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Abstract—Machine learning applications are steadily increas-
ing in performance, while also being deployed on a growing
number of devices with limited energy resources. To minimize
this trade-off, researchers are continually looking for more energy
efficient solutions. A promising field involves the use of spiking
neural networks in combination with neuromorphic hardware,
significantly reducing energy consumption since energy is only
consumed as information is being processed. However, as their
learning algorithms lag behind conventional neural networks
trained with backpropagation, not many applications can be
found today. The highest levels of accuracy can be achieved by
converting networks that are trained with backpropagation to
spiking networks. Spiking neural networks can show nearly the
same performance in fully connected and convolutional networks.
The conversion of recurrent networks has been shown to be
challenging. However, recent progress with transformer networks
could change this. This type of network not only consists of
modules that can easily be converted, but also shows the best
accuracy levels for different machine learning tasks. In this work,
we present a method to convert the transformer architecture to
networks of spiking neurons. With only minimal conversion loss,
our approach can be used for processing sequential data with
very high accuracy while offering the possibility of reductions in
energy consumption.

I. INTRODUCTION

An increasing number of applications are benefiting from
today’s advances in neural networks. Tasks such as machine
translation, speech recognition, and object detection are often
deployed in power restricted environments and must process
large amounts of data while minimizing energy use. By
reducing the power consumption of these tasks, the battery
life of edge devices and the range of electric vehicles can
directly be influenced and extended.

Common approaches for reducing energy consumption in-
clude the development of new architectures or improved hard-
ware optimization. Another promising research direction is the
use of biologically inspired spiking neural networks (SNNs)
which communicate with short pulses rather than continuous-
valued activation functions. Compared to today’s prevailing
analog neural networks (ANNs), SNNs not only promise ultra-
low powered neuromorphic hardware [1], but also provide
superior computational power [2]. Despite these advantages,
SNNs are not yet widely used in applications, as training
remains challenging and results in inferior performance gener-
ally lacks behind that of ANNs trained with backpropagation.
The three main approaches for training SNNs are (1) unsu-
pervised learning approaches such as spike-timing-dependent

plasticity [3], (2) supervised learning approaches that try to
adapt gradient descent based backpropagation [4]–[6], and (3)
conversion approaches, which is the focus of this work.

Training ANNs with backpropagation and mapping the
weights to SNNs with the same architecture lead to optimal
performance for spiking networks [7]. While earlier work
has demonstrated the difficulties of translating the sigmoid
activation function to spiking neurons [8], the dominant use of
rectified linear units (ReLUs) [9] offers new possibilities. As
both the activation of ReLUs and the firing rate of spiking neu-
rons increase linearly with their input, this approach resulted
in a near-lossless conversion [10]. Since then, this method has
been well theorized and expanded for use with convolutional
neural networks (CNNs) [11]. It enables the conversion of deep
networks for object detection, including YOLO [12], ResNet
[13], and RetinaNet [14].

However, for recurrent neural networks (RNNs) an approach
with little to no conversion loss has been absent thus far. The
conversion of an Elman network has resulted in an accuracy
loss of 8.4% [15]. As this type of network is vulnerable to van-
ishing or exploding gradients, it is not commonly implemented
in many of todays applications. More common recurrent
architectures based on long short-term memory (LSTM) [16]
or gated recurrent units (GRU) [17] are based on sigmoid
and tanh activation functions and are also susceptible to the
previously mentioned issues.

As RNNs based on LSTMs or GRUs are generally time con-
suming and computationally expensive to train, they are slowly
being replaced by superior architectures in various applica-
tions. Most notably, transformer networks have revolutionized
the field of natural language processing (NLP), as they are
suited to model temporal sequences and achieve remarkable
performance in machine translation [18]. Moreover, multi-head
self-attention, which is a mechanism for performing queries
on a sequence of information, has led to better performance
compared to previous methods. Today, the best performing
networks for solving NLP tasks, including BERT [19] and
GPT-3 [20], are already variants of transformer networks.
Furthermore, architectures using multi-head self-attention for
image processing have shown excellent performance while
also being less computationally expensive [21]. In addition, re-
cent research has introduced DEtection TRansformer (DETR),
which is an architecture for object detection which performs
on par with the highly-optimized Faster RCNN algorithm [22].
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To leverage the use of transformers in SNNs and for energy
efficient computing on neuromorphic hardware, we present a
conversion method for transformer architectures to networks
of spiking neurons. This approach is presented in section II
and its performance subsequently evaluated in section III by
running experiments for NLP and image classification.

II. METHODOLOGY

A. Architecture of Spiking Transformer Networks

The networks in our approach are similar to those in the
original work for NLP [18] (see fig. 1) and image classification
[21] (see fig. 2), respectively. The general architecture consists
of a preprocessing step of the input depending on the data
type, a subsequent transformer encoder, and various layers
with classification of the output layer.

The transformer encoder is based on multi-head self-
attention, which consists of multiple scaled-dot attention mod-
ules. The scaled-dot attention is computed by stacked layers
of matrix multiplication, scaling, softmax, and another matrix
multiplication layer. Following multi-head self-attention is a
subsequent dense layer, ReLU activation, and another dense
layer.

As the max pooling operation is difficult to realize in spiking
networks, we instead implement an average pooling layers.
For the classifying the output, a softmax layer is generally
used. Different spiking operators have been presented to
represent the same outcome [11]. For simplicity, we include
an additional layer which accumulates all spikes of the output
layer. A common softmax layer can then be used for evaluating
accuracy.

B. Conversion Approach

Due to the similarity between ReLU and rate coded spiking
neurons, conversion of a network can be achieved by replacing
the ReLU activation function with simple integrate and fire
(IF) neurons. This type of neuron offers a low computational
complexity by integrating their input until it reaches a thresh-
old. Next, it emits a spike that is transmitted to the connecting
neurons and then resets before starting over again. The spike
rate r(t) is computed using the ReLU activation a of the initial
ANN [11]:

r(t) = armax − V (t)− V (0)

tVthr
(1)

where V (t) is the membrane potential and Vthr is the firing
threshold. Instead of resetting to 0, we use the reset-by-
subtraction method [23], as it has demonstrated better effi-
ciency for conversion.

Fig. 1. Architecture of the converted spiking NLP transformer network. The
ReLU activation of the trained ANN are replaced by spiking neuron Models.
In contrast to the original work for NLP [18] we use average pooling instead
of max pooling after the transformer encoder module.
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In contrast to the ReLU activation function, spiking neurons
have an upper limit as determined by their maximum firing rate
rmax [10]. Thus, the weights of the original analog network
have to be normalized to prevent extended inference time or
even decreased overall accuracy. For this purpose, we take a
subset of the training data and compute the activations for the
layers that have to be converted. To discard extreme outliers,
we implement the robust normalization algorithm [11], which
only normalizes the pth percentile of the activation. The
authors suggest values for p in the range of [99.0, 99.999];
in our case we found p = 99.0% performed the best.

III. EXPERIMENTS

For the evaluation of the presented conversion method, we
train two types of transformer networks: an architecture similar
to (1) the original paper for NLP sentiment classification
[18] and (2) the proposed vision transformer architecture for
image classification [21]. The networks are then converted
to spiking networks using the methods mentioned earlier and
subsequently evaluated in a simulation over 50 time steps.

A. Experiment 1: NLP Transformer
For the first experiment, we train an NLP transformer

network on the IMDB movie review sentiment classification
dataset [24]. The dataset consists of 25,000 movie reviews en-
coded as a list of word indices and labeled as positive/negative
sentiment, and is split in half into training and test set. A
vocabulary list is used for the 20,000 most frequently used
words and limit the review length to 200 words. Shorter re-
views are filled with zero padding. The labels are transformed
to categorical vectors, which can have a positive or negative
state.

The input data of the network consists of the reviews
represented as sequences of encoded words. Embedding layers
are used for the word sequences as well as for encoding
positions of the words. Next, the token embeddings are added
to the positional embeddings, and the result is fed into the
transformer encoder. The data then passes an average pooling
layer, two densely connected layers with ReLU activation and
a succeeding softmax layer for classification.

B. Experiment 2: Vision Transformer
For the second experiment, we train a vision transformer

network for digit classification of the MNIST dataset [25].
The dataset comprises of images of handwritten digits from
zero to nine with according labels. The training set consists of
60,000 and the test set of 10,000 images, all with a resolution
of 28× 28 pixels.

For use in transformer networks, the images are divided into
patches of 4 × 4 pixels, resulting in 7 patches per row and
column. These 49 patches are then flattened and made into a
linear projection of all patches. Positional encodings together
with class embeddings are added to the linear projections of
the patches. The subsequent transformer encoder uses the same
architecture as described previously and is followed by a dense
layer activated with ReLU and a softmax activated dense layer
for classification.

Fig. 2. Architecture of the converted spiking vision transformer network. The
conversion approach and the transformer encoder are equal to those used in
the spiking NLP transformer (see Fig. 1)

C. Training and Conversion

The training process of both the NLP transformer and vision
transformer are conducted equally: the networks are trained for
2 epochs optimizd with Adam and a batch size of 64. To fit the
maximum spike rate of the IF neurons, the resulting weights
are subsequently scaled using the robust normalization strategy
with the percentile set to p = 99.0. Lastly, the ReLU activation
functions are replaced with the spiking neuron model.

The performance of the spiking transformer networks is
then evaluated by calculating the accuracy of the test set in a
simulation over 50 time steps. As the choice of the random
seed can influence the accuracy of the resulting networks, each
experiment is run 50 times and the results are averaged.

D. Results

The transformer for NLP achieved an averaged accuracy
of 86.36% on the test set of the IMDB movie review senti-

2021 7th International Conference on Systems and Informatics (ICSAI) 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 10:12:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Results of experiment 1: averaged accuracy of the converted spik-
ing NLP transformer network over 50 time steps on the IMDB sentiment
classification dataset

ment classification dataset. The converted spiking transformer
achieved a similar accuracy of 86.25% after the simulation
over 50 time steps. After only 13 time steps, the accuracy
evened out at 86.1%, as can be seen in fig. 3. This yielded a
conversion loss of only 0.11% from the original ANN to the
resulting SNN.

The vision transformer in the second experiment achieved
an averaged accuracy of 97.99% on the MNIST testing set.
After conversion, the spiking network averaged an accuracy
of 97.16% at the end of the simulation and also evened out
after 13 time steps at 97.02%, as shown in Fig. 4. The loss of
the vision transformer produces a higher conversion loss than
in the first experiment, resulting in 0.83% loss.

The conversion of the vision transformer shows a larger
loss in accuracy compared to the NLP transformer. As both
converted networks share similar architectures and contain a
comparable amount of spiking neurons, the source of error
presumably originates in the more complex preprocessing of
the input data in the vision transformer.

IV. DISCUSSION

We introduced a method for converting conventional trans-
former architectures to networks of spiking neurons. The
obtained architectures have only marginal conversion loss:
0.83% for the vision transformer and an even lower 0.11%
for the NLP transformer. This approach enables training of
conventional transformer networks with highly optimized gra-
dient descent based learning methods and generating SNNs
with nearly the same accuracy.

As previous research on conversion methods has mainly
focused on computer vision, the application of sequential
data has been sparse. However, with 86.1% accuracy on the
IMDB dataset, our approach for NLP transformers performs
far superior compared to 80.8% with a fully connected 5 layer

Fig. 4. Results of experiment 2: averaged accuracy of the converted spiking
vision transformer network over 50 time steps on the MNIST image classifi-
cation dataset

spiking network in previous work [26]. The 97.16% accuracy
on the MNIST dataset of our spiking vision transformer is
close to better optimized conversion approaches of spiking
CNNs, with a 2 layer architecture achieving 98.32% [27] and
a ResNet8 reaching 99.59% [13].

Despite these promising results, there remains consider-
able potential for further improvement. As the transformer
architectures had to be adapted prior to training, investigating
approaches for spiking max pooling or softmax could lead to
increased accuracy. As the first layers of the networks are not
communicating with spikes, the preprocessing of the input data
with spiking embedding layers could result in an end-to-end
spiking network. Consequently, the application of neuromor-
phic hardware would enable energy efficient computation.

Overall, our approach shows significant potential for pro-
cessing sequential data with SNNs. With further optimization,
this method will be able to perform with the same accuracy
while potentially leading to appreciable reductions in energy
consumption.
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