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Summary (German) 
 

Im Zuge dieser Arbeit soll der Einfluss von Schichtarbeit, unter Berücksichtigung des jeweiligen 
Chronoyp, erhoben werden. Die Ergebnisse dieser Forschung soll zum zur Verbesserung der 
Gesundheit und Arbeitsbedingungen von Schichtarbeitern dienen.  

Verschiedene Studien konnten bisher die negativen Auswirkungen von Schichtarbeit auf die 
Gesundheit zeigen. Obwohl einige dieser Studien zum Teil den Einfluss auf den Metabolismus und 
die beeinflussten Stoffwechselwege zeigen, wurde bisher nicht der individuelle Chronotyp in diesem 
Zusammenhang berücksichtigt. Zusätzlich war die verfügbare Information über den Einfluss von 
Lagerungsbedingungen aus das Metabolitprofil in Urin eher spärlich. 

Das übergeordnete Ziel dieser Arbeit war die Erforschung des Einflusses von Schichtarbeit auf den 
Metabolismus von Krankenschwestern unter Berücksichtigung des jeweiligen Chronotyp. Durch 
Auswertung der gesammelten Daten sollen die Grundlagen geschaffen werden, die  täglichen Abläufe  
sowie die Gesundheit von Schichtarbeitern weiter zu verbessern. Des weiteren wurde untersucht, in 
wie fern die Lagerungsdedingungen Einfluss auf die Metabolitenkonzentrationen der Proben hatte, 
welche während der Schichtarbeit gesammelt wurden. 

Um potentielle Einflüsse von Nachtarbeit aufzuzeigen, wurden Metabolit-Konzentrationen in Urin 
Proben aus der Tag- und Nachtschicht verglichen. Dazu wurden vor allem Messergebnisse von den 
ersten Proben nach dem Aufstehen verwendet. Separate Analysen für frühe-, mittlere- und späte 
Chronotypen wurden durchgeführt. Verschiedene Normalisierungsmethoden wurden verwendet um 
unterschiedliche Urinkonzentrationen zu berücksichtigen. Um die Einwirkung von 
Lagerungsbedingungen auf die Metabolitkonzentrationen zu untersuchen, wurden Urinproben von 
verschiedenen Spender vereinigt und verschiedenen Umwelteinflüssen wie Temperatur und Zeit 
ausgesetzt. Die darauf hin gemessenen Werte wurden mit Werten von umgehend eingefrorenen 
Proben verglichen. 

Bei einem Vergleich der Tag- und Nachtschicht konnten, abhängig vom jeweiligen Chronotyp 
signifikante Unterschiede bezüglich der Metabolitkonzentration festgestellt werden. Innerhalb der 
Gruppe der frühen Chronotypen waren am meisten Änderungen innerhalb der untersuchten 
Metabolitkonzentrationen zu beobachten. Dabei waren vor allem mittlere- und langkettige 
Acylcarnitine wärend der Nachtschicht betroffen. Dies legt eine beeinträchtigte Fettsäureoxidation 
durch Schlafmangel nahe. Die Konzentrationen von ungefähr 80% der Acylcarnitine, Fette und 
Aminosäuren waren unter den simulierten Lagerbedingungen stabil. 

Im Zuge dieser Forschungen konnten wir feststellen, dass der jeweilige Chronotyp in der Tat einen 
Einfluss darauf hat, wie der Stoffwechsel auf Schichtarbeit reagieren. Bestimmte Klassen an 
Stoffwechselprodukten sind hier mehr betroffen zu sein als andere. Dabei scheint die Lagerung in 
Kühltaschen wärend und nach der Probennahme nur einen untergeordneten Einfluss auf die 
Metabolitkonzentration gehabt zu haben.  

Ein potentielles Einsatzgebiet der gewonnenen Erkenntnisse könnte die Einbeziehung des Chronotyp 
bei der Planung der Arbeitsschichten sein. Des Weiteren können die identifizieren, durch Nachtarbeit 
am stärksten betroffenen Metabolite als Vorauswahl für tiefgreifendere Forschung verwendet werden. 
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Executive Summary 
 

In the course of this work, we assessed the impact of night shift work with respect to the individual 
chronotype. This research can then be utilized to improve the health and professional life of shift 
workers. 

Various studies showed the detrimental impact of shift work on health. Although some of these 
studies investigate the metabolic impact and affected pathways, little is known on the effects of shift 
work considering the individual chronotype. Information on targeted metabolite profiles in urine in 
this regard was sparse. Also, information on the impact of urine storage conditions on the metabolite 
profile when using the targeted technology, was lacking.  

The primary goal of this study was to assess the metabolic impact of night shift work of female nurses 
considering the individual chronotype. By analyzing our collected data, we aim to improve the daily 
life and health of shift workers. Furthermore, the impact of urine storage conditions on the metabolic 
profile was investigated to appraise the extend to which storage might have affected the collected 
urine samples during shift working periods. 

To uncover potential metabolic impacts of working at night, the urine metabolite profiles during night 
shift and day shift in shift working nurses were compared. Here, the measurements based on urine 
samples donated after waking up were used. The analysis was furthermore stratified by individual 
chronotype into early, intermediate and late chronotype. Different normalization approaches where 
employed to take urine concentration into account. To assess the influence of sample storage, pooled 
urine was kept under various urine storage conditions. Metabolite concentrations were then compared 
to samples immediately which were immediately frozen. 

Depending on the individual chronotype, differences in metabolite levels could be observed when 
comparing dayshift to night shift metabolite levels. Individuals in the early chronotype stratum were 
affected the most. Medium- and long -chain acylcarnitines in the early chronotypes appeared to be 
affected most during night shifts. This suggests an impaired fatty acid oxidation due to sleep 
restriction. About 80% of acylcarnitines, lipids and amino acids were stable at the examined storage 
conditions 

In the course of this study we found that the individual chronotype does influence the way the 
metabolism reacts on shift work. Certain classes of metabolites appear to be more affected then 
others. Urine storage on cool packs appeared to have in our case a negligible influence on the above 
identified metabolites.  

A potential application method could be to consider the personal chronotype when planning shift 
schedules. The identified metabolites could be furthermore used as a preselection for more in depth 
research.  
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Preface 

 

Sufficient sleep is crucial for human wellbeing (1). During sleep, the body does not only conserve 
energy due to lower oxygen consumption but also restores biosynthetic processes and allows repair 
and repletion of various cellular components, tissues and organs including the brain (2–4).  

Continuous sleep deprivation and impaired sleep quality, frequent side effects of night shift work and 
rotating shifts, are therefore detrimental for human health and can lead to increased risk of various 
metabolic diseases including diabetes (5,6). An expert panel of the International Agency for Research 
on Cancer (IARC) concluded that circadian disruption in female shift workers and flight attendants 
could also be carcinogenic (7).  

Reasons for the higher occurrence of adverse health issues in shift workers have not yet been 
elucidated. Impact of the chronotype, i.e. a person’ s natural inclination to be most alert at a certain 
time of day, and preferred sleep times on metabolism and ultimately health itself is also unclear. 
Research in female shift workers revealed that early chronotypes, i.e. persons with morning 
preference, working in night shifts have a significantly higher risk of breast cancer than late 
chronotypes (8). Two studies assessed the effects of sleep deprivation on human blood metabolome 
(5,9). While they have advanced the metabolic understanding of night shift work, the strictly regulated 
laboratory environments of these studies might have not necessarily reflected the daily work-life 
routine. This urges for a research in real life settings using easy-to-collect biological samples such as 
urine that will take into account personal lifestyle, eating habits and preferred timings of sleep of the 
study participants (1). 

Large-scale of targeted metabolite profiling of human blood samples has been applied for the 
identification of biomarkers that are characteristic of a disease or lifestyle (10–13). However, further 
research is required to identify biomarkers and respective metabolic pathways affected by shift work 
with respect to individual chronotype, especially using urine samples in a real-life study. This would 
provide the means for early health prevention like the application of personalized work schedules 
according to the individual chronotype and lessen the negative influence of shift work on health (14).  

The first aspect of this work was to assess the impact of storage conditions (e.g. cool pack for up to 
24 hours) on the stability and quality of urine metabolite concentration profile (15). The intention was 
to evaluate to what extend storage of urine sample might influence measurements of metabolite levels. 
In the second study, all 3640 spontaneous urine samples collected from 100 nurses were kept for 
maximal 24 hours on cool packs and immediately stored afterwards at -80°C (16). Subsequent 
measurements were undertaken to assess metabolite profiles in the donated urine. The insights from 
the first study helped to gauge to what extend the observed metabolite changes during night shift 
might be due to potential storage influences.  

With this work we aim to provide metabolic impacts of night shift work with respect to individual 
chronotype. Insights presented here will help to improve the health and daily life of shift workers. 
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1 Introductory Summary 
 

1.1 Shift work 
 

Even short periods of night shift reduce sleep quality, which in the long run can give rise to severe 
health issues (6,17,18). Since the introduction of artificial lighting in the daily life, work around the 
clock has become a common phenomenon. In 2016, 17.4% of the employees in Germany were shift 
workers, meaning they worked outside of the “normal” working hours from 8 am to 6 pm on 
weekdays. This included 15.6% of female and 19.1% of male working population (19). In Europe, 
this corresponded to 18.6% of employees, of which 17.4% were females and 19.8% males (19).  

Shift work is especially prominent in health care, where patients are dependent on around-the-clock 
intensive care provided by health professionals (20). Of the about 5.4 million people working in 
health care and social services sectors in 2018, 4.2 million were women (21). In comparison to day 
shift nurses, night shift nurses have more difficulties to adapt to their respective shift schedules (22). 
Additionally, younger persons tend to be more frequently enrolled in shift work and the tolerance 
towards shift work further decreases with age (16,23). Working during physiologically unusual hours 
can lead to a number of detrimental side effects including abnormal eating pattern and increased 
exposure to artificial light that subsequently affects circadian rhythm (24,25).  

 

1.2 Circadian Rhythmicity  
 

1.2.1 Circadian regulation  
 

Regular exposure to environmental light is crucial for the synchronization of sleep-wake cycles, also 
known as circadian rhythmicity (26,27). The master circadian clock located in the suprachiasmatic 
nuclei (SCN) of the hypothalamus plays the central role in the regulation of daily rhythms of sleep-
wake cycles (28–30). The SCN consists of neurons that generate cell-autonomous circadian 
oscillations in gene expression and neural activity (14). Their activity is synchronized by 
environmental factors such as light and dark cycles (31). Light signals are transmitted to the SCN and 
subsequently converted to chemical signals which in turn impact the phase of the clock gene 
expression in peripheral cells (31). Temperature, sleep and wake timing, as well as the energy 
metabolism are regulated by the SCN (14,30,32).  

The first clock gene developed in cyanobacteria, approximately four billion years ago (33). It served 
to protect the organism from dangerous ultra violet rays but also allow their survival through 
photosynthesis (34). The elucidation of the molecular mechanisms controlling the circadian rhythm 
earned J. Hall, M. Rosbash and M. Young the Nobel Prize in Physiology or Medicine in 2017. The 
expression of clock genes follows a self-sustained, near 24 hours-long rhythm that is synchronized by 
internal and external time cues. This molecular clock acts through complex translational and 
transcriptional feedback loops comprising positive and negative elements (35).  
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One of the specific transcriptional feedback loops includes the gene encoding nicotinamide 
phosphoribosyl transferase (NAMPT) (16). Its circadian expression is regulated by the transcription 
factor complex Circadian Locomoter Output Cycles Kaput/Brain and Muscle Aryl hydrocarbon 
receptor nuclear translocator-Like 1 (CLOCK/BMAL1) (36,37). NAMPT is an integral part of the 
fatty acid oxidation and a rate limiting step in the Nicotinamide adenine dinucleotide (NAD+) salvage 
pathway (38). As a critical coenzyme of hundreds of metabolic enzymes, the intracellular NAD pool 
provides hydrogen atoms for oxidation-reduction reactions, production and maintenance of energy 
stores, and protects from metabolic diseases and aging (37). Another circadian enzyme involved in 
fatty acid metabolism is the bifunctional enzyme Enoyl-CoA, Hydratase/3-Hydroxyacyl CoA 
Dehydrogenase (EHHADH) that metabolizes medium chain fatty acids that are transported to 
mitochondria through carrier protein carnitines (39). The expression of EHHADH in mice is regulated 
by the circadian clock gene Bmal1 (40), suggesting that lipid degradation could be altered when the 
exposure to natural light is not followed.  

 

1.2.2 Chronotype 
 

The circadian regulation occurs on an intrinsic, molecular level. Although factors like the personal 
preference concerning sleep and wake cycles take place on a more individual level, the potential 
connection between molecular and personal conditions needs to be considered. The individual 
preference for the sleep-wake cycles is defined as chronotype. It is regulated by the circadian clock, a 
temporal program inherent to most organisms , that takes place both on the level of gene expression 
and the behavioral level (41,42). Circadian clock is not necessarily restricted to stimulation from 
external zeitgebers (daily environmental signals) such as light exposure and food but also the genetic 
variations in the clock genes (42). All these factors affect the personal classification into a certain 
chronotype category, which may range from extreme early to extreme late chronotype (41). The 
personal chronotype influences to which the extent shift work could affect the health and potential 
detrimental health outcomes of an individual (8). 

To assess the chronotype of shift workers, an adaptation of the Munich Chronotype Questionnaire 
(MCTQ), the Munich chronotype questionnaire for shift-workers (MCTQShift), is employed (43). 
Similar to MCTQ, the chronotype is assessed from sleep behaviour on the local time of mid-sleep on 
free days and further corrected for sleep debt accumulated over the work week (MSFSC) to take into 
account a potential sleep depth which accumulates during working days (43,44). In contrast to the 
MCTQ, which assumes standard working hours, the MCTQShift considers each shift period (6). The 
mid-sleep time point is defined as the time of the day when the half of the sleep phase has passed (45). 
For example, a person going to bed at 11 pm and getting up at 7 am would have a mid-sleep time 
point of 3 am. In our study, the people who cared for small children or used an alarm clock on free 
days were not considered for participation in order to minimize such external influences on the 
chronotype (43). 
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1.2.3 Misalignment 
 

The time of getting up or going to work does not necessarily match work schedules. With the 
intervention of electric light and sleeping in rooms with light, the “typical” working hours have 
changed and the sleeping habits need to be adapted (46). Modern working hours have shifted 
considerably as people became even less constrained by the sun light. The possibility of 
intercontinental flights and introduction of around-the-clock work have further drifted the biological 
and social preferences, increased social jet lag (i.e., going to bed and waking up later on weekends) 
and resulted in a misalignment with healthy circadian clock (41).  

Chronodisruption is defined as the desynchronization of the 24-h rhythms resulting in adverse health 
effects (47). Exogenous and endogenous exposures that are defined as chronodisruptors can disrupt 
the timing and order, e.g. the organization of physiologic hierarchies (47). Furthermore, the various 
chronotypes react differently to misalignments and, for example, individuals with earlier chronotypes 
are more prone to social jet lag (6). While late chronotypes and younger individuals tend to cope 
better with night shift work, the adaptation and alertness at night shifts decreases in individuals with 
morning preference and increasing age (23,48,49).  

 

1.2.4 Related health risks 
 

Various aspects of the metabolic syndrome such as diabetes mellitus and cardiovascular diseases have 
been linked to shift work (50,51). Furthermore, increased risk for breast cancer and obesity have been 
linked to circadian disruption (52,53).  

In addition to these detrimental health outcomes, another obvious consequence of shift work is 
decreased sleep quality and duration (54). Van den Berg et al and Davies et al found that restricted 
sleep changes the metabolic profile of acylcarnitines (55,56). Medium- and long-chain saturated 
acylcarnitines were found to be significantly different when comparing normal sleep to short sleep 
time periods pointing to possible changes in mitochondrial β–oxidation of fatty acids during sleep 
deprivation (55). Elevated levels of acylcarnitines in blood were suggested to mediate the effect of 
short sleep on increased risk of insulin resistance (57,58). 

 

1.3 Urine samples  
 

One of the disadvantages of blood samples in metabolic research is the invasive nature of sample 
procurement. Urine is easy to obtain, does not necessitate any invasive measures and no special 
training for retrieval. Various studies employed urine to assess its metabolic changes related to disease 
status or lifestyle factors (59–61). Urine concentration is, however, highly dependent on factors like 
water uptake and this can subsequently affect the metabolite concentrations (62). Moreover, the 
storage conditions of urine influence its metabolite concentrations (63).  
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1.3.1 Stability of metabolite concentration profiles of urine samples  
 

In urine, the most prominent compounds are water, uric acid, salts and creatinine and may also 
include bacteria and enzymes (64–66). The metabolic profile of urine is affected by the storage 
conditions such as temperature or freeze-thaw cycles due to temperature-dependent enzymatic 
reactions, cell degradation and bacterial metabolism (15,67,68). Previous targeted metabolomics 
studies in human serum and plasma also showed that metabolite profile is affected by storage 
conditions. These studies simulated various storage conditions including freeze-thaw cycles, storage 
on dry ice, wet ice, cool packs or room temperature for 3h, 6h, 12h, 24h or 36h (69,70).  

The influence of storage conditions on the urinary metabolite profile has been much less investigated 
and motivated the work presented in this thesis (15). In laboratory settings, urine handling includes 
centrifugation and filtration to remove larger cell particles and bacteria, reduction or inhibition of 
enzymatic processes, and is followed by the storage at temperatures as low as possible (67,71). While 
these standard operating procedures (SOPs) are common for laboratories, the same procedures are 
difficult for real life settings since the participants cannot or are not able to adhere to SOPs (16).  

 

1.3.2 Normalization of urine metabolite profiles 
 

A direct interpretation of measured urine metabolite concentrations by a statistical model is not 
possible since various factors such as urine concentration and the time of donation have to be also 
considered for a meaningful interpretation. In our study, the total volume of the donated urine samples 
was not assessed and other approaches were required to assess the urine concentration. Normalization 
of the metabolite concentration in urine is a common approach to address some of these factors.  

One of the most common and easy normalization methods is to relate the metabolite values to 
creatinine concentration. Here, the measured metabolite concentration is being set relative to the 
respective creatinine concentration in the same sample (72). Another way to normalize urine 
metabolite values is to take into account the osmolality of samples, i.e to consider the osmotically 
active solutes in the analyzed fluid and divide the metabolite concentrations by the respective 
value (60). A third method is the regression based normalization (RBN) and was used in the article 2. 
In this method, the dilution variation is estimated through a nonlinear regression considering each 
metabolite’ s excretion kinetic separately (16,73). 

 

1.4 Metabolomics 
 

1.4.1 Application 
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A thorough assessment of urinary metabolite concentrations was an important part of two studies 
presented here. Metabolite degradation was considered when interpreting the metabolic impact of 
shift work (article 2) and urine storage conditions (article 1). 

The assessment of metabolite concentrations using targeted metabolite analysis in biological tissues 
like blood and urine is a common technique. The aim was to assess the impact of lifestyle factors like 
smoking, alcohol consumption or health statuses like pre-diabetes on metabolite profiles and related 
pathways (10–12). Furthermore, potential metabolic biomarkers to early identify risk groups were 
investigated (10–12). In the present studies, the targeted technology was used to enable researchers to 
glean the underlying mechanisms that might cause metabolic changes in urine samples affected by 
night shift work or storage conditions (15,16). 

 

1.4.2 Technology 
 

Metabolomics is a downstream -omics approach to its more known superordinated terms genomics, 
transcriptomics and proteomics (74). In contrast to these approaches that analyze genome-wide 
changes in DNA code, transcript and protein levels, metabolomics aims to assess the metabolites from 
the biological system under study (75). 

Three widely utilized approaches in metabolomics are: 1. Metabolite profiling, which aims to measure 
metabolites from a predefined class or pathway (76); 2. Metabolic fingerprinting, which is utilized to 
assess general differences between two biological samples or provide some general information about 
metabolic regulation (77,78); 3. Metabolite target analysis, the measurement of a predefined group of 
biochemically annotated metabolites (79,80). 

In article 1 and 2, metabolite concentrations were measured with the AbsoluteIDQTM p150 Kit 
(BIOCRATES Life Sciences AG, Innsbruck, Austria) using FIA-ESI-MS/MS (flow injection 
analysis-electrospray ionisation-tandem mass spectrometry) (15,16). The assay focuses on the 
assessment of acylcarnitines, amino acids, glycerophospholipids, sphingolipids and hexose (81). To 
account for technical influences, metabolites with a CV higher than 25% or with more than 50% of 
measurements below the limit of detection, where excluded (15). 

 

1.5 Study design 
 

Since the considerable amount of shift workers are female healthcare providers, the aim of the study 
population recruitment focused on female clinic personnel of different age that were doing either no 
shift work (control group) or both day- and night shifts.  

To assess the potential influence of storage (room temperature, cool packs, fridge) on the urine 
metabolite profile, a study was conducted as described in article 1 (15). Here, the study population 
consisted of 6 female volunteers, who donated spontaneous urine after a night of fasting. Urine 
samples were pooled (account for interpersonal differences / no normalization necessary) and stored 
for 0h, 2h, 8h, and 24h at room temperature (~20°C), 9°C (cool packs), 4°C (fridge) and -20°C 
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(freezer) respectively and then deep frozen at -80°C. Additionally, up to three freeze (-80°C / 24h) 
and thaw (room temperature / 2h) cycles were conducted. Each urine sample on the various storage 
conditions / freeze and thaw cycles was measured four times to account for analytical variation. The 
same targeted technology as above was used to assess urine metabolite profiles (15). 

As described in article 2, 100 participants worked either in day shift (25 / day shift block) or both day 
and night shift (75 / night shift block) with a four week pause in between shifts to account for the 
menstrual cycle. Throughout that time (up to three consecutive days for day shift block / four 
consecutive days for night shift block / both at work or at home), participants were asked to collect 
spontaneous urine and store it in the fridge (~4°C) if possible or cool packs (~9°C). Urine samples 
were picked up by the study nurse after shift end, but no later than 24 hours after donation and stored 
at -80°C after processing (aliquoting). Metabolite profiles in urine were measured using 
AbsoluteIDQTM p150 Kit (as mentioned above). Additionally, information on sleep timing and diet 
was collected. Further assessed information included previous or concomitant diseases, medication 
before and during assessment periods, light quality during shifts and off time and hormone levels at 
set intervals. Three different types of normalization (creatinine-, osmolality- and regression-based 
normalization) were performed. Based on the answers of the MCTQ, the personal chronotype was 
assessed and used for grouping the participants in to early, intermediate and late chronotypes (16). 

 

1.6 Goal of the dissertation 
 

The primary goal of the underlying studies was to find potential biomarkers for a disrupted circadian 
rhythm and assess the impact of different chronotypes, both of which could contribute to improving 
nurse health. We compared the differences in the metabolic profile during nightshift and dayshift in 
shift working female nurses with different chronotype classes. Identified changes in the metabolite 
concentration might hint to specific metabolic pathways which are more affected by nightshift work 
depending on the chronotype.  

The second part of this thesis assessed the influence of different storage conditions on metabolic 
profiles in urine. The intention was to consider any potential changes in urine samples collected 
during the field phase that could be related to different storage conditions. To the best of our 
knowledge, this was the first study that investigated the impact of storage on urine with targeted 
metabolomics. Previous studies used non-targeted metabolomics in urine and targeted metabolomics 
in blood samples (63,69,70,82).  

The presented results might be implemented in the day to day working life of shift working personnel. 
A future implementation of our insights may include potential preventive measures like chronotype-
adapted shift patterns. Furthermore, the identified metabolites could be further investigated in 
subsequent research projects as biomarkers for chronodisruption caused by shift work.  



17 

 

 

1.7 Content and individual contribution 
 

The contents and presented results of article 1 and 2 are the integral parts of this dissertation. 

In article 1, we assessed the impact of various storage conditions on urinary metabolite profile. 
Pooled urine samples were stored at several temperatures (-80°C, -20°C, 4°C, ~9°C, room 
temperature), different times (0h, 2h, 8h, 24h) and exposed to freeze-thaw cycles. As previously, the 
measurements were performed using targeted mass spectrometry. Our results showed that urine 
samples stored at -20°C and 4°C during 24 hours were equally stable as samples that were frozen at -
80°C immediately after collection. A concentration reduction of up to 40% was observed only for 
arginine, valine and leucine/isoleucine that were stored at 9°C for 24 hours. Moreover, the levels of 
methionine and hexoses decreased by up to 60% when stored at room temperature for 8h. Overall, 
these results showed that almost 80% of acylcarnitines, lipids and amino acids are stable at all 
investigated temperatures and time intervals. Storage conditions thus appear to play only a minor 
influence on the stability of metabolites and the use of cool packs or even room temperature during 
24 hours is satisfactory for downstream analyses (15).  

For the project described in article 1, the PhD candidate  

• Co-designed the study (e.g. deciding on the appropriate urine storage conditions and applying 
to the ethics committee for study approval); 

• Co-coordinated the urine sample logistics and metabolomics measurements and conducted 
plate design, sample preparation and randomization, pooling of urine / keeping the planned 
storage conditions, recruiting suitable volunteers; 

• Performed the osmolality measurement (e.g. selection of samples, acquiring of measurement 
devices and actual measurements);  

• Conducted all statistical analyses including quality controls;  

• Conducted pathway analysis, wrote the first draft of the publication;  

• Updated and revised the article 1;  

• Presented some of these results at numerous national meetings with collaboration partners 
(“Forschungsbegleitkreis” 2013/2015/2017) and international conference (“Grainau 
Workshop of Genetic Epidemiology” 2017); 
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•  

In article 2, we assessed the impact of night shift work on the metabolite profile in 68 female nurses 
that were classified into an early, intermediate or late chronotype group. First morning urine 
samples were collected by study participants during up to four consecutive days and analyzed by 
targeted mass spectrometry. To account for water intake that affects urinary metabolite 
concentration, metabolite values were normalized using three normalization approaches (creatinine-
, osmolality- and regression-based normalization). Using linear mixed effect models we identified 31 
metabolites which values were significantly altered between day shift and night shift workers. After 
chronotype-related stratification and creatinine-based normalization, 11 metabolites were found 
significantly altered in early chronotypes, none in intermediate chronotypes, and four in late 
chronotypes. The medium- and long-chain acylcarnitines represented the most commonly affected 
metabolites in the chronotype-stratified analysis and their levels were increased in early 
chronotypes working night shifts. This suggested an impaired fatty acid oxidation (FAO) in 
mitochondria possibly caused by sleep restriction (55). Overall, this study showed a clear effect of 
night shift work on urinary acylcarnitines and branched chain amino acids (BCAAs) and suggested 
that the nurses with early chronotypes were the most affected group (16). 

 

For the project described in article 2, the author  

• Co-designed the study (e.g. deciding on the appropriate urine storage conditions and applying 
to the ethics committee for study approval); 

• Took part in all stages of project planning, execution, analysis and presentation; 

• Co-coordinated the urine sample logistics and metabolomics measurement, and conducted 
plate design, sample preparation and randomization, plausibility checks (visual and statistical 
/ enabling short notice re-measurement) as well as data preprocessing (exclusion of 
measurements based on technical parameters);  

• Performed all statistical analyses and all sample handling (reservation of measurement slots 
and randomization of samples; quality control including plausibility checks; data analysis, 
interpretation); 

• Wrote first draft of manuscript, updated and revised the paper of article 2; 

• Presented at international conferences (“Grainau Workshop of Genetic Epidemiology” 2016). 

Furthermore, the PhD candidate contributed to extend the DGUV supported project and obtained third 
party funding that were used for part of the sample measurements and personnel for one year for the 
main project (article 2) and supervised several master and internship students. 
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2 Discussion 
 

The work presented here has significantly contributed to the field of occupational health. Our results 
showed that early chronotypes working night shifts are much more sensitive to alterations in the 
urinary metabolome than other chronotype classes. Moreover, these alterations reflect an impaired 
catabolism of fatty acids and mitochondrial energy production, which can lead to adiposity and other 
metabolic diseases including diabetes. Our work has also contributed to the metabolomics field as we 
found that urine metabolites (majority of amino acids, various phospho- and sphingolipids) are stable 
under various storage conditions. It showed that the urine is a suitable matrix for field-based study 
designs in non-laboratory settings. 

Shift work, i.e being at work at times of the day that diverge from personal sleep-wake preference, 
often leads to sleep restriction. Early chronotypes, who would normally already be asleep for hours, 
need to stay alert to fulfill their duties at night and suffer the most among all chronotypes of sleep 
deprivation. It has been shown in 2016 that sleep restriction affects metabolism, namely FAO that 
may lead to insulin resistance (55). We also found that the participants of our study, especially early 
chronotypes, showed first metabolic signs of impaired FAO in their body due to increased levels of 
excreted acylcarnitines (16). We could not statistically assess the potential link with early stage of 
(pre-) diabetes in our study participants due to limited sample size. In addition to altered urinary 
metabolite levels that are strikingly detectable already after one to four days of night shift work, the 
changed sleeping pattern, unusual timing of meals and increased exposure to artificial light will 
intensify the impact of night shift work on the individual health status (54,83,84).  

Of all human biofluids, urine is the most easy to collect and would be thus a preferred choice for real 
life-based study designs where sample collection and storage cannot be performed using the highly 
regulated environment of a laboratory setting. Filtering of urine samples, subsequent centrifugation 
and immediate cooling at -80°C, a standard operating procedure in laboratories, could not be 
performed by study participants, i.e. hospital nurses on active duty. To minimize the degradation of 
metabolites by urinary microorganisms or enzymes, the time between donation and storage was 
strictly specified. Donated samples had to be stored on cool packs (~9°C) by the participants, were 
collected after the end of the shift by the study nurse and further stored at -80°C. Although the 
participants were thoroughly briefed about the importance of consistent storage conditions, there was 
a possibility that some urine samples were stored for a maximum of 24 hours at room temperature. To 
consider the impact of storage on urinary metabolite profile assessed by targeted metabolomics, which 
had not been yet investigated, we have therefore conducted a separate study (see article 1).  

Out of the analyzed and discussed metabolites, we found that the concentration of Serine was 
significantly affected in both studies. Serine at 20°C  showed significantly decreased concentrations 
when stored for 24 hours compared to those which were immediately frozen (15). As could be seen 
from article 2, among others the amino acid Serine showed increased concentrations during night shift 
when looking at the full model for creatinine-normalized values (16). The remaining metabolites were 
relatively stable under various storage conditions. A potential consequence of an inconsistent storage 
of the urine samples collected for article 2 would be decreased concentration of the above-mentioned 
amino acid. Yet, as night shift associated with increased metabolite concentration, it can be assumed 
that the eventual storage bias was minor.  
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We employed several approaches to increase the quality of our data analysis and interpretation. Due 
to the relatively low number of metabolites detected in urine (compared to blood), certain common 
statistical approaches like a cosine analysis could however not be employed. Moreover, the use of 
three normalization approaches (a still non-resolved issue in urine metabolomics) led sometimes to 
inconsistent results. In article 2, we employed several normalization approaches since this had been 
suggested to obtain meaningful differences in the analyzed metabolite profiles (62,85). Yet, different 
normalization strategies affected the metabolite levels considerably and this could also be observed in 
article 2 (62). There has been no consensus on the best normalization approach as each offers certain 
advantages and disadvantages. The research question and technical circumstances thus dictate the 
choice of the optimal normalization approach. As a measure that is independent of age or muscle 
mass, osmolality is dependent of potassium and urea levels and thus requires additional measurements 
that might not be feasible (62,86). Creatinine normalization is a common approach and makes the 
comparison among reported and published studies easier. Although creatinine measurements are 
relatively stable, they can be dependent on time of the day, menstrual cycle, muscle mass and 
age (87–89). The RBN aims to consider each metabolite’ s excretion separately. As a rather new and 
rarely used method, it does thus not allow the inter-study comparability. Thus, we decided to interpret 
and compare our results with published studies based on creatinine-normalization.  

As mentioned in article 2, we restricted our analysis to morning urine samples only. This conservative 
approach was taken to minimize several influencing factors. First, the real life setting allowed the 
nurses to donate spontaneous urine. Depending on the time since the last donation, the metabolite 
concentrations in the urine would represent a mean level of metabolite and furthermore activity 
among metabolite pathways which sums up in the urine. Second, the nurses ate various diets before 
and after urine donations which could influence the metabolite levels in urine. By restricting to 
morning urine samples, we assured a better interpersonal comparability of metabolite concentrations. 
Furthermore, the probability that nurses had eaten before the first urine donation after waking up was 
considered minor. A sensitivity analysis based on the measurements of all urine samples was 
nevertheless conducted and presented to our collaboration partners (“Forschungsbegleitkreis”). It also 
showed that medium chain acylcarnitines were the most affected metabolite group in early 
chronotypes working night shifts and in agreement with the results presented in article 2.  

Cosine analysis is a common statistical approach for the analysis of changing metabolite 
concentrations over the course of several hours (56,61). This method assumes a curve-like changes in 
the metabolite values throughout the day (e.g. cosine wave / 24h) (61). The potential phase shift and 
amplitude of minimum and maximum metabolite levels per day is then compared between 
groups (90). Although widely used, this method has several drawbacks. First, our sensitivity analyses 
showed that when plotting all consecutive metabolite values per person, only a very few metabolites 
showed a visible cosine rhythm. Moreover, it often did not overlap between individuals or 
metabolites. Furthermore, implementing mean values would lead to loss of information. Finally, when 
calculating the phase shift, interpersonal differences could represent a substantial amount of the 
potential changes (91). For this reason we used linear models in our study.  

Since the publication of article 1 and 2, more research has been added to the research field of 
metabolomics and shift work. Homan et al utilized targeted metabolomics to assess the impact of 
sleep deprivation on certain metabolites and related (92). Urinary metabolite levels of melatonine 
were related to both rotating shift and effects of shift work on the melatonine levels (93). 
Furthermore, Kervezee et al could identify several metabolites which were affected in their 
concentrations during simulated night shifts (90). Gordon-Dseagu et al found sleep to be associated 
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with metabolites related to obesity (94,95). Interestingly, Dyar et al stressed on the impact of food 
consumption as a factor of circadian entrainment. They found that in mice on half fat diet, the natural 
oscillation of NAD+ was degraded, resulting in lower levels (96). 

Although various aspects like the sleep related effect on the metabolic profile or the modulation effect 
of shift work on disease risks are already known through our research, we added the aspect of the 
individual chronotype when looking at metabolic changes affected by shift work (8,55). Further steps 
towards the thorough understanding of the “metabolic link” between these two aspects were done 
through the presented research. First deductions like the consideration of the individual chronotype 
can immediately be implemented in the planning of shift schedules. One of the important aspects of 
this work is to provide the groundwork for paving the way to the long term development of potential 
diagnostic biomarkers. The identified metabolites provide a first selection of metabolites to 
investigate in more detail, potentially in animal models or via research in a stricter controlled 
environment.  

Still, there are many questions waiting to be answered. To which extent is a broader population in 
other occupations, including men, affected by night shift or even by working prolonged hours in 
winter? Can the unfavorable metabolite profile be minimized by customized artificial light with 
wavelengths that are less disruptive for melatonin production? Which other metabolite classes and 
biochemical pathways are affected by night shift work? The availability and integration of “big data”, 
also known as omics data, will play a crucial role in the future of circadian occupational medicine. It 
is my hope that we will soon witness a world where the employers will offer a customized chronotype 
screening, personalized workday schedule and flexibility as well as regular multi-omic follow up of 
night shift workers to minimize the impact on their health and increase their life quality and 
satisfaction.  
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Abstract

Introduction Few studies have investigated the influence

of storage conditions on urine samples and none of them

used targeted mass spectrometry (MS).

Objectives We investigated the stability of metabolite

profiles in urine samples under different storage conditions

using targeted metabolomics.

Methods Pooled, fasting urine samples were collected and

stored at -80 "C (biobank standard), -20 "C (freezer),

4 "C (fridge), *9 "C (cool pack), and *20 "C (room

temperature) for 0, 2, 8 and 24 h. Metabolite concentra-

tions were quantified with MS using the AbsoluteIDQTM

p150 assay. We used the Welch-Satterthwaite-test to

compare the concentrations of each metabolite. Mixed

effects linear regression was used to assess the influence of

the interaction of storage time and temperature.

Results The concentrations of 63 investigated metabolites

were stable at -20 and 4 "C for up to 24 h when compared

to samples immediately stored at -80 "C. When stored at

*9 "C for 24 h, few amino acids (Arg, Val and Leu/Ile)

significantly decreased by 40% in concentration

(P\ 7.9E-04); for an additional three metabolites (Ser,

Met, Hexose H1) when stored at *20 "C reduced up to

60% in concentrations. The concentrations of four more

metabolites (Glu, Phe, Pro, and Thr) were found to be

significantly influenced when considering the interaction

between exposure time and temperature.

Conclusion Our findings indicate that 78% of quantified

metabolites were stable for all examined storage condi-

tions. Particularly, some amino acid concentrations were

sensitive to changes after prolonged storage at room tem-

perature. Shipping or storing urine samples on cool packs

or at room temperature for more than 8 h and multiple

numbers of freeze and thaw cycles should be avoided.

Keywords Urine ! Storage conditions ! Targeted

metabolomics ! Pre-analytics ! Amino acids
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1 Introduction

The field of metabolomics has garnered much attention in

recent years (Beger et al. 2016; Bouatra et al. 2013).

Potential biomarkers for diseases such as type 2 diabetes and

metabolite signatures ofmedication use and lifestyle choices

(e.g. smoking) have been identified (Adam et al. 2016;

Brandmaier et al. 2015; Wang-Sattler et al. 2012; Xu et al.

2013, 2015). Identified metabolites provide insight into key

physiological mechanisms and underlying pathways.

Extensive research on the influence of storage condi-

tions on human plasma and serum metabolite profiles has

been conducted (Breier et al. 2014; Anton et al. 2015). A

recent study found that serum concentration of 24 out of

127 quantified metabolites significantly changed at room

temperature when compared to the values samples stored at

-80 "C (Anton et al. 2015). Regarding plasma, the con-

centration of 44 out of 159 metabolites changed signifi-

cantly when kept for 24 h at room temperature (Breier

et al. 2014).

With respect to its noninvasiveness, metabolomics of

urine samples has become a major focus. The collection of

such samples can be conducted without supervision of

medical experts (Gao 2013). On the other hand, this means

that the samples are not necessarily taken under a con-

trolled, well-regulated clinical environment that enhances

measurement reproducibility. Therefore, it is pivotal to

determine the effects of pre-analytical sample handling,

including storage conditions. Previous research on the pre-

analytical effects on human urine samples was regarding

non-targeted mass spectrometry (MS) or nuclear magnetic

resonance (NMR) technology (Barton et al. 2008; Bernini

et al. 2011; Budde et al. 2016; Emwas et al. 2015; Gika

et al. 2008; Lauridsen et al. 2007; Roux et al. 2015).

In our study, we use a targeted MS approach to inves-

tigate the effects of storage conditions, as well as the

interaction of storage time and temperature, on urine

metabolite concentrations. The urine samples were stored

for 2, 8, and 24 h at temperatures ranging from -80

to *20 "C and exposed to up to three freeze–thaw cycles.

2 Materials and methods

2.1 Urine sample preparation under different

storage conditions

Urine was collected from six healthy female volunteers

between 8:00 and 8:45 am after overnight fasting in sterile

disposable containers. To lessen inter-individual differ-

ences in urine metabolic profiles, equal parts of urine of

each participant were pooled in a sterile 200 ml

Erlenmeyer flask and 65 times 1 ml of urine was aliquoted

to separate 1.5 ml Eppendorf tubes. Five of these aliquots

were immediately frozen at -80 "C and used as baseline

reference.

With respect to temperature, we exposed the samples to:

(1) room temperature (*20 "C); (2) cool packs (*9 "C);

(3) fridge (4 "C) and; (4) freezer (-20 "C). Additionally,

with respect to the duration, we stored the samples for 2, 8

and 24 h. This resulted in 12 different conditions. As we

prepared four biological replicates, a total of 48 further

aliquots were therefore used (Fig. 1).

Additionally, the influence of freezing and thawing

urine samples was simulated on the remaining 12 aliquots.

Urine was frozen for 24 h at -80 "C and thawed for 2 h

at *20 "C. This cycle was repeated three times (Fig. 1).

2.2 Targeted metabolite quantification

Each sample was measured with the AbsoluteIDQTM p150

Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria)

and FIA-ESI-MS/MS (flow injection-electrospray ionisa-

tion-triple quadrupol mass spectrometry). The assay pro-

cedures of the AbsoluteIDQTM p150 Kit have been

described in full detail previously (Römisch-Margl et al.

2012). Samples were prepared by a Hamilton Microlab

STARTM robot (Hamilton Bonaduz AG, Bonaduz,

Switzerland) and a Ultravap nitrogen evaporator (Porvair

Sciences, Leatherhead, UK), beside standard laboratory

equipment. Mass spectrometric (MS) analyses were done

on an API 4000 LC–MS/MS System (Sciex Deutschland

GmbH, Darmstadt, Germany) equipped with a 1200 Series

HPLC (Agilent Technologies Deutschland GmbH,

Böblingen, Germany) and a HTC PAL auto sampler (CTC

Analytics, Zwingen, Switzerland) controlled by the soft-

ware Analyst 1.6.1. Data evaluation for quantification of

metabolite concentrations and quality assessment was

performed with the MetIDQTM software package, which is

an integral part of the AbsoluteIDQTM Kit. Metabolite

concentrations [lM] were calculated referring to internal

standards.

Of 10 lL urine, 162 metabolites were quantified. The

baseline reference was measured five times to calculate the

coefficients of variance (CV, Table 1). In the course of

quality control, we excluded metabolites with a CV higher

than 25%. Furthermore, to assure detectability we excluded

metabolites with more than 50% of measured values below

the limit of detection (three times the median value of

water based zero-samples). In total 63 metabolites passed

the quality control: free carnitine, 34 acylcarnitines (Cx:y),

13 proteinogenic amino acids, creatinine, hexoses (sum of

hexoses), 8 glycerophospholipids (7 phosphatidylcholines

(PC) and one lysoPC), and 5 sphingolipids (SM). The

abbreviations Cx:y depicts the total number of carbons and
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double bonds of all chains, respectively (for more details

see the list of metabolites in Table S1).

2.3 Statistical analysis

To account for technical variation due to measurements,

each of the 12 replicates and the three samples that

underwent freeze and thaw cycles was measured four

times. The resulting values were used to calculate the CV

under each condition (Table 1).

All metabolite concentrations were log-transformed and

standardized (mean = 0 and standard deviation = 1). For

each metabolite under each condition, we performed pair-

wise comparisons by applying a Welch-Satterthwaite

Freeze 24h

20°C
9°C4°C 2h-20°C 8h

24h-80°C-80°C

Baseline

0h

-80°C

20°C
Thaw 2h

3 x 

Fig. 1 Overview of the study design. Urine from six female
volunteers was pooled and aliquoted before being stored at -80,
-20, 4, 9, and 20 "C for 0, 2, 8, and 24 h. For freeze and thaw cycles,

samples were frozen for 24 h and thawed for 2 h per cycle. Each
sample was measured four times

Table 1 Significant metabolites identified by the pairwise comparison of baseline concentrations against 24 h at *20 and *9 "C

Metabolite Baseline (0 h) 2 h 8 h 24 h

Mean (lM) Change [%) P value CV (%) Change (%) P value CV (%) Change (%) P value CV (%)

*20 "C

Arg 17.40 1.0 0.82 5.8 -28.3 0.03 17.9 -40.9 3.1E24 10.8

Met 12.65 -7.1 0.26 5.1 -15.3 0.16 18.0 -43.7 1.3E24 3.5

Ser 248.63 -3.7 0.44 4.8 -17.4 0.05 12.3 -36.2 4.0E25 6.6

Val 30.86 -4.9 0.43 5.8 -21.7 0.09 20.3 -59.0 1.0E25 3.5

xLeu 50.39 -6.1 0.25 3.0 -22.1 0.07 19.4 -39.6 8.8E25 3.6

H1 622.83 3.7 0.19 2.2 -3.0 0.67 15.0 -30.3 9.5E26 4.3

*9 "C

C6:1 0.16 1.9 0.77 9.2 2.2 0.76 10.3 16.2 8.1E25 2.6

Arg 17.40 -0.9 0.91 11.0 6.6 0.29 6.3 -40.2 7.2E25 7.0

Val 30.86 -4.9 0.41 4.4 -2.8 0.69 8.8 -42.5 4.8E25 8.1

xLeu 50.39 -2.9 0.64 7.1 0.2 0.96 8.7 -35.3 1.1E24 4.9

The first column shows metabolites with significant changes in their concentration due to storage conditions when compared to the reference
samples that are shown in the second column. The following columns show the percentage of concentration change, the respective P value, and
coefficient variance (CV) derived with from the four measurements of the samples stored at the specified temperatures/conditions (2, 8, and 24 h
at *20 and *9 "C). Significant P values (P\ 7.9E-4) are indicated in bold
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separate-variance t test, to assess the differences in

metabolite concentration between samples exposed to 2, 8,

and 24 h at the respective storage condition with baseline

samples (immediately frozen at -80 "C). The same t test

was used to pair-wisely compare metabolite concentrations

after the freeze and thaw cycles with baseline. To account

for multiple testing, Bonferroni correction

(P\ 7.9E-4 = 0.05/63) was applied due to 63 used

metabolites.

A mixed effects linear regression model was utilized to

assess the influence of time and temperature, as well as

their interaction term on metabolite concentrations. Addi-

tionally, the variables time and temperature were stan-

dardized (mean = 0 and standard deviation = 1). The

metabolite concentration was used as the dependent vari-

able, time, temperature and their interaction term as the

fixed effect and the repeated measurement as random

effect.

The mixed effects linear regression model was used to

estimate the impact of the number (0–3) of freeze–thaw

cycles on each of the used 63 metabolite concentrations.

Statistical analyses were performed with SAS 9.4 (SAS

Institute, Cary NC) using ‘PROC TTEST’ for pairwise

comparisons of storage conditions and ‘PROC MIXED’ for

the mixed effect linear regression models on the effect of

time, temperature, interaction of time, and temperature and

number of freeze and thaw cycles.

3 Results

3.1 Amino acids are mostly affected by the storage

conditions

We observed that the concentrations of about 90% of

examined metabolites in the urine samples were not sig-

nificantly affected by any of the applied storage conditions

(for 0, 2, 8, and 24 h at -20, 4, *9, and *20 "C,

respectively) when compared to samples immediately

stored at -80 "C. Only seven out of 63 metabolite con-

centration measurements were significantly altered. The

concentrations of three amino acids were decreased by

35–43% when storing in *9 "C, and five by up to about

60% when storing the urine samples at room temperature

for 24 h (Table 1). No significant changes in the concen-

tration of any metabolite could be observed for the storage

at 4 and -20 "C, when compared to baseline. Furthermore,

at *20 "C, no changes in the concentration of the exam-

ined 63 metabolites could be observed after 2 and 8 h, but

at 24 h Arg, Met, Ser, Val, Leu/Ile, and H1 showed a

significant decrease (Table 1). We observed a significant

decrease for Arg, Val and Leu/Ile and a significant increase

for hexenoylcarnitine (C6:1) at *9 "C at 24 h (Fig. 2).

3.2 The interaction of temperature and storage time

is the most important influence

To further investigate the influence of the combination of

time and temperature on the metabolite concentrations, we

applied linear mixed effect models. We observed that the

concentrations of ten metabolites (Arg, Glu, Met, Phe, Pro,

Ser, Thr, Val, Leu/Ile, and H1) showed significant

[P\ 2.6E-4 = 0.05/(63 9 3) to account for three inde-

pendent variables and 63 metabolites] associations with the

interaction term of time and temperature. These ten

metabolites included all that were detected with the pair-

wise comparison of baseline with samples stored

at *20 "C for 24 h (Table 2).

3.3 Frequent freeze and thaw cycles influences

the sample quality

To investigate the effect of freeze and thaw cycles, we

conducted pairwise comparisons between samples that

underwent up to three cycles with baseline. We did not

observe any significantly changed metabolite concentration

for one or two freeze and thaw cycles, but two metabolites

(H1 and C3) showed significantly increased concentrations

for three freeze and thaw cycles, when compared to sam-

ples immediately frozen at -80 "C (Table 3). Hexose H1

concentrations increased gradually from baseline

(622.83 lM) starting with cycle one (652.28 lM/4.7%)

and two (698.83 lM/12.2%) until 748.95 lM/20.2%

increase after the third cycle (Table S2). Results depicting

the influence of freeze and thaw cycles on all 63 used

metabolites are shown in Table S2.

With the linear mixed effect model, we detected a sig-

nificant association between the number of freeze and thaw

cycles and the concentration of four Acylcarnitines (C3,

C4, C8:1, C16:1-OH) and Hexose (Table 4).

4 Discussion

We investigated the influence of storage conditions (tem-

perature, time and freeze and thaw cycles) on metabolite

profiles in human urine samples using targeted MS and

observed that a full day of storing at room temperature or

on cool packs significantly altered the concentration of

several metabolites, in particular amino acids. This finding

was confirmed by investigating the interaction between

exposure time and temperature. Furthermore, we observed

that more than two freeze and thaw cycles affected the

metabolite concentrations in the urine samples. However,

about 78% of quantified metabolites in urine samples from

overnight fasting females were not influenced by the
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examined storage conditions, when considering a stringent

Bonferroni corrected level of significance.

Although other studies investigated the impact of stor-

age conditions on metabolite profiles in urine as well, they

were using either non-targeted MS or NMR technology

(Table 5). Moreover, none of these studies investigated the

interaction between storage time and temperature, which

previously was only subject to research on the storage of

serum samples (Anton et al. 2015).

Our finding of decreased concentrations of Hexose in

urine at a prolonged exposure to room temperature is

consistent with previous studies in plasma and most likely

results from active glycolysis enzymes in urine (Breier

et al. 2014; Bruns and Knowler 2009; Grötsch et al. 1985).

Furthermore, our observation of decreased concentrations

of arginine and methionine in urine is consistent with

previous observations in plasma at room temperature

(Breier et al. 2014).

The decreased concentrations of the branched chain

amino acids (BCAA, i.e. valine, leucine and isoleucine)

might be explained by the catabolic activity of a multiple

enzyme complex, in particular the branched-chain a-keto

acid dehydrogenase (BCKDC). BCKDC converts all three

amino acid by: (1) transamination; (2) oxidative decar-

boxylation; and (3) dehydrogenation (Tanaka and Rosen-

berg 1983). Indo et al. report BCKDC to be associated with

the mitochondrial inner membrane (Indo et al. 1987).

Prolonged exposure of urine to room temperature might

lead to a degradation of cells and a release of BCKDC. The

reduction in the concentration of these BCAA, when stored

on cool packs is less profound, when compared to room

temperature. The comparably smaller effect is most likely

due to the reduced temperature (Gillim et al. 1983).

Contradictory findings were reported for blood: the

concentrations of leucine, isoleucine and serine in plasma

were found to be increased when stored for 24 h at room
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Fig. 2 Concentrations of two metabolites over time for various
storage conditions. Influence of storage conditions on the concentra-
tions of Valine and C6:1. The concentration of C6:1 at 9 "C

increased, whereas the concentration of valine decreased at 20 and
9 "C in urine over the course of 24 h
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temperature and for leucine when stored for 24 h on cool

packs (Breier et al. 2014). However this is expected, when

comparing different matrices, such as blood and urine.

Urine at prolonged room temperature is prone to getting

more acidic, whereas blood is buffered (Alguacil et al.

2007). Additionally, the number of cells is not comparable

between the two matrices, which also accounts for the

protein concentration and numerous other factors, such as

bacterial growth. To avoid such interferences by reducing

the number of bacteria and host cells, as well as large

particles, previous studies suggested to pre-centrifuge

(1000–3000 RCF for 5 min at 4 "C) and filter urine sam-

ples (using a 0.20 lm filter) before conducting the

metabolite profiling (Bernini et al. 2011; Emwas et al.

2015). However, certain circumstances like the non-avail-

ability of filters and centrifuges and time consuming

operation during real life studies make it difficult to use

said filters directly after donation.

We observed up to 60% reduction of BCAA (isoleucine

and valine) when urine samples are stored on cool packs or

at room temperature for 24 h. These BCAA are in partic-

ular essential for the growth of certain microorganisms,

such as lactobacillus brevis and lactobacillus plantarum

(Katina 2005). L. brevis can be found in intestines, colon

and vagina (Makarova et al. 2006). The interplay of time

and temperature may have led to a consumption and con-

sequent concentration reduction of the respective amino

acids in urine samples.

The detected increase in Hexose (mainly glucose) con-

centration after multiple freeze and thaw cycles might be

due to the reported degeneration of sucrose. The enzyme

invertase, also called sucrase, catalyzes the hydrolysis of

sucrose to glucose and fructose (Huang et al. 1999; Zhang

et al. 2016). Invertase is found in the potential urine con-

taminant yeast (Fisher et al. 1995). Repeated freezing and

thawing might have damaged these cells, led to a diffusion

of invertase in urine and consequently the hydrolysis of

sucrose. Additionally, the acid-catalyzed hydrolysis of

sucrose was reported to be enhanced by freezing (Lund

et al. 1969). Both mechanisms are likely to explain the

gradual increase of glucose concentrations (up to 20%)

after the freeze and thaw cycles.

However, the observation of an opposite trend for the

glucose concentration after freeze and thaw cycles, when

compared to the storing at room temperature for 24 h needs

to be further investigated.

In general, using targeted MS approach we observed

changes in six metabolites (C3, C6:1, Arg, Val, Leu/Iso

Table 2 Metabolites significantly influenced by the interaction of
exposure time and temperature

Metabolite b-estimate (95% CI) P value

Arg -0.89 (-1.26, -0.52) 2.2E25

Gln -0.68 (-0.97, -0.40) 2.5E25

Met -1.00 (-1.31, -0.70) 1.2E27

Phe -0.71 (-1.03, -0.39) 7.8E25

Pro -0.83 (-1.20, -0.46) 5.8E25

Ser -1.01 (-1.26, -0.75) 9.8E210

Thr -0.69 (-1.01, -0.38) 7.7E25

Val -1.01 (-1.44, -0.58) 2.8E25

xLeu -0.95 (-1.28, -0,61) 1.2E26

H1 -1.14 (-1.51, -0.76) 4.5E27

The first column shows metabolites with a significant influence on the
interaction of time and temperature. The following columns show b-
estimates with respective confidence intervals (95%) and P values via
a linear mixed effects model. Significant P values (P\ 2.64E-4) are
indicated in bold

Table 3 Metabolites significantly influenced by freeze and thaw cycles

Metabolite Baseline (0 h) Cycle 1 (26 h) Cycle 2 (52 h) Cycle 3 (78 h)

Mean (lM) Change (%) P value CV (%) Change (%) P value CV (%) Change (%) P value CV (%)

C3 1.00 1.3 0.55 2.3 7.7 0.13 7.1 13.8 7.7E24 1.3

H1 622.84 4.7 0.24 5.6 12.2 0.07 8.3 20.2 3.1E24 3.4

The first column shows metabolites that were significantly changed after the third freeze and thaw cycle when compared to the baseline values
that are shown in the second column. The following columns show the percentage of concentration change, the respective P value, and
coefficient variance (CV) derived with from the measurements of the sample after one, two, and three freeze and thaw cycles. Significant
P values (P\ 7.9E-4) are indicated in bold

Table 4 Metabolites significantly associated with the number of
freeze and thaw cycles

Metabolite b-estimate (95% CI) P value

C3 0.53 (0.41–1.03) 2.5E24

C4 0.62 (0.36–0.88) 1.8E24

C8:1 0.70 (0.39–1.01) 2.9E24

C16:1-OH 0.72 (0.41–1.03) 2.5E24

H1 0.45 (0.27–0.64) 1.5E24

The first column shows metabolites that were significantly associated
with the number of freeze and thaw cycles. The following columns
show b-estimates with respective confidence intervals (95%) and
P values derive with a linear mixed effects model. Significant P val-
ues (P\ 7.9E-4) are indicated in bold
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(xLeu), H1) that were not reported in other studies that

applied similar storage conditions (e.g. 24 h at 10 "C, up to

nine freeze and thaw cycles), but different measurement

techniques (NMR, non-targeted MS) (Budde et al. 2016;

Gika et al. 2008). Other observed alterations in the

metabolite profiles were derived under conditions that were

not part of our study (e.g. 72 h or 12 weeks at 4 "C) (Lau-

ridsen et al. 2007; Roux et al. 2015). Due to the comparably

small number of measurements, our study is limited in sta-

tistical power. Additionally, the AbsoluteIDQTM p150 kit

was originally developed for blood samples, and not focus-

ing on urine. This is reflected by the number of only 63

metabolites that passed the quality control. In order to make

the kit more applicable to urine, creatinine was included by

the manufacturer into the metabolite panel, to enable

researchers to account and normalize for different urine

excretion rates. Furthermore, the measured values were not

derived from biological replicates, but from repeated mea-

surements of the same samples. However, by this procedure,

potential analytical variations could be identified and

accounted for. Furthermore, by using pooled samples, we do

not have to account for different excretion rates and differ-

ences in interpersonal metabolite profiles. This supports the

direct comparability of measured effects.

5 Conclusions

The findings from our study suggested to avoid shipping

urine samples on cool packs or at room temperature for

durations of more than 8 h, and we have provided insight

on improved planning and sample maintenance in the field.

We strongly recommend storage temperatures of at least

-20 "C and to minimize the number of freeze and thaw

cycles to ensure integrity of urine samples used for meta-

bolomics studies.
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Table 5 Previous studies on pre-analytical sample handling

Author Technique Approach Tissue Temperature Time Interaction Freeze/
thaw cycles

Lauridsen
et al. (2007)

NMR Non-
targeted

Urine -80, -25, and 4 "C 0, 1, 2, 3, 4, 6, 10, 14, and
26 weeks

– –

Barton et al.
(2008)

NMR Non-
targeted

Urine, serum -80 and 4 "C 0, 24, and 36 h – –

Bernini et al.
(2011)

NMR Non-
targeted

Urine, serum
plasma

-80, 4 "C, and RT 0, 2, 4, 6, 24 h, and 1 week – –

Roux et al.
(2015)

NMR, MS Non-
targeted

Urine -80, 4 "C, and RT
(19–26 "C)

0–72 h (every 4 or 12 h) – –

Budde et al.
(2016)

NMR Non-
targeted

Urine -80, 4, 10 "C, and RT
(25 "C)

0, 1, 2, 8, 10, 12, 24, 28,
72 h, and 1 month

– –

Gika et al.
(2008)

MS Non-
targeted

Urine -80, -20, and -4 "C, 1 week, 1 month,
3 months, and 6 months

– X (-20 "C)

Breier et al.
(2014)

MS Targeted Serum,
plasma

-80, *4 "C, and RT
(21 "C)

0, 3, 6, and 24 h – X (-20 "C)

Anton et al.
(2015)

MS Targeted Serum -80 "C, dry ice, wet ice,
and RT (22–24 "C)

0, 12, 24, and 36 h X X (-80 "C)

Rotter et al. MS Targeted Urine -80, -20, 4, *9 "C, and
RT (*20 "C)

0, 2, 8, and 24 h X X (-80 "C)

The first three columns indicate the underlying study and the technical approach that was applied. The following columns depict the examined
tissue and the pre-processing conditions (temperature, time, and their interaction), the samples were exposed to. The final column indicates if
freeze and thaw cycles were subject to the respective study

RT room temperature, NMR nuclear magnetic resonance, MS mass spectrometry
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Abstract: Night shift work can have a serious impact on health. Here, we assess whether and how night

shift work influences the metabolite profiles, specifically with respect to different chronotype classes.

We have recruited 100 women including 68 nurses working both, day shift and night shifts for up to

5 consecutive days and collected 3640 spontaneous urine samples. About 424 waking-up urine samples

were measured using a targeted metabolomics approach. To account for urine dilution, we applied

three methods to normalize the metabolite values: creatinine-, osmolality- and regression-based

normalization. Based on linear mixed effect models, we found 31 metabolites significantly (false

discovery rate <0.05) affected in nurses working in night shifts. One metabolite, acylcarnitine C10:2,

was consistently identified with all three normalization methods. We further observed 11 and

4 metabolites significantly associated with night shift in early and late chronotype classes, respectively.

Increased levels of medium- and long chain acylcarnitines indicate a strong impairment of the fatty acid

oxidation. Our results show that night shift work influences acylcarnitines and BCAAs, particularly in

nurses in the early chronotype class. Women with intermediate and late chronotypes appear to be less

affected by night shift work.

Keywords: metabolomics; urine normalization; women’s’ health; night shift work; chronotypes

1. Introduction

About one fifth of employees in industrialized countries are working in some type of shift schedule [1].

Shift work was reported to have adverse health effects and increase the chance for diseases like obesity

and type 2 diabetes [2–5]. When forced to work at a non-standard time (e.g., night shift), which is not in

concordance with the personal inner clock, individuals tend to develop a “social jet lag,” a discrepancy

between sleep timing on work days and free days [2,6]. The difference in the preferred personal timing or

chronotype plays a major role in individual sleep duration and health risk when working night shift [5,7].

Previous research showed that female night shift workers with morning preferences had a higher risk for

breast cancer compared to those with evening preferences [3]. The underlying metabolic pathways affected

by shift work and the role of the individual chronotype in this respect have not been studied in detail.

Targeted metabolomic profiling in human blood has been used to assess lifestyle or disease

effects such as pre-diabetes, sleep curtailment and sleep deprivation [8–13]. However, no real-life

study investigating the impact of night shift work on the urine metabolic profile of participants

with early, intermediate and late chronotype has been reported. Major advantages of urine bio

samples are their non–invasive sampling, moreover, urine samples are well studied with respect to

age, obesity and storage conditions [14–17]. However, as urine samples are susceptible to a variety of

factors such as water intake, it was suggested to either use alternative methods besides creatinine- or

osmolality-normalizations, or to apply more than one normalization method [18–20].

Here, we have used the Munich Chronotype Questionnaire for shift workers (MCTQShift) to

assess the chronotype of participants working in shift work [21]. We collected about 3640 longitudinal

multi-time-point urine samples and analysed 424 waking-up samples (a proxy for fasting samples)

from 68 female nurses working on several consecutive days during day or night shift. Targeted urine

metabolite profiles were normalized with creatinine-, osmolality- and regression based normalization

(RBN) and the results allowed us to investigate the influence of night shift on the targeted metabolite

profile in urine of female nurses while considering their individual chronotypes.

2. Results

2.1. Characteristics of Participants

We recruited 100 study participants and used 97 women for a chronotype classification (Figure 1).

These women had a mean age of 39.5 (25.0–60.0) and an average chronotype of 04:02 (01:17) (Table 1).
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Furthermore, we analysed 424 waking-up samples of 68 shift working (SW) nurses. The 68 SW nurses

had mean age of 37.2 years (Table 1). We stratified the 68 SW nurses into early (N = 30), intermediate

(N = 22) and late chronotype (N = 16) classes (Figure 1). The age of nurses in early and intermediate

chronotype classes was comparable whereas nurses in the late chronotype class were younger (Table 1).

We observed a negative correlation between age and chronotype values (Pearson correlation coefficient

r = −0.45) (Figure S1). Moreover, early chronotypes smoked less and reported no respiratory diseases

and a lower number of allergies when compared to late chronotypes. Respiratory diseases were most

common (24%) among intermediate chronotypes (Table 1).

 

−

 

 

Figure 1. Study design and work flow for night shift and day shift comparison. Plot (A) shows an

overview for nurses in SW (working both day and night shift) performing two shifts from Monday

to Friday in day shift (DS) and night shift (NS) respectively with around a 4 week pause in between

the study blocks. Boxes labelled DS indicate working hours in day shift, boxes labelled NS indicate

working hours in night shift. Throughout the whole shift and observation period, urine samples

were collected (grey boxes). Day 1 to day 4 lasts from 9 p.m. to 9 p.m. the next day and defines the

time periods for comparison of day shift and night shift metabolic profiles; Plot (B) demonstrates

an overview of the urine sample collection and exclusion, as well as the consecutive statistical and

pathway analysis. Exclusion 1 = Exclude participants without information on sleep; Exclusion 2 =

Exclude diabetics, vegetarians and participants with extreme sleep apnoea, as well as women working

only day shift.

Table 1. Characteristics of participants. Characteristics of all participants, shift working group (SW)

in combined and stratified analyses are shown. Means with standard deviations (SD) or number of

phenotypes with percentages are shown for each group. BMI (body mass index). * Chronotype is

defined as mid-sleep corrected for sleep debt accumulated over the past work week.

Clinical Parameters All Participants
Shift Working

Participants
(Combined Analysis)

Stratified Analysis

Early
Chronotype

Intermediate
Chronotype

Late
Chronotype

N 97 68 16 22 30
Chronotype (SD) *, a.m. 04:02 (01:17) 04:21 (01:14) 02:50 (00:43) 03:59 (00:14) 05:26 (00:48)
Mean age (range), years 39.5 (25.0–60.0) 37.2 (25.0–57.0) 41.3 (25.0–50.0) 40.5 (25.0–57.0) 32.5 (25.0–56.0)

BMI, kg/m2 26.2 (5.2) 26.2 (5.0) 26.6 (4.5) 26.7 (5.5) 25.7 (5.0)
Regular smoker (%) 27 (27.8) 26 (38.2) 3 (18.8) 10 (45.5) 13 (43.3)
Thyroid disease (%) 20 (20.1) 12 (17.6) 4 (25.0) 2 (9.1) 6 (19.4)
Hypertension (%) 16 (16.5) 10 (14.7) 2 (12.5) 3 (13.6) 5 (16.7)

Respiratory disease (%) 14 (14.4) 9 (13.4) 0 (0.0) 5 (23.8) 4 (13.3)
Cases of Allergy (%) 53 (54.6) 37 (54.4) 6 (37.5) 11 (50.0) 20 (66.7)
Kidney disease (%) 2 (2.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
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2.2. Correlation of 44 Metabolites Comparing Three Normalization Methods

Out of 162 quantified metabolites (Table S1), 44 metabolites passed our stringent quality control (see

method). When comparing the measured creatinine concentration with the measured osmolality value

in the 424 waking-up urine samples, we observed a moderate correlation (r = 0.72, p-value = 1.4 × 10−4).

Furthermore, for the used 44 metabolites, we detected various correlation ranges among creatinine-,

osmolality- and RBN normalized values (Table 2). The most significant correlation coefficients could be

observed between RBN and creatinine-normalized values (r ranged from 0.48 to 0.99). The observed r

ranged from 0.35 to 0.93 for the comparison of RBN with osmolality-normalized values and from −0.09

to 0.93 for the comparison between creatinine- and osmolality-normalized values (Table 2).

Table 2. Correlation of 44 metabolites concentrations after creatinine-, osmolality- and regression-based

normalization. Pearson correlation coefficients of three pairwise comparisons are shown. Non-significant

correlations are indicated in bold (Bonferroni cut off; p-values < 1.14 × 10−3). In summary,

absolute correlation coefficients > 0.15 reflect a statistical significance.

Metabolite
Creatinine Normalization vs.

Osmolality Normalization
Osmolality Normalization

vs. RBN
RBN vs. Creatinine

Normalization

C0 0.76 0.84 0.97
C2 0.84 0.85 0.98
C3 0.68 0.76 0.96

C4:1 0.93 0.93 0.99
C5 0.73 0.89 0.93

C5-M-DC 0.75 0.83 0.96
C5:1 0.62 0.79 0.93

C5:1-DC 0.68 0.76 0.95
C6:1 0.13 0.55 0.71

C7-DC 0.21 0.56 0.79
C8 −0.01 0.49 0.61

C8:1 0.70 0.72 0.96
C9 0.65 0.77 0.93
C10 −0.08 0.49 0.57

C10:1 0.18 0.49 0.79
C10:2 0.74 0.82 0.96
C12 0.09 0.63 0.64
C14 0.16 0.66 0.56

C14:1 0.23 0.70 0.70
C14:1-OH 0.16 0.70 0.61

C14:2 0.12 0.64 0.62
C14:2-OH 0.05 0.61 0.57

C16 0.47 0.78 0.77
C16-OH 0.68 0.90 0.86

C16:2 0.19 0.75 0.48
C18:2 0.32 0.76 0.49
Arg 0.33 0.44 0.80
Gln 0.44 0.50 0.86
Gly 0.64 0.60 0.92
His 0.58 0.51 0.90
Met −0.09 0.35 0.61
Phe 0.42 0.52 0.87
Pro 0.22 0.42 0.71
Ser 0.44 0.55 0.85
Thr 0.50 0.53 0.89
Trp 0.21 0.41 0.81
Tyr 0.48 0.49 0.88
Val 0.28 0.36 0.75

Leu/Isoleu 0.45 0.36 0.76
Creatinine - 0.20 -

PC ae C38:3 0.44 0.83 0.61
PC ae C38:6 0.11 0.55 0.66

SM C24:0 0.44 0.80 0.72
H1 0.50 0.59 0.88
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2.3. Metabolites Associated with Night Shift in the Combined Analysis in Three Normalization Methods

Based on creatinine-normalized values, out of 44 analysed metabolites, urine concentrations of

15 metabolites were significantly altered between night and day shift, both in basic and full models

(Table 3 and Table S2). The 15 metabolites consisted of 11 medium- and long-chain acylcarnitines (C5,

C7-DC, C8, C10, C10:2, C12, C14, C14:1, C14:1-OH, C14:2, C14:2-OH), three amino acids (phenylalanine,

glycine, serine) and one sphingomyelin (SM C24:0). With the exception of C10:2, we observed

increased concentrations of the identified acylcarnitines in urine that was donated during night

shift, when compared to urine from day shift (Figure 2A, Table 3 and Table S2).

Based on the osmolality-normalization, urine concentrations of 17 metabolites were significantly

altered by night shift in both basic and full LMEM models (Table 4). The identified metabolites included

six acylcarnitines, six amino acids, creatinine, PC ae C38:3 and hexose H1.

 

 

β

Figure 2. Results of four selected metabolites of three normalization methods of combined and

chronotype-stratified analyses as well as pathways potentially affected by night shift work. Plot (A)

shows the β-estimates and associated 95% confidence intervals of four metabolites based on creatinine-,

osmolality- and regression based normalization of combined and stratified analysis; Plot (B) shows a

Venn diagram of significantly altered metabolites when comparing DS with NS in the combined analysis

of three normalization methods. Colours indicate the direction of the observed change (red = increase,

green = decrease); Plot (C) depicts an overview for pathways potentially affected by night shift work.

OCTN2, cell membrane carrier; CACT, Carnitine acylcarnitine translocase; NAD, Nicotinamide adenine

dinucleotide (oxidised); NADH, Nicotinamide adenine dinucleotide (deoxidised); NAM, Nicotinamide;

NMN, Nicotinamide mononucleotide; NAMPT, nicotinamide phosphoribosyl transferase; NAMPT,

Gene encoding NAMPT.
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Table 3. Results of 15 metabolites significantly altered by night shift work in combined and chronotype-stratified analysis based on creatinine-normalized values in

the fully adjusted model. For each metabolite, the β-estimate, the 95% confidence interval (CI) and false discovery rate (FDR) of the full linear mixed effect model

(LMEM) for the comparison of day shift (reference) and night shift are shown. The full linear model was adjusted for chronotype, batch effect, smoking status, age,

BMI, thyroid disease status, total years of shift work, day of shift and time since last urination. Significant p-values (FDR < 0.05) in both basic and full LMEM model

are indicated in bold. N = Number of nurses; n = Number of urine samples.

Combined Analysis N = 68; n = 424 Early Chronotype N = 16; n = 91 Intermediate Chronotype N = 22; n = 141 Late Chronotype N = 30; n = 192

Metabolites β–Estimate (95% CI) FDR p-value β–Estimate (95% CI) FDR p-value β-Estimate (95% CI) FDR p-Value β-Estimate (95% CI) FDR p-Value

C5 0.09 (0.03, 0.15) 1.8 × 10−2 0.24 (0.10, 0.38) 6.3 × 10−3
−0.02 (−0.12, 0.09) 0.87 0.10 (0.01, 0.19) 0.12

C7-DC 0.23 (0.12, 0.35) 7.1 × 10−4 0.53 (0.25, 0.81) 4.3 × 10−3 0.14 (−0.08, 0.35) 0.47 0.15 (−0.01, 0.31) 0.23
C8 0.15 (0.05, 0.26) 1.7 × 10−2 0.51 (0.23, 0.79) 4.3 × 10−3 0.00 (−0.21, 0.20) 0.99 0.16 (0.02, 0.29) 0.12
C10 0.18 (0.07, 0.28) 4.7 × 10−3 0.57 (0.26, 0.88) 4.3 × 10−3 0.05 (−0.15, 0.25) 0.83 0.14 (0.01, 0.27) 0.12

C10:2 −0.34 (−0.50, −0.18) 5.1 × 10-4
−0.22 (−0.69, 0.24) 0.46 −0.22 (−0.47, 0.03) 0.38 −0.39 (−0.64, −0.14) 2.3 × 10−2

C12 0.30 (0.18, 0.42) 1.4 × 10−5 0.68 (0.37, 0.99) 2.0 × 10−3 0.19 (−0.06, 0.44) 0.41 0.23 (0.09, 0.37) 2.3 × 10−2

C14 0.16 (0.04, 0.27) 2.1 × 10−2 0.53 (0.19, 0.86) 8.7 × 10−3 0.09 (−0.13, 0.32) 0.66 0.04 (−0.10, 0.19) 0.78
C14:1 0.18 (0.07, 0.28) 4.7 × 10−3 0.52 (0.23, 0.82) 4.6 × 10−3 0.14 (−0.06, 0.35) 0.45 0.04 (−0.09, 0.17) 0.78

C14:1-OH 0.21 (0.09, 0.33) 4.7 × 10−3 0.58 (0.23, 0.93) 6.6 × 10−3 0.20 (−0.04, 0.43) 0.41 0.05 (−0.10, 0.20) 0.78
C14:2 0.18 (0.07, 0.29) 6.6 × 10−3 0.50 (0.17, 0.82) 1.1 × 10−2 0.13 (−0.07, 0.34) 0.47 0.08 (−0.06, 0.22) 0.52

C14:2-OH 0.16 (0.05, 0.28) 1.8 × 10−2 0.56 (0.22, 0.91) 7.6 × 10−3 0.09 (−0.13, 0.30) 0.66 0.04 (−0.10, 0.18) 0.81
Gly 0.16 (0.05, 0.28) 1.8 × 10−2

−0.09 (−0.35, 0.17) 0.65 0.27 (0.07, 0.46) 0.10 0.21 (0.04, 0.39) 0.12
Phe 0.33 (0.20, 0.45) 1.4 × 10−5 0.40 (0.03, 0.78) 8.4 × 10−2 0.37 (0.14, 0.60) 6.9 × 10−2 0.32 (0.15, 0.50) 8.0 × 10−3

Ser 0.15 (0.03, 0.27) 3.8 × 10−2
−0.06 (−0.35, 0.23) 0.77 0.22 (0.02, 0.43) 0.29 0.17 (−0.02, 0.36) 0.25

SM C24:0 0.23 (0.14, 0.32) 1.4 × 10−5 0.48 (0.20, 0.76) 5.3 × 10−3 0.14 (−0.04, 0.32) 0.41 0.21 (0.11, 0.31) 4.1 × 10−3
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Table 4. Metabolites associated with night shift (osmolality- and regression-based normalized values). The table shows β-estimates and false discovery rate (FDR)

values for 21 metabolites which are significantly associated with night shift work. The calculations were based on osmolality and regression-based normalizations.

The basic LMEM was adjusted for chronotype value and batch effect. The full model was adjusted for chronotype value, batch effect, BMI, age, smoking status,

thyroid disease status, total years of shift work, day of shift and time since last urination. Significant FDR values are indicated in bold.

Osmolality-Normalization Regression Based Normalization

Metabolite
Basic Model Full model Basic Model Full model

β-Estimate (95% CI) FDR β-Estimate (95% CI) FDR β-Estimate (95% CI) FDR β-Estimate (95% CI) FDR

C3 −0.23 (−0.39, −0.07) 2.0 × 10−2
−0.25 (−0.42, −0.07) 1.9 × 10−2

−0.14 (−0.29, 0.02) 0.17 −0.15 (−0.32, 0.01) 0.17
C4:1 −0.10 (−0.16, −0.04) 3.7 × 10−3

−0.10 (−0.16, −0.05) 4.2 × 10−3
−0.07 (−0.12, −0.02) 2.1 × 10−2

−0.07 (−0.12, −0.02) 4.5 × 10−2

C5-M-DC −0.26 (−0.37, −0.14) 2.5 × 10−4
−0.29 (−0.41, −0.16) 1.1 × 10−4

−0.22 (−0.32, −0.11) 5.9 × 10−4
−0.24 (−0.35, −0.13) 4.6 × 10−4

C5:1 −0.27 (−0.42, −0.12) 3.5 × 10−3
−0.32 (−0.48, −0.16) 9.2 × 10−4

−0.19 (−0.33, −0.06) 2.1 × 10−2
−0.25 (−0.39, −0.11) 4.7 × 10−3

C7-DC −0.05 (−0.21, 0.11) 0.62 −0.04 (−0.21, 0.14) 0.72 0.26 (0.10, 0.42) 1.1 × 10−2 0.29 (0.12, 0.46) 6.9 × 10−3

C10:2 −0.49 (−0.65, −0.33) 1.6 × 10−7
−0.47 (−0.64, −0.30) 4.3 × 10−6

−0.42 (−0.58, −0.25) 2.0 × 10−5
−0.39 (−0.57, −0.22) 4.1 × 10−4

C12 0.03 (−0.12, 0.19) 0.72 0.06 (−0.11, 0.23) 0.51 0.25 (0.09, 0.41) 1.2 × 10−2 0.31 (0.14, 0.48) 3.5 × 10−3

C18:2 −0.19 (−0.34, −0.04) 3.5 × 10−2
−0.23 (−0.39, −0.07) 1.8 × 10−2

−0.25 (−0.40, −0.09) 1.1 × 10−2
−0.32 (−0.48, −0.15) 1.7 × 10−3

Arg −0.29 (−0.44, −0.15) 8.8 × 10−4
−0.31 (−0.46, −0.16) 9.2 × 10−4

−0.20 (−0.36, −0.04) 6.2 × 10−2
−0.26 (−0.43, −0.08) 2.1 × 10−2

His −0.15 (−0.28, −0.03) 3.8 × 10−2
−0.16 (−0.29, −0.03) 4.3 × 10−2

−0.03 (−0.15, 0.08) 0.70 −0.05 (−0.17, 0.08) 0.56
Met −0.23 (−0.38, −0.07) 1.7 × 10−2

−0.24 (−0.40, −0.08) 1.4 × 10−2
−0.13 (−0.30, 0.03) 0.21 −0.16 (−0.33, 0.02) 0.18

Phe 0.00 (−0.15, 0.14) 0.98 −0.02 (−0.18, 0.13) 0.76 0.24 (0.09, 0.39) 1.1 × 10−2 0.21 (0.06, 0.37) 3.6 × 10−2

Pro −0.24 (−0.38, −0.09) 9.9 × 10−3
−0.25 (−0.41, −0.10) 7.0 × 10−3

−0.05 (−0.19, 0.09) 0.61 −0.09 (−0.24, 0.06) 0.36
Thr −0.20 (−0.36, −0.05) 3.2 × 10−2

−0.22 (−0.38, −0.06) 2.7 × 10−2
−0.09 (−0.23, 0.05) 0.42 −0.12 (−0.27, 0.04) 0.28

Trp −0.19 (−0.32, −0.06) 2.0 × 10−2
−0.21 (−0.36, −0.07) 1.3 × 10−2

−0.01 (−0.12, 0.11) 0.90 −0.05 (−0.17, 0.07) 0.56
Val −0.18 (−0.33, −0.03) 4.1 × 10−2

−0.20 (−0.36, −0.04) 4.1 × 10−2
−0.07 (−0.22, 0.09) 0.56 −0.11 (−0.28, 0.05) 0.31

Leu/Isoleu −0.25 (−0.40, −0.10) 7.6 × 10−3
−0.27 (−0.43, −0.11) 5.1 × 10−3

−0.09 (−0.24, 0.07) 0.49 −0.13 (−0.30, 0.04) 0.28
Creatinine −0.18 (−0.33, −0.04) 3.4 × 10−2

−0.19 (−0.34, −0.04) 3.5 × 10−2
−0.15 (−0.30, 0.00) 0.12 −0.18 (−0.34, −0.02) 9.3 × 10−2

PC ae C38:3 −0.35 (−0.51, −0.18) 6.8 × 10−4
−0.34 (−0.51, −0.16) 2.1 × 10−3

−0.57 (−0.74, −0.40) 4.5 × 10−9
−0.55 (−0.74, −0.37) 2.0 × 10−7

SM C24:0 0.05 (−0.07, 0.18) 0.45 0.07 (−0.07, 0.20) 0.39 0.19 (0.06, 0.31) 1.9 × 10−2 0.21 (0.08, 0.34) 1.2 × 10−2

H1 −0.26 (−0.40, −0.11) 3.7 × 10−3
−0.25 (−0.40, −0.10) 7.0 × 10−3

−0.20 (−0.36, −0.04) 0.62 −0.17 (−0.34, 0.01) 0.15
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Using RBN, we found 10 significantly changed metabolites between night shift and day shift

groups in both basic and full LMEM models. These 10 metabolites consisted of seven acylcarnitines,

phenylalanine, PC ae C38:3 and SM C24:0 (Table 4).

We observed several consistent changes when comparing the three normalization methods.

Acylcarnitine C10:2 was significantly decreased in night shift after applying any of the three

normalization methods and the levels of nine metabolites were significantly altered in two out of three

normalization methods (Figure 2B).

2.4. Metabolites Associated with Night Shift in the Chronotype—Stratified Analyses

We further investigated the influence of chronotypes on the concentration of 15 metabolites

(identified with the creatinine normalization) in urine. We found that working night shifts significantly

influenced 11, zero and four metabolites in nurses with early, intermediate and late chronotype,

respectively (Table 3 and Table S2). In the early chronotype group, the 11 identified metabolites

comprised 10 acylcarnitines (C5, C7-DC, C8, C10, C12, C14, C14:1, C14:1-OH, C14:2, C14:2-OH) and SM

C24:0. In the late chronotype group, the levels of C10:2, C12, phenylalanine and SM C24:0 were changed

when comparing night shift to day shift. Two metabolites, C12 and SM C24:0, were significantly altered

both in early and late chronotype groups.

When comparing the results of combined and stratified analyses, 13 metabolites showed consistent

changes in relation to night shift, whereas glycine and serine were only significant in the combined

analysis (Table 3 and Table S2).

3. Discussion

Our main findings indicate that night shift work influences the metabolism of female nurses.

The most changes concerning the metabolic profiles could be observed during night shift in nurses in

the early chronotype class.

3.1. Identified Metabolites Largely Depend on the Applied Normalization Method

From a methodological point of view, our study is unique with respect to the application of three

normalization methods to our multiple-time-point metabolomics data of nurses working in both night

and day shifts.

Urine dilution can vary based upon water consumption and other physiological and

pathophysiological factors, and, consequently, the concentrations of metabolites in urine also vary.

Creatinine is a by-product of muscle metabolism. It is excreted from the body primarily through

glomerular filtration. Creatinine is influenced by various factors, such as age, exercise but also

physiological processes like the kidney tubule processing [19,22–24]. Creatinine -normalization is a

commonly used approach, which makes comparison of results between studies feasible. To evaluate

the total endogenous metabolic output in urine, osmolality can measured, which represents a direct

measure thereof but can also be reduced by impaired kidney function [18,25,26].

Compared to creatinine, osmolality is usually not influenced by diurnal rhythms, diet, activity,

age, stress or health state [18,27]. In our study, we observed a high correlation between measured

creatinine and osmolality values, which is consistent with previous findings of r value of 0.75 [28].

However, regarding our used metabolite panel, the correlation coefficients between creatinine- and

osmolality normalized values were low. We observed a low overlap of significant metabolites for

creatinine and osmolality normalization, although we considered many influencing factors such as

BMI and age in our statistical analysis.

We further present a new approach, RBN, which takes each metabolite’s excretion kinetic into

account, allowing for a dilution correction per metabolite. Comparison of these normalization methods

showed that they are appropriate for different research questions since they showed consistent results

only for one metabolite, acylcarnitine C10:2. Creatinine-based and RBN methods seem particularly

suitable for acyl carnitines, phosphatidylcholines and sphingomyelins whereas osmolality-based
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normalization seemed more suitable for amino acids. As to which normalization method to use

depends on the study design and needs to be answered according to the research question. We focus

on the creatinine normalization, as it has been used frequently and enables the comparison of our

results with those of other studies.

3.2. Elevated Levels of Acylcarnitines May Result from Impaired Fatty Acid Oxidation

The increased urine levels of acylcarnitines during night shift could indicate an impairment of

fatty acid oxidation. Acylcarnitines are imported and exported into/from the cell via the organic

cation/carnitine transporter 2 (OCTN2) cell membrane carrier (Figure 2C) [29]. Due to the higher

“social jet lag” and consequent sleep deprivation/restriction in nurses with an early chronotype,

we hypothesize that these participants could be especially sensitive to night shift and show the most

pronounced metabolic signs of sleep deprivation. Previous studies observed elevated blood levels

of medium-chain acylcarnitines in healthy participants with acute sleep deprivation [9,10]. Due to

an increased acylcarnitine concentration in blood, the renal OCTN2 carrier is saturated, yielding in a

decreased renal reabsorption of acylcarnitines from urine [30]. We observed increased acylcarnitines

concentration in urine during night shift, especially for nurses with early chronotype, which is in

line with those previous reports. Furthermore, medium- and long-chain acylcarnitines produced

in the kidney via fatty acid oxidation are directly secreted to the urine [31]. Inside mitochondria,

the fatty acid oxidation is influenced by the NAD+ levels [8,12,15]. The nicotinamide phosphoribosyl

transferase (NAMPT), a rate limiting enzyme of NAD+ synthesis, is regulated by the CLOCK/BMAL1

(Circadian Locomoter Output Cycles Kaput/Brain and Muscle Aryl hydrocarbon receptor nuclear

translocator-Like 1) protein complex [32–34]. The transcription factor complex CLOCK/BMAL1 is

a key modulator for the circadian rhythm [34]. The increased urine levels of acylcarnitines during

night shift are likely to be due to a reduced circadian expression of NAMPT in shift working nurses

(Figure 2C), leading to low NAD+ levels [32,33,35]. Moreover, acyl-CoA dehydrogenases (ACADs)

catalyse the oxidation of long-chain fatty acids [36]. ACADs are subject to daily oscillations and prone

to be influenced by shift work (Figure 2C) [36]. The metabolism of branched chain amino acids (BCAA)

like leucine and isoleucine is catalysed via isovaleryl-CoA dehydrogenase, an enzyme from the ACAD

family and might therefore be subject to perturbed circadian rhythms [37]. The observed medium chain

acylcarnitine C14:2-OH is product of C14:2-OH-CoA which is metabolized by the bifunctional enzyme

EHHADH (Enoyl-CoA Hydratase And 3-Hydroxyacyl CoA Dehydrogenase) [31]. The expression of

EHHADH is highly dependent on the circadian clock gene Bmal1. Increased levels of C14:2-OH could

be a sign of impaired activity of EHHADH via an reduced expression of Bmal1 in the kidney [31,38,39].

Additionally, a downregulation of EHHADH was associated with an impaired BCAA catabolism [40].

3.3. Strengths and Limitations

Our study has several advantages. First, our study is based on urine samples. As the collection

of urine is non-invasive and does not required a medically trained expert. However, this matrix is

significantly less standardized than blood. Therefore, we applied three normalization methods. Second,

we used waking-up urine samples, which is a proxy of fasting samples. As the spontaneous urine

samples were collected in the course of a real-life study, we could not obtain urine after the recommended

8-hour-fasting period. Third, the comparison of the metabolites profiles of nurses working in night shift

and day shift was based on the identical group of individuals (68 nurses working in both shifts). Fourth,

to account for differences in sex steroids and glucocorticoids, which reflect the stress or menstrual phase,

we designed the study by including a 4 week pause between day shift and night shift.

Our study is limited by several factors. First, the number of participants used in our study

was small, particularly in the stratified analysis. This led to a reduced statistical power. In order to

address the problem of potential under- or over fitting, we applied two different sets of confounders.

Metabolites reported in this study required to be significant in both settings (basic and full models).

Second, the interpretation of our results is based on the proceedings and metabolite pathways from
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studies in cells or tissue models whereas the metabolites in our study were measured in urine that

represents the last stage of metabolite degradation before its elimination. Moreover, metabolite

concentrations may show tissue- and organ-specific regulation like kidney function or in muscle

mass [23,24]. Third, we could not consider the potential influence of nutritional intake or of the

duration of sleep to our multiple-time-point data. In our study, we tried to minimize this limitation by

using waking-up samples. Fourth, we did not address potential diurnal changes which could influence

the metabolite profiles. Reasons, therefore, were that many of our analysed samples were taken more

than 12 h after the previous urine donation, which leads to an elimination of such diurnal effects. Fifth,

our study was exclusively based on female participants.

3.4. Summary and Conclusions

Our results show an effect of night shift work on the metabolite values in urine. Out of 44 examined

metabolites, 31 (about 70%) showed significantly altered concentrations by applying three normalization

methods (creatinine-, osmolality- and regression-based normalization). We observed a low overlap of

significant metabolites among the three methods. One metabolite was consistently identified with all

three normalization methods and nine other metabolites (about 29%) were significantly altered in two

out of three normalization methods. Individuals in the early chronotype class show the most significant

metabolic changes. These were reflected by increased levels of acylcarnitines and altered concentrations

of several amino acids in urine after night shifts. Independent studies, also including men, need to

be conducted to confirm our finding that the individuals with intermediate or late chronotype classes

show less affects in their metabolite profiles, when working in night shift.

4. Material and Methods

4.1. Study Design and Study Participants

For the current study, 100 female workers between 25 and 65 years of age were recruited at the

clinical study site Bergmannsheil in Bochum, Germany. Exclusion criteria for study participation were

(1) current pregnancy; (2) breastfeeding less than half a year ago; (3) past or present fertility medication;

(4) prior cancer diagnosis.

After receiving a detailed explanation of the study protocol, each participant provided written

informed consent. The study was conducted in accordance with the Declaration of Helsinki and the

protocol was approved by the ethic review committee of the medical faculty at the Ruhr University

Bochum, Germany (No. 3840-10).

The recruited study participants (N = 100) were assigned to shift working (SW) and non-shift

working (non-SW) categories. The SW group (N = 75) consisted of nurses working both, day shift and

night shift. A pause of four weeks between day and night shift assessments was scheduled to account

for potential hormonal changes over time (such as the menstrual cycle) (Figure 1A). The non-SW group

(N = 25) consisted of women working only day shift. During day shift, nurses worked for up to four

consecutive days (Monday–Thursday) (for both SW and non-SW) and up to five consecutive days

(Monday–Friday) during night shift. The core working time for nurses of the day shift was scheduled

from 6 a.m.–2 p.m. (SW) and 8 a.m.–4 p.m. (non-SW), while the night shift lasted from 9 p.m.–6 a.m.

(SW) (Figure 1A). The group of non-SW nurses was excluded from the further analysis of metabolite

profiles as their sociodemographic characteristics and particularly their diverse disease states would

not allow a reliable analysis and comparison of the metabolite profiles.

Throughout day shift and night shift, urine samples and information on diet, sleep and medication

were collected.

4.2. Chronotype Classification

Participants’ chronotypes were calculated based on their sleep timing, as assessed by the Munich

Chronotype Questionnaire for shift-workers (MCTQShift), an adaptation of the standard MCTQ [21,41].
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Specifically, mid-sleep (the time point midway between falling asleep and waking up) on work-free

days is a proxy for circadian phase that can be derived from entries to the MCTQ and chronotype

then is defined as mid-sleep corrected for sleep debt accumulated over the past work week [21,41–43].

The MCTQShift allows calculating mid-sleep times for different work shifts (e.g., early, late, night)

and chronotype then is usually derived from the mid-sleep on work-free days after late shifts [21].

In our study, 97 women provided information about their habitual sleep times in different shifts.

Twenty participants reported that they used an alarm clock on all work-free days in all work shifts.

For these 20 participants, we used mid-sleep on workdays with late-shifts to calculate their chronotype.

For three participants, we calculated chronotype based on their sleep-debt corrected mid-sleep on

work-free days after early shifts. Data of all 97 participants were then grouped into early, intermediate

and late chronotypes based on thirds (33.3%) of the sorted mid-sleep time points [21]. Nurses with

chronotype <3:37 a.m. were defined as early chronotypes (N = 32), nurses with chronotype between

3:37 a.m.–4:25 a.m. were defined as intermediate chronotypes (N = 32) and nurses with chronotype

>4:25 a.m. were defined as late chronotypes (N = 33).

4.3. Urine Samples

All spontaneous urine samples throughout observation period were collected in 100 mL

SARSTEDT disposable plastic containers, stored at 9 ◦C for a maximum of 24 h before being aliquoted

to 1.5 mL Eppendorf tubes and deep frozen at −80 ◦C. Out of the collected 3640 urine samples,

2990 were measured for metabolite profiles including 2921 samples of the 97 nurses with chronotype

information. Due to potential influences on the metabolite profile and on the sleep quality, individuals

with diabetes (N = 4), vegetarians (N = 2) and women with extreme sleep apnoea (N = 1) were excluded

from the SW group, resulting in 68 participants with 2278 urine metabolite profiles [8,30,44]. Of those,

424 were logged by study participants as waking-up urine samples, indicating the first urine donation

after waking up (Figure 1B). On average, waking-up urine samples were donated at 05:17 (SD = 01:17)

a.m. during day shift and at 12:52 (SD = 03:04) p.m. for night shift.

4.4. Targeted Metabolite Profiling

Each urine sample was measured with the AbsoluteIDQTM p150 Kit (BIOCRATES Life

Sciences AG, Innsbruck, Austria) using FIA-ESI-MS/MS (flow injection-electrospray ionisation-triple

quadrupole mass spectrometry) [15,45]. In 10 µL urine, 162 metabolites were quantified (Table S1).

We applied the same quality control (QC) criteria as in our previous study [15]. Overall, 2990 urine

samples were measured in two batches. The QC was conducted separately for each metabolite

and for each batch. In total, 44 metabolites passed the QC: free carnitine, 25 acylcarnitines (Cx:y),

13 proteinogenic amino acids, creatinine, hexoses (sum of hexoses), two phosphatidylcholine acyl-alkyl

(PC ae) and one sphingolipid (SM C24:0) (Table S1). The abbreviations Cx:y depicts x number of

carbons and y double bonds of all chains, respectively.

4.5. Osmolality Measurement

Measurements were performed using a Gonotec Osmomat 030 (Berlin, Germany). Freezing-point

depression was used to determine osmolality [osm/kg] in waking-up urine samples.

4.6. Normalization Approaches

Urine samples where normalized to the respective creatinine and osmolality values, respectively [46,47].

Furthermore, a novel approach, regression based normalization (RBN), was applied [48]. In RBN,

the dependency of urinary metabolite on the dilution variation is estimated from the data which

allows for nonlinear functional relations. Nonlinear relations can occur in dynamically influenced

urinary data.
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4.7. Statistical Analysis

Normalized metabolite values were log-transformed and standardized (mean = 0 and standard

deviation = 1). We used LMEM to compare the metabolic profiles between day shift (used as reference

in the current study) and night shift of the SW group. A combined analysis, based on metabolite

values of 68 participants, as well as a stratified analysis based on the respective chronotype class

(early, intermediate and late) was conducted. For each metabolite, we calculated basic and full

LMEMs. The basic model was adjusted for chronotype value and batch effect. To account for the

sociodemographic differences between the study groups, the full model was additionally adjusted for

BMI, age, smoking status, thyroid disease status, total years of shift work, respective day of shift block

and time since last urination [12,49,50].

To account for multiple testing of the 44 used metabolites, false discovery rate (FDR, Benjamini

Hochberg) was used as significance cut-off.

Statistical analyses were performed with SAS 9.4 (SAS Institute, Cary, NC, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/8/3/45/s1,
Figure S1. Correlation plot for age and chronotype value, Table S1. List of 162 quantified metabolites, Table S2.
Results of 15 metabolites significantly altered by night shift work in combined and chronotype-stratified analysis
based on creatinine-normalized values in the basic model.
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