases, these mismatched peptides are presented 
identically on corresponding MHC molecules and are recognized 
equally well by deployed TCRs.

Targeting epitope sequences of proteins originating from 
highly homologous family members can cause unforeseen tissue 
damage as exemplified by the study performed by Morgan et al. 
(Morgan et al., 2013). Using autologous anti-MAGEA3 TCR-T 
cells, adoptive transfer led to severe neurotoxicity in several 
patients. The MAGEA3-specific TCR used in this clinical trial 
also recognized a MAGEA12, which was retrospectively found 
to be expressed in the brain. In the Linette et al. study, clinicians 
adoptively transferred MAGEA3-TCR-modified lymphocytes 
that also recognized an alternative epitope derived from the 

protein titin, causing fatal heart failure in two patients (Linette 
et al., 2013). Each of these examples underline the importance 
and need of comprehensive preclinical target and TCR analysis 
to prevent potential adverse events at later stages of clinical 
development.

With Expitope, we presented the first web server for assessing 
epitope sharing when evaluating new potential target candidates 
(Haase et al., 2015). Based on predictions for proteasomal cleavage, 
TAP transport, and MHC class I binding affinity, Expitope lists 
peptides with a given number of mismatches including the 
original target peptide. For these peptides, which are linked to 
genes by transcripts, the expression values in various healthy 
tissues, representing all vital human organs, are extracted from 
RNA-Seq data. However, transcript abundance only indirectly 
indicates protein expression. Meanwhile, proteome-wide human 
protein abundance data has become available and now facilitates 
a more direct approach for the prediction of potential cross-
reactivity. The development of a new version 2.0 of Expitope, 
which computes all possible, naturally occurring epitopes of a 
peptide sequence and the corresponding cross-reactivity indices 
using both protein and transcript abundance levels weighted by 
a proposed hierarchy of importance of various human tissues, 
should help addressing this issue (Jaravine et al., 2017a). Cross-
reactivity potential can also be assessed by calculating structural 
similarities between pMHC complexes obtained by molecular 
docking (Antunes et al., 2010) and by clustering pMHC complexes 
based on their electrostatic properties and the accessible surface 
area (Mendes et al., 2015). A comprehensive review by Baker 
et al. (2012) is covering these aspects in great detail.

TCR BINDING PREDICTION
The final piece of the epitope recognition puzzle is the interaction 
of the pMHC complex with the TCR, which represents a very 
difficult problem for modeling studies and sequence-based 
predictions. One reason for that is the complex and noncontiguous 
nature of the interaction interface, with the CDR1 and CDR2 
regions of the TCR α and β chains making contacts with the 
MHC class I molecule and the CDR3 regions directly interacting 
with the bound peptide (see Figure 4). Another major hurdle 
in predicting TCR recognition is the scarcity of experimentally 
confirmed TCR complementarity determining regions and the 
sequences of their respective binding partners on the pMHC 
complex. For example, one of the first feasibility studies of CDR3 
sequence patterns was only based on two immunogenic HIV 
peptides (De Neuter et al., 2018). An additional complication 
is posed by the fact that repertoire sequencing combined with 
immune assays determines antigen-specific clonotypes, but does 
not yield negative controls, i.e., validated pairs of CDRs and 
pMHC complexes that do not bind each other.

CDR3β chains appear to always be in contact with the 
antigen bound to the MHC class I molecule, whereas the direct 
contact of CDR3α chains to the peptide is not always required 
(Glanville et al., 2017). The involvement of short linear stretches 
of CDR3β sequence in peptide-TCR interactions creates the 
opportunity to cluster TCRs in groups of common specificity 
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(Dash et al., 2017; Glanville et al., 2017) and also serves as the 
basis for developing specialized algorithms for sequence-based 
prediction of pMHC/TCR binding. Two recent publications 
addressed this problem from two completely different 
perspectives. Jurtz et al. presented a proof of concept study, 
in which they predicted TCR interactions with their cognate 
HLA-A*02:01-presented peptide targets (Jurtz et al., 2018). A 
machine learning approach, called NetTCR, was trained on 
8,920 TCRβ CDR3 sequences and 91 cognate peptide targets 
obtained from IEDB and from the immune assay data published 
by Klinger et al. (2015). A dataset of negative interactions was 

assembled by randomly matching TCR and peptide pairs. The 
NetTCR project in its current form is limited to a small number 
of peptides and it does not consider CDR1/CDR2 interactions 
with the MHC molecules or CDR3α sequences, but it is an 
important step forward because it demonstrates that TCR 
recognition of pMHCs is specific enough to be captured by 
sequence-level prediction tools.

Ogishi and Yotsuyanagi exploited the existence of 
immunodominant epitopes, which are targeted by the adaptive 
immune system in different individuals and would therefore 
be expected to exhibit some prominent features that make 
them especially prone to be recognized by T cells (Ogishi and 
Yotsuyanagi, 2019). The idea behind their repertoire-wide 
TCR-epitope contact potential profiling is that intermolecular 
contacts between relevant portions of the epitope and the TCR 
CDR3β region that closely resemble the contact structure of the 
interactions involving immunodominant peptides would be more 
likely to be immunogenic. To quantitatively assess the interaction 
affinity, they used physicochemical properties of amino acids and 
an energetic potential, calculated as the sum of all pairwise contact 
potentials for individual amino acids. The latter were obtained 
from several previously published amino acid contact potential 
scales, available from the AAINDEX database (Kawashima et al., 
2007). These features were converted to immunogenicity scores 
using machine learning. It should be noted that the knowledge-
based potentials, derived from crystal structures of proteins and 
protein complexes, reflect either intramolecular interactions 
driving protein folding and stability or contacts at protein 
interfaces and may only be a coarse approximation of peptide-
TCR interactions. Yet, Ogishi and Yotsuyanagi demonstrated 
that the most informative contact-based and property-based 
features strongly correlate  with  experimentally measured 
TCR-peptide affinities.

Both approaches by Jurtz et al. and Ogishi and Yotsuyanagi 
are solely based on CDR3β chains and do not incorporate 
CDR3α sequence information. This is due to the fact that 
most datasets and databases such as IEDB and VDJdb did, 
until recently, consist mainly of CDR3β sequences (Figure 5) 

FIGURE 4 | T cell receptor (TCR) binding to a peptide presented by major 
histocompatibility complex (MHC) class I.

FIGURE 5 | IEDB and VDJdb contents of CDR3α and CDR3β sequences of human origin. IEDB contains 386 unique epitopes linked to CDR3α sequences and 
426 unique epitopes linked to CDR3β sequences. For VDJdb there are 93 and 177 unique epitopes, respectively. IEDB data was downloaded from https://www.
iedb.org on September 30th, 2019 with the following query parameters: Current Filters: No B cell assays, No major histocompatibility complex (MHC) ligand assays, 
Restriction Type: Class I, Host: Homo sapiens (human). VDJdb data was taken from https://vdjdb.cdr3.net/overview (last updated on August 7th, 2019).
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derived from bulk sequencing (Shugay et al., 2018; Vita et al., 
2018), since identifying functional TCR pairing in repertoire 
data is technically challenging (Holec et al., 2018). Single cell 
sequencing eliminates this problem and a large dataset has 
just been added to VDJdb, which is, however, dominated by 
only few epitopes and HLA alleles. Another problem regarding 
TCR-epitope data is the lack of true negative datasets and the 
inclusion of cross-reactivity information, since many TCRs 
are able to recognize more than one epitope, which has been 
elaborated in section “Cross-reactivity assessment.” For this 
reason, pMHC/TCR binding prediction would also add valuable 
information to the detection of potential cross-reactivity for 
clinical candidate TCRs.

Further light on the details of pMHC/TCR interactions 
can be shed by molecular dynamics simulations. This entails 
understanding the role of hydrogen bonds, hydrophobic 
contacts, and interactions with the solvent in determining 
the specificity and cross-reactivity of each individual complex 
and proposing specific models of TCR engagement with 
the CDR1, CDR2, and CDR3 regions (Cuendet et al., 2011). 
Moreover, molecular modeling can help to compare the surface 
morphology between the complexed wild-type and mutated 
peptides and their relationship with immunogenicity (Park 
et al., 2013) and can also help to predict affinity-enhancing 
TCR mutations (Malecek et al., 2014). In cases where three-
dimensional structures are not yet available, accurate models of 
pMHC/TCR complexes can be obtained by homology modeling 
(Zoete et al., 2013; Lanzarotti et al., 2019). Finally, a number 
of both rigid and flexible pMHC/TCR docking protocols have 
been proposed, which, in many cases, are able to produce 
accurate complex models starting from unbound structures 
(Pierce and Weng, 2013).

CONCLUSION AND OUTLOOK
Machine learning has become an indispensable tool for 
immunotherapeutic applications over the last decades. The 
established core method is peptide binding affinity prediction 
and thus target identification for TCR-T therapy or personalized 
neoantigen vaccination. The constant evolution of available 
training data as well as machine learning techniques, building 
on growing computational power, has improved the quality of 
binding affinity predictions. Focus has been on CD8+ cytotoxic 
T cells, but the substantial role of CD4+ T cells is increasingly 
gaining attention and efforts are made to also improve 
predictions for MHC class II presented epitopes, which poses a 
more challenging task compared to MHC class I binding due to 
the larger variety in peptide length and the open binding groove 
(Brown et al., 1993).

Additional challenges which can be tackled by machine 
learning remain. Immunogenicity is still an elusive aim for 
prediction tools, especially when it comes to personalized 
therapies relying on neoepitope identification. This is owed 
to the fact that patient immune systems and tumors undergo 
a process of mutual influence and therefore are highly 

individual and heterogeneous. The identification of features 
derived from the immune system that affect T cell recognition 
of individual epitopes within a tumor could be the key toward 
more reliable personalized immunotherapy predictions, 
thereby opening the process to a broader number of patients. 
Although neoantigens are currently in the focus of cancer 
immunotherapy, the detection of shared tumor antigens 
beyond coding DNA regions remains necessary since not 
all tumors harbor enough immunogenic mutations and the 
creation of potent TCRs for individual patients is currently 
impossible. Another challenge, which can be tackled with the 
help of ongoing data acquisition, is TCR binding prediction. 
Being able to reliably predict which TCR will recognize which 
epitope is extremely valuable not only for target epitope 
identification for TCR-T therapies, but also especially for 
TCR safety assessment, since it can speed up the process of 
selecting TCRs for the clinic by reducing in vitro screening of 
TCR candidates.

As the TCR-T adoptive immunotherapy community grows 
and data on the impact of sequence variations in both TCR 
alpha and beta chains on peptide fine specificity, sensitivity of 
peptide-MHC recognition and TCR cross-reactivity for partially 
mismatched epitopes emerge, artificial intelligence in the form 
of machine learning will be critical to advance understanding 
of pMHC/TCR interactions for many types of antigen and 
many different HLA allotypes. In particular, these issues will 
become additionally relevant as this form of immunotherapy 
is developed for patient populations worldwide. High-
throughput TCR discovery platforms, yielding TCR sequence 
information from natural repertoires of T cells or through 
TCR mutational analyses, coupled with functional assessment 
of peptide variants as a means to assess cross-reactivity, offer 
many opportunities to continually improve understanding of 
pMHC/TCR interactions that will not only advance the cause 
of basic science but also help to meet medical needs for patients 
with cancer, infectious diseases or autoimmunity, where it is 
envisioned that TCR-Ts have the potential to provide improved 
therapies worldwide.

In particular, the push to couple TCR sequence data with 
neoantigen recognition for single patients through analysis 
of individual tumor samples in order to develop more potent 
cancer vaccines or TCR-T immunotherapies has already 
fostered strong collaborations and commercial endeavors to 
advance the interplay of machine learning and TCR recognition. 
While it currently seems daunting to imagine how the enormous 
and fast flow of information now emerging from many sources 
can be accessed and assembled to rapidly support the broader 
needs for personalized patient-individualized TCR-based 
immunotherapies, this review summarizes the challenges as 
well as the substantial progress that has already been achieved 
in defining some of the most relevant parameters in the 
complex cell biology of antigen processing and presentation and 
pMHC interactions with TCRs that lead to successful immune 
recognition. Important gaps have also been defined, alerting the 
community to the types of control data that may already exist 
in many laboratories, or could be collected, that would help in 
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the refinement of prediction tools to achieve better results in the 
future. Increased interest and collaborative efforts of machine 
learning and HLA and TCR specialists will certainly foster 
further developments to support the rapidly expanding field of 
T cell-based immunotherapy of high medical relevance.

With the support of bioinformatic tools and improved 
prediction algorithms, immunotherapy holds the potential to 
become more precise, more personalized, and more effective 

than current cancer treatments—and potentially with fewer 
side effects.
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